Home | History | Annotate | Line # | Download | only in net
rtsock.c revision 1.128
      1 /*	$NetBSD: rtsock.c,v 1.128 2010/05/02 19:17:56 kefren Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1988, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.128 2010/05/02 19:17:56 kefren Exp $");
     65 
     66 #include "opt_inet.h"
     67 #ifdef _KERNEL_OPT
     68 #include "opt_compat_netbsd.h"
     69 #endif
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/proc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/socket.h>
     76 #include <sys/socketvar.h>
     77 #include <sys/domain.h>
     78 #include <sys/protosw.h>
     79 #include <sys/sysctl.h>
     80 #include <sys/kauth.h>
     81 #include <sys/intr.h>
     82 #ifdef RTSOCK_DEBUG
     83 #include <netinet/in.h>
     84 #endif /* RTSOCK_DEBUG */
     85 
     86 #include <net/if.h>
     87 #include <net/route.h>
     88 #include <net/raw_cb.h>
     89 
     90 #if defined(COMPAT_14) || defined(COMPAT_50)
     91 #include <compat/net/if.h>
     92 #endif
     93 
     94 #include <machine/stdarg.h>
     95 
     96 DOMAIN_DEFINE(routedomain);	/* forward declare and add to link set */
     97 
     98 struct	sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
     99 struct	sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
    100 
    101 int	route_maxqlen = IFQ_MAXLEN;
    102 static struct	ifqueue route_intrq;
    103 static void	*route_sih;
    104 
    105 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
    106 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
    107 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
    108     struct rt_addrinfo *);
    109 static void sysctl_net_route_setup(struct sysctllog **);
    110 static int sysctl_dumpentry(struct rtentry *, void *);
    111 static int sysctl_iflist(int, struct rt_walkarg *, int);
    112 static int sysctl_rtable(SYSCTLFN_PROTO);
    113 static void rt_adjustcount(int, int);
    114 
    115 static void
    116 rt_adjustcount(int af, int cnt)
    117 {
    118 	route_cb.any_count += cnt;
    119 	switch (af) {
    120 	case AF_INET:
    121 		route_cb.ip_count += cnt;
    122 		return;
    123 #ifdef INET6
    124 	case AF_INET6:
    125 		route_cb.ip6_count += cnt;
    126 		return;
    127 #endif
    128 	case AF_IPX:
    129 		route_cb.ipx_count += cnt;
    130 		return;
    131 	case AF_NS:
    132 		route_cb.ns_count += cnt;
    133 		return;
    134 	case AF_ISO:
    135 		route_cb.iso_count += cnt;
    136 		return;
    137 	}
    138 }
    139 
    140 static void
    141 cvtmetrics(struct rt_metrics *ortm, const struct nrt_metrics *rtm)
    142 {
    143 	ortm->rmx_locks = rtm->rmx_locks;
    144 	ortm->rmx_mtu = rtm->rmx_mtu;
    145 	ortm->rmx_hopcount = rtm->rmx_hopcount;
    146 	ortm->rmx_expire = rtm->rmx_expire;
    147 	ortm->rmx_recvpipe = rtm->rmx_recvpipe;
    148 	ortm->rmx_sendpipe = rtm->rmx_sendpipe;
    149 	ortm->rmx_ssthresh = rtm->rmx_ssthresh;
    150 	ortm->rmx_rtt = rtm->rmx_rtt;
    151 	ortm->rmx_rttvar = rtm->rmx_rttvar;
    152 	ortm->rmx_pksent = rtm->rmx_pksent;
    153 }
    154 
    155 /*ARGSUSED*/
    156 int
    157 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    158 	struct mbuf *control, struct lwp *l)
    159 {
    160 	int error = 0;
    161 	struct rawcb *rp = sotorawcb(so);
    162 	int s;
    163 
    164 	if (req == PRU_ATTACH) {
    165 		sosetlock(so);
    166 		rp = malloc(sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
    167 		so->so_pcb = rp;
    168 	}
    169 	if (req == PRU_DETACH && rp)
    170 		rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
    171 	s = splsoftnet();
    172 
    173 	/*
    174 	 * Don't call raw_usrreq() in the attach case, because
    175 	 * we want to allow non-privileged processes to listen on
    176 	 * and send "safe" commands to the routing socket.
    177 	 */
    178 	if (req == PRU_ATTACH) {
    179 		if (l == NULL)
    180 			error = EACCES;
    181 		else
    182 			error = raw_attach(so, (int)(long)nam);
    183 	} else
    184 		error = raw_usrreq(so, req, m, nam, control, l);
    185 
    186 	rp = sotorawcb(so);
    187 	if (req == PRU_ATTACH && rp) {
    188 		if (error) {
    189 			free(rp, M_PCB);
    190 			splx(s);
    191 			return error;
    192 		}
    193 		rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
    194 		rp->rcb_laddr = &route_src;
    195 		rp->rcb_faddr = &route_dst;
    196 		soisconnected(so);
    197 		so->so_options |= SO_USELOOPBACK;
    198 	}
    199 	splx(s);
    200 	return error;
    201 }
    202 
    203 static const struct sockaddr *
    204 intern_netmask(const struct sockaddr *mask)
    205 {
    206 	struct radix_node *rn;
    207 	extern struct radix_node_head *mask_rnhead;
    208 
    209 	if (mask != NULL &&
    210 	    (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
    211 		mask = (const struct sockaddr *)rn->rn_key;
    212 
    213 	return mask;
    214 }
    215 
    216 /*ARGSUSED*/
    217 int
    218 route_output(struct mbuf *m, ...)
    219 {
    220 	struct sockproto proto = { .sp_family = PF_ROUTE, };
    221 	struct rt_msghdr *rtm = NULL;
    222 	struct rt_msghdr *old_rtm = NULL;
    223 	struct rtentry *rt = NULL;
    224 	struct rtentry *saved_nrt = NULL;
    225 	struct rt_addrinfo info;
    226 	int len, error = 0;
    227 	struct ifnet *ifp = NULL;
    228 	struct ifaddr *ifa = NULL;
    229 	struct socket *so;
    230 	va_list ap;
    231 	sa_family_t family;
    232 
    233 	va_start(ap, m);
    234 	so = va_arg(ap, struct socket *);
    235 	va_end(ap);
    236 
    237 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
    238 	if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
    239 	   (m = m_pullup(m, sizeof(int32_t))) == NULL))
    240 		return ENOBUFS;
    241 	if ((m->m_flags & M_PKTHDR) == 0)
    242 		panic("route_output");
    243 	len = m->m_pkthdr.len;
    244 	if (len < sizeof(*rtm) ||
    245 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
    246 		info.rti_info[RTAX_DST] = NULL;
    247 		senderr(EINVAL);
    248 	}
    249 	R_Malloc(rtm, struct rt_msghdr *, len);
    250 	if (rtm == NULL) {
    251 		info.rti_info[RTAX_DST] = NULL;
    252 		senderr(ENOBUFS);
    253 	}
    254 	m_copydata(m, 0, len, rtm);
    255 	if (rtm->rtm_version != RTM_VERSION) {
    256 		info.rti_info[RTAX_DST] = NULL;
    257 		senderr(EPROTONOSUPPORT);
    258 	}
    259 	rtm->rtm_pid = curproc->p_pid;
    260 	memset(&info, 0, sizeof(info));
    261 	info.rti_addrs = rtm->rtm_addrs;
    262 	if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
    263 	    &info))
    264 		senderr(EINVAL);
    265 	info.rti_flags = rtm->rtm_flags;
    266 #ifdef RTSOCK_DEBUG
    267 	if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
    268 		printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
    269 		    inet_ntoa(((const struct sockaddr_in *)
    270 		    info.rti_info[RTAX_DST])->sin_addr));
    271 	}
    272 #endif /* RTSOCK_DEBUG */
    273 	if (info.rti_info[RTAX_DST] == NULL ||
    274 	    (info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
    275 		senderr(EINVAL);
    276 	if (info.rti_info[RTAX_GATEWAY] != NULL &&
    277 	    (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
    278 		senderr(EINVAL);
    279 
    280 	/*
    281 	 * Verify that the caller has the appropriate privilege; RTM_GET
    282 	 * is the only operation the non-superuser is allowed.
    283 	 */
    284 	if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
    285 	    0, rtm, NULL, NULL) != 0)
    286 		senderr(EACCES);
    287 
    288 	switch (rtm->rtm_type) {
    289 
    290 	case RTM_ADD:
    291 		if (info.rti_info[RTAX_GATEWAY] == NULL)
    292 			senderr(EINVAL);
    293 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    294 		if (error == 0 && saved_nrt) {
    295 			rt_setmetrics(rtm->rtm_inits,
    296 			    &rtm->rtm_rmx, &saved_nrt->rt_rmx);
    297 			saved_nrt->rt_refcnt--;
    298 		}
    299 		break;
    300 
    301 	case RTM_DELETE:
    302 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    303 		if (error == 0) {
    304 			(rt = saved_nrt)->rt_refcnt++;
    305 			goto report;
    306 		}
    307 		break;
    308 
    309 	case RTM_GET:
    310 	case RTM_CHANGE:
    311 	case RTM_LOCK:
    312                 /* XXX This will mask info.rti_info[RTAX_DST] with
    313 		 * info.rti_info[RTAX_NETMASK] before
    314                  * searching.  It did not used to do that.  --dyoung
    315 		 */
    316 		error = rtrequest1(RTM_GET, &info, &rt);
    317 		if (error != 0)
    318 			senderr(error);
    319 		if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
    320 			struct radix_node *rn;
    321 
    322 			if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
    323 			    info.rti_info[RTAX_DST]->sa_len) != 0)
    324 				senderr(ESRCH);
    325 			info.rti_info[RTAX_NETMASK] = intern_netmask(
    326 			    info.rti_info[RTAX_NETMASK]);
    327 			for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
    328 				if (info.rti_info[RTAX_NETMASK] ==
    329 				    (const struct sockaddr *)rn->rn_mask)
    330 					break;
    331 			if (rn == NULL)
    332 				senderr(ETOOMANYREFS);
    333 			rt = (struct rtentry *)rn;
    334 		}
    335 
    336 		switch (rtm->rtm_type) {
    337 		case RTM_GET:
    338 		report:
    339 			info.rti_info[RTAX_DST] = rt_getkey(rt);
    340 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
    341 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
    342 			if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
    343 				;
    344 			else if ((ifp = rt->rt_ifp) != NULL) {
    345 				const struct ifaddr *rtifa;
    346 				info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
    347                                 /* rtifa used to be simply rt->rt_ifa.
    348                                  * If rt->rt_ifa != NULL, then
    349                                  * rt_get_ifa() != NULL.  So this
    350                                  * ought to still be safe. --dyoung
    351 				 */
    352 				rtifa = rt_get_ifa(rt);
    353 				info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
    354 #ifdef RTSOCK_DEBUG
    355 				if (info.rti_info[RTAX_IFA]->sa_family ==
    356 				    AF_INET) {
    357 					printf("%s: copying out RTAX_IFA %s ",
    358 					    __func__, inet_ntoa(
    359 					    ((const struct sockaddr_in *)
    360 					    info.rti_info[RTAX_IFA])->sin_addr)
    361 					    );
    362 					printf("for info.rti_info[RTAX_DST] %s "
    363 					    "ifa_getifa %p ifa_seqno %p\n",
    364 					    inet_ntoa(
    365 					    ((const struct sockaddr_in *)
    366 					    info.rti_info[RTAX_DST])->sin_addr),
    367 					    (void *)rtifa->ifa_getifa,
    368 					    rtifa->ifa_seqno);
    369 				}
    370 #endif /* RTSOCK_DEBUG */
    371 				if (ifp->if_flags & IFF_POINTOPOINT) {
    372 					info.rti_info[RTAX_BRD] =
    373 					    rtifa->ifa_dstaddr;
    374 				} else
    375 					info.rti_info[RTAX_BRD] = NULL;
    376 				rtm->rtm_index = ifp->if_index;
    377 			} else {
    378 				info.rti_info[RTAX_IFP] = NULL;
    379 				info.rti_info[RTAX_IFA] = NULL;
    380 			}
    381 			(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
    382 			if (len > rtm->rtm_msglen) {
    383 				old_rtm = rtm;
    384 				R_Malloc(rtm, struct rt_msghdr *, len);
    385 				if (rtm == NULL)
    386 					senderr(ENOBUFS);
    387 				(void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
    388 			}
    389 			(void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
    390 			rtm->rtm_flags = rt->rt_flags;
    391 			cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
    392 			rtm->rtm_addrs = info.rti_addrs;
    393 			break;
    394 
    395 		case RTM_CHANGE:
    396 			/*
    397 			 * new gateway could require new ifaddr, ifp;
    398 			 * flags may also be different; ifp may be specified
    399 			 * by ll sockaddr when protocol address is ambiguous
    400 			 */
    401 			if ((error = rt_getifa(&info)) != 0)
    402 				senderr(error);
    403 			if (info.rti_info[RTAX_GATEWAY] &&
    404 			    rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
    405 				senderr(EDQUOT);
    406 			/* new gateway could require new ifaddr, ifp;
    407 			   flags may also be different; ifp may be specified
    408 			   by ll sockaddr when protocol address is ambiguous */
    409 			if (info.rti_info[RTAX_IFP] &&
    410 			    (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
    411 			    (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
    412 			    info.rti_info[RTAX_GATEWAY])) {
    413 				if (info.rti_info[RTAX_IFA] == NULL ||
    414 				    (ifa = ifa_ifwithaddr(
    415 				    info.rti_info[RTAX_IFA])) == NULL)
    416 					ifa = ifaof_ifpforaddr(
    417 					    info.rti_info[RTAX_IFA] ?
    418 					    info.rti_info[RTAX_IFA] :
    419 					    info.rti_info[RTAX_GATEWAY], ifp);
    420 			} else if ((info.rti_info[RTAX_IFA] &&
    421 			    (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
    422 			    (info.rti_info[RTAX_GATEWAY] &&
    423 			    (ifa = ifa_ifwithroute(rt->rt_flags,
    424 			    rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
    425 				ifp = ifa->ifa_ifp;
    426 			}
    427 			if (ifa) {
    428 				struct ifaddr *oifa = rt->rt_ifa;
    429 				if (oifa != ifa) {
    430 					if (oifa && oifa->ifa_rtrequest) {
    431 						oifa->ifa_rtrequest(RTM_DELETE,
    432 						    rt, &info);
    433 					}
    434 					rt_replace_ifa(rt, ifa);
    435 					rt->rt_ifp = ifp;
    436 				}
    437 			}
    438 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
    439 			    &rt->rt_rmx);
    440 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
    441 				rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
    442 			/*FALLTHROUGH*/
    443 		case RTM_LOCK:
    444 			rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
    445 			rt->rt_rmx.rmx_locks |=
    446 			    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
    447 			break;
    448 		}
    449 		break;
    450 
    451 	default:
    452 		senderr(EOPNOTSUPP);
    453 	}
    454 
    455 flush:
    456 	if (rtm) {
    457 		if (error)
    458 			rtm->rtm_errno = error;
    459 		else
    460 			rtm->rtm_flags |= RTF_DONE;
    461 	}
    462 	family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
    463 	    0;
    464 	/* We cannot free old_rtm until we have stopped using the
    465 	 * pointers in info, some of which may point to sockaddrs
    466 	 * in old_rtm.
    467 	 */
    468 	if (old_rtm != NULL)
    469 		Free(old_rtm);
    470 	if (rt)
    471 		rtfree(rt);
    472     {
    473 	struct rawcb *rp = NULL;
    474 	/*
    475 	 * Check to see if we don't want our own messages.
    476 	 */
    477 	if ((so->so_options & SO_USELOOPBACK) == 0) {
    478 		if (route_cb.any_count <= 1) {
    479 			if (rtm)
    480 				Free(rtm);
    481 			m_freem(m);
    482 			return error;
    483 		}
    484 		/* There is another listener, so construct message */
    485 		rp = sotorawcb(so);
    486 	}
    487 	if (rtm) {
    488 		m_copyback(m, 0, rtm->rtm_msglen, rtm);
    489 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
    490 			m_freem(m);
    491 			m = NULL;
    492 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
    493 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
    494 		Free(rtm);
    495 	}
    496 	if (rp)
    497 		rp->rcb_proto.sp_family = 0; /* Avoid us */
    498 	if (family)
    499 		proto.sp_protocol = family;
    500 	if (m)
    501 		raw_input(m, &proto, &route_src, &route_dst);
    502 	if (rp)
    503 		rp->rcb_proto.sp_family = PF_ROUTE;
    504     }
    505 	return error;
    506 }
    507 
    508 void
    509 rt_setmetrics(u_long which, const struct rt_metrics *in, struct nrt_metrics *out)
    510 {
    511 #define metric(f, e) if (which & (f)) out->e = in->e;
    512 	metric(RTV_RPIPE, rmx_recvpipe);
    513 	metric(RTV_SPIPE, rmx_sendpipe);
    514 	metric(RTV_SSTHRESH, rmx_ssthresh);
    515 	metric(RTV_RTT, rmx_rtt);
    516 	metric(RTV_RTTVAR, rmx_rttvar);
    517 	metric(RTV_HOPCOUNT, rmx_hopcount);
    518 	metric(RTV_MTU, rmx_mtu);
    519 	/* XXX time_t: Will not work after February 2145 (u_long time) */
    520 	metric(RTV_EXPIRE, rmx_expire);
    521 #undef metric
    522 }
    523 
    524 static int
    525 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
    526     struct rt_addrinfo *rtinfo)
    527 {
    528 	const struct sockaddr *sa = NULL;	/* Quell compiler warning */
    529 	int i;
    530 
    531 	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
    532 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
    533 			continue;
    534 		rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
    535 		RT_ADVANCE(cp, sa);
    536 	}
    537 
    538 	/*
    539 	 * Check for extra addresses specified, except RTM_GET asking
    540 	 * for interface info.
    541 	 */
    542 	if (rtmtype == RTM_GET) {
    543 		if (((rtinfo->rti_addrs &
    544 		    (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
    545 			return 1;
    546 	} else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
    547 		return 1;
    548 	/* Check for bad data length.  */
    549 	if (cp != cplim) {
    550 		if (i == RTAX_NETMASK + 1 && sa != NULL &&
    551 		    cp - RT_ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
    552 			/*
    553 			 * The last sockaddr was info.rti_info[RTAX_NETMASK].
    554 			 * We accept this for now for the sake of old
    555 			 * binaries or third party softwares.
    556 			 */
    557 			;
    558 		else
    559 			return 1;
    560 	}
    561 	return 0;
    562 }
    563 
    564 struct mbuf *
    565 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
    566 {
    567 	struct rt_msghdr *rtm;
    568 	struct mbuf *m;
    569 	int i;
    570 	const struct sockaddr *sa;
    571 	int len, dlen;
    572 
    573 	m = m_gethdr(M_DONTWAIT, MT_DATA);
    574 	if (m == NULL)
    575 		return m;
    576 	MCLAIM(m, &routedomain.dom_mowner);
    577 	switch (type) {
    578 
    579 	case RTM_DELADDR:
    580 	case RTM_NEWADDR:
    581 		len = sizeof(struct ifa_msghdr);
    582 		break;
    583 
    584 #ifdef COMPAT_14
    585 	case RTM_OOIFINFO:
    586 		len = sizeof(struct if_msghdr14);
    587 		break;
    588 #endif
    589 #ifdef COMPAT_50
    590 	case RTM_OIFINFO:
    591 		len = sizeof(struct if_msghdr50);
    592 		break;
    593 #endif
    594 
    595 	case RTM_IFINFO:
    596 		len = sizeof(struct if_msghdr);
    597 		break;
    598 
    599 	case RTM_IFANNOUNCE:
    600 	case RTM_IEEE80211:
    601 		len = sizeof(struct if_announcemsghdr);
    602 		break;
    603 
    604 	default:
    605 		len = sizeof(struct rt_msghdr);
    606 	}
    607 	if (len > MHLEN + MLEN)
    608 		panic("rt_msg1: message too long");
    609 	else if (len > MHLEN) {
    610 		m->m_next = m_get(M_DONTWAIT, MT_DATA);
    611 		if (m->m_next == NULL) {
    612 			m_freem(m);
    613 			return NULL;
    614 		}
    615 		MCLAIM(m->m_next, m->m_owner);
    616 		m->m_pkthdr.len = len;
    617 		m->m_len = MHLEN;
    618 		m->m_next->m_len = len - MHLEN;
    619 	} else {
    620 		m->m_pkthdr.len = m->m_len = len;
    621 	}
    622 	m->m_pkthdr.rcvif = NULL;
    623 	m_copyback(m, 0, datalen, data);
    624 	if (len > datalen)
    625 		(void)memset(mtod(m, char *) + datalen, 0, len - datalen);
    626 	rtm = mtod(m, struct rt_msghdr *);
    627 	for (i = 0; i < RTAX_MAX; i++) {
    628 		if ((sa = rtinfo->rti_info[i]) == NULL)
    629 			continue;
    630 		rtinfo->rti_addrs |= (1 << i);
    631 		dlen = RT_ROUNDUP(sa->sa_len);
    632 		m_copyback(m, len, dlen, sa);
    633 		len += dlen;
    634 	}
    635 	if (m->m_pkthdr.len != len) {
    636 		m_freem(m);
    637 		return NULL;
    638 	}
    639 	rtm->rtm_msglen = len;
    640 	rtm->rtm_version = RTM_VERSION;
    641 	rtm->rtm_type = type;
    642 	return m;
    643 }
    644 
    645 /*
    646  * rt_msg2
    647  *
    648  *	 fills 'cp' or 'w'.w_tmem with the routing socket message and
    649  *		returns the length of the message in 'lenp'.
    650  *
    651  * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
    652  *	the message
    653  * otherwise walkarg's w_needed is updated and if the user buffer is
    654  *	specified and w_needed indicates space exists the information is copied
    655  *	into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
    656  *	if the allocation fails ENOBUFS is returned.
    657  */
    658 static int
    659 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
    660 	int *lenp)
    661 {
    662 	int i;
    663 	int len, dlen, second_time = 0;
    664 	char *cp0, *cp = cpv;
    665 
    666 	rtinfo->rti_addrs = 0;
    667 again:
    668 	switch (type) {
    669 
    670 	case RTM_DELADDR:
    671 	case RTM_NEWADDR:
    672 		len = sizeof(struct ifa_msghdr);
    673 		break;
    674 #ifdef COMPAT_14
    675 	case RTM_OOIFINFO:
    676 		len = sizeof(struct if_msghdr14);
    677 		break;
    678 #endif
    679 #ifdef COMPAT_50
    680 	case RTM_OIFINFO:
    681 		len = sizeof(struct if_msghdr50);
    682 		break;
    683 #endif
    684 
    685 	case RTM_IFINFO:
    686 		len = sizeof(struct if_msghdr);
    687 		break;
    688 
    689 	default:
    690 		len = sizeof(struct rt_msghdr);
    691 	}
    692 	if ((cp0 = cp) != NULL)
    693 		cp += len;
    694 	for (i = 0; i < RTAX_MAX; i++) {
    695 		const struct sockaddr *sa;
    696 
    697 		if ((sa = rtinfo->rti_info[i]) == NULL)
    698 			continue;
    699 		rtinfo->rti_addrs |= (1 << i);
    700 		dlen = RT_ROUNDUP(sa->sa_len);
    701 		if (cp) {
    702 			(void)memcpy(cp, sa, (size_t)dlen);
    703 			cp += dlen;
    704 		}
    705 		len += dlen;
    706 	}
    707 	if (cp == NULL && w != NULL && !second_time) {
    708 		struct rt_walkarg *rw = w;
    709 
    710 		rw->w_needed += len;
    711 		if (rw->w_needed <= 0 && rw->w_where) {
    712 			if (rw->w_tmemsize < len) {
    713 				if (rw->w_tmem)
    714 					free(rw->w_tmem, M_RTABLE);
    715 				rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
    716 				if (rw->w_tmem)
    717 					rw->w_tmemsize = len;
    718 				else
    719 					rw->w_tmemsize = 0;
    720 			}
    721 			if (rw->w_tmem) {
    722 				cp = rw->w_tmem;
    723 				second_time = 1;
    724 				goto again;
    725 			} else {
    726 				rw->w_tmemneeded = len;
    727 				return ENOBUFS;
    728 			}
    729 		}
    730 	}
    731 	if (cp) {
    732 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
    733 
    734 		rtm->rtm_version = RTM_VERSION;
    735 		rtm->rtm_type = type;
    736 		rtm->rtm_msglen = len;
    737 	}
    738 	if (lenp)
    739 		*lenp = len;
    740 	return 0;
    741 }
    742 
    743 /*
    744  * This routine is called to generate a message from the routing
    745  * socket indicating that a redirect has occurred, a routing lookup
    746  * has failed, or that a protocol has detected timeouts to a particular
    747  * destination.
    748  */
    749 void
    750 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
    751 {
    752 	struct rt_msghdr rtm;
    753 	struct mbuf *m;
    754 	const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
    755 
    756 	if (route_cb.any_count == 0)
    757 		return;
    758 	memset(&rtm, 0, sizeof(rtm));
    759 	rtm.rtm_flags = RTF_DONE | flags;
    760 	rtm.rtm_errno = error;
    761 	m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
    762 	if (m == NULL)
    763 		return;
    764 	mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
    765 	route_enqueue(m, sa ? sa->sa_family : 0);
    766 }
    767 
    768 /*
    769  * This routine is called to generate a message from the routing
    770  * socket indicating that the status of a network interface has changed.
    771  */
    772 void
    773 rt_ifmsg(struct ifnet *ifp)
    774 {
    775 	struct if_msghdr ifm;
    776 	struct mbuf *m;
    777 	struct rt_addrinfo info;
    778 
    779 	if (route_cb.any_count == 0)
    780 		return;
    781 	(void)memset(&info, 0, sizeof(info));
    782 	(void)memset(&ifm, 0, sizeof(ifm));
    783 	ifm.ifm_index = ifp->if_index;
    784 	ifm.ifm_flags = ifp->if_flags;
    785 	ifm.ifm_data = ifp->if_data;
    786 	ifm.ifm_addrs = 0;
    787 	m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
    788 	if (m == NULL)
    789 		return;
    790 	route_enqueue(m, 0);
    791 #ifdef COMPAT_14
    792 	compat_14_rt_ifmsg(ifp, &ifm);
    793 #endif
    794 #ifdef COMPAT_50
    795 	compat_50_rt_ifmsg(ifp, &ifm);
    796 #endif
    797 }
    798 
    799 
    800 /*
    801  * This is called to generate messages from the routing socket
    802  * indicating a network interface has had addresses associated with it.
    803  * if we ever reverse the logic and replace messages TO the routing
    804  * socket indicate a request to configure interfaces, then it will
    805  * be unnecessary as the routing socket will automatically generate
    806  * copies of it.
    807  */
    808 void
    809 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
    810 {
    811 #define	cmdpass(__cmd, __pass)	(((__cmd) << 2) | (__pass))
    812 	struct rt_addrinfo info;
    813 	const struct sockaddr *sa;
    814 	int pass;
    815 	struct mbuf *m;
    816 	struct ifnet *ifp = ifa->ifa_ifp;
    817 	struct rt_msghdr rtm;
    818 	struct ifa_msghdr ifam;
    819 	int ncmd;
    820 
    821 	if (route_cb.any_count == 0)
    822 		return;
    823 	for (pass = 1; pass < 3; pass++) {
    824 		memset(&info, 0, sizeof(info));
    825 		switch (cmdpass(cmd, pass)) {
    826 		case cmdpass(RTM_ADD, 1):
    827 		case cmdpass(RTM_CHANGE, 1):
    828 		case cmdpass(RTM_DELETE, 2):
    829 			if (cmd == RTM_ADD)
    830 				ncmd = RTM_NEWADDR;
    831 			else
    832 				ncmd = RTM_DELADDR;
    833 
    834 			info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
    835 			info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
    836 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
    837 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
    838 			memset(&ifam, 0, sizeof(ifam));
    839 			ifam.ifam_index = ifp->if_index;
    840 			ifam.ifam_metric = ifa->ifa_metric;
    841 			ifam.ifam_flags = ifa->ifa_flags;
    842 			m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
    843 			if (m == NULL)
    844 				continue;
    845 			mtod(m, struct ifa_msghdr *)->ifam_addrs =
    846 			    info.rti_addrs;
    847 			break;
    848 		case cmdpass(RTM_ADD, 2):
    849 		case cmdpass(RTM_CHANGE, 2):
    850 		case cmdpass(RTM_DELETE, 1):
    851 			if (rt == NULL)
    852 				continue;
    853 			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
    854 			info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
    855 			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
    856 			memset(&rtm, 0, sizeof(rtm));
    857 			rtm.rtm_index = ifp->if_index;
    858 			rtm.rtm_flags |= rt->rt_flags;
    859 			rtm.rtm_errno = error;
    860 			m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
    861 			if (m == NULL)
    862 				continue;
    863 			mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
    864 			break;
    865 		default:
    866 			continue;
    867 		}
    868 #ifdef DIAGNOSTIC
    869 		if (m == NULL)
    870 			panic("%s: called with wrong command", __func__);
    871 #endif
    872 		route_enqueue(m, sa ? sa->sa_family : 0);
    873 	}
    874 #undef cmdpass
    875 }
    876 
    877 static struct mbuf *
    878 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
    879     struct rt_addrinfo *info)
    880 {
    881 	struct if_announcemsghdr ifan;
    882 
    883 	memset(info, 0, sizeof(*info));
    884 	memset(&ifan, 0, sizeof(ifan));
    885 	ifan.ifan_index = ifp->if_index;
    886 	strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
    887 	ifan.ifan_what = what;
    888 	return rt_msg1(type, info, &ifan, sizeof(ifan));
    889 }
    890 
    891 /*
    892  * This is called to generate routing socket messages indicating
    893  * network interface arrival and departure.
    894  */
    895 void
    896 rt_ifannouncemsg(struct ifnet *ifp, int what)
    897 {
    898 	struct mbuf *m;
    899 	struct rt_addrinfo info;
    900 
    901 	if (route_cb.any_count == 0)
    902 		return;
    903 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
    904 	if (m == NULL)
    905 		return;
    906 	route_enqueue(m, 0);
    907 }
    908 
    909 /*
    910  * This is called to generate routing socket messages indicating
    911  * IEEE80211 wireless events.
    912  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
    913  */
    914 void
    915 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
    916 {
    917 	struct mbuf *m;
    918 	struct rt_addrinfo info;
    919 
    920 	if (route_cb.any_count == 0)
    921 		return;
    922 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
    923 	if (m == NULL)
    924 		return;
    925 	/*
    926 	 * Append the ieee80211 data.  Try to stick it in the
    927 	 * mbuf containing the ifannounce msg; otherwise allocate
    928 	 * a new mbuf and append.
    929 	 *
    930 	 * NB: we assume m is a single mbuf.
    931 	 */
    932 	if (data_len > M_TRAILINGSPACE(m)) {
    933 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
    934 		if (n == NULL) {
    935 			m_freem(m);
    936 			return;
    937 		}
    938 		(void)memcpy(mtod(n, void *), data, data_len);
    939 		n->m_len = data_len;
    940 		m->m_next = n;
    941 	} else if (data_len > 0) {
    942 		(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
    943 		m->m_len += data_len;
    944 	}
    945 	if (m->m_flags & M_PKTHDR)
    946 		m->m_pkthdr.len += data_len;
    947 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
    948 	route_enqueue(m, 0);
    949 }
    950 
    951 /*
    952  * This is used in dumping the kernel table via sysctl().
    953  */
    954 static int
    955 sysctl_dumpentry(struct rtentry *rt, void *v)
    956 {
    957 	struct rt_walkarg *w = v;
    958 	int error = 0, size;
    959 	struct rt_addrinfo info;
    960 
    961 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
    962 		return 0;
    963 	memset(&info, 0, sizeof(info));
    964 	info.rti_info[RTAX_DST] = rt_getkey(rt);
    965 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
    966 	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
    967 	if (rt->rt_ifp) {
    968 		const struct ifaddr *rtifa;
    969 		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
    970 		/* rtifa used to be simply rt->rt_ifa.  If rt->rt_ifa != NULL,
    971 		 * then rt_get_ifa() != NULL.  So this ought to still be safe.
    972 		 * --dyoung
    973 		 */
    974 		rtifa = rt_get_ifa(rt);
    975 		info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
    976 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
    977 			info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
    978 	}
    979 	if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
    980 		return error;
    981 	if (w->w_where && w->w_tmem && w->w_needed <= 0) {
    982 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
    983 
    984 		rtm->rtm_flags = rt->rt_flags;
    985 		rtm->rtm_use = rt->rt_use;
    986 		cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
    987 		KASSERT(rt->rt_ifp != NULL);
    988 		rtm->rtm_index = rt->rt_ifp->if_index;
    989 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
    990 		rtm->rtm_addrs = info.rti_addrs;
    991 		if ((error = copyout(rtm, w->w_where, size)) != 0)
    992 			w->w_where = NULL;
    993 		else
    994 			w->w_where = (char *)w->w_where + size;
    995 	}
    996 	return error;
    997 }
    998 
    999 static int
   1000 sysctl_iflist(int af, struct rt_walkarg *w, int type)
   1001 {
   1002 	struct ifnet *ifp;
   1003 	struct ifaddr *ifa;
   1004 	struct	rt_addrinfo info;
   1005 	int	len, error = 0;
   1006 
   1007 	memset(&info, 0, sizeof(info));
   1008 	IFNET_FOREACH(ifp) {
   1009 		if (w->w_arg && w->w_arg != ifp->if_index)
   1010 			continue;
   1011 		if (IFADDR_EMPTY(ifp))
   1012 			continue;
   1013 		info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
   1014 		switch (type) {
   1015 		case NET_RT_IFLIST:
   1016 			error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
   1017 			break;
   1018 #ifdef COMPAT_14
   1019 		case NET_RT_OOIFLIST:
   1020 			error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
   1021 			break;
   1022 #endif
   1023 #ifdef COMPAT_50
   1024 		case NET_RT_OIFLIST:
   1025 			error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
   1026 			break;
   1027 #endif
   1028 		default:
   1029 			panic("sysctl_iflist(1)");
   1030 		}
   1031 		if (error)
   1032 			return error;
   1033 		info.rti_info[RTAX_IFP] = NULL;
   1034 		if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1035 			switch (type) {
   1036 			case NET_RT_IFLIST: {
   1037 				struct if_msghdr *ifm;
   1038 
   1039 				ifm = (struct if_msghdr *)w->w_tmem;
   1040 				ifm->ifm_index = ifp->if_index;
   1041 				ifm->ifm_flags = ifp->if_flags;
   1042 				ifm->ifm_data = ifp->if_data;
   1043 				ifm->ifm_addrs = info.rti_addrs;
   1044 				error = copyout(ifm, w->w_where, len);
   1045 				if (error)
   1046 					return error;
   1047 				w->w_where = (char *)w->w_where + len;
   1048 				break;
   1049 			}
   1050 
   1051 #ifdef COMPAT_14
   1052 			case NET_RT_OOIFLIST:
   1053 				error = compat_14_iflist(ifp, w, &info, len);
   1054 				if (error)
   1055 					return error;
   1056 				break;
   1057 #endif
   1058 #ifdef COMPAT_50
   1059 			case NET_RT_OIFLIST:
   1060 				error = compat_50_iflist(ifp, w, &info, len);
   1061 				if (error)
   1062 					return error;
   1063 				break;
   1064 #endif
   1065 			default:
   1066 				panic("sysctl_iflist(2)");
   1067 			}
   1068 		}
   1069 		IFADDR_FOREACH(ifa, ifp) {
   1070 			if (af && af != ifa->ifa_addr->sa_family)
   1071 				continue;
   1072 			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
   1073 			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
   1074 			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
   1075 			if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
   1076 				return error;
   1077 			if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1078 				struct ifa_msghdr *ifam;
   1079 
   1080 				ifam = (struct ifa_msghdr *)w->w_tmem;
   1081 				ifam->ifam_index = ifa->ifa_ifp->if_index;
   1082 				ifam->ifam_flags = ifa->ifa_flags;
   1083 				ifam->ifam_metric = ifa->ifa_metric;
   1084 				ifam->ifam_addrs = info.rti_addrs;
   1085 				error = copyout(w->w_tmem, w->w_where, len);
   1086 				if (error)
   1087 					return error;
   1088 				w->w_where = (char *)w->w_where + len;
   1089 			}
   1090 		}
   1091 		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
   1092 		    info.rti_info[RTAX_BRD] = NULL;
   1093 	}
   1094 	return 0;
   1095 }
   1096 
   1097 static int
   1098 sysctl_rtable(SYSCTLFN_ARGS)
   1099 {
   1100 	void 	*where = oldp;
   1101 	size_t	*given = oldlenp;
   1102 	const void *new = newp;
   1103 	int	i, s, error = EINVAL;
   1104 	u_char  af;
   1105 	struct	rt_walkarg w;
   1106 
   1107 	if (namelen == 1 && name[0] == CTL_QUERY)
   1108 		return sysctl_query(SYSCTLFN_CALL(rnode));
   1109 
   1110 	if (new)
   1111 		return EPERM;
   1112 	if (namelen != 3)
   1113 		return EINVAL;
   1114 	af = name[0];
   1115 	w.w_tmemneeded = 0;
   1116 	w.w_tmemsize = 0;
   1117 	w.w_tmem = NULL;
   1118 again:
   1119 	/* we may return here if a later [re]alloc of the t_mem buffer fails */
   1120 	if (w.w_tmemneeded) {
   1121 		w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
   1122 		w.w_tmemsize = w.w_tmemneeded;
   1123 		w.w_tmemneeded = 0;
   1124 	}
   1125 	w.w_op = name[1];
   1126 	w.w_arg = name[2];
   1127 	w.w_given = *given;
   1128 	w.w_needed = 0 - w.w_given;
   1129 	w.w_where = where;
   1130 
   1131 	s = splsoftnet();
   1132 	switch (w.w_op) {
   1133 
   1134 	case NET_RT_DUMP:
   1135 	case NET_RT_FLAGS:
   1136 		for (i = 1; i <= AF_MAX; i++)
   1137 			if ((af == 0 || af == i) &&
   1138 			    (error = rt_walktree(i, sysctl_dumpentry, &w)))
   1139 				break;
   1140 		break;
   1141 
   1142 #ifdef COMPAT_14
   1143 	case NET_RT_OOIFLIST:
   1144 		error = sysctl_iflist(af, &w, w.w_op);
   1145 		break;
   1146 #endif
   1147 #ifdef COMPAT_50
   1148 	case NET_RT_OIFLIST:
   1149 		error = sysctl_iflist(af, &w, w.w_op);
   1150 		break;
   1151 #endif
   1152 
   1153 	case NET_RT_IFLIST:
   1154 		error = sysctl_iflist(af, &w, w.w_op);
   1155 	}
   1156 	splx(s);
   1157 
   1158 	/* check to see if we couldn't allocate memory with NOWAIT */
   1159 	if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
   1160 		goto again;
   1161 
   1162 	if (w.w_tmem)
   1163 		free(w.w_tmem, M_RTABLE);
   1164 	w.w_needed += w.w_given;
   1165 	if (where) {
   1166 		*given = (char *)w.w_where - (char *)where;
   1167 		if (*given < w.w_needed)
   1168 			return ENOMEM;
   1169 	} else {
   1170 		*given = (11 * w.w_needed) / 10;
   1171 	}
   1172 	return error;
   1173 }
   1174 
   1175 /*
   1176  * Routing message software interrupt routine
   1177  */
   1178 static void
   1179 route_intr(void *cookie)
   1180 {
   1181 	struct sockproto proto = { .sp_family = PF_ROUTE, };
   1182 	struct mbuf *m;
   1183 	int s;
   1184 
   1185 	mutex_enter(softnet_lock);
   1186 	KERNEL_LOCK(1, NULL);
   1187 	while (!IF_IS_EMPTY(&route_intrq)) {
   1188 		s = splnet();
   1189 		IF_DEQUEUE(&route_intrq, m);
   1190 		splx(s);
   1191 		if (m == NULL)
   1192 			break;
   1193 		proto.sp_protocol = M_GETCTX(m, uintptr_t);
   1194 		raw_input(m, &proto, &route_src, &route_dst);
   1195 	}
   1196 	KERNEL_UNLOCK_ONE(NULL);
   1197 	mutex_exit(softnet_lock);
   1198 }
   1199 
   1200 /*
   1201  * Enqueue a message to the software interrupt routine.
   1202  */
   1203 void
   1204 route_enqueue(struct mbuf *m, int family)
   1205 {
   1206 	int s, wasempty;
   1207 
   1208 	s = splnet();
   1209 	if (IF_QFULL(&route_intrq)) {
   1210 		IF_DROP(&route_intrq);
   1211 		m_freem(m);
   1212 	} else {
   1213 		wasempty = IF_IS_EMPTY(&route_intrq);
   1214 		M_SETCTX(m, (uintptr_t)family);
   1215 		IF_ENQUEUE(&route_intrq, m);
   1216 		if (wasempty)
   1217 			softint_schedule(route_sih);
   1218 	}
   1219 	splx(s);
   1220 }
   1221 
   1222 void
   1223 rt_init(void)
   1224 {
   1225 
   1226 	sysctl_net_route_setup(NULL);
   1227 	route_intrq.ifq_maxlen = route_maxqlen;
   1228 	route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1229 	    route_intr, NULL);
   1230 }
   1231 
   1232 /*
   1233  * Definitions of protocols supported in the ROUTE domain.
   1234  */
   1235 PR_WRAP_USRREQ(route_usrreq)
   1236 #define	route_usrreq	route_usrreq_wrapper
   1237 
   1238 const struct protosw routesw[] = {
   1239 	{
   1240 		.pr_type = SOCK_RAW,
   1241 		.pr_domain = &routedomain,
   1242 		.pr_flags = PR_ATOMIC|PR_ADDR,
   1243 		.pr_input = raw_input,
   1244 		.pr_output = route_output,
   1245 		.pr_ctlinput = raw_ctlinput,
   1246 		.pr_usrreq = route_usrreq,
   1247 		.pr_init = raw_init,
   1248 	},
   1249 };
   1250 
   1251 struct domain routedomain = {
   1252 	.dom_family = PF_ROUTE,
   1253 	.dom_name = "route",
   1254 	.dom_init = route_init,
   1255 	.dom_protosw = routesw,
   1256 	.dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
   1257 };
   1258 
   1259 static void
   1260 sysctl_net_route_setup(struct sysctllog **clog)
   1261 {
   1262 	const struct sysctlnode *rnode = NULL;
   1263 
   1264 	sysctl_createv(clog, 0, NULL, NULL,
   1265 		       CTLFLAG_PERMANENT,
   1266 		       CTLTYPE_NODE, "net", NULL,
   1267 		       NULL, 0, NULL, 0,
   1268 		       CTL_NET, CTL_EOL);
   1269 
   1270 	sysctl_createv(clog, 0, NULL, &rnode,
   1271 		       CTLFLAG_PERMANENT,
   1272 		       CTLTYPE_NODE, "route",
   1273 		       SYSCTL_DESCR("PF_ROUTE information"),
   1274 		       NULL, 0, NULL, 0,
   1275 		       CTL_NET, PF_ROUTE, CTL_EOL);
   1276 	sysctl_createv(clog, 0, NULL, NULL,
   1277 		       CTLFLAG_PERMANENT,
   1278 		       CTLTYPE_NODE, "rtable",
   1279 		       SYSCTL_DESCR("Routing table information"),
   1280 		       sysctl_rtable, 0, NULL, 0,
   1281 		       CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
   1282 	sysctl_createv(clog, 0, &rnode, NULL,
   1283 		       CTLFLAG_PERMANENT,
   1284 		       CTLTYPE_STRUCT, "stats",
   1285 		       SYSCTL_DESCR("Routing statistics"),
   1286 		       NULL, 0, &rtstat, sizeof(rtstat),
   1287 		       CTL_CREATE, CTL_EOL);
   1288 }
   1289