rtsock.c revision 1.159 1 /* $NetBSD: rtsock.c,v 1.159 2014/07/31 03:39:35 rtr Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.159 2014/07/31 03:39:35 rtr Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_mpls.h"
69 #include "opt_compat_netbsd.h"
70 #endif
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/domain.h>
78 #include <sys/protosw.h>
79 #include <sys/sysctl.h>
80 #include <sys/kauth.h>
81 #include <sys/kmem.h>
82 #include <sys/intr.h>
83 #ifdef RTSOCK_DEBUG
84 #include <netinet/in.h>
85 #endif /* RTSOCK_DEBUG */
86
87 #include <net/if.h>
88 #include <net/route.h>
89 #include <net/raw_cb.h>
90
91 #include <netmpls/mpls.h>
92
93 #if defined(COMPAT_14) || defined(COMPAT_50)
94 #include <compat/net/if.h>
95 #include <compat/net/route.h>
96 #endif
97 #ifdef COMPAT_RTSOCK
98 #define RTM_XVERSION RTM_OVERSION
99 #define RT_XADVANCE(a,b) RT_OADVANCE(a,b)
100 #define RT_XROUNDUP(n) RT_OROUNDUP(n)
101 #define PF_XROUTE PF_OROUTE
102 #define rt_xmsghdr rt_msghdr50
103 #define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */
104 #define ifa_xmsghdr ifa_msghdr50
105 #define if_xannouncemsghdr if_announcemsghdr50
106 #define COMPATNAME(x) compat_50_ ## x
107 #define DOMAINNAME "oroute"
108 CTASSERT(sizeof(struct ifa_xmsghdr) == 20);
109 DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */
110 #else
111 #define RTM_XVERSION RTM_VERSION
112 #define RT_XADVANCE(a,b) RT_ADVANCE(a,b)
113 #define RT_XROUNDUP(n) RT_ROUNDUP(n)
114 #define PF_XROUTE PF_ROUTE
115 #define rt_xmsghdr rt_msghdr
116 #define if_xmsghdr if_msghdr
117 #define ifa_xmsghdr ifa_msghdr
118 #define if_xannouncemsghdr if_announcemsghdr
119 #define COMPATNAME(x) x
120 #define DOMAINNAME "route"
121 CTASSERT(sizeof(struct ifa_xmsghdr) == 24);
122 #ifdef COMPAT_50
123 #define COMPATCALL(name, args) compat_50_ ## name args
124 #endif
125 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
126 #undef COMPAT_50
127 #undef COMPAT_14
128 #endif
129
130 #ifndef COMPATCALL
131 #define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0)
132 #endif
133
134 struct route_info COMPATNAME(route_info) = {
135 .ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, },
136 .ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, },
137 .ri_maxqlen = IFQ_MAXLEN,
138 };
139
140 #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
141
142 static void COMPATNAME(route_init)(void);
143 static int COMPATNAME(route_output)(struct mbuf *, ...);
144
145 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
146 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
147 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
148 struct rt_addrinfo *);
149 static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *);
150 static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *);
151 static void sysctl_net_route_setup(struct sysctllog **);
152 static int sysctl_dumpentry(struct rtentry *, void *);
153 static int sysctl_iflist(int, struct rt_walkarg *, int);
154 static int sysctl_rtable(SYSCTLFN_PROTO);
155 static void rt_adjustcount(int, int);
156
157 static void
158 rt_adjustcount(int af, int cnt)
159 {
160 struct route_cb * const cb = &COMPATNAME(route_info).ri_cb;
161
162 cb->any_count += cnt;
163
164 switch (af) {
165 case AF_INET:
166 cb->ip_count += cnt;
167 return;
168 #ifdef INET6
169 case AF_INET6:
170 cb->ip6_count += cnt;
171 return;
172 #endif
173 case AF_MPLS:
174 cb->mpls_count += cnt;
175 return;
176 }
177 }
178
179 static int
180 COMPATNAME(route_attach)(struct socket *so, int proto)
181 {
182 struct rawcb *rp;
183 int s, error;
184
185 KASSERT(sotorawcb(so) == NULL);
186 rp = kmem_zalloc(sizeof(*rp), KM_SLEEP);
187 rp->rcb_len = sizeof(*rp);
188 so->so_pcb = rp;
189
190 s = splsoftnet();
191 if ((error = raw_attach(so, proto)) == 0) {
192 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
193 rp->rcb_laddr = &COMPATNAME(route_info).ri_src;
194 rp->rcb_faddr = &COMPATNAME(route_info).ri_dst;
195 }
196 splx(s);
197
198 if (error) {
199 kmem_free(rp, sizeof(*rp));
200 so->so_pcb = NULL;
201 return error;
202 }
203
204 soisconnected(so);
205 so->so_options |= SO_USELOOPBACK;
206 KASSERT(solocked(so));
207
208 return error;
209 }
210
211 static void
212 COMPATNAME(route_detach)(struct socket *so)
213 {
214 struct rawcb *rp = sotorawcb(so);
215 int s;
216
217 KASSERT(rp != NULL);
218 KASSERT(solocked(so));
219
220 s = splsoftnet();
221 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
222 raw_detach(so);
223 splx(s);
224 }
225
226 static int
227 COMPATNAME(route_accept)(struct socket *so, struct mbuf *nam)
228 {
229 KASSERT(solocked(so));
230
231 panic("route_accept");
232
233 return EOPNOTSUPP;
234 }
235
236 static int
237 COMPATNAME(route_bind)(struct socket *so, struct mbuf *nam)
238 {
239 KASSERT(solocked(so));
240
241 return EOPNOTSUPP;
242 }
243
244 static int
245 COMPATNAME(route_listen)(struct socket *so)
246 {
247 KASSERT(solocked(so));
248
249 return EOPNOTSUPP;
250 }
251
252 static int
253 COMPATNAME(route_connect)(struct socket *so, struct mbuf *nam)
254 {
255 KASSERT(solocked(so));
256
257 return EOPNOTSUPP;
258 }
259
260 static int
261 COMPATNAME(route_disconnect)(struct socket *so)
262 {
263 struct rawcb *rp = sotorawcb(so);
264 int s;
265
266 KASSERT(solocked(so));
267 KASSERT(rp != NULL);
268
269 s = splsoftnet();
270 soisdisconnected(so);
271 raw_disconnect(rp);
272 splx(s);
273
274 return 0;
275 }
276
277 static int
278 COMPATNAME(route_shutdown)(struct socket *so)
279 {
280 int s;
281
282 KASSERT(solocked(so));
283
284 /*
285 * Mark the connection as being incapable of further input.
286 */
287 s = splsoftnet();
288 socantsendmore(so);
289 splx(s);
290 return 0;
291 }
292
293 static int
294 COMPATNAME(route_abort)(struct socket *so)
295 {
296 KASSERT(solocked(so));
297
298 panic("route_abort");
299
300 return EOPNOTSUPP;
301 }
302
303 static int
304 COMPATNAME(route_ioctl)(struct socket *so, u_long cmd, void *nam,
305 struct ifnet * ifp)
306 {
307 return EOPNOTSUPP;
308 }
309
310 static int
311 COMPATNAME(route_stat)(struct socket *so, struct stat *ub)
312 {
313 KASSERT(solocked(so));
314
315 return 0;
316 }
317
318 static int
319 COMPATNAME(route_peeraddr)(struct socket *so, struct mbuf *nam)
320 {
321 struct rawcb *rp = sotorawcb(so);
322
323 KASSERT(solocked(so));
324 KASSERT(rp != NULL);
325 KASSERT(nam != NULL);
326
327 if (rp->rcb_faddr == NULL)
328 return ENOTCONN;
329
330 raw_setpeeraddr(rp, nam);
331 return 0;
332 }
333
334 static int
335 COMPATNAME(route_sockaddr)(struct socket *so, struct mbuf *nam)
336 {
337 struct rawcb *rp = sotorawcb(so);
338
339 KASSERT(solocked(so));
340 KASSERT(rp != NULL);
341 KASSERT(nam != NULL);
342
343 if (rp->rcb_faddr == NULL)
344 return ENOTCONN;
345
346 raw_setsockaddr(rp, nam);
347 return 0;
348 }
349
350 static int
351 COMPATNAME(route_recvoob)(struct socket *so, struct mbuf *m, int flags)
352 {
353 KASSERT(solocked(so));
354
355 return EOPNOTSUPP;
356 }
357
358 static int
359 COMPATNAME(route_sendoob)(struct socket *so, struct mbuf *m,
360 struct mbuf *control)
361 {
362 KASSERT(solocked(so));
363
364 m_freem(m);
365 m_freem(control);
366
367 return EOPNOTSUPP;
368 }
369
370 static int
371 COMPATNAME(route_usrreq)(struct socket *so, int req, struct mbuf *m,
372 struct mbuf *nam, struct mbuf *control, struct lwp *l)
373 {
374 int s, error = 0;
375
376 KASSERT(req != PRU_ATTACH);
377 KASSERT(req != PRU_DETACH);
378 KASSERT(req != PRU_ACCEPT);
379 KASSERT(req != PRU_BIND);
380 KASSERT(req != PRU_LISTEN);
381 KASSERT(req != PRU_CONNECT);
382 KASSERT(req != PRU_DISCONNECT);
383 KASSERT(req != PRU_SHUTDOWN);
384 KASSERT(req != PRU_ABORT);
385 KASSERT(req != PRU_CONTROL);
386 KASSERT(req != PRU_SENSE);
387 KASSERT(req != PRU_PEERADDR);
388 KASSERT(req != PRU_SOCKADDR);
389 KASSERT(req != PRU_RCVOOB);
390 KASSERT(req != PRU_SENDOOB);
391
392 s = splsoftnet();
393 error = raw_usrreq(so, req, m, nam, control, l);
394 splx(s);
395
396 return error;
397 }
398
399 /*ARGSUSED*/
400 int
401 COMPATNAME(route_output)(struct mbuf *m, ...)
402 {
403 struct sockproto proto = { .sp_family = PF_XROUTE, };
404 struct rt_xmsghdr *rtm = NULL;
405 struct rt_xmsghdr *old_rtm = NULL;
406 struct rtentry *rt = NULL;
407 struct rtentry *saved_nrt = NULL;
408 struct rt_addrinfo info;
409 int len, error = 0;
410 struct ifnet *ifp = NULL;
411 struct ifaddr *ifa = NULL;
412 struct socket *so;
413 va_list ap;
414 sa_family_t family;
415
416 va_start(ap, m);
417 so = va_arg(ap, struct socket *);
418 va_end(ap);
419
420 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
421 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
422 (m = m_pullup(m, sizeof(int32_t))) == NULL))
423 return ENOBUFS;
424 if ((m->m_flags & M_PKTHDR) == 0)
425 panic("%s", __func__);
426 len = m->m_pkthdr.len;
427 if (len < sizeof(*rtm) ||
428 len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) {
429 info.rti_info[RTAX_DST] = NULL;
430 senderr(EINVAL);
431 }
432 R_Malloc(rtm, struct rt_xmsghdr *, len);
433 if (rtm == NULL) {
434 info.rti_info[RTAX_DST] = NULL;
435 senderr(ENOBUFS);
436 }
437 m_copydata(m, 0, len, rtm);
438 if (rtm->rtm_version != RTM_XVERSION) {
439 info.rti_info[RTAX_DST] = NULL;
440 senderr(EPROTONOSUPPORT);
441 }
442 rtm->rtm_pid = curproc->p_pid;
443 memset(&info, 0, sizeof(info));
444 info.rti_addrs = rtm->rtm_addrs;
445 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
446 &info)) {
447 senderr(EINVAL);
448 }
449 info.rti_flags = rtm->rtm_flags;
450 #ifdef RTSOCK_DEBUG
451 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
452 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
453 inet_ntoa(((const struct sockaddr_in *)
454 info.rti_info[RTAX_DST])->sin_addr));
455 }
456 #endif /* RTSOCK_DEBUG */
457 if (info.rti_info[RTAX_DST] == NULL ||
458 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) {
459 senderr(EINVAL);
460 }
461 if (info.rti_info[RTAX_GATEWAY] != NULL &&
462 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
463 senderr(EINVAL);
464 }
465
466 /*
467 * Verify that the caller has the appropriate privilege; RTM_GET
468 * is the only operation the non-superuser is allowed.
469 */
470 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
471 0, rtm, NULL, NULL) != 0)
472 senderr(EACCES);
473
474 switch (rtm->rtm_type) {
475
476 case RTM_ADD:
477 if (info.rti_info[RTAX_GATEWAY] == NULL) {
478 senderr(EINVAL);
479 }
480 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
481 if (error == 0 && saved_nrt) {
482 rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt);
483 saved_nrt->rt_refcnt--;
484 }
485 break;
486
487 case RTM_DELETE:
488 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
489 if (error == 0) {
490 (rt = saved_nrt)->rt_refcnt++;
491 goto report;
492 }
493 break;
494
495 case RTM_GET:
496 case RTM_CHANGE:
497 case RTM_LOCK:
498 /* XXX This will mask info.rti_info[RTAX_DST] with
499 * info.rti_info[RTAX_NETMASK] before
500 * searching. It did not used to do that. --dyoung
501 */
502 error = rtrequest1(RTM_GET, &info, &rt);
503 if (error != 0)
504 senderr(error);
505 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
506 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
507 info.rti_info[RTAX_DST]->sa_len) != 0)
508 senderr(ESRCH);
509 if (info.rti_info[RTAX_NETMASK] == NULL &&
510 rt_mask(rt) != NULL)
511 senderr(ETOOMANYREFS);
512 }
513
514 switch (rtm->rtm_type) {
515 case RTM_GET:
516 report:
517 info.rti_info[RTAX_DST] = rt_getkey(rt);
518 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
519 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
520 info.rti_info[RTAX_TAG] = rt_gettag(rt);
521 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
522 ;
523 else if ((ifp = rt->rt_ifp) != NULL) {
524 const struct ifaddr *rtifa;
525 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
526 /* rtifa used to be simply rt->rt_ifa.
527 * If rt->rt_ifa != NULL, then
528 * rt_get_ifa() != NULL. So this
529 * ought to still be safe. --dyoung
530 */
531 rtifa = rt_get_ifa(rt);
532 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
533 #ifdef RTSOCK_DEBUG
534 if (info.rti_info[RTAX_IFA]->sa_family ==
535 AF_INET) {
536 printf("%s: copying out RTAX_IFA %s ",
537 __func__, inet_ntoa(
538 ((const struct sockaddr_in *)
539 info.rti_info[RTAX_IFA])->sin_addr)
540 );
541 printf("for info.rti_info[RTAX_DST] %s "
542 "ifa_getifa %p ifa_seqno %p\n",
543 inet_ntoa(
544 ((const struct sockaddr_in *)
545 info.rti_info[RTAX_DST])->sin_addr),
546 (void *)rtifa->ifa_getifa,
547 rtifa->ifa_seqno);
548 }
549 #endif /* RTSOCK_DEBUG */
550 if (ifp->if_flags & IFF_POINTOPOINT) {
551 info.rti_info[RTAX_BRD] =
552 rtifa->ifa_dstaddr;
553 } else
554 info.rti_info[RTAX_BRD] = NULL;
555 rtm->rtm_index = ifp->if_index;
556 } else {
557 info.rti_info[RTAX_IFP] = NULL;
558 info.rti_info[RTAX_IFA] = NULL;
559 }
560 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
561 if (len > rtm->rtm_msglen) {
562 old_rtm = rtm;
563 R_Malloc(rtm, struct rt_xmsghdr *, len);
564 if (rtm == NULL)
565 senderr(ENOBUFS);
566 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
567 }
568 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
569 rtm->rtm_flags = rt->rt_flags;
570 rtm_setmetrics(rt, rtm);
571 rtm->rtm_addrs = info.rti_addrs;
572 break;
573
574 case RTM_CHANGE:
575 /*
576 * new gateway could require new ifaddr, ifp;
577 * flags may also be different; ifp may be specified
578 * by ll sockaddr when protocol address is ambiguous
579 */
580 if ((error = rt_getifa(&info)) != 0)
581 senderr(error);
582 if (info.rti_info[RTAX_GATEWAY] &&
583 rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
584 senderr(EDQUOT);
585 if (info.rti_info[RTAX_TAG])
586 rt_settag(rt, info.rti_info[RTAX_TAG]);
587 /* new gateway could require new ifaddr, ifp;
588 flags may also be different; ifp may be specified
589 by ll sockaddr when protocol address is ambiguous */
590 if (info.rti_info[RTAX_IFP] &&
591 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
592 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
593 info.rti_info[RTAX_GATEWAY])) {
594 if (info.rti_info[RTAX_IFA] == NULL ||
595 (ifa = ifa_ifwithaddr(
596 info.rti_info[RTAX_IFA])) == NULL)
597 ifa = ifaof_ifpforaddr(
598 info.rti_info[RTAX_IFA] ?
599 info.rti_info[RTAX_IFA] :
600 info.rti_info[RTAX_GATEWAY], ifp);
601 } else if ((info.rti_info[RTAX_IFA] &&
602 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
603 (info.rti_info[RTAX_GATEWAY] &&
604 (ifa = ifa_ifwithroute(rt->rt_flags,
605 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
606 ifp = ifa->ifa_ifp;
607 }
608 if (ifa) {
609 struct ifaddr *oifa = rt->rt_ifa;
610 if (oifa != ifa) {
611 if (oifa && oifa->ifa_rtrequest) {
612 oifa->ifa_rtrequest(RTM_DELETE,
613 rt, &info);
614 }
615 rt_replace_ifa(rt, ifa);
616 rt->rt_ifp = ifp;
617 }
618 }
619 if (ifp && rt->rt_ifp != ifp)
620 rt->rt_ifp = ifp;
621 rt_setmetrics(rtm->rtm_inits, rtm, rt);
622 if (rt->rt_flags != info.rti_flags)
623 rt->rt_flags = (info.rti_flags & ~PRESERVED_RTF)
624 | (rt->rt_flags & PRESERVED_RTF);
625 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
626 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
627 /*FALLTHROUGH*/
628 case RTM_LOCK:
629 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
630 rt->rt_rmx.rmx_locks |=
631 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
632 break;
633 }
634 break;
635
636 default:
637 senderr(EOPNOTSUPP);
638 }
639
640 flush:
641 if (rtm) {
642 if (error)
643 rtm->rtm_errno = error;
644 else
645 rtm->rtm_flags |= RTF_DONE;
646 }
647 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
648 0;
649 /* We cannot free old_rtm until we have stopped using the
650 * pointers in info, some of which may point to sockaddrs
651 * in old_rtm.
652 */
653 if (old_rtm != NULL)
654 Free(old_rtm);
655 if (rt)
656 rtfree(rt);
657 {
658 struct rawcb *rp = NULL;
659 /*
660 * Check to see if we don't want our own messages.
661 */
662 if ((so->so_options & SO_USELOOPBACK) == 0) {
663 if (COMPATNAME(route_info).ri_cb.any_count <= 1) {
664 if (rtm)
665 Free(rtm);
666 m_freem(m);
667 return error;
668 }
669 /* There is another listener, so construct message */
670 rp = sotorawcb(so);
671 }
672 if (rtm) {
673 m_copyback(m, 0, rtm->rtm_msglen, rtm);
674 if (m->m_pkthdr.len < rtm->rtm_msglen) {
675 m_freem(m);
676 m = NULL;
677 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
678 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
679 Free(rtm);
680 }
681 if (rp)
682 rp->rcb_proto.sp_family = 0; /* Avoid us */
683 if (family)
684 proto.sp_protocol = family;
685 if (m)
686 raw_input(m, &proto, &COMPATNAME(route_info).ri_src,
687 &COMPATNAME(route_info).ri_dst);
688 if (rp)
689 rp->rcb_proto.sp_family = PF_XROUTE;
690 }
691 return error;
692 }
693
694 static void
695 rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out)
696 {
697 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e;
698 metric(RTV_RPIPE, rmx_recvpipe);
699 metric(RTV_SPIPE, rmx_sendpipe);
700 metric(RTV_SSTHRESH, rmx_ssthresh);
701 metric(RTV_RTT, rmx_rtt);
702 metric(RTV_RTTVAR, rmx_rttvar);
703 metric(RTV_HOPCOUNT, rmx_hopcount);
704 metric(RTV_MTU, rmx_mtu);
705 metric(RTV_EXPIRE, rmx_expire);
706 #undef metric
707 }
708
709 static void
710 rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out)
711 {
712 #define metric(e) out->rtm_rmx.e = in->rt_rmx.e;
713 metric(rmx_recvpipe);
714 metric(rmx_sendpipe);
715 metric(rmx_ssthresh);
716 metric(rmx_rtt);
717 metric(rmx_rttvar);
718 metric(rmx_hopcount);
719 metric(rmx_mtu);
720 metric(rmx_expire);
721 #undef metric
722 }
723
724 static int
725 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
726 struct rt_addrinfo *rtinfo)
727 {
728 const struct sockaddr *sa = NULL; /* Quell compiler warning */
729 int i;
730
731 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
732 if ((rtinfo->rti_addrs & (1 << i)) == 0)
733 continue;
734 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
735 RT_XADVANCE(cp, sa);
736 }
737
738 /*
739 * Check for extra addresses specified, except RTM_GET asking
740 * for interface info.
741 */
742 if (rtmtype == RTM_GET) {
743 if (((rtinfo->rti_addrs &
744 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
745 return 1;
746 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
747 return 1;
748 /* Check for bad data length. */
749 if (cp != cplim) {
750 if (i == RTAX_NETMASK + 1 && sa != NULL &&
751 cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim)
752 /*
753 * The last sockaddr was info.rti_info[RTAX_NETMASK].
754 * We accept this for now for the sake of old
755 * binaries or third party softwares.
756 */
757 ;
758 else
759 return 1;
760 }
761 return 0;
762 }
763
764 static int
765 rt_getlen(int type)
766 {
767 #ifndef COMPAT_RTSOCK
768 CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t));
769 CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t));
770 CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t));
771 CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t));
772 #endif
773
774 switch (type) {
775 case RTM_DELADDR:
776 case RTM_NEWADDR:
777 case RTM_CHGADDR:
778 return sizeof(struct ifa_xmsghdr);
779
780 case RTM_OOIFINFO:
781 #ifdef COMPAT_14
782 return sizeof(struct if_msghdr14);
783 #else
784 #ifdef DIAGNOSTIC
785 printf("RTM_OOIFINFO\n");
786 #endif
787 return -1;
788 #endif
789 case RTM_OIFINFO:
790 #ifdef COMPAT_50
791 return sizeof(struct if_msghdr50);
792 #else
793 #ifdef DIAGNOSTIC
794 printf("RTM_OIFINFO\n");
795 #endif
796 return -1;
797 #endif
798
799 case RTM_IFINFO:
800 return sizeof(struct if_xmsghdr);
801
802 case RTM_IFANNOUNCE:
803 case RTM_IEEE80211:
804 return sizeof(struct if_xannouncemsghdr);
805
806 default:
807 return sizeof(struct rt_xmsghdr);
808 }
809 }
810
811
812 struct mbuf *
813 COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
814 {
815 struct rt_xmsghdr *rtm;
816 struct mbuf *m;
817 int i;
818 const struct sockaddr *sa;
819 int len, dlen;
820
821 m = m_gethdr(M_DONTWAIT, MT_DATA);
822 if (m == NULL)
823 return m;
824 MCLAIM(m, &COMPATNAME(routedomain).dom_mowner);
825
826 if ((len = rt_getlen(type)) == -1)
827 goto out;
828 if (len > MHLEN + MLEN)
829 panic("%s: message too long", __func__);
830 else if (len > MHLEN) {
831 m->m_next = m_get(M_DONTWAIT, MT_DATA);
832 if (m->m_next == NULL)
833 goto out;
834 MCLAIM(m->m_next, m->m_owner);
835 m->m_pkthdr.len = len;
836 m->m_len = MHLEN;
837 m->m_next->m_len = len - MHLEN;
838 } else {
839 m->m_pkthdr.len = m->m_len = len;
840 }
841 m->m_pkthdr.rcvif = NULL;
842 m_copyback(m, 0, datalen, data);
843 if (len > datalen)
844 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
845 rtm = mtod(m, struct rt_xmsghdr *);
846 for (i = 0; i < RTAX_MAX; i++) {
847 if ((sa = rtinfo->rti_info[i]) == NULL)
848 continue;
849 rtinfo->rti_addrs |= (1 << i);
850 dlen = RT_XROUNDUP(sa->sa_len);
851 m_copyback(m, len, sa->sa_len, sa);
852 if (dlen != sa->sa_len) {
853 /*
854 * Up to 6 + 1 nul's since roundup is to
855 * sizeof(uint64_t) (8 bytes)
856 */
857 m_copyback(m, len + sa->sa_len,
858 dlen - sa->sa_len, "\0\0\0\0\0\0");
859 }
860 len += dlen;
861 }
862 if (m->m_pkthdr.len != len)
863 goto out;
864 rtm->rtm_msglen = len;
865 rtm->rtm_version = RTM_XVERSION;
866 rtm->rtm_type = type;
867 return m;
868 out:
869 m_freem(m);
870 return NULL;
871 }
872
873 /*
874 * rt_msg2
875 *
876 * fills 'cp' or 'w'.w_tmem with the routing socket message and
877 * returns the length of the message in 'lenp'.
878 *
879 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
880 * the message
881 * otherwise walkarg's w_needed is updated and if the user buffer is
882 * specified and w_needed indicates space exists the information is copied
883 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
884 * if the allocation fails ENOBUFS is returned.
885 */
886 static int
887 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
888 int *lenp)
889 {
890 int i;
891 int len, dlen, second_time = 0;
892 char *cp0, *cp = cpv;
893
894 rtinfo->rti_addrs = 0;
895 again:
896 if ((len = rt_getlen(type)) == -1)
897 return EINVAL;
898
899 if ((cp0 = cp) != NULL)
900 cp += len;
901 for (i = 0; i < RTAX_MAX; i++) {
902 const struct sockaddr *sa;
903
904 if ((sa = rtinfo->rti_info[i]) == NULL)
905 continue;
906 rtinfo->rti_addrs |= (1 << i);
907 dlen = RT_XROUNDUP(sa->sa_len);
908 if (cp) {
909 int diff = dlen - sa->sa_len;
910 (void)memcpy(cp, sa, (size_t)sa->sa_len);
911 cp += sa->sa_len;
912 if (diff > 0) {
913 (void)memset(cp, 0, (size_t)diff);
914 cp += diff;
915 }
916 }
917 len += dlen;
918 }
919 if (cp == NULL && w != NULL && !second_time) {
920 struct rt_walkarg *rw = w;
921
922 rw->w_needed += len;
923 if (rw->w_needed <= 0 && rw->w_where) {
924 if (rw->w_tmemsize < len) {
925 if (rw->w_tmem)
926 free(rw->w_tmem, M_RTABLE);
927 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
928 if (rw->w_tmem)
929 rw->w_tmemsize = len;
930 else
931 rw->w_tmemsize = 0;
932 }
933 if (rw->w_tmem) {
934 cp = rw->w_tmem;
935 second_time = 1;
936 goto again;
937 } else {
938 rw->w_tmemneeded = len;
939 return ENOBUFS;
940 }
941 }
942 }
943 if (cp) {
944 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0;
945
946 rtm->rtm_version = RTM_XVERSION;
947 rtm->rtm_type = type;
948 rtm->rtm_msglen = len;
949 }
950 if (lenp)
951 *lenp = len;
952 return 0;
953 }
954
955 /*
956 * This routine is called to generate a message from the routing
957 * socket indicating that a redirect has occurred, a routing lookup
958 * has failed, or that a protocol has detected timeouts to a particular
959 * destination.
960 */
961 void
962 COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags,
963 int error)
964 {
965 struct rt_xmsghdr rtm;
966 struct mbuf *m;
967 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
968 struct rt_addrinfo info = *rtinfo;
969
970 COMPATCALL(rt_missmsg, (type, rtinfo, flags, error));
971 if (COMPATNAME(route_info).ri_cb.any_count == 0)
972 return;
973 memset(&rtm, 0, sizeof(rtm));
974 rtm.rtm_flags = RTF_DONE | flags;
975 rtm.rtm_errno = error;
976 m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm));
977 if (m == NULL)
978 return;
979 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
980 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
981 }
982
983 /*
984 * This routine is called to generate a message from the routing
985 * socket indicating that the status of a network interface has changed.
986 */
987 void
988 COMPATNAME(rt_ifmsg)(struct ifnet *ifp)
989 {
990 struct if_xmsghdr ifm;
991 struct mbuf *m;
992 struct rt_addrinfo info;
993
994 COMPATCALL(rt_ifmsg, (ifp));
995 if (COMPATNAME(route_info).ri_cb.any_count == 0)
996 return;
997 (void)memset(&info, 0, sizeof(info));
998 (void)memset(&ifm, 0, sizeof(ifm));
999 ifm.ifm_index = ifp->if_index;
1000 ifm.ifm_flags = ifp->if_flags;
1001 ifm.ifm_data = ifp->if_data;
1002 ifm.ifm_addrs = 0;
1003 m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm));
1004 if (m == NULL)
1005 return;
1006 COMPATNAME(route_enqueue)(m, 0);
1007 #ifdef COMPAT_14
1008 compat_14_rt_oifmsg(ifp);
1009 #endif
1010 #ifdef COMPAT_50
1011 compat_50_rt_oifmsg(ifp);
1012 #endif
1013 }
1014
1015
1016 /*
1017 * This is called to generate messages from the routing socket
1018 * indicating a network interface has had addresses associated with it.
1019 * if we ever reverse the logic and replace messages TO the routing
1020 * socket indicate a request to configure interfaces, then it will
1021 * be unnecessary as the routing socket will automatically generate
1022 * copies of it.
1023 */
1024 void
1025 COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error,
1026 struct rtentry *rt)
1027 {
1028 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
1029 struct rt_addrinfo info;
1030 const struct sockaddr *sa;
1031 int pass;
1032 struct mbuf *m;
1033 struct ifnet *ifp;
1034 struct rt_xmsghdr rtm;
1035 struct ifa_xmsghdr ifam;
1036 int ncmd;
1037
1038 KASSERT(ifa != NULL);
1039 ifp = ifa->ifa_ifp;
1040 COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt));
1041 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1042 return;
1043 for (pass = 1; pass < 3; pass++) {
1044 memset(&info, 0, sizeof(info));
1045 switch (cmdpass(cmd, pass)) {
1046 case cmdpass(RTM_ADD, 1):
1047 case cmdpass(RTM_CHANGE, 1):
1048 case cmdpass(RTM_DELETE, 2):
1049 case cmdpass(RTM_NEWADDR, 1):
1050 case cmdpass(RTM_DELADDR, 1):
1051 case cmdpass(RTM_CHGADDR, 1):
1052 switch (cmd) {
1053 case RTM_ADD:
1054 ncmd = RTM_NEWADDR;
1055 break;
1056 case RTM_DELETE:
1057 ncmd = RTM_DELADDR;
1058 break;
1059 case RTM_CHANGE:
1060 ncmd = RTM_CHGADDR;
1061 break;
1062 default:
1063 ncmd = cmd;
1064 }
1065 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1066 KASSERT(ifp->if_dl != NULL);
1067 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1068 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1069 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1070 memset(&ifam, 0, sizeof(ifam));
1071 ifam.ifam_index = ifp->if_index;
1072 ifam.ifam_metric = ifa->ifa_metric;
1073 ifam.ifam_flags = ifa->ifa_flags;
1074 m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam));
1075 if (m == NULL)
1076 continue;
1077 mtod(m, struct ifa_xmsghdr *)->ifam_addrs =
1078 info.rti_addrs;
1079 break;
1080 case cmdpass(RTM_ADD, 2):
1081 case cmdpass(RTM_CHANGE, 2):
1082 case cmdpass(RTM_DELETE, 1):
1083 if (rt == NULL)
1084 continue;
1085 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1086 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
1087 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1088 memset(&rtm, 0, sizeof(rtm));
1089 rtm.rtm_index = ifp->if_index;
1090 rtm.rtm_flags |= rt->rt_flags;
1091 rtm.rtm_errno = error;
1092 m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm));
1093 if (m == NULL)
1094 continue;
1095 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
1096 break;
1097 default:
1098 continue;
1099 }
1100 #ifdef DIAGNOSTIC
1101 if (m == NULL)
1102 panic("%s: called with wrong command", __func__);
1103 #endif
1104 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
1105 }
1106 #undef cmdpass
1107 }
1108
1109 static struct mbuf *
1110 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1111 struct rt_addrinfo *info)
1112 {
1113 struct if_xannouncemsghdr ifan;
1114
1115 memset(info, 0, sizeof(*info));
1116 memset(&ifan, 0, sizeof(ifan));
1117 ifan.ifan_index = ifp->if_index;
1118 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
1119 ifan.ifan_what = what;
1120 return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan));
1121 }
1122
1123 /*
1124 * This is called to generate routing socket messages indicating
1125 * network interface arrival and departure.
1126 */
1127 void
1128 COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what)
1129 {
1130 struct mbuf *m;
1131 struct rt_addrinfo info;
1132
1133 COMPATCALL(rt_ifannouncemsg, (ifp, what));
1134 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1135 return;
1136 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1137 if (m == NULL)
1138 return;
1139 COMPATNAME(route_enqueue)(m, 0);
1140 }
1141
1142 /*
1143 * This is called to generate routing socket messages indicating
1144 * IEEE80211 wireless events.
1145 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1146 */
1147 void
1148 COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data,
1149 size_t data_len)
1150 {
1151 struct mbuf *m;
1152 struct rt_addrinfo info;
1153
1154 COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len));
1155 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1156 return;
1157 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1158 if (m == NULL)
1159 return;
1160 /*
1161 * Append the ieee80211 data. Try to stick it in the
1162 * mbuf containing the ifannounce msg; otherwise allocate
1163 * a new mbuf and append.
1164 *
1165 * NB: we assume m is a single mbuf.
1166 */
1167 if (data_len > M_TRAILINGSPACE(m)) {
1168 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1169 if (n == NULL) {
1170 m_freem(m);
1171 return;
1172 }
1173 (void)memcpy(mtod(n, void *), data, data_len);
1174 n->m_len = data_len;
1175 m->m_next = n;
1176 } else if (data_len > 0) {
1177 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
1178 m->m_len += data_len;
1179 }
1180 if (m->m_flags & M_PKTHDR)
1181 m->m_pkthdr.len += data_len;
1182 mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len;
1183 COMPATNAME(route_enqueue)(m, 0);
1184 }
1185
1186 /*
1187 * This is used in dumping the kernel table via sysctl().
1188 */
1189 static int
1190 sysctl_dumpentry(struct rtentry *rt, void *v)
1191 {
1192 struct rt_walkarg *w = v;
1193 int error = 0, size;
1194 struct rt_addrinfo info;
1195
1196 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1197 return 0;
1198 memset(&info, 0, sizeof(info));
1199 info.rti_info[RTAX_DST] = rt_getkey(rt);
1200 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1201 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1202 info.rti_info[RTAX_TAG] = rt_gettag(rt);
1203 if (rt->rt_ifp) {
1204 const struct ifaddr *rtifa;
1205 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
1206 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
1207 * then rt_get_ifa() != NULL. So this ought to still be safe.
1208 * --dyoung
1209 */
1210 rtifa = rt_get_ifa(rt);
1211 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
1212 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1213 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
1214 }
1215 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
1216 return error;
1217 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1218 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem;
1219
1220 rtm->rtm_flags = rt->rt_flags;
1221 rtm->rtm_use = rt->rt_use;
1222 rtm_setmetrics(rt, rtm);
1223 KASSERT(rt->rt_ifp != NULL);
1224 rtm->rtm_index = rt->rt_ifp->if_index;
1225 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1226 rtm->rtm_addrs = info.rti_addrs;
1227 if ((error = copyout(rtm, w->w_where, size)) != 0)
1228 w->w_where = NULL;
1229 else
1230 w->w_where = (char *)w->w_where + size;
1231 }
1232 return error;
1233 }
1234
1235 static int
1236 sysctl_iflist(int af, struct rt_walkarg *w, int type)
1237 {
1238 struct ifnet *ifp;
1239 struct ifaddr *ifa;
1240 struct rt_addrinfo info;
1241 int len, error = 0;
1242
1243 memset(&info, 0, sizeof(info));
1244 IFNET_FOREACH(ifp) {
1245 if (w->w_arg && w->w_arg != ifp->if_index)
1246 continue;
1247 if (IFADDR_EMPTY(ifp))
1248 continue;
1249 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1250 switch (type) {
1251 case NET_RT_IFLIST:
1252 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
1253 break;
1254 #ifdef COMPAT_14
1255 case NET_RT_OOIFLIST:
1256 error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
1257 break;
1258 #endif
1259 #ifdef COMPAT_50
1260 case NET_RT_OIFLIST:
1261 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
1262 break;
1263 #endif
1264 default:
1265 panic("sysctl_iflist(1)");
1266 }
1267 if (error)
1268 return error;
1269 info.rti_info[RTAX_IFP] = NULL;
1270 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1271 switch (type) {
1272 case NET_RT_IFLIST: {
1273 struct if_xmsghdr *ifm;
1274
1275 ifm = (struct if_xmsghdr *)w->w_tmem;
1276 ifm->ifm_index = ifp->if_index;
1277 ifm->ifm_flags = ifp->if_flags;
1278 ifm->ifm_data = ifp->if_data;
1279 ifm->ifm_addrs = info.rti_addrs;
1280 error = copyout(ifm, w->w_where, len);
1281 if (error)
1282 return error;
1283 w->w_where = (char *)w->w_where + len;
1284 break;
1285 }
1286
1287 #ifdef COMPAT_14
1288 case NET_RT_OOIFLIST:
1289 error = compat_14_iflist(ifp, w, &info, len);
1290 if (error)
1291 return error;
1292 break;
1293 #endif
1294 #ifdef COMPAT_50
1295 case NET_RT_OIFLIST:
1296 error = compat_50_iflist(ifp, w, &info, len);
1297 if (error)
1298 return error;
1299 break;
1300 #endif
1301 default:
1302 panic("sysctl_iflist(2)");
1303 }
1304 }
1305 IFADDR_FOREACH(ifa, ifp) {
1306 if (af && af != ifa->ifa_addr->sa_family)
1307 continue;
1308 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1309 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1310 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1311 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1312 return error;
1313 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1314 struct ifa_xmsghdr *ifam;
1315
1316 ifam = (struct ifa_xmsghdr *)w->w_tmem;
1317 ifam->ifam_index = ifa->ifa_ifp->if_index;
1318 ifam->ifam_flags = ifa->ifa_flags;
1319 ifam->ifam_metric = ifa->ifa_metric;
1320 ifam->ifam_addrs = info.rti_addrs;
1321 error = copyout(w->w_tmem, w->w_where, len);
1322 if (error)
1323 return error;
1324 w->w_where = (char *)w->w_where + len;
1325 }
1326 }
1327 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1328 info.rti_info[RTAX_BRD] = NULL;
1329 }
1330 return 0;
1331 }
1332
1333 static int
1334 sysctl_rtable(SYSCTLFN_ARGS)
1335 {
1336 void *where = oldp;
1337 size_t *given = oldlenp;
1338 const void *new = newp;
1339 int i, s, error = EINVAL;
1340 u_char af;
1341 struct rt_walkarg w;
1342
1343 if (namelen == 1 && name[0] == CTL_QUERY)
1344 return sysctl_query(SYSCTLFN_CALL(rnode));
1345
1346 if (new)
1347 return EPERM;
1348 if (namelen != 3)
1349 return EINVAL;
1350 af = name[0];
1351 w.w_tmemneeded = 0;
1352 w.w_tmemsize = 0;
1353 w.w_tmem = NULL;
1354 again:
1355 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1356 if (w.w_tmemneeded) {
1357 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1358 w.w_tmemsize = w.w_tmemneeded;
1359 w.w_tmemneeded = 0;
1360 }
1361 w.w_op = name[1];
1362 w.w_arg = name[2];
1363 w.w_given = *given;
1364 w.w_needed = 0 - w.w_given;
1365 w.w_where = where;
1366
1367 s = splsoftnet();
1368 switch (w.w_op) {
1369
1370 case NET_RT_DUMP:
1371 case NET_RT_FLAGS:
1372 for (i = 1; i <= AF_MAX; i++)
1373 if ((af == 0 || af == i) &&
1374 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1375 break;
1376 break;
1377
1378 #ifdef COMPAT_14
1379 case NET_RT_OOIFLIST:
1380 error = sysctl_iflist(af, &w, w.w_op);
1381 break;
1382 #endif
1383 #ifdef COMPAT_50
1384 case NET_RT_OIFLIST:
1385 error = sysctl_iflist(af, &w, w.w_op);
1386 break;
1387 #endif
1388 case NET_RT_IFLIST:
1389 error = sysctl_iflist(af, &w, w.w_op);
1390 break;
1391 }
1392 splx(s);
1393
1394 /* check to see if we couldn't allocate memory with NOWAIT */
1395 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1396 goto again;
1397
1398 if (w.w_tmem)
1399 free(w.w_tmem, M_RTABLE);
1400 w.w_needed += w.w_given;
1401 if (where) {
1402 *given = (char *)w.w_where - (char *)where;
1403 if (*given < w.w_needed)
1404 return ENOMEM;
1405 } else {
1406 *given = (11 * w.w_needed) / 10;
1407 }
1408 return error;
1409 }
1410
1411 /*
1412 * Routing message software interrupt routine
1413 */
1414 static void
1415 COMPATNAME(route_intr)(void *cookie)
1416 {
1417 struct sockproto proto = { .sp_family = PF_XROUTE, };
1418 struct route_info * const ri = &COMPATNAME(route_info);
1419 struct mbuf *m;
1420 int s;
1421
1422 mutex_enter(softnet_lock);
1423 KERNEL_LOCK(1, NULL);
1424 while (!IF_IS_EMPTY(&ri->ri_intrq)) {
1425 s = splnet();
1426 IF_DEQUEUE(&ri->ri_intrq, m);
1427 splx(s);
1428 if (m == NULL)
1429 break;
1430 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1431 raw_input(m, &proto, &ri->ri_src, &ri->ri_dst);
1432 }
1433 KERNEL_UNLOCK_ONE(NULL);
1434 mutex_exit(softnet_lock);
1435 }
1436
1437 /*
1438 * Enqueue a message to the software interrupt routine.
1439 */
1440 void
1441 COMPATNAME(route_enqueue)(struct mbuf *m, int family)
1442 {
1443 struct route_info * const ri = &COMPATNAME(route_info);
1444 int s, wasempty;
1445
1446 s = splnet();
1447 if (IF_QFULL(&ri->ri_intrq)) {
1448 IF_DROP(&ri->ri_intrq);
1449 m_freem(m);
1450 } else {
1451 wasempty = IF_IS_EMPTY(&ri->ri_intrq);
1452 M_SETCTX(m, (uintptr_t)family);
1453 IF_ENQUEUE(&ri->ri_intrq, m);
1454 if (wasempty)
1455 softint_schedule(ri->ri_sih);
1456 }
1457 splx(s);
1458 }
1459
1460 static void
1461 COMPATNAME(route_init)(void)
1462 {
1463 struct route_info * const ri = &COMPATNAME(route_info);
1464
1465 #ifndef COMPAT_RTSOCK
1466 rt_init();
1467 #endif
1468
1469 sysctl_net_route_setup(NULL);
1470 ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen;
1471 ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1472 COMPATNAME(route_intr), NULL);
1473 }
1474
1475 /*
1476 * Definitions of protocols supported in the ROUTE domain.
1477 */
1478 #ifndef COMPAT_RTSOCK
1479 PR_WRAP_USRREQS(route);
1480 #else
1481 PR_WRAP_USRREQS(compat_50_route);
1482 #endif
1483
1484 static const struct pr_usrreqs route_usrreqs = {
1485 .pr_attach = COMPATNAME(route_attach_wrapper),
1486 .pr_detach = COMPATNAME(route_detach_wrapper),
1487 .pr_accept = COMPATNAME(route_accept_wrapper),
1488 .pr_bind = COMPATNAME(route_bind_wrapper),
1489 .pr_listen = COMPATNAME(route_listen_wrapper),
1490 .pr_connect = COMPATNAME(route_connect_wrapper),
1491 .pr_disconnect = COMPATNAME(route_disconnect_wrapper),
1492 .pr_shutdown = COMPATNAME(route_shutdown_wrapper),
1493 .pr_abort = COMPATNAME(route_abort_wrapper),
1494 .pr_ioctl = COMPATNAME(route_ioctl_wrapper),
1495 .pr_stat = COMPATNAME(route_stat_wrapper),
1496 .pr_peeraddr = COMPATNAME(route_peeraddr_wrapper),
1497 .pr_sockaddr = COMPATNAME(route_sockaddr_wrapper),
1498 .pr_recvoob = COMPATNAME(route_recvoob_wrapper),
1499 .pr_sendoob = COMPATNAME(route_sendoob_wrapper),
1500 .pr_generic = COMPATNAME(route_usrreq_wrapper),
1501 };
1502
1503 static const struct protosw COMPATNAME(route_protosw)[] = {
1504 {
1505 .pr_type = SOCK_RAW,
1506 .pr_domain = &COMPATNAME(routedomain),
1507 .pr_flags = PR_ATOMIC|PR_ADDR,
1508 .pr_input = raw_input,
1509 .pr_output = COMPATNAME(route_output),
1510 .pr_ctlinput = raw_ctlinput,
1511 .pr_usrreqs = &route_usrreqs,
1512 .pr_init = raw_init,
1513 },
1514 };
1515
1516 struct domain COMPATNAME(routedomain) = {
1517 .dom_family = PF_XROUTE,
1518 .dom_name = DOMAINNAME,
1519 .dom_init = COMPATNAME(route_init),
1520 .dom_protosw = COMPATNAME(route_protosw),
1521 .dom_protoswNPROTOSW =
1522 &COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))],
1523 };
1524
1525 static void
1526 sysctl_net_route_setup(struct sysctllog **clog)
1527 {
1528 const struct sysctlnode *rnode = NULL;
1529
1530 sysctl_createv(clog, 0, NULL, &rnode,
1531 CTLFLAG_PERMANENT,
1532 CTLTYPE_NODE, DOMAINNAME,
1533 SYSCTL_DESCR("PF_ROUTE information"),
1534 NULL, 0, NULL, 0,
1535 CTL_NET, PF_XROUTE, CTL_EOL);
1536
1537 sysctl_createv(clog, 0, NULL, NULL,
1538 CTLFLAG_PERMANENT,
1539 CTLTYPE_NODE, "rtable",
1540 SYSCTL_DESCR("Routing table information"),
1541 sysctl_rtable, 0, NULL, 0,
1542 CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL);
1543
1544 sysctl_createv(clog, 0, &rnode, NULL,
1545 CTLFLAG_PERMANENT,
1546 CTLTYPE_STRUCT, "stats",
1547 SYSCTL_DESCR("Routing statistics"),
1548 NULL, 0, &rtstat, sizeof(rtstat),
1549 CTL_CREATE, CTL_EOL);
1550 }
1551