rtsock.c revision 1.231 1 /* $NetBSD: rtsock.c,v 1.231 2017/11/19 18:49:51 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.231 2017/11/19 18:49:51 christos Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_mpls.h"
69 #include "opt_compat_netbsd.h"
70 #include "opt_sctp.h"
71 #include "opt_net_mpsafe.h"
72 #endif
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/domain.h>
80 #include <sys/protosw.h>
81 #include <sys/sysctl.h>
82 #include <sys/kauth.h>
83 #include <sys/kmem.h>
84 #include <sys/intr.h>
85
86 #include <net/if.h>
87 #include <net/if_llatbl.h>
88 #include <net/if_types.h>
89 #include <net/route.h>
90 #include <net/raw_cb.h>
91
92 #include <netinet/in_var.h>
93 #include <netinet/if_inarp.h>
94
95 #include <netmpls/mpls.h>
96
97 #ifdef SCTP
98 extern void sctp_add_ip_address(struct ifaddr *);
99 extern void sctp_delete_ip_address(struct ifaddr *);
100 #endif
101
102 #if defined(COMPAT_14) || defined(COMPAT_50) || defined(COMPAT_70)
103 #include <compat/net/if.h>
104 #include <compat/net/route.h>
105 #endif
106 #ifdef COMPAT_RTSOCK
107 #define RTM_XVERSION RTM_OVERSION
108 #define RTM_XNEWADDR RTM_ONEWADDR
109 #define RTM_XDELADDR RTM_ODELADDR
110 #define RTM_XCHGADDR RTM_OCHGADDR
111 #define RT_XADVANCE(a,b) RT_OADVANCE(a,b)
112 #define RT_XROUNDUP(n) RT_OROUNDUP(n)
113 #define PF_XROUTE PF_OROUTE
114 #define rt_xmsghdr rt_msghdr50
115 #define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */
116 #define ifa_xmsghdr ifa_msghdr50
117 #define if_xannouncemsghdr if_announcemsghdr50
118 #define COMPATNAME(x) compat_50_ ## x
119 #define DOMAINNAME "oroute"
120 CTASSERT(sizeof(struct ifa_xmsghdr) == 20);
121 DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */
122 #undef COMPAT_70
123 #else /* COMPAT_RTSOCK */
124 #define RTM_XVERSION RTM_VERSION
125 #define RTM_XNEWADDR RTM_NEWADDR
126 #define RTM_XDELADDR RTM_DELADDR
127 #define RTM_XCHGADDR RTM_CHGADDR
128 #define RT_XADVANCE(a,b) RT_ADVANCE(a,b)
129 #define RT_XROUNDUP(n) RT_ROUNDUP(n)
130 #define PF_XROUTE PF_ROUTE
131 #define rt_xmsghdr rt_msghdr
132 #define if_xmsghdr if_msghdr
133 #define ifa_xmsghdr ifa_msghdr
134 #define if_xannouncemsghdr if_announcemsghdr
135 #define COMPATNAME(x) x
136 #define DOMAINNAME "route"
137 CTASSERT(sizeof(struct ifa_xmsghdr) == 32);
138 #ifdef COMPAT_50
139 #define COMPATCALL(name, args) compat_50_ ## name args
140 #endif
141 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
142 #undef COMPAT_50
143 #undef COMPAT_14
144 #endif /* COMPAT_RTSOCK */
145
146 #ifndef COMPATCALL
147 #define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0)
148 #endif
149
150 #ifdef RTSOCK_DEBUG
151 #define RT_IN_PRINT(info, b, a) (in_print((b), sizeof(b), \
152 &((const struct sockaddr_in *)(info)->rti_info[(a)])->sin_addr), (b))
153 #endif /* RTSOCK_DEBUG */
154
155 struct route_info COMPATNAME(route_info) = {
156 .ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, },
157 .ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, },
158 .ri_maxqlen = IFQ_MAXLEN,
159 };
160
161 #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
162
163 static void COMPATNAME(route_init)(void);
164 static int COMPATNAME(route_output)(struct mbuf *, struct socket *);
165
166 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
167 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
168 struct rt_addrinfo *);
169 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
170 static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *);
171 static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *);
172 static void sysctl_net_route_setup(struct sysctllog **);
173 static int sysctl_dumpentry(struct rtentry *, void *);
174 static int sysctl_iflist(int, struct rt_walkarg *, int);
175 static int sysctl_rtable(SYSCTLFN_PROTO);
176 static void rt_adjustcount(int, int);
177
178 static const struct protosw COMPATNAME(route_protosw)[];
179
180 struct routecb {
181 struct rawcb rocb_rcb;
182 unsigned int rocb_msgfilter;
183 #define RTMSGFILTER(m) (1U << (m))
184 };
185 #define sotoroutecb(so) ((struct routecb *)(so)->so_pcb)
186
187 static struct rawcbhead rt_rawcb;
188 #ifdef NET_MPSAFE
189 static kmutex_t *rt_so_mtx;
190 #endif
191
192 static void
193 rt_adjustcount(int af, int cnt)
194 {
195 struct route_cb * const cb = &COMPATNAME(route_info).ri_cb;
196
197 cb->any_count += cnt;
198
199 switch (af) {
200 case AF_INET:
201 cb->ip_count += cnt;
202 return;
203 #ifdef INET6
204 case AF_INET6:
205 cb->ip6_count += cnt;
206 return;
207 #endif
208 case AF_MPLS:
209 cb->mpls_count += cnt;
210 return;
211 }
212 }
213
214 static int
215 COMPATNAME(route_filter)(struct mbuf *m, struct sockproto *proto,
216 struct rawcb *rp)
217 {
218 struct routecb *rop = (struct routecb *)rp;
219 struct rt_xmsghdr *rtm;
220
221 KASSERT(m != NULL);
222 KASSERT(proto != NULL);
223 KASSERT(rp != NULL);
224
225 /* Wrong family for this socket. */
226 if (proto->sp_family != PF_ROUTE)
227 return ENOPROTOOPT;
228
229 /* If no filter set, just return. */
230 if (rop->rocb_msgfilter == 0)
231 return 0;
232
233 /* Ensure we can access rtm_type */
234 if (m->m_len <
235 offsetof(struct rt_xmsghdr, rtm_type) + sizeof(rtm->rtm_type))
236 return EINVAL;
237
238 rtm = mtod(m, struct rt_xmsghdr *);
239 /* If the rtm type is filtered out, return a positive. */
240 if (!(rop->rocb_msgfilter & RTMSGFILTER(rtm->rtm_type)))
241 return EEXIST;
242
243 /* Passed the filter. */
244 return 0;
245 }
246
247 static void
248 rt_pr_init(void)
249 {
250
251 LIST_INIT(&rt_rawcb);
252 }
253
254 static int
255 COMPATNAME(route_attach)(struct socket *so, int proto)
256 {
257 struct rawcb *rp;
258 struct routecb *rop;
259 int s, error;
260
261 KASSERT(sotorawcb(so) == NULL);
262 rop = kmem_zalloc(sizeof(*rop), KM_SLEEP);
263 rp = &rop->rocb_rcb;
264 rp->rcb_len = sizeof(*rop);
265 so->so_pcb = rp;
266
267 s = splsoftnet();
268
269 #ifdef NET_MPSAFE
270 KASSERT(so->so_lock == NULL);
271 mutex_obj_hold(rt_so_mtx);
272 so->so_lock = rt_so_mtx;
273 solock(so);
274 #endif
275
276 if ((error = raw_attach(so, proto, &rt_rawcb)) == 0) {
277 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
278 rp->rcb_laddr = &COMPATNAME(route_info).ri_src;
279 rp->rcb_faddr = &COMPATNAME(route_info).ri_dst;
280 rp->rcb_filter = COMPATNAME(route_filter);
281 }
282 splx(s);
283
284 if (error) {
285 kmem_free(rop, sizeof(*rop));
286 so->so_pcb = NULL;
287 return error;
288 }
289
290 soisconnected(so);
291 so->so_options |= SO_USELOOPBACK;
292 KASSERT(solocked(so));
293
294 return error;
295 }
296
297 static void
298 COMPATNAME(route_detach)(struct socket *so)
299 {
300 struct rawcb *rp = sotorawcb(so);
301 int s;
302
303 KASSERT(rp != NULL);
304 KASSERT(solocked(so));
305
306 s = splsoftnet();
307 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
308 raw_detach(so);
309 splx(s);
310 }
311
312 static int
313 COMPATNAME(route_accept)(struct socket *so, struct sockaddr *nam)
314 {
315 KASSERT(solocked(so));
316
317 panic("route_accept");
318
319 return EOPNOTSUPP;
320 }
321
322 static int
323 COMPATNAME(route_bind)(struct socket *so, struct sockaddr *nam, struct lwp *l)
324 {
325 KASSERT(solocked(so));
326
327 return EOPNOTSUPP;
328 }
329
330 static int
331 COMPATNAME(route_listen)(struct socket *so, struct lwp *l)
332 {
333 KASSERT(solocked(so));
334
335 return EOPNOTSUPP;
336 }
337
338 static int
339 COMPATNAME(route_connect)(struct socket *so, struct sockaddr *nam, struct lwp *l)
340 {
341 KASSERT(solocked(so));
342
343 return EOPNOTSUPP;
344 }
345
346 static int
347 COMPATNAME(route_connect2)(struct socket *so, struct socket *so2)
348 {
349 KASSERT(solocked(so));
350
351 return EOPNOTSUPP;
352 }
353
354 static int
355 COMPATNAME(route_disconnect)(struct socket *so)
356 {
357 struct rawcb *rp = sotorawcb(so);
358 int s;
359
360 KASSERT(solocked(so));
361 KASSERT(rp != NULL);
362
363 s = splsoftnet();
364 soisdisconnected(so);
365 raw_disconnect(rp);
366 splx(s);
367
368 return 0;
369 }
370
371 static int
372 COMPATNAME(route_shutdown)(struct socket *so)
373 {
374 int s;
375
376 KASSERT(solocked(so));
377
378 /*
379 * Mark the connection as being incapable of further input.
380 */
381 s = splsoftnet();
382 socantsendmore(so);
383 splx(s);
384 return 0;
385 }
386
387 static int
388 COMPATNAME(route_abort)(struct socket *so)
389 {
390 KASSERT(solocked(so));
391
392 panic("route_abort");
393
394 return EOPNOTSUPP;
395 }
396
397 static int
398 COMPATNAME(route_ioctl)(struct socket *so, u_long cmd, void *nam,
399 struct ifnet * ifp)
400 {
401 return EOPNOTSUPP;
402 }
403
404 static int
405 COMPATNAME(route_stat)(struct socket *so, struct stat *ub)
406 {
407 KASSERT(solocked(so));
408
409 return 0;
410 }
411
412 static int
413 COMPATNAME(route_peeraddr)(struct socket *so, struct sockaddr *nam)
414 {
415 struct rawcb *rp = sotorawcb(so);
416
417 KASSERT(solocked(so));
418 KASSERT(rp != NULL);
419 KASSERT(nam != NULL);
420
421 if (rp->rcb_faddr == NULL)
422 return ENOTCONN;
423
424 raw_setpeeraddr(rp, nam);
425 return 0;
426 }
427
428 static int
429 COMPATNAME(route_sockaddr)(struct socket *so, struct sockaddr *nam)
430 {
431 struct rawcb *rp = sotorawcb(so);
432
433 KASSERT(solocked(so));
434 KASSERT(rp != NULL);
435 KASSERT(nam != NULL);
436
437 if (rp->rcb_faddr == NULL)
438 return ENOTCONN;
439
440 raw_setsockaddr(rp, nam);
441 return 0;
442 }
443
444 static int
445 COMPATNAME(route_rcvd)(struct socket *so, int flags, struct lwp *l)
446 {
447 KASSERT(solocked(so));
448
449 return EOPNOTSUPP;
450 }
451
452 static int
453 COMPATNAME(route_recvoob)(struct socket *so, struct mbuf *m, int flags)
454 {
455 KASSERT(solocked(so));
456
457 return EOPNOTSUPP;
458 }
459
460 static int
461 COMPATNAME(route_send)(struct socket *so, struct mbuf *m,
462 struct sockaddr *nam, struct mbuf *control, struct lwp *l)
463 {
464 int error = 0;
465 int s;
466
467 KASSERT(solocked(so));
468 KASSERT(so->so_proto == &COMPATNAME(route_protosw)[0]);
469
470 s = splsoftnet();
471 error = raw_send(so, m, nam, control, l, &COMPATNAME(route_output));
472 splx(s);
473
474 return error;
475 }
476
477 static int
478 COMPATNAME(route_sendoob)(struct socket *so, struct mbuf *m,
479 struct mbuf *control)
480 {
481 KASSERT(solocked(so));
482
483 m_freem(m);
484 m_freem(control);
485
486 return EOPNOTSUPP;
487 }
488 static int
489 COMPATNAME(route_purgeif)(struct socket *so, struct ifnet *ifp)
490 {
491
492 panic("route_purgeif");
493
494 return EOPNOTSUPP;
495 }
496
497 #if defined(INET) || defined(INET6)
498 static int
499 route_get_sdl_index(struct rt_addrinfo *info, int *sdl_index)
500 {
501 struct rtentry *nrt;
502 int error;
503
504 error = rtrequest1(RTM_GET, info, &nrt);
505 if (error != 0)
506 return error;
507 /*
508 * nrt->rt_ifp->if_index may not be correct
509 * due to changing to ifplo0.
510 */
511 *sdl_index = satosdl(nrt->rt_gateway)->sdl_index;
512 rt_unref(nrt);
513
514 return 0;
515 }
516 #endif
517
518 static void
519 route_get_sdl(const struct ifnet *ifp, const struct sockaddr *dst,
520 struct sockaddr_dl *sdl, int *flags)
521 {
522 struct llentry *la;
523
524 KASSERT(ifp != NULL);
525
526 IF_AFDATA_RLOCK(ifp);
527 switch (dst->sa_family) {
528 case AF_INET:
529 la = lla_lookup(LLTABLE(ifp), 0, dst);
530 break;
531 case AF_INET6:
532 la = lla_lookup(LLTABLE6(ifp), 0, dst);
533 break;
534 default:
535 la = NULL;
536 KASSERTMSG(0, "Invalid AF=%d\n", dst->sa_family);
537 break;
538 }
539 IF_AFDATA_RUNLOCK(ifp);
540
541 void *a = (LLE_IS_VALID(la) && (la->la_flags & LLE_VALID) == LLE_VALID)
542 ? &la->ll_addr : NULL;
543
544 a = sockaddr_dl_init(sdl, sizeof(*sdl), ifp->if_index, ifp->if_type,
545 NULL, 0, a, ifp->if_addrlen);
546 KASSERT(a != NULL);
547
548 if (la != NULL) {
549 *flags = la->la_flags;
550 LLE_RUNLOCK(la);
551 }
552 }
553
554 static int
555 route_output_report(struct rtentry *rt, struct rt_addrinfo *info,
556 struct rt_xmsghdr *rtm, struct rt_xmsghdr **new_rtm)
557 {
558 int len;
559
560 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
561 const struct ifaddr *rtifa;
562 const struct ifnet *ifp = rt->rt_ifp;
563
564 info->rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
565 /* rtifa used to be simply rt->rt_ifa.
566 * If rt->rt_ifa != NULL, then
567 * rt_get_ifa() != NULL. So this
568 * ought to still be safe. --dyoung
569 */
570 rtifa = rt_get_ifa(rt);
571 info->rti_info[RTAX_IFA] = rtifa->ifa_addr;
572 #ifdef RTSOCK_DEBUG
573 if (info->rti_info[RTAX_IFA]->sa_family == AF_INET) {
574 char ibuf[INET_ADDRSTRLEN];
575 char abuf[INET_ADDRSTRLEN];
576 printf("%s: copying out RTAX_IFA %s "
577 "for info->rti_info[RTAX_DST] %s "
578 "ifa_getifa %p ifa_seqno %p\n",
579 __func__,
580 RT_IN_PRINT(info, ibuf, RTAX_IFA),
581 RT_IN_PRINT(info, abuf, RTAX_DST),
582 (void *)rtifa->ifa_getifa,
583 rtifa->ifa_seqno);
584 }
585 #endif /* RTSOCK_DEBUG */
586 if (ifp->if_flags & IFF_POINTOPOINT)
587 info->rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
588 else
589 info->rti_info[RTAX_BRD] = NULL;
590 rtm->rtm_index = ifp->if_index;
591 }
592 (void)rt_msg2(rtm->rtm_type, info, NULL, NULL, &len);
593 if (len > rtm->rtm_msglen) {
594 struct rt_xmsghdr *old_rtm = rtm;
595 R_Malloc(*new_rtm, struct rt_xmsghdr *, len);
596 if (*new_rtm == NULL)
597 return ENOBUFS;
598 (void)memcpy(*new_rtm, old_rtm, old_rtm->rtm_msglen);
599 rtm = *new_rtm;
600 }
601 (void)rt_msg2(rtm->rtm_type, info, rtm, NULL, 0);
602 rtm->rtm_flags = rt->rt_flags;
603 rtm_setmetrics(rt, rtm);
604 rtm->rtm_addrs = info->rti_addrs;
605
606 return 0;
607 }
608
609 static struct ifaddr *
610 route_output_get_ifa(const struct rt_addrinfo info, const struct rtentry *rt,
611 struct ifnet **ifp, struct psref *psref)
612 {
613 struct ifaddr *ifa = NULL;
614
615 *ifp = NULL;
616 if (info.rti_info[RTAX_IFP] != NULL) {
617 ifa = ifa_ifwithnet_psref(info.rti_info[RTAX_IFP], psref);
618 if (ifa == NULL)
619 goto next;
620 *ifp = ifa->ifa_ifp;
621 if (info.rti_info[RTAX_IFA] == NULL &&
622 info.rti_info[RTAX_GATEWAY] == NULL)
623 goto next;
624 if (info.rti_info[RTAX_IFA] == NULL) {
625 /* route change <dst> <gw> -ifp <if> */
626 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_GATEWAY],
627 *ifp, psref);
628 } else {
629 /* route change <dst> -ifp <if> -ifa <addr> */
630 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
631 if (ifa != NULL)
632 goto out;
633 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_IFA],
634 *ifp, psref);
635 }
636 goto out;
637 }
638 next:
639 if (info.rti_info[RTAX_IFA] != NULL) {
640 /* route change <dst> <gw> -ifa <addr> */
641 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
642 if (ifa != NULL)
643 goto out;
644 }
645 if (info.rti_info[RTAX_GATEWAY] != NULL) {
646 /* route change <dst> <gw> */
647 ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt),
648 info.rti_info[RTAX_GATEWAY], psref);
649 }
650 out:
651 if (ifa != NULL && *ifp == NULL)
652 *ifp = ifa->ifa_ifp;
653 return ifa;
654 }
655
656 static int
657 route_output_change(struct rtentry *rt, struct rt_addrinfo *info,
658 struct rt_xmsghdr *rtm)
659 {
660 int error = 0;
661 struct ifnet *ifp = NULL, *new_ifp;
662 struct ifaddr *ifa = NULL, *new_ifa;
663 struct psref psref_ifa, psref_new_ifa, psref_ifp;
664 bool newgw, ifp_changed = false;
665
666 /*
667 * New gateway could require new ifaddr, ifp;
668 * flags may also be different; ifp may be specified
669 * by ll sockaddr when protocol address is ambiguous
670 */
671 newgw = info->rti_info[RTAX_GATEWAY] != NULL &&
672 sockaddr_cmp(info->rti_info[RTAX_GATEWAY], rt->rt_gateway) != 0;
673
674 if (newgw || info->rti_info[RTAX_IFP] != NULL ||
675 info->rti_info[RTAX_IFA] != NULL) {
676 ifp = rt_getifp(info, &psref_ifp);
677 ifa = rt_getifa(info, &psref_ifa);
678 if (ifa == NULL) {
679 error = ENETUNREACH;
680 goto out;
681 }
682 }
683 if (newgw) {
684 error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY]);
685 if (error != 0)
686 goto out;
687 }
688 if (info->rti_info[RTAX_TAG]) {
689 const struct sockaddr *tag;
690 tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
691 if (tag == NULL) {
692 error = ENOBUFS;
693 goto out;
694 }
695 }
696 /*
697 * New gateway could require new ifaddr, ifp;
698 * flags may also be different; ifp may be specified
699 * by ll sockaddr when protocol address is ambiguous
700 */
701 new_ifa = route_output_get_ifa(*info, rt, &new_ifp, &psref_new_ifa);
702 if (new_ifa != NULL) {
703 ifa_release(ifa, &psref_ifa);
704 ifa = new_ifa;
705 }
706 if (ifa) {
707 struct ifaddr *oifa = rt->rt_ifa;
708 if (oifa != ifa && !ifa_is_destroying(ifa) &&
709 new_ifp != NULL && !if_is_deactivated(new_ifp)) {
710 if (oifa && oifa->ifa_rtrequest)
711 oifa->ifa_rtrequest(RTM_DELETE, rt, info);
712 rt_replace_ifa(rt, ifa);
713 rt->rt_ifp = new_ifp;
714 ifp_changed = true;
715 }
716 if (new_ifa == NULL)
717 ifa_release(ifa, &psref_ifa);
718 }
719 ifa_release(new_ifa, &psref_new_ifa);
720 if (new_ifp && rt->rt_ifp != new_ifp && !if_is_deactivated(new_ifp)) {
721 rt->rt_ifp = new_ifp;
722 ifp_changed = true;
723 }
724 rt_setmetrics(rtm->rtm_inits, rtm, rt);
725 if (rt->rt_flags != info->rti_flags) {
726 rt->rt_flags = (info->rti_flags & ~PRESERVED_RTF) |
727 (rt->rt_flags & PRESERVED_RTF);
728 }
729 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
730 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info);
731 #if defined(INET) || defined(INET6)
732 if (ifp_changed && rt_mask(rt) != NULL)
733 lltable_prefix_free(rt_getkey(rt)->sa_family, rt_getkey(rt),
734 rt_mask(rt), 0);
735 #else
736 (void)ifp_changed; /* XXX gcc */
737 #endif
738 out:
739 if_put(ifp, &psref_ifp);
740
741 return error;
742 }
743
744 /*ARGSUSED*/
745 int
746 COMPATNAME(route_output)(struct mbuf *m, struct socket *so)
747 {
748 struct sockproto proto = { .sp_family = PF_XROUTE, };
749 struct rt_xmsghdr *rtm = NULL;
750 struct rt_xmsghdr *old_rtm = NULL, *new_rtm = NULL;
751 struct rtentry *rt = NULL;
752 struct rtentry *saved_nrt = NULL;
753 struct rt_addrinfo info;
754 int len, error = 0;
755 sa_family_t family;
756 struct sockaddr_dl sdl;
757 int bound = curlwp_bind();
758 bool do_rt_free = false;
759 struct sockaddr_storage netmask;
760
761 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
762 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
763 (m = m_pullup(m, sizeof(int32_t))) == NULL)) {
764 error = ENOBUFS;
765 goto out;
766 }
767 if ((m->m_flags & M_PKTHDR) == 0)
768 panic("%s", __func__);
769 len = m->m_pkthdr.len;
770 if (len < sizeof(*rtm) ||
771 len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) {
772 info.rti_info[RTAX_DST] = NULL;
773 senderr(EINVAL);
774 }
775 R_Malloc(rtm, struct rt_xmsghdr *, len);
776 if (rtm == NULL) {
777 info.rti_info[RTAX_DST] = NULL;
778 senderr(ENOBUFS);
779 }
780 m_copydata(m, 0, len, rtm);
781 if (rtm->rtm_version != RTM_XVERSION) {
782 info.rti_info[RTAX_DST] = NULL;
783 senderr(EPROTONOSUPPORT);
784 }
785 rtm->rtm_pid = curproc->p_pid;
786 memset(&info, 0, sizeof(info));
787 info.rti_addrs = rtm->rtm_addrs;
788 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
789 &info)) {
790 senderr(EINVAL);
791 }
792 info.rti_flags = rtm->rtm_flags;
793 #ifdef RTSOCK_DEBUG
794 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
795 char abuf[INET_ADDRSTRLEN];
796 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
797 RT_IN_PRINT(&info, abuf, RTAX_DST));
798 }
799 #endif /* RTSOCK_DEBUG */
800 if (info.rti_info[RTAX_DST] == NULL ||
801 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) {
802 senderr(EINVAL);
803 }
804 if (info.rti_info[RTAX_GATEWAY] != NULL &&
805 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
806 senderr(EINVAL);
807 }
808
809 /*
810 * Verify that the caller has the appropriate privilege; RTM_GET
811 * is the only operation the non-superuser is allowed.
812 */
813 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
814 0, rtm, NULL, NULL) != 0)
815 senderr(EACCES);
816
817 /*
818 * route(8) passes a sockaddr truncated with prefixlen.
819 * The kernel doesn't expect such sockaddr and need to
820 * use a buffer that is big enough for the sockaddr expected
821 * (padded with 0's). We keep the original length of the sockaddr.
822 */
823 if (info.rti_info[RTAX_NETMASK]) {
824 /*
825 * Use the family of RTAX_DST, because RTAX_NETMASK
826 * can have a zero family if it comes from the radix
827 * tree via rt_mask().
828 */
829 socklen_t sa_len = sockaddr_getsize_by_family(
830 info.rti_info[RTAX_DST]->sa_family);
831 socklen_t masklen = sockaddr_getlen(
832 info.rti_info[RTAX_NETMASK]);
833 if (sa_len != 0 && sa_len > masklen) {
834 KASSERT(sa_len <= sizeof(netmask));
835 memcpy(&netmask, info.rti_info[RTAX_NETMASK], masklen);
836 memset((char *)&netmask + masklen, 0, sa_len - masklen);
837 info.rti_info[RTAX_NETMASK] = sstocsa(&netmask);
838 }
839 }
840
841 switch (rtm->rtm_type) {
842
843 case RTM_ADD:
844 if (info.rti_info[RTAX_GATEWAY] == NULL) {
845 senderr(EINVAL);
846 }
847 #if defined(INET) || defined(INET6)
848 /* support for new ARP/NDP code with keeping backcompat */
849 if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) {
850 const struct sockaddr_dl *sdlp =
851 satocsdl(info.rti_info[RTAX_GATEWAY]);
852
853 /* Allow routing requests by interface index */
854 if (sdlp->sdl_nlen == 0 && sdlp->sdl_alen == 0
855 && sdlp->sdl_slen == 0)
856 goto fallback;
857 /*
858 * Old arp binaries don't set the sdl_index
859 * so we have to complement it.
860 */
861 int sdl_index = sdlp->sdl_index;
862 if (sdl_index == 0) {
863 error = route_get_sdl_index(&info, &sdl_index);
864 if (error != 0)
865 goto fallback;
866 } else if (
867 info.rti_info[RTAX_DST]->sa_family == AF_INET) {
868 /*
869 * XXX workaround for SIN_PROXY case; proxy arp
870 * entry should be in an interface that has
871 * a network route including the destination,
872 * not a local (link) route that may not be a
873 * desired place, for example a tap.
874 */
875 const struct sockaddr_inarp *sina =
876 (const struct sockaddr_inarp *)
877 info.rti_info[RTAX_DST];
878 if (sina->sin_other & SIN_PROXY) {
879 error = route_get_sdl_index(&info,
880 &sdl_index);
881 if (error != 0)
882 goto fallback;
883 }
884 }
885 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags,
886 rtm->rtm_rmx.rmx_expire, &info, sdl_index);
887 break;
888 }
889 fallback:
890 #endif /* defined(INET) || defined(INET6) */
891 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
892 if (error == 0) {
893 rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt);
894 rt_unref(saved_nrt);
895 }
896 break;
897
898 case RTM_DELETE:
899 #if defined(INET) || defined(INET6)
900 /* support for new ARP/NDP code */
901 if (info.rti_info[RTAX_GATEWAY] &&
902 (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
903 (rtm->rtm_flags & RTF_LLDATA) != 0) {
904 const struct sockaddr_dl *sdlp =
905 satocsdl(info.rti_info[RTAX_GATEWAY]);
906 error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags,
907 rtm->rtm_rmx.rmx_expire, &info, sdlp->sdl_index);
908 rtm->rtm_flags &= ~RTF_UP;
909 break;
910 }
911 #endif
912 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
913 if (error != 0)
914 break;
915
916 rt = saved_nrt;
917 do_rt_free = true;
918 info.rti_info[RTAX_DST] = rt_getkey(rt);
919 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
920 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
921 info.rti_info[RTAX_TAG] = rt_gettag(rt);
922 error = route_output_report(rt, &info, rtm, &new_rtm);
923 if (error)
924 senderr(error);
925 if (new_rtm != NULL) {
926 old_rtm = rtm;
927 rtm = new_rtm;
928 }
929 break;
930
931 case RTM_GET:
932 case RTM_CHANGE:
933 case RTM_LOCK:
934 /* XXX This will mask info.rti_info[RTAX_DST] with
935 * info.rti_info[RTAX_NETMASK] before
936 * searching. It did not used to do that. --dyoung
937 */
938 rt = NULL;
939 error = rtrequest1(RTM_GET, &info, &rt);
940 if (error != 0)
941 senderr(error);
942 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
943 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
944 info.rti_info[RTAX_DST]->sa_len) != 0)
945 senderr(ESRCH);
946 if (info.rti_info[RTAX_NETMASK] == NULL &&
947 rt_mask(rt) != NULL)
948 senderr(ETOOMANYREFS);
949 }
950
951 /*
952 * XXX if arp/ndp requests an L2 entry, we have to obtain
953 * it from lltable while for the route command we have to
954 * return a route as it is. How to distinguish them?
955 * For newer arp/ndp, RTF_LLDATA flag set by arp/ndp
956 * indicates an L2 entry is requested. For old arp/ndp
957 * binaries, we check RTF_UP flag is NOT set; it works
958 * by the fact that arp/ndp don't set it while the route
959 * command sets it.
960 */
961 if (((rtm->rtm_flags & RTF_LLDATA) != 0 ||
962 (rtm->rtm_flags & RTF_UP) == 0) &&
963 rtm->rtm_type == RTM_GET &&
964 sockaddr_cmp(rt_getkey(rt), info.rti_info[RTAX_DST]) != 0) {
965 int ll_flags = 0;
966 route_get_sdl(rt->rt_ifp, info.rti_info[RTAX_DST], &sdl,
967 &ll_flags);
968 info.rti_info[RTAX_GATEWAY] = sstocsa(&sdl);
969 error = route_output_report(rt, &info, rtm, &new_rtm);
970 if (error)
971 senderr(error);
972 if (new_rtm != NULL) {
973 old_rtm = rtm;
974 rtm = new_rtm;
975 }
976 rtm->rtm_flags |= RTF_LLDATA;
977 rtm->rtm_flags &= ~RTF_CONNECTED;
978 rtm->rtm_flags |= (ll_flags & LLE_STATIC) ? RTF_STATIC : 0;
979 break;
980 }
981
982 switch (rtm->rtm_type) {
983 case RTM_GET:
984 info.rti_info[RTAX_DST] = rt_getkey(rt);
985 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
986 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
987 info.rti_info[RTAX_TAG] = rt_gettag(rt);
988 error = route_output_report(rt, &info, rtm, &new_rtm);
989 if (error)
990 senderr(error);
991 if (new_rtm != NULL) {
992 old_rtm = rtm;
993 rtm = new_rtm;
994 }
995 break;
996
997 case RTM_CHANGE:
998 #ifdef NET_MPSAFE
999 error = rt_update_prepare(rt);
1000 if (error == 0) {
1001 error = route_output_change(rt, &info, rtm);
1002 rt_update_finish(rt);
1003 }
1004 #else
1005 error = route_output_change(rt, &info, rtm);
1006 #endif
1007 if (error != 0)
1008 goto flush;
1009 /*FALLTHROUGH*/
1010 case RTM_LOCK:
1011 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
1012 rt->rt_rmx.rmx_locks |=
1013 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
1014 break;
1015 }
1016 break;
1017
1018 default:
1019 senderr(EOPNOTSUPP);
1020 }
1021
1022 flush:
1023 if (rtm) {
1024 if (error)
1025 rtm->rtm_errno = error;
1026 else
1027 rtm->rtm_flags |= RTF_DONE;
1028 }
1029 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
1030 0;
1031 /* We cannot free old_rtm until we have stopped using the
1032 * pointers in info, some of which may point to sockaddrs
1033 * in old_rtm.
1034 */
1035 if (old_rtm != NULL)
1036 Free(old_rtm);
1037 if (rt) {
1038 if (do_rt_free)
1039 rt_free(rt);
1040 else
1041 rt_unref(rt);
1042 }
1043 {
1044 struct rawcb *rp = NULL;
1045 /*
1046 * Check to see if we don't want our own messages.
1047 */
1048 if ((so->so_options & SO_USELOOPBACK) == 0) {
1049 if (COMPATNAME(route_info).ri_cb.any_count <= 1) {
1050 if (rtm)
1051 Free(rtm);
1052 m_freem(m);
1053 goto out;
1054 }
1055 /* There is another listener, so construct message */
1056 rp = sotorawcb(so);
1057 }
1058 if (rtm) {
1059 m_copyback(m, 0, rtm->rtm_msglen, rtm);
1060 if (m->m_pkthdr.len < rtm->rtm_msglen) {
1061 m_freem(m);
1062 m = NULL;
1063 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
1064 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1065 Free(rtm);
1066 }
1067 if (rp)
1068 rp->rcb_proto.sp_family = 0; /* Avoid us */
1069 if (family)
1070 proto.sp_protocol = family;
1071 if (m)
1072 raw_input(m, &proto, &COMPATNAME(route_info).ri_src,
1073 &COMPATNAME(route_info).ri_dst, &rt_rawcb);
1074 if (rp)
1075 rp->rcb_proto.sp_family = PF_XROUTE;
1076 }
1077 out:
1078 curlwp_bindx(bound);
1079 return error;
1080 }
1081
1082 static int
1083 route_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1084 {
1085 struct routecb *rop = sotoroutecb(so);
1086 int error = 0;
1087 unsigned char *rtm_type;
1088 size_t len;
1089 unsigned int msgfilter;
1090
1091 KASSERT(solocked(so));
1092
1093 if (sopt->sopt_level != AF_ROUTE) {
1094 error = ENOPROTOOPT;
1095 } else switch (op) {
1096 case PRCO_SETOPT:
1097 switch (sopt->sopt_name) {
1098 case RO_MSGFILTER:
1099 msgfilter = 0;
1100 for (rtm_type = sopt->sopt_data, len = sopt->sopt_size;
1101 len != 0;
1102 rtm_type++, len -= sizeof(*rtm_type))
1103 {
1104 /* Guard against overflowing our storage. */
1105 if (*rtm_type >= sizeof(msgfilter) * CHAR_BIT) {
1106 error = EOVERFLOW;
1107 break;
1108 }
1109 msgfilter |= RTMSGFILTER(*rtm_type);
1110 }
1111 if (error == 0)
1112 rop->rocb_msgfilter = msgfilter;
1113 break;
1114 default:
1115 error = ENOPROTOOPT;
1116 break;
1117 }
1118 break;
1119 case PRCO_GETOPT:
1120 switch (sopt->sopt_name) {
1121 case RO_MSGFILTER:
1122 error = ENOTSUP;
1123 break;
1124 default:
1125 error = ENOPROTOOPT;
1126 break;
1127 }
1128 }
1129 return error;
1130 }
1131
1132 static void
1133 rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out)
1134 {
1135 #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e;
1136 metric(RTV_RPIPE, rmx_recvpipe);
1137 metric(RTV_SPIPE, rmx_sendpipe);
1138 metric(RTV_SSTHRESH, rmx_ssthresh);
1139 metric(RTV_RTT, rmx_rtt);
1140 metric(RTV_RTTVAR, rmx_rttvar);
1141 metric(RTV_HOPCOUNT, rmx_hopcount);
1142 metric(RTV_MTU, rmx_mtu);
1143 #undef metric
1144 if (which & RTV_EXPIRE) {
1145 out->rt_rmx.rmx_expire = in->rtm_rmx.rmx_expire ?
1146 time_wall_to_mono(in->rtm_rmx.rmx_expire) : 0;
1147 }
1148 }
1149
1150 static void
1151 rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out)
1152 {
1153 #define metric(e) out->rtm_rmx.e = in->rt_rmx.e;
1154 metric(rmx_recvpipe);
1155 metric(rmx_sendpipe);
1156 metric(rmx_ssthresh);
1157 metric(rmx_rtt);
1158 metric(rmx_rttvar);
1159 metric(rmx_hopcount);
1160 metric(rmx_mtu);
1161 metric(rmx_locks);
1162 #undef metric
1163 out->rtm_rmx.rmx_expire = in->rt_rmx.rmx_expire ?
1164 time_mono_to_wall(in->rt_rmx.rmx_expire) : 0;
1165 }
1166
1167 static int
1168 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
1169 struct rt_addrinfo *rtinfo)
1170 {
1171 const struct sockaddr *sa = NULL; /* Quell compiler warning */
1172 int i;
1173
1174 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1175 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1176 continue;
1177 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
1178 RT_XADVANCE(cp, sa);
1179 }
1180
1181 /*
1182 * Check for extra addresses specified, except RTM_GET asking
1183 * for interface info.
1184 */
1185 if (rtmtype == RTM_GET) {
1186 if (((rtinfo->rti_addrs &
1187 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0U << i)) != 0)
1188 return 1;
1189 } else if ((rtinfo->rti_addrs & (~0U << i)) != 0)
1190 return 1;
1191 /* Check for bad data length. */
1192 if (cp != cplim) {
1193 if (i == RTAX_NETMASK + 1 && sa != NULL &&
1194 cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim)
1195 /*
1196 * The last sockaddr was info.rti_info[RTAX_NETMASK].
1197 * We accept this for now for the sake of old
1198 * binaries or third party softwares.
1199 */
1200 ;
1201 else
1202 return 1;
1203 }
1204 return 0;
1205 }
1206
1207 static int
1208 rt_getlen(int type)
1209 {
1210 #ifndef COMPAT_RTSOCK
1211 CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t));
1212 CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t));
1213 CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t));
1214 CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t));
1215 #endif
1216
1217 switch (type) {
1218 case RTM_ODELADDR:
1219 case RTM_ONEWADDR:
1220 case RTM_OCHGADDR:
1221 #ifdef COMPAT_70
1222 return sizeof(struct ifa_msghdr70);
1223 #else
1224 #ifdef RTSOCK_DEBUG
1225 printf("%s: unsupported RTM type %d\n", __func__, type);
1226 #endif
1227 return -1;
1228 #endif
1229 case RTM_DELADDR:
1230 case RTM_NEWADDR:
1231 case RTM_CHGADDR:
1232 return sizeof(struct ifa_xmsghdr);
1233
1234 case RTM_OOIFINFO:
1235 #ifdef COMPAT_14
1236 return sizeof(struct if_msghdr14);
1237 #else
1238 #ifdef RTSOCK_DEBUG
1239 printf("%s: unsupported RTM type RTM_OOIFINFO\n", __func__);
1240 #endif
1241 return -1;
1242 #endif
1243 case RTM_OIFINFO:
1244 #ifdef COMPAT_50
1245 return sizeof(struct if_msghdr50);
1246 #else
1247 #ifdef RTSOCK_DEBUG
1248 printf("%s: unsupported RTM type RTM_OIFINFO\n", __func__);
1249 #endif
1250 return -1;
1251 #endif
1252
1253 case RTM_IFINFO:
1254 return sizeof(struct if_xmsghdr);
1255
1256 case RTM_IFANNOUNCE:
1257 case RTM_IEEE80211:
1258 return sizeof(struct if_xannouncemsghdr);
1259
1260 default:
1261 return sizeof(struct rt_xmsghdr);
1262 }
1263 }
1264
1265
1266 struct mbuf *
1267 COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
1268 {
1269 struct rt_xmsghdr *rtm;
1270 struct mbuf *m;
1271 int i;
1272 const struct sockaddr *sa;
1273 int len, dlen;
1274
1275 m = m_gethdr(M_DONTWAIT, MT_DATA);
1276 if (m == NULL)
1277 return m;
1278 MCLAIM(m, &COMPATNAME(routedomain).dom_mowner);
1279
1280 if ((len = rt_getlen(type)) == -1)
1281 goto out;
1282 if (len > MHLEN + MLEN)
1283 panic("%s: message too long", __func__);
1284 else if (len > MHLEN) {
1285 m->m_next = m_get(M_DONTWAIT, MT_DATA);
1286 if (m->m_next == NULL)
1287 goto out;
1288 MCLAIM(m->m_next, m->m_owner);
1289 m->m_pkthdr.len = len;
1290 m->m_len = MHLEN;
1291 m->m_next->m_len = len - MHLEN;
1292 } else {
1293 m->m_pkthdr.len = m->m_len = len;
1294 }
1295 m_reset_rcvif(m);
1296 m_copyback(m, 0, datalen, data);
1297 if (len > datalen)
1298 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
1299 rtm = mtod(m, struct rt_xmsghdr *);
1300 for (i = 0; i < RTAX_MAX; i++) {
1301 if ((sa = rtinfo->rti_info[i]) == NULL)
1302 continue;
1303 rtinfo->rti_addrs |= (1 << i);
1304 dlen = RT_XROUNDUP(sa->sa_len);
1305 m_copyback(m, len, sa->sa_len, sa);
1306 if (dlen != sa->sa_len) {
1307 /*
1308 * Up to 6 + 1 nul's since roundup is to
1309 * sizeof(uint64_t) (8 bytes)
1310 */
1311 m_copyback(m, len + sa->sa_len,
1312 dlen - sa->sa_len, "\0\0\0\0\0\0");
1313 }
1314 len += dlen;
1315 }
1316 if (m->m_pkthdr.len != len)
1317 goto out;
1318 rtm->rtm_msglen = len;
1319 rtm->rtm_version = RTM_XVERSION;
1320 rtm->rtm_type = type;
1321 return m;
1322 out:
1323 m_freem(m);
1324 return NULL;
1325 }
1326
1327 /*
1328 * rt_msg2
1329 *
1330 * fills 'cp' or 'w'.w_tmem with the routing socket message and
1331 * returns the length of the message in 'lenp'.
1332 *
1333 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
1334 * the message
1335 * otherwise walkarg's w_needed is updated and if the user buffer is
1336 * specified and w_needed indicates space exists the information is copied
1337 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
1338 * if the allocation fails ENOBUFS is returned.
1339 */
1340 static int
1341 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
1342 int *lenp)
1343 {
1344 int i;
1345 int len, dlen, second_time = 0;
1346 char *cp0, *cp = cpv;
1347
1348 rtinfo->rti_addrs = 0;
1349 again:
1350 if ((len = rt_getlen(type)) == -1)
1351 return EINVAL;
1352
1353 if ((cp0 = cp) != NULL)
1354 cp += len;
1355 for (i = 0; i < RTAX_MAX; i++) {
1356 const struct sockaddr *sa;
1357
1358 if ((sa = rtinfo->rti_info[i]) == NULL)
1359 continue;
1360 rtinfo->rti_addrs |= (1 << i);
1361 dlen = RT_XROUNDUP(sa->sa_len);
1362 if (cp) {
1363 int diff = dlen - sa->sa_len;
1364 (void)memcpy(cp, sa, (size_t)sa->sa_len);
1365 cp += sa->sa_len;
1366 if (diff > 0) {
1367 (void)memset(cp, 0, (size_t)diff);
1368 cp += diff;
1369 }
1370 }
1371 len += dlen;
1372 }
1373 if (cp == NULL && w != NULL && !second_time) {
1374 struct rt_walkarg *rw = w;
1375
1376 rw->w_needed += len;
1377 if (rw->w_needed <= 0 && rw->w_where) {
1378 if (rw->w_tmemsize < len) {
1379 if (rw->w_tmem)
1380 kmem_free(rw->w_tmem, rw->w_tmemsize);
1381 rw->w_tmem = kmem_alloc(len, KM_SLEEP);
1382 rw->w_tmemsize = len;
1383 }
1384 if (rw->w_tmem) {
1385 cp = rw->w_tmem;
1386 second_time = 1;
1387 goto again;
1388 } else {
1389 rw->w_tmemneeded = len;
1390 return ENOBUFS;
1391 }
1392 }
1393 }
1394 if (cp) {
1395 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0;
1396
1397 rtm->rtm_version = RTM_XVERSION;
1398 rtm->rtm_type = type;
1399 rtm->rtm_msglen = len;
1400 }
1401 if (lenp)
1402 *lenp = len;
1403 return 0;
1404 }
1405
1406 #ifndef COMPAT_RTSOCK
1407 int
1408 rt_msg3(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
1409 int *lenp)
1410 {
1411 return rt_msg2(type, rtinfo, cpv, w, lenp);
1412 }
1413 #endif
1414
1415 /*
1416 * This routine is called to generate a message from the routing
1417 * socket indicating that a redirect has occurred, a routing lookup
1418 * has failed, or that a protocol has detected timeouts to a particular
1419 * destination.
1420 */
1421 void
1422 COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags,
1423 int error)
1424 {
1425 struct rt_xmsghdr rtm;
1426 struct mbuf *m;
1427 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1428 struct rt_addrinfo info = *rtinfo;
1429
1430 COMPATCALL(rt_missmsg, (type, rtinfo, flags, error));
1431 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1432 return;
1433 memset(&rtm, 0, sizeof(rtm));
1434 rtm.rtm_pid = curproc->p_pid;
1435 rtm.rtm_flags = RTF_DONE | flags;
1436 rtm.rtm_errno = error;
1437 m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm));
1438 if (m == NULL)
1439 return;
1440 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
1441 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
1442 }
1443
1444 /*
1445 * This routine is called to generate a message from the routing
1446 * socket indicating that the status of a network interface has changed.
1447 */
1448 void
1449 COMPATNAME(rt_ifmsg)(struct ifnet *ifp)
1450 {
1451 struct if_xmsghdr ifm;
1452 struct mbuf *m;
1453 struct rt_addrinfo info;
1454
1455 COMPATCALL(rt_ifmsg, (ifp));
1456 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1457 return;
1458 (void)memset(&info, 0, sizeof(info));
1459 (void)memset(&ifm, 0, sizeof(ifm));
1460 ifm.ifm_index = ifp->if_index;
1461 ifm.ifm_flags = ifp->if_flags;
1462 ifm.ifm_data = ifp->if_data;
1463 ifm.ifm_addrs = 0;
1464 m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm));
1465 if (m == NULL)
1466 return;
1467 COMPATNAME(route_enqueue)(m, 0);
1468 #ifdef COMPAT_14
1469 compat_14_rt_oifmsg(ifp);
1470 #endif
1471 #ifdef COMPAT_50
1472 compat_50_rt_oifmsg(ifp);
1473 #endif
1474 }
1475
1476 #ifndef COMPAT_RTSOCK
1477 static int
1478 if_addrflags(struct ifaddr *ifa)
1479 {
1480
1481 switch (ifa->ifa_addr->sa_family) {
1482 #ifdef INET
1483 case AF_INET:
1484 return ((struct in_ifaddr *)ifa)->ia4_flags;
1485 #endif
1486 #ifdef INET6
1487 case AF_INET6:
1488 return ((struct in6_ifaddr *)ifa)->ia6_flags;
1489 #endif
1490 default:
1491 return 0;
1492 }
1493 }
1494 #endif
1495
1496 /*
1497 * This is called to generate messages from the routing socket
1498 * indicating a network interface has had addresses associated with it.
1499 * if we ever reverse the logic and replace messages TO the routing
1500 * socket indicate a request to configure interfaces, then it will
1501 * be unnecessary as the routing socket will automatically generate
1502 * copies of it.
1503 */
1504 void
1505 COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error,
1506 struct rtentry *rt)
1507 {
1508 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
1509 struct rt_addrinfo info;
1510 const struct sockaddr *sa;
1511 int pass;
1512 struct mbuf *m;
1513 struct ifnet *ifp;
1514 struct rt_xmsghdr rtm;
1515 struct ifa_xmsghdr ifam;
1516 int ncmd;
1517
1518 KASSERT(ifa != NULL);
1519 KASSERT(ifa->ifa_addr != NULL);
1520 ifp = ifa->ifa_ifp;
1521 #ifdef SCTP
1522 if (cmd == RTM_ADD) {
1523 sctp_add_ip_address(ifa);
1524 } else if (cmd == RTM_DELETE) {
1525 sctp_delete_ip_address(ifa);
1526 }
1527 #endif
1528
1529 COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt));
1530 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1531 return;
1532 for (pass = 1; pass < 3; pass++) {
1533 memset(&info, 0, sizeof(info));
1534 switch (cmdpass(cmd, pass)) {
1535 case cmdpass(RTM_ADD, 1):
1536 case cmdpass(RTM_CHANGE, 1):
1537 case cmdpass(RTM_DELETE, 2):
1538 case cmdpass(RTM_NEWADDR, 1):
1539 case cmdpass(RTM_DELADDR, 1):
1540 case cmdpass(RTM_CHGADDR, 1):
1541 switch (cmd) {
1542 case RTM_ADD:
1543 ncmd = RTM_XNEWADDR;
1544 break;
1545 case RTM_DELETE:
1546 ncmd = RTM_XDELADDR;
1547 break;
1548 case RTM_CHANGE:
1549 ncmd = RTM_XCHGADDR;
1550 break;
1551 case RTM_NEWADDR:
1552 ncmd = RTM_XNEWADDR;
1553 break;
1554 case RTM_DELADDR:
1555 ncmd = RTM_XDELADDR;
1556 break;
1557 case RTM_CHGADDR:
1558 ncmd = RTM_XCHGADDR;
1559 break;
1560 default:
1561 panic("%s: unknown command %d", __func__, cmd);
1562 }
1563 #ifdef COMPAT_70
1564 compat_70_rt_newaddrmsg1(ncmd, ifa);
1565 #endif
1566 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1567 KASSERT(ifp->if_dl != NULL);
1568 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1569 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1570 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1571 memset(&ifam, 0, sizeof(ifam));
1572 ifam.ifam_index = ifp->if_index;
1573 ifam.ifam_metric = ifa->ifa_metric;
1574 ifam.ifam_flags = ifa->ifa_flags;
1575 #ifndef COMPAT_RTSOCK
1576 ifam.ifam_pid = curproc->p_pid;
1577 ifam.ifam_addrflags = if_addrflags(ifa);
1578 #endif
1579 m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam));
1580 if (m == NULL)
1581 continue;
1582 mtod(m, struct ifa_xmsghdr *)->ifam_addrs =
1583 info.rti_addrs;
1584 break;
1585 case cmdpass(RTM_ADD, 2):
1586 case cmdpass(RTM_CHANGE, 2):
1587 case cmdpass(RTM_DELETE, 1):
1588 if (rt == NULL)
1589 continue;
1590 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1591 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
1592 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1593 memset(&rtm, 0, sizeof(rtm));
1594 rtm.rtm_pid = curproc->p_pid;
1595 rtm.rtm_index = ifp->if_index;
1596 rtm.rtm_flags |= rt->rt_flags;
1597 rtm.rtm_errno = error;
1598 m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm));
1599 if (m == NULL)
1600 continue;
1601 mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
1602 break;
1603 default:
1604 continue;
1605 }
1606 KASSERTMSG(m != NULL, "called with wrong command");
1607 COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
1608 }
1609 #undef cmdpass
1610
1611 }
1612
1613 static struct mbuf *
1614 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1615 struct rt_addrinfo *info)
1616 {
1617 struct if_xannouncemsghdr ifan;
1618
1619 memset(info, 0, sizeof(*info));
1620 memset(&ifan, 0, sizeof(ifan));
1621 ifan.ifan_index = ifp->if_index;
1622 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
1623 ifan.ifan_what = what;
1624 return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan));
1625 }
1626
1627 /*
1628 * This is called to generate routing socket messages indicating
1629 * network interface arrival and departure.
1630 */
1631 void
1632 COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what)
1633 {
1634 struct mbuf *m;
1635 struct rt_addrinfo info;
1636
1637 COMPATCALL(rt_ifannouncemsg, (ifp, what));
1638 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1639 return;
1640 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1641 if (m == NULL)
1642 return;
1643 COMPATNAME(route_enqueue)(m, 0);
1644 }
1645
1646 /*
1647 * This is called to generate routing socket messages indicating
1648 * IEEE80211 wireless events.
1649 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1650 */
1651 void
1652 COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data,
1653 size_t data_len)
1654 {
1655 struct mbuf *m;
1656 struct rt_addrinfo info;
1657
1658 COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len));
1659 if (COMPATNAME(route_info).ri_cb.any_count == 0)
1660 return;
1661 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1662 if (m == NULL)
1663 return;
1664 /*
1665 * Append the ieee80211 data. Try to stick it in the
1666 * mbuf containing the ifannounce msg; otherwise allocate
1667 * a new mbuf and append.
1668 *
1669 * NB: we assume m is a single mbuf.
1670 */
1671 if (data_len > M_TRAILINGSPACE(m)) {
1672 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1673 if (n == NULL) {
1674 m_freem(m);
1675 return;
1676 }
1677 (void)memcpy(mtod(n, void *), data, data_len);
1678 n->m_len = data_len;
1679 m->m_next = n;
1680 } else if (data_len > 0) {
1681 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
1682 m->m_len += data_len;
1683 }
1684 if (m->m_flags & M_PKTHDR)
1685 m->m_pkthdr.len += data_len;
1686 mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len;
1687 COMPATNAME(route_enqueue)(m, 0);
1688 }
1689
1690 #ifndef COMPAT_RTSOCK
1691 /*
1692 * Send a routing message as mimicing that a cloned route is added.
1693 */
1694 void
1695 rt_clonedmsg(const struct sockaddr *dst, const struct ifnet *ifp,
1696 const struct rtentry *rt)
1697 {
1698 struct rt_addrinfo info;
1699 /* Mimic flags exactly */
1700 #define RTF_LLINFO 0x400
1701 #define RTF_CLONED 0x2000
1702 int flags = RTF_UP | RTF_HOST | RTF_DONE | RTF_LLINFO | RTF_CLONED;
1703 union {
1704 struct sockaddr sa;
1705 struct sockaddr_storage ss;
1706 struct sockaddr_dl sdl;
1707 } u;
1708 uint8_t namelen = strlen(ifp->if_xname);
1709 uint8_t addrlen = ifp->if_addrlen;
1710
1711 if (rt == NULL)
1712 return; /* XXX */
1713
1714 memset(&info, 0, sizeof(info));
1715 info.rti_info[RTAX_DST] = dst;
1716 sockaddr_dl_init(&u.sdl, sizeof(u.ss), ifp->if_index, ifp->if_type,
1717 NULL, namelen, NULL, addrlen);
1718 info.rti_info[RTAX_GATEWAY] = &u.sa;
1719
1720 rt_missmsg(RTM_ADD, &info, flags, 0);
1721 #undef RTF_LLINFO
1722 #undef RTF_CLONED
1723 }
1724 #endif /* COMPAT_RTSOCK */
1725
1726 /*
1727 * This is used in dumping the kernel table via sysctl().
1728 */
1729 static int
1730 sysctl_dumpentry(struct rtentry *rt, void *v)
1731 {
1732 struct rt_walkarg *w = v;
1733 int error = 0, size;
1734 struct rt_addrinfo info;
1735
1736 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1737 return 0;
1738 memset(&info, 0, sizeof(info));
1739 info.rti_info[RTAX_DST] = rt_getkey(rt);
1740 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1741 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1742 info.rti_info[RTAX_TAG] = rt_gettag(rt);
1743 if (rt->rt_ifp) {
1744 const struct ifaddr *rtifa;
1745 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
1746 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
1747 * then rt_get_ifa() != NULL. So this ought to still be safe.
1748 * --dyoung
1749 */
1750 rtifa = rt_get_ifa(rt);
1751 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
1752 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1753 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
1754 }
1755 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
1756 return error;
1757 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1758 struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem;
1759
1760 rtm->rtm_flags = rt->rt_flags;
1761 rtm->rtm_use = rt->rt_use;
1762 rtm_setmetrics(rt, rtm);
1763 KASSERT(rt->rt_ifp != NULL);
1764 rtm->rtm_index = rt->rt_ifp->if_index;
1765 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1766 rtm->rtm_addrs = info.rti_addrs;
1767 if ((error = copyout(rtm, w->w_where, size)) != 0)
1768 w->w_where = NULL;
1769 else
1770 w->w_where = (char *)w->w_where + size;
1771 }
1772 return error;
1773 }
1774
1775 static int
1776 sysctl_iflist_if(struct ifnet *ifp, struct rt_walkarg *w,
1777 struct rt_addrinfo *info, size_t len)
1778 {
1779 struct if_xmsghdr *ifm;
1780 int error;
1781
1782 ifm = (struct if_xmsghdr *)w->w_tmem;
1783 ifm->ifm_index = ifp->if_index;
1784 ifm->ifm_flags = ifp->if_flags;
1785 ifm->ifm_data = ifp->if_data;
1786 ifm->ifm_addrs = info->rti_addrs;
1787 if ((error = copyout(ifm, w->w_where, len)) == 0)
1788 w->w_where = (char *)w->w_where + len;
1789 return error;
1790 }
1791
1792 static int
1793 sysctl_iflist_addr(struct rt_walkarg *w, struct ifaddr *ifa,
1794 struct rt_addrinfo *info)
1795 {
1796 int len, error;
1797
1798 if ((error = rt_msg2(RTM_XNEWADDR, info, 0, w, &len)))
1799 return error;
1800 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1801 struct ifa_xmsghdr *ifam;
1802
1803 ifam = (struct ifa_xmsghdr *)w->w_tmem;
1804 ifam->ifam_index = ifa->ifa_ifp->if_index;
1805 ifam->ifam_flags = ifa->ifa_flags;
1806 ifam->ifam_metric = ifa->ifa_metric;
1807 ifam->ifam_addrs = info->rti_addrs;
1808 #ifndef COMPAT_RTSOCK
1809 ifam->ifam_pid = 0;
1810 ifam->ifam_addrflags = if_addrflags(ifa);
1811 #endif
1812 if ((error = copyout(w->w_tmem, w->w_where, len)) == 0)
1813 w->w_where = (char *)w->w_where + len;
1814 }
1815 return error;
1816 }
1817
1818 static int
1819 sysctl_iflist(int af, struct rt_walkarg *w, int type)
1820 {
1821 struct ifnet *ifp;
1822 struct ifaddr *ifa;
1823 struct rt_addrinfo info;
1824 int cmd, len, error = 0;
1825 int (*iflist_if)(struct ifnet *, struct rt_walkarg *,
1826 struct rt_addrinfo *, size_t);
1827 int (*iflist_addr)(struct rt_walkarg *, struct ifaddr *,
1828 struct rt_addrinfo *);
1829 int s;
1830 struct psref psref;
1831 int bound;
1832
1833 switch (type) {
1834 case NET_RT_IFLIST:
1835 cmd = RTM_IFINFO;
1836 iflist_if = sysctl_iflist_if;
1837 iflist_addr = sysctl_iflist_addr;
1838 break;
1839 #ifdef COMPAT_14
1840 case NET_RT_OOOIFLIST:
1841 cmd = RTM_OOIFINFO;
1842 iflist_if = compat_14_iflist;
1843 iflist_addr = compat_70_iflist_addr;
1844 break;
1845 #endif
1846 #ifdef COMPAT_50
1847 case NET_RT_OOIFLIST:
1848 cmd = RTM_OIFINFO;
1849 iflist_if = compat_50_iflist;
1850 iflist_addr = compat_70_iflist_addr;
1851 break;
1852 #endif
1853 #ifdef COMPAT_70
1854 case NET_RT_OIFLIST:
1855 cmd = RTM_IFINFO;
1856 iflist_if = sysctl_iflist_if;
1857 iflist_addr = compat_70_iflist_addr;
1858 break;
1859 #endif
1860 default:
1861 #ifdef RTSOCK_DEBUG
1862 printf("%s: unsupported IFLIST type %d\n", __func__, type);
1863 #endif
1864 return EINVAL;
1865 }
1866
1867 memset(&info, 0, sizeof(info));
1868
1869 bound = curlwp_bind();
1870 s = pserialize_read_enter();
1871 IFNET_READER_FOREACH(ifp) {
1872 int _s;
1873 if (w->w_arg && w->w_arg != ifp->if_index)
1874 continue;
1875 if (IFADDR_READER_EMPTY(ifp))
1876 continue;
1877
1878 if_acquire(ifp, &psref);
1879 pserialize_read_exit(s);
1880
1881 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1882 if ((error = rt_msg2(cmd, &info, NULL, w, &len)) != 0)
1883 goto release_exit;
1884 info.rti_info[RTAX_IFP] = NULL;
1885 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1886 if ((error = iflist_if(ifp, w, &info, len)) != 0)
1887 goto release_exit;
1888 }
1889 _s = pserialize_read_enter();
1890 IFADDR_READER_FOREACH(ifa, ifp) {
1891 struct psref _psref;
1892 if (af && af != ifa->ifa_addr->sa_family)
1893 continue;
1894 ifa_acquire(ifa, &_psref);
1895 pserialize_read_exit(_s);
1896
1897 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1898 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1899 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1900 error = iflist_addr(w, ifa, &info);
1901
1902 _s = pserialize_read_enter();
1903 ifa_release(ifa, &_psref);
1904 if (error != 0) {
1905 pserialize_read_exit(_s);
1906 goto release_exit;
1907 }
1908 }
1909 pserialize_read_exit(_s);
1910 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1911 info.rti_info[RTAX_BRD] = NULL;
1912
1913 s = pserialize_read_enter();
1914 if_release(ifp, &psref);
1915 }
1916 pserialize_read_exit(s);
1917 curlwp_bindx(bound);
1918
1919 return 0;
1920
1921 release_exit:
1922 if_release(ifp, &psref);
1923 curlwp_bindx(bound);
1924 return error;
1925 }
1926
1927 static int
1928 sysctl_rtable(SYSCTLFN_ARGS)
1929 {
1930 void *where = oldp;
1931 size_t *given = oldlenp;
1932 int i, s, error = EINVAL;
1933 u_char af;
1934 struct rt_walkarg w;
1935
1936 if (namelen == 1 && name[0] == CTL_QUERY)
1937 return sysctl_query(SYSCTLFN_CALL(rnode));
1938
1939 if (newp)
1940 return EPERM;
1941 if (namelen != 3)
1942 return EINVAL;
1943 af = name[0];
1944 w.w_tmemneeded = 0;
1945 w.w_tmemsize = 0;
1946 w.w_tmem = NULL;
1947 again:
1948 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1949 if (w.w_tmemneeded) {
1950 w.w_tmem = kmem_alloc(w.w_tmemneeded, KM_SLEEP);
1951 w.w_tmemsize = w.w_tmemneeded;
1952 w.w_tmemneeded = 0;
1953 }
1954 w.w_op = name[1];
1955 w.w_arg = name[2];
1956 w.w_given = *given;
1957 w.w_needed = 0 - w.w_given;
1958 w.w_where = where;
1959
1960 s = splsoftnet();
1961 switch (w.w_op) {
1962
1963 case NET_RT_DUMP:
1964 case NET_RT_FLAGS:
1965 #if defined(INET) || defined(INET6)
1966 /*
1967 * take care of llinfo entries, the caller must
1968 * specify an AF
1969 */
1970 if (w.w_op == NET_RT_FLAGS &&
1971 (w.w_arg == 0 || w.w_arg & RTF_LLDATA)) {
1972 if (af != 0)
1973 error = lltable_sysctl_dump(af, &w);
1974 else
1975 error = EINVAL;
1976 break;
1977 }
1978 #endif
1979
1980 for (i = 1; i <= AF_MAX; i++) {
1981 if (af == 0 || af == i) {
1982 error = rt_walktree(i, sysctl_dumpentry, &w);
1983 if (error != 0)
1984 break;
1985 #if defined(INET) || defined(INET6)
1986 /*
1987 * Return ARP/NDP entries too for
1988 * backward compatibility.
1989 */
1990 error = lltable_sysctl_dump(i, &w);
1991 if (error != 0)
1992 break;
1993 #endif
1994 }
1995 }
1996 break;
1997
1998 #ifdef COMPAT_14
1999 case NET_RT_OOOIFLIST:
2000 error = sysctl_iflist(af, &w, w.w_op);
2001 break;
2002 #endif
2003 #ifdef COMPAT_50
2004 case NET_RT_OOIFLIST:
2005 error = sysctl_iflist(af, &w, w.w_op);
2006 break;
2007 #endif
2008 #ifdef COMPAT_70
2009 case NET_RT_OIFLIST:
2010 error = sysctl_iflist(af, &w, w.w_op);
2011 break;
2012 #endif
2013 case NET_RT_IFLIST:
2014 error = sysctl_iflist(af, &w, w.w_op);
2015 break;
2016 }
2017 splx(s);
2018
2019 /* check to see if we couldn't allocate memory with NOWAIT */
2020 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
2021 goto again;
2022
2023 if (w.w_tmem)
2024 kmem_free(w.w_tmem, w.w_tmemsize);
2025 w.w_needed += w.w_given;
2026 if (where) {
2027 *given = (char *)w.w_where - (char *)where;
2028 if (*given < w.w_needed)
2029 return ENOMEM;
2030 } else {
2031 *given = (11 * w.w_needed) / 10;
2032 }
2033 return error;
2034 }
2035
2036 /*
2037 * Routing message software interrupt routine
2038 */
2039 static void
2040 COMPATNAME(route_intr)(void *cookie)
2041 {
2042 struct sockproto proto = { .sp_family = PF_XROUTE, };
2043 struct route_info * const ri = &COMPATNAME(route_info);
2044 struct mbuf *m;
2045
2046 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2047 for (;;) {
2048 IFQ_LOCK(&ri->ri_intrq);
2049 IF_DEQUEUE(&ri->ri_intrq, m);
2050 IFQ_UNLOCK(&ri->ri_intrq);
2051 if (m == NULL)
2052 break;
2053 proto.sp_protocol = M_GETCTX(m, uintptr_t);
2054 #ifdef NET_MPSAFE
2055 mutex_enter(rt_so_mtx);
2056 #endif
2057 raw_input(m, &proto, &ri->ri_src, &ri->ri_dst, &rt_rawcb);
2058 #ifdef NET_MPSAFE
2059 mutex_exit(rt_so_mtx);
2060 #endif
2061 }
2062 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2063 }
2064
2065 /*
2066 * Enqueue a message to the software interrupt routine.
2067 */
2068 void
2069 COMPATNAME(route_enqueue)(struct mbuf *m, int family)
2070 {
2071 struct route_info * const ri = &COMPATNAME(route_info);
2072 int wasempty;
2073
2074 IFQ_LOCK(&ri->ri_intrq);
2075 if (IF_QFULL(&ri->ri_intrq)) {
2076 IF_DROP(&ri->ri_intrq);
2077 IFQ_UNLOCK(&ri->ri_intrq);
2078 m_freem(m);
2079 } else {
2080 wasempty = IF_IS_EMPTY(&ri->ri_intrq);
2081 M_SETCTX(m, (uintptr_t)family);
2082 IF_ENQUEUE(&ri->ri_intrq, m);
2083 IFQ_UNLOCK(&ri->ri_intrq);
2084 if (wasempty) {
2085 kpreempt_disable();
2086 softint_schedule(ri->ri_sih);
2087 kpreempt_enable();
2088 }
2089 }
2090 }
2091
2092 static void
2093 COMPATNAME(route_init)(void)
2094 {
2095 struct route_info * const ri = &COMPATNAME(route_info);
2096
2097 #ifndef COMPAT_RTSOCK
2098 rt_init();
2099 #endif
2100 #ifdef NET_MPSAFE
2101 rt_so_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2102 #endif
2103
2104 sysctl_net_route_setup(NULL);
2105 ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen;
2106 ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
2107 COMPATNAME(route_intr), NULL);
2108 IFQ_LOCK_INIT(&ri->ri_intrq);
2109 }
2110
2111 /*
2112 * Definitions of protocols supported in the ROUTE domain.
2113 */
2114 #ifndef COMPAT_RTSOCK
2115 PR_WRAP_USRREQS(route);
2116 #else
2117 PR_WRAP_USRREQS(compat_50_route);
2118 #endif
2119
2120 static const struct pr_usrreqs route_usrreqs = {
2121 .pr_attach = COMPATNAME(route_attach_wrapper),
2122 .pr_detach = COMPATNAME(route_detach_wrapper),
2123 .pr_accept = COMPATNAME(route_accept_wrapper),
2124 .pr_bind = COMPATNAME(route_bind_wrapper),
2125 .pr_listen = COMPATNAME(route_listen_wrapper),
2126 .pr_connect = COMPATNAME(route_connect_wrapper),
2127 .pr_connect2 = COMPATNAME(route_connect2_wrapper),
2128 .pr_disconnect = COMPATNAME(route_disconnect_wrapper),
2129 .pr_shutdown = COMPATNAME(route_shutdown_wrapper),
2130 .pr_abort = COMPATNAME(route_abort_wrapper),
2131 .pr_ioctl = COMPATNAME(route_ioctl_wrapper),
2132 .pr_stat = COMPATNAME(route_stat_wrapper),
2133 .pr_peeraddr = COMPATNAME(route_peeraddr_wrapper),
2134 .pr_sockaddr = COMPATNAME(route_sockaddr_wrapper),
2135 .pr_rcvd = COMPATNAME(route_rcvd_wrapper),
2136 .pr_recvoob = COMPATNAME(route_recvoob_wrapper),
2137 .pr_send = COMPATNAME(route_send_wrapper),
2138 .pr_sendoob = COMPATNAME(route_sendoob_wrapper),
2139 .pr_purgeif = COMPATNAME(route_purgeif_wrapper),
2140 };
2141
2142 static const struct protosw COMPATNAME(route_protosw)[] = {
2143 {
2144 .pr_type = SOCK_RAW,
2145 .pr_domain = &COMPATNAME(routedomain),
2146 .pr_flags = PR_ATOMIC|PR_ADDR,
2147 .pr_input = raw_input,
2148 .pr_ctlinput = raw_ctlinput,
2149 .pr_ctloutput = route_ctloutput,
2150 .pr_usrreqs = &route_usrreqs,
2151 .pr_init = rt_pr_init,
2152 },
2153 };
2154
2155 struct domain COMPATNAME(routedomain) = {
2156 .dom_family = PF_XROUTE,
2157 .dom_name = DOMAINNAME,
2158 .dom_init = COMPATNAME(route_init),
2159 .dom_protosw = COMPATNAME(route_protosw),
2160 .dom_protoswNPROTOSW =
2161 &COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))],
2162 };
2163
2164 static void
2165 sysctl_net_route_setup(struct sysctllog **clog)
2166 {
2167 const struct sysctlnode *rnode = NULL;
2168
2169 sysctl_createv(clog, 0, NULL, &rnode,
2170 CTLFLAG_PERMANENT,
2171 CTLTYPE_NODE, DOMAINNAME,
2172 SYSCTL_DESCR("PF_ROUTE information"),
2173 NULL, 0, NULL, 0,
2174 CTL_NET, PF_XROUTE, CTL_EOL);
2175
2176 sysctl_createv(clog, 0, NULL, NULL,
2177 CTLFLAG_PERMANENT,
2178 CTLTYPE_NODE, "rtable",
2179 SYSCTL_DESCR("Routing table information"),
2180 sysctl_rtable, 0, NULL, 0,
2181 CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL);
2182
2183 sysctl_createv(clog, 0, &rnode, NULL,
2184 CTLFLAG_PERMANENT,
2185 CTLTYPE_STRUCT, "stats",
2186 SYSCTL_DESCR("Routing statistics"),
2187 NULL, 0, &rtstat, sizeof(rtstat),
2188 CTL_CREATE, CTL_EOL);
2189 }
2190