zlib.c revision 1.21 1 1.21 christos /* $NetBSD: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
2 1.1 paulus /*
3 1.7 christos * This file is derived from various .h and .c files from the zlib-1.0.4
4 1.1 paulus * distribution by Jean-loup Gailly and Mark Adler, with some additions
5 1.1 paulus * by Paul Mackerras to aid in implementing Deflate compression and
6 1.1 paulus * decompression for PPP packets. See zlib.h for conditions of
7 1.1 paulus * distribution and use.
8 1.1 paulus *
9 1.1 paulus * Changes that have been made include:
10 1.1 paulus * - added Z_PACKET_FLUSH (see zlib.h for details)
11 1.7 christos * - added inflateIncomp and deflateOutputPending
12 1.7 christos * - allow strm->next_out to be NULL, meaning discard the output
13 1.4 christos *
14 1.21 christos * $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $
15 1.1 paulus */
16 1.1 paulus
17 1.20 perry /*
18 1.17 fvdl * ==FILEVERSION 020312==
19 1.4 christos *
20 1.4 christos * This marker is used by the Linux installation script to determine
21 1.4 christos * whether an up-to-date version of this file is already installed.
22 1.4 christos */
23 1.15 lukem
24 1.15 lukem #include <sys/cdefs.h>
25 1.21 christos __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $");
26 1.1 paulus
27 1.7 christos #define NO_DUMMY_DECL
28 1.7 christos #define NO_ZCFUNCS
29 1.7 christos #define MY_ZCALLOC
30 1.7 christos
31 1.7 christos #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 1.7 christos #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
33 1.7 christos #endif
34 1.7 christos
35 1.7 christos
36 1.7 christos /* +++ zutil.h */
37 1.17 fvdl
38 1.1 paulus /* zutil.h -- internal interface and configuration of the compression library
39 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
40 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
41 1.1 paulus */
42 1.1 paulus
43 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
44 1.1 paulus part of the implementation of the compression library and is
45 1.1 paulus subject to change. Applications should only use zlib.h.
46 1.1 paulus */
47 1.1 paulus
48 1.21 christos /* @(#) $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
49 1.1 paulus
50 1.7 christos #ifndef _Z_UTIL_H
51 1.1 paulus #define _Z_UTIL_H
52 1.1 paulus
53 1.1 paulus #include "zlib.h"
54 1.1 paulus
55 1.7 christos #if defined(KERNEL) || defined(_KERNEL)
56 1.7 christos /* Assume this is a *BSD or SVR4 kernel */
57 1.9 ragge #include <sys/param.h>
58 1.7 christos #include <sys/time.h>
59 1.7 christos #include <sys/systm.h>
60 1.7 christos # define HAVE_MEMCPY
61 1.7 christos #else
62 1.7 christos #if defined(__KERNEL__)
63 1.7 christos /* Assume this is a Linux kernel */
64 1.7 christos #include <linux/string.h>
65 1.7 christos #define HAVE_MEMCPY
66 1.7 christos
67 1.7 christos #else /* not kernel */
68 1.7 christos
69 1.17 fvdl #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
70 1.17 fvdl
71 1.17 fvdl /* XXX doesn't seem to need anything at all, but this is for consistency. */
72 1.17 fvdl # include <lib/libkern/libkern.h>
73 1.17 fvdl
74 1.7 christos #else
75 1.7 christos #ifdef STDC
76 1.17 fvdl # include <stddef.h>
77 1.7 christos # include <string.h>
78 1.7 christos # include <stdlib.h>
79 1.7 christos #endif
80 1.17 fvdl #ifdef NO_ERRNO_H
81 1.17 fvdl extern int errno;
82 1.17 fvdl #else
83 1.17 fvdl # include <errno.h>
84 1.17 fvdl #endif
85 1.17 fvdl #endif /* __NetBSD__ && _STANDALONE */
86 1.7 christos #endif /* __KERNEL__ */
87 1.7 christos #endif /* _KERNEL || KERNEL */
88 1.7 christos
89 1.17 fvdl
90 1.1 paulus #ifndef local
91 1.1 paulus # define local static
92 1.1 paulus #endif
93 1.1 paulus /* compile with -Dlocal if your debugger can't find static symbols */
94 1.1 paulus
95 1.1 paulus typedef unsigned char uch;
96 1.1 paulus typedef uch FAR uchf;
97 1.1 paulus typedef unsigned short ush;
98 1.1 paulus typedef ush FAR ushf;
99 1.1 paulus typedef unsigned long ulg;
100 1.1 paulus
101 1.17 fvdl extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
102 1.7 christos /* (size given to avoid silly warnings with Visual C++) */
103 1.1 paulus
104 1.7 christos #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
105 1.7 christos
106 1.7 christos #define ERR_RETURN(strm,err) \
107 1.21 christos return (strm->msg = ERR_MSG(err), (err))
108 1.1 paulus /* To be used only when the state is known to be valid */
109 1.1 paulus
110 1.1 paulus /* common constants */
111 1.1 paulus
112 1.1 paulus #ifndef DEF_WBITS
113 1.1 paulus # define DEF_WBITS MAX_WBITS
114 1.1 paulus #endif
115 1.1 paulus /* default windowBits for decompression. MAX_WBITS is for compression only */
116 1.1 paulus
117 1.1 paulus #if MAX_MEM_LEVEL >= 8
118 1.1 paulus # define DEF_MEM_LEVEL 8
119 1.1 paulus #else
120 1.1 paulus # define DEF_MEM_LEVEL MAX_MEM_LEVEL
121 1.1 paulus #endif
122 1.1 paulus /* default memLevel */
123 1.1 paulus
124 1.1 paulus #define STORED_BLOCK 0
125 1.1 paulus #define STATIC_TREES 1
126 1.1 paulus #define DYN_TREES 2
127 1.1 paulus /* The three kinds of block type */
128 1.1 paulus
129 1.1 paulus #define MIN_MATCH 3
130 1.1 paulus #define MAX_MATCH 258
131 1.1 paulus /* The minimum and maximum match lengths */
132 1.1 paulus
133 1.7 christos #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
134 1.7 christos
135 1.7 christos /* target dependencies */
136 1.7 christos
137 1.7 christos #ifdef MSDOS
138 1.7 christos # define OS_CODE 0x00
139 1.17 fvdl # if defined(__TURBOC__) || defined(__BORLANDC__)
140 1.17 fvdl # if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
141 1.17 fvdl /* Allow compilation with ANSI keywords only enabled */
142 1.17 fvdl void _Cdecl farfree( void *block );
143 1.17 fvdl void *_Cdecl farmalloc( unsigned long nbytes );
144 1.17 fvdl # else
145 1.17 fvdl # include <alloc.h>
146 1.17 fvdl # endif
147 1.7 christos # else /* MSC or DJGPP */
148 1.7 christos # include <malloc.h>
149 1.7 christos # endif
150 1.7 christos #endif
151 1.7 christos
152 1.7 christos #ifdef OS2
153 1.7 christos # define OS_CODE 0x06
154 1.7 christos #endif
155 1.7 christos
156 1.7 christos #ifdef WIN32 /* Window 95 & Windows NT */
157 1.7 christos # define OS_CODE 0x0b
158 1.7 christos #endif
159 1.7 christos
160 1.7 christos #if defined(VAXC) || defined(VMS)
161 1.7 christos # define OS_CODE 0x02
162 1.17 fvdl # define F_OPEN(name, mode) \
163 1.7 christos fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
164 1.7 christos #endif
165 1.7 christos
166 1.7 christos #ifdef AMIGA
167 1.7 christos # define OS_CODE 0x01
168 1.7 christos #endif
169 1.7 christos
170 1.7 christos #if defined(ATARI) || defined(atarist)
171 1.7 christos # define OS_CODE 0x05
172 1.7 christos #endif
173 1.7 christos
174 1.17 fvdl #if defined(MACOS) || defined(TARGET_OS_MAC)
175 1.7 christos # define OS_CODE 0x07
176 1.17 fvdl # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
177 1.17 fvdl # include <unix.h> /* for fdopen */
178 1.17 fvdl # else
179 1.17 fvdl # ifndef fdopen
180 1.17 fvdl # define fdopen(fd,mode) NULL /* No fdopen() */
181 1.17 fvdl # endif
182 1.17 fvdl # endif
183 1.7 christos #endif
184 1.7 christos
185 1.7 christos #ifdef __50SERIES /* Prime/PRIMOS */
186 1.7 christos # define OS_CODE 0x0F
187 1.7 christos #endif
188 1.7 christos
189 1.7 christos #ifdef TOPS20
190 1.7 christos # define OS_CODE 0x0a
191 1.7 christos #endif
192 1.7 christos
193 1.7 christos #if defined(_BEOS_) || defined(RISCOS)
194 1.7 christos # define fdopen(fd,mode) NULL /* No fdopen() */
195 1.7 christos #endif
196 1.7 christos
197 1.17 fvdl #if (defined(_MSC_VER) && (_MSC_VER > 600))
198 1.17 fvdl # define fdopen(fd,type) _fdopen(fd,type)
199 1.17 fvdl #endif
200 1.17 fvdl
201 1.17 fvdl
202 1.7 christos /* Common defaults */
203 1.7 christos
204 1.7 christos #ifndef OS_CODE
205 1.7 christos # define OS_CODE 0x03 /* assume Unix */
206 1.7 christos #endif
207 1.7 christos
208 1.17 fvdl #ifndef F_OPEN
209 1.17 fvdl # define F_OPEN(name, mode) fopen((name), (mode))
210 1.7 christos #endif
211 1.7 christos
212 1.1 paulus /* functions */
213 1.1 paulus
214 1.7 christos #ifdef HAVE_STRERROR
215 1.17 fvdl extern char *strerror __P((int));
216 1.7 christos # define zstrerror(errnum) strerror(errnum)
217 1.1 paulus #else
218 1.7 christos # define zstrerror(errnum) ""
219 1.7 christos #endif
220 1.4 christos
221 1.7 christos #if defined(pyr)
222 1.7 christos # define NO_MEMCPY
223 1.7 christos #endif
224 1.17 fvdl #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
225 1.7 christos /* Use our own functions for small and medium model with MSC <= 5.0.
226 1.7 christos * You may have to use the same strategy for Borland C (untested).
227 1.17 fvdl * The __SC__ check is for Symantec.
228 1.7 christos */
229 1.7 christos # define NO_MEMCPY
230 1.7 christos #endif
231 1.1 paulus #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
232 1.1 paulus # define HAVE_MEMCPY
233 1.1 paulus #endif
234 1.1 paulus #ifdef HAVE_MEMCPY
235 1.7 christos # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
236 1.7 christos # define zmemcpy _fmemcpy
237 1.7 christos # define zmemcmp _fmemcmp
238 1.7 christos # define zmemzero(dest, len) _fmemset(dest, 0, len)
239 1.7 christos # else
240 1.1 paulus # define zmemcpy memcpy
241 1.7 christos # define zmemcmp memcmp
242 1.1 paulus # define zmemzero(dest, len) memset(dest, 0, len)
243 1.7 christos # endif
244 1.1 paulus #else
245 1.17 fvdl extern void zmemcpy __P((Bytef* dest, const Bytef* source, uInt len));
246 1.17 fvdl extern int zmemcmp __P((const Bytef* s1, const Bytef* s2, uInt len));
247 1.17 fvdl extern void zmemzero __P((Bytef* dest, uInt len));
248 1.1 paulus #endif
249 1.1 paulus
250 1.1 paulus /* Diagnostic functions */
251 1.17 fvdl #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
252 1.1 paulus # include <stdio.h>
253 1.17 fvdl extern int z_verbose;
254 1.17 fvdl extern void z_error __P((char *m));
255 1.1 paulus # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
256 1.17 fvdl # define Trace(x) {if (z_verbose>=0) fprintf x ;}
257 1.17 fvdl # define Tracev(x) {if (z_verbose>0) fprintf x ;}
258 1.17 fvdl # define Tracevv(x) {if (z_verbose>1) fprintf x ;}
259 1.17 fvdl # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
260 1.17 fvdl # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
261 1.1 paulus #else
262 1.1 paulus # define Assert(cond,msg)
263 1.1 paulus # define Trace(x)
264 1.1 paulus # define Tracev(x)
265 1.1 paulus # define Tracevv(x)
266 1.1 paulus # define Tracec(c,x)
267 1.1 paulus # define Tracecv(c,x)
268 1.1 paulus #endif
269 1.1 paulus
270 1.1 paulus
271 1.17 fvdl typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
272 1.17 fvdl uInt len));
273 1.17 fvdl voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
274 1.17 fvdl void zcfree __P((voidpf opaque, voidpf ptr));
275 1.1 paulus
276 1.1 paulus #define ZALLOC(strm, items, size) \
277 1.1 paulus (*((strm)->zalloc))((strm)->opaque, (items), (size))
278 1.7 christos #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
279 1.7 christos #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
280 1.7 christos
281 1.7 christos #endif /* _Z_UTIL_H */
282 1.7 christos /* --- zutil.h */
283 1.1 paulus
284 1.7 christos /* +++ deflate.h */
285 1.17 fvdl
286 1.1 paulus /* deflate.h -- internal compression state
287 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly
288 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
289 1.1 paulus */
290 1.1 paulus
291 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
292 1.1 paulus part of the implementation of the compression library and is
293 1.1 paulus subject to change. Applications should only use zlib.h.
294 1.1 paulus */
295 1.1 paulus
296 1.21 christos /* @(#) $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
297 1.1 paulus
298 1.7 christos #ifndef _DEFLATE_H
299 1.7 christos #define _DEFLATE_H
300 1.7 christos
301 1.7 christos /* #include "zutil.h" */
302 1.1 paulus
303 1.1 paulus /* ===========================================================================
304 1.1 paulus * Internal compression state.
305 1.1 paulus */
306 1.1 paulus
307 1.1 paulus #define LENGTH_CODES 29
308 1.1 paulus /* number of length codes, not counting the special END_BLOCK code */
309 1.1 paulus
310 1.1 paulus #define LITERALS 256
311 1.1 paulus /* number of literal bytes 0..255 */
312 1.1 paulus
313 1.1 paulus #define L_CODES (LITERALS+1+LENGTH_CODES)
314 1.1 paulus /* number of Literal or Length codes, including the END_BLOCK code */
315 1.1 paulus
316 1.1 paulus #define D_CODES 30
317 1.1 paulus /* number of distance codes */
318 1.1 paulus
319 1.1 paulus #define BL_CODES 19
320 1.1 paulus /* number of codes used to transfer the bit lengths */
321 1.1 paulus
322 1.1 paulus #define HEAP_SIZE (2*L_CODES+1)
323 1.1 paulus /* maximum heap size */
324 1.1 paulus
325 1.1 paulus #define MAX_BITS 15
326 1.1 paulus /* All codes must not exceed MAX_BITS bits */
327 1.1 paulus
328 1.1 paulus #define INIT_STATE 42
329 1.1 paulus #define BUSY_STATE 113
330 1.1 paulus #define FINISH_STATE 666
331 1.1 paulus /* Stream status */
332 1.1 paulus
333 1.1 paulus
334 1.1 paulus /* Data structure describing a single value and its code string. */
335 1.1 paulus typedef struct ct_data_s {
336 1.1 paulus union {
337 1.1 paulus ush freq; /* frequency count */
338 1.1 paulus ush code; /* bit string */
339 1.1 paulus } fc;
340 1.1 paulus union {
341 1.1 paulus ush dad; /* father node in Huffman tree */
342 1.1 paulus ush len; /* length of bit string */
343 1.1 paulus } dl;
344 1.1 paulus } FAR ct_data;
345 1.1 paulus
346 1.1 paulus #define Freq fc.freq
347 1.1 paulus #define Code fc.code
348 1.1 paulus #define Dad dl.dad
349 1.1 paulus #define Len dl.len
350 1.1 paulus
351 1.1 paulus typedef struct static_tree_desc_s static_tree_desc;
352 1.1 paulus
353 1.1 paulus typedef struct tree_desc_s {
354 1.1 paulus ct_data *dyn_tree; /* the dynamic tree */
355 1.1 paulus int max_code; /* largest code with non zero frequency */
356 1.1 paulus static_tree_desc *stat_desc; /* the corresponding static tree */
357 1.1 paulus } FAR tree_desc;
358 1.1 paulus
359 1.1 paulus typedef ush Pos;
360 1.1 paulus typedef Pos FAR Posf;
361 1.1 paulus typedef unsigned IPos;
362 1.1 paulus
363 1.1 paulus /* A Pos is an index in the character window. We use short instead of int to
364 1.1 paulus * save space in the various tables. IPos is used only for parameter passing.
365 1.1 paulus */
366 1.1 paulus
367 1.1 paulus typedef struct deflate_state {
368 1.7 christos z_streamp strm; /* pointer back to this zlib stream */
369 1.1 paulus int status; /* as the name implies */
370 1.1 paulus Bytef *pending_buf; /* output still pending */
371 1.7 christos ulg pending_buf_size; /* size of pending_buf */
372 1.1 paulus Bytef *pending_out; /* next pending byte to output to the stream */
373 1.1 paulus int pending; /* nb of bytes in the pending buffer */
374 1.1 paulus int noheader; /* suppress zlib header and adler32 */
375 1.7 christos Byte data_type; /* UNKNOWN, BINARY or ASCII */
376 1.1 paulus Byte method; /* STORED (for zip only) or DEFLATED */
377 1.7 christos int last_flush; /* value of flush param for previous deflate call */
378 1.1 paulus
379 1.1 paulus /* used by deflate.c: */
380 1.1 paulus
381 1.1 paulus uInt w_size; /* LZ77 window size (32K by default) */
382 1.1 paulus uInt w_bits; /* log2(w_size) (8..16) */
383 1.1 paulus uInt w_mask; /* w_size - 1 */
384 1.1 paulus
385 1.1 paulus Bytef *window;
386 1.1 paulus /* Sliding window. Input bytes are read into the second half of the window,
387 1.1 paulus * and move to the first half later to keep a dictionary of at least wSize
388 1.1 paulus * bytes. With this organization, matches are limited to a distance of
389 1.1 paulus * wSize-MAX_MATCH bytes, but this ensures that IO is always
390 1.1 paulus * performed with a length multiple of the block size. Also, it limits
391 1.1 paulus * the window size to 64K, which is quite useful on MSDOS.
392 1.1 paulus * To do: use the user input buffer as sliding window.
393 1.1 paulus */
394 1.1 paulus
395 1.1 paulus ulg window_size;
396 1.1 paulus /* Actual size of window: 2*wSize, except when the user input buffer
397 1.1 paulus * is directly used as sliding window.
398 1.1 paulus */
399 1.1 paulus
400 1.1 paulus Posf *prev;
401 1.1 paulus /* Link to older string with same hash index. To limit the size of this
402 1.1 paulus * array to 64K, this link is maintained only for the last 32K strings.
403 1.1 paulus * An index in this array is thus a window index modulo 32K.
404 1.1 paulus */
405 1.1 paulus
406 1.1 paulus Posf *head; /* Heads of the hash chains or NIL. */
407 1.1 paulus
408 1.1 paulus uInt ins_h; /* hash index of string to be inserted */
409 1.1 paulus uInt hash_size; /* number of elements in hash table */
410 1.1 paulus uInt hash_bits; /* log2(hash_size) */
411 1.1 paulus uInt hash_mask; /* hash_size-1 */
412 1.1 paulus
413 1.1 paulus uInt hash_shift;
414 1.1 paulus /* Number of bits by which ins_h must be shifted at each input
415 1.1 paulus * step. It must be such that after MIN_MATCH steps, the oldest
416 1.1 paulus * byte no longer takes part in the hash key, that is:
417 1.1 paulus * hash_shift * MIN_MATCH >= hash_bits
418 1.1 paulus */
419 1.1 paulus
420 1.1 paulus long block_start;
421 1.1 paulus /* Window position at the beginning of the current output block. Gets
422 1.1 paulus * negative when the window is moved backwards.
423 1.1 paulus */
424 1.1 paulus
425 1.1 paulus uInt match_length; /* length of best match */
426 1.1 paulus IPos prev_match; /* previous match */
427 1.1 paulus int match_available; /* set if previous match exists */
428 1.1 paulus uInt strstart; /* start of string to insert */
429 1.1 paulus uInt match_start; /* start of matching string */
430 1.1 paulus uInt lookahead; /* number of valid bytes ahead in window */
431 1.1 paulus
432 1.1 paulus uInt prev_length;
433 1.1 paulus /* Length of the best match at previous step. Matches not greater than this
434 1.1 paulus * are discarded. This is used in the lazy match evaluation.
435 1.1 paulus */
436 1.1 paulus
437 1.1 paulus uInt max_chain_length;
438 1.1 paulus /* To speed up deflation, hash chains are never searched beyond this
439 1.1 paulus * length. A higher limit improves compression ratio but degrades the
440 1.1 paulus * speed.
441 1.1 paulus */
442 1.1 paulus
443 1.1 paulus uInt max_lazy_match;
444 1.1 paulus /* Attempt to find a better match only when the current match is strictly
445 1.1 paulus * smaller than this value. This mechanism is used only for compression
446 1.1 paulus * levels >= 4.
447 1.1 paulus */
448 1.1 paulus # define max_insert_length max_lazy_match
449 1.1 paulus /* Insert new strings in the hash table only if the match length is not
450 1.1 paulus * greater than this length. This saves time but degrades compression.
451 1.1 paulus * max_insert_length is used only for compression levels <= 3.
452 1.1 paulus */
453 1.1 paulus
454 1.1 paulus int level; /* compression level (1..9) */
455 1.1 paulus int strategy; /* favor or force Huffman coding*/
456 1.1 paulus
457 1.1 paulus uInt good_match;
458 1.1 paulus /* Use a faster search when the previous match is longer than this */
459 1.1 paulus
460 1.7 christos int nice_match; /* Stop searching when current match exceeds this */
461 1.1 paulus
462 1.1 paulus /* used by trees.c: */
463 1.1 paulus /* Didn't use ct_data typedef below to supress compiler warning */
464 1.1 paulus struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
465 1.1 paulus struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
466 1.1 paulus struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
467 1.1 paulus
468 1.1 paulus struct tree_desc_s l_desc; /* desc. for literal tree */
469 1.1 paulus struct tree_desc_s d_desc; /* desc. for distance tree */
470 1.1 paulus struct tree_desc_s bl_desc; /* desc. for bit length tree */
471 1.1 paulus
472 1.1 paulus ush bl_count[MAX_BITS+1];
473 1.1 paulus /* number of codes at each bit length for an optimal tree */
474 1.1 paulus
475 1.1 paulus int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
476 1.1 paulus int heap_len; /* number of elements in the heap */
477 1.1 paulus int heap_max; /* element of largest frequency */
478 1.1 paulus /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
479 1.1 paulus * The same heap array is used to build all trees.
480 1.1 paulus */
481 1.1 paulus
482 1.1 paulus uch depth[2*L_CODES+1];
483 1.1 paulus /* Depth of each subtree used as tie breaker for trees of equal frequency
484 1.1 paulus */
485 1.1 paulus
486 1.1 paulus uchf *l_buf; /* buffer for literals or lengths */
487 1.1 paulus
488 1.1 paulus uInt lit_bufsize;
489 1.1 paulus /* Size of match buffer for literals/lengths. There are 4 reasons for
490 1.1 paulus * limiting lit_bufsize to 64K:
491 1.1 paulus * - frequencies can be kept in 16 bit counters
492 1.1 paulus * - if compression is not successful for the first block, all input
493 1.1 paulus * data is still in the window so we can still emit a stored block even
494 1.1 paulus * when input comes from standard input. (This can also be done for
495 1.1 paulus * all blocks if lit_bufsize is not greater than 32K.)
496 1.1 paulus * - if compression is not successful for a file smaller than 64K, we can
497 1.1 paulus * even emit a stored file instead of a stored block (saving 5 bytes).
498 1.1 paulus * This is applicable only for zip (not gzip or zlib).
499 1.1 paulus * - creating new Huffman trees less frequently may not provide fast
500 1.1 paulus * adaptation to changes in the input data statistics. (Take for
501 1.1 paulus * example a binary file with poorly compressible code followed by
502 1.1 paulus * a highly compressible string table.) Smaller buffer sizes give
503 1.1 paulus * fast adaptation but have of course the overhead of transmitting
504 1.1 paulus * trees more frequently.
505 1.1 paulus * - I can't count above 4
506 1.1 paulus */
507 1.1 paulus
508 1.1 paulus uInt last_lit; /* running index in l_buf */
509 1.1 paulus
510 1.1 paulus ushf *d_buf;
511 1.1 paulus /* Buffer for distances. To simplify the code, d_buf and l_buf have
512 1.1 paulus * the same number of elements. To use different lengths, an extra flag
513 1.1 paulus * array would be necessary.
514 1.1 paulus */
515 1.1 paulus
516 1.1 paulus ulg opt_len; /* bit length of current block with optimal trees */
517 1.1 paulus ulg static_len; /* bit length of current block with static trees */
518 1.1 paulus uInt matches; /* number of string matches in current block */
519 1.1 paulus int last_eob_len; /* bit length of EOB code for last block */
520 1.1 paulus
521 1.1 paulus #ifdef DEBUG_ZLIB
522 1.17 fvdl ulg compressed_len; /* total bit length of compressed file mod 2^32 */
523 1.17 fvdl ulg bits_sent; /* bit length of compressed data sent mod 2^32 */
524 1.1 paulus #endif
525 1.1 paulus
526 1.1 paulus ush bi_buf;
527 1.1 paulus /* Output buffer. bits are inserted starting at the bottom (least
528 1.1 paulus * significant bits).
529 1.1 paulus */
530 1.1 paulus int bi_valid;
531 1.1 paulus /* Number of valid bits in bi_buf. All bits above the last valid bit
532 1.1 paulus * are always zero.
533 1.1 paulus */
534 1.1 paulus
535 1.1 paulus } FAR deflate_state;
536 1.1 paulus
537 1.1 paulus /* Output a byte on the stream.
538 1.1 paulus * IN assertion: there is enough room in pending_buf.
539 1.1 paulus */
540 1.1 paulus #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
541 1.1 paulus
542 1.1 paulus
543 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
544 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
545 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
546 1.1 paulus */
547 1.1 paulus
548 1.1 paulus #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
549 1.1 paulus /* In order to simplify the code, particularly on 16 bit machines, match
550 1.1 paulus * distances are limited to MAX_DIST instead of WSIZE.
551 1.1 paulus */
552 1.1 paulus
553 1.1 paulus /* in trees.c */
554 1.17 fvdl void _tr_init __P((deflate_state *s));
555 1.17 fvdl int _tr_tally __P((deflate_state *s, unsigned dist, unsigned lc));
556 1.17 fvdl void _tr_flush_block __P((deflate_state *s, charf *buf, ulg stored_len,
557 1.7 christos int eof));
558 1.17 fvdl void _tr_align __P((deflate_state *s));
559 1.17 fvdl void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
560 1.1 paulus int eof));
561 1.17 fvdl void _tr_stored_type_only __P((deflate_state *));
562 1.17 fvdl
563 1.17 fvdl #define d_code(dist) \
564 1.17 fvdl ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
565 1.17 fvdl /* Mapping from a distance to a distance code. dist is the distance - 1 and
566 1.17 fvdl * must not have side effects. _dist_code[256] and _dist_code[257] are never
567 1.17 fvdl * used.
568 1.17 fvdl */
569 1.17 fvdl
570 1.17 fvdl #ifndef DEBUG_ZLIB
571 1.17 fvdl /* Inline versions of _tr_tally for speed: */
572 1.17 fvdl
573 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
574 1.17 fvdl extern uch _length_code[];
575 1.17 fvdl extern uch _dist_code[];
576 1.17 fvdl #else
577 1.17 fvdl extern const uch _length_code[];
578 1.17 fvdl extern const uch _dist_code[];
579 1.17 fvdl #endif
580 1.17 fvdl
581 1.17 fvdl # define _tr_tally_lit(s, c, flush) \
582 1.17 fvdl { uch cc = (c); \
583 1.17 fvdl s->d_buf[s->last_lit] = 0; \
584 1.17 fvdl s->l_buf[s->last_lit++] = cc; \
585 1.17 fvdl s->dyn_ltree[cc].Freq++; \
586 1.17 fvdl flush = (s->last_lit == s->lit_bufsize-1); \
587 1.17 fvdl }
588 1.17 fvdl # define _tr_tally_dist(s, distance, length, flush) \
589 1.17 fvdl { uch len = (length); \
590 1.17 fvdl ush dist = (distance); \
591 1.17 fvdl s->d_buf[s->last_lit] = dist; \
592 1.17 fvdl s->l_buf[s->last_lit++] = len; \
593 1.17 fvdl dist--; \
594 1.17 fvdl s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
595 1.17 fvdl s->dyn_dtree[d_code(dist)].Freq++; \
596 1.17 fvdl flush = (s->last_lit == s->lit_bufsize-1); \
597 1.17 fvdl }
598 1.17 fvdl #else
599 1.17 fvdl # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
600 1.17 fvdl # define _tr_tally_dist(s, distance, length, flush) \
601 1.20 perry flush = _tr_tally(s, distance, length)
602 1.17 fvdl #endif
603 1.1 paulus
604 1.7 christos #endif
605 1.7 christos /* --- deflate.h */
606 1.1 paulus
607 1.7 christos /* +++ deflate.c */
608 1.17 fvdl
609 1.1 paulus /* deflate.c -- compress data using the deflation algorithm
610 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
611 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
612 1.1 paulus */
613 1.1 paulus
614 1.1 paulus /*
615 1.1 paulus * ALGORITHM
616 1.1 paulus *
617 1.1 paulus * The "deflation" process depends on being able to identify portions
618 1.1 paulus * of the input text which are identical to earlier input (within a
619 1.1 paulus * sliding window trailing behind the input currently being processed).
620 1.1 paulus *
621 1.1 paulus * The most straightforward technique turns out to be the fastest for
622 1.1 paulus * most input files: try all possible matches and select the longest.
623 1.1 paulus * The key feature of this algorithm is that insertions into the string
624 1.1 paulus * dictionary are very simple and thus fast, and deletions are avoided
625 1.1 paulus * completely. Insertions are performed at each input character, whereas
626 1.1 paulus * string matches are performed only when the previous match ends. So it
627 1.1 paulus * is preferable to spend more time in matches to allow very fast string
628 1.1 paulus * insertions and avoid deletions. The matching algorithm for small
629 1.1 paulus * strings is inspired from that of Rabin & Karp. A brute force approach
630 1.1 paulus * is used to find longer strings when a small match has been found.
631 1.1 paulus * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
632 1.1 paulus * (by Leonid Broukhis).
633 1.1 paulus * A previous version of this file used a more sophisticated algorithm
634 1.1 paulus * (by Fiala and Greene) which is guaranteed to run in linear amortized
635 1.1 paulus * time, but has a larger average cost, uses more memory and is patented.
636 1.1 paulus * However the F&G algorithm may be faster for some highly redundant
637 1.1 paulus * files if the parameter max_chain_length (described below) is too large.
638 1.1 paulus *
639 1.1 paulus * ACKNOWLEDGEMENTS
640 1.1 paulus *
641 1.1 paulus * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
642 1.1 paulus * I found it in 'freeze' written by Leonid Broukhis.
643 1.1 paulus * Thanks to many people for bug reports and testing.
644 1.1 paulus *
645 1.1 paulus * REFERENCES
646 1.1 paulus *
647 1.7 christos * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
648 1.7 christos * Available in ftp://ds.internic.net/rfc/rfc1951.txt
649 1.1 paulus *
650 1.1 paulus * A description of the Rabin and Karp algorithm is given in the book
651 1.1 paulus * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
652 1.1 paulus *
653 1.1 paulus * Fiala,E.R., and Greene,D.H.
654 1.1 paulus * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
655 1.1 paulus *
656 1.1 paulus */
657 1.1 paulus
658 1.21 christos /* @(#) $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
659 1.7 christos
660 1.7 christos /* #include "deflate.h" */
661 1.1 paulus
662 1.17 fvdl const char deflate_copyright[] =
663 1.17 fvdl " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
664 1.1 paulus /*
665 1.1 paulus If you use the zlib library in a product, an acknowledgment is welcome
666 1.1 paulus in the documentation of your product. If for some reason you cannot
667 1.1 paulus include such an acknowledgment, I would appreciate that you keep this
668 1.1 paulus copyright string in the executable of your product.
669 1.1 paulus */
670 1.1 paulus
671 1.7 christos /* ===========================================================================
672 1.7 christos * Function prototypes.
673 1.7 christos */
674 1.7 christos typedef enum {
675 1.7 christos need_more, /* block not completed, need more input or more output */
676 1.7 christos block_done, /* block flush performed */
677 1.7 christos finish_started, /* finish started, need only more output at next deflate */
678 1.7 christos finish_done /* finish done, accept no more input or output */
679 1.7 christos } block_state;
680 1.7 christos
681 1.17 fvdl typedef block_state (*compress_func) __P((deflate_state *s, int flush));
682 1.7 christos /* Compression function. Returns the block state after the call. */
683 1.7 christos
684 1.17 fvdl local void fill_window __P((deflate_state *s));
685 1.17 fvdl local block_state deflate_stored __P((deflate_state *s, int flush));
686 1.17 fvdl local block_state deflate_fast __P((deflate_state *s, int flush));
687 1.17 fvdl local block_state deflate_slow __P((deflate_state *s, int flush));
688 1.17 fvdl local void lm_init __P((deflate_state *s));
689 1.17 fvdl local void putShortMSB __P((deflate_state *s, uInt b));
690 1.17 fvdl local void flush_pending __P((z_streamp strm));
691 1.17 fvdl local int read_buf __P((z_streamp strm, Bytef *buf, unsigned size));
692 1.7 christos #ifdef ASMV
693 1.17 fvdl void match_init __P((void)); /* asm code initialization */
694 1.17 fvdl uInt longest_match __P((deflate_state *s, IPos cur_match));
695 1.7 christos #else
696 1.17 fvdl local uInt longest_match __P((deflate_state *s, IPos cur_match));
697 1.7 christos #endif
698 1.7 christos
699 1.7 christos #ifdef DEBUG_ZLIB
700 1.17 fvdl local void check_match __P((deflate_state *s, IPos start, IPos match,
701 1.7 christos int length));
702 1.7 christos #endif
703 1.7 christos
704 1.7 christos /* ===========================================================================
705 1.7 christos * Local data
706 1.7 christos */
707 1.7 christos
708 1.1 paulus #define NIL 0
709 1.1 paulus /* Tail of hash chains */
710 1.1 paulus
711 1.1 paulus #ifndef TOO_FAR
712 1.1 paulus # define TOO_FAR 4096
713 1.1 paulus #endif
714 1.1 paulus /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
715 1.1 paulus
716 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
717 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
718 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
719 1.1 paulus */
720 1.1 paulus
721 1.1 paulus /* Values for max_lazy_match, good_match and max_chain_length, depending on
722 1.1 paulus * the desired pack level (0..9). The values given below have been tuned to
723 1.1 paulus * exclude worst case performance for pathological files. Better values may be
724 1.1 paulus * found for specific files.
725 1.1 paulus */
726 1.1 paulus typedef struct config_s {
727 1.1 paulus ush good_length; /* reduce lazy search above this match length */
728 1.1 paulus ush max_lazy; /* do not perform lazy search above this match length */
729 1.1 paulus ush nice_length; /* quit search above this match length */
730 1.1 paulus ush max_chain;
731 1.7 christos compress_func func;
732 1.1 paulus } config;
733 1.1 paulus
734 1.14 simonb local const config configuration_table[10] = {
735 1.1 paulus /* good lazy nice chain */
736 1.7 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
737 1.7 christos /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
738 1.7 christos /* 2 */ {4, 5, 16, 8, deflate_fast},
739 1.7 christos /* 3 */ {4, 6, 32, 32, deflate_fast},
740 1.7 christos
741 1.7 christos /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
742 1.7 christos /* 5 */ {8, 16, 32, 32, deflate_slow},
743 1.7 christos /* 6 */ {8, 16, 128, 128, deflate_slow},
744 1.7 christos /* 7 */ {8, 32, 128, 256, deflate_slow},
745 1.7 christos /* 8 */ {32, 128, 258, 1024, deflate_slow},
746 1.7 christos /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
747 1.1 paulus
748 1.1 paulus /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
749 1.1 paulus * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
750 1.1 paulus * meaning.
751 1.1 paulus */
752 1.1 paulus
753 1.1 paulus #define EQUAL 0
754 1.1 paulus /* result of memcmp for equal strings */
755 1.1 paulus
756 1.7 christos #ifndef NO_DUMMY_DECL
757 1.7 christos struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
758 1.1 paulus #endif
759 1.1 paulus
760 1.1 paulus /* ===========================================================================
761 1.1 paulus * Update a hash value with the given input byte
762 1.1 paulus * IN assertion: all calls to to UPDATE_HASH are made with consecutive
763 1.1 paulus * input characters, so that a running hash key can be computed from the
764 1.1 paulus * previous key instead of complete recalculation each time.
765 1.1 paulus */
766 1.1 paulus #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
767 1.1 paulus
768 1.1 paulus
769 1.1 paulus /* ===========================================================================
770 1.1 paulus * Insert string str in the dictionary and set match_head to the previous head
771 1.1 paulus * of the hash chain (the most recent string with same hash key). Return
772 1.1 paulus * the previous length of the hash chain.
773 1.17 fvdl * If this file is compiled with -DFASTEST, the compression level is forced
774 1.17 fvdl * to 1, and no hash chains are maintained.
775 1.1 paulus * IN assertion: all calls to to INSERT_STRING are made with consecutive
776 1.1 paulus * input characters and the first MIN_MATCH bytes of str are valid
777 1.1 paulus * (except for the last MIN_MATCH-1 bytes of the input file).
778 1.1 paulus */
779 1.17 fvdl #ifdef FASTEST
780 1.17 fvdl #define INSERT_STRING(s, str, match_head) \
781 1.17 fvdl (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
782 1.17 fvdl match_head = s->head[s->ins_h], \
783 1.17 fvdl s->head[s->ins_h] = (Pos)(str))
784 1.17 fvdl #else
785 1.1 paulus #define INSERT_STRING(s, str, match_head) \
786 1.1 paulus (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
787 1.1 paulus s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
788 1.7 christos s->head[s->ins_h] = (Pos)(str))
789 1.17 fvdl #endif
790 1.1 paulus
791 1.1 paulus /* ===========================================================================
792 1.1 paulus * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
793 1.1 paulus * prev[] will be initialized on the fly.
794 1.1 paulus */
795 1.1 paulus #define CLEAR_HASH(s) \
796 1.1 paulus s->head[s->hash_size-1] = NIL; \
797 1.17 fvdl zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
798 1.1 paulus
799 1.1 paulus /* ========================================================================= */
800 1.19 kristerw #if 0
801 1.17 fvdl int ZEXPORT deflateInit_(strm, level, version, stream_size)
802 1.7 christos z_streamp strm;
803 1.1 paulus int level;
804 1.7 christos const char *version;
805 1.7 christos int stream_size;
806 1.1 paulus {
807 1.7 christos return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
808 1.7 christos Z_DEFAULT_STRATEGY, version, stream_size);
809 1.1 paulus /* To do: ignore strm->next_in if we use it as window */
810 1.1 paulus }
811 1.19 kristerw #endif
812 1.1 paulus
813 1.1 paulus /* ========================================================================= */
814 1.17 fvdl int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
815 1.21 christos vers, stream_size)
816 1.7 christos z_streamp strm;
817 1.1 paulus int level;
818 1.1 paulus int method;
819 1.1 paulus int windowBits;
820 1.1 paulus int memLevel;
821 1.1 paulus int strategy;
822 1.21 christos const char *vers;
823 1.7 christos int stream_size;
824 1.1 paulus {
825 1.1 paulus deflate_state *s;
826 1.1 paulus int noheader = 0;
827 1.17 fvdl static const char* my_version = ZLIB_VERSION;
828 1.1 paulus
829 1.7 christos ushf *overlay;
830 1.7 christos /* We overlay pending_buf and d_buf+l_buf. This works since the average
831 1.7 christos * output size for (length,distance) codes is <= 24 bits.
832 1.7 christos */
833 1.7 christos
834 1.21 christos if (vers == Z_NULL || vers[0] != my_version[0] ||
835 1.7 christos stream_size != sizeof(z_stream)) {
836 1.7 christos return Z_VERSION_ERROR;
837 1.7 christos }
838 1.1 paulus if (strm == Z_NULL) return Z_STREAM_ERROR;
839 1.1 paulus
840 1.1 paulus strm->msg = Z_NULL;
841 1.7 christos #ifndef NO_ZCFUNCS
842 1.7 christos if (strm->zalloc == Z_NULL) {
843 1.7 christos strm->zalloc = zcalloc;
844 1.7 christos strm->opaque = (voidpf)0;
845 1.7 christos }
846 1.7 christos if (strm->zfree == Z_NULL) strm->zfree = zcfree;
847 1.7 christos #endif
848 1.1 paulus
849 1.1 paulus if (level == Z_DEFAULT_COMPRESSION) level = 6;
850 1.17 fvdl #ifdef FASTEST
851 1.17 fvdl level = 1;
852 1.17 fvdl #endif
853 1.1 paulus
854 1.1 paulus if (windowBits < 0) { /* undocumented feature: suppress zlib header */
855 1.1 paulus noheader = 1;
856 1.1 paulus windowBits = -windowBits;
857 1.1 paulus }
858 1.7 christos if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
859 1.17 fvdl windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
860 1.7 christos strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
861 1.1 paulus return Z_STREAM_ERROR;
862 1.1 paulus }
863 1.7 christos s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
864 1.1 paulus if (s == Z_NULL) return Z_MEM_ERROR;
865 1.1 paulus strm->state = (struct internal_state FAR *)s;
866 1.1 paulus s->strm = strm;
867 1.1 paulus
868 1.1 paulus s->noheader = noheader;
869 1.1 paulus s->w_bits = windowBits;
870 1.1 paulus s->w_size = 1 << s->w_bits;
871 1.1 paulus s->w_mask = s->w_size - 1;
872 1.1 paulus
873 1.1 paulus s->hash_bits = memLevel + 7;
874 1.1 paulus s->hash_size = 1 << s->hash_bits;
875 1.1 paulus s->hash_mask = s->hash_size - 1;
876 1.1 paulus s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
877 1.1 paulus
878 1.7 christos s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
879 1.7 christos s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
880 1.7 christos s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
881 1.1 paulus
882 1.1 paulus s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
883 1.1 paulus
884 1.7 christos overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
885 1.7 christos s->pending_buf = (uchf *) overlay;
886 1.7 christos s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
887 1.1 paulus
888 1.1 paulus if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
889 1.1 paulus s->pending_buf == Z_NULL) {
890 1.21 christos strm->msg = ERR_MSG(Z_MEM_ERROR);
891 1.18 tron s->status = INIT_STATE;
892 1.1 paulus deflateEnd (strm);
893 1.1 paulus return Z_MEM_ERROR;
894 1.1 paulus }
895 1.7 christos s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
896 1.7 christos s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
897 1.1 paulus
898 1.1 paulus s->level = level;
899 1.1 paulus s->strategy = strategy;
900 1.1 paulus s->method = (Byte)method;
901 1.1 paulus
902 1.1 paulus return deflateReset(strm);
903 1.1 paulus }
904 1.1 paulus
905 1.1 paulus /* ========================================================================= */
906 1.19 kristerw #if 0
907 1.17 fvdl int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
908 1.7 christos z_streamp strm;
909 1.7 christos const Bytef *dictionary;
910 1.7 christos uInt dictLength;
911 1.7 christos {
912 1.7 christos deflate_state *s;
913 1.7 christos uInt length = dictLength;
914 1.7 christos uInt n;
915 1.7 christos IPos hash_head = 0;
916 1.7 christos
917 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
918 1.17 fvdl return Z_STREAM_ERROR;
919 1.7 christos
920 1.17 fvdl s = (deflate_state *)strm->state;
921 1.7 christos if (s->status != INIT_STATE) return Z_STREAM_ERROR;
922 1.7 christos
923 1.7 christos strm->adler = adler32(strm->adler, dictionary, dictLength);
924 1.7 christos
925 1.7 christos if (length < MIN_MATCH) return Z_OK;
926 1.7 christos if (length > MAX_DIST(s)) {
927 1.7 christos length = MAX_DIST(s);
928 1.7 christos #ifndef USE_DICT_HEAD
929 1.7 christos dictionary += dictLength - length; /* use the tail of the dictionary */
930 1.7 christos #endif
931 1.7 christos }
932 1.17 fvdl zmemcpy(s->window, dictionary, length);
933 1.7 christos s->strstart = length;
934 1.7 christos s->block_start = (long)length;
935 1.7 christos
936 1.7 christos /* Insert all strings in the hash table (except for the last two bytes).
937 1.7 christos * s->lookahead stays null, so s->ins_h will be recomputed at the next
938 1.7 christos * call of fill_window.
939 1.7 christos */
940 1.7 christos s->ins_h = s->window[0];
941 1.7 christos UPDATE_HASH(s, s->ins_h, s->window[1]);
942 1.7 christos for (n = 0; n <= length - MIN_MATCH; n++) {
943 1.7 christos INSERT_STRING(s, n, hash_head);
944 1.7 christos }
945 1.7 christos if (hash_head) hash_head = 0; /* to make compiler happy */
946 1.7 christos return Z_OK;
947 1.7 christos }
948 1.19 kristerw #endif
949 1.7 christos
950 1.7 christos /* ========================================================================= */
951 1.17 fvdl int ZEXPORT deflateReset (strm)
952 1.7 christos z_streamp strm;
953 1.1 paulus {
954 1.1 paulus deflate_state *s;
955 1.20 perry
956 1.1 paulus if (strm == Z_NULL || strm->state == Z_NULL ||
957 1.7 christos strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
958 1.1 paulus
959 1.1 paulus strm->total_in = strm->total_out = 0;
960 1.1 paulus strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
961 1.1 paulus strm->data_type = Z_UNKNOWN;
962 1.1 paulus
963 1.1 paulus s = (deflate_state *)strm->state;
964 1.1 paulus s->pending = 0;
965 1.1 paulus s->pending_out = s->pending_buf;
966 1.1 paulus
967 1.1 paulus if (s->noheader < 0) {
968 1.1 paulus s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
969 1.1 paulus }
970 1.1 paulus s->status = s->noheader ? BUSY_STATE : INIT_STATE;
971 1.7 christos strm->adler = 1;
972 1.7 christos s->last_flush = Z_NO_FLUSH;
973 1.1 paulus
974 1.7 christos _tr_init(s);
975 1.1 paulus lm_init(s);
976 1.1 paulus
977 1.1 paulus return Z_OK;
978 1.1 paulus }
979 1.1 paulus
980 1.7 christos /* ========================================================================= */
981 1.19 kristerw #if 0
982 1.17 fvdl int ZEXPORT deflateParams(strm, level, strategy)
983 1.7 christos z_streamp strm;
984 1.7 christos int level;
985 1.7 christos int strategy;
986 1.7 christos {
987 1.7 christos deflate_state *s;
988 1.7 christos compress_func func;
989 1.7 christos int err = Z_OK;
990 1.7 christos
991 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
992 1.17 fvdl s = (deflate_state *)strm->state;
993 1.7 christos
994 1.7 christos if (level == Z_DEFAULT_COMPRESSION) {
995 1.7 christos level = 6;
996 1.7 christos }
997 1.7 christos if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
998 1.7 christos return Z_STREAM_ERROR;
999 1.7 christos }
1000 1.7 christos func = configuration_table[s->level].func;
1001 1.7 christos
1002 1.7 christos if (func != configuration_table[level].func && strm->total_in != 0) {
1003 1.7 christos /* Flush the last buffer: */
1004 1.7 christos err = deflate(strm, Z_PARTIAL_FLUSH);
1005 1.7 christos }
1006 1.7 christos if (s->level != level) {
1007 1.7 christos s->level = level;
1008 1.7 christos s->max_lazy_match = configuration_table[level].max_lazy;
1009 1.7 christos s->good_match = configuration_table[level].good_length;
1010 1.7 christos s->nice_match = configuration_table[level].nice_length;
1011 1.7 christos s->max_chain_length = configuration_table[level].max_chain;
1012 1.7 christos }
1013 1.7 christos s->strategy = strategy;
1014 1.7 christos return err;
1015 1.7 christos }
1016 1.19 kristerw #endif
1017 1.7 christos
1018 1.1 paulus /* =========================================================================
1019 1.1 paulus * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1020 1.1 paulus * IN assertion: the stream state is correct and there is enough room in
1021 1.1 paulus * pending_buf.
1022 1.1 paulus */
1023 1.1 paulus local void putShortMSB (s, b)
1024 1.1 paulus deflate_state *s;
1025 1.1 paulus uInt b;
1026 1.1 paulus {
1027 1.1 paulus put_byte(s, (Byte)(b >> 8));
1028 1.1 paulus put_byte(s, (Byte)(b & 0xff));
1029 1.20 perry }
1030 1.1 paulus
1031 1.1 paulus /* =========================================================================
1032 1.7 christos * Flush as much pending output as possible. All deflate() output goes
1033 1.7 christos * through this function so some applications may wish to modify it
1034 1.7 christos * to avoid allocating a large strm->next_out buffer and copying into it.
1035 1.7 christos * (See also read_buf()).
1036 1.1 paulus */
1037 1.1 paulus local void flush_pending(strm)
1038 1.7 christos z_streamp strm;
1039 1.1 paulus {
1040 1.7 christos deflate_state *s = (deflate_state *) strm->state;
1041 1.7 christos unsigned len = s->pending;
1042 1.1 paulus
1043 1.1 paulus if (len > strm->avail_out) len = strm->avail_out;
1044 1.1 paulus if (len == 0) return;
1045 1.1 paulus
1046 1.7 christos if (strm->next_out != Z_NULL) {
1047 1.17 fvdl zmemcpy(strm->next_out, s->pending_out, len);
1048 1.17 fvdl strm->next_out += len;
1049 1.1 paulus }
1050 1.17 fvdl s->pending_out += len;
1051 1.1 paulus strm->total_out += len;
1052 1.7 christos strm->avail_out -= len;
1053 1.7 christos s->pending -= len;
1054 1.7 christos if (s->pending == 0) {
1055 1.7 christos s->pending_out = s->pending_buf;
1056 1.1 paulus }
1057 1.1 paulus }
1058 1.1 paulus
1059 1.1 paulus /* ========================================================================= */
1060 1.17 fvdl int ZEXPORT deflate (strm, flush)
1061 1.7 christos z_streamp strm;
1062 1.1 paulus int flush;
1063 1.1 paulus {
1064 1.7 christos int old_flush; /* value of flush param for previous deflate call */
1065 1.7 christos deflate_state *s;
1066 1.7 christos
1067 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL ||
1068 1.7 christos flush > Z_FINISH || flush < 0) {
1069 1.7 christos return Z_STREAM_ERROR;
1070 1.7 christos }
1071 1.17 fvdl s = (deflate_state *)strm->state;
1072 1.1 paulus
1073 1.7 christos if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
1074 1.7 christos (s->status == FINISH_STATE && flush != Z_FINISH)) {
1075 1.1 paulus ERR_RETURN(strm, Z_STREAM_ERROR);
1076 1.1 paulus }
1077 1.1 paulus if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1078 1.1 paulus
1079 1.7 christos s->strm = strm; /* just in case */
1080 1.7 christos old_flush = s->last_flush;
1081 1.7 christos s->last_flush = flush;
1082 1.1 paulus
1083 1.1 paulus /* Write the zlib header */
1084 1.7 christos if (s->status == INIT_STATE) {
1085 1.1 paulus
1086 1.7 christos uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1087 1.7 christos uInt level_flags = (s->level-1) >> 1;
1088 1.1 paulus
1089 1.1 paulus if (level_flags > 3) level_flags = 3;
1090 1.1 paulus header |= (level_flags << 6);
1091 1.7 christos if (s->strstart != 0) header |= PRESET_DICT;
1092 1.1 paulus header += 31 - (header % 31);
1093 1.1 paulus
1094 1.7 christos s->status = BUSY_STATE;
1095 1.7 christos putShortMSB(s, header);
1096 1.7 christos
1097 1.7 christos /* Save the adler32 of the preset dictionary: */
1098 1.7 christos if (s->strstart != 0) {
1099 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1100 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1101 1.7 christos }
1102 1.7 christos strm->adler = 1L;
1103 1.1 paulus }
1104 1.1 paulus
1105 1.1 paulus /* Flush as much pending output as possible */
1106 1.7 christos if (s->pending != 0) {
1107 1.1 paulus flush_pending(strm);
1108 1.7 christos if (strm->avail_out == 0) {
1109 1.7 christos /* Since avail_out is 0, deflate will be called again with
1110 1.7 christos * more output space, but possibly with both pending and
1111 1.7 christos * avail_in equal to zero. There won't be anything to do,
1112 1.7 christos * but this is not an error situation so make sure we
1113 1.7 christos * return OK instead of BUF_ERROR at next call of deflate:
1114 1.7 christos */
1115 1.7 christos s->last_flush = -1;
1116 1.7 christos return Z_OK;
1117 1.7 christos }
1118 1.1 paulus
1119 1.7 christos /* Make sure there is something to do and avoid duplicate consecutive
1120 1.7 christos * flushes. For repeated and useless calls with Z_FINISH, we keep
1121 1.7 christos * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1122 1.1 paulus */
1123 1.7 christos } else if (strm->avail_in == 0 && flush <= old_flush &&
1124 1.7 christos flush != Z_FINISH) {
1125 1.7 christos ERR_RETURN(strm, Z_BUF_ERROR);
1126 1.1 paulus }
1127 1.1 paulus
1128 1.1 paulus /* User must not provide more input after the first FINISH: */
1129 1.7 christos if (s->status == FINISH_STATE && strm->avail_in != 0) {
1130 1.1 paulus ERR_RETURN(strm, Z_BUF_ERROR);
1131 1.1 paulus }
1132 1.1 paulus
1133 1.1 paulus /* Start a new block or continue the current one.
1134 1.1 paulus */
1135 1.7 christos if (strm->avail_in != 0 || s->lookahead != 0 ||
1136 1.7 christos (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1137 1.7 christos block_state bstate;
1138 1.1 paulus
1139 1.7 christos bstate = (*(configuration_table[s->level].func))(s, flush);
1140 1.7 christos
1141 1.7 christos if (bstate == finish_started || bstate == finish_done) {
1142 1.7 christos s->status = FINISH_STATE;
1143 1.1 paulus }
1144 1.7 christos if (bstate == need_more || bstate == finish_started) {
1145 1.7 christos if (strm->avail_out == 0) {
1146 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1147 1.7 christos }
1148 1.1 paulus return Z_OK;
1149 1.7 christos /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1150 1.7 christos * of deflate should use the same flush parameter to make sure
1151 1.7 christos * that the flush is complete. So we don't have to output an
1152 1.7 christos * empty block here, this will be done at next call. This also
1153 1.7 christos * ensures that for a very small output buffer, we emit at most
1154 1.7 christos * one empty block.
1155 1.1 paulus */
1156 1.7 christos }
1157 1.7 christos if (bstate == block_done) {
1158 1.7 christos if (flush == Z_PARTIAL_FLUSH) {
1159 1.7 christos _tr_align(s);
1160 1.7 christos } else if (flush == Z_PACKET_FLUSH) {
1161 1.7 christos /* Output just the 3-bit `stored' block type value,
1162 1.7 christos but not a zero length. */
1163 1.7 christos _tr_stored_type_only(s);
1164 1.7 christos } else { /* FULL_FLUSH or SYNC_FLUSH */
1165 1.7 christos _tr_stored_block(s, (char*)0, 0L, 0);
1166 1.7 christos /* For a full flush, this empty block will be recognized
1167 1.7 christos * as a special marker by inflate_sync().
1168 1.7 christos */
1169 1.7 christos if (flush == Z_FULL_FLUSH) {
1170 1.7 christos CLEAR_HASH(s); /* forget history */
1171 1.7 christos }
1172 1.7 christos }
1173 1.7 christos flush_pending(strm);
1174 1.7 christos if (strm->avail_out == 0) {
1175 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1176 1.7 christos return Z_OK;
1177 1.1 paulus }
1178 1.7 christos }
1179 1.1 paulus }
1180 1.1 paulus Assert(strm->avail_out > 0, "bug2");
1181 1.1 paulus
1182 1.1 paulus if (flush != Z_FINISH) return Z_OK;
1183 1.7 christos if (s->noheader) return Z_STREAM_END;
1184 1.1 paulus
1185 1.1 paulus /* Write the zlib trailer (adler32) */
1186 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1187 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1188 1.1 paulus flush_pending(strm);
1189 1.1 paulus /* If avail_out is zero, the application will call deflate again
1190 1.1 paulus * to flush the rest.
1191 1.1 paulus */
1192 1.7 christos s->noheader = -1; /* write the trailer only once! */
1193 1.7 christos return s->pending != 0 ? Z_OK : Z_STREAM_END;
1194 1.1 paulus }
1195 1.1 paulus
1196 1.1 paulus /* ========================================================================= */
1197 1.17 fvdl int ZEXPORT deflateEnd (strm)
1198 1.7 christos z_streamp strm;
1199 1.1 paulus {
1200 1.7 christos int status;
1201 1.7 christos deflate_state *s;
1202 1.1 paulus
1203 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1204 1.7 christos s = (deflate_state *) strm->state;
1205 1.1 paulus
1206 1.7 christos status = s->status;
1207 1.7 christos if (status != INIT_STATE && status != BUSY_STATE &&
1208 1.7 christos status != FINISH_STATE) {
1209 1.7 christos return Z_STREAM_ERROR;
1210 1.7 christos }
1211 1.1 paulus
1212 1.7 christos /* Deallocate in reverse order of allocations: */
1213 1.7 christos TRY_FREE(strm, s->pending_buf);
1214 1.7 christos TRY_FREE(strm, s->head);
1215 1.7 christos TRY_FREE(strm, s->prev);
1216 1.7 christos TRY_FREE(strm, s->window);
1217 1.7 christos
1218 1.7 christos ZFREE(strm, s);
1219 1.1 paulus strm->state = Z_NULL;
1220 1.1 paulus
1221 1.7 christos return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1222 1.7 christos }
1223 1.7 christos
1224 1.7 christos /* =========================================================================
1225 1.7 christos * Copy the source state to the destination state.
1226 1.17 fvdl * To simplify the source, this is not supported for 16-bit MSDOS (which
1227 1.17 fvdl * doesn't have enough memory anyway to duplicate compression states).
1228 1.7 christos */
1229 1.19 kristerw #if 0
1230 1.17 fvdl int ZEXPORT deflateCopy (dest, source)
1231 1.7 christos z_streamp dest;
1232 1.7 christos z_streamp source;
1233 1.7 christos {
1234 1.17 fvdl #ifdef MAXSEG_64K
1235 1.17 fvdl return Z_STREAM_ERROR;
1236 1.17 fvdl #else
1237 1.7 christos deflate_state *ds;
1238 1.7 christos deflate_state *ss;
1239 1.7 christos ushf *overlay;
1240 1.7 christos
1241 1.17 fvdl
1242 1.17 fvdl if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1243 1.7 christos return Z_STREAM_ERROR;
1244 1.17 fvdl }
1245 1.7 christos
1246 1.17 fvdl ss = (deflate_state *)source->state;
1247 1.17 fvdl
1248 1.17 fvdl *dest = *source;
1249 1.7 christos
1250 1.7 christos ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1251 1.7 christos if (ds == Z_NULL) return Z_MEM_ERROR;
1252 1.17 fvdl dest->state = (void *) ds;
1253 1.17 fvdl *ds = *ss;
1254 1.7 christos ds->strm = dest;
1255 1.7 christos
1256 1.7 christos ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1257 1.7 christos ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1258 1.7 christos ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1259 1.7 christos overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1260 1.7 christos ds->pending_buf = (uchf *) overlay;
1261 1.7 christos
1262 1.7 christos if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1263 1.7 christos ds->pending_buf == Z_NULL) {
1264 1.18 tron ds->status = INIT_STATE;
1265 1.7 christos deflateEnd (dest);
1266 1.7 christos return Z_MEM_ERROR;
1267 1.7 christos }
1268 1.17 fvdl /* following zmemcpy do not work for 16-bit MSDOS */
1269 1.7 christos zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1270 1.7 christos zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1271 1.7 christos zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1272 1.7 christos zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1273 1.7 christos
1274 1.7 christos ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1275 1.7 christos ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1276 1.7 christos ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1277 1.7 christos
1278 1.7 christos ds->l_desc.dyn_tree = ds->dyn_ltree;
1279 1.7 christos ds->d_desc.dyn_tree = ds->dyn_dtree;
1280 1.7 christos ds->bl_desc.dyn_tree = ds->bl_tree;
1281 1.7 christos
1282 1.1 paulus return Z_OK;
1283 1.17 fvdl #endif
1284 1.1 paulus }
1285 1.19 kristerw #endif
1286 1.1 paulus
1287 1.1 paulus /* ===========================================================================
1288 1.7 christos * Return the number of bytes of output which are immediately available
1289 1.7 christos * for output from the decompressor.
1290 1.7 christos */
1291 1.19 kristerw #if 0
1292 1.7 christos int deflateOutputPending (strm)
1293 1.7 christos z_streamp strm;
1294 1.7 christos {
1295 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1296 1.20 perry
1297 1.7 christos return ((deflate_state *)(strm->state))->pending;
1298 1.7 christos }
1299 1.19 kristerw #endif
1300 1.7 christos
1301 1.7 christos /* ===========================================================================
1302 1.1 paulus * Read a new buffer from the current input stream, update the adler32
1303 1.7 christos * and total number of bytes read. All deflate() input goes through
1304 1.7 christos * this function so some applications may wish to modify it to avoid
1305 1.7 christos * allocating a large strm->next_in buffer and copying from it.
1306 1.7 christos * (See also flush_pending()).
1307 1.1 paulus */
1308 1.1 paulus local int read_buf(strm, buf, size)
1309 1.7 christos z_streamp strm;
1310 1.17 fvdl Bytef *buf;
1311 1.1 paulus unsigned size;
1312 1.1 paulus {
1313 1.1 paulus unsigned len = strm->avail_in;
1314 1.1 paulus
1315 1.1 paulus if (len > size) len = size;
1316 1.1 paulus if (len == 0) return 0;
1317 1.1 paulus
1318 1.1 paulus strm->avail_in -= len;
1319 1.1 paulus
1320 1.7 christos if (!((deflate_state *)(strm->state))->noheader) {
1321 1.7 christos strm->adler = adler32(strm->adler, strm->next_in, len);
1322 1.1 paulus }
1323 1.1 paulus zmemcpy(buf, strm->next_in, len);
1324 1.1 paulus strm->next_in += len;
1325 1.1 paulus strm->total_in += len;
1326 1.1 paulus
1327 1.1 paulus return (int)len;
1328 1.1 paulus }
1329 1.1 paulus
1330 1.1 paulus /* ===========================================================================
1331 1.1 paulus * Initialize the "longest match" routines for a new zlib stream
1332 1.1 paulus */
1333 1.1 paulus local void lm_init (s)
1334 1.1 paulus deflate_state *s;
1335 1.1 paulus {
1336 1.1 paulus s->window_size = (ulg)2L*s->w_size;
1337 1.1 paulus
1338 1.1 paulus CLEAR_HASH(s);
1339 1.1 paulus
1340 1.1 paulus /* Set the default configuration parameters:
1341 1.1 paulus */
1342 1.1 paulus s->max_lazy_match = configuration_table[s->level].max_lazy;
1343 1.1 paulus s->good_match = configuration_table[s->level].good_length;
1344 1.1 paulus s->nice_match = configuration_table[s->level].nice_length;
1345 1.1 paulus s->max_chain_length = configuration_table[s->level].max_chain;
1346 1.1 paulus
1347 1.1 paulus s->strstart = 0;
1348 1.1 paulus s->block_start = 0L;
1349 1.1 paulus s->lookahead = 0;
1350 1.7 christos s->match_length = s->prev_length = MIN_MATCH-1;
1351 1.1 paulus s->match_available = 0;
1352 1.1 paulus s->ins_h = 0;
1353 1.1 paulus #ifdef ASMV
1354 1.1 paulus match_init(); /* initialize the asm code */
1355 1.1 paulus #endif
1356 1.1 paulus }
1357 1.1 paulus
1358 1.1 paulus /* ===========================================================================
1359 1.1 paulus * Set match_start to the longest match starting at the given string and
1360 1.1 paulus * return its length. Matches shorter or equal to prev_length are discarded,
1361 1.1 paulus * in which case the result is equal to prev_length and match_start is
1362 1.1 paulus * garbage.
1363 1.1 paulus * IN assertions: cur_match is the head of the hash chain for the current
1364 1.1 paulus * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1365 1.7 christos * OUT assertion: the match length is not greater than s->lookahead.
1366 1.1 paulus */
1367 1.1 paulus #ifndef ASMV
1368 1.1 paulus /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1369 1.1 paulus * match.S. The code will be functionally equivalent.
1370 1.1 paulus */
1371 1.17 fvdl #ifndef FASTEST
1372 1.7 christos local uInt longest_match(s, cur_match)
1373 1.1 paulus deflate_state *s;
1374 1.1 paulus IPos cur_match; /* current match */
1375 1.1 paulus {
1376 1.1 paulus unsigned chain_length = s->max_chain_length;/* max hash chain length */
1377 1.17 fvdl Bytef *scan = s->window + s->strstart; /* current string */
1378 1.17 fvdl Bytef *match; /* matched string */
1379 1.17 fvdl int len; /* length of current match */
1380 1.1 paulus int best_len = s->prev_length; /* best match length so far */
1381 1.7 christos int nice_match = s->nice_match; /* stop if match long enough */
1382 1.1 paulus IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1383 1.1 paulus s->strstart - (IPos)MAX_DIST(s) : NIL;
1384 1.1 paulus /* Stop when cur_match becomes <= limit. To simplify the code,
1385 1.1 paulus * we prevent matches with the string of window index 0.
1386 1.1 paulus */
1387 1.1 paulus Posf *prev = s->prev;
1388 1.1 paulus uInt wmask = s->w_mask;
1389 1.1 paulus
1390 1.1 paulus #ifdef UNALIGNED_OK
1391 1.1 paulus /* Compare two bytes at a time. Note: this is not always beneficial.
1392 1.1 paulus * Try with and without -DUNALIGNED_OK to check.
1393 1.1 paulus */
1394 1.10 augustss Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1395 1.10 augustss ush scan_start = *(ushf*)scan;
1396 1.10 augustss ush scan_end = *(ushf*)(scan+best_len-1);
1397 1.1 paulus #else
1398 1.10 augustss Bytef *strend = s->window + s->strstart + MAX_MATCH;
1399 1.10 augustss Byte scan_end1 = scan[best_len-1];
1400 1.10 augustss Byte scan_end = scan[best_len];
1401 1.1 paulus #endif
1402 1.1 paulus
1403 1.1 paulus /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1404 1.1 paulus * It is easy to get rid of this optimization if necessary.
1405 1.1 paulus */
1406 1.1 paulus Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1407 1.1 paulus
1408 1.1 paulus /* Do not waste too much time if we already have a good match: */
1409 1.1 paulus if (s->prev_length >= s->good_match) {
1410 1.1 paulus chain_length >>= 2;
1411 1.1 paulus }
1412 1.7 christos /* Do not look for matches beyond the end of the input. This is necessary
1413 1.7 christos * to make deflate deterministic.
1414 1.7 christos */
1415 1.7 christos if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1416 1.7 christos
1417 1.1 paulus Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1418 1.1 paulus
1419 1.1 paulus do {
1420 1.1 paulus Assert(cur_match < s->strstart, "no future");
1421 1.1 paulus match = s->window + cur_match;
1422 1.1 paulus
1423 1.1 paulus /* Skip to next match if the match length cannot increase
1424 1.1 paulus * or if the match length is less than 2:
1425 1.1 paulus */
1426 1.1 paulus #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1427 1.1 paulus /* This code assumes sizeof(unsigned short) == 2. Do not use
1428 1.1 paulus * UNALIGNED_OK if your compiler uses a different size.
1429 1.1 paulus */
1430 1.1 paulus if (*(ushf*)(match+best_len-1) != scan_end ||
1431 1.1 paulus *(ushf*)match != scan_start) continue;
1432 1.1 paulus
1433 1.1 paulus /* It is not necessary to compare scan[2] and match[2] since they are
1434 1.1 paulus * always equal when the other bytes match, given that the hash keys
1435 1.1 paulus * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1436 1.1 paulus * strstart+3, +5, ... up to strstart+257. We check for insufficient
1437 1.1 paulus * lookahead only every 4th comparison; the 128th check will be made
1438 1.1 paulus * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1439 1.1 paulus * necessary to put more guard bytes at the end of the window, or
1440 1.1 paulus * to check more often for insufficient lookahead.
1441 1.1 paulus */
1442 1.1 paulus Assert(scan[2] == match[2], "scan[2]?");
1443 1.1 paulus scan++, match++;
1444 1.1 paulus do {
1445 1.1 paulus } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1446 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1447 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1448 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1449 1.1 paulus scan < strend);
1450 1.1 paulus /* The funny "do {}" generates better code on most compilers */
1451 1.1 paulus
1452 1.1 paulus /* Here, scan <= window+strstart+257 */
1453 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1454 1.1 paulus if (*scan == *match) scan++;
1455 1.1 paulus
1456 1.1 paulus len = (MAX_MATCH - 1) - (int)(strend-scan);
1457 1.1 paulus scan = strend - (MAX_MATCH-1);
1458 1.1 paulus
1459 1.1 paulus #else /* UNALIGNED_OK */
1460 1.1 paulus
1461 1.1 paulus if (match[best_len] != scan_end ||
1462 1.1 paulus match[best_len-1] != scan_end1 ||
1463 1.1 paulus *match != *scan ||
1464 1.1 paulus *++match != scan[1]) continue;
1465 1.1 paulus
1466 1.1 paulus /* The check at best_len-1 can be removed because it will be made
1467 1.1 paulus * again later. (This heuristic is not always a win.)
1468 1.1 paulus * It is not necessary to compare scan[2] and match[2] since they
1469 1.1 paulus * are always equal when the other bytes match, given that
1470 1.1 paulus * the hash keys are equal and that HASH_BITS >= 8.
1471 1.1 paulus */
1472 1.1 paulus scan += 2, match++;
1473 1.1 paulus Assert(*scan == *match, "match[2]?");
1474 1.1 paulus
1475 1.1 paulus /* We check for insufficient lookahead only every 8th comparison;
1476 1.1 paulus * the 256th check will be made at strstart+258.
1477 1.1 paulus */
1478 1.1 paulus do {
1479 1.1 paulus } while (*++scan == *++match && *++scan == *++match &&
1480 1.1 paulus *++scan == *++match && *++scan == *++match &&
1481 1.1 paulus *++scan == *++match && *++scan == *++match &&
1482 1.1 paulus *++scan == *++match && *++scan == *++match &&
1483 1.1 paulus scan < strend);
1484 1.1 paulus
1485 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1486 1.1 paulus
1487 1.1 paulus len = MAX_MATCH - (int)(strend - scan);
1488 1.1 paulus scan = strend - MAX_MATCH;
1489 1.1 paulus
1490 1.1 paulus #endif /* UNALIGNED_OK */
1491 1.1 paulus
1492 1.1 paulus if (len > best_len) {
1493 1.1 paulus s->match_start = cur_match;
1494 1.1 paulus best_len = len;
1495 1.7 christos if (len >= nice_match) break;
1496 1.1 paulus #ifdef UNALIGNED_OK
1497 1.1 paulus scan_end = *(ushf*)(scan+best_len-1);
1498 1.1 paulus #else
1499 1.1 paulus scan_end1 = scan[best_len-1];
1500 1.1 paulus scan_end = scan[best_len];
1501 1.1 paulus #endif
1502 1.1 paulus }
1503 1.1 paulus } while ((cur_match = prev[cur_match & wmask]) > limit
1504 1.1 paulus && --chain_length != 0);
1505 1.1 paulus
1506 1.17 fvdl if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1507 1.7 christos return s->lookahead;
1508 1.1 paulus }
1509 1.17 fvdl
1510 1.17 fvdl #else /* FASTEST */
1511 1.17 fvdl /* ---------------------------------------------------------------------------
1512 1.17 fvdl * Optimized version for level == 1 only
1513 1.17 fvdl */
1514 1.17 fvdl local uInt longest_match(s, cur_match)
1515 1.17 fvdl deflate_state *s;
1516 1.17 fvdl IPos cur_match; /* current match */
1517 1.17 fvdl {
1518 1.17 fvdl register Bytef *scan = s->window + s->strstart; /* current string */
1519 1.17 fvdl register Bytef *match; /* matched string */
1520 1.17 fvdl register int len; /* length of current match */
1521 1.17 fvdl register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1522 1.17 fvdl
1523 1.17 fvdl /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1524 1.17 fvdl * It is easy to get rid of this optimization if necessary.
1525 1.17 fvdl */
1526 1.17 fvdl Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1527 1.17 fvdl
1528 1.17 fvdl Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1529 1.17 fvdl
1530 1.17 fvdl Assert(cur_match < s->strstart, "no future");
1531 1.17 fvdl
1532 1.17 fvdl match = s->window + cur_match;
1533 1.17 fvdl
1534 1.17 fvdl /* Return failure if the match length is less than 2:
1535 1.17 fvdl */
1536 1.17 fvdl if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1537 1.17 fvdl
1538 1.17 fvdl /* The check at best_len-1 can be removed because it will be made
1539 1.17 fvdl * again later. (This heuristic is not always a win.)
1540 1.17 fvdl * It is not necessary to compare scan[2] and match[2] since they
1541 1.17 fvdl * are always equal when the other bytes match, given that
1542 1.17 fvdl * the hash keys are equal and that HASH_BITS >= 8.
1543 1.17 fvdl */
1544 1.17 fvdl scan += 2, match += 2;
1545 1.17 fvdl Assert(*scan == *match, "match[2]?");
1546 1.17 fvdl
1547 1.17 fvdl /* We check for insufficient lookahead only every 8th comparison;
1548 1.17 fvdl * the 256th check will be made at strstart+258.
1549 1.17 fvdl */
1550 1.17 fvdl do {
1551 1.17 fvdl } while (*++scan == *++match && *++scan == *++match &&
1552 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1553 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1554 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1555 1.17 fvdl scan < strend);
1556 1.17 fvdl
1557 1.17 fvdl Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1558 1.17 fvdl
1559 1.17 fvdl len = MAX_MATCH - (int)(strend - scan);
1560 1.17 fvdl
1561 1.17 fvdl if (len < MIN_MATCH) return MIN_MATCH - 1;
1562 1.17 fvdl
1563 1.17 fvdl s->match_start = cur_match;
1564 1.17 fvdl return len <= s->lookahead ? len : s->lookahead;
1565 1.17 fvdl }
1566 1.17 fvdl #endif /* FASTEST */
1567 1.1 paulus #endif /* ASMV */
1568 1.1 paulus
1569 1.1 paulus #ifdef DEBUG_ZLIB
1570 1.1 paulus /* ===========================================================================
1571 1.1 paulus * Check that the match at match_start is indeed a match.
1572 1.1 paulus */
1573 1.1 paulus local void check_match(s, start, match, length)
1574 1.1 paulus deflate_state *s;
1575 1.1 paulus IPos start, match;
1576 1.1 paulus int length;
1577 1.1 paulus {
1578 1.1 paulus /* check that the match is indeed a match */
1579 1.17 fvdl if (zmemcmp(s->window + match,
1580 1.17 fvdl s->window + start, length) != EQUAL) {
1581 1.7 christos fprintf(stderr, " start %u, match %u, length %d\n",
1582 1.7 christos start, match, length);
1583 1.7 christos do {
1584 1.7 christos fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1585 1.7 christos } while (--length != 0);
1586 1.1 paulus z_error("invalid match");
1587 1.1 paulus }
1588 1.7 christos if (z_verbose > 1) {
1589 1.1 paulus fprintf(stderr,"\\[%d,%d]", start-match, length);
1590 1.1 paulus do { putc(s->window[start++], stderr); } while (--length != 0);
1591 1.1 paulus }
1592 1.1 paulus }
1593 1.1 paulus #else
1594 1.1 paulus # define check_match(s, start, match, length)
1595 1.1 paulus #endif
1596 1.1 paulus
1597 1.1 paulus /* ===========================================================================
1598 1.1 paulus * Fill the window when the lookahead becomes insufficient.
1599 1.1 paulus * Updates strstart and lookahead.
1600 1.1 paulus *
1601 1.1 paulus * IN assertion: lookahead < MIN_LOOKAHEAD
1602 1.1 paulus * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1603 1.1 paulus * At least one byte has been read, or avail_in == 0; reads are
1604 1.1 paulus * performed for at least two bytes (required for the zip translate_eol
1605 1.1 paulus * option -- not supported here).
1606 1.1 paulus */
1607 1.1 paulus local void fill_window(s)
1608 1.1 paulus deflate_state *s;
1609 1.1 paulus {
1610 1.10 augustss unsigned n, m;
1611 1.10 augustss Posf *p;
1612 1.1 paulus unsigned more; /* Amount of free space at the end of the window. */
1613 1.1 paulus uInt wsize = s->w_size;
1614 1.1 paulus
1615 1.1 paulus do {
1616 1.1 paulus more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1617 1.1 paulus
1618 1.1 paulus /* Deal with !@#$% 64K limit: */
1619 1.1 paulus if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1620 1.1 paulus more = wsize;
1621 1.7 christos
1622 1.1 paulus } else if (more == (unsigned)(-1)) {
1623 1.1 paulus /* Very unlikely, but possible on 16 bit machine if strstart == 0
1624 1.1 paulus * and lookahead == 1 (input done one byte at time)
1625 1.1 paulus */
1626 1.1 paulus more--;
1627 1.1 paulus
1628 1.1 paulus /* If the window is almost full and there is insufficient lookahead,
1629 1.1 paulus * move the upper half to the lower one to make room in the upper half.
1630 1.1 paulus */
1631 1.1 paulus } else if (s->strstart >= wsize+MAX_DIST(s)) {
1632 1.1 paulus
1633 1.17 fvdl zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1634 1.1 paulus s->match_start -= wsize;
1635 1.1 paulus s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1636 1.1 paulus s->block_start -= (long) wsize;
1637 1.1 paulus
1638 1.1 paulus /* Slide the hash table (could be avoided with 32 bit values
1639 1.7 christos at the expense of memory usage). We slide even when level == 0
1640 1.7 christos to keep the hash table consistent if we switch back to level > 0
1641 1.7 christos later. (Using level 0 permanently is not an optimal usage of
1642 1.7 christos zlib, so we don't care about this pathological case.)
1643 1.1 paulus */
1644 1.17 fvdl n = s->hash_size;
1645 1.17 fvdl p = &s->head[n];
1646 1.17 fvdl do {
1647 1.17 fvdl m = *--p;
1648 1.17 fvdl *p = (Pos)(m >= wsize ? m-wsize : NIL);
1649 1.17 fvdl } while (--n);
1650 1.17 fvdl
1651 1.17 fvdl n = wsize;
1652 1.17 fvdl #ifndef FASTEST
1653 1.17 fvdl p = &s->prev[n];
1654 1.17 fvdl do {
1655 1.17 fvdl m = *--p;
1656 1.17 fvdl *p = (Pos)(m >= wsize ? m-wsize : NIL);
1657 1.17 fvdl /* If n is not on any hash chain, prev[n] is garbage but
1658 1.17 fvdl * its value will never be used.
1659 1.17 fvdl */
1660 1.17 fvdl } while (--n);
1661 1.17 fvdl #endif
1662 1.1 paulus more += wsize;
1663 1.1 paulus }
1664 1.1 paulus if (s->strm->avail_in == 0) return;
1665 1.1 paulus
1666 1.1 paulus /* If there was no sliding:
1667 1.1 paulus * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1668 1.1 paulus * more == window_size - lookahead - strstart
1669 1.1 paulus * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1670 1.1 paulus * => more >= window_size - 2*WSIZE + 2
1671 1.1 paulus * In the BIG_MEM or MMAP case (not yet supported),
1672 1.1 paulus * window_size == input_size + MIN_LOOKAHEAD &&
1673 1.1 paulus * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1674 1.1 paulus * Otherwise, window_size == 2*WSIZE so more >= 2.
1675 1.1 paulus * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1676 1.1 paulus */
1677 1.1 paulus Assert(more >= 2, "more < 2");
1678 1.1 paulus
1679 1.17 fvdl n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1680 1.1 paulus s->lookahead += n;
1681 1.1 paulus
1682 1.1 paulus /* Initialize the hash value now that we have some input: */
1683 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1684 1.1 paulus s->ins_h = s->window[s->strstart];
1685 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1686 1.1 paulus #if MIN_MATCH != 3
1687 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1688 1.1 paulus #endif
1689 1.1 paulus }
1690 1.1 paulus /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1691 1.1 paulus * but this is not important since only literal bytes will be emitted.
1692 1.1 paulus */
1693 1.1 paulus
1694 1.1 paulus } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1695 1.1 paulus }
1696 1.1 paulus
1697 1.1 paulus /* ===========================================================================
1698 1.1 paulus * Flush the current block, with given end-of-file flag.
1699 1.1 paulus * IN assertion: strstart is set to the end of the current match.
1700 1.1 paulus */
1701 1.7 christos #define FLUSH_BLOCK_ONLY(s, eof) { \
1702 1.7 christos _tr_flush_block(s, (s->block_start >= 0L ? \
1703 1.7 christos (charf *)&s->window[(unsigned)s->block_start] : \
1704 1.7 christos (charf *)Z_NULL), \
1705 1.7 christos (ulg)((long)s->strstart - s->block_start), \
1706 1.7 christos (eof)); \
1707 1.1 paulus s->block_start = s->strstart; \
1708 1.1 paulus flush_pending(s->strm); \
1709 1.1 paulus Tracev((stderr,"[FLUSH]")); \
1710 1.1 paulus }
1711 1.1 paulus
1712 1.1 paulus /* Same but force premature exit if necessary. */
1713 1.7 christos #define FLUSH_BLOCK(s, eof) { \
1714 1.7 christos FLUSH_BLOCK_ONLY(s, eof); \
1715 1.7 christos if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1716 1.7 christos }
1717 1.7 christos
1718 1.7 christos /* ===========================================================================
1719 1.7 christos * Copy without compression as much as possible from the input stream, return
1720 1.7 christos * the current block state.
1721 1.7 christos * This function does not insert new strings in the dictionary since
1722 1.7 christos * uncompressible data is probably not useful. This function is used
1723 1.7 christos * only for the level=0 compression option.
1724 1.7 christos * NOTE: this function should be optimized to avoid extra copying from
1725 1.7 christos * window to pending_buf.
1726 1.7 christos */
1727 1.7 christos local block_state deflate_stored(s, flush)
1728 1.7 christos deflate_state *s;
1729 1.7 christos int flush;
1730 1.7 christos {
1731 1.7 christos /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1732 1.7 christos * to pending_buf_size, and each stored block has a 5 byte header:
1733 1.7 christos */
1734 1.7 christos ulg max_block_size = 0xffff;
1735 1.7 christos ulg max_start;
1736 1.7 christos
1737 1.7 christos if (max_block_size > s->pending_buf_size - 5) {
1738 1.7 christos max_block_size = s->pending_buf_size - 5;
1739 1.7 christos }
1740 1.7 christos
1741 1.7 christos /* Copy as much as possible from input to output: */
1742 1.7 christos for (;;) {
1743 1.7 christos /* Fill the window as much as possible: */
1744 1.7 christos if (s->lookahead <= 1) {
1745 1.7 christos
1746 1.7 christos Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1747 1.7 christos s->block_start >= (long)s->w_size, "slide too late");
1748 1.7 christos
1749 1.7 christos fill_window(s);
1750 1.7 christos if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1751 1.7 christos
1752 1.7 christos if (s->lookahead == 0) break; /* flush the current block */
1753 1.7 christos }
1754 1.7 christos Assert(s->block_start >= 0L, "block gone");
1755 1.7 christos
1756 1.7 christos s->strstart += s->lookahead;
1757 1.7 christos s->lookahead = 0;
1758 1.7 christos
1759 1.7 christos /* Emit a stored block if pending_buf will be full: */
1760 1.7 christos max_start = s->block_start + max_block_size;
1761 1.7 christos if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1762 1.7 christos /* strstart == 0 is possible when wraparound on 16-bit machine */
1763 1.7 christos s->lookahead = (uInt)(s->strstart - max_start);
1764 1.7 christos s->strstart = (uInt)max_start;
1765 1.7 christos FLUSH_BLOCK(s, 0);
1766 1.7 christos }
1767 1.7 christos /* Flush if we may have to slide, otherwise block_start may become
1768 1.7 christos * negative and the data will be gone:
1769 1.7 christos */
1770 1.7 christos if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1771 1.7 christos FLUSH_BLOCK(s, 0);
1772 1.7 christos }
1773 1.7 christos }
1774 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1775 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1776 1.1 paulus }
1777 1.1 paulus
1778 1.1 paulus /* ===========================================================================
1779 1.7 christos * Compress as much as possible from the input stream, return the current
1780 1.7 christos * block state.
1781 1.7 christos * This function does not perform lazy evaluation of matches and inserts
1782 1.1 paulus * new strings in the dictionary only for unmatched strings or for short
1783 1.1 paulus * matches. It is used only for the fast compression options.
1784 1.1 paulus */
1785 1.7 christos local block_state deflate_fast(s, flush)
1786 1.1 paulus deflate_state *s;
1787 1.1 paulus int flush;
1788 1.1 paulus {
1789 1.1 paulus IPos hash_head = NIL; /* head of the hash chain */
1790 1.7 christos int bflush; /* set if current block must be flushed */
1791 1.1 paulus
1792 1.1 paulus for (;;) {
1793 1.1 paulus /* Make sure that we always have enough lookahead, except
1794 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1795 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1796 1.1 paulus * string following the next match.
1797 1.1 paulus */
1798 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1799 1.1 paulus fill_window(s);
1800 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1801 1.7 christos return need_more;
1802 1.7 christos }
1803 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1804 1.1 paulus }
1805 1.1 paulus
1806 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1807 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1808 1.1 paulus */
1809 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1810 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1811 1.1 paulus }
1812 1.1 paulus
1813 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1814 1.1 paulus * At this point we have always match_length < MIN_MATCH
1815 1.1 paulus */
1816 1.1 paulus if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1817 1.1 paulus /* To simplify the code, we prevent matches with the string
1818 1.1 paulus * of window index 0 (in particular we have to avoid a match
1819 1.1 paulus * of the string with itself at the start of the input file).
1820 1.1 paulus */
1821 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1822 1.1 paulus s->match_length = longest_match (s, hash_head);
1823 1.1 paulus }
1824 1.1 paulus /* longest_match() sets match_start */
1825 1.1 paulus }
1826 1.1 paulus if (s->match_length >= MIN_MATCH) {
1827 1.1 paulus check_match(s, s->strstart, s->match_start, s->match_length);
1828 1.1 paulus
1829 1.17 fvdl _tr_tally_dist(s, s->strstart - s->match_start,
1830 1.17 fvdl s->match_length - MIN_MATCH, bflush);
1831 1.1 paulus
1832 1.1 paulus s->lookahead -= s->match_length;
1833 1.1 paulus
1834 1.1 paulus /* Insert new strings in the hash table only if the match length
1835 1.1 paulus * is not too large. This saves time but degrades compression.
1836 1.1 paulus */
1837 1.17 fvdl #ifndef FASTEST
1838 1.1 paulus if (s->match_length <= s->max_insert_length &&
1839 1.1 paulus s->lookahead >= MIN_MATCH) {
1840 1.1 paulus s->match_length--; /* string at strstart already in hash table */
1841 1.1 paulus do {
1842 1.1 paulus s->strstart++;
1843 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1844 1.1 paulus /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1845 1.1 paulus * always MIN_MATCH bytes ahead.
1846 1.1 paulus */
1847 1.1 paulus } while (--s->match_length != 0);
1848 1.20 perry s->strstart++;
1849 1.17 fvdl } else
1850 1.17 fvdl #endif
1851 1.17 fvdl {
1852 1.1 paulus s->strstart += s->match_length;
1853 1.1 paulus s->match_length = 0;
1854 1.1 paulus s->ins_h = s->window[s->strstart];
1855 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1856 1.1 paulus #if MIN_MATCH != 3
1857 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1858 1.1 paulus #endif
1859 1.1 paulus /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1860 1.1 paulus * matter since it will be recomputed at next deflate call.
1861 1.1 paulus */
1862 1.1 paulus }
1863 1.1 paulus } else {
1864 1.1 paulus /* No match, output a literal byte */
1865 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart]));
1866 1.17 fvdl _tr_tally_lit (s, s->window[s->strstart], bflush);
1867 1.1 paulus s->lookahead--;
1868 1.20 perry s->strstart++;
1869 1.1 paulus }
1870 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1871 1.1 paulus }
1872 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1873 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1874 1.1 paulus }
1875 1.1 paulus
1876 1.1 paulus /* ===========================================================================
1877 1.1 paulus * Same as above, but achieves better compression. We use a lazy
1878 1.1 paulus * evaluation for matches: a match is finally adopted only if there is
1879 1.1 paulus * no better match at the next window position.
1880 1.1 paulus */
1881 1.7 christos local block_state deflate_slow(s, flush)
1882 1.1 paulus deflate_state *s;
1883 1.1 paulus int flush;
1884 1.1 paulus {
1885 1.1 paulus IPos hash_head = NIL; /* head of hash chain */
1886 1.1 paulus int bflush; /* set if current block must be flushed */
1887 1.1 paulus
1888 1.1 paulus /* Process the input block. */
1889 1.1 paulus for (;;) {
1890 1.1 paulus /* Make sure that we always have enough lookahead, except
1891 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1892 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1893 1.1 paulus * string following the next match.
1894 1.1 paulus */
1895 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1896 1.1 paulus fill_window(s);
1897 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1898 1.7 christos return need_more;
1899 1.7 christos }
1900 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1901 1.1 paulus }
1902 1.1 paulus
1903 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1904 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1905 1.1 paulus */
1906 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1907 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1908 1.1 paulus }
1909 1.1 paulus
1910 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1911 1.1 paulus */
1912 1.1 paulus s->prev_length = s->match_length, s->prev_match = s->match_start;
1913 1.1 paulus s->match_length = MIN_MATCH-1;
1914 1.1 paulus
1915 1.1 paulus if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1916 1.1 paulus s->strstart - hash_head <= MAX_DIST(s)) {
1917 1.1 paulus /* To simplify the code, we prevent matches with the string
1918 1.1 paulus * of window index 0 (in particular we have to avoid a match
1919 1.1 paulus * of the string with itself at the start of the input file).
1920 1.1 paulus */
1921 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1922 1.1 paulus s->match_length = longest_match (s, hash_head);
1923 1.1 paulus }
1924 1.1 paulus /* longest_match() sets match_start */
1925 1.1 paulus
1926 1.1 paulus if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1927 1.1 paulus (s->match_length == MIN_MATCH &&
1928 1.1 paulus s->strstart - s->match_start > TOO_FAR))) {
1929 1.1 paulus
1930 1.1 paulus /* If prev_match is also MIN_MATCH, match_start is garbage
1931 1.1 paulus * but we will ignore the current match anyway.
1932 1.1 paulus */
1933 1.1 paulus s->match_length = MIN_MATCH-1;
1934 1.1 paulus }
1935 1.1 paulus }
1936 1.1 paulus /* If there was a match at the previous step and the current
1937 1.1 paulus * match is not better, output the previous match:
1938 1.1 paulus */
1939 1.1 paulus if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1940 1.1 paulus uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1941 1.1 paulus /* Do not insert strings in hash table beyond this. */
1942 1.1 paulus
1943 1.1 paulus check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1944 1.1 paulus
1945 1.17 fvdl _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1946 1.17 fvdl s->prev_length - MIN_MATCH, bflush);
1947 1.1 paulus
1948 1.1 paulus /* Insert in hash table all strings up to the end of the match.
1949 1.1 paulus * strstart-1 and strstart are already inserted. If there is not
1950 1.1 paulus * enough lookahead, the last two strings are not inserted in
1951 1.1 paulus * the hash table.
1952 1.1 paulus */
1953 1.1 paulus s->lookahead -= s->prev_length-1;
1954 1.1 paulus s->prev_length -= 2;
1955 1.1 paulus do {
1956 1.1 paulus if (++s->strstart <= max_insert) {
1957 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1958 1.1 paulus }
1959 1.1 paulus } while (--s->prev_length != 0);
1960 1.1 paulus s->match_available = 0;
1961 1.1 paulus s->match_length = MIN_MATCH-1;
1962 1.1 paulus s->strstart++;
1963 1.1 paulus
1964 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1965 1.1 paulus
1966 1.1 paulus } else if (s->match_available) {
1967 1.1 paulus /* If there was no match at the previous position, output a
1968 1.1 paulus * single literal. If there was a match but the current match
1969 1.1 paulus * is longer, truncate the previous match to a single literal.
1970 1.1 paulus */
1971 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1972 1.17 fvdl _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1973 1.17 fvdl if (bflush) {
1974 1.7 christos FLUSH_BLOCK_ONLY(s, 0);
1975 1.1 paulus }
1976 1.1 paulus s->strstart++;
1977 1.1 paulus s->lookahead--;
1978 1.7 christos if (s->strm->avail_out == 0) return need_more;
1979 1.1 paulus } else {
1980 1.1 paulus /* There is no previous match to compare with, wait for
1981 1.1 paulus * the next step to decide.
1982 1.1 paulus */
1983 1.1 paulus s->match_available = 1;
1984 1.1 paulus s->strstart++;
1985 1.1 paulus s->lookahead--;
1986 1.1 paulus }
1987 1.1 paulus }
1988 1.1 paulus Assert (flush != Z_NO_FLUSH, "no flush?");
1989 1.1 paulus if (s->match_available) {
1990 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1991 1.17 fvdl _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1992 1.1 paulus s->match_available = 0;
1993 1.1 paulus }
1994 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1995 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1996 1.1 paulus }
1997 1.7 christos /* --- deflate.c */
1998 1.1 paulus
1999 1.7 christos /* +++ trees.c */
2000 1.17 fvdl
2001 1.1 paulus /* trees.c -- output deflated data using Huffman coding
2002 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly
2003 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
2004 1.1 paulus */
2005 1.1 paulus
2006 1.1 paulus /*
2007 1.1 paulus * ALGORITHM
2008 1.1 paulus *
2009 1.1 paulus * The "deflation" process uses several Huffman trees. The more
2010 1.1 paulus * common source values are represented by shorter bit sequences.
2011 1.1 paulus *
2012 1.1 paulus * Each code tree is stored in a compressed form which is itself
2013 1.1 paulus * a Huffman encoding of the lengths of all the code strings (in
2014 1.1 paulus * ascending order by source values). The actual code strings are
2015 1.1 paulus * reconstructed from the lengths in the inflate process, as described
2016 1.1 paulus * in the deflate specification.
2017 1.1 paulus *
2018 1.1 paulus * REFERENCES
2019 1.1 paulus *
2020 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2021 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2022 1.1 paulus *
2023 1.1 paulus * Storer, James A.
2024 1.1 paulus * Data Compression: Methods and Theory, pp. 49-50.
2025 1.1 paulus * Computer Science Press, 1988. ISBN 0-7167-8156-5.
2026 1.1 paulus *
2027 1.1 paulus * Sedgewick, R.
2028 1.1 paulus * Algorithms, p290.
2029 1.1 paulus * Addison-Wesley, 1983. ISBN 0-201-06672-6.
2030 1.1 paulus */
2031 1.1 paulus
2032 1.21 christos /* @(#) $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
2033 1.17 fvdl
2034 1.17 fvdl /* #define GEN_TREES_H */
2035 1.7 christos
2036 1.7 christos /* #include "deflate.h" */
2037 1.1 paulus
2038 1.1 paulus #ifdef DEBUG_ZLIB
2039 1.1 paulus # include <ctype.h>
2040 1.1 paulus #endif
2041 1.1 paulus
2042 1.1 paulus /* ===========================================================================
2043 1.1 paulus * Constants
2044 1.1 paulus */
2045 1.1 paulus
2046 1.1 paulus #define MAX_BL_BITS 7
2047 1.1 paulus /* Bit length codes must not exceed MAX_BL_BITS bits */
2048 1.1 paulus
2049 1.1 paulus #define END_BLOCK 256
2050 1.1 paulus /* end of block literal code */
2051 1.1 paulus
2052 1.1 paulus #define REP_3_6 16
2053 1.1 paulus /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2054 1.1 paulus
2055 1.1 paulus #define REPZ_3_10 17
2056 1.1 paulus /* repeat a zero length 3-10 times (3 bits of repeat count) */
2057 1.1 paulus
2058 1.1 paulus #define REPZ_11_138 18
2059 1.1 paulus /* repeat a zero length 11-138 times (7 bits of repeat count) */
2060 1.1 paulus
2061 1.12 jdolecek local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
2062 1.1 paulus = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
2063 1.1 paulus
2064 1.12 jdolecek local const int extra_dbits[D_CODES] /* extra bits for each distance code */
2065 1.1 paulus = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2066 1.1 paulus
2067 1.12 jdolecek local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
2068 1.1 paulus = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
2069 1.1 paulus
2070 1.12 jdolecek local const uch bl_order[BL_CODES]
2071 1.1 paulus = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
2072 1.1 paulus /* The lengths of the bit length codes are sent in order of decreasing
2073 1.1 paulus * probability, to avoid transmitting the lengths for unused bit length codes.
2074 1.1 paulus */
2075 1.1 paulus
2076 1.1 paulus #define Buf_size (8 * 2*sizeof(char))
2077 1.1 paulus /* Number of bits used within bi_buf. (bi_buf might be implemented on
2078 1.1 paulus * more than 16 bits on some systems.)
2079 1.1 paulus */
2080 1.1 paulus
2081 1.1 paulus /* ===========================================================================
2082 1.1 paulus * Local data. These are initialized only once.
2083 1.1 paulus */
2084 1.1 paulus
2085 1.17 fvdl #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
2086 1.17 fvdl
2087 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
2088 1.17 fvdl /* non ANSI compilers may not accept trees.h */
2089 1.17 fvdl
2090 1.1 paulus local ct_data static_ltree[L_CODES+2];
2091 1.1 paulus /* The static literal tree. Since the bit lengths are imposed, there is no
2092 1.1 paulus * need for the L_CODES extra codes used during heap construction. However
2093 1.7 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
2094 1.1 paulus * below).
2095 1.1 paulus */
2096 1.1 paulus
2097 1.1 paulus local ct_data static_dtree[D_CODES];
2098 1.1 paulus /* The static distance tree. (Actually a trivial tree since all codes use
2099 1.1 paulus * 5 bits.)
2100 1.1 paulus */
2101 1.1 paulus
2102 1.17 fvdl uch _dist_code[DIST_CODE_LEN];
2103 1.17 fvdl /* Distance codes. The first 256 values correspond to the distances
2104 1.1 paulus * 3 .. 258, the last 256 values correspond to the top 8 bits of
2105 1.1 paulus * the 15 bit distances.
2106 1.1 paulus */
2107 1.1 paulus
2108 1.17 fvdl uch _length_code[MAX_MATCH-MIN_MATCH+1];
2109 1.1 paulus /* length code for each normalized match length (0 == MIN_MATCH) */
2110 1.1 paulus
2111 1.1 paulus local int base_length[LENGTH_CODES];
2112 1.1 paulus /* First normalized length for each code (0 = MIN_MATCH) */
2113 1.1 paulus
2114 1.1 paulus local int base_dist[D_CODES];
2115 1.1 paulus /* First normalized distance for each code (0 = distance of 1) */
2116 1.1 paulus
2117 1.17 fvdl #else
2118 1.17 fvdl /* +++ trees.h */
2119 1.17 fvdl
2120 1.17 fvdl /* header created automatically with -DGEN_TREES_H */
2121 1.17 fvdl
2122 1.17 fvdl local const ct_data static_ltree[L_CODES+2] = {
2123 1.17 fvdl {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}},
2124 1.17 fvdl {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}},
2125 1.17 fvdl {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}},
2126 1.17 fvdl {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}},
2127 1.17 fvdl {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}},
2128 1.17 fvdl {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}},
2129 1.17 fvdl {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}},
2130 1.17 fvdl {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}},
2131 1.17 fvdl {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}},
2132 1.17 fvdl {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}},
2133 1.17 fvdl {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}},
2134 1.17 fvdl {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}},
2135 1.17 fvdl {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}},
2136 1.17 fvdl {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}},
2137 1.17 fvdl {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}},
2138 1.17 fvdl {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}},
2139 1.17 fvdl {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}},
2140 1.17 fvdl {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}},
2141 1.17 fvdl {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}},
2142 1.17 fvdl {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}},
2143 1.17 fvdl {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}},
2144 1.17 fvdl {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}},
2145 1.17 fvdl {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}},
2146 1.17 fvdl {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}},
2147 1.17 fvdl {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}},
2148 1.17 fvdl {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}},
2149 1.17 fvdl {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}},
2150 1.17 fvdl {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}},
2151 1.17 fvdl {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}},
2152 1.17 fvdl {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}},
2153 1.17 fvdl {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}},
2154 1.17 fvdl {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}},
2155 1.17 fvdl {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}},
2156 1.17 fvdl {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}},
2157 1.17 fvdl {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}},
2158 1.17 fvdl {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}},
2159 1.17 fvdl {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}},
2160 1.17 fvdl {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}},
2161 1.17 fvdl {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}},
2162 1.17 fvdl {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}},
2163 1.17 fvdl {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}},
2164 1.17 fvdl {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}},
2165 1.17 fvdl {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}},
2166 1.17 fvdl {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}},
2167 1.17 fvdl {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}},
2168 1.17 fvdl {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}},
2169 1.17 fvdl {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}},
2170 1.17 fvdl {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}},
2171 1.17 fvdl {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}},
2172 1.17 fvdl {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}},
2173 1.17 fvdl {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}},
2174 1.17 fvdl {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}},
2175 1.17 fvdl {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}},
2176 1.17 fvdl {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}},
2177 1.17 fvdl {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}},
2178 1.17 fvdl {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}},
2179 1.17 fvdl {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}},
2180 1.17 fvdl {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}}
2181 1.17 fvdl };
2182 1.17 fvdl
2183 1.17 fvdl local const ct_data static_dtree[D_CODES] = {
2184 1.17 fvdl {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
2185 1.17 fvdl {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
2186 1.17 fvdl {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
2187 1.17 fvdl {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
2188 1.17 fvdl {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
2189 1.17 fvdl {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
2190 1.17 fvdl };
2191 1.17 fvdl
2192 1.17 fvdl const uch _dist_code[DIST_CODE_LEN] = {
2193 1.17 fvdl 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
2194 1.17 fvdl 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
2195 1.17 fvdl 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
2196 1.17 fvdl 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
2197 1.17 fvdl 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
2198 1.17 fvdl 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
2199 1.17 fvdl 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2200 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2201 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2202 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
2203 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2204 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2205 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
2206 1.17 fvdl 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
2207 1.17 fvdl 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2208 1.17 fvdl 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2209 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2210 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
2211 1.17 fvdl 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2212 1.17 fvdl 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2213 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2214 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2215 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2216 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2217 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2218 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
2219 1.17 fvdl };
2220 1.17 fvdl
2221 1.17 fvdl const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
2222 1.17 fvdl 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
2223 1.17 fvdl 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
2224 1.17 fvdl 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
2225 1.17 fvdl 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
2226 1.17 fvdl 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
2227 1.17 fvdl 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
2228 1.17 fvdl 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2229 1.17 fvdl 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2230 1.17 fvdl 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2231 1.17 fvdl 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
2232 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2233 1.17 fvdl 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2234 1.17 fvdl 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
2235 1.17 fvdl };
2236 1.17 fvdl
2237 1.17 fvdl local const int base_length[LENGTH_CODES] = {
2238 1.17 fvdl 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
2239 1.17 fvdl 64, 80, 96, 112, 128, 160, 192, 224, 0
2240 1.17 fvdl };
2241 1.17 fvdl
2242 1.17 fvdl local const int base_dist[D_CODES] = {
2243 1.17 fvdl 0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
2244 1.17 fvdl 32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
2245 1.17 fvdl 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
2246 1.17 fvdl };
2247 1.17 fvdl /* --- trees.h */
2248 1.17 fvdl
2249 1.17 fvdl #endif /* GEN_TREES_H */
2250 1.17 fvdl
2251 1.1 paulus struct static_tree_desc_s {
2252 1.17 fvdl const ct_data *static_tree; /* static tree or NULL */
2253 1.17 fvdl const intf *extra_bits; /* extra bits for each code or NULL */
2254 1.1 paulus int extra_base; /* base index for extra_bits */
2255 1.1 paulus int elems; /* max number of elements in the tree */
2256 1.1 paulus int max_length; /* max bit length for the codes */
2257 1.1 paulus };
2258 1.1 paulus
2259 1.1 paulus local static_tree_desc static_l_desc =
2260 1.1 paulus {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2261 1.1 paulus
2262 1.1 paulus local static_tree_desc static_d_desc =
2263 1.1 paulus {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
2264 1.1 paulus
2265 1.1 paulus local static_tree_desc static_bl_desc =
2266 1.17 fvdl {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
2267 1.1 paulus
2268 1.1 paulus /* ===========================================================================
2269 1.1 paulus * Local (static) routines in this file.
2270 1.1 paulus */
2271 1.1 paulus
2272 1.17 fvdl local void tr_static_init __P((void));
2273 1.17 fvdl local void init_block __P((deflate_state *s));
2274 1.17 fvdl local void pqdownheap __P((deflate_state *s, ct_data *tree, int k));
2275 1.17 fvdl local void gen_bitlen __P((deflate_state *s, tree_desc *desc));
2276 1.17 fvdl local void gen_codes __P((ct_data *tree, int max_code, ushf *bl_count));
2277 1.17 fvdl local void build_tree __P((deflate_state *s, tree_desc *desc));
2278 1.17 fvdl local void scan_tree __P((deflate_state *s, ct_data *tree, int max_code));
2279 1.17 fvdl local void send_tree __P((deflate_state *s, ct_data *tree, int max_code));
2280 1.17 fvdl local int build_bl_tree __P((deflate_state *s));
2281 1.17 fvdl local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
2282 1.1 paulus int blcodes));
2283 1.21 christos local void compress_block __P((deflate_state *s, const ct_data *ltree,
2284 1.21 christos const ct_data *dtree));
2285 1.17 fvdl local void set_data_type __P((deflate_state *s));
2286 1.17 fvdl local unsigned bi_reverse __P((unsigned value, int length));
2287 1.17 fvdl local void bi_windup __P((deflate_state *s));
2288 1.17 fvdl local void bi_flush __P((deflate_state *s));
2289 1.17 fvdl local void copy_block __P((deflate_state *s, charf *buf, unsigned len,
2290 1.1 paulus int header));
2291 1.1 paulus
2292 1.17 fvdl #ifdef GEN_TREES_H
2293 1.17 fvdl local void gen_trees_header __P((void));
2294 1.17 fvdl #endif
2295 1.17 fvdl
2296 1.1 paulus #ifndef DEBUG_ZLIB
2297 1.1 paulus # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2298 1.1 paulus /* Send a code of the given tree. c and tree must not have side effects */
2299 1.1 paulus
2300 1.1 paulus #else /* DEBUG_ZLIB */
2301 1.1 paulus # define send_code(s, c, tree) \
2302 1.17 fvdl { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2303 1.1 paulus send_bits(s, tree[c].Code, tree[c].Len); }
2304 1.1 paulus #endif
2305 1.1 paulus
2306 1.1 paulus /* ===========================================================================
2307 1.1 paulus * Output a short LSB first on the stream.
2308 1.1 paulus * IN assertion: there is enough room in pendingBuf.
2309 1.1 paulus */
2310 1.1 paulus #define put_short(s, w) { \
2311 1.1 paulus put_byte(s, (uch)((w) & 0xff)); \
2312 1.1 paulus put_byte(s, (uch)((ush)(w) >> 8)); \
2313 1.1 paulus }
2314 1.1 paulus
2315 1.1 paulus /* ===========================================================================
2316 1.1 paulus * Send a value on a given number of bits.
2317 1.1 paulus * IN assertion: length <= 16 and value fits in length bits.
2318 1.1 paulus */
2319 1.1 paulus #ifdef DEBUG_ZLIB
2320 1.17 fvdl local void send_bits __P((deflate_state *s, int value, int length));
2321 1.1 paulus
2322 1.1 paulus local void send_bits(s, value, length)
2323 1.1 paulus deflate_state *s;
2324 1.1 paulus int value; /* value to send */
2325 1.1 paulus int length; /* number of bits */
2326 1.1 paulus {
2327 1.7 christos Tracevv((stderr," l %2d v %4x ", length, value));
2328 1.1 paulus Assert(length > 0 && length <= 15, "invalid length");
2329 1.1 paulus s->bits_sent += (ulg)length;
2330 1.1 paulus
2331 1.1 paulus /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2332 1.1 paulus * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2333 1.1 paulus * unused bits in value.
2334 1.1 paulus */
2335 1.1 paulus if (s->bi_valid > (int)Buf_size - length) {
2336 1.1 paulus s->bi_buf |= (value << s->bi_valid);
2337 1.1 paulus put_short(s, s->bi_buf);
2338 1.1 paulus s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2339 1.1 paulus s->bi_valid += length - Buf_size;
2340 1.1 paulus } else {
2341 1.1 paulus s->bi_buf |= value << s->bi_valid;
2342 1.1 paulus s->bi_valid += length;
2343 1.1 paulus }
2344 1.1 paulus }
2345 1.1 paulus #else /* !DEBUG_ZLIB */
2346 1.1 paulus
2347 1.1 paulus #define send_bits(s, value, length) \
2348 1.1 paulus { int len = length;\
2349 1.1 paulus if (s->bi_valid > (int)Buf_size - len) {\
2350 1.1 paulus int val = value;\
2351 1.1 paulus s->bi_buf |= (val << s->bi_valid);\
2352 1.1 paulus put_short(s, s->bi_buf);\
2353 1.1 paulus s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2354 1.1 paulus s->bi_valid += len - Buf_size;\
2355 1.1 paulus } else {\
2356 1.1 paulus s->bi_buf |= (value) << s->bi_valid;\
2357 1.1 paulus s->bi_valid += len;\
2358 1.1 paulus }\
2359 1.1 paulus }
2360 1.1 paulus #endif /* DEBUG_ZLIB */
2361 1.1 paulus
2362 1.17 fvdl
2363 1.1 paulus /* ===========================================================================
2364 1.17 fvdl * Initialize the various 'constant' tables.
2365 1.1 paulus */
2366 1.7 christos local void tr_static_init()
2367 1.1 paulus {
2368 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
2369 1.7 christos static int static_init_done = 0;
2370 1.1 paulus int n; /* iterates over tree elements */
2371 1.1 paulus int bits; /* bit counter */
2372 1.1 paulus int length; /* length value */
2373 1.1 paulus int code; /* code value */
2374 1.1 paulus int dist; /* distance index */
2375 1.1 paulus ush bl_count[MAX_BITS+1];
2376 1.1 paulus /* number of codes at each bit length for an optimal tree */
2377 1.1 paulus
2378 1.7 christos if (static_init_done) return;
2379 1.7 christos
2380 1.17 fvdl /* For some embedded targets, global variables are not initialized: */
2381 1.17 fvdl static_l_desc.static_tree = static_ltree;
2382 1.17 fvdl static_l_desc.extra_bits = extra_lbits;
2383 1.17 fvdl static_d_desc.static_tree = static_dtree;
2384 1.17 fvdl static_d_desc.extra_bits = extra_dbits;
2385 1.17 fvdl static_bl_desc.extra_bits = extra_blbits;
2386 1.17 fvdl
2387 1.1 paulus /* Initialize the mapping length (0..255) -> length code (0..28) */
2388 1.1 paulus length = 0;
2389 1.1 paulus for (code = 0; code < LENGTH_CODES-1; code++) {
2390 1.1 paulus base_length[code] = length;
2391 1.1 paulus for (n = 0; n < (1<<extra_lbits[code]); n++) {
2392 1.17 fvdl _length_code[length++] = (uch)code;
2393 1.1 paulus }
2394 1.1 paulus }
2395 1.7 christos Assert (length == 256, "tr_static_init: length != 256");
2396 1.1 paulus /* Note that the length 255 (match length 258) can be represented
2397 1.1 paulus * in two different ways: code 284 + 5 bits or code 285, so we
2398 1.1 paulus * overwrite length_code[255] to use the best encoding:
2399 1.1 paulus */
2400 1.17 fvdl _length_code[length-1] = (uch)code;
2401 1.1 paulus
2402 1.1 paulus /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2403 1.1 paulus dist = 0;
2404 1.1 paulus for (code = 0 ; code < 16; code++) {
2405 1.1 paulus base_dist[code] = dist;
2406 1.1 paulus for (n = 0; n < (1<<extra_dbits[code]); n++) {
2407 1.17 fvdl _dist_code[dist++] = (uch)code;
2408 1.1 paulus }
2409 1.1 paulus }
2410 1.7 christos Assert (dist == 256, "tr_static_init: dist != 256");
2411 1.1 paulus dist >>= 7; /* from now on, all distances are divided by 128 */
2412 1.1 paulus for ( ; code < D_CODES; code++) {
2413 1.1 paulus base_dist[code] = dist << 7;
2414 1.1 paulus for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2415 1.17 fvdl _dist_code[256 + dist++] = (uch)code;
2416 1.1 paulus }
2417 1.1 paulus }
2418 1.7 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
2419 1.1 paulus
2420 1.1 paulus /* Construct the codes of the static literal tree */
2421 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2422 1.1 paulus n = 0;
2423 1.1 paulus while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2424 1.1 paulus while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2425 1.1 paulus while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2426 1.1 paulus while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2427 1.1 paulus /* Codes 286 and 287 do not exist, but we must include them in the
2428 1.1 paulus * tree construction to get a canonical Huffman tree (longest code
2429 1.1 paulus * all ones)
2430 1.1 paulus */
2431 1.1 paulus gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2432 1.1 paulus
2433 1.1 paulus /* The static distance tree is trivial: */
2434 1.1 paulus for (n = 0; n < D_CODES; n++) {
2435 1.1 paulus static_dtree[n].Len = 5;
2436 1.7 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2437 1.1 paulus }
2438 1.7 christos static_init_done = 1;
2439 1.17 fvdl
2440 1.17 fvdl # ifdef GEN_TREES_H
2441 1.17 fvdl gen_trees_header();
2442 1.17 fvdl # endif
2443 1.17 fvdl #endif /* defined(GEN_TREES_H) || !defined(STDC) */
2444 1.1 paulus }
2445 1.1 paulus
2446 1.1 paulus /* ===========================================================================
2447 1.17 fvdl * Genererate the file trees.h describing the static trees.
2448 1.17 fvdl */
2449 1.17 fvdl #ifdef GEN_TREES_H
2450 1.17 fvdl # ifndef DEBUG_ZLIB
2451 1.17 fvdl # include <stdio.h>
2452 1.17 fvdl # endif
2453 1.17 fvdl
2454 1.17 fvdl # define SEPARATOR(i, last, width) \
2455 1.17 fvdl ((i) == (last)? "\n};\n\n" : \
2456 1.17 fvdl ((i) % (width) == (width)-1 ? ",\n" : ", "))
2457 1.17 fvdl
2458 1.17 fvdl void gen_trees_header()
2459 1.17 fvdl {
2460 1.17 fvdl FILE *header = fopen("trees.h", "w");
2461 1.17 fvdl int i;
2462 1.17 fvdl
2463 1.17 fvdl Assert (header != NULL, "Can't open trees.h");
2464 1.17 fvdl fprintf(header,
2465 1.17 fvdl "/* header created automatically with -DGEN_TREES_H */\n\n");
2466 1.17 fvdl
2467 1.17 fvdl fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
2468 1.17 fvdl for (i = 0; i < L_CODES+2; i++) {
2469 1.17 fvdl fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
2470 1.17 fvdl static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
2471 1.17 fvdl }
2472 1.17 fvdl
2473 1.17 fvdl fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
2474 1.17 fvdl for (i = 0; i < D_CODES; i++) {
2475 1.17 fvdl fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
2476 1.17 fvdl static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
2477 1.17 fvdl }
2478 1.17 fvdl
2479 1.17 fvdl fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
2480 1.17 fvdl for (i = 0; i < DIST_CODE_LEN; i++) {
2481 1.17 fvdl fprintf(header, "%2u%s", _dist_code[i],
2482 1.17 fvdl SEPARATOR(i, DIST_CODE_LEN-1, 20));
2483 1.17 fvdl }
2484 1.17 fvdl
2485 1.17 fvdl fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
2486 1.17 fvdl for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
2487 1.17 fvdl fprintf(header, "%2u%s", _length_code[i],
2488 1.17 fvdl SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
2489 1.17 fvdl }
2490 1.17 fvdl
2491 1.17 fvdl fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
2492 1.17 fvdl for (i = 0; i < LENGTH_CODES; i++) {
2493 1.17 fvdl fprintf(header, "%1u%s", base_length[i],
2494 1.17 fvdl SEPARATOR(i, LENGTH_CODES-1, 20));
2495 1.17 fvdl }
2496 1.17 fvdl
2497 1.17 fvdl fprintf(header, "local const int base_dist[D_CODES] = {\n");
2498 1.17 fvdl for (i = 0; i < D_CODES; i++) {
2499 1.17 fvdl fprintf(header, "%5u%s", base_dist[i],
2500 1.17 fvdl SEPARATOR(i, D_CODES-1, 10));
2501 1.17 fvdl }
2502 1.17 fvdl
2503 1.17 fvdl fclose(header);
2504 1.17 fvdl }
2505 1.17 fvdl #endif /* GEN_TREES_H */
2506 1.17 fvdl
2507 1.17 fvdl /* ===========================================================================
2508 1.1 paulus * Initialize the tree data structures for a new zlib stream.
2509 1.1 paulus */
2510 1.7 christos void _tr_init(s)
2511 1.1 paulus deflate_state *s;
2512 1.1 paulus {
2513 1.7 christos tr_static_init();
2514 1.1 paulus
2515 1.1 paulus s->l_desc.dyn_tree = s->dyn_ltree;
2516 1.1 paulus s->l_desc.stat_desc = &static_l_desc;
2517 1.1 paulus
2518 1.1 paulus s->d_desc.dyn_tree = s->dyn_dtree;
2519 1.1 paulus s->d_desc.stat_desc = &static_d_desc;
2520 1.1 paulus
2521 1.1 paulus s->bl_desc.dyn_tree = s->bl_tree;
2522 1.1 paulus s->bl_desc.stat_desc = &static_bl_desc;
2523 1.1 paulus
2524 1.1 paulus s->bi_buf = 0;
2525 1.1 paulus s->bi_valid = 0;
2526 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2527 1.1 paulus #ifdef DEBUG_ZLIB
2528 1.17 fvdl s->compressed_len = 0L;
2529 1.1 paulus s->bits_sent = 0L;
2530 1.1 paulus #endif
2531 1.1 paulus
2532 1.1 paulus /* Initialize the first block of the first file: */
2533 1.1 paulus init_block(s);
2534 1.1 paulus }
2535 1.1 paulus
2536 1.1 paulus /* ===========================================================================
2537 1.1 paulus * Initialize a new block.
2538 1.1 paulus */
2539 1.1 paulus local void init_block(s)
2540 1.1 paulus deflate_state *s;
2541 1.1 paulus {
2542 1.1 paulus int n; /* iterates over tree elements */
2543 1.1 paulus
2544 1.1 paulus /* Initialize the trees. */
2545 1.1 paulus for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2546 1.1 paulus for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2547 1.1 paulus for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2548 1.1 paulus
2549 1.1 paulus s->dyn_ltree[END_BLOCK].Freq = 1;
2550 1.1 paulus s->opt_len = s->static_len = 0L;
2551 1.1 paulus s->last_lit = s->matches = 0;
2552 1.1 paulus }
2553 1.1 paulus
2554 1.1 paulus #define SMALLEST 1
2555 1.1 paulus /* Index within the heap array of least frequent node in the Huffman tree */
2556 1.1 paulus
2557 1.1 paulus
2558 1.1 paulus /* ===========================================================================
2559 1.1 paulus * Remove the smallest element from the heap and recreate the heap with
2560 1.1 paulus * one less element. Updates heap and heap_len.
2561 1.1 paulus */
2562 1.1 paulus #define pqremove(s, tree, top) \
2563 1.1 paulus {\
2564 1.1 paulus top = s->heap[SMALLEST]; \
2565 1.1 paulus s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2566 1.1 paulus pqdownheap(s, tree, SMALLEST); \
2567 1.1 paulus }
2568 1.1 paulus
2569 1.1 paulus /* ===========================================================================
2570 1.1 paulus * Compares to subtrees, using the tree depth as tie breaker when
2571 1.1 paulus * the subtrees have equal frequency. This minimizes the worst case length.
2572 1.1 paulus */
2573 1.1 paulus #define smaller(tree, n, m, depth) \
2574 1.1 paulus (tree[n].Freq < tree[m].Freq || \
2575 1.1 paulus (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2576 1.1 paulus
2577 1.1 paulus /* ===========================================================================
2578 1.1 paulus * Restore the heap property by moving down the tree starting at node k,
2579 1.1 paulus * exchanging a node with the smallest of its two sons if necessary, stopping
2580 1.1 paulus * when the heap property is re-established (each father smaller than its
2581 1.1 paulus * two sons).
2582 1.1 paulus */
2583 1.1 paulus local void pqdownheap(s, tree, k)
2584 1.1 paulus deflate_state *s;
2585 1.1 paulus ct_data *tree; /* the tree to restore */
2586 1.1 paulus int k; /* node to move down */
2587 1.1 paulus {
2588 1.1 paulus int v = s->heap[k];
2589 1.1 paulus int j = k << 1; /* left son of k */
2590 1.1 paulus while (j <= s->heap_len) {
2591 1.1 paulus /* Set j to the smallest of the two sons: */
2592 1.1 paulus if (j < s->heap_len &&
2593 1.1 paulus smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2594 1.1 paulus j++;
2595 1.1 paulus }
2596 1.1 paulus /* Exit if v is smaller than both sons */
2597 1.1 paulus if (smaller(tree, v, s->heap[j], s->depth)) break;
2598 1.1 paulus
2599 1.1 paulus /* Exchange v with the smallest son */
2600 1.1 paulus s->heap[k] = s->heap[j]; k = j;
2601 1.1 paulus
2602 1.1 paulus /* And continue down the tree, setting j to the left son of k */
2603 1.1 paulus j <<= 1;
2604 1.1 paulus }
2605 1.1 paulus s->heap[k] = v;
2606 1.1 paulus }
2607 1.1 paulus
2608 1.1 paulus /* ===========================================================================
2609 1.1 paulus * Compute the optimal bit lengths for a tree and update the total bit length
2610 1.1 paulus * for the current block.
2611 1.1 paulus * IN assertion: the fields freq and dad are set, heap[heap_max] and
2612 1.1 paulus * above are the tree nodes sorted by increasing frequency.
2613 1.1 paulus * OUT assertions: the field len is set to the optimal bit length, the
2614 1.1 paulus * array bl_count contains the frequencies for each bit length.
2615 1.1 paulus * The length opt_len is updated; static_len is also updated if stree is
2616 1.1 paulus * not null.
2617 1.1 paulus */
2618 1.1 paulus local void gen_bitlen(s, desc)
2619 1.1 paulus deflate_state *s;
2620 1.1 paulus tree_desc *desc; /* the tree descriptor */
2621 1.1 paulus {
2622 1.17 fvdl ct_data *tree = desc->dyn_tree;
2623 1.17 fvdl int max_code = desc->max_code;
2624 1.17 fvdl const ct_data *stree = desc->stat_desc->static_tree;
2625 1.12 jdolecek const intf *extra = desc->stat_desc->extra_bits;
2626 1.17 fvdl int base = desc->stat_desc->extra_base;
2627 1.17 fvdl int max_length = desc->stat_desc->max_length;
2628 1.1 paulus int h; /* heap index */
2629 1.1 paulus int n, m; /* iterate over the tree elements */
2630 1.1 paulus int bits; /* bit length */
2631 1.1 paulus int xbits; /* extra bits */
2632 1.1 paulus ush f; /* frequency */
2633 1.1 paulus int overflow = 0; /* number of elements with bit length too large */
2634 1.1 paulus
2635 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2636 1.1 paulus
2637 1.1 paulus /* In a first pass, compute the optimal bit lengths (which may
2638 1.1 paulus * overflow in the case of the bit length tree).
2639 1.1 paulus */
2640 1.1 paulus tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2641 1.1 paulus
2642 1.1 paulus for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2643 1.1 paulus n = s->heap[h];
2644 1.1 paulus bits = tree[tree[n].Dad].Len + 1;
2645 1.1 paulus if (bits > max_length) bits = max_length, overflow++;
2646 1.1 paulus tree[n].Len = (ush)bits;
2647 1.1 paulus /* We overwrite tree[n].Dad which is no longer needed */
2648 1.1 paulus
2649 1.1 paulus if (n > max_code) continue; /* not a leaf node */
2650 1.1 paulus
2651 1.1 paulus s->bl_count[bits]++;
2652 1.1 paulus xbits = 0;
2653 1.1 paulus if (n >= base) xbits = extra[n-base];
2654 1.1 paulus f = tree[n].Freq;
2655 1.1 paulus s->opt_len += (ulg)f * (bits + xbits);
2656 1.1 paulus if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2657 1.1 paulus }
2658 1.1 paulus if (overflow == 0) return;
2659 1.1 paulus
2660 1.1 paulus Trace((stderr,"\nbit length overflow\n"));
2661 1.1 paulus /* This happens for example on obj2 and pic of the Calgary corpus */
2662 1.1 paulus
2663 1.1 paulus /* Find the first bit length which could increase: */
2664 1.1 paulus do {
2665 1.1 paulus bits = max_length-1;
2666 1.1 paulus while (s->bl_count[bits] == 0) bits--;
2667 1.1 paulus s->bl_count[bits]--; /* move one leaf down the tree */
2668 1.1 paulus s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2669 1.1 paulus s->bl_count[max_length]--;
2670 1.1 paulus /* The brother of the overflow item also moves one step up,
2671 1.1 paulus * but this does not affect bl_count[max_length]
2672 1.1 paulus */
2673 1.1 paulus overflow -= 2;
2674 1.1 paulus } while (overflow > 0);
2675 1.1 paulus
2676 1.1 paulus /* Now recompute all bit lengths, scanning in increasing frequency.
2677 1.1 paulus * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2678 1.1 paulus * lengths instead of fixing only the wrong ones. This idea is taken
2679 1.1 paulus * from 'ar' written by Haruhiko Okumura.)
2680 1.1 paulus */
2681 1.1 paulus for (bits = max_length; bits != 0; bits--) {
2682 1.1 paulus n = s->bl_count[bits];
2683 1.1 paulus while (n != 0) {
2684 1.1 paulus m = s->heap[--h];
2685 1.1 paulus if (m > max_code) continue;
2686 1.1 paulus if (tree[m].Len != (unsigned) bits) {
2687 1.1 paulus Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2688 1.1 paulus s->opt_len += ((long)bits - (long)tree[m].Len)
2689 1.1 paulus *(long)tree[m].Freq;
2690 1.1 paulus tree[m].Len = (ush)bits;
2691 1.1 paulus }
2692 1.1 paulus n--;
2693 1.1 paulus }
2694 1.1 paulus }
2695 1.1 paulus }
2696 1.1 paulus
2697 1.1 paulus /* ===========================================================================
2698 1.1 paulus * Generate the codes for a given tree and bit counts (which need not be
2699 1.1 paulus * optimal).
2700 1.1 paulus * IN assertion: the array bl_count contains the bit length statistics for
2701 1.1 paulus * the given tree and the field len is set for all tree elements.
2702 1.1 paulus * OUT assertion: the field code is set for all tree elements of non
2703 1.1 paulus * zero code length.
2704 1.1 paulus */
2705 1.1 paulus local void gen_codes (tree, max_code, bl_count)
2706 1.1 paulus ct_data *tree; /* the tree to decorate */
2707 1.1 paulus int max_code; /* largest code with non zero frequency */
2708 1.1 paulus ushf *bl_count; /* number of codes at each bit length */
2709 1.1 paulus {
2710 1.1 paulus ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2711 1.1 paulus ush code = 0; /* running code value */
2712 1.1 paulus int bits; /* bit index */
2713 1.1 paulus int n; /* code index */
2714 1.1 paulus
2715 1.1 paulus /* The distribution counts are first used to generate the code values
2716 1.1 paulus * without bit reversal.
2717 1.1 paulus */
2718 1.1 paulus for (bits = 1; bits <= MAX_BITS; bits++) {
2719 1.1 paulus next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2720 1.1 paulus }
2721 1.1 paulus /* Check that the bit counts in bl_count are consistent. The last code
2722 1.1 paulus * must be all ones.
2723 1.1 paulus */
2724 1.1 paulus Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2725 1.1 paulus "inconsistent bit counts");
2726 1.1 paulus Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2727 1.1 paulus
2728 1.1 paulus for (n = 0; n <= max_code; n++) {
2729 1.1 paulus int len = tree[n].Len;
2730 1.1 paulus if (len == 0) continue;
2731 1.1 paulus /* Now reverse the bits */
2732 1.1 paulus tree[n].Code = bi_reverse(next_code[len]++, len);
2733 1.1 paulus
2734 1.7 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2735 1.1 paulus n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2736 1.1 paulus }
2737 1.1 paulus }
2738 1.1 paulus
2739 1.1 paulus /* ===========================================================================
2740 1.1 paulus * Construct one Huffman tree and assigns the code bit strings and lengths.
2741 1.1 paulus * Update the total bit length for the current block.
2742 1.1 paulus * IN assertion: the field freq is set for all tree elements.
2743 1.1 paulus * OUT assertions: the fields len and code are set to the optimal bit length
2744 1.1 paulus * and corresponding code. The length opt_len is updated; static_len is
2745 1.1 paulus * also updated if stree is not null. The field max_code is set.
2746 1.1 paulus */
2747 1.1 paulus local void build_tree(s, desc)
2748 1.1 paulus deflate_state *s;
2749 1.1 paulus tree_desc *desc; /* the tree descriptor */
2750 1.1 paulus {
2751 1.17 fvdl ct_data *tree = desc->dyn_tree;
2752 1.17 fvdl const ct_data *stree = desc->stat_desc->static_tree;
2753 1.17 fvdl int elems = desc->stat_desc->elems;
2754 1.1 paulus int n, m; /* iterate over heap elements */
2755 1.1 paulus int max_code = -1; /* largest code with non zero frequency */
2756 1.1 paulus int node; /* new node being created */
2757 1.1 paulus
2758 1.1 paulus /* Construct the initial heap, with least frequent element in
2759 1.1 paulus * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2760 1.1 paulus * heap[0] is not used.
2761 1.1 paulus */
2762 1.1 paulus s->heap_len = 0, s->heap_max = HEAP_SIZE;
2763 1.1 paulus
2764 1.1 paulus for (n = 0; n < elems; n++) {
2765 1.1 paulus if (tree[n].Freq != 0) {
2766 1.1 paulus s->heap[++(s->heap_len)] = max_code = n;
2767 1.1 paulus s->depth[n] = 0;
2768 1.1 paulus } else {
2769 1.1 paulus tree[n].Len = 0;
2770 1.1 paulus }
2771 1.1 paulus }
2772 1.1 paulus
2773 1.1 paulus /* The pkzip format requires that at least one distance code exists,
2774 1.1 paulus * and that at least one bit should be sent even if there is only one
2775 1.1 paulus * possible code. So to avoid special checks later on we force at least
2776 1.1 paulus * two codes of non zero frequency.
2777 1.1 paulus */
2778 1.1 paulus while (s->heap_len < 2) {
2779 1.1 paulus node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2780 1.1 paulus tree[node].Freq = 1;
2781 1.1 paulus s->depth[node] = 0;
2782 1.1 paulus s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2783 1.1 paulus /* node is 0 or 1 so it does not have extra bits */
2784 1.1 paulus }
2785 1.1 paulus desc->max_code = max_code;
2786 1.1 paulus
2787 1.1 paulus /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2788 1.1 paulus * establish sub-heaps of increasing lengths:
2789 1.1 paulus */
2790 1.1 paulus for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2791 1.1 paulus
2792 1.1 paulus /* Construct the Huffman tree by repeatedly combining the least two
2793 1.1 paulus * frequent nodes.
2794 1.1 paulus */
2795 1.1 paulus node = elems; /* next internal node of the tree */
2796 1.1 paulus do {
2797 1.1 paulus pqremove(s, tree, n); /* n = node of least frequency */
2798 1.1 paulus m = s->heap[SMALLEST]; /* m = node of next least frequency */
2799 1.1 paulus
2800 1.1 paulus s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2801 1.1 paulus s->heap[--(s->heap_max)] = m;
2802 1.1 paulus
2803 1.1 paulus /* Create a new node father of n and m */
2804 1.1 paulus tree[node].Freq = tree[n].Freq + tree[m].Freq;
2805 1.1 paulus s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2806 1.1 paulus tree[n].Dad = tree[m].Dad = (ush)node;
2807 1.1 paulus #ifdef DUMP_BL_TREE
2808 1.1 paulus if (tree == s->bl_tree) {
2809 1.1 paulus fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2810 1.1 paulus node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2811 1.1 paulus }
2812 1.1 paulus #endif
2813 1.1 paulus /* and insert the new node in the heap */
2814 1.1 paulus s->heap[SMALLEST] = node++;
2815 1.1 paulus pqdownheap(s, tree, SMALLEST);
2816 1.1 paulus
2817 1.1 paulus } while (s->heap_len >= 2);
2818 1.1 paulus
2819 1.1 paulus s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2820 1.1 paulus
2821 1.1 paulus /* At this point, the fields freq and dad are set. We can now
2822 1.1 paulus * generate the bit lengths.
2823 1.1 paulus */
2824 1.1 paulus gen_bitlen(s, (tree_desc *)desc);
2825 1.1 paulus
2826 1.1 paulus /* The field len is now set, we can generate the bit codes */
2827 1.1 paulus gen_codes ((ct_data *)tree, max_code, s->bl_count);
2828 1.1 paulus }
2829 1.1 paulus
2830 1.1 paulus /* ===========================================================================
2831 1.1 paulus * Scan a literal or distance tree to determine the frequencies of the codes
2832 1.1 paulus * in the bit length tree.
2833 1.1 paulus */
2834 1.1 paulus local void scan_tree (s, tree, max_code)
2835 1.1 paulus deflate_state *s;
2836 1.1 paulus ct_data *tree; /* the tree to be scanned */
2837 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2838 1.1 paulus {
2839 1.1 paulus int n; /* iterates over all tree elements */
2840 1.1 paulus int prevlen = -1; /* last emitted length */
2841 1.1 paulus int curlen; /* length of current code */
2842 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2843 1.1 paulus int count = 0; /* repeat count of the current code */
2844 1.1 paulus int max_count = 7; /* max repeat count */
2845 1.1 paulus int min_count = 4; /* min repeat count */
2846 1.1 paulus
2847 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2848 1.1 paulus tree[max_code+1].Len = (ush)0xffff; /* guard */
2849 1.1 paulus
2850 1.1 paulus for (n = 0; n <= max_code; n++) {
2851 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2852 1.1 paulus if (++count < max_count && curlen == nextlen) {
2853 1.1 paulus continue;
2854 1.1 paulus } else if (count < min_count) {
2855 1.1 paulus s->bl_tree[curlen].Freq += count;
2856 1.1 paulus } else if (curlen != 0) {
2857 1.1 paulus if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2858 1.1 paulus s->bl_tree[REP_3_6].Freq++;
2859 1.1 paulus } else if (count <= 10) {
2860 1.1 paulus s->bl_tree[REPZ_3_10].Freq++;
2861 1.1 paulus } else {
2862 1.1 paulus s->bl_tree[REPZ_11_138].Freq++;
2863 1.1 paulus }
2864 1.1 paulus count = 0; prevlen = curlen;
2865 1.1 paulus if (nextlen == 0) {
2866 1.1 paulus max_count = 138, min_count = 3;
2867 1.1 paulus } else if (curlen == nextlen) {
2868 1.1 paulus max_count = 6, min_count = 3;
2869 1.1 paulus } else {
2870 1.1 paulus max_count = 7, min_count = 4;
2871 1.1 paulus }
2872 1.1 paulus }
2873 1.1 paulus }
2874 1.1 paulus
2875 1.1 paulus /* ===========================================================================
2876 1.1 paulus * Send a literal or distance tree in compressed form, using the codes in
2877 1.1 paulus * bl_tree.
2878 1.1 paulus */
2879 1.1 paulus local void send_tree (s, tree, max_code)
2880 1.1 paulus deflate_state *s;
2881 1.1 paulus ct_data *tree; /* the tree to be scanned */
2882 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2883 1.1 paulus {
2884 1.1 paulus int n; /* iterates over all tree elements */
2885 1.1 paulus int prevlen = -1; /* last emitted length */
2886 1.1 paulus int curlen; /* length of current code */
2887 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2888 1.1 paulus int count = 0; /* repeat count of the current code */
2889 1.1 paulus int max_count = 7; /* max repeat count */
2890 1.1 paulus int min_count = 4; /* min repeat count */
2891 1.1 paulus
2892 1.1 paulus /* tree[max_code+1].Len = -1; */ /* guard already set */
2893 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2894 1.1 paulus
2895 1.1 paulus for (n = 0; n <= max_code; n++) {
2896 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2897 1.1 paulus if (++count < max_count && curlen == nextlen) {
2898 1.1 paulus continue;
2899 1.1 paulus } else if (count < min_count) {
2900 1.1 paulus do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2901 1.1 paulus
2902 1.1 paulus } else if (curlen != 0) {
2903 1.1 paulus if (curlen != prevlen) {
2904 1.1 paulus send_code(s, curlen, s->bl_tree); count--;
2905 1.1 paulus }
2906 1.1 paulus Assert(count >= 3 && count <= 6, " 3_6?");
2907 1.1 paulus send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2908 1.1 paulus
2909 1.1 paulus } else if (count <= 10) {
2910 1.1 paulus send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2911 1.1 paulus
2912 1.1 paulus } else {
2913 1.1 paulus send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2914 1.1 paulus }
2915 1.1 paulus count = 0; prevlen = curlen;
2916 1.1 paulus if (nextlen == 0) {
2917 1.1 paulus max_count = 138, min_count = 3;
2918 1.1 paulus } else if (curlen == nextlen) {
2919 1.1 paulus max_count = 6, min_count = 3;
2920 1.1 paulus } else {
2921 1.1 paulus max_count = 7, min_count = 4;
2922 1.1 paulus }
2923 1.1 paulus }
2924 1.1 paulus }
2925 1.1 paulus
2926 1.1 paulus /* ===========================================================================
2927 1.1 paulus * Construct the Huffman tree for the bit lengths and return the index in
2928 1.1 paulus * bl_order of the last bit length code to send.
2929 1.1 paulus */
2930 1.1 paulus local int build_bl_tree(s)
2931 1.1 paulus deflate_state *s;
2932 1.1 paulus {
2933 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2934 1.1 paulus
2935 1.1 paulus /* Determine the bit length frequencies for literal and distance trees */
2936 1.1 paulus scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2937 1.1 paulus scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2938 1.1 paulus
2939 1.1 paulus /* Build the bit length tree: */
2940 1.1 paulus build_tree(s, (tree_desc *)(&(s->bl_desc)));
2941 1.1 paulus /* opt_len now includes the length of the tree representations, except
2942 1.1 paulus * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2943 1.1 paulus */
2944 1.1 paulus
2945 1.1 paulus /* Determine the number of bit length codes to send. The pkzip format
2946 1.1 paulus * requires that at least 4 bit length codes be sent. (appnote.txt says
2947 1.1 paulus * 3 but the actual value used is 4.)
2948 1.1 paulus */
2949 1.1 paulus for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2950 1.1 paulus if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2951 1.1 paulus }
2952 1.1 paulus /* Update opt_len to include the bit length tree and counts */
2953 1.1 paulus s->opt_len += 3*(max_blindex+1) + 5+5+4;
2954 1.1 paulus Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2955 1.1 paulus s->opt_len, s->static_len));
2956 1.1 paulus
2957 1.1 paulus return max_blindex;
2958 1.1 paulus }
2959 1.1 paulus
2960 1.1 paulus /* ===========================================================================
2961 1.1 paulus * Send the header for a block using dynamic Huffman trees: the counts, the
2962 1.1 paulus * lengths of the bit length codes, the literal tree and the distance tree.
2963 1.1 paulus * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2964 1.1 paulus */
2965 1.1 paulus local void send_all_trees(s, lcodes, dcodes, blcodes)
2966 1.1 paulus deflate_state *s;
2967 1.1 paulus int lcodes, dcodes, blcodes; /* number of codes for each tree */
2968 1.1 paulus {
2969 1.1 paulus int rank; /* index in bl_order */
2970 1.1 paulus
2971 1.1 paulus Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2972 1.1 paulus Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2973 1.1 paulus "too many codes");
2974 1.1 paulus Tracev((stderr, "\nbl counts: "));
2975 1.1 paulus send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2976 1.1 paulus send_bits(s, dcodes-1, 5);
2977 1.1 paulus send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2978 1.1 paulus for (rank = 0; rank < blcodes; rank++) {
2979 1.1 paulus Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2980 1.1 paulus send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2981 1.1 paulus }
2982 1.1 paulus Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2983 1.1 paulus
2984 1.1 paulus send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2985 1.1 paulus Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2986 1.1 paulus
2987 1.1 paulus send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2988 1.1 paulus Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2989 1.1 paulus }
2990 1.1 paulus
2991 1.1 paulus /* ===========================================================================
2992 1.1 paulus * Send a stored block
2993 1.1 paulus */
2994 1.7 christos void _tr_stored_block(s, buf, stored_len, eof)
2995 1.1 paulus deflate_state *s;
2996 1.1 paulus charf *buf; /* input block */
2997 1.1 paulus ulg stored_len; /* length of input block */
2998 1.1 paulus int eof; /* true if this is the last block for a file */
2999 1.1 paulus {
3000 1.1 paulus send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
3001 1.17 fvdl #ifdef DEBUG_ZLIB
3002 1.7 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
3003 1.1 paulus s->compressed_len += (stored_len + 4) << 3;
3004 1.17 fvdl #endif
3005 1.1 paulus copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
3006 1.1 paulus }
3007 1.1 paulus
3008 1.1 paulus /* Send just the `stored block' type code without any length bytes or data.
3009 1.1 paulus */
3010 1.7 christos void _tr_stored_type_only(s)
3011 1.1 paulus deflate_state *s;
3012 1.1 paulus {
3013 1.1 paulus send_bits(s, (STORED_BLOCK << 1), 3);
3014 1.1 paulus bi_windup(s);
3015 1.17 fvdl #ifdef DEBUG_ZLIB
3016 1.1 paulus s->compressed_len = (s->compressed_len + 3) & ~7L;
3017 1.17 fvdl #endif
3018 1.1 paulus }
3019 1.1 paulus
3020 1.1 paulus /* ===========================================================================
3021 1.1 paulus * Send one empty static block to give enough lookahead for inflate.
3022 1.1 paulus * This takes 10 bits, of which 7 may remain in the bit buffer.
3023 1.7 christos * The current inflate code requires 9 bits of lookahead. If the
3024 1.7 christos * last two codes for the previous block (real code plus EOB) were coded
3025 1.7 christos * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3026 1.7 christos * the last real code. In this case we send two empty static blocks instead
3027 1.7 christos * of one. (There are no problems if the previous block is stored or fixed.)
3028 1.7 christos * To simplify the code, we assume the worst case of last real code encoded
3029 1.7 christos * on one bit only.
3030 1.1 paulus */
3031 1.7 christos void _tr_align(s)
3032 1.1 paulus deflate_state *s;
3033 1.1 paulus {
3034 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
3035 1.1 paulus send_code(s, END_BLOCK, static_ltree);
3036 1.17 fvdl #ifdef DEBUG_ZLIB
3037 1.1 paulus s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
3038 1.17 fvdl #endif
3039 1.1 paulus bi_flush(s);
3040 1.1 paulus /* Of the 10 bits for the empty block, we have already sent
3041 1.7 christos * (10 - bi_valid) bits. The lookahead for the last real code (before
3042 1.7 christos * the EOB of the previous block) was thus at least one plus the length
3043 1.7 christos * of the EOB plus what we have just sent of the empty static block.
3044 1.1 paulus */
3045 1.7 christos if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3046 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
3047 1.1 paulus send_code(s, END_BLOCK, static_ltree);
3048 1.17 fvdl #ifdef DEBUG_ZLIB
3049 1.1 paulus s->compressed_len += 10L;
3050 1.17 fvdl #endif
3051 1.1 paulus bi_flush(s);
3052 1.1 paulus }
3053 1.1 paulus s->last_eob_len = 7;
3054 1.1 paulus }
3055 1.1 paulus
3056 1.1 paulus /* ===========================================================================
3057 1.1 paulus * Determine the best encoding for the current block: dynamic trees, static
3058 1.17 fvdl * trees or store, and output the encoded block to the zip file.
3059 1.1 paulus */
3060 1.17 fvdl void _tr_flush_block(s, buf, stored_len, eof)
3061 1.1 paulus deflate_state *s;
3062 1.1 paulus charf *buf; /* input block, or NULL if too old */
3063 1.1 paulus ulg stored_len; /* length of input block */
3064 1.7 christos int eof; /* true if this is the last block for a file */
3065 1.1 paulus {
3066 1.1 paulus ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3067 1.7 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
3068 1.1 paulus
3069 1.7 christos /* Build the Huffman trees unless a stored block is forced */
3070 1.7 christos if (s->level > 0) {
3071 1.1 paulus
3072 1.7 christos /* Check if the file is ascii or binary */
3073 1.7 christos if (s->data_type == Z_UNKNOWN) set_data_type(s);
3074 1.1 paulus
3075 1.7 christos /* Construct the literal and distance trees */
3076 1.7 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
3077 1.7 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3078 1.7 christos s->static_len));
3079 1.7 christos
3080 1.7 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
3081 1.7 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3082 1.7 christos s->static_len));
3083 1.7 christos /* At this point, opt_len and static_len are the total bit lengths of
3084 1.7 christos * the compressed block data, excluding the tree representations.
3085 1.7 christos */
3086 1.7 christos
3087 1.7 christos /* Build the bit length tree for the above two trees, and get the index
3088 1.7 christos * in bl_order of the last bit length code to send.
3089 1.7 christos */
3090 1.7 christos max_blindex = build_bl_tree(s);
3091 1.7 christos
3092 1.7 christos /* Determine the best encoding. Compute first the block length in bytes*/
3093 1.7 christos opt_lenb = (s->opt_len+3+7)>>3;
3094 1.7 christos static_lenb = (s->static_len+3+7)>>3;
3095 1.7 christos
3096 1.7 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3097 1.7 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
3098 1.7 christos s->last_lit));
3099 1.1 paulus
3100 1.7 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3101 1.1 paulus
3102 1.7 christos } else {
3103 1.7 christos Assert(buf != (char*)0, "lost buf");
3104 1.7 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
3105 1.7 christos }
3106 1.1 paulus
3107 1.1 paulus #ifdef FORCE_STORED
3108 1.7 christos if (buf != (char*)0) { /* force stored block */
3109 1.1 paulus #else
3110 1.7 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
3111 1.1 paulus /* 4: two words for the lengths */
3112 1.1 paulus #endif
3113 1.1 paulus /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
3114 1.1 paulus * Otherwise we can't have processed more than WSIZE input bytes since
3115 1.1 paulus * the last block flush, because compression would have been
3116 1.1 paulus * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
3117 1.1 paulus * transform a block into a stored block.
3118 1.1 paulus */
3119 1.7 christos _tr_stored_block(s, buf, stored_len, eof);
3120 1.1 paulus
3121 1.1 paulus #ifdef FORCE_STATIC
3122 1.7 christos } else if (static_lenb >= 0) { /* force static trees */
3123 1.1 paulus #else
3124 1.7 christos } else if (static_lenb == opt_lenb) {
3125 1.1 paulus #endif
3126 1.1 paulus send_bits(s, (STATIC_TREES<<1)+eof, 3);
3127 1.21 christos compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
3128 1.17 fvdl #ifdef DEBUG_ZLIB
3129 1.1 paulus s->compressed_len += 3 + s->static_len;
3130 1.17 fvdl #endif
3131 1.1 paulus } else {
3132 1.1 paulus send_bits(s, (DYN_TREES<<1)+eof, 3);
3133 1.1 paulus send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
3134 1.1 paulus max_blindex+1);
3135 1.21 christos compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
3136 1.17 fvdl #ifdef DEBUG_ZLIB
3137 1.1 paulus s->compressed_len += 3 + s->opt_len;
3138 1.17 fvdl #endif
3139 1.1 paulus }
3140 1.1 paulus Assert (s->compressed_len == s->bits_sent, "bad compressed size");
3141 1.17 fvdl /* The above check is made mod 2^32, for files larger than 512 MB
3142 1.17 fvdl * and uLong implemented on 32 bits.
3143 1.17 fvdl */
3144 1.1 paulus init_block(s);
3145 1.1 paulus
3146 1.1 paulus if (eof) {
3147 1.1 paulus bi_windup(s);
3148 1.17 fvdl #ifdef DEBUG_ZLIB
3149 1.1 paulus s->compressed_len += 7; /* align on byte boundary */
3150 1.17 fvdl #endif
3151 1.1 paulus }
3152 1.1 paulus Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3153 1.1 paulus s->compressed_len-7*eof));
3154 1.1 paulus }
3155 1.1 paulus
3156 1.1 paulus /* ===========================================================================
3157 1.1 paulus * Save the match info and tally the frequency counts. Return true if
3158 1.1 paulus * the current block must be flushed.
3159 1.1 paulus */
3160 1.19 kristerw #if 0
3161 1.7 christos int _tr_tally (s, dist, lc)
3162 1.1 paulus deflate_state *s;
3163 1.7 christos unsigned dist; /* distance of matched string */
3164 1.7 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
3165 1.1 paulus {
3166 1.1 paulus s->d_buf[s->last_lit] = (ush)dist;
3167 1.1 paulus s->l_buf[s->last_lit++] = (uch)lc;
3168 1.1 paulus if (dist == 0) {
3169 1.1 paulus /* lc is the unmatched char */
3170 1.1 paulus s->dyn_ltree[lc].Freq++;
3171 1.1 paulus } else {
3172 1.1 paulus s->matches++;
3173 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
3174 1.1 paulus dist--; /* dist = match distance - 1 */
3175 1.1 paulus Assert((ush)dist < (ush)MAX_DIST(s) &&
3176 1.1 paulus (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3177 1.7 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
3178 1.1 paulus
3179 1.17 fvdl s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3180 1.1 paulus s->dyn_dtree[d_code(dist)].Freq++;
3181 1.1 paulus }
3182 1.1 paulus
3183 1.17 fvdl #ifdef TRUNCATE_BLOCK
3184 1.1 paulus /* Try to guess if it is profitable to stop the current block here */
3185 1.17 fvdl if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3186 1.1 paulus /* Compute an upper bound for the compressed length */
3187 1.1 paulus ulg out_length = (ulg)s->last_lit*8L;
3188 1.7 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
3189 1.1 paulus int dcode;
3190 1.1 paulus for (dcode = 0; dcode < D_CODES; dcode++) {
3191 1.1 paulus out_length += (ulg)s->dyn_dtree[dcode].Freq *
3192 1.1 paulus (5L+extra_dbits[dcode]);
3193 1.1 paulus }
3194 1.1 paulus out_length >>= 3;
3195 1.1 paulus Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3196 1.1 paulus s->last_lit, in_length, out_length,
3197 1.1 paulus 100L - out_length*100L/in_length));
3198 1.1 paulus if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
3199 1.1 paulus }
3200 1.17 fvdl #endif
3201 1.1 paulus return (s->last_lit == s->lit_bufsize-1);
3202 1.1 paulus /* We avoid equality with lit_bufsize because of wraparound at 64K
3203 1.1 paulus * on 16 bit machines and because stored blocks are restricted to
3204 1.1 paulus * 64K-1 bytes.
3205 1.1 paulus */
3206 1.1 paulus }
3207 1.19 kristerw #endif
3208 1.1 paulus
3209 1.1 paulus /* ===========================================================================
3210 1.1 paulus * Send the block data compressed using the given Huffman trees
3211 1.1 paulus */
3212 1.1 paulus local void compress_block(s, ltree, dtree)
3213 1.1 paulus deflate_state *s;
3214 1.21 christos const ct_data *ltree; /* literal tree */
3215 1.21 christos const ct_data *dtree; /* distance tree */
3216 1.1 paulus {
3217 1.1 paulus unsigned dist; /* distance of matched string */
3218 1.1 paulus int lc; /* match length or unmatched char (if dist == 0) */
3219 1.1 paulus unsigned lx = 0; /* running index in l_buf */
3220 1.1 paulus unsigned code; /* the code to send */
3221 1.1 paulus int extra; /* number of extra bits to send */
3222 1.1 paulus
3223 1.1 paulus if (s->last_lit != 0) do {
3224 1.1 paulus dist = s->d_buf[lx];
3225 1.1 paulus lc = s->l_buf[lx++];
3226 1.1 paulus if (dist == 0) {
3227 1.1 paulus send_code(s, lc, ltree); /* send a literal byte */
3228 1.1 paulus Tracecv(isgraph(lc), (stderr," '%c' ", lc));
3229 1.1 paulus } else {
3230 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
3231 1.17 fvdl code = _length_code[lc];
3232 1.1 paulus send_code(s, code+LITERALS+1, ltree); /* send the length code */
3233 1.1 paulus extra = extra_lbits[code];
3234 1.1 paulus if (extra != 0) {
3235 1.1 paulus lc -= base_length[code];
3236 1.1 paulus send_bits(s, lc, extra); /* send the extra length bits */
3237 1.1 paulus }
3238 1.1 paulus dist--; /* dist is now the match distance - 1 */
3239 1.1 paulus code = d_code(dist);
3240 1.1 paulus Assert (code < D_CODES, "bad d_code");
3241 1.1 paulus
3242 1.1 paulus send_code(s, code, dtree); /* send the distance code */
3243 1.1 paulus extra = extra_dbits[code];
3244 1.1 paulus if (extra != 0) {
3245 1.1 paulus dist -= base_dist[code];
3246 1.1 paulus send_bits(s, dist, extra); /* send the extra distance bits */
3247 1.1 paulus }
3248 1.1 paulus } /* literal or match pair ? */
3249 1.1 paulus
3250 1.1 paulus /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
3251 1.1 paulus Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
3252 1.1 paulus
3253 1.1 paulus } while (lx < s->last_lit);
3254 1.1 paulus
3255 1.1 paulus send_code(s, END_BLOCK, ltree);
3256 1.1 paulus s->last_eob_len = ltree[END_BLOCK].Len;
3257 1.1 paulus }
3258 1.1 paulus
3259 1.1 paulus /* ===========================================================================
3260 1.7 christos * Set the data type to ASCII or BINARY, using a crude approximation:
3261 1.1 paulus * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3262 1.1 paulus * IN assertion: the fields freq of dyn_ltree are set and the total of all
3263 1.1 paulus * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3264 1.1 paulus */
3265 1.1 paulus local void set_data_type(s)
3266 1.1 paulus deflate_state *s;
3267 1.1 paulus {
3268 1.1 paulus int n = 0;
3269 1.1 paulus unsigned ascii_freq = 0;
3270 1.1 paulus unsigned bin_freq = 0;
3271 1.1 paulus while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
3272 1.1 paulus while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
3273 1.1 paulus while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3274 1.7 christos s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
3275 1.1 paulus }
3276 1.1 paulus
3277 1.1 paulus /* ===========================================================================
3278 1.1 paulus * Reverse the first len bits of a code, using straightforward code (a faster
3279 1.1 paulus * method would use a table)
3280 1.1 paulus * IN assertion: 1 <= len <= 15
3281 1.1 paulus */
3282 1.1 paulus local unsigned bi_reverse(code, len)
3283 1.1 paulus unsigned code; /* the value to invert */
3284 1.1 paulus int len; /* its bit length */
3285 1.1 paulus {
3286 1.10 augustss unsigned res = 0;
3287 1.1 paulus do {
3288 1.1 paulus res |= code & 1;
3289 1.1 paulus code >>= 1, res <<= 1;
3290 1.1 paulus } while (--len > 0);
3291 1.1 paulus return res >> 1;
3292 1.1 paulus }
3293 1.1 paulus
3294 1.1 paulus /* ===========================================================================
3295 1.1 paulus * Flush the bit buffer, keeping at most 7 bits in it.
3296 1.1 paulus */
3297 1.1 paulus local void bi_flush(s)
3298 1.1 paulus deflate_state *s;
3299 1.1 paulus {
3300 1.1 paulus if (s->bi_valid == 16) {
3301 1.1 paulus put_short(s, s->bi_buf);
3302 1.1 paulus s->bi_buf = 0;
3303 1.1 paulus s->bi_valid = 0;
3304 1.1 paulus } else if (s->bi_valid >= 8) {
3305 1.1 paulus put_byte(s, (Byte)s->bi_buf);
3306 1.1 paulus s->bi_buf >>= 8;
3307 1.1 paulus s->bi_valid -= 8;
3308 1.1 paulus }
3309 1.1 paulus }
3310 1.1 paulus
3311 1.1 paulus /* ===========================================================================
3312 1.1 paulus * Flush the bit buffer and align the output on a byte boundary
3313 1.1 paulus */
3314 1.1 paulus local void bi_windup(s)
3315 1.1 paulus deflate_state *s;
3316 1.1 paulus {
3317 1.1 paulus if (s->bi_valid > 8) {
3318 1.1 paulus put_short(s, s->bi_buf);
3319 1.1 paulus } else if (s->bi_valid > 0) {
3320 1.1 paulus put_byte(s, (Byte)s->bi_buf);
3321 1.1 paulus }
3322 1.1 paulus s->bi_buf = 0;
3323 1.1 paulus s->bi_valid = 0;
3324 1.1 paulus #ifdef DEBUG_ZLIB
3325 1.1 paulus s->bits_sent = (s->bits_sent+7) & ~7;
3326 1.1 paulus #endif
3327 1.1 paulus }
3328 1.1 paulus
3329 1.1 paulus /* ===========================================================================
3330 1.1 paulus * Copy a stored block, storing first the length and its
3331 1.1 paulus * one's complement if requested.
3332 1.1 paulus */
3333 1.1 paulus local void copy_block(s, buf, len, header)
3334 1.1 paulus deflate_state *s;
3335 1.1 paulus charf *buf; /* the input data */
3336 1.1 paulus unsigned len; /* its length */
3337 1.1 paulus int header; /* true if block header must be written */
3338 1.1 paulus {
3339 1.1 paulus bi_windup(s); /* align on byte boundary */
3340 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
3341 1.1 paulus
3342 1.1 paulus if (header) {
3343 1.20 perry put_short(s, (ush)len);
3344 1.1 paulus put_short(s, (ush)~len);
3345 1.1 paulus #ifdef DEBUG_ZLIB
3346 1.1 paulus s->bits_sent += 2*16;
3347 1.1 paulus #endif
3348 1.1 paulus }
3349 1.1 paulus #ifdef DEBUG_ZLIB
3350 1.1 paulus s->bits_sent += (ulg)len<<3;
3351 1.1 paulus #endif
3352 1.7 christos /* bundle up the put_byte(s, *buf++) calls */
3353 1.7 christos zmemcpy(&s->pending_buf[s->pending], buf, len);
3354 1.7 christos s->pending += len;
3355 1.1 paulus }
3356 1.7 christos /* --- trees.c */
3357 1.7 christos
3358 1.7 christos /* +++ inflate.c */
3359 1.17 fvdl
3360 1.7 christos /* inflate.c -- zlib interface to inflate modules
3361 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3362 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3363 1.7 christos */
3364 1.1 paulus
3365 1.7 christos /* #include "zutil.h" */
3366 1.1 paulus
3367 1.7 christos /* +++ infblock.h */
3368 1.17 fvdl
3369 1.1 paulus /* infblock.h -- header to use infblock.c
3370 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3371 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3372 1.1 paulus */
3373 1.1 paulus
3374 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3375 1.1 paulus part of the implementation of the compression library and is
3376 1.1 paulus subject to change. Applications should only use zlib.h.
3377 1.1 paulus */
3378 1.1 paulus
3379 1.1 paulus struct inflate_blocks_state;
3380 1.1 paulus typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3381 1.1 paulus
3382 1.17 fvdl extern inflate_blocks_statef * inflate_blocks_new __P((
3383 1.7 christos z_streamp z,
3384 1.1 paulus check_func c, /* check function */
3385 1.1 paulus uInt w)); /* window size */
3386 1.1 paulus
3387 1.17 fvdl extern int inflate_blocks __P((
3388 1.1 paulus inflate_blocks_statef *,
3389 1.7 christos z_streamp ,
3390 1.1 paulus int)); /* initial return code */
3391 1.1 paulus
3392 1.17 fvdl extern void inflate_blocks_reset __P((
3393 1.1 paulus inflate_blocks_statef *,
3394 1.7 christos z_streamp ,
3395 1.1 paulus uLongf *)); /* check value on output */
3396 1.1 paulus
3397 1.17 fvdl extern int inflate_blocks_free __P((
3398 1.1 paulus inflate_blocks_statef *,
3399 1.17 fvdl z_streamp));
3400 1.1 paulus
3401 1.17 fvdl extern void inflate_set_dictionary __P((
3402 1.7 christos inflate_blocks_statef *s,
3403 1.7 christos const Bytef *d, /* dictionary */
3404 1.7 christos uInt n)); /* dictionary length */
3405 1.7 christos
3406 1.17 fvdl extern int inflate_blocks_sync_point __P((
3407 1.17 fvdl inflate_blocks_statef *s));
3408 1.17 fvdl extern int inflate_addhistory __P((
3409 1.1 paulus inflate_blocks_statef *,
3410 1.7 christos z_streamp));
3411 1.1 paulus
3412 1.17 fvdl extern int inflate_packet_flush __P((
3413 1.1 paulus inflate_blocks_statef *));
3414 1.17 fvdl
3415 1.7 christos /* --- infblock.h */
3416 1.1 paulus
3417 1.7 christos #ifndef NO_DUMMY_DECL
3418 1.7 christos struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3419 1.1 paulus #endif
3420 1.1 paulus
3421 1.17 fvdl typedef enum {
3422 1.1 paulus METHOD, /* waiting for method byte */
3423 1.1 paulus FLAG, /* waiting for flag byte */
3424 1.7 christos DICT4, /* four dictionary check bytes to go */
3425 1.7 christos DICT3, /* three dictionary check bytes to go */
3426 1.7 christos DICT2, /* two dictionary check bytes to go */
3427 1.7 christos DICT1, /* one dictionary check byte to go */
3428 1.7 christos DICT0, /* waiting for inflateSetDictionary */
3429 1.1 paulus BLOCKS, /* decompressing blocks */
3430 1.1 paulus CHECK4, /* four check bytes to go */
3431 1.1 paulus CHECK3, /* three check bytes to go */
3432 1.1 paulus CHECK2, /* two check bytes to go */
3433 1.1 paulus CHECK1, /* one check byte to go */
3434 1.1 paulus DONE, /* finished check, done */
3435 1.1 paulus BAD} /* got an error--stay here */
3436 1.17 fvdl inflate_mode;
3437 1.17 fvdl
3438 1.17 fvdl /* inflate private state */
3439 1.17 fvdl struct internal_state {
3440 1.17 fvdl
3441 1.17 fvdl /* mode */
3442 1.17 fvdl inflate_mode mode; /* current inflate mode */
3443 1.1 paulus
3444 1.1 paulus /* mode dependent information */
3445 1.1 paulus union {
3446 1.1 paulus uInt method; /* if FLAGS, method byte */
3447 1.1 paulus struct {
3448 1.1 paulus uLong was; /* computed check value */
3449 1.1 paulus uLong need; /* stream check value */
3450 1.1 paulus } check; /* if CHECK, check values to compare */
3451 1.1 paulus uInt marker; /* if BAD, inflateSync's marker bytes count */
3452 1.1 paulus } sub; /* submode */
3453 1.1 paulus
3454 1.1 paulus /* mode independent information */
3455 1.1 paulus int nowrap; /* flag for no wrapper */
3456 1.1 paulus uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3457 1.20 perry inflate_blocks_statef
3458 1.1 paulus *blocks; /* current inflate_blocks state */
3459 1.1 paulus
3460 1.1 paulus };
3461 1.1 paulus
3462 1.1 paulus
3463 1.17 fvdl int ZEXPORT inflateReset(z)
3464 1.7 christos z_streamp z;
3465 1.1 paulus {
3466 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3467 1.1 paulus return Z_STREAM_ERROR;
3468 1.1 paulus z->total_in = z->total_out = 0;
3469 1.1 paulus z->msg = Z_NULL;
3470 1.1 paulus z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3471 1.17 fvdl inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3472 1.17 fvdl Tracev((stderr, "inflate: reset\n"));
3473 1.1 paulus return Z_OK;
3474 1.1 paulus }
3475 1.1 paulus
3476 1.1 paulus
3477 1.17 fvdl int ZEXPORT inflateEnd(z)
3478 1.7 christos z_streamp z;
3479 1.1 paulus {
3480 1.1 paulus if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3481 1.1 paulus return Z_STREAM_ERROR;
3482 1.1 paulus if (z->state->blocks != Z_NULL)
3483 1.17 fvdl inflate_blocks_free(z->state->blocks, z);
3484 1.7 christos ZFREE(z, z->state);
3485 1.1 paulus z->state = Z_NULL;
3486 1.17 fvdl Tracev((stderr, "inflate: end\n"));
3487 1.1 paulus return Z_OK;
3488 1.1 paulus }
3489 1.1 paulus
3490 1.1 paulus
3491 1.21 christos int ZEXPORT inflateInit2_(z, w, vers, stream_size)
3492 1.7 christos z_streamp z;
3493 1.1 paulus int w;
3494 1.21 christos const char *vers;
3495 1.7 christos int stream_size;
3496 1.1 paulus {
3497 1.21 christos if (vers == Z_NULL || vers[0] != ZLIB_VERSION[0] ||
3498 1.7 christos stream_size != sizeof(z_stream))
3499 1.7 christos return Z_VERSION_ERROR;
3500 1.7 christos
3501 1.1 paulus /* initialize state */
3502 1.1 paulus if (z == Z_NULL)
3503 1.1 paulus return Z_STREAM_ERROR;
3504 1.7 christos z->msg = Z_NULL;
3505 1.7 christos #ifndef NO_ZCFUNCS
3506 1.7 christos if (z->zalloc == Z_NULL)
3507 1.7 christos {
3508 1.7 christos z->zalloc = zcalloc;
3509 1.7 christos z->opaque = (voidpf)0;
3510 1.7 christos }
3511 1.7 christos if (z->zfree == Z_NULL) z->zfree = zcfree;
3512 1.7 christos #endif
3513 1.1 paulus if ((z->state = (struct internal_state FAR *)
3514 1.7 christos ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3515 1.1 paulus return Z_MEM_ERROR;
3516 1.1 paulus z->state->blocks = Z_NULL;
3517 1.1 paulus
3518 1.1 paulus /* handle undocumented nowrap option (no zlib header or check) */
3519 1.1 paulus z->state->nowrap = 0;
3520 1.1 paulus if (w < 0)
3521 1.1 paulus {
3522 1.1 paulus w = - w;
3523 1.1 paulus z->state->nowrap = 1;
3524 1.1 paulus }
3525 1.1 paulus
3526 1.1 paulus /* set window size */
3527 1.1 paulus if (w < 8 || w > 15)
3528 1.1 paulus {
3529 1.1 paulus inflateEnd(z);
3530 1.1 paulus return Z_STREAM_ERROR;
3531 1.1 paulus }
3532 1.1 paulus z->state->wbits = (uInt)w;
3533 1.1 paulus
3534 1.1 paulus /* create inflate_blocks state */
3535 1.1 paulus if ((z->state->blocks =
3536 1.7 christos inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3537 1.1 paulus == Z_NULL)
3538 1.1 paulus {
3539 1.1 paulus inflateEnd(z);
3540 1.1 paulus return Z_MEM_ERROR;
3541 1.1 paulus }
3542 1.17 fvdl Tracev((stderr, "inflate: allocated\n"));
3543 1.1 paulus
3544 1.1 paulus /* reset state */
3545 1.1 paulus inflateReset(z);
3546 1.1 paulus return Z_OK;
3547 1.1 paulus }
3548 1.1 paulus
3549 1.1 paulus
3550 1.19 kristerw #if 0
3551 1.21 christos int ZEXPORT inflateInit_(z, vers, stream_size)
3552 1.7 christos z_streamp z;
3553 1.21 christos const char *vers;
3554 1.7 christos int stream_size;
3555 1.1 paulus {
3556 1.21 christos return inflateInit2_(z, DEF_WBITS, vers, stream_size);
3557 1.1 paulus }
3558 1.19 kristerw #endif
3559 1.1 paulus
3560 1.1 paulus
3561 1.1 paulus #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3562 1.1 paulus #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3563 1.1 paulus
3564 1.17 fvdl int ZEXPORT inflate(z, f)
3565 1.7 christos z_streamp z;
3566 1.1 paulus int f;
3567 1.1 paulus {
3568 1.17 fvdl int r, r2;
3569 1.1 paulus uInt b;
3570 1.1 paulus
3571 1.17 fvdl if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3572 1.1 paulus return Z_STREAM_ERROR;
3573 1.17 fvdl r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
3574 1.1 paulus r = Z_BUF_ERROR;
3575 1.1 paulus while (1) switch (z->state->mode)
3576 1.1 paulus {
3577 1.1 paulus case METHOD:
3578 1.1 paulus NEEDBYTE
3579 1.7 christos if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3580 1.1 paulus {
3581 1.1 paulus z->state->mode = BAD;
3582 1.21 christos z->msg = "unknown compression method";
3583 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3584 1.1 paulus break;
3585 1.1 paulus }
3586 1.1 paulus if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3587 1.1 paulus {
3588 1.1 paulus z->state->mode = BAD;
3589 1.21 christos z->msg = "invalid window size";
3590 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3591 1.1 paulus break;
3592 1.1 paulus }
3593 1.1 paulus z->state->mode = FLAG;
3594 1.1 paulus case FLAG:
3595 1.1 paulus NEEDBYTE
3596 1.7 christos b = NEXTBYTE;
3597 1.7 christos if (((z->state->sub.method << 8) + b) % 31)
3598 1.1 paulus {
3599 1.1 paulus z->state->mode = BAD;
3600 1.21 christos z->msg = "incorrect header check";
3601 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3602 1.1 paulus break;
3603 1.1 paulus }
3604 1.17 fvdl Tracev((stderr, "inflate: zlib header ok\n"));
3605 1.7 christos if (!(b & PRESET_DICT))
3606 1.1 paulus {
3607 1.7 christos z->state->mode = BLOCKS;
3608 1.17 fvdl break;
3609 1.1 paulus }
3610 1.7 christos z->state->mode = DICT4;
3611 1.7 christos case DICT4:
3612 1.7 christos NEEDBYTE
3613 1.7 christos z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3614 1.7 christos z->state->mode = DICT3;
3615 1.7 christos case DICT3:
3616 1.7 christos NEEDBYTE
3617 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3618 1.7 christos z->state->mode = DICT2;
3619 1.7 christos case DICT2:
3620 1.7 christos NEEDBYTE
3621 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3622 1.7 christos z->state->mode = DICT1;
3623 1.7 christos case DICT1:
3624 1.7 christos NEEDBYTE
3625 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE;
3626 1.7 christos z->adler = z->state->sub.check.need;
3627 1.7 christos z->state->mode = DICT0;
3628 1.7 christos return Z_NEED_DICT;
3629 1.7 christos case DICT0:
3630 1.7 christos z->state->mode = BAD;
3631 1.21 christos z->msg = "need dictionary";
3632 1.7 christos z->state->sub.marker = 0; /* can try inflateSync */
3633 1.7 christos return Z_STREAM_ERROR;
3634 1.1 paulus case BLOCKS:
3635 1.1 paulus r = inflate_blocks(z->state->blocks, z, r);
3636 1.1 paulus if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3637 1.17 fvdl r = inflate_packet_flush(z->state->blocks);
3638 1.1 paulus if (r == Z_DATA_ERROR)
3639 1.1 paulus {
3640 1.1 paulus z->state->mode = BAD;
3641 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3642 1.1 paulus break;
3643 1.1 paulus }
3644 1.17 fvdl if (r == Z_OK)
3645 1.17 fvdl r = r2;
3646 1.1 paulus if (r != Z_STREAM_END)
3647 1.1 paulus return r;
3648 1.17 fvdl r = r2;
3649 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3650 1.1 paulus if (z->state->nowrap)
3651 1.1 paulus {
3652 1.1 paulus z->state->mode = DONE;
3653 1.1 paulus break;
3654 1.1 paulus }
3655 1.1 paulus z->state->mode = CHECK4;
3656 1.1 paulus case CHECK4:
3657 1.1 paulus NEEDBYTE
3658 1.1 paulus z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3659 1.1 paulus z->state->mode = CHECK3;
3660 1.1 paulus case CHECK3:
3661 1.1 paulus NEEDBYTE
3662 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3663 1.1 paulus z->state->mode = CHECK2;
3664 1.1 paulus case CHECK2:
3665 1.1 paulus NEEDBYTE
3666 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3667 1.1 paulus z->state->mode = CHECK1;
3668 1.1 paulus case CHECK1:
3669 1.1 paulus NEEDBYTE
3670 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE;
3671 1.1 paulus
3672 1.1 paulus if (z->state->sub.check.was != z->state->sub.check.need)
3673 1.1 paulus {
3674 1.1 paulus z->state->mode = BAD;
3675 1.21 christos z->msg = "incorrect data check";
3676 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3677 1.1 paulus break;
3678 1.1 paulus }
3679 1.17 fvdl Tracev((stderr, "inflate: zlib check ok\n"));
3680 1.1 paulus z->state->mode = DONE;
3681 1.1 paulus case DONE:
3682 1.1 paulus return Z_STREAM_END;
3683 1.1 paulus case BAD:
3684 1.1 paulus return Z_DATA_ERROR;
3685 1.1 paulus default:
3686 1.1 paulus return Z_STREAM_ERROR;
3687 1.1 paulus }
3688 1.1 paulus empty:
3689 1.1 paulus if (f != Z_PACKET_FLUSH)
3690 1.1 paulus return r;
3691 1.1 paulus z->state->mode = BAD;
3692 1.21 christos z->msg = "need more for packet flush";
3693 1.17 fvdl z->state->sub.marker = 0;
3694 1.1 paulus return Z_DATA_ERROR;
3695 1.1 paulus }
3696 1.1 paulus
3697 1.7 christos
3698 1.19 kristerw #if 0
3699 1.17 fvdl int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
3700 1.7 christos z_streamp z;
3701 1.7 christos const Bytef *dictionary;
3702 1.7 christos uInt dictLength;
3703 1.7 christos {
3704 1.7 christos uInt length = dictLength;
3705 1.7 christos
3706 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3707 1.7 christos return Z_STREAM_ERROR;
3708 1.7 christos
3709 1.7 christos if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3710 1.7 christos z->adler = 1L;
3711 1.7 christos
3712 1.7 christos if (length >= ((uInt)1<<z->state->wbits))
3713 1.7 christos {
3714 1.7 christos length = (1<<z->state->wbits)-1;
3715 1.7 christos dictionary += dictLength - length;
3716 1.7 christos }
3717 1.7 christos inflate_set_dictionary(z->state->blocks, dictionary, length);
3718 1.7 christos z->state->mode = BLOCKS;
3719 1.7 christos return Z_OK;
3720 1.7 christos }
3721 1.19 kristerw #endif
3722 1.7 christos
3723 1.1 paulus /*
3724 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
3725 1.1 paulus * without performing any output. The output buffer must be "caught up";
3726 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
3727 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
3728 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
3729 1.1 paulus * will have been updated if need be.
3730 1.1 paulus */
3731 1.1 paulus
3732 1.1 paulus int inflateIncomp(z)
3733 1.1 paulus z_stream *z;
3734 1.1 paulus {
3735 1.1 paulus if (z->state->mode != BLOCKS)
3736 1.1 paulus return Z_DATA_ERROR;
3737 1.1 paulus return inflate_addhistory(z->state->blocks, z);
3738 1.1 paulus }
3739 1.1 paulus
3740 1.19 kristerw #if 0
3741 1.17 fvdl int ZEXPORT inflateSync(z)
3742 1.7 christos z_streamp z;
3743 1.1 paulus {
3744 1.1 paulus uInt n; /* number of bytes to look at */
3745 1.1 paulus Bytef *p; /* pointer to bytes */
3746 1.1 paulus uInt m; /* number of marker bytes found in a row */
3747 1.1 paulus uLong r, w; /* temporaries to save total_in and total_out */
3748 1.1 paulus
3749 1.1 paulus /* set up */
3750 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3751 1.1 paulus return Z_STREAM_ERROR;
3752 1.1 paulus if (z->state->mode != BAD)
3753 1.1 paulus {
3754 1.1 paulus z->state->mode = BAD;
3755 1.1 paulus z->state->sub.marker = 0;
3756 1.1 paulus }
3757 1.1 paulus if ((n = z->avail_in) == 0)
3758 1.1 paulus return Z_BUF_ERROR;
3759 1.1 paulus p = z->next_in;
3760 1.1 paulus m = z->state->sub.marker;
3761 1.1 paulus
3762 1.1 paulus /* search */
3763 1.1 paulus while (n && m < 4)
3764 1.1 paulus {
3765 1.17 fvdl static const Byte mark[4] = {0, 0, 0xff, 0xff};
3766 1.17 fvdl if (*p == mark[m])
3767 1.1 paulus m++;
3768 1.1 paulus else if (*p)
3769 1.1 paulus m = 0;
3770 1.1 paulus else
3771 1.1 paulus m = 4 - m;
3772 1.1 paulus p++, n--;
3773 1.1 paulus }
3774 1.1 paulus
3775 1.1 paulus /* restore */
3776 1.1 paulus z->total_in += p - z->next_in;
3777 1.1 paulus z->next_in = p;
3778 1.1 paulus z->avail_in = n;
3779 1.1 paulus z->state->sub.marker = m;
3780 1.1 paulus
3781 1.1 paulus /* return no joy or set up to restart on a new block */
3782 1.1 paulus if (m != 4)
3783 1.1 paulus return Z_DATA_ERROR;
3784 1.1 paulus r = z->total_in; w = z->total_out;
3785 1.1 paulus inflateReset(z);
3786 1.1 paulus z->total_in = r; z->total_out = w;
3787 1.1 paulus z->state->mode = BLOCKS;
3788 1.1 paulus return Z_OK;
3789 1.1 paulus }
3790 1.19 kristerw #endif
3791 1.1 paulus
3792 1.17 fvdl
3793 1.17 fvdl /* Returns true if inflate is currently at the end of a block generated
3794 1.17 fvdl * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
3795 1.17 fvdl * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
3796 1.17 fvdl * but removes the length bytes of the resulting empty stored block. When
3797 1.17 fvdl * decompressing, PPP checks that at the end of input packet, inflate is
3798 1.17 fvdl * waiting for these length bytes.
3799 1.17 fvdl */
3800 1.19 kristerw #if 0
3801 1.17 fvdl int ZEXPORT inflateSyncPoint(z)
3802 1.17 fvdl z_streamp z;
3803 1.17 fvdl {
3804 1.17 fvdl if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
3805 1.17 fvdl return Z_STREAM_ERROR;
3806 1.17 fvdl return inflate_blocks_sync_point(z->state->blocks);
3807 1.17 fvdl }
3808 1.19 kristerw #endif
3809 1.1 paulus #undef NEEDBYTE
3810 1.1 paulus #undef NEXTBYTE
3811 1.7 christos /* --- inflate.c */
3812 1.7 christos
3813 1.7 christos /* +++ infblock.c */
3814 1.17 fvdl
3815 1.7 christos /* infblock.c -- interpret and process block types to last block
3816 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3817 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3818 1.7 christos */
3819 1.7 christos
3820 1.7 christos /* #include "zutil.h" */
3821 1.7 christos /* #include "infblock.h" */
3822 1.7 christos
3823 1.7 christos /* +++ inftrees.h */
3824 1.17 fvdl
3825 1.7 christos /* inftrees.h -- header to use inftrees.c
3826 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3827 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3828 1.7 christos */
3829 1.7 christos
3830 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3831 1.7 christos part of the implementation of the compression library and is
3832 1.7 christos subject to change. Applications should only use zlib.h.
3833 1.7 christos */
3834 1.7 christos
3835 1.7 christos /* Huffman code lookup table entry--this entry is four bytes for machines
3836 1.7 christos that have 16-bit pointers (e.g. PC's in the small or medium model). */
3837 1.7 christos
3838 1.7 christos typedef struct inflate_huft_s FAR inflate_huft;
3839 1.7 christos
3840 1.7 christos struct inflate_huft_s {
3841 1.7 christos union {
3842 1.7 christos struct {
3843 1.7 christos Byte Exop; /* number of extra bits or operation */
3844 1.7 christos Byte Bits; /* number of bits in this code or subcode */
3845 1.7 christos } what;
3846 1.17 fvdl uInt pad; /* pad structure to a power of 2 (4 bytes for */
3847 1.17 fvdl } word; /* 16-bit, 8 bytes for 32-bit int's) */
3848 1.17 fvdl uInt base; /* literal, length base, distance base,
3849 1.17 fvdl or table offset */
3850 1.7 christos };
3851 1.7 christos
3852 1.17 fvdl /* Maximum size of dynamic tree. The maximum found in a long but non-
3853 1.17 fvdl exhaustive search was 1004 huft structures (850 for length/literals
3854 1.17 fvdl and 154 for distances, the latter actually the result of an
3855 1.17 fvdl exhaustive search). The actual maximum is not known, but the
3856 1.17 fvdl value below is more than safe. */
3857 1.17 fvdl #define MANY 1440
3858 1.7 christos
3859 1.17 fvdl extern int inflate_trees_bits __P((
3860 1.7 christos uIntf *, /* 19 code lengths */
3861 1.7 christos uIntf *, /* bits tree desired/actual depth */
3862 1.7 christos inflate_huft * FAR *, /* bits tree result */
3863 1.17 fvdl inflate_huft *, /* space for trees */
3864 1.17 fvdl z_streamp)); /* for messages */
3865 1.7 christos
3866 1.17 fvdl extern int inflate_trees_dynamic __P((
3867 1.7 christos uInt, /* number of literal/length codes */
3868 1.7 christos uInt, /* number of distance codes */
3869 1.7 christos uIntf *, /* that many (total) code lengths */
3870 1.7 christos uIntf *, /* literal desired/actual bit depth */
3871 1.7 christos uIntf *, /* distance desired/actual bit depth */
3872 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3873 1.7 christos inflate_huft * FAR *, /* distance tree result */
3874 1.17 fvdl inflate_huft *, /* space for trees */
3875 1.17 fvdl z_streamp)); /* for messages */
3876 1.7 christos
3877 1.17 fvdl extern int inflate_trees_fixed __P((
3878 1.7 christos uIntf *, /* literal desired/actual bit depth */
3879 1.7 christos uIntf *, /* distance desired/actual bit depth */
3880 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3881 1.17 fvdl inflate_huft * FAR *, /* distance tree result */
3882 1.17 fvdl z_streamp)); /* for memory allocation */
3883 1.7 christos /* --- inftrees.h */
3884 1.7 christos
3885 1.7 christos /* +++ infcodes.h */
3886 1.17 fvdl
3887 1.7 christos /* infcodes.h -- header to use infcodes.c
3888 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3889 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3890 1.7 christos */
3891 1.7 christos
3892 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3893 1.7 christos part of the implementation of the compression library and is
3894 1.7 christos subject to change. Applications should only use zlib.h.
3895 1.7 christos */
3896 1.7 christos
3897 1.7 christos struct inflate_codes_state;
3898 1.7 christos typedef struct inflate_codes_state FAR inflate_codes_statef;
3899 1.7 christos
3900 1.17 fvdl extern inflate_codes_statef *inflate_codes_new __P((
3901 1.7 christos uInt, uInt,
3902 1.7 christos inflate_huft *, inflate_huft *,
3903 1.7 christos z_streamp ));
3904 1.7 christos
3905 1.17 fvdl extern int inflate_codes __P((
3906 1.7 christos inflate_blocks_statef *,
3907 1.7 christos z_streamp ,
3908 1.7 christos int));
3909 1.7 christos
3910 1.17 fvdl extern void inflate_codes_free __P((
3911 1.7 christos inflate_codes_statef *,
3912 1.7 christos z_streamp ));
3913 1.1 paulus
3914 1.7 christos /* --- infcodes.h */
3915 1.7 christos
3916 1.7 christos /* +++ infutil.h */
3917 1.17 fvdl
3918 1.1 paulus /* infutil.h -- types and macros common to blocks and codes
3919 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3920 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3921 1.1 paulus */
3922 1.1 paulus
3923 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3924 1.1 paulus part of the implementation of the compression library and is
3925 1.1 paulus subject to change. Applications should only use zlib.h.
3926 1.1 paulus */
3927 1.1 paulus
3928 1.7 christos #ifndef _INFUTIL_H
3929 1.7 christos #define _INFUTIL_H
3930 1.1 paulus
3931 1.7 christos typedef enum {
3932 1.1 paulus TYPE, /* get type bits (3, including end bit) */
3933 1.1 paulus LENS, /* get lengths for stored */
3934 1.1 paulus STORED, /* processing stored block */
3935 1.1 paulus TABLE, /* get table lengths */
3936 1.1 paulus BTREE, /* get bit lengths tree for a dynamic block */
3937 1.1 paulus DTREE, /* get length, distance trees for a dynamic block */
3938 1.1 paulus CODES, /* processing fixed or dynamic block */
3939 1.1 paulus DRY, /* output remaining window bytes */
3940 1.7 christos DONEB, /* finished last block, done */
3941 1.7 christos BADB} /* got a data error--stuck here */
3942 1.7 christos inflate_block_mode;
3943 1.7 christos
3944 1.7 christos /* inflate blocks semi-private state */
3945 1.7 christos struct inflate_blocks_state {
3946 1.7 christos
3947 1.7 christos /* mode */
3948 1.7 christos inflate_block_mode mode; /* current inflate_block mode */
3949 1.1 paulus
3950 1.1 paulus /* mode dependent information */
3951 1.1 paulus union {
3952 1.1 paulus uInt left; /* if STORED, bytes left to copy */
3953 1.1 paulus struct {
3954 1.1 paulus uInt table; /* table lengths (14 bits) */
3955 1.1 paulus uInt index; /* index into blens (or border) */
3956 1.1 paulus uIntf *blens; /* bit lengths of codes */
3957 1.1 paulus uInt bb; /* bit length tree depth */
3958 1.1 paulus inflate_huft *tb; /* bit length decoding tree */
3959 1.1 paulus } trees; /* if DTREE, decoding info for trees */
3960 1.1 paulus struct {
3961 1.20 perry inflate_codes_statef
3962 1.1 paulus *codes;
3963 1.1 paulus } decode; /* if CODES, current state */
3964 1.1 paulus } sub; /* submode */
3965 1.1 paulus uInt last; /* true if this block is the last block */
3966 1.1 paulus
3967 1.1 paulus /* mode independent information */
3968 1.1 paulus uInt bitk; /* bits in bit buffer */
3969 1.1 paulus uLong bitb; /* bit buffer */
3970 1.17 fvdl inflate_huft *hufts; /* single malloc for tree space */
3971 1.1 paulus Bytef *window; /* sliding window */
3972 1.1 paulus Bytef *end; /* one byte after sliding window */
3973 1.1 paulus Bytef *read; /* window read pointer */
3974 1.1 paulus Bytef *write; /* window write pointer */
3975 1.1 paulus check_func checkfn; /* check function */
3976 1.1 paulus uLong check; /* check on output */
3977 1.1 paulus
3978 1.1 paulus };
3979 1.1 paulus
3980 1.1 paulus
3981 1.1 paulus /* defines for inflate input/output */
3982 1.1 paulus /* update pointers and return */
3983 1.1 paulus #define UPDBITS {s->bitb=b;s->bitk=k;}
3984 1.1 paulus #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3985 1.1 paulus #define UPDOUT {s->write=q;}
3986 1.1 paulus #define UPDATE {UPDBITS UPDIN UPDOUT}
3987 1.1 paulus #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3988 1.1 paulus /* get bytes and bits */
3989 1.1 paulus #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3990 1.1 paulus #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3991 1.1 paulus #define NEXTBYTE (n--,*p++)
3992 1.1 paulus #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3993 1.1 paulus #define DUMPBITS(j) {b>>=(j);k-=(j);}
3994 1.1 paulus /* output bytes */
3995 1.7 christos #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3996 1.7 christos #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3997 1.17 fvdl #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3998 1.1 paulus #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3999 1.17 fvdl #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
4000 1.1 paulus #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
4001 1.1 paulus /* load local pointers */
4002 1.1 paulus #define LOAD {LOADIN LOADOUT}
4003 1.1 paulus
4004 1.7 christos /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4005 1.17 fvdl extern uInt inflate_mask[17];
4006 1.1 paulus
4007 1.1 paulus /* copy as much as possible from the sliding window to the output area */
4008 1.17 fvdl extern int inflate_flush __P((
4009 1.1 paulus inflate_blocks_statef *,
4010 1.7 christos z_streamp ,
4011 1.1 paulus int));
4012 1.1 paulus
4013 1.7 christos #ifndef NO_DUMMY_DECL
4014 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4015 1.7 christos #endif
4016 1.1 paulus
4017 1.7 christos #endif
4018 1.7 christos /* --- infutil.h */
4019 1.1 paulus
4020 1.7 christos #ifndef NO_DUMMY_DECL
4021 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4022 1.7 christos #endif
4023 1.1 paulus
4024 1.17 fvdl /* simplify the use of the inflate_huft type with some defines */
4025 1.17 fvdl #define exop word.what.Exop
4026 1.17 fvdl #define bits word.what.Bits
4027 1.17 fvdl
4028 1.1 paulus /* Table for deflate from PKZIP's appnote.txt. */
4029 1.7 christos local const uInt border[] = { /* Order of the bit length code lengths */
4030 1.1 paulus 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4031 1.1 paulus
4032 1.1 paulus /*
4033 1.1 paulus Notes beyond the 1.93a appnote.txt:
4034 1.1 paulus
4035 1.1 paulus 1. Distance pointers never point before the beginning of the output
4036 1.1 paulus stream.
4037 1.1 paulus 2. Distance pointers can point back across blocks, up to 32k away.
4038 1.1 paulus 3. There is an implied maximum of 7 bits for the bit length table and
4039 1.1 paulus 15 bits for the actual data.
4040 1.1 paulus 4. If only one code exists, then it is encoded using one bit. (Zero
4041 1.1 paulus would be more efficient, but perhaps a little confusing.) If two
4042 1.1 paulus codes exist, they are coded using one bit each (0 and 1).
4043 1.1 paulus 5. There is no way of sending zero distance codes--a dummy must be
4044 1.1 paulus sent if there are none. (History: a pre 2.0 version of PKZIP would
4045 1.1 paulus store blocks with no distance codes, but this was discovered to be
4046 1.1 paulus too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
4047 1.1 paulus zero distance codes, which is sent as one code of zero bits in
4048 1.1 paulus length.
4049 1.1 paulus 6. There are up to 286 literal/length codes. Code 256 represents the
4050 1.1 paulus end-of-block. Note however that the static length tree defines
4051 1.1 paulus 288 codes just to fill out the Huffman codes. Codes 286 and 287
4052 1.1 paulus cannot be used though, since there is no length base or extra bits
4053 1.1 paulus defined for them. Similarily, there are up to 30 distance codes.
4054 1.1 paulus However, static trees define 32 codes (all 5 bits) to fill out the
4055 1.1 paulus Huffman codes, but the last two had better not show up in the data.
4056 1.1 paulus 7. Unzip can check dynamic Huffman blocks for complete code sets.
4057 1.1 paulus The exception is that a single code would not be complete (see #4).
4058 1.1 paulus 8. The five bits following the block type is really the number of
4059 1.1 paulus literal codes sent minus 257.
4060 1.1 paulus 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4061 1.1 paulus (1+6+6). Therefore, to output three times the length, you output
4062 1.1 paulus three codes (1+1+1), whereas to output four times the same length,
4063 1.1 paulus you only need two codes (1+3). Hmm.
4064 1.1 paulus 10. In the tree reconstruction algorithm, Code = Code + Increment
4065 1.1 paulus only if BitLength(i) is not zero. (Pretty obvious.)
4066 1.1 paulus 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
4067 1.1 paulus 12. Note: length code 284 can represent 227-258, but length code 285
4068 1.1 paulus really is 258. The last length deserves its own, short code
4069 1.1 paulus since it gets used a lot in very redundant files. The length
4070 1.1 paulus 258 is special since 258 - 3 (the min match length) is 255.
4071 1.1 paulus 13. The literal/length and distance code bit lengths are read as a
4072 1.1 paulus single stream of lengths. It is possible (and advantageous) for
4073 1.1 paulus a repeat code (16, 17, or 18) to go across the boundary between
4074 1.1 paulus the two sets of lengths.
4075 1.1 paulus */
4076 1.1 paulus
4077 1.1 paulus
4078 1.7 christos void inflate_blocks_reset(s, z, c)
4079 1.1 paulus inflate_blocks_statef *s;
4080 1.7 christos z_streamp z;
4081 1.1 paulus uLongf *c;
4082 1.1 paulus {
4083 1.17 fvdl if (c != Z_NULL)
4084 1.1 paulus *c = s->check;
4085 1.1 paulus if (s->mode == BTREE || s->mode == DTREE)
4086 1.7 christos ZFREE(z, s->sub.trees.blens);
4087 1.1 paulus if (s->mode == CODES)
4088 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
4089 1.1 paulus s->mode = TYPE;
4090 1.1 paulus s->bitk = 0;
4091 1.1 paulus s->bitb = 0;
4092 1.1 paulus s->read = s->write = s->window;
4093 1.1 paulus if (s->checkfn != Z_NULL)
4094 1.17 fvdl z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
4095 1.17 fvdl Tracev((stderr, "inflate: blocks reset\n"));
4096 1.1 paulus }
4097 1.1 paulus
4098 1.1 paulus
4099 1.7 christos inflate_blocks_statef *inflate_blocks_new(z, c, w)
4100 1.7 christos z_streamp z;
4101 1.1 paulus check_func c;
4102 1.1 paulus uInt w;
4103 1.1 paulus {
4104 1.1 paulus inflate_blocks_statef *s;
4105 1.1 paulus
4106 1.7 christos if ((s = (inflate_blocks_statef *)ZALLOC
4107 1.1 paulus (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
4108 1.1 paulus return s;
4109 1.17 fvdl if ((s->hufts =
4110 1.17 fvdl (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
4111 1.17 fvdl {
4112 1.17 fvdl ZFREE(z, s);
4113 1.17 fvdl return Z_NULL;
4114 1.17 fvdl }
4115 1.7 christos if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4116 1.1 paulus {
4117 1.17 fvdl ZFREE(z, s->hufts);
4118 1.7 christos ZFREE(z, s);
4119 1.1 paulus return Z_NULL;
4120 1.1 paulus }
4121 1.1 paulus s->end = s->window + w;
4122 1.1 paulus s->checkfn = c;
4123 1.1 paulus s->mode = TYPE;
4124 1.17 fvdl Tracev((stderr, "inflate: blocks allocated\n"));
4125 1.17 fvdl inflate_blocks_reset(s, z, Z_NULL);
4126 1.1 paulus return s;
4127 1.1 paulus }
4128 1.1 paulus
4129 1.1 paulus
4130 1.7 christos int inflate_blocks(s, z, r)
4131 1.1 paulus inflate_blocks_statef *s;
4132 1.7 christos z_streamp z;
4133 1.1 paulus int r;
4134 1.1 paulus {
4135 1.1 paulus uInt t; /* temporary storage */
4136 1.1 paulus uLong b; /* bit buffer */
4137 1.1 paulus uInt k; /* bits in bit buffer */
4138 1.1 paulus Bytef *p; /* input data pointer */
4139 1.1 paulus uInt n; /* bytes available there */
4140 1.1 paulus Bytef *q; /* output window write pointer */
4141 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4142 1.1 paulus
4143 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
4144 1.1 paulus LOAD
4145 1.1 paulus
4146 1.1 paulus /* process input based on current state */
4147 1.1 paulus while (1) switch (s->mode)
4148 1.1 paulus {
4149 1.1 paulus case TYPE:
4150 1.1 paulus NEEDBITS(3)
4151 1.1 paulus t = (uInt)b & 7;
4152 1.1 paulus s->last = t & 1;
4153 1.1 paulus switch (t >> 1)
4154 1.1 paulus {
4155 1.1 paulus case 0: /* stored */
4156 1.17 fvdl Tracev((stderr, "inflate: stored block%s\n",
4157 1.1 paulus s->last ? " (last)" : ""));
4158 1.1 paulus DUMPBITS(3)
4159 1.1 paulus t = k & 7; /* go to byte boundary */
4160 1.1 paulus DUMPBITS(t)
4161 1.1 paulus s->mode = LENS; /* get length of stored block */
4162 1.1 paulus break;
4163 1.1 paulus case 1: /* fixed */
4164 1.17 fvdl Tracev((stderr, "inflate: fixed codes block%s\n",
4165 1.1 paulus s->last ? " (last)" : ""));
4166 1.1 paulus {
4167 1.1 paulus uInt bl, bd;
4168 1.1 paulus inflate_huft *tl, *td;
4169 1.1 paulus
4170 1.17 fvdl inflate_trees_fixed(&bl, &bd, &tl, &td, z);
4171 1.1 paulus s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
4172 1.1 paulus if (s->sub.decode.codes == Z_NULL)
4173 1.1 paulus {
4174 1.1 paulus r = Z_MEM_ERROR;
4175 1.1 paulus LEAVE
4176 1.1 paulus }
4177 1.1 paulus }
4178 1.1 paulus DUMPBITS(3)
4179 1.1 paulus s->mode = CODES;
4180 1.1 paulus break;
4181 1.1 paulus case 2: /* dynamic */
4182 1.17 fvdl Tracev((stderr, "inflate: dynamic codes block%s\n",
4183 1.1 paulus s->last ? " (last)" : ""));
4184 1.1 paulus DUMPBITS(3)
4185 1.1 paulus s->mode = TABLE;
4186 1.1 paulus break;
4187 1.1 paulus case 3: /* illegal */
4188 1.1 paulus DUMPBITS(3)
4189 1.1 paulus s->mode = BADB;
4190 1.21 christos z->msg = "invalid block type";
4191 1.1 paulus r = Z_DATA_ERROR;
4192 1.1 paulus LEAVE
4193 1.1 paulus }
4194 1.1 paulus break;
4195 1.1 paulus case LENS:
4196 1.1 paulus NEEDBITS(32)
4197 1.7 christos if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4198 1.1 paulus {
4199 1.1 paulus s->mode = BADB;
4200 1.21 christos z->msg = "invalid stored block lengths";
4201 1.1 paulus r = Z_DATA_ERROR;
4202 1.1 paulus LEAVE
4203 1.1 paulus }
4204 1.1 paulus s->sub.left = (uInt)b & 0xffff;
4205 1.1 paulus b = k = 0; /* dump bits */
4206 1.1 paulus Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
4207 1.7 christos s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4208 1.1 paulus break;
4209 1.1 paulus case STORED:
4210 1.1 paulus if (n == 0)
4211 1.1 paulus LEAVE
4212 1.1 paulus NEEDOUT
4213 1.1 paulus t = s->sub.left;
4214 1.1 paulus if (t > n) t = n;
4215 1.1 paulus if (t > m) t = m;
4216 1.1 paulus zmemcpy(q, p, t);
4217 1.1 paulus p += t; n -= t;
4218 1.1 paulus q += t; m -= t;
4219 1.1 paulus if ((s->sub.left -= t) != 0)
4220 1.1 paulus break;
4221 1.1 paulus Tracev((stderr, "inflate: stored end, %lu total out\n",
4222 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
4223 1.1 paulus (s->end - s->read) + (q - s->window))));
4224 1.1 paulus s->mode = s->last ? DRY : TYPE;
4225 1.1 paulus break;
4226 1.1 paulus case TABLE:
4227 1.1 paulus NEEDBITS(14)
4228 1.1 paulus s->sub.trees.table = t = (uInt)b & 0x3fff;
4229 1.1 paulus #ifndef PKZIP_BUG_WORKAROUND
4230 1.1 paulus if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4231 1.1 paulus {
4232 1.1 paulus s->mode = BADB;
4233 1.21 christos z->msg = "too many length or distance symbols";
4234 1.1 paulus r = Z_DATA_ERROR;
4235 1.1 paulus LEAVE
4236 1.1 paulus }
4237 1.1 paulus #endif
4238 1.1 paulus t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4239 1.1 paulus if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
4240 1.1 paulus {
4241 1.1 paulus r = Z_MEM_ERROR;
4242 1.1 paulus LEAVE
4243 1.1 paulus }
4244 1.1 paulus DUMPBITS(14)
4245 1.1 paulus s->sub.trees.index = 0;
4246 1.1 paulus Tracev((stderr, "inflate: table sizes ok\n"));
4247 1.1 paulus s->mode = BTREE;
4248 1.1 paulus case BTREE:
4249 1.1 paulus while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4250 1.1 paulus {
4251 1.1 paulus NEEDBITS(3)
4252 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
4253 1.1 paulus DUMPBITS(3)
4254 1.1 paulus }
4255 1.1 paulus while (s->sub.trees.index < 19)
4256 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
4257 1.1 paulus s->sub.trees.bb = 7;
4258 1.1 paulus t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4259 1.17 fvdl &s->sub.trees.tb, s->hufts, z);
4260 1.1 paulus if (t != Z_OK)
4261 1.1 paulus {
4262 1.1 paulus r = t;
4263 1.1 paulus if (r == Z_DATA_ERROR)
4264 1.17 fvdl {
4265 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4266 1.1 paulus s->mode = BADB;
4267 1.17 fvdl }
4268 1.1 paulus LEAVE
4269 1.1 paulus }
4270 1.1 paulus s->sub.trees.index = 0;
4271 1.1 paulus Tracev((stderr, "inflate: bits tree ok\n"));
4272 1.1 paulus s->mode = DTREE;
4273 1.1 paulus case DTREE:
4274 1.1 paulus while (t = s->sub.trees.table,
4275 1.1 paulus s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
4276 1.1 paulus {
4277 1.1 paulus inflate_huft *h;
4278 1.1 paulus uInt i, j, c;
4279 1.1 paulus
4280 1.1 paulus t = s->sub.trees.bb;
4281 1.1 paulus NEEDBITS(t)
4282 1.1 paulus h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4283 1.17 fvdl t = h->bits;
4284 1.17 fvdl c = h->base;
4285 1.1 paulus if (c < 16)
4286 1.1 paulus {
4287 1.1 paulus DUMPBITS(t)
4288 1.1 paulus s->sub.trees.blens[s->sub.trees.index++] = c;
4289 1.1 paulus }
4290 1.1 paulus else /* c == 16..18 */
4291 1.1 paulus {
4292 1.1 paulus i = c == 18 ? 7 : c - 14;
4293 1.1 paulus j = c == 18 ? 11 : 3;
4294 1.1 paulus NEEDBITS(t + i)
4295 1.1 paulus DUMPBITS(t)
4296 1.1 paulus j += (uInt)b & inflate_mask[i];
4297 1.1 paulus DUMPBITS(i)
4298 1.1 paulus i = s->sub.trees.index;
4299 1.1 paulus t = s->sub.trees.table;
4300 1.1 paulus if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
4301 1.1 paulus (c == 16 && i < 1))
4302 1.1 paulus {
4303 1.7 christos ZFREE(z, s->sub.trees.blens);
4304 1.1 paulus s->mode = BADB;
4305 1.21 christos z->msg = "invalid bit length repeat";
4306 1.1 paulus r = Z_DATA_ERROR;
4307 1.1 paulus LEAVE
4308 1.1 paulus }
4309 1.1 paulus c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4310 1.1 paulus do {
4311 1.1 paulus s->sub.trees.blens[i++] = c;
4312 1.1 paulus } while (--j);
4313 1.1 paulus s->sub.trees.index = i;
4314 1.1 paulus }
4315 1.1 paulus }
4316 1.1 paulus s->sub.trees.tb = Z_NULL;
4317 1.1 paulus {
4318 1.1 paulus uInt bl, bd;
4319 1.1 paulus inflate_huft *tl, *td;
4320 1.1 paulus inflate_codes_statef *c;
4321 1.1 paulus
4322 1.1 paulus bl = 9; /* must be <= 9 for lookahead assumptions */
4323 1.1 paulus bd = 6; /* must be <= 9 for lookahead assumptions */
4324 1.1 paulus t = s->sub.trees.table;
4325 1.1 paulus t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
4326 1.17 fvdl s->sub.trees.blens, &bl, &bd, &tl, &td,
4327 1.17 fvdl s->hufts, z);
4328 1.1 paulus if (t != Z_OK)
4329 1.1 paulus {
4330 1.1 paulus if (t == (uInt)Z_DATA_ERROR)
4331 1.17 fvdl {
4332 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4333 1.1 paulus s->mode = BADB;
4334 1.17 fvdl }
4335 1.1 paulus r = t;
4336 1.1 paulus LEAVE
4337 1.1 paulus }
4338 1.17 fvdl Tracev((stderr, "inflate: trees ok\n"));
4339 1.1 paulus if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
4340 1.1 paulus {
4341 1.1 paulus r = Z_MEM_ERROR;
4342 1.1 paulus LEAVE
4343 1.1 paulus }
4344 1.1 paulus s->sub.decode.codes = c;
4345 1.1 paulus }
4346 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4347 1.1 paulus s->mode = CODES;
4348 1.1 paulus case CODES:
4349 1.1 paulus UPDATE
4350 1.1 paulus if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4351 1.1 paulus return inflate_flush(s, z, r);
4352 1.1 paulus r = Z_OK;
4353 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
4354 1.1 paulus LOAD
4355 1.1 paulus Tracev((stderr, "inflate: codes end, %lu total out\n",
4356 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
4357 1.1 paulus (s->end - s->read) + (q - s->window))));
4358 1.1 paulus if (!s->last)
4359 1.1 paulus {
4360 1.1 paulus s->mode = TYPE;
4361 1.1 paulus break;
4362 1.1 paulus }
4363 1.1 paulus s->mode = DRY;
4364 1.1 paulus case DRY:
4365 1.1 paulus FLUSH
4366 1.1 paulus if (s->read != s->write)
4367 1.1 paulus LEAVE
4368 1.1 paulus s->mode = DONEB;
4369 1.1 paulus case DONEB:
4370 1.1 paulus r = Z_STREAM_END;
4371 1.1 paulus LEAVE
4372 1.1 paulus case BADB:
4373 1.1 paulus r = Z_DATA_ERROR;
4374 1.1 paulus LEAVE
4375 1.1 paulus default:
4376 1.1 paulus r = Z_STREAM_ERROR;
4377 1.1 paulus LEAVE
4378 1.1 paulus }
4379 1.1 paulus }
4380 1.1 paulus
4381 1.1 paulus
4382 1.17 fvdl int inflate_blocks_free(s, z)
4383 1.1 paulus inflate_blocks_statef *s;
4384 1.7 christos z_streamp z;
4385 1.1 paulus {
4386 1.17 fvdl inflate_blocks_reset(s, z, Z_NULL);
4387 1.7 christos ZFREE(z, s->window);
4388 1.17 fvdl ZFREE(z, s->hufts);
4389 1.7 christos ZFREE(z, s);
4390 1.17 fvdl Tracev((stderr, "inflate: blocks freed\n"));
4391 1.1 paulus return Z_OK;
4392 1.1 paulus }
4393 1.1 paulus
4394 1.7 christos
4395 1.19 kristerw #if 0
4396 1.7 christos void inflate_set_dictionary(s, d, n)
4397 1.7 christos inflate_blocks_statef *s;
4398 1.7 christos const Bytef *d;
4399 1.7 christos uInt n;
4400 1.7 christos {
4401 1.17 fvdl zmemcpy(s->window, d, n);
4402 1.7 christos s->read = s->write = s->window + n;
4403 1.7 christos }
4404 1.19 kristerw #endif
4405 1.7 christos
4406 1.1 paulus /*
4407 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
4408 1.1 paulus * without performing any output. The output buffer must be "caught up";
4409 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
4410 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
4411 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
4412 1.1 paulus * will have been updated if need be.
4413 1.1 paulus */
4414 1.7 christos int inflate_addhistory(s, z)
4415 1.1 paulus inflate_blocks_statef *s;
4416 1.1 paulus z_stream *z;
4417 1.1 paulus {
4418 1.1 paulus uLong b; /* bit buffer */ /* NOT USED HERE */
4419 1.1 paulus uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4420 1.1 paulus uInt t; /* temporary storage */
4421 1.1 paulus Bytef *p; /* input data pointer */
4422 1.1 paulus uInt n; /* bytes available there */
4423 1.1 paulus Bytef *q; /* output window write pointer */
4424 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4425 1.1 paulus
4426 1.1 paulus if (s->read != s->write)
4427 1.1 paulus return Z_STREAM_ERROR;
4428 1.1 paulus if (s->mode != TYPE)
4429 1.1 paulus return Z_DATA_ERROR;
4430 1.1 paulus
4431 1.1 paulus /* we're ready to rock */
4432 1.1 paulus LOAD
4433 1.1 paulus /* while there is input ready, copy to output buffer, moving
4434 1.1 paulus * pointers as needed.
4435 1.1 paulus */
4436 1.1 paulus while (n) {
4437 1.1 paulus t = n; /* how many to do */
4438 1.1 paulus /* is there room until end of buffer? */
4439 1.1 paulus if (t > m) t = m;
4440 1.1 paulus /* update check information */
4441 1.1 paulus if (s->checkfn != Z_NULL)
4442 1.1 paulus s->check = (*s->checkfn)(s->check, q, t);
4443 1.1 paulus zmemcpy(q, p, t);
4444 1.1 paulus q += t;
4445 1.1 paulus p += t;
4446 1.1 paulus n -= t;
4447 1.1 paulus z->total_out += t;
4448 1.1 paulus s->read = q; /* drag read pointer forward */
4449 1.7 christos /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4450 1.1 paulus if (q == s->end) {
4451 1.1 paulus s->read = q = s->window;
4452 1.1 paulus m = WAVAIL;
4453 1.1 paulus }
4454 1.1 paulus }
4455 1.1 paulus UPDATE
4456 1.1 paulus return Z_OK;
4457 1.1 paulus }
4458 1.1 paulus
4459 1.1 paulus
4460 1.1 paulus /*
4461 1.1 paulus * At the end of a Deflate-compressed PPP packet, we expect to have seen
4462 1.1 paulus * a `stored' block type value but not the (zero) length bytes.
4463 1.1 paulus */
4464 1.7 christos int inflate_packet_flush(s)
4465 1.1 paulus inflate_blocks_statef *s;
4466 1.1 paulus {
4467 1.1 paulus if (s->mode != LENS)
4468 1.1 paulus return Z_DATA_ERROR;
4469 1.1 paulus s->mode = TYPE;
4470 1.1 paulus return Z_OK;
4471 1.1 paulus }
4472 1.17 fvdl
4473 1.17 fvdl /* Returns true if inflate is currently at the end of a block generated
4474 1.20 perry * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4475 1.17 fvdl * IN assertion: s != Z_NULL
4476 1.17 fvdl */
4477 1.19 kristerw #if 0
4478 1.17 fvdl int inflate_blocks_sync_point(s)
4479 1.17 fvdl inflate_blocks_statef *s;
4480 1.17 fvdl {
4481 1.17 fvdl return s->mode == LENS;
4482 1.17 fvdl }
4483 1.19 kristerw #endif
4484 1.7 christos /* --- infblock.c */
4485 1.1 paulus
4486 1.17 fvdl
4487 1.7 christos /* +++ inftrees.c */
4488 1.17 fvdl
4489 1.1 paulus /* inftrees.c -- generate Huffman trees for efficient decoding
4490 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
4491 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
4492 1.1 paulus */
4493 1.1 paulus
4494 1.7 christos /* #include "zutil.h" */
4495 1.7 christos /* #include "inftrees.h" */
4496 1.7 christos
4497 1.17 fvdl #if !defined(BUILDFIXED) && !defined(STDC)
4498 1.17 fvdl # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
4499 1.17 fvdl #endif
4500 1.17 fvdl
4501 1.17 fvdl const char inflate_copyright[] =
4502 1.17 fvdl " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
4503 1.7 christos /*
4504 1.7 christos If you use the zlib library in a product, an acknowledgment is welcome
4505 1.7 christos in the documentation of your product. If for some reason you cannot
4506 1.7 christos include such an acknowledgment, I would appreciate that you keep this
4507 1.7 christos copyright string in the executable of your product.
4508 1.7 christos */
4509 1.7 christos
4510 1.7 christos #ifndef NO_DUMMY_DECL
4511 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4512 1.7 christos #endif
4513 1.7 christos
4514 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4515 1.1 paulus #define exop word.what.Exop
4516 1.1 paulus #define bits word.what.Bits
4517 1.1 paulus
4518 1.1 paulus
4519 1.17 fvdl local int huft_build __P((
4520 1.1 paulus uIntf *, /* code lengths in bits */
4521 1.1 paulus uInt, /* number of codes */
4522 1.1 paulus uInt, /* number of "simple" codes */
4523 1.7 christos const uIntf *, /* list of base values for non-simple codes */
4524 1.7 christos const uIntf *, /* list of extra bits for non-simple codes */
4525 1.1 paulus inflate_huft * FAR*,/* result: starting table */
4526 1.1 paulus uIntf *, /* maximum lookup bits (returns actual) */
4527 1.17 fvdl inflate_huft *, /* space for trees */
4528 1.17 fvdl uInt *, /* hufts used in space */
4529 1.17 fvdl uIntf * )); /* space for values */
4530 1.1 paulus
4531 1.1 paulus /* Tables for deflate from PKZIP's appnote.txt. */
4532 1.7 christos local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4533 1.1 paulus 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4534 1.1 paulus 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4535 1.7 christos /* see note #13 above about 258 */
4536 1.7 christos local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4537 1.1 paulus 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4538 1.7 christos 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4539 1.7 christos local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4540 1.1 paulus 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4541 1.1 paulus 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4542 1.1 paulus 8193, 12289, 16385, 24577};
4543 1.7 christos local const uInt cpdext[30] = { /* Extra bits for distance codes */
4544 1.1 paulus 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4545 1.1 paulus 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4546 1.1 paulus 12, 12, 13, 13};
4547 1.1 paulus
4548 1.1 paulus /*
4549 1.1 paulus Huffman code decoding is performed using a multi-level table lookup.
4550 1.1 paulus The fastest way to decode is to simply build a lookup table whose
4551 1.1 paulus size is determined by the longest code. However, the time it takes
4552 1.1 paulus to build this table can also be a factor if the data being decoded
4553 1.1 paulus is not very long. The most common codes are necessarily the
4554 1.1 paulus shortest codes, so those codes dominate the decoding time, and hence
4555 1.1 paulus the speed. The idea is you can have a shorter table that decodes the
4556 1.1 paulus shorter, more probable codes, and then point to subsidiary tables for
4557 1.1 paulus the longer codes. The time it costs to decode the longer codes is
4558 1.1 paulus then traded against the time it takes to make longer tables.
4559 1.1 paulus
4560 1.1 paulus This results of this trade are in the variables lbits and dbits
4561 1.1 paulus below. lbits is the number of bits the first level table for literal/
4562 1.1 paulus length codes can decode in one step, and dbits is the same thing for
4563 1.1 paulus the distance codes. Subsequent tables are also less than or equal to
4564 1.1 paulus those sizes. These values may be adjusted either when all of the
4565 1.1 paulus codes are shorter than that, in which case the longest code length in
4566 1.1 paulus bits is used, or when the shortest code is *longer* than the requested
4567 1.1 paulus table size, in which case the length of the shortest code in bits is
4568 1.1 paulus used.
4569 1.1 paulus
4570 1.1 paulus There are two different values for the two tables, since they code a
4571 1.1 paulus different number of possibilities each. The literal/length table
4572 1.1 paulus codes 286 possible values, or in a flat code, a little over eight
4573 1.1 paulus bits. The distance table codes 30 possible values, or a little less
4574 1.1 paulus than five bits, flat. The optimum values for speed end up being
4575 1.1 paulus about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4576 1.1 paulus The optimum values may differ though from machine to machine, and
4577 1.1 paulus possibly even between compilers. Your mileage may vary.
4578 1.1 paulus */
4579 1.1 paulus
4580 1.1 paulus
4581 1.1 paulus /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4582 1.1 paulus #define BMAX 15 /* maximum bit length of any code */
4583 1.1 paulus
4584 1.17 fvdl local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
4585 1.1 paulus uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4586 1.17 fvdl uInt n; /* number of codes (assumed <= 288) */
4587 1.1 paulus uInt s; /* number of simple-valued codes (0..s-1) */
4588 1.7 christos const uIntf *d; /* list of base values for non-simple codes */
4589 1.7 christos const uIntf *e; /* list of extra bits for non-simple codes */
4590 1.1 paulus inflate_huft * FAR *t; /* result: starting table */
4591 1.1 paulus uIntf *m; /* maximum lookup bits, returns actual */
4592 1.17 fvdl inflate_huft *hp; /* space for trees */
4593 1.17 fvdl uInt *hn; /* hufts used in space */
4594 1.17 fvdl uIntf *v; /* working area: values in order of bit length */
4595 1.1 paulus /* Given a list of code lengths and a maximum table size, make a set of
4596 1.1 paulus tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4597 1.1 paulus if the given code set is incomplete (the tables are still built in this
4598 1.17 fvdl case), or Z_DATA_ERROR if the input is invalid. */
4599 1.1 paulus {
4600 1.1 paulus
4601 1.1 paulus uInt a; /* counter for codes of length k */
4602 1.1 paulus uInt c[BMAX+1]; /* bit length count table */
4603 1.1 paulus uInt f; /* i repeats in table every f entries */
4604 1.1 paulus int g; /* maximum code length */
4605 1.1 paulus int h; /* table level */
4606 1.17 fvdl uInt i; /* counter, current code */
4607 1.17 fvdl uInt j; /* counter */
4608 1.17 fvdl int k; /* number of bits in current code */
4609 1.1 paulus int l; /* bits per table (returned in m) */
4610 1.17 fvdl uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
4611 1.17 fvdl uIntf *p; /* pointer into c[], b[], or v[] */
4612 1.1 paulus inflate_huft *q; /* points to current table */
4613 1.1 paulus struct inflate_huft_s r; /* table entry for structure assignment */
4614 1.1 paulus inflate_huft *u[BMAX]; /* table stack */
4615 1.17 fvdl int w; /* bits before this table == (l * h) */
4616 1.1 paulus uInt x[BMAX+1]; /* bit offsets, then code stack */
4617 1.1 paulus uIntf *xp; /* pointer into x */
4618 1.1 paulus int y; /* number of dummy codes added */
4619 1.1 paulus uInt z; /* number of entries in current table */
4620 1.1 paulus
4621 1.1 paulus
4622 1.1 paulus /* Generate counts for each bit length */
4623 1.1 paulus p = c;
4624 1.1 paulus #define C0 *p++ = 0;
4625 1.1 paulus #define C2 C0 C0 C0 C0
4626 1.1 paulus #define C4 C2 C2 C2 C2
4627 1.1 paulus C4 /* clear c[]--assume BMAX+1 is 16 */
4628 1.1 paulus p = b; i = n;
4629 1.1 paulus do {
4630 1.1 paulus c[*p++]++; /* assume all entries <= BMAX */
4631 1.1 paulus } while (--i);
4632 1.1 paulus if (c[0] == n) /* null input--all zero length codes */
4633 1.1 paulus {
4634 1.1 paulus *t = (inflate_huft *)Z_NULL;
4635 1.1 paulus *m = 0;
4636 1.1 paulus return Z_OK;
4637 1.1 paulus }
4638 1.1 paulus
4639 1.1 paulus
4640 1.1 paulus /* Find minimum and maximum length, bound *m by those */
4641 1.1 paulus l = *m;
4642 1.1 paulus for (j = 1; j <= BMAX; j++)
4643 1.1 paulus if (c[j])
4644 1.1 paulus break;
4645 1.1 paulus k = j; /* minimum code length */
4646 1.1 paulus if ((uInt)l < j)
4647 1.1 paulus l = j;
4648 1.1 paulus for (i = BMAX; i; i--)
4649 1.1 paulus if (c[i])
4650 1.1 paulus break;
4651 1.1 paulus g = i; /* maximum code length */
4652 1.1 paulus if ((uInt)l > i)
4653 1.1 paulus l = i;
4654 1.1 paulus *m = l;
4655 1.1 paulus
4656 1.1 paulus
4657 1.1 paulus /* Adjust last length count to fill out codes, if needed */
4658 1.1 paulus for (y = 1 << j; j < i; j++, y <<= 1)
4659 1.1 paulus if ((y -= c[j]) < 0)
4660 1.1 paulus return Z_DATA_ERROR;
4661 1.1 paulus if ((y -= c[i]) < 0)
4662 1.1 paulus return Z_DATA_ERROR;
4663 1.1 paulus c[i] += y;
4664 1.1 paulus
4665 1.1 paulus
4666 1.1 paulus /* Generate starting offsets into the value table for each length */
4667 1.1 paulus x[1] = j = 0;
4668 1.1 paulus p = c + 1; xp = x + 2;
4669 1.1 paulus while (--i) { /* note that i == g from above */
4670 1.1 paulus *xp++ = (j += *p++);
4671 1.1 paulus }
4672 1.1 paulus
4673 1.1 paulus
4674 1.1 paulus /* Make a table of values in order of bit lengths */
4675 1.1 paulus p = b; i = 0;
4676 1.1 paulus do {
4677 1.1 paulus if ((j = *p++) != 0)
4678 1.1 paulus v[x[j]++] = i;
4679 1.1 paulus } while (++i < n);
4680 1.17 fvdl n = x[g]; /* set n to length of v */
4681 1.1 paulus
4682 1.1 paulus
4683 1.1 paulus /* Generate the Huffman codes and for each, make the table entries */
4684 1.1 paulus x[0] = i = 0; /* first Huffman code is zero */
4685 1.1 paulus p = v; /* grab values in bit order */
4686 1.1 paulus h = -1; /* no tables yet--level -1 */
4687 1.1 paulus w = -l; /* bits decoded == (l * h) */
4688 1.1 paulus u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4689 1.1 paulus q = (inflate_huft *)Z_NULL; /* ditto */
4690 1.1 paulus z = 0; /* ditto */
4691 1.1 paulus
4692 1.1 paulus /* go through the bit lengths (k already is bits in shortest code) */
4693 1.1 paulus for (; k <= g; k++)
4694 1.1 paulus {
4695 1.1 paulus a = c[k];
4696 1.1 paulus while (a--)
4697 1.1 paulus {
4698 1.1 paulus /* here i is the Huffman code of length k bits for value *p */
4699 1.1 paulus /* make tables up to required level */
4700 1.1 paulus while (k > w + l)
4701 1.1 paulus {
4702 1.1 paulus h++;
4703 1.1 paulus w += l; /* previous table always l bits */
4704 1.1 paulus
4705 1.1 paulus /* compute minimum size table less than or equal to l bits */
4706 1.7 christos z = g - w;
4707 1.7 christos z = z > (uInt)l ? l : z; /* table size upper limit */
4708 1.1 paulus if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4709 1.1 paulus { /* too few codes for k-w bit table */
4710 1.1 paulus f -= a + 1; /* deduct codes from patterns left */
4711 1.1 paulus xp = c + k;
4712 1.1 paulus if (j < z)
4713 1.1 paulus while (++j < z) /* try smaller tables up to z bits */
4714 1.1 paulus {
4715 1.1 paulus if ((f <<= 1) <= *++xp)
4716 1.1 paulus break; /* enough codes to use up j bits */
4717 1.1 paulus f -= *xp; /* else deduct codes from patterns */
4718 1.1 paulus }
4719 1.1 paulus }
4720 1.1 paulus z = 1 << j; /* table entries for j-bit table */
4721 1.1 paulus
4722 1.17 fvdl /* allocate new table */
4723 1.17 fvdl if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
4724 1.17 fvdl return Z_DATA_ERROR; /* overflow of MANY */
4725 1.17 fvdl u[h] = q = hp + *hn;
4726 1.17 fvdl *hn += z;
4727 1.1 paulus
4728 1.1 paulus /* connect to last table, if there is one */
4729 1.1 paulus if (h)
4730 1.1 paulus {
4731 1.1 paulus x[h] = i; /* save pattern for backing up */
4732 1.1 paulus r.bits = (Byte)l; /* bits to dump before this table */
4733 1.1 paulus r.exop = (Byte)j; /* bits in this table */
4734 1.17 fvdl j = i >> (w - l);
4735 1.17 fvdl r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
4736 1.1 paulus u[h-1][j] = r; /* connect to last table */
4737 1.1 paulus }
4738 1.17 fvdl else
4739 1.17 fvdl *t = q; /* first table is returned result */
4740 1.1 paulus }
4741 1.1 paulus
4742 1.1 paulus /* set up table entry in r */
4743 1.1 paulus r.bits = (Byte)(k - w);
4744 1.1 paulus if (p >= v + n)
4745 1.1 paulus r.exop = 128 + 64; /* out of values--invalid code */
4746 1.1 paulus else if (*p < s)
4747 1.1 paulus {
4748 1.1 paulus r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4749 1.1 paulus r.base = *p++; /* simple code is just the value */
4750 1.1 paulus }
4751 1.1 paulus else
4752 1.1 paulus {
4753 1.7 christos r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4754 1.1 paulus r.base = d[*p++ - s];
4755 1.1 paulus }
4756 1.1 paulus
4757 1.1 paulus /* fill code-like entries with r */
4758 1.1 paulus f = 1 << (k - w);
4759 1.1 paulus for (j = i >> w; j < z; j += f)
4760 1.1 paulus q[j] = r;
4761 1.1 paulus
4762 1.1 paulus /* backwards increment the k-bit code i */
4763 1.1 paulus for (j = 1 << (k - 1); i & j; j >>= 1)
4764 1.1 paulus i ^= j;
4765 1.1 paulus i ^= j;
4766 1.1 paulus
4767 1.1 paulus /* backup over finished tables */
4768 1.17 fvdl mask = (1 << w) - 1; /* needed on HP, cc -O bug */
4769 1.17 fvdl while ((i & mask) != x[h])
4770 1.1 paulus {
4771 1.1 paulus h--; /* don't need to update q */
4772 1.1 paulus w -= l;
4773 1.17 fvdl mask = (1 << w) - 1;
4774 1.1 paulus }
4775 1.1 paulus }
4776 1.1 paulus }
4777 1.1 paulus
4778 1.1 paulus
4779 1.1 paulus /* Return Z_BUF_ERROR if we were given an incomplete table */
4780 1.1 paulus return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4781 1.1 paulus }
4782 1.1 paulus
4783 1.1 paulus
4784 1.17 fvdl int inflate_trees_bits(c, bb, tb, hp, z)
4785 1.1 paulus uIntf *c; /* 19 code lengths */
4786 1.1 paulus uIntf *bb; /* bits tree desired/actual depth */
4787 1.1 paulus inflate_huft * FAR *tb; /* bits tree result */
4788 1.17 fvdl inflate_huft *hp; /* space for trees */
4789 1.17 fvdl z_streamp z; /* for messages */
4790 1.1 paulus {
4791 1.1 paulus int r;
4792 1.17 fvdl uInt hn = 0; /* hufts used in space */
4793 1.17 fvdl uIntf *v; /* work area for huft_build */
4794 1.1 paulus
4795 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
4796 1.17 fvdl return Z_MEM_ERROR;
4797 1.17 fvdl r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
4798 1.17 fvdl tb, bb, hp, &hn, v);
4799 1.1 paulus if (r == Z_DATA_ERROR)
4800 1.21 christos z->msg = "oversubscribed dynamic bit lengths tree";
4801 1.7 christos else if (r == Z_BUF_ERROR || *bb == 0)
4802 1.1 paulus {
4803 1.21 christos z->msg = "incomplete dynamic bit lengths tree";
4804 1.1 paulus r = Z_DATA_ERROR;
4805 1.1 paulus }
4806 1.17 fvdl ZFREE(z, v);
4807 1.1 paulus return r;
4808 1.1 paulus }
4809 1.1 paulus
4810 1.1 paulus
4811 1.17 fvdl int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
4812 1.1 paulus uInt nl; /* number of literal/length codes */
4813 1.1 paulus uInt nd; /* number of distance codes */
4814 1.1 paulus uIntf *c; /* that many (total) code lengths */
4815 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4816 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4817 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4818 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4819 1.17 fvdl inflate_huft *hp; /* space for trees */
4820 1.17 fvdl z_streamp z; /* for messages */
4821 1.1 paulus {
4822 1.1 paulus int r;
4823 1.17 fvdl uInt hn = 0; /* hufts used in space */
4824 1.17 fvdl uIntf *v; /* work area for huft_build */
4825 1.17 fvdl
4826 1.17 fvdl /* allocate work area */
4827 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4828 1.17 fvdl return Z_MEM_ERROR;
4829 1.1 paulus
4830 1.1 paulus /* build literal/length tree */
4831 1.17 fvdl r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
4832 1.7 christos if (r != Z_OK || *bl == 0)
4833 1.1 paulus {
4834 1.1 paulus if (r == Z_DATA_ERROR)
4835 1.21 christos z->msg = "oversubscribed literal/length tree";
4836 1.7 christos else if (r != Z_MEM_ERROR)
4837 1.1 paulus {
4838 1.21 christos z->msg = "incomplete literal/length tree";
4839 1.1 paulus r = Z_DATA_ERROR;
4840 1.1 paulus }
4841 1.17 fvdl ZFREE(z, v);
4842 1.1 paulus return r;
4843 1.1 paulus }
4844 1.1 paulus
4845 1.1 paulus /* build distance tree */
4846 1.17 fvdl r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
4847 1.7 christos if (r != Z_OK || (*bd == 0 && nl > 257))
4848 1.1 paulus {
4849 1.1 paulus if (r == Z_DATA_ERROR)
4850 1.21 christos z->msg = "oversubscribed distance tree";
4851 1.1 paulus else if (r == Z_BUF_ERROR) {
4852 1.1 paulus #ifdef PKZIP_BUG_WORKAROUND
4853 1.1 paulus r = Z_OK;
4854 1.1 paulus }
4855 1.1 paulus #else
4856 1.21 christos z->msg = "incomplete distance tree";
4857 1.7 christos r = Z_DATA_ERROR;
4858 1.7 christos }
4859 1.7 christos else if (r != Z_MEM_ERROR)
4860 1.7 christos {
4861 1.21 christos z->msg = "empty distance tree with lengths";
4862 1.1 paulus r = Z_DATA_ERROR;
4863 1.1 paulus }
4864 1.17 fvdl ZFREE(z, v);
4865 1.1 paulus return r;
4866 1.1 paulus #endif
4867 1.1 paulus }
4868 1.1 paulus
4869 1.1 paulus /* done */
4870 1.17 fvdl ZFREE(z, v);
4871 1.1 paulus return Z_OK;
4872 1.1 paulus }
4873 1.1 paulus
4874 1.1 paulus
4875 1.1 paulus /* build fixed tables only once--keep them here */
4876 1.17 fvdl #ifdef BUILDFIXED
4877 1.1 paulus local int fixed_built = 0;
4878 1.17 fvdl #define FIXEDH 544 /* number of hufts used by fixed tables */
4879 1.1 paulus local inflate_huft fixed_mem[FIXEDH];
4880 1.1 paulus local uInt fixed_bl;
4881 1.1 paulus local uInt fixed_bd;
4882 1.1 paulus local inflate_huft *fixed_tl;
4883 1.1 paulus local inflate_huft *fixed_td;
4884 1.17 fvdl #else
4885 1.17 fvdl
4886 1.17 fvdl /* +++ inffixed.h */
4887 1.17 fvdl /* inffixed.h -- table for decoding fixed codes
4888 1.17 fvdl * Generated automatically by the maketree.c program
4889 1.17 fvdl */
4890 1.17 fvdl
4891 1.17 fvdl /* WARNING: this file should *not* be used by applications. It is
4892 1.17 fvdl part of the implementation of the compression library and is
4893 1.17 fvdl subject to change. Applications should only use zlib.h.
4894 1.17 fvdl */
4895 1.1 paulus
4896 1.17 fvdl local uInt fixed_bl = 9;
4897 1.17 fvdl local uInt fixed_bd = 5;
4898 1.17 fvdl local inflate_huft fixed_tl[] = {
4899 1.17 fvdl {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4900 1.17 fvdl {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
4901 1.17 fvdl {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
4902 1.17 fvdl {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
4903 1.17 fvdl {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
4904 1.17 fvdl {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
4905 1.17 fvdl {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
4906 1.17 fvdl {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
4907 1.17 fvdl {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4908 1.17 fvdl {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
4909 1.17 fvdl {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
4910 1.17 fvdl {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
4911 1.17 fvdl {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
4912 1.17 fvdl {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
4913 1.17 fvdl {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
4914 1.17 fvdl {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
4915 1.17 fvdl {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4916 1.17 fvdl {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
4917 1.17 fvdl {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
4918 1.17 fvdl {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
4919 1.17 fvdl {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
4920 1.17 fvdl {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
4921 1.17 fvdl {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
4922 1.17 fvdl {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
4923 1.17 fvdl {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4924 1.17 fvdl {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
4925 1.17 fvdl {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
4926 1.17 fvdl {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
4927 1.17 fvdl {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
4928 1.17 fvdl {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
4929 1.17 fvdl {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
4930 1.17 fvdl {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
4931 1.17 fvdl {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4932 1.17 fvdl {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
4933 1.17 fvdl {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
4934 1.17 fvdl {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
4935 1.17 fvdl {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
4936 1.17 fvdl {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
4937 1.17 fvdl {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
4938 1.17 fvdl {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
4939 1.17 fvdl {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4940 1.17 fvdl {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
4941 1.17 fvdl {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
4942 1.17 fvdl {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
4943 1.17 fvdl {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
4944 1.17 fvdl {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
4945 1.17 fvdl {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
4946 1.17 fvdl {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
4947 1.17 fvdl {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4948 1.17 fvdl {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
4949 1.17 fvdl {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
4950 1.17 fvdl {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
4951 1.17 fvdl {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
4952 1.17 fvdl {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
4953 1.17 fvdl {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
4954 1.17 fvdl {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
4955 1.17 fvdl {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4956 1.17 fvdl {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
4957 1.17 fvdl {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
4958 1.17 fvdl {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
4959 1.17 fvdl {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
4960 1.17 fvdl {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
4961 1.17 fvdl {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
4962 1.17 fvdl {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
4963 1.17 fvdl {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4964 1.17 fvdl {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
4965 1.17 fvdl {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
4966 1.17 fvdl {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
4967 1.17 fvdl {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
4968 1.17 fvdl {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
4969 1.17 fvdl {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
4970 1.17 fvdl {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
4971 1.17 fvdl {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4972 1.17 fvdl {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
4973 1.17 fvdl {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
4974 1.17 fvdl {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
4975 1.17 fvdl {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
4976 1.17 fvdl {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
4977 1.17 fvdl {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
4978 1.17 fvdl {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
4979 1.17 fvdl {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4980 1.17 fvdl {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
4981 1.17 fvdl {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
4982 1.17 fvdl {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
4983 1.17 fvdl {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
4984 1.17 fvdl {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
4985 1.17 fvdl {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
4986 1.17 fvdl {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
4987 1.17 fvdl {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4988 1.17 fvdl {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
4989 1.17 fvdl {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
4990 1.17 fvdl {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
4991 1.17 fvdl {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
4992 1.17 fvdl {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
4993 1.17 fvdl {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
4994 1.17 fvdl {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
4995 1.17 fvdl {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4996 1.17 fvdl {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
4997 1.17 fvdl {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
4998 1.17 fvdl {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
4999 1.17 fvdl {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
5000 1.17 fvdl {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
5001 1.17 fvdl {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
5002 1.17 fvdl {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
5003 1.17 fvdl {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
5004 1.17 fvdl {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
5005 1.17 fvdl {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
5006 1.17 fvdl {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
5007 1.17 fvdl {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
5008 1.17 fvdl {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
5009 1.17 fvdl {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
5010 1.17 fvdl {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
5011 1.17 fvdl {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
5012 1.17 fvdl {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
5013 1.17 fvdl {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
5014 1.17 fvdl {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
5015 1.17 fvdl {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
5016 1.17 fvdl {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
5017 1.17 fvdl {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
5018 1.17 fvdl {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
5019 1.17 fvdl {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
5020 1.17 fvdl {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
5021 1.17 fvdl {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
5022 1.17 fvdl {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
5023 1.17 fvdl {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
5024 1.17 fvdl {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
5025 1.17 fvdl {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
5026 1.17 fvdl {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
5027 1.17 fvdl };
5028 1.17 fvdl local inflate_huft fixed_td[] = {
5029 1.17 fvdl {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
5030 1.17 fvdl {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
5031 1.17 fvdl {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
5032 1.17 fvdl {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
5033 1.17 fvdl {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
5034 1.17 fvdl {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
5035 1.17 fvdl {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
5036 1.17 fvdl {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
5037 1.17 fvdl };
5038 1.17 fvdl /* --- inffixed.h */
5039 1.1 paulus
5040 1.17 fvdl #endif
5041 1.1 paulus
5042 1.1 paulus
5043 1.17 fvdl int inflate_trees_fixed(bl, bd, tl, td, z)
5044 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
5045 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
5046 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
5047 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
5048 1.17 fvdl z_streamp z; /* for memory allocation */
5049 1.1 paulus {
5050 1.17 fvdl #ifdef BUILDFIXED
5051 1.17 fvdl /* build fixed tables if not already */
5052 1.1 paulus if (!fixed_built)
5053 1.1 paulus {
5054 1.1 paulus int k; /* temporary variable */
5055 1.17 fvdl uInt f = 0; /* number of hufts used in fixed_mem */
5056 1.17 fvdl uIntf *c; /* length list for huft_build */
5057 1.17 fvdl uIntf *v; /* work area for huft_build */
5058 1.17 fvdl
5059 1.17 fvdl /* allocate memory */
5060 1.17 fvdl if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5061 1.17 fvdl return Z_MEM_ERROR;
5062 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5063 1.17 fvdl {
5064 1.17 fvdl ZFREE(z, c);
5065 1.17 fvdl return Z_MEM_ERROR;
5066 1.17 fvdl }
5067 1.1 paulus
5068 1.1 paulus /* literal table */
5069 1.1 paulus for (k = 0; k < 144; k++)
5070 1.1 paulus c[k] = 8;
5071 1.1 paulus for (; k < 256; k++)
5072 1.1 paulus c[k] = 9;
5073 1.1 paulus for (; k < 280; k++)
5074 1.1 paulus c[k] = 7;
5075 1.1 paulus for (; k < 288; k++)
5076 1.1 paulus c[k] = 8;
5077 1.17 fvdl fixed_bl = 9;
5078 1.17 fvdl huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
5079 1.17 fvdl fixed_mem, &f, v);
5080 1.1 paulus
5081 1.1 paulus /* distance table */
5082 1.1 paulus for (k = 0; k < 30; k++)
5083 1.1 paulus c[k] = 5;
5084 1.1 paulus fixed_bd = 5;
5085 1.17 fvdl huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
5086 1.17 fvdl fixed_mem, &f, v);
5087 1.1 paulus
5088 1.1 paulus /* done */
5089 1.17 fvdl ZFREE(z, v);
5090 1.17 fvdl ZFREE(z, c);
5091 1.1 paulus fixed_built = 1;
5092 1.1 paulus }
5093 1.17 fvdl #endif
5094 1.1 paulus *bl = fixed_bl;
5095 1.1 paulus *bd = fixed_bd;
5096 1.1 paulus *tl = fixed_tl;
5097 1.1 paulus *td = fixed_td;
5098 1.1 paulus return Z_OK;
5099 1.1 paulus }
5100 1.7 christos /* --- inftrees.c */
5101 1.1 paulus
5102 1.7 christos /* +++ infcodes.c */
5103 1.17 fvdl
5104 1.1 paulus /* infcodes.c -- process literals and length/distance pairs
5105 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5106 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5107 1.1 paulus */
5108 1.1 paulus
5109 1.7 christos /* #include "zutil.h" */
5110 1.7 christos /* #include "inftrees.h" */
5111 1.7 christos /* #include "infblock.h" */
5112 1.7 christos /* #include "infcodes.h" */
5113 1.7 christos /* #include "infutil.h" */
5114 1.7 christos
5115 1.7 christos /* +++ inffast.h */
5116 1.17 fvdl
5117 1.7 christos /* inffast.h -- header to use inffast.c
5118 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5119 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5120 1.7 christos */
5121 1.7 christos
5122 1.7 christos /* WARNING: this file should *not* be used by applications. It is
5123 1.7 christos part of the implementation of the compression library and is
5124 1.7 christos subject to change. Applications should only use zlib.h.
5125 1.7 christos */
5126 1.7 christos
5127 1.17 fvdl extern int inflate_fast __P((
5128 1.7 christos uInt,
5129 1.7 christos uInt,
5130 1.7 christos inflate_huft *,
5131 1.7 christos inflate_huft *,
5132 1.7 christos inflate_blocks_statef *,
5133 1.7 christos z_streamp ));
5134 1.7 christos /* --- inffast.h */
5135 1.7 christos
5136 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
5137 1.1 paulus #define exop word.what.Exop
5138 1.1 paulus #define bits word.what.Bits
5139 1.1 paulus
5140 1.17 fvdl typedef enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5141 1.1 paulus START, /* x: set up for LEN */
5142 1.1 paulus LEN, /* i: get length/literal/eob next */
5143 1.1 paulus LENEXT, /* i: getting length extra (have base) */
5144 1.1 paulus DIST, /* i: get distance next */
5145 1.1 paulus DISTEXT, /* i: getting distance extra */
5146 1.1 paulus COPY, /* o: copying bytes in window, waiting for space */
5147 1.1 paulus LIT, /* o: got literal, waiting for output space */
5148 1.1 paulus WASH, /* o: got eob, possibly still output waiting */
5149 1.1 paulus END, /* x: got eob and all data flushed */
5150 1.1 paulus BADCODE} /* x: got error */
5151 1.17 fvdl inflate_codes_mode;
5152 1.17 fvdl
5153 1.17 fvdl /* inflate codes private state */
5154 1.17 fvdl struct inflate_codes_state {
5155 1.17 fvdl
5156 1.17 fvdl /* mode */
5157 1.17 fvdl inflate_codes_mode mode; /* current inflate_codes mode */
5158 1.1 paulus
5159 1.1 paulus /* mode dependent information */
5160 1.1 paulus uInt len;
5161 1.1 paulus union {
5162 1.1 paulus struct {
5163 1.1 paulus inflate_huft *tree; /* pointer into tree */
5164 1.1 paulus uInt need; /* bits needed */
5165 1.1 paulus } code; /* if LEN or DIST, where in tree */
5166 1.1 paulus uInt lit; /* if LIT, literal */
5167 1.1 paulus struct {
5168 1.1 paulus uInt get; /* bits to get for extra */
5169 1.1 paulus uInt dist; /* distance back to copy from */
5170 1.1 paulus } copy; /* if EXT or COPY, where and how much */
5171 1.1 paulus } sub; /* submode */
5172 1.1 paulus
5173 1.1 paulus /* mode independent information */
5174 1.1 paulus Byte lbits; /* ltree bits decoded per branch */
5175 1.1 paulus Byte dbits; /* dtree bits decoder per branch */
5176 1.1 paulus inflate_huft *ltree; /* literal/length/eob tree */
5177 1.1 paulus inflate_huft *dtree; /* distance tree */
5178 1.1 paulus
5179 1.1 paulus };
5180 1.1 paulus
5181 1.1 paulus
5182 1.7 christos inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
5183 1.1 paulus uInt bl, bd;
5184 1.7 christos inflate_huft *tl;
5185 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
5186 1.7 christos z_streamp z;
5187 1.1 paulus {
5188 1.1 paulus inflate_codes_statef *c;
5189 1.1 paulus
5190 1.1 paulus if ((c = (inflate_codes_statef *)
5191 1.1 paulus ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
5192 1.1 paulus {
5193 1.1 paulus c->mode = START;
5194 1.1 paulus c->lbits = (Byte)bl;
5195 1.1 paulus c->dbits = (Byte)bd;
5196 1.1 paulus c->ltree = tl;
5197 1.1 paulus c->dtree = td;
5198 1.1 paulus Tracev((stderr, "inflate: codes new\n"));
5199 1.1 paulus }
5200 1.1 paulus return c;
5201 1.1 paulus }
5202 1.1 paulus
5203 1.1 paulus
5204 1.7 christos int inflate_codes(s, z, r)
5205 1.1 paulus inflate_blocks_statef *s;
5206 1.7 christos z_streamp z;
5207 1.1 paulus int r;
5208 1.1 paulus {
5209 1.1 paulus uInt j; /* temporary storage */
5210 1.1 paulus inflate_huft *t; /* temporary pointer */
5211 1.1 paulus uInt e; /* extra bits or operation */
5212 1.1 paulus uLong b; /* bit buffer */
5213 1.1 paulus uInt k; /* bits in bit buffer */
5214 1.1 paulus Bytef *p; /* input data pointer */
5215 1.1 paulus uInt n; /* bytes available there */
5216 1.1 paulus Bytef *q; /* output window write pointer */
5217 1.1 paulus uInt m; /* bytes to end of window or read pointer */
5218 1.1 paulus Bytef *f; /* pointer to copy strings from */
5219 1.1 paulus inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
5220 1.1 paulus
5221 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
5222 1.1 paulus LOAD
5223 1.1 paulus
5224 1.1 paulus /* process input and output based on current state */
5225 1.1 paulus while (1) switch (c->mode)
5226 1.1 paulus { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5227 1.1 paulus case START: /* x: set up for LEN */
5228 1.1 paulus #ifndef SLOW
5229 1.1 paulus if (m >= 258 && n >= 10)
5230 1.1 paulus {
5231 1.1 paulus UPDATE
5232 1.1 paulus r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
5233 1.1 paulus LOAD
5234 1.1 paulus if (r != Z_OK)
5235 1.1 paulus {
5236 1.1 paulus c->mode = r == Z_STREAM_END ? WASH : BADCODE;
5237 1.1 paulus break;
5238 1.1 paulus }
5239 1.1 paulus }
5240 1.1 paulus #endif /* !SLOW */
5241 1.1 paulus c->sub.code.need = c->lbits;
5242 1.1 paulus c->sub.code.tree = c->ltree;
5243 1.1 paulus c->mode = LEN;
5244 1.1 paulus case LEN: /* i: get length/literal/eob next */
5245 1.1 paulus j = c->sub.code.need;
5246 1.1 paulus NEEDBITS(j)
5247 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5248 1.1 paulus DUMPBITS(t->bits)
5249 1.1 paulus e = (uInt)(t->exop);
5250 1.1 paulus if (e == 0) /* literal */
5251 1.1 paulus {
5252 1.1 paulus c->sub.lit = t->base;
5253 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5254 1.1 paulus "inflate: literal '%c'\n" :
5255 1.1 paulus "inflate: literal 0x%02x\n", t->base));
5256 1.1 paulus c->mode = LIT;
5257 1.1 paulus break;
5258 1.1 paulus }
5259 1.1 paulus if (e & 16) /* length */
5260 1.1 paulus {
5261 1.1 paulus c->sub.copy.get = e & 15;
5262 1.1 paulus c->len = t->base;
5263 1.1 paulus c->mode = LENEXT;
5264 1.1 paulus break;
5265 1.1 paulus }
5266 1.1 paulus if ((e & 64) == 0) /* next table */
5267 1.1 paulus {
5268 1.1 paulus c->sub.code.need = e;
5269 1.17 fvdl c->sub.code.tree = t + t->base;
5270 1.1 paulus break;
5271 1.1 paulus }
5272 1.1 paulus if (e & 32) /* end of block */
5273 1.1 paulus {
5274 1.1 paulus Tracevv((stderr, "inflate: end of block\n"));
5275 1.1 paulus c->mode = WASH;
5276 1.1 paulus break;
5277 1.1 paulus }
5278 1.1 paulus c->mode = BADCODE; /* invalid code */
5279 1.21 christos z->msg = "invalid literal/length code";
5280 1.1 paulus r = Z_DATA_ERROR;
5281 1.1 paulus LEAVE
5282 1.1 paulus case LENEXT: /* i: getting length extra (have base) */
5283 1.1 paulus j = c->sub.copy.get;
5284 1.1 paulus NEEDBITS(j)
5285 1.1 paulus c->len += (uInt)b & inflate_mask[j];
5286 1.1 paulus DUMPBITS(j)
5287 1.1 paulus c->sub.code.need = c->dbits;
5288 1.1 paulus c->sub.code.tree = c->dtree;
5289 1.1 paulus Tracevv((stderr, "inflate: length %u\n", c->len));
5290 1.1 paulus c->mode = DIST;
5291 1.1 paulus case DIST: /* i: get distance next */
5292 1.1 paulus j = c->sub.code.need;
5293 1.1 paulus NEEDBITS(j)
5294 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5295 1.1 paulus DUMPBITS(t->bits)
5296 1.1 paulus e = (uInt)(t->exop);
5297 1.1 paulus if (e & 16) /* distance */
5298 1.1 paulus {
5299 1.1 paulus c->sub.copy.get = e & 15;
5300 1.1 paulus c->sub.copy.dist = t->base;
5301 1.1 paulus c->mode = DISTEXT;
5302 1.1 paulus break;
5303 1.1 paulus }
5304 1.1 paulus if ((e & 64) == 0) /* next table */
5305 1.1 paulus {
5306 1.1 paulus c->sub.code.need = e;
5307 1.17 fvdl c->sub.code.tree = t + t->base;
5308 1.1 paulus break;
5309 1.1 paulus }
5310 1.1 paulus c->mode = BADCODE; /* invalid code */
5311 1.21 christos z->msg = "invalid distance code";
5312 1.1 paulus r = Z_DATA_ERROR;
5313 1.1 paulus LEAVE
5314 1.1 paulus case DISTEXT: /* i: getting distance extra */
5315 1.1 paulus j = c->sub.copy.get;
5316 1.1 paulus NEEDBITS(j)
5317 1.1 paulus c->sub.copy.dist += (uInt)b & inflate_mask[j];
5318 1.1 paulus DUMPBITS(j)
5319 1.1 paulus Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
5320 1.1 paulus c->mode = COPY;
5321 1.1 paulus case COPY: /* o: copying bytes in window, waiting for space */
5322 1.1 paulus f = q - c->sub.copy.dist;
5323 1.17 fvdl while (f < s->window) /* modulo window size-"while" instead */
5324 1.17 fvdl f += s->end - s->window; /* of "if" handles invalid distances */
5325 1.1 paulus while (c->len)
5326 1.1 paulus {
5327 1.1 paulus NEEDOUT
5328 1.1 paulus OUTBYTE(*f++)
5329 1.1 paulus if (f == s->end)
5330 1.1 paulus f = s->window;
5331 1.1 paulus c->len--;
5332 1.1 paulus }
5333 1.1 paulus c->mode = START;
5334 1.1 paulus break;
5335 1.1 paulus case LIT: /* o: got literal, waiting for output space */
5336 1.1 paulus NEEDOUT
5337 1.1 paulus OUTBYTE(c->sub.lit)
5338 1.1 paulus c->mode = START;
5339 1.1 paulus break;
5340 1.1 paulus case WASH: /* o: got eob, possibly more output */
5341 1.17 fvdl if (k > 7) /* return unused byte, if any */
5342 1.17 fvdl {
5343 1.17 fvdl Assert(k < 16, "inflate_codes grabbed too many bytes")
5344 1.17 fvdl k -= 8;
5345 1.17 fvdl n++;
5346 1.17 fvdl p--; /* can always return one */
5347 1.17 fvdl }
5348 1.1 paulus FLUSH
5349 1.1 paulus if (s->read != s->write)
5350 1.1 paulus LEAVE
5351 1.1 paulus c->mode = END;
5352 1.1 paulus case END:
5353 1.1 paulus r = Z_STREAM_END;
5354 1.1 paulus LEAVE
5355 1.1 paulus case BADCODE: /* x: got error */
5356 1.1 paulus r = Z_DATA_ERROR;
5357 1.1 paulus LEAVE
5358 1.1 paulus default:
5359 1.1 paulus r = Z_STREAM_ERROR;
5360 1.1 paulus LEAVE
5361 1.1 paulus }
5362 1.17 fvdl #ifdef NEED_DUMMY_RETURN
5363 1.17 fvdl return Z_STREAM_ERROR; /* Some dumb compilers complain without this */
5364 1.17 fvdl #endif
5365 1.1 paulus }
5366 1.1 paulus
5367 1.1 paulus
5368 1.7 christos void inflate_codes_free(c, z)
5369 1.1 paulus inflate_codes_statef *c;
5370 1.7 christos z_streamp z;
5371 1.1 paulus {
5372 1.7 christos ZFREE(z, c);
5373 1.1 paulus Tracev((stderr, "inflate: codes free\n"));
5374 1.1 paulus }
5375 1.7 christos /* --- infcodes.c */
5376 1.1 paulus
5377 1.7 christos /* +++ infutil.c */
5378 1.17 fvdl
5379 1.1 paulus /* inflate_util.c -- data and routines common to blocks and codes
5380 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5381 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5382 1.1 paulus */
5383 1.1 paulus
5384 1.7 christos /* #include "zutil.h" */
5385 1.7 christos /* #include "infblock.h" */
5386 1.7 christos /* #include "inftrees.h" */
5387 1.7 christos /* #include "infcodes.h" */
5388 1.7 christos /* #include "infutil.h" */
5389 1.7 christos
5390 1.7 christos #ifndef NO_DUMMY_DECL
5391 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5392 1.7 christos #endif
5393 1.7 christos
5394 1.7 christos /* And'ing with mask[n] masks the lower n bits */
5395 1.17 fvdl uInt inflate_mask[17] = {
5396 1.7 christos 0x0000,
5397 1.7 christos 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5398 1.7 christos 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5399 1.7 christos };
5400 1.7 christos
5401 1.7 christos
5402 1.1 paulus /* copy as much as possible from the sliding window to the output area */
5403 1.7 christos int inflate_flush(s, z, r)
5404 1.1 paulus inflate_blocks_statef *s;
5405 1.7 christos z_streamp z;
5406 1.1 paulus int r;
5407 1.1 paulus {
5408 1.1 paulus uInt n;
5409 1.7 christos Bytef *p;
5410 1.7 christos Bytef *q;
5411 1.1 paulus
5412 1.1 paulus /* local copies of source and destination pointers */
5413 1.1 paulus p = z->next_out;
5414 1.1 paulus q = s->read;
5415 1.1 paulus
5416 1.1 paulus /* compute number of bytes to copy as far as end of window */
5417 1.1 paulus n = (uInt)((q <= s->write ? s->write : s->end) - q);
5418 1.1 paulus if (n > z->avail_out) n = z->avail_out;
5419 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
5420 1.1 paulus
5421 1.1 paulus /* update counters */
5422 1.1 paulus z->avail_out -= n;
5423 1.1 paulus z->total_out += n;
5424 1.1 paulus
5425 1.1 paulus /* update check information */
5426 1.1 paulus if (s->checkfn != Z_NULL)
5427 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
5428 1.1 paulus
5429 1.1 paulus /* copy as far as end of window */
5430 1.7 christos if (p != Z_NULL) {
5431 1.1 paulus zmemcpy(p, q, n);
5432 1.1 paulus p += n;
5433 1.1 paulus }
5434 1.1 paulus q += n;
5435 1.1 paulus
5436 1.1 paulus /* see if more to copy at beginning of window */
5437 1.1 paulus if (q == s->end)
5438 1.1 paulus {
5439 1.1 paulus /* wrap pointers */
5440 1.1 paulus q = s->window;
5441 1.1 paulus if (s->write == s->end)
5442 1.1 paulus s->write = s->window;
5443 1.1 paulus
5444 1.1 paulus /* compute bytes to copy */
5445 1.1 paulus n = (uInt)(s->write - q);
5446 1.1 paulus if (n > z->avail_out) n = z->avail_out;
5447 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
5448 1.1 paulus
5449 1.1 paulus /* update counters */
5450 1.1 paulus z->avail_out -= n;
5451 1.1 paulus z->total_out += n;
5452 1.1 paulus
5453 1.1 paulus /* update check information */
5454 1.1 paulus if (s->checkfn != Z_NULL)
5455 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
5456 1.1 paulus
5457 1.1 paulus /* copy */
5458 1.17 fvdl if (p != NULL) {
5459 1.1 paulus zmemcpy(p, q, n);
5460 1.1 paulus p += n;
5461 1.1 paulus }
5462 1.1 paulus q += n;
5463 1.1 paulus }
5464 1.1 paulus
5465 1.1 paulus /* update pointers */
5466 1.1 paulus z->next_out = p;
5467 1.1 paulus s->read = q;
5468 1.1 paulus
5469 1.1 paulus /* done */
5470 1.1 paulus return r;
5471 1.1 paulus }
5472 1.7 christos /* --- infutil.c */
5473 1.1 paulus
5474 1.7 christos /* +++ inffast.c */
5475 1.17 fvdl
5476 1.1 paulus /* inffast.c -- process literals and length/distance pairs fast
5477 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5478 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5479 1.1 paulus */
5480 1.1 paulus
5481 1.7 christos /* #include "zutil.h" */
5482 1.7 christos /* #include "inftrees.h" */
5483 1.7 christos /* #include "infblock.h" */
5484 1.7 christos /* #include "infcodes.h" */
5485 1.7 christos /* #include "infutil.h" */
5486 1.7 christos /* #include "inffast.h" */
5487 1.7 christos
5488 1.7 christos #ifndef NO_DUMMY_DECL
5489 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5490 1.7 christos #endif
5491 1.7 christos
5492 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
5493 1.1 paulus #define exop word.what.Exop
5494 1.1 paulus #define bits word.what.Bits
5495 1.1 paulus
5496 1.1 paulus /* macros for bit input with no checking and for returning unused bytes */
5497 1.1 paulus #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
5498 1.17 fvdl #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
5499 1.1 paulus
5500 1.1 paulus /* Called with number of bytes left to write in window at least 258
5501 1.1 paulus (the maximum string length) and number of input bytes available
5502 1.1 paulus at least ten. The ten bytes are six bytes for the longest length/
5503 1.1 paulus distance pair plus four bytes for overloading the bit buffer. */
5504 1.1 paulus
5505 1.7 christos int inflate_fast(bl, bd, tl, td, s, z)
5506 1.1 paulus uInt bl, bd;
5507 1.7 christos inflate_huft *tl;
5508 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
5509 1.1 paulus inflate_blocks_statef *s;
5510 1.7 christos z_streamp z;
5511 1.1 paulus {
5512 1.1 paulus inflate_huft *t; /* temporary pointer */
5513 1.1 paulus uInt e; /* extra bits or operation */
5514 1.1 paulus uLong b; /* bit buffer */
5515 1.1 paulus uInt k; /* bits in bit buffer */
5516 1.1 paulus Bytef *p; /* input data pointer */
5517 1.1 paulus uInt n; /* bytes available there */
5518 1.1 paulus Bytef *q; /* output window write pointer */
5519 1.1 paulus uInt m; /* bytes to end of window or read pointer */
5520 1.1 paulus uInt ml; /* mask for literal/length tree */
5521 1.1 paulus uInt md; /* mask for distance tree */
5522 1.1 paulus uInt c; /* bytes to copy */
5523 1.1 paulus uInt d; /* distance back to copy from */
5524 1.1 paulus Bytef *r; /* copy source pointer */
5525 1.1 paulus
5526 1.1 paulus /* load input, output, bit values */
5527 1.1 paulus LOAD
5528 1.1 paulus
5529 1.1 paulus /* initialize masks */
5530 1.1 paulus ml = inflate_mask[bl];
5531 1.1 paulus md = inflate_mask[bd];
5532 1.1 paulus
5533 1.1 paulus /* do until not enough input or output space for fast loop */
5534 1.1 paulus do { /* assume called with m >= 258 && n >= 10 */
5535 1.1 paulus /* get literal/length code */
5536 1.1 paulus GRABBITS(20) /* max bits for literal/length code */
5537 1.1 paulus if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5538 1.1 paulus {
5539 1.1 paulus DUMPBITS(t->bits)
5540 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5541 1.1 paulus "inflate: * literal '%c'\n" :
5542 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5543 1.1 paulus *q++ = (Byte)t->base;
5544 1.1 paulus m--;
5545 1.1 paulus continue;
5546 1.1 paulus }
5547 1.1 paulus do {
5548 1.1 paulus DUMPBITS(t->bits)
5549 1.1 paulus if (e & 16)
5550 1.1 paulus {
5551 1.1 paulus /* get extra bits for length */
5552 1.1 paulus e &= 15;
5553 1.1 paulus c = t->base + ((uInt)b & inflate_mask[e]);
5554 1.1 paulus DUMPBITS(e)
5555 1.1 paulus Tracevv((stderr, "inflate: * length %u\n", c));
5556 1.1 paulus
5557 1.1 paulus /* decode distance base of block to copy */
5558 1.1 paulus GRABBITS(15); /* max bits for distance code */
5559 1.1 paulus e = (t = td + ((uInt)b & md))->exop;
5560 1.1 paulus do {
5561 1.1 paulus DUMPBITS(t->bits)
5562 1.1 paulus if (e & 16)
5563 1.1 paulus {
5564 1.1 paulus /* get extra bits to add to distance base */
5565 1.1 paulus e &= 15;
5566 1.1 paulus GRABBITS(e) /* get extra bits (up to 13) */
5567 1.1 paulus d = t->base + ((uInt)b & inflate_mask[e]);
5568 1.1 paulus DUMPBITS(e)
5569 1.1 paulus Tracevv((stderr, "inflate: * distance %u\n", d));
5570 1.1 paulus
5571 1.1 paulus /* do the copy */
5572 1.1 paulus m -= c;
5573 1.17 fvdl r = q - d;
5574 1.17 fvdl if (r < s->window) /* wrap if needed */
5575 1.1 paulus {
5576 1.17 fvdl do {
5577 1.17 fvdl r += s->end - s->window; /* force pointer in window */
5578 1.17 fvdl } while (r < s->window); /* covers invalid distances */
5579 1.17 fvdl e = s->end - r;
5580 1.17 fvdl if (c > e)
5581 1.1 paulus {
5582 1.17 fvdl c -= e; /* wrapped copy */
5583 1.1 paulus do {
5584 1.17 fvdl *q++ = *r++;
5585 1.1 paulus } while (--e);
5586 1.17 fvdl r = s->window;
5587 1.17 fvdl do {
5588 1.17 fvdl *q++ = *r++;
5589 1.17 fvdl } while (--c);
5590 1.1 paulus }
5591 1.17 fvdl else /* normal copy */
5592 1.17 fvdl {
5593 1.17 fvdl *q++ = *r++; c--;
5594 1.17 fvdl *q++ = *r++; c--;
5595 1.17 fvdl do {
5596 1.17 fvdl *q++ = *r++;
5597 1.17 fvdl } while (--c);
5598 1.17 fvdl }
5599 1.17 fvdl }
5600 1.17 fvdl else /* normal copy */
5601 1.17 fvdl {
5602 1.17 fvdl *q++ = *r++; c--;
5603 1.17 fvdl *q++ = *r++; c--;
5604 1.17 fvdl do {
5605 1.17 fvdl *q++ = *r++;
5606 1.17 fvdl } while (--c);
5607 1.1 paulus }
5608 1.1 paulus break;
5609 1.1 paulus }
5610 1.1 paulus else if ((e & 64) == 0)
5611 1.17 fvdl {
5612 1.17 fvdl t += t->base;
5613 1.17 fvdl e = (t += ((uInt)b & inflate_mask[e]))->exop;
5614 1.17 fvdl }
5615 1.1 paulus else
5616 1.1 paulus {
5617 1.21 christos z->msg = "invalid distance code";
5618 1.1 paulus UNGRAB
5619 1.1 paulus UPDATE
5620 1.1 paulus return Z_DATA_ERROR;
5621 1.1 paulus }
5622 1.1 paulus } while (1);
5623 1.1 paulus break;
5624 1.1 paulus }
5625 1.1 paulus if ((e & 64) == 0)
5626 1.1 paulus {
5627 1.17 fvdl t += t->base;
5628 1.17 fvdl if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
5629 1.1 paulus {
5630 1.1 paulus DUMPBITS(t->bits)
5631 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5632 1.1 paulus "inflate: * literal '%c'\n" :
5633 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5634 1.1 paulus *q++ = (Byte)t->base;
5635 1.1 paulus m--;
5636 1.1 paulus break;
5637 1.1 paulus }
5638 1.1 paulus }
5639 1.1 paulus else if (e & 32)
5640 1.1 paulus {
5641 1.1 paulus Tracevv((stderr, "inflate: * end of block\n"));
5642 1.1 paulus UNGRAB
5643 1.1 paulus UPDATE
5644 1.1 paulus return Z_STREAM_END;
5645 1.1 paulus }
5646 1.1 paulus else
5647 1.1 paulus {
5648 1.21 christos z->msg = "invalid literal/length code";
5649 1.1 paulus UNGRAB
5650 1.1 paulus UPDATE
5651 1.1 paulus return Z_DATA_ERROR;
5652 1.1 paulus }
5653 1.1 paulus } while (1);
5654 1.1 paulus } while (m >= 258 && n >= 10);
5655 1.1 paulus
5656 1.1 paulus /* not enough input or output--restore pointers and return */
5657 1.1 paulus UNGRAB
5658 1.1 paulus UPDATE
5659 1.1 paulus return Z_OK;
5660 1.1 paulus }
5661 1.7 christos /* --- inffast.c */
5662 1.1 paulus
5663 1.7 christos /* +++ zutil.c */
5664 1.17 fvdl
5665 1.1 paulus /* zutil.c -- target dependent utility functions for the compression library
5666 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
5667 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5668 1.1 paulus */
5669 1.1 paulus
5670 1.17 fvdl /* @(#) Id */
5671 1.7 christos
5672 1.7 christos #ifdef DEBUG_ZLIB
5673 1.7 christos #include <stdio.h>
5674 1.7 christos #endif
5675 1.7 christos
5676 1.7 christos /* #include "zutil.h" */
5677 1.1 paulus
5678 1.7 christos #ifndef NO_DUMMY_DECL
5679 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
5680 1.7 christos #endif
5681 1.7 christos
5682 1.7 christos #ifndef STDC
5683 1.17 fvdl extern void exit __P((int));
5684 1.7 christos #endif
5685 1.1 paulus
5686 1.17 fvdl const char *z_errmsg[10] = {
5687 1.7 christos "need dictionary", /* Z_NEED_DICT 2 */
5688 1.7 christos "stream end", /* Z_STREAM_END 1 */
5689 1.7 christos "", /* Z_OK 0 */
5690 1.7 christos "file error", /* Z_ERRNO (-1) */
5691 1.7 christos "stream error", /* Z_STREAM_ERROR (-2) */
5692 1.7 christos "data error", /* Z_DATA_ERROR (-3) */
5693 1.7 christos "insufficient memory", /* Z_MEM_ERROR (-4) */
5694 1.7 christos "buffer error", /* Z_BUF_ERROR (-5) */
5695 1.7 christos "incompatible version",/* Z_VERSION_ERROR (-6) */
5696 1.1 paulus ""};
5697 1.1 paulus
5698 1.1 paulus
5699 1.19 kristerw #if 0
5700 1.17 fvdl const char * ZEXPORT zlibVersion()
5701 1.7 christos {
5702 1.7 christos return ZLIB_VERSION;
5703 1.7 christos }
5704 1.19 kristerw #endif
5705 1.7 christos
5706 1.7 christos #ifdef DEBUG_ZLIB
5707 1.17 fvdl
5708 1.17 fvdl # ifndef verbose
5709 1.17 fvdl # define verbose 0
5710 1.17 fvdl # endif
5711 1.17 fvdl int z_verbose = verbose;
5712 1.17 fvdl
5713 1.7 christos void z_error (m)
5714 1.7 christos char *m;
5715 1.7 christos {
5716 1.7 christos fprintf(stderr, "%s\n", m);
5717 1.7 christos exit(1);
5718 1.7 christos }
5719 1.7 christos #endif
5720 1.7 christos
5721 1.17 fvdl /* exported to allow conversion of error code to string for compress() and
5722 1.17 fvdl * uncompress()
5723 1.17 fvdl */
5724 1.19 kristerw #if 0
5725 1.17 fvdl const char * ZEXPORT zError(err)
5726 1.17 fvdl int err;
5727 1.17 fvdl {
5728 1.17 fvdl return ERR_MSG(err);
5729 1.17 fvdl }
5730 1.19 kristerw #endif
5731 1.17 fvdl
5732 1.17 fvdl
5733 1.7 christos #ifndef HAVE_MEMCPY
5734 1.7 christos
5735 1.7 christos void zmemcpy(dest, source, len)
5736 1.7 christos Bytef* dest;
5737 1.17 fvdl const Bytef* source;
5738 1.7 christos uInt len;
5739 1.7 christos {
5740 1.7 christos if (len == 0) return;
5741 1.7 christos do {
5742 1.7 christos *dest++ = *source++; /* ??? to be unrolled */
5743 1.7 christos } while (--len != 0);
5744 1.7 christos }
5745 1.7 christos
5746 1.7 christos int zmemcmp(s1, s2, len)
5747 1.17 fvdl const Bytef* s1;
5748 1.17 fvdl const Bytef* s2;
5749 1.7 christos uInt len;
5750 1.7 christos {
5751 1.7 christos uInt j;
5752 1.7 christos
5753 1.7 christos for (j = 0; j < len; j++) {
5754 1.7 christos if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5755 1.7 christos }
5756 1.7 christos return 0;
5757 1.7 christos }
5758 1.7 christos
5759 1.7 christos void zmemzero(dest, len)
5760 1.7 christos Bytef* dest;
5761 1.7 christos uInt len;
5762 1.7 christos {
5763 1.7 christos if (len == 0) return;
5764 1.7 christos do {
5765 1.7 christos *dest++ = 0; /* ??? to be unrolled */
5766 1.7 christos } while (--len != 0);
5767 1.7 christos }
5768 1.7 christos #endif
5769 1.7 christos
5770 1.7 christos #ifdef __TURBOC__
5771 1.7 christos #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5772 1.7 christos /* Small and medium model in Turbo C are for now limited to near allocation
5773 1.7 christos * with reduced MAX_WBITS and MAX_MEM_LEVEL
5774 1.7 christos */
5775 1.7 christos # define MY_ZCALLOC
5776 1.7 christos
5777 1.7 christos /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5778 1.7 christos * and farmalloc(64K) returns a pointer with an offset of 8, so we
5779 1.7 christos * must fix the pointer. Warning: the pointer must be put back to its
5780 1.7 christos * original form in order to free it, use zcfree().
5781 1.7 christos */
5782 1.7 christos
5783 1.7 christos #define MAX_PTR 10
5784 1.7 christos /* 10*64K = 640K */
5785 1.7 christos
5786 1.7 christos local int next_ptr = 0;
5787 1.7 christos
5788 1.7 christos typedef struct ptr_table_s {
5789 1.7 christos voidpf org_ptr;
5790 1.7 christos voidpf new_ptr;
5791 1.7 christos } ptr_table;
5792 1.7 christos
5793 1.7 christos local ptr_table table[MAX_PTR];
5794 1.7 christos /* This table is used to remember the original form of pointers
5795 1.7 christos * to large buffers (64K). Such pointers are normalized with a zero offset.
5796 1.7 christos * Since MSDOS is not a preemptive multitasking OS, this table is not
5797 1.7 christos * protected from concurrent access. This hack doesn't work anyway on
5798 1.7 christos * a protected system like OS/2. Use Microsoft C instead.
5799 1.7 christos */
5800 1.7 christos
5801 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5802 1.7 christos {
5803 1.7 christos voidpf buf = opaque; /* just to make some compilers happy */
5804 1.7 christos ulg bsize = (ulg)items*size;
5805 1.7 christos
5806 1.7 christos /* If we allocate less than 65520 bytes, we assume that farmalloc
5807 1.7 christos * will return a usable pointer which doesn't have to be normalized.
5808 1.7 christos */
5809 1.7 christos if (bsize < 65520L) {
5810 1.7 christos buf = farmalloc(bsize);
5811 1.7 christos if (*(ush*)&buf != 0) return buf;
5812 1.7 christos } else {
5813 1.7 christos buf = farmalloc(bsize + 16L);
5814 1.7 christos }
5815 1.7 christos if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5816 1.7 christos table[next_ptr].org_ptr = buf;
5817 1.7 christos
5818 1.7 christos /* Normalize the pointer to seg:0 */
5819 1.7 christos *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5820 1.7 christos *(ush*)&buf = 0;
5821 1.7 christos table[next_ptr++].new_ptr = buf;
5822 1.7 christos return buf;
5823 1.7 christos }
5824 1.7 christos
5825 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5826 1.7 christos {
5827 1.7 christos int n;
5828 1.7 christos if (*(ush*)&ptr != 0) { /* object < 64K */
5829 1.7 christos farfree(ptr);
5830 1.7 christos return;
5831 1.7 christos }
5832 1.7 christos /* Find the original pointer */
5833 1.7 christos for (n = 0; n < next_ptr; n++) {
5834 1.7 christos if (ptr != table[n].new_ptr) continue;
5835 1.7 christos
5836 1.7 christos farfree(table[n].org_ptr);
5837 1.7 christos while (++n < next_ptr) {
5838 1.7 christos table[n-1] = table[n];
5839 1.7 christos }
5840 1.7 christos next_ptr--;
5841 1.7 christos return;
5842 1.7 christos }
5843 1.7 christos ptr = opaque; /* just to make some compilers happy */
5844 1.7 christos Assert(0, "zcfree: ptr not found");
5845 1.7 christos }
5846 1.7 christos #endif
5847 1.7 christos #endif /* __TURBOC__ */
5848 1.7 christos
5849 1.7 christos
5850 1.7 christos #if defined(M_I86) && !defined(__32BIT__)
5851 1.7 christos /* Microsoft C in 16-bit mode */
5852 1.7 christos
5853 1.7 christos # define MY_ZCALLOC
5854 1.7 christos
5855 1.17 fvdl #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
5856 1.7 christos # define _halloc halloc
5857 1.7 christos # define _hfree hfree
5858 1.7 christos #endif
5859 1.7 christos
5860 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5861 1.7 christos {
5862 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5863 1.7 christos return _halloc((long)items, size);
5864 1.7 christos }
5865 1.7 christos
5866 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5867 1.7 christos {
5868 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5869 1.7 christos _hfree(ptr);
5870 1.7 christos }
5871 1.7 christos
5872 1.7 christos #endif /* MSC */
5873 1.7 christos
5874 1.7 christos
5875 1.7 christos #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5876 1.7 christos
5877 1.7 christos #ifndef STDC
5878 1.17 fvdl extern voidp calloc __P((uInt items, uInt size));
5879 1.17 fvdl extern void free __P((voidpf ptr));
5880 1.7 christos #endif
5881 1.7 christos
5882 1.7 christos voidpf zcalloc (opaque, items, size)
5883 1.7 christos voidpf opaque;
5884 1.7 christos unsigned items;
5885 1.7 christos unsigned size;
5886 1.7 christos {
5887 1.7 christos if (opaque) items += size - size; /* make compiler happy */
5888 1.7 christos return (voidpf)calloc(items, size);
5889 1.7 christos }
5890 1.7 christos
5891 1.7 christos void zcfree (opaque, ptr)
5892 1.7 christos voidpf opaque;
5893 1.7 christos voidpf ptr;
5894 1.7 christos {
5895 1.7 christos free(ptr);
5896 1.7 christos if (opaque) return; /* make compiler happy */
5897 1.7 christos }
5898 1.7 christos
5899 1.7 christos #endif /* MY_ZCALLOC */
5900 1.7 christos /* --- zutil.c */
5901 1.7 christos
5902 1.7 christos /* +++ adler32.c */
5903 1.1 paulus /* adler32.c -- compute the Adler-32 checksum of a data stream
5904 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5905 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5906 1.1 paulus */
5907 1.1 paulus
5908 1.21 christos /* @(#) $Id: zlib.c,v 1.21 2005/05/29 21:22:53 christos Exp $ */
5909 1.7 christos
5910 1.7 christos /* #include "zlib.h" */
5911 1.1 paulus
5912 1.1 paulus #define BASE 65521L /* largest prime smaller than 65536 */
5913 1.1 paulus #define NMAX 5552
5914 1.1 paulus /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5915 1.1 paulus
5916 1.7 christos #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5917 1.7 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5918 1.7 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5919 1.7 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5920 1.7 christos #define DO16(buf) DO8(buf,0); DO8(buf,8);
5921 1.1 paulus
5922 1.1 paulus /* ========================================================================= */
5923 1.17 fvdl uLong ZEXPORT adler32(adler, buf, len)
5924 1.1 paulus uLong adler;
5925 1.7 christos const Bytef *buf;
5926 1.1 paulus uInt len;
5927 1.1 paulus {
5928 1.1 paulus unsigned long s1 = adler & 0xffff;
5929 1.1 paulus unsigned long s2 = (adler >> 16) & 0xffff;
5930 1.1 paulus int k;
5931 1.1 paulus
5932 1.1 paulus if (buf == Z_NULL) return 1L;
5933 1.1 paulus
5934 1.1 paulus while (len > 0) {
5935 1.1 paulus k = len < NMAX ? len : NMAX;
5936 1.1 paulus len -= k;
5937 1.1 paulus while (k >= 16) {
5938 1.1 paulus DO16(buf);
5939 1.7 christos buf += 16;
5940 1.1 paulus k -= 16;
5941 1.1 paulus }
5942 1.1 paulus if (k != 0) do {
5943 1.7 christos s1 += *buf++;
5944 1.7 christos s2 += s1;
5945 1.1 paulus } while (--k);
5946 1.1 paulus s1 %= BASE;
5947 1.1 paulus s2 %= BASE;
5948 1.1 paulus }
5949 1.1 paulus return (s2 << 16) | s1;
5950 1.1 paulus }
5951 1.7 christos /* --- adler32.c */
5952 1.17 fvdl
5953