zlib.c revision 1.23 1 1.23 christos /* $NetBSD: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
2 1.1 paulus /*
3 1.7 christos * This file is derived from various .h and .c files from the zlib-1.0.4
4 1.1 paulus * distribution by Jean-loup Gailly and Mark Adler, with some additions
5 1.1 paulus * by Paul Mackerras to aid in implementing Deflate compression and
6 1.1 paulus * decompression for PPP packets. See zlib.h for conditions of
7 1.1 paulus * distribution and use.
8 1.1 paulus *
9 1.1 paulus * Changes that have been made include:
10 1.1 paulus * - added Z_PACKET_FLUSH (see zlib.h for details)
11 1.7 christos * - added inflateIncomp and deflateOutputPending
12 1.7 christos * - allow strm->next_out to be NULL, meaning discard the output
13 1.4 christos *
14 1.23 christos * $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $
15 1.1 paulus */
16 1.1 paulus
17 1.20 perry /*
18 1.17 fvdl * ==FILEVERSION 020312==
19 1.4 christos *
20 1.4 christos * This marker is used by the Linux installation script to determine
21 1.4 christos * whether an up-to-date version of this file is already installed.
22 1.4 christos */
23 1.15 lukem
24 1.15 lukem #include <sys/cdefs.h>
25 1.23 christos __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $");
26 1.1 paulus
27 1.7 christos #define NO_DUMMY_DECL
28 1.7 christos #define NO_ZCFUNCS
29 1.7 christos #define MY_ZCALLOC
30 1.7 christos
31 1.7 christos #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 1.7 christos #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
33 1.7 christos #endif
34 1.7 christos
35 1.7 christos
36 1.7 christos /* +++ zutil.h */
37 1.17 fvdl
38 1.1 paulus /* zutil.h -- internal interface and configuration of the compression library
39 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
40 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
41 1.1 paulus */
42 1.1 paulus
43 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
44 1.1 paulus part of the implementation of the compression library and is
45 1.1 paulus subject to change. Applications should only use zlib.h.
46 1.1 paulus */
47 1.1 paulus
48 1.23 christos /* @(#) $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
49 1.1 paulus
50 1.7 christos #ifndef _Z_UTIL_H
51 1.1 paulus #define _Z_UTIL_H
52 1.1 paulus
53 1.1 paulus #include "zlib.h"
54 1.1 paulus
55 1.7 christos #if defined(KERNEL) || defined(_KERNEL)
56 1.7 christos /* Assume this is a *BSD or SVR4 kernel */
57 1.9 ragge #include <sys/param.h>
58 1.7 christos #include <sys/time.h>
59 1.7 christos #include <sys/systm.h>
60 1.7 christos # define HAVE_MEMCPY
61 1.7 christos #else
62 1.7 christos #if defined(__KERNEL__)
63 1.7 christos /* Assume this is a Linux kernel */
64 1.7 christos #include <linux/string.h>
65 1.7 christos #define HAVE_MEMCPY
66 1.7 christos
67 1.7 christos #else /* not kernel */
68 1.7 christos
69 1.17 fvdl #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
70 1.17 fvdl
71 1.17 fvdl /* XXX doesn't seem to need anything at all, but this is for consistency. */
72 1.17 fvdl # include <lib/libkern/libkern.h>
73 1.17 fvdl
74 1.7 christos #else
75 1.23 christos # include <sys/types.h>
76 1.23 christos # include <sys/param.h>
77 1.7 christos #ifdef STDC
78 1.17 fvdl # include <stddef.h>
79 1.7 christos # include <string.h>
80 1.7 christos # include <stdlib.h>
81 1.7 christos #endif
82 1.17 fvdl #ifdef NO_ERRNO_H
83 1.17 fvdl extern int errno;
84 1.17 fvdl #else
85 1.17 fvdl # include <errno.h>
86 1.17 fvdl #endif
87 1.17 fvdl #endif /* __NetBSD__ && _STANDALONE */
88 1.7 christos #endif /* __KERNEL__ */
89 1.7 christos #endif /* _KERNEL || KERNEL */
90 1.7 christos
91 1.17 fvdl
92 1.1 paulus #ifndef local
93 1.1 paulus # define local static
94 1.1 paulus #endif
95 1.1 paulus /* compile with -Dlocal if your debugger can't find static symbols */
96 1.1 paulus
97 1.1 paulus typedef unsigned char uch;
98 1.1 paulus typedef uch FAR uchf;
99 1.1 paulus typedef unsigned short ush;
100 1.1 paulus typedef ush FAR ushf;
101 1.1 paulus typedef unsigned long ulg;
102 1.1 paulus
103 1.17 fvdl extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
104 1.7 christos /* (size given to avoid silly warnings with Visual C++) */
105 1.1 paulus
106 1.7 christos #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
107 1.7 christos
108 1.7 christos #define ERR_RETURN(strm,err) \
109 1.21 christos return (strm->msg = ERR_MSG(err), (err))
110 1.1 paulus /* To be used only when the state is known to be valid */
111 1.1 paulus
112 1.1 paulus /* common constants */
113 1.1 paulus
114 1.1 paulus #ifndef DEF_WBITS
115 1.1 paulus # define DEF_WBITS MAX_WBITS
116 1.1 paulus #endif
117 1.1 paulus /* default windowBits for decompression. MAX_WBITS is for compression only */
118 1.1 paulus
119 1.1 paulus #if MAX_MEM_LEVEL >= 8
120 1.1 paulus # define DEF_MEM_LEVEL 8
121 1.1 paulus #else
122 1.1 paulus # define DEF_MEM_LEVEL MAX_MEM_LEVEL
123 1.1 paulus #endif
124 1.1 paulus /* default memLevel */
125 1.1 paulus
126 1.1 paulus #define STORED_BLOCK 0
127 1.1 paulus #define STATIC_TREES 1
128 1.1 paulus #define DYN_TREES 2
129 1.1 paulus /* The three kinds of block type */
130 1.1 paulus
131 1.1 paulus #define MIN_MATCH 3
132 1.1 paulus #define MAX_MATCH 258
133 1.1 paulus /* The minimum and maximum match lengths */
134 1.1 paulus
135 1.7 christos #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
136 1.7 christos
137 1.7 christos /* target dependencies */
138 1.7 christos
139 1.7 christos #ifdef MSDOS
140 1.7 christos # define OS_CODE 0x00
141 1.17 fvdl # if defined(__TURBOC__) || defined(__BORLANDC__)
142 1.17 fvdl # if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
143 1.17 fvdl /* Allow compilation with ANSI keywords only enabled */
144 1.17 fvdl void _Cdecl farfree( void *block );
145 1.17 fvdl void *_Cdecl farmalloc( unsigned long nbytes );
146 1.17 fvdl # else
147 1.17 fvdl # include <alloc.h>
148 1.17 fvdl # endif
149 1.7 christos # else /* MSC or DJGPP */
150 1.7 christos # include <malloc.h>
151 1.7 christos # endif
152 1.7 christos #endif
153 1.7 christos
154 1.7 christos #ifdef OS2
155 1.7 christos # define OS_CODE 0x06
156 1.7 christos #endif
157 1.7 christos
158 1.7 christos #ifdef WIN32 /* Window 95 & Windows NT */
159 1.7 christos # define OS_CODE 0x0b
160 1.7 christos #endif
161 1.7 christos
162 1.7 christos #if defined(VAXC) || defined(VMS)
163 1.7 christos # define OS_CODE 0x02
164 1.17 fvdl # define F_OPEN(name, mode) \
165 1.7 christos fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
166 1.7 christos #endif
167 1.7 christos
168 1.7 christos #ifdef AMIGA
169 1.7 christos # define OS_CODE 0x01
170 1.7 christos #endif
171 1.7 christos
172 1.7 christos #if defined(ATARI) || defined(atarist)
173 1.7 christos # define OS_CODE 0x05
174 1.7 christos #endif
175 1.7 christos
176 1.17 fvdl #if defined(MACOS) || defined(TARGET_OS_MAC)
177 1.7 christos # define OS_CODE 0x07
178 1.17 fvdl # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
179 1.17 fvdl # include <unix.h> /* for fdopen */
180 1.17 fvdl # else
181 1.17 fvdl # ifndef fdopen
182 1.17 fvdl # define fdopen(fd,mode) NULL /* No fdopen() */
183 1.17 fvdl # endif
184 1.17 fvdl # endif
185 1.7 christos #endif
186 1.7 christos
187 1.7 christos #ifdef __50SERIES /* Prime/PRIMOS */
188 1.7 christos # define OS_CODE 0x0F
189 1.7 christos #endif
190 1.7 christos
191 1.7 christos #ifdef TOPS20
192 1.7 christos # define OS_CODE 0x0a
193 1.7 christos #endif
194 1.7 christos
195 1.7 christos #if defined(_BEOS_) || defined(RISCOS)
196 1.7 christos # define fdopen(fd,mode) NULL /* No fdopen() */
197 1.7 christos #endif
198 1.7 christos
199 1.17 fvdl #if (defined(_MSC_VER) && (_MSC_VER > 600))
200 1.17 fvdl # define fdopen(fd,type) _fdopen(fd,type)
201 1.17 fvdl #endif
202 1.17 fvdl
203 1.17 fvdl
204 1.7 christos /* Common defaults */
205 1.7 christos
206 1.7 christos #ifndef OS_CODE
207 1.7 christos # define OS_CODE 0x03 /* assume Unix */
208 1.7 christos #endif
209 1.7 christos
210 1.17 fvdl #ifndef F_OPEN
211 1.17 fvdl # define F_OPEN(name, mode) fopen((name), (mode))
212 1.7 christos #endif
213 1.7 christos
214 1.1 paulus /* functions */
215 1.1 paulus
216 1.7 christos #ifdef HAVE_STRERROR
217 1.17 fvdl extern char *strerror __P((int));
218 1.7 christos # define zstrerror(errnum) strerror(errnum)
219 1.1 paulus #else
220 1.7 christos # define zstrerror(errnum) ""
221 1.7 christos #endif
222 1.4 christos
223 1.7 christos #if defined(pyr)
224 1.7 christos # define NO_MEMCPY
225 1.7 christos #endif
226 1.17 fvdl #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
227 1.7 christos /* Use our own functions for small and medium model with MSC <= 5.0.
228 1.7 christos * You may have to use the same strategy for Borland C (untested).
229 1.17 fvdl * The __SC__ check is for Symantec.
230 1.7 christos */
231 1.7 christos # define NO_MEMCPY
232 1.7 christos #endif
233 1.1 paulus #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
234 1.1 paulus # define HAVE_MEMCPY
235 1.1 paulus #endif
236 1.1 paulus #ifdef HAVE_MEMCPY
237 1.7 christos # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
238 1.7 christos # define zmemcpy _fmemcpy
239 1.7 christos # define zmemcmp _fmemcmp
240 1.7 christos # define zmemzero(dest, len) _fmemset(dest, 0, len)
241 1.7 christos # else
242 1.1 paulus # define zmemcpy memcpy
243 1.7 christos # define zmemcmp memcmp
244 1.1 paulus # define zmemzero(dest, len) memset(dest, 0, len)
245 1.7 christos # endif
246 1.1 paulus #else
247 1.17 fvdl extern void zmemcpy __P((Bytef* dest, const Bytef* source, uInt len));
248 1.17 fvdl extern int zmemcmp __P((const Bytef* s1, const Bytef* s2, uInt len));
249 1.17 fvdl extern void zmemzero __P((Bytef* dest, uInt len));
250 1.1 paulus #endif
251 1.1 paulus
252 1.1 paulus /* Diagnostic functions */
253 1.17 fvdl #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
254 1.1 paulus # include <stdio.h>
255 1.17 fvdl extern int z_verbose;
256 1.17 fvdl extern void z_error __P((char *m));
257 1.1 paulus # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
258 1.17 fvdl # define Trace(x) {if (z_verbose>=0) fprintf x ;}
259 1.17 fvdl # define Tracev(x) {if (z_verbose>0) fprintf x ;}
260 1.17 fvdl # define Tracevv(x) {if (z_verbose>1) fprintf x ;}
261 1.17 fvdl # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
262 1.17 fvdl # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
263 1.1 paulus #else
264 1.1 paulus # define Assert(cond,msg)
265 1.1 paulus # define Trace(x)
266 1.1 paulus # define Tracev(x)
267 1.1 paulus # define Tracevv(x)
268 1.1 paulus # define Tracec(c,x)
269 1.1 paulus # define Tracecv(c,x)
270 1.1 paulus #endif
271 1.1 paulus
272 1.1 paulus
273 1.17 fvdl typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
274 1.17 fvdl uInt len));
275 1.17 fvdl voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
276 1.17 fvdl void zcfree __P((voidpf opaque, voidpf ptr));
277 1.1 paulus
278 1.1 paulus #define ZALLOC(strm, items, size) \
279 1.1 paulus (*((strm)->zalloc))((strm)->opaque, (items), (size))
280 1.7 christos #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
281 1.7 christos #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
282 1.7 christos
283 1.7 christos #endif /* _Z_UTIL_H */
284 1.7 christos /* --- zutil.h */
285 1.1 paulus
286 1.7 christos /* +++ deflate.h */
287 1.17 fvdl
288 1.1 paulus /* deflate.h -- internal compression state
289 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly
290 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
291 1.1 paulus */
292 1.1 paulus
293 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
294 1.1 paulus part of the implementation of the compression library and is
295 1.1 paulus subject to change. Applications should only use zlib.h.
296 1.1 paulus */
297 1.1 paulus
298 1.23 christos /* @(#) $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
299 1.1 paulus
300 1.7 christos #ifndef _DEFLATE_H
301 1.7 christos #define _DEFLATE_H
302 1.7 christos
303 1.7 christos /* #include "zutil.h" */
304 1.1 paulus
305 1.1 paulus /* ===========================================================================
306 1.1 paulus * Internal compression state.
307 1.1 paulus */
308 1.1 paulus
309 1.1 paulus #define LENGTH_CODES 29
310 1.1 paulus /* number of length codes, not counting the special END_BLOCK code */
311 1.1 paulus
312 1.1 paulus #define LITERALS 256
313 1.1 paulus /* number of literal bytes 0..255 */
314 1.1 paulus
315 1.1 paulus #define L_CODES (LITERALS+1+LENGTH_CODES)
316 1.1 paulus /* number of Literal or Length codes, including the END_BLOCK code */
317 1.1 paulus
318 1.1 paulus #define D_CODES 30
319 1.1 paulus /* number of distance codes */
320 1.1 paulus
321 1.1 paulus #define BL_CODES 19
322 1.1 paulus /* number of codes used to transfer the bit lengths */
323 1.1 paulus
324 1.1 paulus #define HEAP_SIZE (2*L_CODES+1)
325 1.1 paulus /* maximum heap size */
326 1.1 paulus
327 1.1 paulus #define MAX_BITS 15
328 1.1 paulus /* All codes must not exceed MAX_BITS bits */
329 1.1 paulus
330 1.1 paulus #define INIT_STATE 42
331 1.1 paulus #define BUSY_STATE 113
332 1.1 paulus #define FINISH_STATE 666
333 1.1 paulus /* Stream status */
334 1.1 paulus
335 1.1 paulus
336 1.1 paulus /* Data structure describing a single value and its code string. */
337 1.1 paulus typedef struct ct_data_s {
338 1.1 paulus union {
339 1.1 paulus ush freq; /* frequency count */
340 1.1 paulus ush code; /* bit string */
341 1.1 paulus } fc;
342 1.1 paulus union {
343 1.1 paulus ush dad; /* father node in Huffman tree */
344 1.1 paulus ush len; /* length of bit string */
345 1.1 paulus } dl;
346 1.1 paulus } FAR ct_data;
347 1.1 paulus
348 1.1 paulus #define Freq fc.freq
349 1.1 paulus #define Code fc.code
350 1.1 paulus #define Dad dl.dad
351 1.1 paulus #define Len dl.len
352 1.1 paulus
353 1.1 paulus typedef struct static_tree_desc_s static_tree_desc;
354 1.1 paulus
355 1.1 paulus typedef struct tree_desc_s {
356 1.1 paulus ct_data *dyn_tree; /* the dynamic tree */
357 1.1 paulus int max_code; /* largest code with non zero frequency */
358 1.1 paulus static_tree_desc *stat_desc; /* the corresponding static tree */
359 1.1 paulus } FAR tree_desc;
360 1.1 paulus
361 1.1 paulus typedef ush Pos;
362 1.1 paulus typedef Pos FAR Posf;
363 1.1 paulus typedef unsigned IPos;
364 1.1 paulus
365 1.1 paulus /* A Pos is an index in the character window. We use short instead of int to
366 1.1 paulus * save space in the various tables. IPos is used only for parameter passing.
367 1.1 paulus */
368 1.1 paulus
369 1.1 paulus typedef struct deflate_state {
370 1.7 christos z_streamp strm; /* pointer back to this zlib stream */
371 1.1 paulus int status; /* as the name implies */
372 1.1 paulus Bytef *pending_buf; /* output still pending */
373 1.7 christos ulg pending_buf_size; /* size of pending_buf */
374 1.1 paulus Bytef *pending_out; /* next pending byte to output to the stream */
375 1.1 paulus int pending; /* nb of bytes in the pending buffer */
376 1.1 paulus int noheader; /* suppress zlib header and adler32 */
377 1.7 christos Byte data_type; /* UNKNOWN, BINARY or ASCII */
378 1.1 paulus Byte method; /* STORED (for zip only) or DEFLATED */
379 1.7 christos int last_flush; /* value of flush param for previous deflate call */
380 1.1 paulus
381 1.1 paulus /* used by deflate.c: */
382 1.1 paulus
383 1.1 paulus uInt w_size; /* LZ77 window size (32K by default) */
384 1.1 paulus uInt w_bits; /* log2(w_size) (8..16) */
385 1.1 paulus uInt w_mask; /* w_size - 1 */
386 1.1 paulus
387 1.1 paulus Bytef *window;
388 1.1 paulus /* Sliding window. Input bytes are read into the second half of the window,
389 1.1 paulus * and move to the first half later to keep a dictionary of at least wSize
390 1.1 paulus * bytes. With this organization, matches are limited to a distance of
391 1.1 paulus * wSize-MAX_MATCH bytes, but this ensures that IO is always
392 1.1 paulus * performed with a length multiple of the block size. Also, it limits
393 1.1 paulus * the window size to 64K, which is quite useful on MSDOS.
394 1.1 paulus * To do: use the user input buffer as sliding window.
395 1.1 paulus */
396 1.1 paulus
397 1.1 paulus ulg window_size;
398 1.1 paulus /* Actual size of window: 2*wSize, except when the user input buffer
399 1.1 paulus * is directly used as sliding window.
400 1.1 paulus */
401 1.1 paulus
402 1.1 paulus Posf *prev;
403 1.1 paulus /* Link to older string with same hash index. To limit the size of this
404 1.1 paulus * array to 64K, this link is maintained only for the last 32K strings.
405 1.1 paulus * An index in this array is thus a window index modulo 32K.
406 1.1 paulus */
407 1.1 paulus
408 1.1 paulus Posf *head; /* Heads of the hash chains or NIL. */
409 1.1 paulus
410 1.1 paulus uInt ins_h; /* hash index of string to be inserted */
411 1.1 paulus uInt hash_size; /* number of elements in hash table */
412 1.1 paulus uInt hash_bits; /* log2(hash_size) */
413 1.1 paulus uInt hash_mask; /* hash_size-1 */
414 1.1 paulus
415 1.1 paulus uInt hash_shift;
416 1.1 paulus /* Number of bits by which ins_h must be shifted at each input
417 1.1 paulus * step. It must be such that after MIN_MATCH steps, the oldest
418 1.1 paulus * byte no longer takes part in the hash key, that is:
419 1.1 paulus * hash_shift * MIN_MATCH >= hash_bits
420 1.1 paulus */
421 1.1 paulus
422 1.1 paulus long block_start;
423 1.1 paulus /* Window position at the beginning of the current output block. Gets
424 1.1 paulus * negative when the window is moved backwards.
425 1.1 paulus */
426 1.1 paulus
427 1.1 paulus uInt match_length; /* length of best match */
428 1.1 paulus IPos prev_match; /* previous match */
429 1.1 paulus int match_available; /* set if previous match exists */
430 1.1 paulus uInt strstart; /* start of string to insert */
431 1.1 paulus uInt match_start; /* start of matching string */
432 1.1 paulus uInt lookahead; /* number of valid bytes ahead in window */
433 1.1 paulus
434 1.1 paulus uInt prev_length;
435 1.1 paulus /* Length of the best match at previous step. Matches not greater than this
436 1.1 paulus * are discarded. This is used in the lazy match evaluation.
437 1.1 paulus */
438 1.1 paulus
439 1.1 paulus uInt max_chain_length;
440 1.1 paulus /* To speed up deflation, hash chains are never searched beyond this
441 1.1 paulus * length. A higher limit improves compression ratio but degrades the
442 1.1 paulus * speed.
443 1.1 paulus */
444 1.1 paulus
445 1.1 paulus uInt max_lazy_match;
446 1.1 paulus /* Attempt to find a better match only when the current match is strictly
447 1.1 paulus * smaller than this value. This mechanism is used only for compression
448 1.1 paulus * levels >= 4.
449 1.1 paulus */
450 1.1 paulus # define max_insert_length max_lazy_match
451 1.1 paulus /* Insert new strings in the hash table only if the match length is not
452 1.1 paulus * greater than this length. This saves time but degrades compression.
453 1.1 paulus * max_insert_length is used only for compression levels <= 3.
454 1.1 paulus */
455 1.1 paulus
456 1.1 paulus int level; /* compression level (1..9) */
457 1.1 paulus int strategy; /* favor or force Huffman coding*/
458 1.1 paulus
459 1.1 paulus uInt good_match;
460 1.1 paulus /* Use a faster search when the previous match is longer than this */
461 1.1 paulus
462 1.7 christos int nice_match; /* Stop searching when current match exceeds this */
463 1.1 paulus
464 1.1 paulus /* used by trees.c: */
465 1.1 paulus /* Didn't use ct_data typedef below to supress compiler warning */
466 1.1 paulus struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
467 1.1 paulus struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
468 1.1 paulus struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
469 1.1 paulus
470 1.1 paulus struct tree_desc_s l_desc; /* desc. for literal tree */
471 1.1 paulus struct tree_desc_s d_desc; /* desc. for distance tree */
472 1.1 paulus struct tree_desc_s bl_desc; /* desc. for bit length tree */
473 1.1 paulus
474 1.1 paulus ush bl_count[MAX_BITS+1];
475 1.1 paulus /* number of codes at each bit length for an optimal tree */
476 1.1 paulus
477 1.1 paulus int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
478 1.1 paulus int heap_len; /* number of elements in the heap */
479 1.1 paulus int heap_max; /* element of largest frequency */
480 1.1 paulus /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
481 1.1 paulus * The same heap array is used to build all trees.
482 1.1 paulus */
483 1.1 paulus
484 1.1 paulus uch depth[2*L_CODES+1];
485 1.1 paulus /* Depth of each subtree used as tie breaker for trees of equal frequency
486 1.1 paulus */
487 1.1 paulus
488 1.1 paulus uchf *l_buf; /* buffer for literals or lengths */
489 1.1 paulus
490 1.1 paulus uInt lit_bufsize;
491 1.1 paulus /* Size of match buffer for literals/lengths. There are 4 reasons for
492 1.1 paulus * limiting lit_bufsize to 64K:
493 1.1 paulus * - frequencies can be kept in 16 bit counters
494 1.1 paulus * - if compression is not successful for the first block, all input
495 1.1 paulus * data is still in the window so we can still emit a stored block even
496 1.1 paulus * when input comes from standard input. (This can also be done for
497 1.1 paulus * all blocks if lit_bufsize is not greater than 32K.)
498 1.1 paulus * - if compression is not successful for a file smaller than 64K, we can
499 1.1 paulus * even emit a stored file instead of a stored block (saving 5 bytes).
500 1.1 paulus * This is applicable only for zip (not gzip or zlib).
501 1.1 paulus * - creating new Huffman trees less frequently may not provide fast
502 1.1 paulus * adaptation to changes in the input data statistics. (Take for
503 1.1 paulus * example a binary file with poorly compressible code followed by
504 1.1 paulus * a highly compressible string table.) Smaller buffer sizes give
505 1.1 paulus * fast adaptation but have of course the overhead of transmitting
506 1.1 paulus * trees more frequently.
507 1.1 paulus * - I can't count above 4
508 1.1 paulus */
509 1.1 paulus
510 1.1 paulus uInt last_lit; /* running index in l_buf */
511 1.1 paulus
512 1.1 paulus ushf *d_buf;
513 1.1 paulus /* Buffer for distances. To simplify the code, d_buf and l_buf have
514 1.1 paulus * the same number of elements. To use different lengths, an extra flag
515 1.1 paulus * array would be necessary.
516 1.1 paulus */
517 1.1 paulus
518 1.1 paulus ulg opt_len; /* bit length of current block with optimal trees */
519 1.1 paulus ulg static_len; /* bit length of current block with static trees */
520 1.1 paulus uInt matches; /* number of string matches in current block */
521 1.1 paulus int last_eob_len; /* bit length of EOB code for last block */
522 1.1 paulus
523 1.1 paulus #ifdef DEBUG_ZLIB
524 1.17 fvdl ulg compressed_len; /* total bit length of compressed file mod 2^32 */
525 1.17 fvdl ulg bits_sent; /* bit length of compressed data sent mod 2^32 */
526 1.1 paulus #endif
527 1.1 paulus
528 1.1 paulus ush bi_buf;
529 1.1 paulus /* Output buffer. bits are inserted starting at the bottom (least
530 1.1 paulus * significant bits).
531 1.1 paulus */
532 1.1 paulus int bi_valid;
533 1.1 paulus /* Number of valid bits in bi_buf. All bits above the last valid bit
534 1.1 paulus * are always zero.
535 1.1 paulus */
536 1.1 paulus
537 1.1 paulus } FAR deflate_state;
538 1.1 paulus
539 1.1 paulus /* Output a byte on the stream.
540 1.1 paulus * IN assertion: there is enough room in pending_buf.
541 1.1 paulus */
542 1.1 paulus #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
543 1.1 paulus
544 1.1 paulus
545 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
546 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
547 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
548 1.1 paulus */
549 1.1 paulus
550 1.1 paulus #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
551 1.1 paulus /* In order to simplify the code, particularly on 16 bit machines, match
552 1.1 paulus * distances are limited to MAX_DIST instead of WSIZE.
553 1.1 paulus */
554 1.1 paulus
555 1.1 paulus /* in trees.c */
556 1.17 fvdl void _tr_init __P((deflate_state *s));
557 1.17 fvdl int _tr_tally __P((deflate_state *s, unsigned dist, unsigned lc));
558 1.17 fvdl void _tr_flush_block __P((deflate_state *s, charf *buf, ulg stored_len,
559 1.7 christos int eof));
560 1.17 fvdl void _tr_align __P((deflate_state *s));
561 1.17 fvdl void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
562 1.1 paulus int eof));
563 1.17 fvdl void _tr_stored_type_only __P((deflate_state *));
564 1.17 fvdl
565 1.17 fvdl #define d_code(dist) \
566 1.17 fvdl ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
567 1.17 fvdl /* Mapping from a distance to a distance code. dist is the distance - 1 and
568 1.17 fvdl * must not have side effects. _dist_code[256] and _dist_code[257] are never
569 1.17 fvdl * used.
570 1.17 fvdl */
571 1.17 fvdl
572 1.17 fvdl #ifndef DEBUG_ZLIB
573 1.17 fvdl /* Inline versions of _tr_tally for speed: */
574 1.17 fvdl
575 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
576 1.17 fvdl extern uch _length_code[];
577 1.17 fvdl extern uch _dist_code[];
578 1.17 fvdl #else
579 1.17 fvdl extern const uch _length_code[];
580 1.17 fvdl extern const uch _dist_code[];
581 1.17 fvdl #endif
582 1.17 fvdl
583 1.17 fvdl # define _tr_tally_lit(s, c, flush) \
584 1.17 fvdl { uch cc = (c); \
585 1.17 fvdl s->d_buf[s->last_lit] = 0; \
586 1.17 fvdl s->l_buf[s->last_lit++] = cc; \
587 1.17 fvdl s->dyn_ltree[cc].Freq++; \
588 1.17 fvdl flush = (s->last_lit == s->lit_bufsize-1); \
589 1.17 fvdl }
590 1.17 fvdl # define _tr_tally_dist(s, distance, length, flush) \
591 1.17 fvdl { uch len = (length); \
592 1.17 fvdl ush dist = (distance); \
593 1.17 fvdl s->d_buf[s->last_lit] = dist; \
594 1.17 fvdl s->l_buf[s->last_lit++] = len; \
595 1.17 fvdl dist--; \
596 1.17 fvdl s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
597 1.17 fvdl s->dyn_dtree[d_code(dist)].Freq++; \
598 1.17 fvdl flush = (s->last_lit == s->lit_bufsize-1); \
599 1.17 fvdl }
600 1.17 fvdl #else
601 1.17 fvdl # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
602 1.17 fvdl # define _tr_tally_dist(s, distance, length, flush) \
603 1.20 perry flush = _tr_tally(s, distance, length)
604 1.17 fvdl #endif
605 1.1 paulus
606 1.7 christos #endif
607 1.7 christos /* --- deflate.h */
608 1.1 paulus
609 1.7 christos /* +++ deflate.c */
610 1.17 fvdl
611 1.1 paulus /* deflate.c -- compress data using the deflation algorithm
612 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
613 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
614 1.1 paulus */
615 1.1 paulus
616 1.1 paulus /*
617 1.1 paulus * ALGORITHM
618 1.1 paulus *
619 1.1 paulus * The "deflation" process depends on being able to identify portions
620 1.1 paulus * of the input text which are identical to earlier input (within a
621 1.1 paulus * sliding window trailing behind the input currently being processed).
622 1.1 paulus *
623 1.1 paulus * The most straightforward technique turns out to be the fastest for
624 1.1 paulus * most input files: try all possible matches and select the longest.
625 1.1 paulus * The key feature of this algorithm is that insertions into the string
626 1.1 paulus * dictionary are very simple and thus fast, and deletions are avoided
627 1.1 paulus * completely. Insertions are performed at each input character, whereas
628 1.1 paulus * string matches are performed only when the previous match ends. So it
629 1.1 paulus * is preferable to spend more time in matches to allow very fast string
630 1.1 paulus * insertions and avoid deletions. The matching algorithm for small
631 1.1 paulus * strings is inspired from that of Rabin & Karp. A brute force approach
632 1.1 paulus * is used to find longer strings when a small match has been found.
633 1.1 paulus * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
634 1.1 paulus * (by Leonid Broukhis).
635 1.1 paulus * A previous version of this file used a more sophisticated algorithm
636 1.1 paulus * (by Fiala and Greene) which is guaranteed to run in linear amortized
637 1.1 paulus * time, but has a larger average cost, uses more memory and is patented.
638 1.1 paulus * However the F&G algorithm may be faster for some highly redundant
639 1.1 paulus * files if the parameter max_chain_length (described below) is too large.
640 1.1 paulus *
641 1.1 paulus * ACKNOWLEDGEMENTS
642 1.1 paulus *
643 1.1 paulus * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
644 1.1 paulus * I found it in 'freeze' written by Leonid Broukhis.
645 1.1 paulus * Thanks to many people for bug reports and testing.
646 1.1 paulus *
647 1.1 paulus * REFERENCES
648 1.1 paulus *
649 1.7 christos * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
650 1.7 christos * Available in ftp://ds.internic.net/rfc/rfc1951.txt
651 1.1 paulus *
652 1.1 paulus * A description of the Rabin and Karp algorithm is given in the book
653 1.1 paulus * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
654 1.1 paulus *
655 1.1 paulus * Fiala,E.R., and Greene,D.H.
656 1.1 paulus * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
657 1.1 paulus *
658 1.1 paulus */
659 1.1 paulus
660 1.23 christos /* @(#) $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
661 1.7 christos
662 1.7 christos /* #include "deflate.h" */
663 1.1 paulus
664 1.17 fvdl const char deflate_copyright[] =
665 1.17 fvdl " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
666 1.1 paulus /*
667 1.1 paulus If you use the zlib library in a product, an acknowledgment is welcome
668 1.1 paulus in the documentation of your product. If for some reason you cannot
669 1.1 paulus include such an acknowledgment, I would appreciate that you keep this
670 1.1 paulus copyright string in the executable of your product.
671 1.1 paulus */
672 1.1 paulus
673 1.7 christos /* ===========================================================================
674 1.7 christos * Function prototypes.
675 1.7 christos */
676 1.7 christos typedef enum {
677 1.7 christos need_more, /* block not completed, need more input or more output */
678 1.7 christos block_done, /* block flush performed */
679 1.7 christos finish_started, /* finish started, need only more output at next deflate */
680 1.7 christos finish_done /* finish done, accept no more input or output */
681 1.7 christos } block_state;
682 1.7 christos
683 1.17 fvdl typedef block_state (*compress_func) __P((deflate_state *s, int flush));
684 1.7 christos /* Compression function. Returns the block state after the call. */
685 1.7 christos
686 1.17 fvdl local void fill_window __P((deflate_state *s));
687 1.17 fvdl local block_state deflate_stored __P((deflate_state *s, int flush));
688 1.17 fvdl local block_state deflate_fast __P((deflate_state *s, int flush));
689 1.17 fvdl local block_state deflate_slow __P((deflate_state *s, int flush));
690 1.17 fvdl local void lm_init __P((deflate_state *s));
691 1.17 fvdl local void putShortMSB __P((deflate_state *s, uInt b));
692 1.17 fvdl local void flush_pending __P((z_streamp strm));
693 1.17 fvdl local int read_buf __P((z_streamp strm, Bytef *buf, unsigned size));
694 1.7 christos #ifdef ASMV
695 1.17 fvdl void match_init __P((void)); /* asm code initialization */
696 1.17 fvdl uInt longest_match __P((deflate_state *s, IPos cur_match));
697 1.7 christos #else
698 1.17 fvdl local uInt longest_match __P((deflate_state *s, IPos cur_match));
699 1.7 christos #endif
700 1.7 christos
701 1.7 christos #ifdef DEBUG_ZLIB
702 1.17 fvdl local void check_match __P((deflate_state *s, IPos start, IPos match,
703 1.7 christos int length));
704 1.7 christos #endif
705 1.7 christos
706 1.7 christos /* ===========================================================================
707 1.7 christos * Local data
708 1.7 christos */
709 1.7 christos
710 1.1 paulus #define NIL 0
711 1.1 paulus /* Tail of hash chains */
712 1.1 paulus
713 1.1 paulus #ifndef TOO_FAR
714 1.1 paulus # define TOO_FAR 4096
715 1.1 paulus #endif
716 1.1 paulus /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
717 1.1 paulus
718 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
719 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
720 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
721 1.1 paulus */
722 1.1 paulus
723 1.1 paulus /* Values for max_lazy_match, good_match and max_chain_length, depending on
724 1.1 paulus * the desired pack level (0..9). The values given below have been tuned to
725 1.1 paulus * exclude worst case performance for pathological files. Better values may be
726 1.1 paulus * found for specific files.
727 1.1 paulus */
728 1.1 paulus typedef struct config_s {
729 1.1 paulus ush good_length; /* reduce lazy search above this match length */
730 1.1 paulus ush max_lazy; /* do not perform lazy search above this match length */
731 1.1 paulus ush nice_length; /* quit search above this match length */
732 1.1 paulus ush max_chain;
733 1.7 christos compress_func func;
734 1.1 paulus } config;
735 1.1 paulus
736 1.14 simonb local const config configuration_table[10] = {
737 1.1 paulus /* good lazy nice chain */
738 1.7 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
739 1.7 christos /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
740 1.7 christos /* 2 */ {4, 5, 16, 8, deflate_fast},
741 1.7 christos /* 3 */ {4, 6, 32, 32, deflate_fast},
742 1.7 christos
743 1.7 christos /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
744 1.7 christos /* 5 */ {8, 16, 32, 32, deflate_slow},
745 1.7 christos /* 6 */ {8, 16, 128, 128, deflate_slow},
746 1.7 christos /* 7 */ {8, 32, 128, 256, deflate_slow},
747 1.7 christos /* 8 */ {32, 128, 258, 1024, deflate_slow},
748 1.7 christos /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
749 1.1 paulus
750 1.1 paulus /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
751 1.1 paulus * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
752 1.1 paulus * meaning.
753 1.1 paulus */
754 1.1 paulus
755 1.1 paulus #define EQUAL 0
756 1.1 paulus /* result of memcmp for equal strings */
757 1.1 paulus
758 1.7 christos #ifndef NO_DUMMY_DECL
759 1.7 christos struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
760 1.1 paulus #endif
761 1.1 paulus
762 1.1 paulus /* ===========================================================================
763 1.1 paulus * Update a hash value with the given input byte
764 1.1 paulus * IN assertion: all calls to to UPDATE_HASH are made with consecutive
765 1.1 paulus * input characters, so that a running hash key can be computed from the
766 1.1 paulus * previous key instead of complete recalculation each time.
767 1.1 paulus */
768 1.1 paulus #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
769 1.1 paulus
770 1.1 paulus
771 1.1 paulus /* ===========================================================================
772 1.1 paulus * Insert string str in the dictionary and set match_head to the previous head
773 1.1 paulus * of the hash chain (the most recent string with same hash key). Return
774 1.1 paulus * the previous length of the hash chain.
775 1.17 fvdl * If this file is compiled with -DFASTEST, the compression level is forced
776 1.17 fvdl * to 1, and no hash chains are maintained.
777 1.1 paulus * IN assertion: all calls to to INSERT_STRING are made with consecutive
778 1.1 paulus * input characters and the first MIN_MATCH bytes of str are valid
779 1.1 paulus * (except for the last MIN_MATCH-1 bytes of the input file).
780 1.1 paulus */
781 1.17 fvdl #ifdef FASTEST
782 1.17 fvdl #define INSERT_STRING(s, str, match_head) \
783 1.17 fvdl (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
784 1.17 fvdl match_head = s->head[s->ins_h], \
785 1.17 fvdl s->head[s->ins_h] = (Pos)(str))
786 1.17 fvdl #else
787 1.1 paulus #define INSERT_STRING(s, str, match_head) \
788 1.1 paulus (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
789 1.1 paulus s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
790 1.7 christos s->head[s->ins_h] = (Pos)(str))
791 1.17 fvdl #endif
792 1.1 paulus
793 1.1 paulus /* ===========================================================================
794 1.1 paulus * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
795 1.1 paulus * prev[] will be initialized on the fly.
796 1.1 paulus */
797 1.1 paulus #define CLEAR_HASH(s) \
798 1.1 paulus s->head[s->hash_size-1] = NIL; \
799 1.17 fvdl zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
800 1.1 paulus
801 1.1 paulus /* ========================================================================= */
802 1.19 kristerw #if 0
803 1.17 fvdl int ZEXPORT deflateInit_(strm, level, version, stream_size)
804 1.7 christos z_streamp strm;
805 1.1 paulus int level;
806 1.7 christos const char *version;
807 1.7 christos int stream_size;
808 1.1 paulus {
809 1.7 christos return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
810 1.7 christos Z_DEFAULT_STRATEGY, version, stream_size);
811 1.1 paulus /* To do: ignore strm->next_in if we use it as window */
812 1.1 paulus }
813 1.19 kristerw #endif
814 1.1 paulus
815 1.1 paulus /* ========================================================================= */
816 1.17 fvdl int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
817 1.21 christos vers, stream_size)
818 1.7 christos z_streamp strm;
819 1.1 paulus int level;
820 1.1 paulus int method;
821 1.1 paulus int windowBits;
822 1.1 paulus int memLevel;
823 1.1 paulus int strategy;
824 1.21 christos const char *vers;
825 1.7 christos int stream_size;
826 1.1 paulus {
827 1.1 paulus deflate_state *s;
828 1.1 paulus int noheader = 0;
829 1.17 fvdl static const char* my_version = ZLIB_VERSION;
830 1.1 paulus
831 1.7 christos ushf *overlay;
832 1.7 christos /* We overlay pending_buf and d_buf+l_buf. This works since the average
833 1.7 christos * output size for (length,distance) codes is <= 24 bits.
834 1.7 christos */
835 1.7 christos
836 1.21 christos if (vers == Z_NULL || vers[0] != my_version[0] ||
837 1.7 christos stream_size != sizeof(z_stream)) {
838 1.7 christos return Z_VERSION_ERROR;
839 1.7 christos }
840 1.1 paulus if (strm == Z_NULL) return Z_STREAM_ERROR;
841 1.1 paulus
842 1.1 paulus strm->msg = Z_NULL;
843 1.7 christos #ifndef NO_ZCFUNCS
844 1.7 christos if (strm->zalloc == Z_NULL) {
845 1.7 christos strm->zalloc = zcalloc;
846 1.7 christos strm->opaque = (voidpf)0;
847 1.7 christos }
848 1.7 christos if (strm->zfree == Z_NULL) strm->zfree = zcfree;
849 1.7 christos #endif
850 1.1 paulus
851 1.1 paulus if (level == Z_DEFAULT_COMPRESSION) level = 6;
852 1.17 fvdl #ifdef FASTEST
853 1.17 fvdl level = 1;
854 1.17 fvdl #endif
855 1.1 paulus
856 1.1 paulus if (windowBits < 0) { /* undocumented feature: suppress zlib header */
857 1.1 paulus noheader = 1;
858 1.1 paulus windowBits = -windowBits;
859 1.1 paulus }
860 1.7 christos if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
861 1.17 fvdl windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
862 1.7 christos strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
863 1.1 paulus return Z_STREAM_ERROR;
864 1.1 paulus }
865 1.7 christos s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
866 1.1 paulus if (s == Z_NULL) return Z_MEM_ERROR;
867 1.1 paulus strm->state = (struct internal_state FAR *)s;
868 1.1 paulus s->strm = strm;
869 1.1 paulus
870 1.1 paulus s->noheader = noheader;
871 1.1 paulus s->w_bits = windowBits;
872 1.1 paulus s->w_size = 1 << s->w_bits;
873 1.1 paulus s->w_mask = s->w_size - 1;
874 1.1 paulus
875 1.1 paulus s->hash_bits = memLevel + 7;
876 1.1 paulus s->hash_size = 1 << s->hash_bits;
877 1.1 paulus s->hash_mask = s->hash_size - 1;
878 1.1 paulus s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
879 1.1 paulus
880 1.7 christos s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
881 1.7 christos s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
882 1.7 christos s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
883 1.1 paulus
884 1.1 paulus s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
885 1.1 paulus
886 1.7 christos overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
887 1.7 christos s->pending_buf = (uchf *) overlay;
888 1.7 christos s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
889 1.1 paulus
890 1.1 paulus if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
891 1.1 paulus s->pending_buf == Z_NULL) {
892 1.21 christos strm->msg = ERR_MSG(Z_MEM_ERROR);
893 1.18 tron s->status = INIT_STATE;
894 1.1 paulus deflateEnd (strm);
895 1.1 paulus return Z_MEM_ERROR;
896 1.1 paulus }
897 1.7 christos s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
898 1.7 christos s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
899 1.1 paulus
900 1.1 paulus s->level = level;
901 1.1 paulus s->strategy = strategy;
902 1.1 paulus s->method = (Byte)method;
903 1.1 paulus
904 1.1 paulus return deflateReset(strm);
905 1.1 paulus }
906 1.1 paulus
907 1.1 paulus /* ========================================================================= */
908 1.19 kristerw #if 0
909 1.17 fvdl int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
910 1.7 christos z_streamp strm;
911 1.7 christos const Bytef *dictionary;
912 1.7 christos uInt dictLength;
913 1.7 christos {
914 1.7 christos deflate_state *s;
915 1.7 christos uInt length = dictLength;
916 1.7 christos uInt n;
917 1.7 christos IPos hash_head = 0;
918 1.7 christos
919 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
920 1.17 fvdl return Z_STREAM_ERROR;
921 1.7 christos
922 1.17 fvdl s = (deflate_state *)strm->state;
923 1.7 christos if (s->status != INIT_STATE) return Z_STREAM_ERROR;
924 1.7 christos
925 1.7 christos strm->adler = adler32(strm->adler, dictionary, dictLength);
926 1.7 christos
927 1.7 christos if (length < MIN_MATCH) return Z_OK;
928 1.7 christos if (length > MAX_DIST(s)) {
929 1.7 christos length = MAX_DIST(s);
930 1.7 christos #ifndef USE_DICT_HEAD
931 1.7 christos dictionary += dictLength - length; /* use the tail of the dictionary */
932 1.7 christos #endif
933 1.7 christos }
934 1.17 fvdl zmemcpy(s->window, dictionary, length);
935 1.7 christos s->strstart = length;
936 1.7 christos s->block_start = (long)length;
937 1.7 christos
938 1.7 christos /* Insert all strings in the hash table (except for the last two bytes).
939 1.7 christos * s->lookahead stays null, so s->ins_h will be recomputed at the next
940 1.7 christos * call of fill_window.
941 1.7 christos */
942 1.7 christos s->ins_h = s->window[0];
943 1.7 christos UPDATE_HASH(s, s->ins_h, s->window[1]);
944 1.7 christos for (n = 0; n <= length - MIN_MATCH; n++) {
945 1.7 christos INSERT_STRING(s, n, hash_head);
946 1.7 christos }
947 1.7 christos if (hash_head) hash_head = 0; /* to make compiler happy */
948 1.7 christos return Z_OK;
949 1.7 christos }
950 1.19 kristerw #endif
951 1.7 christos
952 1.7 christos /* ========================================================================= */
953 1.17 fvdl int ZEXPORT deflateReset (strm)
954 1.7 christos z_streamp strm;
955 1.1 paulus {
956 1.1 paulus deflate_state *s;
957 1.20 perry
958 1.1 paulus if (strm == Z_NULL || strm->state == Z_NULL ||
959 1.7 christos strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
960 1.1 paulus
961 1.1 paulus strm->total_in = strm->total_out = 0;
962 1.1 paulus strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
963 1.1 paulus strm->data_type = Z_UNKNOWN;
964 1.1 paulus
965 1.1 paulus s = (deflate_state *)strm->state;
966 1.1 paulus s->pending = 0;
967 1.1 paulus s->pending_out = s->pending_buf;
968 1.1 paulus
969 1.1 paulus if (s->noheader < 0) {
970 1.1 paulus s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
971 1.1 paulus }
972 1.1 paulus s->status = s->noheader ? BUSY_STATE : INIT_STATE;
973 1.7 christos strm->adler = 1;
974 1.7 christos s->last_flush = Z_NO_FLUSH;
975 1.1 paulus
976 1.7 christos _tr_init(s);
977 1.1 paulus lm_init(s);
978 1.1 paulus
979 1.1 paulus return Z_OK;
980 1.1 paulus }
981 1.1 paulus
982 1.7 christos /* ========================================================================= */
983 1.19 kristerw #if 0
984 1.17 fvdl int ZEXPORT deflateParams(strm, level, strategy)
985 1.7 christos z_streamp strm;
986 1.7 christos int level;
987 1.7 christos int strategy;
988 1.7 christos {
989 1.7 christos deflate_state *s;
990 1.7 christos compress_func func;
991 1.7 christos int err = Z_OK;
992 1.7 christos
993 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
994 1.17 fvdl s = (deflate_state *)strm->state;
995 1.7 christos
996 1.7 christos if (level == Z_DEFAULT_COMPRESSION) {
997 1.7 christos level = 6;
998 1.7 christos }
999 1.7 christos if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
1000 1.7 christos return Z_STREAM_ERROR;
1001 1.7 christos }
1002 1.7 christos func = configuration_table[s->level].func;
1003 1.7 christos
1004 1.7 christos if (func != configuration_table[level].func && strm->total_in != 0) {
1005 1.7 christos /* Flush the last buffer: */
1006 1.7 christos err = deflate(strm, Z_PARTIAL_FLUSH);
1007 1.7 christos }
1008 1.7 christos if (s->level != level) {
1009 1.7 christos s->level = level;
1010 1.7 christos s->max_lazy_match = configuration_table[level].max_lazy;
1011 1.7 christos s->good_match = configuration_table[level].good_length;
1012 1.7 christos s->nice_match = configuration_table[level].nice_length;
1013 1.7 christos s->max_chain_length = configuration_table[level].max_chain;
1014 1.7 christos }
1015 1.7 christos s->strategy = strategy;
1016 1.7 christos return err;
1017 1.7 christos }
1018 1.19 kristerw #endif
1019 1.7 christos
1020 1.1 paulus /* =========================================================================
1021 1.1 paulus * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1022 1.1 paulus * IN assertion: the stream state is correct and there is enough room in
1023 1.1 paulus * pending_buf.
1024 1.1 paulus */
1025 1.1 paulus local void putShortMSB (s, b)
1026 1.1 paulus deflate_state *s;
1027 1.1 paulus uInt b;
1028 1.1 paulus {
1029 1.1 paulus put_byte(s, (Byte)(b >> 8));
1030 1.1 paulus put_byte(s, (Byte)(b & 0xff));
1031 1.20 perry }
1032 1.1 paulus
1033 1.1 paulus /* =========================================================================
1034 1.7 christos * Flush as much pending output as possible. All deflate() output goes
1035 1.7 christos * through this function so some applications may wish to modify it
1036 1.7 christos * to avoid allocating a large strm->next_out buffer and copying into it.
1037 1.7 christos * (See also read_buf()).
1038 1.1 paulus */
1039 1.1 paulus local void flush_pending(strm)
1040 1.7 christos z_streamp strm;
1041 1.1 paulus {
1042 1.7 christos deflate_state *s = (deflate_state *) strm->state;
1043 1.7 christos unsigned len = s->pending;
1044 1.1 paulus
1045 1.1 paulus if (len > strm->avail_out) len = strm->avail_out;
1046 1.1 paulus if (len == 0) return;
1047 1.1 paulus
1048 1.7 christos if (strm->next_out != Z_NULL) {
1049 1.17 fvdl zmemcpy(strm->next_out, s->pending_out, len);
1050 1.17 fvdl strm->next_out += len;
1051 1.1 paulus }
1052 1.17 fvdl s->pending_out += len;
1053 1.1 paulus strm->total_out += len;
1054 1.7 christos strm->avail_out -= len;
1055 1.7 christos s->pending -= len;
1056 1.7 christos if (s->pending == 0) {
1057 1.7 christos s->pending_out = s->pending_buf;
1058 1.1 paulus }
1059 1.1 paulus }
1060 1.1 paulus
1061 1.1 paulus /* ========================================================================= */
1062 1.17 fvdl int ZEXPORT deflate (strm, flush)
1063 1.7 christos z_streamp strm;
1064 1.1 paulus int flush;
1065 1.1 paulus {
1066 1.7 christos int old_flush; /* value of flush param for previous deflate call */
1067 1.7 christos deflate_state *s;
1068 1.7 christos
1069 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL ||
1070 1.7 christos flush > Z_FINISH || flush < 0) {
1071 1.7 christos return Z_STREAM_ERROR;
1072 1.7 christos }
1073 1.17 fvdl s = (deflate_state *)strm->state;
1074 1.1 paulus
1075 1.7 christos if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
1076 1.7 christos (s->status == FINISH_STATE && flush != Z_FINISH)) {
1077 1.1 paulus ERR_RETURN(strm, Z_STREAM_ERROR);
1078 1.1 paulus }
1079 1.1 paulus if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1080 1.1 paulus
1081 1.7 christos s->strm = strm; /* just in case */
1082 1.7 christos old_flush = s->last_flush;
1083 1.7 christos s->last_flush = flush;
1084 1.1 paulus
1085 1.1 paulus /* Write the zlib header */
1086 1.7 christos if (s->status == INIT_STATE) {
1087 1.1 paulus
1088 1.7 christos uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1089 1.7 christos uInt level_flags = (s->level-1) >> 1;
1090 1.1 paulus
1091 1.1 paulus if (level_flags > 3) level_flags = 3;
1092 1.1 paulus header |= (level_flags << 6);
1093 1.7 christos if (s->strstart != 0) header |= PRESET_DICT;
1094 1.1 paulus header += 31 - (header % 31);
1095 1.1 paulus
1096 1.7 christos s->status = BUSY_STATE;
1097 1.7 christos putShortMSB(s, header);
1098 1.7 christos
1099 1.7 christos /* Save the adler32 of the preset dictionary: */
1100 1.7 christos if (s->strstart != 0) {
1101 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1102 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1103 1.7 christos }
1104 1.7 christos strm->adler = 1L;
1105 1.1 paulus }
1106 1.1 paulus
1107 1.1 paulus /* Flush as much pending output as possible */
1108 1.7 christos if (s->pending != 0) {
1109 1.1 paulus flush_pending(strm);
1110 1.7 christos if (strm->avail_out == 0) {
1111 1.7 christos /* Since avail_out is 0, deflate will be called again with
1112 1.7 christos * more output space, but possibly with both pending and
1113 1.7 christos * avail_in equal to zero. There won't be anything to do,
1114 1.7 christos * but this is not an error situation so make sure we
1115 1.7 christos * return OK instead of BUF_ERROR at next call of deflate:
1116 1.7 christos */
1117 1.7 christos s->last_flush = -1;
1118 1.7 christos return Z_OK;
1119 1.7 christos }
1120 1.1 paulus
1121 1.7 christos /* Make sure there is something to do and avoid duplicate consecutive
1122 1.7 christos * flushes. For repeated and useless calls with Z_FINISH, we keep
1123 1.7 christos * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1124 1.1 paulus */
1125 1.7 christos } else if (strm->avail_in == 0 && flush <= old_flush &&
1126 1.7 christos flush != Z_FINISH) {
1127 1.7 christos ERR_RETURN(strm, Z_BUF_ERROR);
1128 1.1 paulus }
1129 1.1 paulus
1130 1.1 paulus /* User must not provide more input after the first FINISH: */
1131 1.7 christos if (s->status == FINISH_STATE && strm->avail_in != 0) {
1132 1.1 paulus ERR_RETURN(strm, Z_BUF_ERROR);
1133 1.1 paulus }
1134 1.1 paulus
1135 1.1 paulus /* Start a new block or continue the current one.
1136 1.1 paulus */
1137 1.7 christos if (strm->avail_in != 0 || s->lookahead != 0 ||
1138 1.7 christos (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1139 1.7 christos block_state bstate;
1140 1.1 paulus
1141 1.7 christos bstate = (*(configuration_table[s->level].func))(s, flush);
1142 1.7 christos
1143 1.7 christos if (bstate == finish_started || bstate == finish_done) {
1144 1.7 christos s->status = FINISH_STATE;
1145 1.1 paulus }
1146 1.7 christos if (bstate == need_more || bstate == finish_started) {
1147 1.7 christos if (strm->avail_out == 0) {
1148 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1149 1.7 christos }
1150 1.1 paulus return Z_OK;
1151 1.7 christos /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1152 1.7 christos * of deflate should use the same flush parameter to make sure
1153 1.7 christos * that the flush is complete. So we don't have to output an
1154 1.7 christos * empty block here, this will be done at next call. This also
1155 1.7 christos * ensures that for a very small output buffer, we emit at most
1156 1.7 christos * one empty block.
1157 1.1 paulus */
1158 1.7 christos }
1159 1.7 christos if (bstate == block_done) {
1160 1.7 christos if (flush == Z_PARTIAL_FLUSH) {
1161 1.7 christos _tr_align(s);
1162 1.7 christos } else if (flush == Z_PACKET_FLUSH) {
1163 1.7 christos /* Output just the 3-bit `stored' block type value,
1164 1.7 christos but not a zero length. */
1165 1.7 christos _tr_stored_type_only(s);
1166 1.7 christos } else { /* FULL_FLUSH or SYNC_FLUSH */
1167 1.7 christos _tr_stored_block(s, (char*)0, 0L, 0);
1168 1.7 christos /* For a full flush, this empty block will be recognized
1169 1.7 christos * as a special marker by inflate_sync().
1170 1.7 christos */
1171 1.7 christos if (flush == Z_FULL_FLUSH) {
1172 1.7 christos CLEAR_HASH(s); /* forget history */
1173 1.7 christos }
1174 1.7 christos }
1175 1.7 christos flush_pending(strm);
1176 1.7 christos if (strm->avail_out == 0) {
1177 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1178 1.7 christos return Z_OK;
1179 1.1 paulus }
1180 1.7 christos }
1181 1.1 paulus }
1182 1.1 paulus Assert(strm->avail_out > 0, "bug2");
1183 1.1 paulus
1184 1.1 paulus if (flush != Z_FINISH) return Z_OK;
1185 1.7 christos if (s->noheader) return Z_STREAM_END;
1186 1.1 paulus
1187 1.1 paulus /* Write the zlib trailer (adler32) */
1188 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1189 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1190 1.1 paulus flush_pending(strm);
1191 1.1 paulus /* If avail_out is zero, the application will call deflate again
1192 1.1 paulus * to flush the rest.
1193 1.1 paulus */
1194 1.7 christos s->noheader = -1; /* write the trailer only once! */
1195 1.7 christos return s->pending != 0 ? Z_OK : Z_STREAM_END;
1196 1.1 paulus }
1197 1.1 paulus
1198 1.1 paulus /* ========================================================================= */
1199 1.17 fvdl int ZEXPORT deflateEnd (strm)
1200 1.7 christos z_streamp strm;
1201 1.1 paulus {
1202 1.7 christos int status;
1203 1.7 christos deflate_state *s;
1204 1.1 paulus
1205 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1206 1.7 christos s = (deflate_state *) strm->state;
1207 1.1 paulus
1208 1.7 christos status = s->status;
1209 1.7 christos if (status != INIT_STATE && status != BUSY_STATE &&
1210 1.7 christos status != FINISH_STATE) {
1211 1.7 christos return Z_STREAM_ERROR;
1212 1.7 christos }
1213 1.1 paulus
1214 1.7 christos /* Deallocate in reverse order of allocations: */
1215 1.7 christos TRY_FREE(strm, s->pending_buf);
1216 1.7 christos TRY_FREE(strm, s->head);
1217 1.7 christos TRY_FREE(strm, s->prev);
1218 1.7 christos TRY_FREE(strm, s->window);
1219 1.7 christos
1220 1.7 christos ZFREE(strm, s);
1221 1.1 paulus strm->state = Z_NULL;
1222 1.1 paulus
1223 1.7 christos return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1224 1.7 christos }
1225 1.7 christos
1226 1.7 christos /* =========================================================================
1227 1.7 christos * Copy the source state to the destination state.
1228 1.17 fvdl * To simplify the source, this is not supported for 16-bit MSDOS (which
1229 1.17 fvdl * doesn't have enough memory anyway to duplicate compression states).
1230 1.7 christos */
1231 1.19 kristerw #if 0
1232 1.17 fvdl int ZEXPORT deflateCopy (dest, source)
1233 1.7 christos z_streamp dest;
1234 1.7 christos z_streamp source;
1235 1.7 christos {
1236 1.17 fvdl #ifdef MAXSEG_64K
1237 1.17 fvdl return Z_STREAM_ERROR;
1238 1.17 fvdl #else
1239 1.7 christos deflate_state *ds;
1240 1.7 christos deflate_state *ss;
1241 1.7 christos ushf *overlay;
1242 1.7 christos
1243 1.17 fvdl
1244 1.17 fvdl if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1245 1.7 christos return Z_STREAM_ERROR;
1246 1.17 fvdl }
1247 1.7 christos
1248 1.17 fvdl ss = (deflate_state *)source->state;
1249 1.17 fvdl
1250 1.17 fvdl *dest = *source;
1251 1.7 christos
1252 1.7 christos ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1253 1.7 christos if (ds == Z_NULL) return Z_MEM_ERROR;
1254 1.17 fvdl dest->state = (void *) ds;
1255 1.17 fvdl *ds = *ss;
1256 1.7 christos ds->strm = dest;
1257 1.7 christos
1258 1.7 christos ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1259 1.7 christos ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1260 1.7 christos ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1261 1.7 christos overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1262 1.7 christos ds->pending_buf = (uchf *) overlay;
1263 1.7 christos
1264 1.7 christos if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1265 1.7 christos ds->pending_buf == Z_NULL) {
1266 1.18 tron ds->status = INIT_STATE;
1267 1.7 christos deflateEnd (dest);
1268 1.7 christos return Z_MEM_ERROR;
1269 1.7 christos }
1270 1.17 fvdl /* following zmemcpy do not work for 16-bit MSDOS */
1271 1.7 christos zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1272 1.7 christos zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1273 1.7 christos zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1274 1.7 christos zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1275 1.7 christos
1276 1.7 christos ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1277 1.7 christos ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1278 1.7 christos ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1279 1.7 christos
1280 1.7 christos ds->l_desc.dyn_tree = ds->dyn_ltree;
1281 1.7 christos ds->d_desc.dyn_tree = ds->dyn_dtree;
1282 1.7 christos ds->bl_desc.dyn_tree = ds->bl_tree;
1283 1.7 christos
1284 1.1 paulus return Z_OK;
1285 1.17 fvdl #endif
1286 1.1 paulus }
1287 1.19 kristerw #endif
1288 1.1 paulus
1289 1.1 paulus /* ===========================================================================
1290 1.7 christos * Return the number of bytes of output which are immediately available
1291 1.7 christos * for output from the decompressor.
1292 1.7 christos */
1293 1.19 kristerw #if 0
1294 1.7 christos int deflateOutputPending (strm)
1295 1.7 christos z_streamp strm;
1296 1.7 christos {
1297 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1298 1.20 perry
1299 1.7 christos return ((deflate_state *)(strm->state))->pending;
1300 1.7 christos }
1301 1.19 kristerw #endif
1302 1.7 christos
1303 1.7 christos /* ===========================================================================
1304 1.1 paulus * Read a new buffer from the current input stream, update the adler32
1305 1.7 christos * and total number of bytes read. All deflate() input goes through
1306 1.7 christos * this function so some applications may wish to modify it to avoid
1307 1.7 christos * allocating a large strm->next_in buffer and copying from it.
1308 1.7 christos * (See also flush_pending()).
1309 1.1 paulus */
1310 1.1 paulus local int read_buf(strm, buf, size)
1311 1.7 christos z_streamp strm;
1312 1.17 fvdl Bytef *buf;
1313 1.1 paulus unsigned size;
1314 1.1 paulus {
1315 1.1 paulus unsigned len = strm->avail_in;
1316 1.1 paulus
1317 1.1 paulus if (len > size) len = size;
1318 1.1 paulus if (len == 0) return 0;
1319 1.1 paulus
1320 1.1 paulus strm->avail_in -= len;
1321 1.1 paulus
1322 1.7 christos if (!((deflate_state *)(strm->state))->noheader) {
1323 1.7 christos strm->adler = adler32(strm->adler, strm->next_in, len);
1324 1.1 paulus }
1325 1.1 paulus zmemcpy(buf, strm->next_in, len);
1326 1.1 paulus strm->next_in += len;
1327 1.1 paulus strm->total_in += len;
1328 1.1 paulus
1329 1.1 paulus return (int)len;
1330 1.1 paulus }
1331 1.1 paulus
1332 1.1 paulus /* ===========================================================================
1333 1.1 paulus * Initialize the "longest match" routines for a new zlib stream
1334 1.1 paulus */
1335 1.1 paulus local void lm_init (s)
1336 1.1 paulus deflate_state *s;
1337 1.1 paulus {
1338 1.1 paulus s->window_size = (ulg)2L*s->w_size;
1339 1.1 paulus
1340 1.1 paulus CLEAR_HASH(s);
1341 1.1 paulus
1342 1.1 paulus /* Set the default configuration parameters:
1343 1.1 paulus */
1344 1.1 paulus s->max_lazy_match = configuration_table[s->level].max_lazy;
1345 1.1 paulus s->good_match = configuration_table[s->level].good_length;
1346 1.1 paulus s->nice_match = configuration_table[s->level].nice_length;
1347 1.1 paulus s->max_chain_length = configuration_table[s->level].max_chain;
1348 1.1 paulus
1349 1.1 paulus s->strstart = 0;
1350 1.1 paulus s->block_start = 0L;
1351 1.1 paulus s->lookahead = 0;
1352 1.7 christos s->match_length = s->prev_length = MIN_MATCH-1;
1353 1.1 paulus s->match_available = 0;
1354 1.1 paulus s->ins_h = 0;
1355 1.1 paulus #ifdef ASMV
1356 1.1 paulus match_init(); /* initialize the asm code */
1357 1.1 paulus #endif
1358 1.1 paulus }
1359 1.1 paulus
1360 1.1 paulus /* ===========================================================================
1361 1.1 paulus * Set match_start to the longest match starting at the given string and
1362 1.1 paulus * return its length. Matches shorter or equal to prev_length are discarded,
1363 1.1 paulus * in which case the result is equal to prev_length and match_start is
1364 1.1 paulus * garbage.
1365 1.1 paulus * IN assertions: cur_match is the head of the hash chain for the current
1366 1.1 paulus * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1367 1.7 christos * OUT assertion: the match length is not greater than s->lookahead.
1368 1.1 paulus */
1369 1.1 paulus #ifndef ASMV
1370 1.1 paulus /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1371 1.1 paulus * match.S. The code will be functionally equivalent.
1372 1.1 paulus */
1373 1.17 fvdl #ifndef FASTEST
1374 1.7 christos local uInt longest_match(s, cur_match)
1375 1.1 paulus deflate_state *s;
1376 1.1 paulus IPos cur_match; /* current match */
1377 1.1 paulus {
1378 1.1 paulus unsigned chain_length = s->max_chain_length;/* max hash chain length */
1379 1.17 fvdl Bytef *scan = s->window + s->strstart; /* current string */
1380 1.17 fvdl Bytef *match; /* matched string */
1381 1.17 fvdl int len; /* length of current match */
1382 1.1 paulus int best_len = s->prev_length; /* best match length so far */
1383 1.7 christos int nice_match = s->nice_match; /* stop if match long enough */
1384 1.1 paulus IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1385 1.1 paulus s->strstart - (IPos)MAX_DIST(s) : NIL;
1386 1.1 paulus /* Stop when cur_match becomes <= limit. To simplify the code,
1387 1.1 paulus * we prevent matches with the string of window index 0.
1388 1.1 paulus */
1389 1.1 paulus Posf *prev = s->prev;
1390 1.1 paulus uInt wmask = s->w_mask;
1391 1.1 paulus
1392 1.1 paulus #ifdef UNALIGNED_OK
1393 1.1 paulus /* Compare two bytes at a time. Note: this is not always beneficial.
1394 1.1 paulus * Try with and without -DUNALIGNED_OK to check.
1395 1.1 paulus */
1396 1.10 augustss Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1397 1.10 augustss ush scan_start = *(ushf*)scan;
1398 1.10 augustss ush scan_end = *(ushf*)(scan+best_len-1);
1399 1.1 paulus #else
1400 1.10 augustss Bytef *strend = s->window + s->strstart + MAX_MATCH;
1401 1.10 augustss Byte scan_end1 = scan[best_len-1];
1402 1.10 augustss Byte scan_end = scan[best_len];
1403 1.1 paulus #endif
1404 1.1 paulus
1405 1.1 paulus /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1406 1.1 paulus * It is easy to get rid of this optimization if necessary.
1407 1.1 paulus */
1408 1.1 paulus Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1409 1.1 paulus
1410 1.1 paulus /* Do not waste too much time if we already have a good match: */
1411 1.1 paulus if (s->prev_length >= s->good_match) {
1412 1.1 paulus chain_length >>= 2;
1413 1.1 paulus }
1414 1.7 christos /* Do not look for matches beyond the end of the input. This is necessary
1415 1.7 christos * to make deflate deterministic.
1416 1.7 christos */
1417 1.7 christos if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1418 1.7 christos
1419 1.1 paulus Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1420 1.1 paulus
1421 1.1 paulus do {
1422 1.1 paulus Assert(cur_match < s->strstart, "no future");
1423 1.1 paulus match = s->window + cur_match;
1424 1.1 paulus
1425 1.1 paulus /* Skip to next match if the match length cannot increase
1426 1.1 paulus * or if the match length is less than 2:
1427 1.1 paulus */
1428 1.1 paulus #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1429 1.1 paulus /* This code assumes sizeof(unsigned short) == 2. Do not use
1430 1.1 paulus * UNALIGNED_OK if your compiler uses a different size.
1431 1.1 paulus */
1432 1.1 paulus if (*(ushf*)(match+best_len-1) != scan_end ||
1433 1.1 paulus *(ushf*)match != scan_start) continue;
1434 1.1 paulus
1435 1.1 paulus /* It is not necessary to compare scan[2] and match[2] since they are
1436 1.1 paulus * always equal when the other bytes match, given that the hash keys
1437 1.1 paulus * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1438 1.1 paulus * strstart+3, +5, ... up to strstart+257. We check for insufficient
1439 1.1 paulus * lookahead only every 4th comparison; the 128th check will be made
1440 1.1 paulus * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1441 1.1 paulus * necessary to put more guard bytes at the end of the window, or
1442 1.1 paulus * to check more often for insufficient lookahead.
1443 1.1 paulus */
1444 1.1 paulus Assert(scan[2] == match[2], "scan[2]?");
1445 1.1 paulus scan++, match++;
1446 1.1 paulus do {
1447 1.1 paulus } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1448 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1449 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1450 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1451 1.1 paulus scan < strend);
1452 1.1 paulus /* The funny "do {}" generates better code on most compilers */
1453 1.1 paulus
1454 1.1 paulus /* Here, scan <= window+strstart+257 */
1455 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1456 1.1 paulus if (*scan == *match) scan++;
1457 1.1 paulus
1458 1.1 paulus len = (MAX_MATCH - 1) - (int)(strend-scan);
1459 1.1 paulus scan = strend - (MAX_MATCH-1);
1460 1.1 paulus
1461 1.1 paulus #else /* UNALIGNED_OK */
1462 1.1 paulus
1463 1.1 paulus if (match[best_len] != scan_end ||
1464 1.1 paulus match[best_len-1] != scan_end1 ||
1465 1.1 paulus *match != *scan ||
1466 1.1 paulus *++match != scan[1]) continue;
1467 1.1 paulus
1468 1.1 paulus /* The check at best_len-1 can be removed because it will be made
1469 1.1 paulus * again later. (This heuristic is not always a win.)
1470 1.1 paulus * It is not necessary to compare scan[2] and match[2] since they
1471 1.1 paulus * are always equal when the other bytes match, given that
1472 1.1 paulus * the hash keys are equal and that HASH_BITS >= 8.
1473 1.1 paulus */
1474 1.1 paulus scan += 2, match++;
1475 1.1 paulus Assert(*scan == *match, "match[2]?");
1476 1.1 paulus
1477 1.1 paulus /* We check for insufficient lookahead only every 8th comparison;
1478 1.1 paulus * the 256th check will be made at strstart+258.
1479 1.1 paulus */
1480 1.1 paulus do {
1481 1.1 paulus } while (*++scan == *++match && *++scan == *++match &&
1482 1.1 paulus *++scan == *++match && *++scan == *++match &&
1483 1.1 paulus *++scan == *++match && *++scan == *++match &&
1484 1.1 paulus *++scan == *++match && *++scan == *++match &&
1485 1.1 paulus scan < strend);
1486 1.1 paulus
1487 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1488 1.1 paulus
1489 1.1 paulus len = MAX_MATCH - (int)(strend - scan);
1490 1.1 paulus scan = strend - MAX_MATCH;
1491 1.1 paulus
1492 1.1 paulus #endif /* UNALIGNED_OK */
1493 1.1 paulus
1494 1.1 paulus if (len > best_len) {
1495 1.1 paulus s->match_start = cur_match;
1496 1.1 paulus best_len = len;
1497 1.7 christos if (len >= nice_match) break;
1498 1.1 paulus #ifdef UNALIGNED_OK
1499 1.1 paulus scan_end = *(ushf*)(scan+best_len-1);
1500 1.1 paulus #else
1501 1.1 paulus scan_end1 = scan[best_len-1];
1502 1.1 paulus scan_end = scan[best_len];
1503 1.1 paulus #endif
1504 1.1 paulus }
1505 1.1 paulus } while ((cur_match = prev[cur_match & wmask]) > limit
1506 1.1 paulus && --chain_length != 0);
1507 1.1 paulus
1508 1.17 fvdl if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1509 1.7 christos return s->lookahead;
1510 1.1 paulus }
1511 1.17 fvdl
1512 1.17 fvdl #else /* FASTEST */
1513 1.17 fvdl /* ---------------------------------------------------------------------------
1514 1.17 fvdl * Optimized version for level == 1 only
1515 1.17 fvdl */
1516 1.17 fvdl local uInt longest_match(s, cur_match)
1517 1.17 fvdl deflate_state *s;
1518 1.17 fvdl IPos cur_match; /* current match */
1519 1.17 fvdl {
1520 1.17 fvdl register Bytef *scan = s->window + s->strstart; /* current string */
1521 1.17 fvdl register Bytef *match; /* matched string */
1522 1.17 fvdl register int len; /* length of current match */
1523 1.17 fvdl register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1524 1.17 fvdl
1525 1.17 fvdl /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1526 1.17 fvdl * It is easy to get rid of this optimization if necessary.
1527 1.17 fvdl */
1528 1.17 fvdl Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1529 1.17 fvdl
1530 1.17 fvdl Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1531 1.17 fvdl
1532 1.17 fvdl Assert(cur_match < s->strstart, "no future");
1533 1.17 fvdl
1534 1.17 fvdl match = s->window + cur_match;
1535 1.17 fvdl
1536 1.17 fvdl /* Return failure if the match length is less than 2:
1537 1.17 fvdl */
1538 1.17 fvdl if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1539 1.17 fvdl
1540 1.17 fvdl /* The check at best_len-1 can be removed because it will be made
1541 1.17 fvdl * again later. (This heuristic is not always a win.)
1542 1.17 fvdl * It is not necessary to compare scan[2] and match[2] since they
1543 1.17 fvdl * are always equal when the other bytes match, given that
1544 1.17 fvdl * the hash keys are equal and that HASH_BITS >= 8.
1545 1.17 fvdl */
1546 1.17 fvdl scan += 2, match += 2;
1547 1.17 fvdl Assert(*scan == *match, "match[2]?");
1548 1.17 fvdl
1549 1.17 fvdl /* We check for insufficient lookahead only every 8th comparison;
1550 1.17 fvdl * the 256th check will be made at strstart+258.
1551 1.17 fvdl */
1552 1.17 fvdl do {
1553 1.17 fvdl } while (*++scan == *++match && *++scan == *++match &&
1554 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1555 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1556 1.17 fvdl *++scan == *++match && *++scan == *++match &&
1557 1.17 fvdl scan < strend);
1558 1.17 fvdl
1559 1.17 fvdl Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1560 1.17 fvdl
1561 1.17 fvdl len = MAX_MATCH - (int)(strend - scan);
1562 1.17 fvdl
1563 1.17 fvdl if (len < MIN_MATCH) return MIN_MATCH - 1;
1564 1.17 fvdl
1565 1.17 fvdl s->match_start = cur_match;
1566 1.17 fvdl return len <= s->lookahead ? len : s->lookahead;
1567 1.17 fvdl }
1568 1.17 fvdl #endif /* FASTEST */
1569 1.1 paulus #endif /* ASMV */
1570 1.1 paulus
1571 1.1 paulus #ifdef DEBUG_ZLIB
1572 1.1 paulus /* ===========================================================================
1573 1.1 paulus * Check that the match at match_start is indeed a match.
1574 1.1 paulus */
1575 1.1 paulus local void check_match(s, start, match, length)
1576 1.1 paulus deflate_state *s;
1577 1.1 paulus IPos start, match;
1578 1.1 paulus int length;
1579 1.1 paulus {
1580 1.1 paulus /* check that the match is indeed a match */
1581 1.17 fvdl if (zmemcmp(s->window + match,
1582 1.17 fvdl s->window + start, length) != EQUAL) {
1583 1.7 christos fprintf(stderr, " start %u, match %u, length %d\n",
1584 1.7 christos start, match, length);
1585 1.7 christos do {
1586 1.7 christos fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1587 1.7 christos } while (--length != 0);
1588 1.1 paulus z_error("invalid match");
1589 1.1 paulus }
1590 1.7 christos if (z_verbose > 1) {
1591 1.1 paulus fprintf(stderr,"\\[%d,%d]", start-match, length);
1592 1.1 paulus do { putc(s->window[start++], stderr); } while (--length != 0);
1593 1.1 paulus }
1594 1.1 paulus }
1595 1.1 paulus #else
1596 1.1 paulus # define check_match(s, start, match, length)
1597 1.1 paulus #endif
1598 1.1 paulus
1599 1.1 paulus /* ===========================================================================
1600 1.1 paulus * Fill the window when the lookahead becomes insufficient.
1601 1.1 paulus * Updates strstart and lookahead.
1602 1.1 paulus *
1603 1.1 paulus * IN assertion: lookahead < MIN_LOOKAHEAD
1604 1.1 paulus * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1605 1.1 paulus * At least one byte has been read, or avail_in == 0; reads are
1606 1.1 paulus * performed for at least two bytes (required for the zip translate_eol
1607 1.1 paulus * option -- not supported here).
1608 1.1 paulus */
1609 1.1 paulus local void fill_window(s)
1610 1.1 paulus deflate_state *s;
1611 1.1 paulus {
1612 1.10 augustss unsigned n, m;
1613 1.10 augustss Posf *p;
1614 1.1 paulus unsigned more; /* Amount of free space at the end of the window. */
1615 1.1 paulus uInt wsize = s->w_size;
1616 1.1 paulus
1617 1.1 paulus do {
1618 1.1 paulus more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1619 1.1 paulus
1620 1.1 paulus /* Deal with !@#$% 64K limit: */
1621 1.1 paulus if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1622 1.1 paulus more = wsize;
1623 1.7 christos
1624 1.1 paulus } else if (more == (unsigned)(-1)) {
1625 1.1 paulus /* Very unlikely, but possible on 16 bit machine if strstart == 0
1626 1.1 paulus * and lookahead == 1 (input done one byte at time)
1627 1.1 paulus */
1628 1.1 paulus more--;
1629 1.1 paulus
1630 1.1 paulus /* If the window is almost full and there is insufficient lookahead,
1631 1.1 paulus * move the upper half to the lower one to make room in the upper half.
1632 1.1 paulus */
1633 1.1 paulus } else if (s->strstart >= wsize+MAX_DIST(s)) {
1634 1.1 paulus
1635 1.17 fvdl zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1636 1.1 paulus s->match_start -= wsize;
1637 1.1 paulus s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1638 1.1 paulus s->block_start -= (long) wsize;
1639 1.1 paulus
1640 1.1 paulus /* Slide the hash table (could be avoided with 32 bit values
1641 1.7 christos at the expense of memory usage). We slide even when level == 0
1642 1.7 christos to keep the hash table consistent if we switch back to level > 0
1643 1.7 christos later. (Using level 0 permanently is not an optimal usage of
1644 1.7 christos zlib, so we don't care about this pathological case.)
1645 1.1 paulus */
1646 1.17 fvdl n = s->hash_size;
1647 1.17 fvdl p = &s->head[n];
1648 1.17 fvdl do {
1649 1.17 fvdl m = *--p;
1650 1.17 fvdl *p = (Pos)(m >= wsize ? m-wsize : NIL);
1651 1.17 fvdl } while (--n);
1652 1.17 fvdl
1653 1.17 fvdl n = wsize;
1654 1.17 fvdl #ifndef FASTEST
1655 1.17 fvdl p = &s->prev[n];
1656 1.17 fvdl do {
1657 1.17 fvdl m = *--p;
1658 1.17 fvdl *p = (Pos)(m >= wsize ? m-wsize : NIL);
1659 1.17 fvdl /* If n is not on any hash chain, prev[n] is garbage but
1660 1.17 fvdl * its value will never be used.
1661 1.17 fvdl */
1662 1.17 fvdl } while (--n);
1663 1.17 fvdl #endif
1664 1.1 paulus more += wsize;
1665 1.1 paulus }
1666 1.1 paulus if (s->strm->avail_in == 0) return;
1667 1.1 paulus
1668 1.1 paulus /* If there was no sliding:
1669 1.1 paulus * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1670 1.1 paulus * more == window_size - lookahead - strstart
1671 1.1 paulus * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1672 1.1 paulus * => more >= window_size - 2*WSIZE + 2
1673 1.1 paulus * In the BIG_MEM or MMAP case (not yet supported),
1674 1.1 paulus * window_size == input_size + MIN_LOOKAHEAD &&
1675 1.1 paulus * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1676 1.1 paulus * Otherwise, window_size == 2*WSIZE so more >= 2.
1677 1.1 paulus * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1678 1.1 paulus */
1679 1.1 paulus Assert(more >= 2, "more < 2");
1680 1.1 paulus
1681 1.17 fvdl n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1682 1.1 paulus s->lookahead += n;
1683 1.1 paulus
1684 1.1 paulus /* Initialize the hash value now that we have some input: */
1685 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1686 1.1 paulus s->ins_h = s->window[s->strstart];
1687 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1688 1.1 paulus #if MIN_MATCH != 3
1689 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1690 1.1 paulus #endif
1691 1.1 paulus }
1692 1.1 paulus /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1693 1.1 paulus * but this is not important since only literal bytes will be emitted.
1694 1.1 paulus */
1695 1.1 paulus
1696 1.1 paulus } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1697 1.1 paulus }
1698 1.1 paulus
1699 1.1 paulus /* ===========================================================================
1700 1.1 paulus * Flush the current block, with given end-of-file flag.
1701 1.1 paulus * IN assertion: strstart is set to the end of the current match.
1702 1.1 paulus */
1703 1.7 christos #define FLUSH_BLOCK_ONLY(s, eof) { \
1704 1.7 christos _tr_flush_block(s, (s->block_start >= 0L ? \
1705 1.7 christos (charf *)&s->window[(unsigned)s->block_start] : \
1706 1.7 christos (charf *)Z_NULL), \
1707 1.7 christos (ulg)((long)s->strstart - s->block_start), \
1708 1.7 christos (eof)); \
1709 1.1 paulus s->block_start = s->strstart; \
1710 1.1 paulus flush_pending(s->strm); \
1711 1.1 paulus Tracev((stderr,"[FLUSH]")); \
1712 1.1 paulus }
1713 1.1 paulus
1714 1.1 paulus /* Same but force premature exit if necessary. */
1715 1.7 christos #define FLUSH_BLOCK(s, eof) { \
1716 1.7 christos FLUSH_BLOCK_ONLY(s, eof); \
1717 1.7 christos if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1718 1.7 christos }
1719 1.7 christos
1720 1.7 christos /* ===========================================================================
1721 1.7 christos * Copy without compression as much as possible from the input stream, return
1722 1.7 christos * the current block state.
1723 1.7 christos * This function does not insert new strings in the dictionary since
1724 1.7 christos * uncompressible data is probably not useful. This function is used
1725 1.7 christos * only for the level=0 compression option.
1726 1.7 christos * NOTE: this function should be optimized to avoid extra copying from
1727 1.7 christos * window to pending_buf.
1728 1.7 christos */
1729 1.7 christos local block_state deflate_stored(s, flush)
1730 1.7 christos deflate_state *s;
1731 1.7 christos int flush;
1732 1.7 christos {
1733 1.7 christos /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1734 1.7 christos * to pending_buf_size, and each stored block has a 5 byte header:
1735 1.7 christos */
1736 1.7 christos ulg max_block_size = 0xffff;
1737 1.7 christos ulg max_start;
1738 1.7 christos
1739 1.7 christos if (max_block_size > s->pending_buf_size - 5) {
1740 1.7 christos max_block_size = s->pending_buf_size - 5;
1741 1.7 christos }
1742 1.7 christos
1743 1.7 christos /* Copy as much as possible from input to output: */
1744 1.7 christos for (;;) {
1745 1.7 christos /* Fill the window as much as possible: */
1746 1.7 christos if (s->lookahead <= 1) {
1747 1.7 christos
1748 1.7 christos Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1749 1.7 christos s->block_start >= (long)s->w_size, "slide too late");
1750 1.7 christos
1751 1.7 christos fill_window(s);
1752 1.7 christos if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1753 1.7 christos
1754 1.7 christos if (s->lookahead == 0) break; /* flush the current block */
1755 1.7 christos }
1756 1.7 christos Assert(s->block_start >= 0L, "block gone");
1757 1.7 christos
1758 1.7 christos s->strstart += s->lookahead;
1759 1.7 christos s->lookahead = 0;
1760 1.7 christos
1761 1.7 christos /* Emit a stored block if pending_buf will be full: */
1762 1.7 christos max_start = s->block_start + max_block_size;
1763 1.7 christos if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1764 1.7 christos /* strstart == 0 is possible when wraparound on 16-bit machine */
1765 1.7 christos s->lookahead = (uInt)(s->strstart - max_start);
1766 1.7 christos s->strstart = (uInt)max_start;
1767 1.7 christos FLUSH_BLOCK(s, 0);
1768 1.7 christos }
1769 1.7 christos /* Flush if we may have to slide, otherwise block_start may become
1770 1.7 christos * negative and the data will be gone:
1771 1.7 christos */
1772 1.7 christos if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1773 1.7 christos FLUSH_BLOCK(s, 0);
1774 1.7 christos }
1775 1.7 christos }
1776 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1777 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1778 1.1 paulus }
1779 1.1 paulus
1780 1.1 paulus /* ===========================================================================
1781 1.7 christos * Compress as much as possible from the input stream, return the current
1782 1.7 christos * block state.
1783 1.7 christos * This function does not perform lazy evaluation of matches and inserts
1784 1.1 paulus * new strings in the dictionary only for unmatched strings or for short
1785 1.1 paulus * matches. It is used only for the fast compression options.
1786 1.1 paulus */
1787 1.7 christos local block_state deflate_fast(s, flush)
1788 1.1 paulus deflate_state *s;
1789 1.1 paulus int flush;
1790 1.1 paulus {
1791 1.1 paulus IPos hash_head = NIL; /* head of the hash chain */
1792 1.7 christos int bflush; /* set if current block must be flushed */
1793 1.1 paulus
1794 1.1 paulus for (;;) {
1795 1.1 paulus /* Make sure that we always have enough lookahead, except
1796 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1797 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1798 1.1 paulus * string following the next match.
1799 1.1 paulus */
1800 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1801 1.1 paulus fill_window(s);
1802 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1803 1.7 christos return need_more;
1804 1.7 christos }
1805 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1806 1.1 paulus }
1807 1.1 paulus
1808 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1809 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1810 1.1 paulus */
1811 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1812 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1813 1.1 paulus }
1814 1.1 paulus
1815 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1816 1.1 paulus * At this point we have always match_length < MIN_MATCH
1817 1.1 paulus */
1818 1.1 paulus if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1819 1.1 paulus /* To simplify the code, we prevent matches with the string
1820 1.1 paulus * of window index 0 (in particular we have to avoid a match
1821 1.1 paulus * of the string with itself at the start of the input file).
1822 1.1 paulus */
1823 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1824 1.1 paulus s->match_length = longest_match (s, hash_head);
1825 1.1 paulus }
1826 1.1 paulus /* longest_match() sets match_start */
1827 1.1 paulus }
1828 1.1 paulus if (s->match_length >= MIN_MATCH) {
1829 1.1 paulus check_match(s, s->strstart, s->match_start, s->match_length);
1830 1.1 paulus
1831 1.17 fvdl _tr_tally_dist(s, s->strstart - s->match_start,
1832 1.17 fvdl s->match_length - MIN_MATCH, bflush);
1833 1.1 paulus
1834 1.1 paulus s->lookahead -= s->match_length;
1835 1.1 paulus
1836 1.1 paulus /* Insert new strings in the hash table only if the match length
1837 1.1 paulus * is not too large. This saves time but degrades compression.
1838 1.1 paulus */
1839 1.17 fvdl #ifndef FASTEST
1840 1.1 paulus if (s->match_length <= s->max_insert_length &&
1841 1.1 paulus s->lookahead >= MIN_MATCH) {
1842 1.1 paulus s->match_length--; /* string at strstart already in hash table */
1843 1.1 paulus do {
1844 1.1 paulus s->strstart++;
1845 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1846 1.1 paulus /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1847 1.1 paulus * always MIN_MATCH bytes ahead.
1848 1.1 paulus */
1849 1.1 paulus } while (--s->match_length != 0);
1850 1.20 perry s->strstart++;
1851 1.17 fvdl } else
1852 1.17 fvdl #endif
1853 1.17 fvdl {
1854 1.1 paulus s->strstart += s->match_length;
1855 1.1 paulus s->match_length = 0;
1856 1.1 paulus s->ins_h = s->window[s->strstart];
1857 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1858 1.1 paulus #if MIN_MATCH != 3
1859 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1860 1.1 paulus #endif
1861 1.1 paulus /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1862 1.1 paulus * matter since it will be recomputed at next deflate call.
1863 1.1 paulus */
1864 1.1 paulus }
1865 1.1 paulus } else {
1866 1.1 paulus /* No match, output a literal byte */
1867 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart]));
1868 1.17 fvdl _tr_tally_lit (s, s->window[s->strstart], bflush);
1869 1.1 paulus s->lookahead--;
1870 1.20 perry s->strstart++;
1871 1.1 paulus }
1872 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1873 1.1 paulus }
1874 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1875 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1876 1.1 paulus }
1877 1.1 paulus
1878 1.1 paulus /* ===========================================================================
1879 1.1 paulus * Same as above, but achieves better compression. We use a lazy
1880 1.1 paulus * evaluation for matches: a match is finally adopted only if there is
1881 1.1 paulus * no better match at the next window position.
1882 1.1 paulus */
1883 1.7 christos local block_state deflate_slow(s, flush)
1884 1.1 paulus deflate_state *s;
1885 1.1 paulus int flush;
1886 1.1 paulus {
1887 1.1 paulus IPos hash_head = NIL; /* head of hash chain */
1888 1.1 paulus int bflush; /* set if current block must be flushed */
1889 1.1 paulus
1890 1.1 paulus /* Process the input block. */
1891 1.1 paulus for (;;) {
1892 1.1 paulus /* Make sure that we always have enough lookahead, except
1893 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1894 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1895 1.1 paulus * string following the next match.
1896 1.1 paulus */
1897 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1898 1.1 paulus fill_window(s);
1899 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1900 1.7 christos return need_more;
1901 1.7 christos }
1902 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1903 1.1 paulus }
1904 1.1 paulus
1905 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1906 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1907 1.1 paulus */
1908 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1909 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1910 1.1 paulus }
1911 1.1 paulus
1912 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1913 1.1 paulus */
1914 1.1 paulus s->prev_length = s->match_length, s->prev_match = s->match_start;
1915 1.1 paulus s->match_length = MIN_MATCH-1;
1916 1.1 paulus
1917 1.1 paulus if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1918 1.1 paulus s->strstart - hash_head <= MAX_DIST(s)) {
1919 1.1 paulus /* To simplify the code, we prevent matches with the string
1920 1.1 paulus * of window index 0 (in particular we have to avoid a match
1921 1.1 paulus * of the string with itself at the start of the input file).
1922 1.1 paulus */
1923 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1924 1.1 paulus s->match_length = longest_match (s, hash_head);
1925 1.1 paulus }
1926 1.1 paulus /* longest_match() sets match_start */
1927 1.1 paulus
1928 1.1 paulus if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1929 1.1 paulus (s->match_length == MIN_MATCH &&
1930 1.1 paulus s->strstart - s->match_start > TOO_FAR))) {
1931 1.1 paulus
1932 1.1 paulus /* If prev_match is also MIN_MATCH, match_start is garbage
1933 1.1 paulus * but we will ignore the current match anyway.
1934 1.1 paulus */
1935 1.1 paulus s->match_length = MIN_MATCH-1;
1936 1.1 paulus }
1937 1.1 paulus }
1938 1.1 paulus /* If there was a match at the previous step and the current
1939 1.1 paulus * match is not better, output the previous match:
1940 1.1 paulus */
1941 1.1 paulus if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1942 1.1 paulus uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1943 1.1 paulus /* Do not insert strings in hash table beyond this. */
1944 1.1 paulus
1945 1.1 paulus check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1946 1.1 paulus
1947 1.17 fvdl _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1948 1.17 fvdl s->prev_length - MIN_MATCH, bflush);
1949 1.1 paulus
1950 1.1 paulus /* Insert in hash table all strings up to the end of the match.
1951 1.1 paulus * strstart-1 and strstart are already inserted. If there is not
1952 1.1 paulus * enough lookahead, the last two strings are not inserted in
1953 1.1 paulus * the hash table.
1954 1.1 paulus */
1955 1.1 paulus s->lookahead -= s->prev_length-1;
1956 1.1 paulus s->prev_length -= 2;
1957 1.1 paulus do {
1958 1.1 paulus if (++s->strstart <= max_insert) {
1959 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1960 1.1 paulus }
1961 1.1 paulus } while (--s->prev_length != 0);
1962 1.1 paulus s->match_available = 0;
1963 1.1 paulus s->match_length = MIN_MATCH-1;
1964 1.1 paulus s->strstart++;
1965 1.1 paulus
1966 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1967 1.1 paulus
1968 1.1 paulus } else if (s->match_available) {
1969 1.1 paulus /* If there was no match at the previous position, output a
1970 1.1 paulus * single literal. If there was a match but the current match
1971 1.1 paulus * is longer, truncate the previous match to a single literal.
1972 1.1 paulus */
1973 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1974 1.17 fvdl _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1975 1.17 fvdl if (bflush) {
1976 1.7 christos FLUSH_BLOCK_ONLY(s, 0);
1977 1.1 paulus }
1978 1.1 paulus s->strstart++;
1979 1.1 paulus s->lookahead--;
1980 1.7 christos if (s->strm->avail_out == 0) return need_more;
1981 1.1 paulus } else {
1982 1.1 paulus /* There is no previous match to compare with, wait for
1983 1.1 paulus * the next step to decide.
1984 1.1 paulus */
1985 1.1 paulus s->match_available = 1;
1986 1.1 paulus s->strstart++;
1987 1.1 paulus s->lookahead--;
1988 1.1 paulus }
1989 1.1 paulus }
1990 1.1 paulus Assert (flush != Z_NO_FLUSH, "no flush?");
1991 1.1 paulus if (s->match_available) {
1992 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1993 1.17 fvdl _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1994 1.1 paulus s->match_available = 0;
1995 1.1 paulus }
1996 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1997 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1998 1.1 paulus }
1999 1.7 christos /* --- deflate.c */
2000 1.1 paulus
2001 1.7 christos /* +++ trees.c */
2002 1.17 fvdl
2003 1.1 paulus /* trees.c -- output deflated data using Huffman coding
2004 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly
2005 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
2006 1.1 paulus */
2007 1.1 paulus
2008 1.1 paulus /*
2009 1.1 paulus * ALGORITHM
2010 1.1 paulus *
2011 1.1 paulus * The "deflation" process uses several Huffman trees. The more
2012 1.1 paulus * common source values are represented by shorter bit sequences.
2013 1.1 paulus *
2014 1.1 paulus * Each code tree is stored in a compressed form which is itself
2015 1.1 paulus * a Huffman encoding of the lengths of all the code strings (in
2016 1.1 paulus * ascending order by source values). The actual code strings are
2017 1.1 paulus * reconstructed from the lengths in the inflate process, as described
2018 1.1 paulus * in the deflate specification.
2019 1.1 paulus *
2020 1.1 paulus * REFERENCES
2021 1.1 paulus *
2022 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
2023 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
2024 1.1 paulus *
2025 1.1 paulus * Storer, James A.
2026 1.1 paulus * Data Compression: Methods and Theory, pp. 49-50.
2027 1.1 paulus * Computer Science Press, 1988. ISBN 0-7167-8156-5.
2028 1.1 paulus *
2029 1.1 paulus * Sedgewick, R.
2030 1.1 paulus * Algorithms, p290.
2031 1.1 paulus * Addison-Wesley, 1983. ISBN 0-201-06672-6.
2032 1.1 paulus */
2033 1.1 paulus
2034 1.23 christos /* @(#) $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
2035 1.17 fvdl
2036 1.17 fvdl /* #define GEN_TREES_H */
2037 1.7 christos
2038 1.7 christos /* #include "deflate.h" */
2039 1.1 paulus
2040 1.1 paulus #ifdef DEBUG_ZLIB
2041 1.1 paulus # include <ctype.h>
2042 1.1 paulus #endif
2043 1.1 paulus
2044 1.1 paulus /* ===========================================================================
2045 1.1 paulus * Constants
2046 1.1 paulus */
2047 1.1 paulus
2048 1.1 paulus #define MAX_BL_BITS 7
2049 1.1 paulus /* Bit length codes must not exceed MAX_BL_BITS bits */
2050 1.1 paulus
2051 1.1 paulus #define END_BLOCK 256
2052 1.1 paulus /* end of block literal code */
2053 1.1 paulus
2054 1.1 paulus #define REP_3_6 16
2055 1.1 paulus /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2056 1.1 paulus
2057 1.1 paulus #define REPZ_3_10 17
2058 1.1 paulus /* repeat a zero length 3-10 times (3 bits of repeat count) */
2059 1.1 paulus
2060 1.1 paulus #define REPZ_11_138 18
2061 1.1 paulus /* repeat a zero length 11-138 times (7 bits of repeat count) */
2062 1.1 paulus
2063 1.12 jdolecek local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
2064 1.1 paulus = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
2065 1.1 paulus
2066 1.12 jdolecek local const int extra_dbits[D_CODES] /* extra bits for each distance code */
2067 1.1 paulus = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2068 1.1 paulus
2069 1.12 jdolecek local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
2070 1.1 paulus = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
2071 1.1 paulus
2072 1.12 jdolecek local const uch bl_order[BL_CODES]
2073 1.1 paulus = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
2074 1.1 paulus /* The lengths of the bit length codes are sent in order of decreasing
2075 1.1 paulus * probability, to avoid transmitting the lengths for unused bit length codes.
2076 1.1 paulus */
2077 1.1 paulus
2078 1.1 paulus #define Buf_size (8 * 2*sizeof(char))
2079 1.1 paulus /* Number of bits used within bi_buf. (bi_buf might be implemented on
2080 1.1 paulus * more than 16 bits on some systems.)
2081 1.1 paulus */
2082 1.1 paulus
2083 1.1 paulus /* ===========================================================================
2084 1.1 paulus * Local data. These are initialized only once.
2085 1.1 paulus */
2086 1.1 paulus
2087 1.17 fvdl #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
2088 1.17 fvdl
2089 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
2090 1.17 fvdl /* non ANSI compilers may not accept trees.h */
2091 1.17 fvdl
2092 1.1 paulus local ct_data static_ltree[L_CODES+2];
2093 1.1 paulus /* The static literal tree. Since the bit lengths are imposed, there is no
2094 1.1 paulus * need for the L_CODES extra codes used during heap construction. However
2095 1.7 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
2096 1.1 paulus * below).
2097 1.1 paulus */
2098 1.1 paulus
2099 1.1 paulus local ct_data static_dtree[D_CODES];
2100 1.1 paulus /* The static distance tree. (Actually a trivial tree since all codes use
2101 1.1 paulus * 5 bits.)
2102 1.1 paulus */
2103 1.1 paulus
2104 1.17 fvdl uch _dist_code[DIST_CODE_LEN];
2105 1.17 fvdl /* Distance codes. The first 256 values correspond to the distances
2106 1.1 paulus * 3 .. 258, the last 256 values correspond to the top 8 bits of
2107 1.1 paulus * the 15 bit distances.
2108 1.1 paulus */
2109 1.1 paulus
2110 1.17 fvdl uch _length_code[MAX_MATCH-MIN_MATCH+1];
2111 1.1 paulus /* length code for each normalized match length (0 == MIN_MATCH) */
2112 1.1 paulus
2113 1.1 paulus local int base_length[LENGTH_CODES];
2114 1.1 paulus /* First normalized length for each code (0 = MIN_MATCH) */
2115 1.1 paulus
2116 1.1 paulus local int base_dist[D_CODES];
2117 1.1 paulus /* First normalized distance for each code (0 = distance of 1) */
2118 1.1 paulus
2119 1.17 fvdl #else
2120 1.17 fvdl /* +++ trees.h */
2121 1.17 fvdl
2122 1.17 fvdl /* header created automatically with -DGEN_TREES_H */
2123 1.17 fvdl
2124 1.17 fvdl local const ct_data static_ltree[L_CODES+2] = {
2125 1.17 fvdl {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}},
2126 1.17 fvdl {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}},
2127 1.17 fvdl {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}},
2128 1.17 fvdl {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}},
2129 1.17 fvdl {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}},
2130 1.17 fvdl {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}},
2131 1.17 fvdl {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}},
2132 1.17 fvdl {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}},
2133 1.17 fvdl {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}},
2134 1.17 fvdl {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}},
2135 1.17 fvdl {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}},
2136 1.17 fvdl {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}},
2137 1.17 fvdl {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}},
2138 1.17 fvdl {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}},
2139 1.17 fvdl {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}},
2140 1.17 fvdl {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}},
2141 1.17 fvdl {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}},
2142 1.17 fvdl {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}},
2143 1.17 fvdl {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}},
2144 1.17 fvdl {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}},
2145 1.17 fvdl {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}},
2146 1.17 fvdl {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}},
2147 1.17 fvdl {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}},
2148 1.17 fvdl {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}},
2149 1.17 fvdl {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}},
2150 1.17 fvdl {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}},
2151 1.17 fvdl {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}},
2152 1.17 fvdl {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}},
2153 1.17 fvdl {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}},
2154 1.17 fvdl {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}},
2155 1.17 fvdl {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}},
2156 1.17 fvdl {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}},
2157 1.17 fvdl {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}},
2158 1.17 fvdl {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}},
2159 1.17 fvdl {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}},
2160 1.17 fvdl {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}},
2161 1.17 fvdl {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}},
2162 1.17 fvdl {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}},
2163 1.17 fvdl {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}},
2164 1.17 fvdl {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}},
2165 1.17 fvdl {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}},
2166 1.17 fvdl {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}},
2167 1.17 fvdl {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}},
2168 1.17 fvdl {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}},
2169 1.17 fvdl {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}},
2170 1.17 fvdl {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}},
2171 1.17 fvdl {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}},
2172 1.17 fvdl {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}},
2173 1.17 fvdl {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}},
2174 1.17 fvdl {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}},
2175 1.17 fvdl {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}},
2176 1.17 fvdl {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}},
2177 1.17 fvdl {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}},
2178 1.17 fvdl {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}},
2179 1.17 fvdl {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}},
2180 1.17 fvdl {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}},
2181 1.17 fvdl {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}},
2182 1.17 fvdl {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}}
2183 1.17 fvdl };
2184 1.17 fvdl
2185 1.17 fvdl local const ct_data static_dtree[D_CODES] = {
2186 1.17 fvdl {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
2187 1.17 fvdl {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
2188 1.17 fvdl {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
2189 1.17 fvdl {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
2190 1.17 fvdl {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
2191 1.17 fvdl {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
2192 1.17 fvdl };
2193 1.17 fvdl
2194 1.17 fvdl const uch _dist_code[DIST_CODE_LEN] = {
2195 1.17 fvdl 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
2196 1.17 fvdl 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
2197 1.17 fvdl 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
2198 1.17 fvdl 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
2199 1.17 fvdl 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
2200 1.17 fvdl 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
2201 1.17 fvdl 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2202 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2203 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2204 1.17 fvdl 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
2205 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2206 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2207 1.17 fvdl 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
2208 1.17 fvdl 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
2209 1.17 fvdl 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2210 1.17 fvdl 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2211 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2212 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
2213 1.17 fvdl 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2214 1.17 fvdl 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2215 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2216 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2217 1.17 fvdl 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2218 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2219 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2220 1.17 fvdl 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
2221 1.17 fvdl };
2222 1.17 fvdl
2223 1.17 fvdl const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
2224 1.17 fvdl 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
2225 1.17 fvdl 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
2226 1.17 fvdl 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
2227 1.17 fvdl 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
2228 1.17 fvdl 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
2229 1.17 fvdl 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
2230 1.17 fvdl 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2231 1.17 fvdl 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2232 1.17 fvdl 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2233 1.17 fvdl 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
2234 1.17 fvdl 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2235 1.17 fvdl 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2236 1.17 fvdl 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
2237 1.17 fvdl };
2238 1.17 fvdl
2239 1.17 fvdl local const int base_length[LENGTH_CODES] = {
2240 1.17 fvdl 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
2241 1.17 fvdl 64, 80, 96, 112, 128, 160, 192, 224, 0
2242 1.17 fvdl };
2243 1.17 fvdl
2244 1.17 fvdl local const int base_dist[D_CODES] = {
2245 1.17 fvdl 0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
2246 1.17 fvdl 32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
2247 1.17 fvdl 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
2248 1.17 fvdl };
2249 1.17 fvdl /* --- trees.h */
2250 1.17 fvdl
2251 1.17 fvdl #endif /* GEN_TREES_H */
2252 1.17 fvdl
2253 1.1 paulus struct static_tree_desc_s {
2254 1.17 fvdl const ct_data *static_tree; /* static tree or NULL */
2255 1.17 fvdl const intf *extra_bits; /* extra bits for each code or NULL */
2256 1.1 paulus int extra_base; /* base index for extra_bits */
2257 1.1 paulus int elems; /* max number of elements in the tree */
2258 1.1 paulus int max_length; /* max bit length for the codes */
2259 1.1 paulus };
2260 1.1 paulus
2261 1.1 paulus local static_tree_desc static_l_desc =
2262 1.1 paulus {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2263 1.1 paulus
2264 1.1 paulus local static_tree_desc static_d_desc =
2265 1.1 paulus {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
2266 1.1 paulus
2267 1.1 paulus local static_tree_desc static_bl_desc =
2268 1.17 fvdl {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
2269 1.1 paulus
2270 1.1 paulus /* ===========================================================================
2271 1.1 paulus * Local (static) routines in this file.
2272 1.1 paulus */
2273 1.1 paulus
2274 1.17 fvdl local void tr_static_init __P((void));
2275 1.17 fvdl local void init_block __P((deflate_state *s));
2276 1.17 fvdl local void pqdownheap __P((deflate_state *s, ct_data *tree, int k));
2277 1.17 fvdl local void gen_bitlen __P((deflate_state *s, tree_desc *desc));
2278 1.17 fvdl local void gen_codes __P((ct_data *tree, int max_code, ushf *bl_count));
2279 1.17 fvdl local void build_tree __P((deflate_state *s, tree_desc *desc));
2280 1.17 fvdl local void scan_tree __P((deflate_state *s, ct_data *tree, int max_code));
2281 1.17 fvdl local void send_tree __P((deflate_state *s, ct_data *tree, int max_code));
2282 1.17 fvdl local int build_bl_tree __P((deflate_state *s));
2283 1.17 fvdl local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
2284 1.1 paulus int blcodes));
2285 1.21 christos local void compress_block __P((deflate_state *s, const ct_data *ltree,
2286 1.21 christos const ct_data *dtree));
2287 1.17 fvdl local void set_data_type __P((deflate_state *s));
2288 1.17 fvdl local unsigned bi_reverse __P((unsigned value, int length));
2289 1.17 fvdl local void bi_windup __P((deflate_state *s));
2290 1.17 fvdl local void bi_flush __P((deflate_state *s));
2291 1.17 fvdl local void copy_block __P((deflate_state *s, charf *buf, unsigned len,
2292 1.1 paulus int header));
2293 1.1 paulus
2294 1.17 fvdl #ifdef GEN_TREES_H
2295 1.17 fvdl local void gen_trees_header __P((void));
2296 1.17 fvdl #endif
2297 1.17 fvdl
2298 1.1 paulus #ifndef DEBUG_ZLIB
2299 1.1 paulus # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2300 1.1 paulus /* Send a code of the given tree. c and tree must not have side effects */
2301 1.1 paulus
2302 1.1 paulus #else /* DEBUG_ZLIB */
2303 1.1 paulus # define send_code(s, c, tree) \
2304 1.17 fvdl { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2305 1.1 paulus send_bits(s, tree[c].Code, tree[c].Len); }
2306 1.1 paulus #endif
2307 1.1 paulus
2308 1.1 paulus /* ===========================================================================
2309 1.1 paulus * Output a short LSB first on the stream.
2310 1.1 paulus * IN assertion: there is enough room in pendingBuf.
2311 1.1 paulus */
2312 1.1 paulus #define put_short(s, w) { \
2313 1.1 paulus put_byte(s, (uch)((w) & 0xff)); \
2314 1.1 paulus put_byte(s, (uch)((ush)(w) >> 8)); \
2315 1.1 paulus }
2316 1.1 paulus
2317 1.1 paulus /* ===========================================================================
2318 1.1 paulus * Send a value on a given number of bits.
2319 1.1 paulus * IN assertion: length <= 16 and value fits in length bits.
2320 1.1 paulus */
2321 1.1 paulus #ifdef DEBUG_ZLIB
2322 1.17 fvdl local void send_bits __P((deflate_state *s, int value, int length));
2323 1.1 paulus
2324 1.1 paulus local void send_bits(s, value, length)
2325 1.1 paulus deflate_state *s;
2326 1.1 paulus int value; /* value to send */
2327 1.1 paulus int length; /* number of bits */
2328 1.1 paulus {
2329 1.7 christos Tracevv((stderr," l %2d v %4x ", length, value));
2330 1.1 paulus Assert(length > 0 && length <= 15, "invalid length");
2331 1.1 paulus s->bits_sent += (ulg)length;
2332 1.1 paulus
2333 1.1 paulus /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2334 1.1 paulus * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2335 1.1 paulus * unused bits in value.
2336 1.1 paulus */
2337 1.1 paulus if (s->bi_valid > (int)Buf_size - length) {
2338 1.1 paulus s->bi_buf |= (value << s->bi_valid);
2339 1.1 paulus put_short(s, s->bi_buf);
2340 1.1 paulus s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2341 1.1 paulus s->bi_valid += length - Buf_size;
2342 1.1 paulus } else {
2343 1.1 paulus s->bi_buf |= value << s->bi_valid;
2344 1.1 paulus s->bi_valid += length;
2345 1.1 paulus }
2346 1.1 paulus }
2347 1.1 paulus #else /* !DEBUG_ZLIB */
2348 1.1 paulus
2349 1.1 paulus #define send_bits(s, value, length) \
2350 1.1 paulus { int len = length;\
2351 1.1 paulus if (s->bi_valid > (int)Buf_size - len) {\
2352 1.1 paulus int val = value;\
2353 1.1 paulus s->bi_buf |= (val << s->bi_valid);\
2354 1.1 paulus put_short(s, s->bi_buf);\
2355 1.1 paulus s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2356 1.1 paulus s->bi_valid += len - Buf_size;\
2357 1.1 paulus } else {\
2358 1.1 paulus s->bi_buf |= (value) << s->bi_valid;\
2359 1.1 paulus s->bi_valid += len;\
2360 1.1 paulus }\
2361 1.1 paulus }
2362 1.1 paulus #endif /* DEBUG_ZLIB */
2363 1.1 paulus
2364 1.17 fvdl
2365 1.1 paulus /* ===========================================================================
2366 1.17 fvdl * Initialize the various 'constant' tables.
2367 1.1 paulus */
2368 1.7 christos local void tr_static_init()
2369 1.1 paulus {
2370 1.17 fvdl #if defined(GEN_TREES_H) || !defined(STDC)
2371 1.7 christos static int static_init_done = 0;
2372 1.1 paulus int n; /* iterates over tree elements */
2373 1.1 paulus int bits; /* bit counter */
2374 1.1 paulus int length; /* length value */
2375 1.1 paulus int code; /* code value */
2376 1.1 paulus int dist; /* distance index */
2377 1.1 paulus ush bl_count[MAX_BITS+1];
2378 1.1 paulus /* number of codes at each bit length for an optimal tree */
2379 1.1 paulus
2380 1.7 christos if (static_init_done) return;
2381 1.7 christos
2382 1.17 fvdl /* For some embedded targets, global variables are not initialized: */
2383 1.17 fvdl static_l_desc.static_tree = static_ltree;
2384 1.17 fvdl static_l_desc.extra_bits = extra_lbits;
2385 1.17 fvdl static_d_desc.static_tree = static_dtree;
2386 1.17 fvdl static_d_desc.extra_bits = extra_dbits;
2387 1.17 fvdl static_bl_desc.extra_bits = extra_blbits;
2388 1.17 fvdl
2389 1.1 paulus /* Initialize the mapping length (0..255) -> length code (0..28) */
2390 1.1 paulus length = 0;
2391 1.1 paulus for (code = 0; code < LENGTH_CODES-1; code++) {
2392 1.1 paulus base_length[code] = length;
2393 1.1 paulus for (n = 0; n < (1<<extra_lbits[code]); n++) {
2394 1.17 fvdl _length_code[length++] = (uch)code;
2395 1.1 paulus }
2396 1.1 paulus }
2397 1.7 christos Assert (length == 256, "tr_static_init: length != 256");
2398 1.1 paulus /* Note that the length 255 (match length 258) can be represented
2399 1.1 paulus * in two different ways: code 284 + 5 bits or code 285, so we
2400 1.1 paulus * overwrite length_code[255] to use the best encoding:
2401 1.1 paulus */
2402 1.17 fvdl _length_code[length-1] = (uch)code;
2403 1.1 paulus
2404 1.1 paulus /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2405 1.1 paulus dist = 0;
2406 1.1 paulus for (code = 0 ; code < 16; code++) {
2407 1.1 paulus base_dist[code] = dist;
2408 1.1 paulus for (n = 0; n < (1<<extra_dbits[code]); n++) {
2409 1.17 fvdl _dist_code[dist++] = (uch)code;
2410 1.1 paulus }
2411 1.1 paulus }
2412 1.7 christos Assert (dist == 256, "tr_static_init: dist != 256");
2413 1.1 paulus dist >>= 7; /* from now on, all distances are divided by 128 */
2414 1.1 paulus for ( ; code < D_CODES; code++) {
2415 1.1 paulus base_dist[code] = dist << 7;
2416 1.1 paulus for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2417 1.17 fvdl _dist_code[256 + dist++] = (uch)code;
2418 1.1 paulus }
2419 1.1 paulus }
2420 1.7 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
2421 1.1 paulus
2422 1.1 paulus /* Construct the codes of the static literal tree */
2423 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2424 1.1 paulus n = 0;
2425 1.1 paulus while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2426 1.1 paulus while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2427 1.1 paulus while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2428 1.1 paulus while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2429 1.1 paulus /* Codes 286 and 287 do not exist, but we must include them in the
2430 1.1 paulus * tree construction to get a canonical Huffman tree (longest code
2431 1.1 paulus * all ones)
2432 1.1 paulus */
2433 1.1 paulus gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2434 1.1 paulus
2435 1.1 paulus /* The static distance tree is trivial: */
2436 1.1 paulus for (n = 0; n < D_CODES; n++) {
2437 1.1 paulus static_dtree[n].Len = 5;
2438 1.7 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2439 1.1 paulus }
2440 1.7 christos static_init_done = 1;
2441 1.17 fvdl
2442 1.17 fvdl # ifdef GEN_TREES_H
2443 1.17 fvdl gen_trees_header();
2444 1.17 fvdl # endif
2445 1.17 fvdl #endif /* defined(GEN_TREES_H) || !defined(STDC) */
2446 1.1 paulus }
2447 1.1 paulus
2448 1.1 paulus /* ===========================================================================
2449 1.17 fvdl * Genererate the file trees.h describing the static trees.
2450 1.17 fvdl */
2451 1.17 fvdl #ifdef GEN_TREES_H
2452 1.17 fvdl # ifndef DEBUG_ZLIB
2453 1.17 fvdl # include <stdio.h>
2454 1.17 fvdl # endif
2455 1.17 fvdl
2456 1.17 fvdl # define SEPARATOR(i, last, width) \
2457 1.17 fvdl ((i) == (last)? "\n};\n\n" : \
2458 1.17 fvdl ((i) % (width) == (width)-1 ? ",\n" : ", "))
2459 1.17 fvdl
2460 1.17 fvdl void gen_trees_header()
2461 1.17 fvdl {
2462 1.17 fvdl FILE *header = fopen("trees.h", "w");
2463 1.17 fvdl int i;
2464 1.17 fvdl
2465 1.17 fvdl Assert (header != NULL, "Can't open trees.h");
2466 1.17 fvdl fprintf(header,
2467 1.17 fvdl "/* header created automatically with -DGEN_TREES_H */\n\n");
2468 1.17 fvdl
2469 1.17 fvdl fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
2470 1.17 fvdl for (i = 0; i < L_CODES+2; i++) {
2471 1.17 fvdl fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
2472 1.17 fvdl static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
2473 1.17 fvdl }
2474 1.17 fvdl
2475 1.17 fvdl fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
2476 1.17 fvdl for (i = 0; i < D_CODES; i++) {
2477 1.17 fvdl fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
2478 1.17 fvdl static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
2479 1.17 fvdl }
2480 1.17 fvdl
2481 1.17 fvdl fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
2482 1.17 fvdl for (i = 0; i < DIST_CODE_LEN; i++) {
2483 1.17 fvdl fprintf(header, "%2u%s", _dist_code[i],
2484 1.17 fvdl SEPARATOR(i, DIST_CODE_LEN-1, 20));
2485 1.17 fvdl }
2486 1.17 fvdl
2487 1.17 fvdl fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
2488 1.17 fvdl for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
2489 1.17 fvdl fprintf(header, "%2u%s", _length_code[i],
2490 1.17 fvdl SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
2491 1.17 fvdl }
2492 1.17 fvdl
2493 1.17 fvdl fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
2494 1.17 fvdl for (i = 0; i < LENGTH_CODES; i++) {
2495 1.17 fvdl fprintf(header, "%1u%s", base_length[i],
2496 1.17 fvdl SEPARATOR(i, LENGTH_CODES-1, 20));
2497 1.17 fvdl }
2498 1.17 fvdl
2499 1.17 fvdl fprintf(header, "local const int base_dist[D_CODES] = {\n");
2500 1.17 fvdl for (i = 0; i < D_CODES; i++) {
2501 1.17 fvdl fprintf(header, "%5u%s", base_dist[i],
2502 1.17 fvdl SEPARATOR(i, D_CODES-1, 10));
2503 1.17 fvdl }
2504 1.17 fvdl
2505 1.17 fvdl fclose(header);
2506 1.17 fvdl }
2507 1.17 fvdl #endif /* GEN_TREES_H */
2508 1.17 fvdl
2509 1.17 fvdl /* ===========================================================================
2510 1.1 paulus * Initialize the tree data structures for a new zlib stream.
2511 1.1 paulus */
2512 1.7 christos void _tr_init(s)
2513 1.1 paulus deflate_state *s;
2514 1.1 paulus {
2515 1.7 christos tr_static_init();
2516 1.1 paulus
2517 1.1 paulus s->l_desc.dyn_tree = s->dyn_ltree;
2518 1.1 paulus s->l_desc.stat_desc = &static_l_desc;
2519 1.1 paulus
2520 1.1 paulus s->d_desc.dyn_tree = s->dyn_dtree;
2521 1.1 paulus s->d_desc.stat_desc = &static_d_desc;
2522 1.1 paulus
2523 1.1 paulus s->bl_desc.dyn_tree = s->bl_tree;
2524 1.1 paulus s->bl_desc.stat_desc = &static_bl_desc;
2525 1.1 paulus
2526 1.1 paulus s->bi_buf = 0;
2527 1.1 paulus s->bi_valid = 0;
2528 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2529 1.1 paulus #ifdef DEBUG_ZLIB
2530 1.17 fvdl s->compressed_len = 0L;
2531 1.1 paulus s->bits_sent = 0L;
2532 1.1 paulus #endif
2533 1.1 paulus
2534 1.1 paulus /* Initialize the first block of the first file: */
2535 1.1 paulus init_block(s);
2536 1.1 paulus }
2537 1.1 paulus
2538 1.1 paulus /* ===========================================================================
2539 1.1 paulus * Initialize a new block.
2540 1.1 paulus */
2541 1.1 paulus local void init_block(s)
2542 1.1 paulus deflate_state *s;
2543 1.1 paulus {
2544 1.1 paulus int n; /* iterates over tree elements */
2545 1.1 paulus
2546 1.1 paulus /* Initialize the trees. */
2547 1.1 paulus for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2548 1.1 paulus for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2549 1.1 paulus for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2550 1.1 paulus
2551 1.1 paulus s->dyn_ltree[END_BLOCK].Freq = 1;
2552 1.1 paulus s->opt_len = s->static_len = 0L;
2553 1.1 paulus s->last_lit = s->matches = 0;
2554 1.1 paulus }
2555 1.1 paulus
2556 1.1 paulus #define SMALLEST 1
2557 1.1 paulus /* Index within the heap array of least frequent node in the Huffman tree */
2558 1.1 paulus
2559 1.1 paulus
2560 1.1 paulus /* ===========================================================================
2561 1.1 paulus * Remove the smallest element from the heap and recreate the heap with
2562 1.1 paulus * one less element. Updates heap and heap_len.
2563 1.1 paulus */
2564 1.1 paulus #define pqremove(s, tree, top) \
2565 1.1 paulus {\
2566 1.1 paulus top = s->heap[SMALLEST]; \
2567 1.1 paulus s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2568 1.1 paulus pqdownheap(s, tree, SMALLEST); \
2569 1.1 paulus }
2570 1.1 paulus
2571 1.1 paulus /* ===========================================================================
2572 1.1 paulus * Compares to subtrees, using the tree depth as tie breaker when
2573 1.1 paulus * the subtrees have equal frequency. This minimizes the worst case length.
2574 1.1 paulus */
2575 1.1 paulus #define smaller(tree, n, m, depth) \
2576 1.1 paulus (tree[n].Freq < tree[m].Freq || \
2577 1.1 paulus (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2578 1.1 paulus
2579 1.1 paulus /* ===========================================================================
2580 1.1 paulus * Restore the heap property by moving down the tree starting at node k,
2581 1.1 paulus * exchanging a node with the smallest of its two sons if necessary, stopping
2582 1.1 paulus * when the heap property is re-established (each father smaller than its
2583 1.1 paulus * two sons).
2584 1.1 paulus */
2585 1.1 paulus local void pqdownheap(s, tree, k)
2586 1.1 paulus deflate_state *s;
2587 1.1 paulus ct_data *tree; /* the tree to restore */
2588 1.1 paulus int k; /* node to move down */
2589 1.1 paulus {
2590 1.1 paulus int v = s->heap[k];
2591 1.1 paulus int j = k << 1; /* left son of k */
2592 1.1 paulus while (j <= s->heap_len) {
2593 1.1 paulus /* Set j to the smallest of the two sons: */
2594 1.1 paulus if (j < s->heap_len &&
2595 1.1 paulus smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2596 1.1 paulus j++;
2597 1.1 paulus }
2598 1.1 paulus /* Exit if v is smaller than both sons */
2599 1.1 paulus if (smaller(tree, v, s->heap[j], s->depth)) break;
2600 1.1 paulus
2601 1.1 paulus /* Exchange v with the smallest son */
2602 1.1 paulus s->heap[k] = s->heap[j]; k = j;
2603 1.1 paulus
2604 1.1 paulus /* And continue down the tree, setting j to the left son of k */
2605 1.1 paulus j <<= 1;
2606 1.1 paulus }
2607 1.1 paulus s->heap[k] = v;
2608 1.1 paulus }
2609 1.1 paulus
2610 1.1 paulus /* ===========================================================================
2611 1.1 paulus * Compute the optimal bit lengths for a tree and update the total bit length
2612 1.1 paulus * for the current block.
2613 1.1 paulus * IN assertion: the fields freq and dad are set, heap[heap_max] and
2614 1.1 paulus * above are the tree nodes sorted by increasing frequency.
2615 1.1 paulus * OUT assertions: the field len is set to the optimal bit length, the
2616 1.1 paulus * array bl_count contains the frequencies for each bit length.
2617 1.1 paulus * The length opt_len is updated; static_len is also updated if stree is
2618 1.1 paulus * not null.
2619 1.1 paulus */
2620 1.1 paulus local void gen_bitlen(s, desc)
2621 1.1 paulus deflate_state *s;
2622 1.1 paulus tree_desc *desc; /* the tree descriptor */
2623 1.1 paulus {
2624 1.17 fvdl ct_data *tree = desc->dyn_tree;
2625 1.17 fvdl int max_code = desc->max_code;
2626 1.17 fvdl const ct_data *stree = desc->stat_desc->static_tree;
2627 1.12 jdolecek const intf *extra = desc->stat_desc->extra_bits;
2628 1.17 fvdl int base = desc->stat_desc->extra_base;
2629 1.17 fvdl int max_length = desc->stat_desc->max_length;
2630 1.1 paulus int h; /* heap index */
2631 1.1 paulus int n, m; /* iterate over the tree elements */
2632 1.1 paulus int bits; /* bit length */
2633 1.1 paulus int xbits; /* extra bits */
2634 1.1 paulus ush f; /* frequency */
2635 1.1 paulus int overflow = 0; /* number of elements with bit length too large */
2636 1.1 paulus
2637 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2638 1.1 paulus
2639 1.1 paulus /* In a first pass, compute the optimal bit lengths (which may
2640 1.1 paulus * overflow in the case of the bit length tree).
2641 1.1 paulus */
2642 1.1 paulus tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2643 1.1 paulus
2644 1.1 paulus for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2645 1.1 paulus n = s->heap[h];
2646 1.1 paulus bits = tree[tree[n].Dad].Len + 1;
2647 1.1 paulus if (bits > max_length) bits = max_length, overflow++;
2648 1.1 paulus tree[n].Len = (ush)bits;
2649 1.1 paulus /* We overwrite tree[n].Dad which is no longer needed */
2650 1.1 paulus
2651 1.1 paulus if (n > max_code) continue; /* not a leaf node */
2652 1.1 paulus
2653 1.1 paulus s->bl_count[bits]++;
2654 1.1 paulus xbits = 0;
2655 1.1 paulus if (n >= base) xbits = extra[n-base];
2656 1.1 paulus f = tree[n].Freq;
2657 1.1 paulus s->opt_len += (ulg)f * (bits + xbits);
2658 1.1 paulus if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2659 1.1 paulus }
2660 1.1 paulus if (overflow == 0) return;
2661 1.1 paulus
2662 1.1 paulus Trace((stderr,"\nbit length overflow\n"));
2663 1.1 paulus /* This happens for example on obj2 and pic of the Calgary corpus */
2664 1.1 paulus
2665 1.1 paulus /* Find the first bit length which could increase: */
2666 1.1 paulus do {
2667 1.1 paulus bits = max_length-1;
2668 1.1 paulus while (s->bl_count[bits] == 0) bits--;
2669 1.1 paulus s->bl_count[bits]--; /* move one leaf down the tree */
2670 1.1 paulus s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2671 1.1 paulus s->bl_count[max_length]--;
2672 1.1 paulus /* The brother of the overflow item also moves one step up,
2673 1.1 paulus * but this does not affect bl_count[max_length]
2674 1.1 paulus */
2675 1.1 paulus overflow -= 2;
2676 1.1 paulus } while (overflow > 0);
2677 1.1 paulus
2678 1.1 paulus /* Now recompute all bit lengths, scanning in increasing frequency.
2679 1.1 paulus * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2680 1.1 paulus * lengths instead of fixing only the wrong ones. This idea is taken
2681 1.1 paulus * from 'ar' written by Haruhiko Okumura.)
2682 1.1 paulus */
2683 1.1 paulus for (bits = max_length; bits != 0; bits--) {
2684 1.1 paulus n = s->bl_count[bits];
2685 1.1 paulus while (n != 0) {
2686 1.1 paulus m = s->heap[--h];
2687 1.1 paulus if (m > max_code) continue;
2688 1.1 paulus if (tree[m].Len != (unsigned) bits) {
2689 1.1 paulus Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2690 1.1 paulus s->opt_len += ((long)bits - (long)tree[m].Len)
2691 1.1 paulus *(long)tree[m].Freq;
2692 1.1 paulus tree[m].Len = (ush)bits;
2693 1.1 paulus }
2694 1.1 paulus n--;
2695 1.1 paulus }
2696 1.1 paulus }
2697 1.1 paulus }
2698 1.1 paulus
2699 1.1 paulus /* ===========================================================================
2700 1.1 paulus * Generate the codes for a given tree and bit counts (which need not be
2701 1.1 paulus * optimal).
2702 1.1 paulus * IN assertion: the array bl_count contains the bit length statistics for
2703 1.1 paulus * the given tree and the field len is set for all tree elements.
2704 1.1 paulus * OUT assertion: the field code is set for all tree elements of non
2705 1.1 paulus * zero code length.
2706 1.1 paulus */
2707 1.1 paulus local void gen_codes (tree, max_code, bl_count)
2708 1.1 paulus ct_data *tree; /* the tree to decorate */
2709 1.1 paulus int max_code; /* largest code with non zero frequency */
2710 1.1 paulus ushf *bl_count; /* number of codes at each bit length */
2711 1.1 paulus {
2712 1.1 paulus ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2713 1.1 paulus ush code = 0; /* running code value */
2714 1.1 paulus int bits; /* bit index */
2715 1.1 paulus int n; /* code index */
2716 1.1 paulus
2717 1.1 paulus /* The distribution counts are first used to generate the code values
2718 1.1 paulus * without bit reversal.
2719 1.1 paulus */
2720 1.1 paulus for (bits = 1; bits <= MAX_BITS; bits++) {
2721 1.1 paulus next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2722 1.1 paulus }
2723 1.1 paulus /* Check that the bit counts in bl_count are consistent. The last code
2724 1.1 paulus * must be all ones.
2725 1.1 paulus */
2726 1.1 paulus Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2727 1.1 paulus "inconsistent bit counts");
2728 1.1 paulus Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2729 1.1 paulus
2730 1.1 paulus for (n = 0; n <= max_code; n++) {
2731 1.1 paulus int len = tree[n].Len;
2732 1.1 paulus if (len == 0) continue;
2733 1.1 paulus /* Now reverse the bits */
2734 1.1 paulus tree[n].Code = bi_reverse(next_code[len]++, len);
2735 1.1 paulus
2736 1.7 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2737 1.1 paulus n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2738 1.1 paulus }
2739 1.1 paulus }
2740 1.1 paulus
2741 1.1 paulus /* ===========================================================================
2742 1.1 paulus * Construct one Huffman tree and assigns the code bit strings and lengths.
2743 1.1 paulus * Update the total bit length for the current block.
2744 1.1 paulus * IN assertion: the field freq is set for all tree elements.
2745 1.1 paulus * OUT assertions: the fields len and code are set to the optimal bit length
2746 1.1 paulus * and corresponding code. The length opt_len is updated; static_len is
2747 1.1 paulus * also updated if stree is not null. The field max_code is set.
2748 1.1 paulus */
2749 1.1 paulus local void build_tree(s, desc)
2750 1.1 paulus deflate_state *s;
2751 1.1 paulus tree_desc *desc; /* the tree descriptor */
2752 1.1 paulus {
2753 1.17 fvdl ct_data *tree = desc->dyn_tree;
2754 1.17 fvdl const ct_data *stree = desc->stat_desc->static_tree;
2755 1.17 fvdl int elems = desc->stat_desc->elems;
2756 1.1 paulus int n, m; /* iterate over heap elements */
2757 1.1 paulus int max_code = -1; /* largest code with non zero frequency */
2758 1.1 paulus int node; /* new node being created */
2759 1.1 paulus
2760 1.1 paulus /* Construct the initial heap, with least frequent element in
2761 1.1 paulus * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2762 1.1 paulus * heap[0] is not used.
2763 1.1 paulus */
2764 1.1 paulus s->heap_len = 0, s->heap_max = HEAP_SIZE;
2765 1.1 paulus
2766 1.1 paulus for (n = 0; n < elems; n++) {
2767 1.1 paulus if (tree[n].Freq != 0) {
2768 1.1 paulus s->heap[++(s->heap_len)] = max_code = n;
2769 1.1 paulus s->depth[n] = 0;
2770 1.1 paulus } else {
2771 1.1 paulus tree[n].Len = 0;
2772 1.1 paulus }
2773 1.1 paulus }
2774 1.1 paulus
2775 1.1 paulus /* The pkzip format requires that at least one distance code exists,
2776 1.1 paulus * and that at least one bit should be sent even if there is only one
2777 1.1 paulus * possible code. So to avoid special checks later on we force at least
2778 1.1 paulus * two codes of non zero frequency.
2779 1.1 paulus */
2780 1.1 paulus while (s->heap_len < 2) {
2781 1.1 paulus node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2782 1.1 paulus tree[node].Freq = 1;
2783 1.1 paulus s->depth[node] = 0;
2784 1.1 paulus s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2785 1.1 paulus /* node is 0 or 1 so it does not have extra bits */
2786 1.1 paulus }
2787 1.1 paulus desc->max_code = max_code;
2788 1.1 paulus
2789 1.1 paulus /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2790 1.1 paulus * establish sub-heaps of increasing lengths:
2791 1.1 paulus */
2792 1.1 paulus for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2793 1.1 paulus
2794 1.1 paulus /* Construct the Huffman tree by repeatedly combining the least two
2795 1.1 paulus * frequent nodes.
2796 1.1 paulus */
2797 1.1 paulus node = elems; /* next internal node of the tree */
2798 1.1 paulus do {
2799 1.1 paulus pqremove(s, tree, n); /* n = node of least frequency */
2800 1.1 paulus m = s->heap[SMALLEST]; /* m = node of next least frequency */
2801 1.1 paulus
2802 1.1 paulus s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2803 1.1 paulus s->heap[--(s->heap_max)] = m;
2804 1.1 paulus
2805 1.1 paulus /* Create a new node father of n and m */
2806 1.1 paulus tree[node].Freq = tree[n].Freq + tree[m].Freq;
2807 1.1 paulus s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2808 1.1 paulus tree[n].Dad = tree[m].Dad = (ush)node;
2809 1.1 paulus #ifdef DUMP_BL_TREE
2810 1.1 paulus if (tree == s->bl_tree) {
2811 1.1 paulus fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2812 1.1 paulus node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2813 1.1 paulus }
2814 1.1 paulus #endif
2815 1.1 paulus /* and insert the new node in the heap */
2816 1.1 paulus s->heap[SMALLEST] = node++;
2817 1.1 paulus pqdownheap(s, tree, SMALLEST);
2818 1.1 paulus
2819 1.1 paulus } while (s->heap_len >= 2);
2820 1.1 paulus
2821 1.1 paulus s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2822 1.1 paulus
2823 1.1 paulus /* At this point, the fields freq and dad are set. We can now
2824 1.1 paulus * generate the bit lengths.
2825 1.1 paulus */
2826 1.1 paulus gen_bitlen(s, (tree_desc *)desc);
2827 1.1 paulus
2828 1.1 paulus /* The field len is now set, we can generate the bit codes */
2829 1.1 paulus gen_codes ((ct_data *)tree, max_code, s->bl_count);
2830 1.1 paulus }
2831 1.1 paulus
2832 1.1 paulus /* ===========================================================================
2833 1.1 paulus * Scan a literal or distance tree to determine the frequencies of the codes
2834 1.1 paulus * in the bit length tree.
2835 1.1 paulus */
2836 1.1 paulus local void scan_tree (s, tree, max_code)
2837 1.1 paulus deflate_state *s;
2838 1.1 paulus ct_data *tree; /* the tree to be scanned */
2839 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2840 1.1 paulus {
2841 1.1 paulus int n; /* iterates over all tree elements */
2842 1.1 paulus int prevlen = -1; /* last emitted length */
2843 1.1 paulus int curlen; /* length of current code */
2844 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2845 1.1 paulus int count = 0; /* repeat count of the current code */
2846 1.1 paulus int max_count = 7; /* max repeat count */
2847 1.1 paulus int min_count = 4; /* min repeat count */
2848 1.1 paulus
2849 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2850 1.1 paulus tree[max_code+1].Len = (ush)0xffff; /* guard */
2851 1.1 paulus
2852 1.1 paulus for (n = 0; n <= max_code; n++) {
2853 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2854 1.1 paulus if (++count < max_count && curlen == nextlen) {
2855 1.1 paulus continue;
2856 1.1 paulus } else if (count < min_count) {
2857 1.1 paulus s->bl_tree[curlen].Freq += count;
2858 1.1 paulus } else if (curlen != 0) {
2859 1.1 paulus if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2860 1.1 paulus s->bl_tree[REP_3_6].Freq++;
2861 1.1 paulus } else if (count <= 10) {
2862 1.1 paulus s->bl_tree[REPZ_3_10].Freq++;
2863 1.1 paulus } else {
2864 1.1 paulus s->bl_tree[REPZ_11_138].Freq++;
2865 1.1 paulus }
2866 1.1 paulus count = 0; prevlen = curlen;
2867 1.1 paulus if (nextlen == 0) {
2868 1.1 paulus max_count = 138, min_count = 3;
2869 1.1 paulus } else if (curlen == nextlen) {
2870 1.1 paulus max_count = 6, min_count = 3;
2871 1.1 paulus } else {
2872 1.1 paulus max_count = 7, min_count = 4;
2873 1.1 paulus }
2874 1.1 paulus }
2875 1.1 paulus }
2876 1.1 paulus
2877 1.1 paulus /* ===========================================================================
2878 1.1 paulus * Send a literal or distance tree in compressed form, using the codes in
2879 1.1 paulus * bl_tree.
2880 1.1 paulus */
2881 1.1 paulus local void send_tree (s, tree, max_code)
2882 1.1 paulus deflate_state *s;
2883 1.1 paulus ct_data *tree; /* the tree to be scanned */
2884 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2885 1.1 paulus {
2886 1.1 paulus int n; /* iterates over all tree elements */
2887 1.1 paulus int prevlen = -1; /* last emitted length */
2888 1.1 paulus int curlen; /* length of current code */
2889 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2890 1.1 paulus int count = 0; /* repeat count of the current code */
2891 1.1 paulus int max_count = 7; /* max repeat count */
2892 1.1 paulus int min_count = 4; /* min repeat count */
2893 1.1 paulus
2894 1.1 paulus /* tree[max_code+1].Len = -1; */ /* guard already set */
2895 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2896 1.1 paulus
2897 1.1 paulus for (n = 0; n <= max_code; n++) {
2898 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2899 1.1 paulus if (++count < max_count && curlen == nextlen) {
2900 1.1 paulus continue;
2901 1.1 paulus } else if (count < min_count) {
2902 1.1 paulus do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2903 1.1 paulus
2904 1.1 paulus } else if (curlen != 0) {
2905 1.1 paulus if (curlen != prevlen) {
2906 1.1 paulus send_code(s, curlen, s->bl_tree); count--;
2907 1.1 paulus }
2908 1.1 paulus Assert(count >= 3 && count <= 6, " 3_6?");
2909 1.1 paulus send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2910 1.1 paulus
2911 1.1 paulus } else if (count <= 10) {
2912 1.1 paulus send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2913 1.1 paulus
2914 1.1 paulus } else {
2915 1.1 paulus send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2916 1.1 paulus }
2917 1.1 paulus count = 0; prevlen = curlen;
2918 1.1 paulus if (nextlen == 0) {
2919 1.1 paulus max_count = 138, min_count = 3;
2920 1.1 paulus } else if (curlen == nextlen) {
2921 1.1 paulus max_count = 6, min_count = 3;
2922 1.1 paulus } else {
2923 1.1 paulus max_count = 7, min_count = 4;
2924 1.1 paulus }
2925 1.1 paulus }
2926 1.1 paulus }
2927 1.1 paulus
2928 1.1 paulus /* ===========================================================================
2929 1.1 paulus * Construct the Huffman tree for the bit lengths and return the index in
2930 1.1 paulus * bl_order of the last bit length code to send.
2931 1.1 paulus */
2932 1.1 paulus local int build_bl_tree(s)
2933 1.1 paulus deflate_state *s;
2934 1.1 paulus {
2935 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2936 1.1 paulus
2937 1.1 paulus /* Determine the bit length frequencies for literal and distance trees */
2938 1.1 paulus scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2939 1.1 paulus scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2940 1.1 paulus
2941 1.1 paulus /* Build the bit length tree: */
2942 1.1 paulus build_tree(s, (tree_desc *)(&(s->bl_desc)));
2943 1.1 paulus /* opt_len now includes the length of the tree representations, except
2944 1.1 paulus * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2945 1.1 paulus */
2946 1.1 paulus
2947 1.1 paulus /* Determine the number of bit length codes to send. The pkzip format
2948 1.1 paulus * requires that at least 4 bit length codes be sent. (appnote.txt says
2949 1.1 paulus * 3 but the actual value used is 4.)
2950 1.1 paulus */
2951 1.1 paulus for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2952 1.1 paulus if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2953 1.1 paulus }
2954 1.1 paulus /* Update opt_len to include the bit length tree and counts */
2955 1.1 paulus s->opt_len += 3*(max_blindex+1) + 5+5+4;
2956 1.1 paulus Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2957 1.1 paulus s->opt_len, s->static_len));
2958 1.1 paulus
2959 1.1 paulus return max_blindex;
2960 1.1 paulus }
2961 1.1 paulus
2962 1.1 paulus /* ===========================================================================
2963 1.1 paulus * Send the header for a block using dynamic Huffman trees: the counts, the
2964 1.1 paulus * lengths of the bit length codes, the literal tree and the distance tree.
2965 1.1 paulus * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2966 1.1 paulus */
2967 1.1 paulus local void send_all_trees(s, lcodes, dcodes, blcodes)
2968 1.1 paulus deflate_state *s;
2969 1.1 paulus int lcodes, dcodes, blcodes; /* number of codes for each tree */
2970 1.1 paulus {
2971 1.1 paulus int rank; /* index in bl_order */
2972 1.1 paulus
2973 1.1 paulus Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2974 1.1 paulus Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2975 1.1 paulus "too many codes");
2976 1.1 paulus Tracev((stderr, "\nbl counts: "));
2977 1.1 paulus send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2978 1.1 paulus send_bits(s, dcodes-1, 5);
2979 1.1 paulus send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2980 1.1 paulus for (rank = 0; rank < blcodes; rank++) {
2981 1.1 paulus Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2982 1.1 paulus send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2983 1.1 paulus }
2984 1.1 paulus Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2985 1.1 paulus
2986 1.1 paulus send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2987 1.1 paulus Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2988 1.1 paulus
2989 1.1 paulus send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2990 1.1 paulus Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2991 1.1 paulus }
2992 1.1 paulus
2993 1.1 paulus /* ===========================================================================
2994 1.1 paulus * Send a stored block
2995 1.1 paulus */
2996 1.7 christos void _tr_stored_block(s, buf, stored_len, eof)
2997 1.1 paulus deflate_state *s;
2998 1.1 paulus charf *buf; /* input block */
2999 1.1 paulus ulg stored_len; /* length of input block */
3000 1.1 paulus int eof; /* true if this is the last block for a file */
3001 1.1 paulus {
3002 1.1 paulus send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
3003 1.17 fvdl #ifdef DEBUG_ZLIB
3004 1.7 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
3005 1.1 paulus s->compressed_len += (stored_len + 4) << 3;
3006 1.17 fvdl #endif
3007 1.1 paulus copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
3008 1.1 paulus }
3009 1.1 paulus
3010 1.1 paulus /* Send just the `stored block' type code without any length bytes or data.
3011 1.1 paulus */
3012 1.7 christos void _tr_stored_type_only(s)
3013 1.1 paulus deflate_state *s;
3014 1.1 paulus {
3015 1.1 paulus send_bits(s, (STORED_BLOCK << 1), 3);
3016 1.1 paulus bi_windup(s);
3017 1.17 fvdl #ifdef DEBUG_ZLIB
3018 1.1 paulus s->compressed_len = (s->compressed_len + 3) & ~7L;
3019 1.17 fvdl #endif
3020 1.1 paulus }
3021 1.1 paulus
3022 1.1 paulus /* ===========================================================================
3023 1.1 paulus * Send one empty static block to give enough lookahead for inflate.
3024 1.1 paulus * This takes 10 bits, of which 7 may remain in the bit buffer.
3025 1.7 christos * The current inflate code requires 9 bits of lookahead. If the
3026 1.7 christos * last two codes for the previous block (real code plus EOB) were coded
3027 1.7 christos * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
3028 1.7 christos * the last real code. In this case we send two empty static blocks instead
3029 1.7 christos * of one. (There are no problems if the previous block is stored or fixed.)
3030 1.7 christos * To simplify the code, we assume the worst case of last real code encoded
3031 1.7 christos * on one bit only.
3032 1.1 paulus */
3033 1.7 christos void _tr_align(s)
3034 1.1 paulus deflate_state *s;
3035 1.1 paulus {
3036 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
3037 1.1 paulus send_code(s, END_BLOCK, static_ltree);
3038 1.17 fvdl #ifdef DEBUG_ZLIB
3039 1.1 paulus s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
3040 1.17 fvdl #endif
3041 1.1 paulus bi_flush(s);
3042 1.1 paulus /* Of the 10 bits for the empty block, we have already sent
3043 1.7 christos * (10 - bi_valid) bits. The lookahead for the last real code (before
3044 1.7 christos * the EOB of the previous block) was thus at least one plus the length
3045 1.7 christos * of the EOB plus what we have just sent of the empty static block.
3046 1.1 paulus */
3047 1.7 christos if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3048 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
3049 1.1 paulus send_code(s, END_BLOCK, static_ltree);
3050 1.17 fvdl #ifdef DEBUG_ZLIB
3051 1.1 paulus s->compressed_len += 10L;
3052 1.17 fvdl #endif
3053 1.1 paulus bi_flush(s);
3054 1.1 paulus }
3055 1.1 paulus s->last_eob_len = 7;
3056 1.1 paulus }
3057 1.1 paulus
3058 1.1 paulus /* ===========================================================================
3059 1.1 paulus * Determine the best encoding for the current block: dynamic trees, static
3060 1.17 fvdl * trees or store, and output the encoded block to the zip file.
3061 1.1 paulus */
3062 1.17 fvdl void _tr_flush_block(s, buf, stored_len, eof)
3063 1.1 paulus deflate_state *s;
3064 1.1 paulus charf *buf; /* input block, or NULL if too old */
3065 1.1 paulus ulg stored_len; /* length of input block */
3066 1.7 christos int eof; /* true if this is the last block for a file */
3067 1.1 paulus {
3068 1.1 paulus ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3069 1.7 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
3070 1.1 paulus
3071 1.7 christos /* Build the Huffman trees unless a stored block is forced */
3072 1.7 christos if (s->level > 0) {
3073 1.1 paulus
3074 1.7 christos /* Check if the file is ascii or binary */
3075 1.7 christos if (s->data_type == Z_UNKNOWN) set_data_type(s);
3076 1.1 paulus
3077 1.7 christos /* Construct the literal and distance trees */
3078 1.7 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
3079 1.7 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3080 1.7 christos s->static_len));
3081 1.7 christos
3082 1.7 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
3083 1.7 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3084 1.7 christos s->static_len));
3085 1.7 christos /* At this point, opt_len and static_len are the total bit lengths of
3086 1.7 christos * the compressed block data, excluding the tree representations.
3087 1.7 christos */
3088 1.7 christos
3089 1.7 christos /* Build the bit length tree for the above two trees, and get the index
3090 1.7 christos * in bl_order of the last bit length code to send.
3091 1.7 christos */
3092 1.7 christos max_blindex = build_bl_tree(s);
3093 1.7 christos
3094 1.7 christos /* Determine the best encoding. Compute first the block length in bytes*/
3095 1.7 christos opt_lenb = (s->opt_len+3+7)>>3;
3096 1.7 christos static_lenb = (s->static_len+3+7)>>3;
3097 1.7 christos
3098 1.7 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3099 1.7 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
3100 1.7 christos s->last_lit));
3101 1.1 paulus
3102 1.7 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3103 1.1 paulus
3104 1.7 christos } else {
3105 1.7 christos Assert(buf != (char*)0, "lost buf");
3106 1.7 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
3107 1.7 christos }
3108 1.1 paulus
3109 1.1 paulus #ifdef FORCE_STORED
3110 1.7 christos if (buf != (char*)0) { /* force stored block */
3111 1.1 paulus #else
3112 1.7 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
3113 1.1 paulus /* 4: two words for the lengths */
3114 1.1 paulus #endif
3115 1.1 paulus /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
3116 1.1 paulus * Otherwise we can't have processed more than WSIZE input bytes since
3117 1.1 paulus * the last block flush, because compression would have been
3118 1.1 paulus * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
3119 1.1 paulus * transform a block into a stored block.
3120 1.1 paulus */
3121 1.7 christos _tr_stored_block(s, buf, stored_len, eof);
3122 1.1 paulus
3123 1.1 paulus #ifdef FORCE_STATIC
3124 1.7 christos } else if (static_lenb >= 0) { /* force static trees */
3125 1.1 paulus #else
3126 1.7 christos } else if (static_lenb == opt_lenb) {
3127 1.1 paulus #endif
3128 1.1 paulus send_bits(s, (STATIC_TREES<<1)+eof, 3);
3129 1.21 christos compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
3130 1.17 fvdl #ifdef DEBUG_ZLIB
3131 1.1 paulus s->compressed_len += 3 + s->static_len;
3132 1.17 fvdl #endif
3133 1.1 paulus } else {
3134 1.1 paulus send_bits(s, (DYN_TREES<<1)+eof, 3);
3135 1.1 paulus send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
3136 1.1 paulus max_blindex+1);
3137 1.21 christos compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
3138 1.17 fvdl #ifdef DEBUG_ZLIB
3139 1.1 paulus s->compressed_len += 3 + s->opt_len;
3140 1.17 fvdl #endif
3141 1.1 paulus }
3142 1.1 paulus Assert (s->compressed_len == s->bits_sent, "bad compressed size");
3143 1.17 fvdl /* The above check is made mod 2^32, for files larger than 512 MB
3144 1.17 fvdl * and uLong implemented on 32 bits.
3145 1.17 fvdl */
3146 1.1 paulus init_block(s);
3147 1.1 paulus
3148 1.1 paulus if (eof) {
3149 1.1 paulus bi_windup(s);
3150 1.17 fvdl #ifdef DEBUG_ZLIB
3151 1.1 paulus s->compressed_len += 7; /* align on byte boundary */
3152 1.17 fvdl #endif
3153 1.1 paulus }
3154 1.1 paulus Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3155 1.1 paulus s->compressed_len-7*eof));
3156 1.1 paulus }
3157 1.1 paulus
3158 1.1 paulus /* ===========================================================================
3159 1.1 paulus * Save the match info and tally the frequency counts. Return true if
3160 1.1 paulus * the current block must be flushed.
3161 1.1 paulus */
3162 1.19 kristerw #if 0
3163 1.7 christos int _tr_tally (s, dist, lc)
3164 1.1 paulus deflate_state *s;
3165 1.7 christos unsigned dist; /* distance of matched string */
3166 1.7 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
3167 1.1 paulus {
3168 1.1 paulus s->d_buf[s->last_lit] = (ush)dist;
3169 1.1 paulus s->l_buf[s->last_lit++] = (uch)lc;
3170 1.1 paulus if (dist == 0) {
3171 1.1 paulus /* lc is the unmatched char */
3172 1.1 paulus s->dyn_ltree[lc].Freq++;
3173 1.1 paulus } else {
3174 1.1 paulus s->matches++;
3175 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
3176 1.1 paulus dist--; /* dist = match distance - 1 */
3177 1.1 paulus Assert((ush)dist < (ush)MAX_DIST(s) &&
3178 1.1 paulus (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3179 1.7 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
3180 1.1 paulus
3181 1.17 fvdl s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3182 1.1 paulus s->dyn_dtree[d_code(dist)].Freq++;
3183 1.1 paulus }
3184 1.1 paulus
3185 1.17 fvdl #ifdef TRUNCATE_BLOCK
3186 1.1 paulus /* Try to guess if it is profitable to stop the current block here */
3187 1.17 fvdl if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3188 1.1 paulus /* Compute an upper bound for the compressed length */
3189 1.1 paulus ulg out_length = (ulg)s->last_lit*8L;
3190 1.7 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
3191 1.1 paulus int dcode;
3192 1.1 paulus for (dcode = 0; dcode < D_CODES; dcode++) {
3193 1.1 paulus out_length += (ulg)s->dyn_dtree[dcode].Freq *
3194 1.1 paulus (5L+extra_dbits[dcode]);
3195 1.1 paulus }
3196 1.1 paulus out_length >>= 3;
3197 1.1 paulus Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3198 1.1 paulus s->last_lit, in_length, out_length,
3199 1.1 paulus 100L - out_length*100L/in_length));
3200 1.1 paulus if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
3201 1.1 paulus }
3202 1.17 fvdl #endif
3203 1.1 paulus return (s->last_lit == s->lit_bufsize-1);
3204 1.1 paulus /* We avoid equality with lit_bufsize because of wraparound at 64K
3205 1.1 paulus * on 16 bit machines and because stored blocks are restricted to
3206 1.1 paulus * 64K-1 bytes.
3207 1.1 paulus */
3208 1.1 paulus }
3209 1.19 kristerw #endif
3210 1.1 paulus
3211 1.1 paulus /* ===========================================================================
3212 1.1 paulus * Send the block data compressed using the given Huffman trees
3213 1.1 paulus */
3214 1.1 paulus local void compress_block(s, ltree, dtree)
3215 1.1 paulus deflate_state *s;
3216 1.21 christos const ct_data *ltree; /* literal tree */
3217 1.21 christos const ct_data *dtree; /* distance tree */
3218 1.1 paulus {
3219 1.1 paulus unsigned dist; /* distance of matched string */
3220 1.1 paulus int lc; /* match length or unmatched char (if dist == 0) */
3221 1.1 paulus unsigned lx = 0; /* running index in l_buf */
3222 1.1 paulus unsigned code; /* the code to send */
3223 1.1 paulus int extra; /* number of extra bits to send */
3224 1.1 paulus
3225 1.1 paulus if (s->last_lit != 0) do {
3226 1.1 paulus dist = s->d_buf[lx];
3227 1.1 paulus lc = s->l_buf[lx++];
3228 1.1 paulus if (dist == 0) {
3229 1.1 paulus send_code(s, lc, ltree); /* send a literal byte */
3230 1.1 paulus Tracecv(isgraph(lc), (stderr," '%c' ", lc));
3231 1.1 paulus } else {
3232 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
3233 1.17 fvdl code = _length_code[lc];
3234 1.1 paulus send_code(s, code+LITERALS+1, ltree); /* send the length code */
3235 1.1 paulus extra = extra_lbits[code];
3236 1.1 paulus if (extra != 0) {
3237 1.1 paulus lc -= base_length[code];
3238 1.1 paulus send_bits(s, lc, extra); /* send the extra length bits */
3239 1.1 paulus }
3240 1.1 paulus dist--; /* dist is now the match distance - 1 */
3241 1.1 paulus code = d_code(dist);
3242 1.1 paulus Assert (code < D_CODES, "bad d_code");
3243 1.1 paulus
3244 1.1 paulus send_code(s, code, dtree); /* send the distance code */
3245 1.1 paulus extra = extra_dbits[code];
3246 1.1 paulus if (extra != 0) {
3247 1.1 paulus dist -= base_dist[code];
3248 1.1 paulus send_bits(s, dist, extra); /* send the extra distance bits */
3249 1.1 paulus }
3250 1.1 paulus } /* literal or match pair ? */
3251 1.1 paulus
3252 1.1 paulus /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
3253 1.1 paulus Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
3254 1.1 paulus
3255 1.1 paulus } while (lx < s->last_lit);
3256 1.1 paulus
3257 1.1 paulus send_code(s, END_BLOCK, ltree);
3258 1.1 paulus s->last_eob_len = ltree[END_BLOCK].Len;
3259 1.1 paulus }
3260 1.1 paulus
3261 1.1 paulus /* ===========================================================================
3262 1.7 christos * Set the data type to ASCII or BINARY, using a crude approximation:
3263 1.1 paulus * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3264 1.1 paulus * IN assertion: the fields freq of dyn_ltree are set and the total of all
3265 1.1 paulus * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3266 1.1 paulus */
3267 1.1 paulus local void set_data_type(s)
3268 1.1 paulus deflate_state *s;
3269 1.1 paulus {
3270 1.1 paulus int n = 0;
3271 1.1 paulus unsigned ascii_freq = 0;
3272 1.1 paulus unsigned bin_freq = 0;
3273 1.1 paulus while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
3274 1.1 paulus while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
3275 1.1 paulus while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3276 1.7 christos s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
3277 1.1 paulus }
3278 1.1 paulus
3279 1.1 paulus /* ===========================================================================
3280 1.1 paulus * Reverse the first len bits of a code, using straightforward code (a faster
3281 1.1 paulus * method would use a table)
3282 1.1 paulus * IN assertion: 1 <= len <= 15
3283 1.1 paulus */
3284 1.1 paulus local unsigned bi_reverse(code, len)
3285 1.1 paulus unsigned code; /* the value to invert */
3286 1.1 paulus int len; /* its bit length */
3287 1.1 paulus {
3288 1.10 augustss unsigned res = 0;
3289 1.1 paulus do {
3290 1.1 paulus res |= code & 1;
3291 1.1 paulus code >>= 1, res <<= 1;
3292 1.1 paulus } while (--len > 0);
3293 1.1 paulus return res >> 1;
3294 1.1 paulus }
3295 1.1 paulus
3296 1.1 paulus /* ===========================================================================
3297 1.1 paulus * Flush the bit buffer, keeping at most 7 bits in it.
3298 1.1 paulus */
3299 1.1 paulus local void bi_flush(s)
3300 1.1 paulus deflate_state *s;
3301 1.1 paulus {
3302 1.1 paulus if (s->bi_valid == 16) {
3303 1.1 paulus put_short(s, s->bi_buf);
3304 1.1 paulus s->bi_buf = 0;
3305 1.1 paulus s->bi_valid = 0;
3306 1.1 paulus } else if (s->bi_valid >= 8) {
3307 1.1 paulus put_byte(s, (Byte)s->bi_buf);
3308 1.1 paulus s->bi_buf >>= 8;
3309 1.1 paulus s->bi_valid -= 8;
3310 1.1 paulus }
3311 1.1 paulus }
3312 1.1 paulus
3313 1.1 paulus /* ===========================================================================
3314 1.1 paulus * Flush the bit buffer and align the output on a byte boundary
3315 1.1 paulus */
3316 1.1 paulus local void bi_windup(s)
3317 1.1 paulus deflate_state *s;
3318 1.1 paulus {
3319 1.1 paulus if (s->bi_valid > 8) {
3320 1.1 paulus put_short(s, s->bi_buf);
3321 1.1 paulus } else if (s->bi_valid > 0) {
3322 1.1 paulus put_byte(s, (Byte)s->bi_buf);
3323 1.1 paulus }
3324 1.1 paulus s->bi_buf = 0;
3325 1.1 paulus s->bi_valid = 0;
3326 1.1 paulus #ifdef DEBUG_ZLIB
3327 1.1 paulus s->bits_sent = (s->bits_sent+7) & ~7;
3328 1.1 paulus #endif
3329 1.1 paulus }
3330 1.1 paulus
3331 1.1 paulus /* ===========================================================================
3332 1.1 paulus * Copy a stored block, storing first the length and its
3333 1.1 paulus * one's complement if requested.
3334 1.1 paulus */
3335 1.1 paulus local void copy_block(s, buf, len, header)
3336 1.1 paulus deflate_state *s;
3337 1.1 paulus charf *buf; /* the input data */
3338 1.1 paulus unsigned len; /* its length */
3339 1.1 paulus int header; /* true if block header must be written */
3340 1.1 paulus {
3341 1.1 paulus bi_windup(s); /* align on byte boundary */
3342 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
3343 1.1 paulus
3344 1.1 paulus if (header) {
3345 1.20 perry put_short(s, (ush)len);
3346 1.1 paulus put_short(s, (ush)~len);
3347 1.1 paulus #ifdef DEBUG_ZLIB
3348 1.1 paulus s->bits_sent += 2*16;
3349 1.1 paulus #endif
3350 1.1 paulus }
3351 1.1 paulus #ifdef DEBUG_ZLIB
3352 1.1 paulus s->bits_sent += (ulg)len<<3;
3353 1.1 paulus #endif
3354 1.7 christos /* bundle up the put_byte(s, *buf++) calls */
3355 1.7 christos zmemcpy(&s->pending_buf[s->pending], buf, len);
3356 1.7 christos s->pending += len;
3357 1.1 paulus }
3358 1.7 christos /* --- trees.c */
3359 1.7 christos
3360 1.7 christos /* +++ inflate.c */
3361 1.17 fvdl
3362 1.7 christos /* inflate.c -- zlib interface to inflate modules
3363 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3364 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3365 1.7 christos */
3366 1.1 paulus
3367 1.7 christos /* #include "zutil.h" */
3368 1.1 paulus
3369 1.7 christos /* +++ infblock.h */
3370 1.17 fvdl
3371 1.1 paulus /* infblock.h -- header to use infblock.c
3372 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3373 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3374 1.1 paulus */
3375 1.1 paulus
3376 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3377 1.1 paulus part of the implementation of the compression library and is
3378 1.1 paulus subject to change. Applications should only use zlib.h.
3379 1.1 paulus */
3380 1.1 paulus
3381 1.1 paulus struct inflate_blocks_state;
3382 1.1 paulus typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3383 1.1 paulus
3384 1.17 fvdl extern inflate_blocks_statef * inflate_blocks_new __P((
3385 1.7 christos z_streamp z,
3386 1.1 paulus check_func c, /* check function */
3387 1.1 paulus uInt w)); /* window size */
3388 1.1 paulus
3389 1.17 fvdl extern int inflate_blocks __P((
3390 1.1 paulus inflate_blocks_statef *,
3391 1.7 christos z_streamp ,
3392 1.1 paulus int)); /* initial return code */
3393 1.1 paulus
3394 1.17 fvdl extern void inflate_blocks_reset __P((
3395 1.1 paulus inflate_blocks_statef *,
3396 1.7 christos z_streamp ,
3397 1.1 paulus uLongf *)); /* check value on output */
3398 1.1 paulus
3399 1.17 fvdl extern int inflate_blocks_free __P((
3400 1.1 paulus inflate_blocks_statef *,
3401 1.17 fvdl z_streamp));
3402 1.1 paulus
3403 1.17 fvdl extern void inflate_set_dictionary __P((
3404 1.7 christos inflate_blocks_statef *s,
3405 1.7 christos const Bytef *d, /* dictionary */
3406 1.7 christos uInt n)); /* dictionary length */
3407 1.7 christos
3408 1.17 fvdl extern int inflate_blocks_sync_point __P((
3409 1.17 fvdl inflate_blocks_statef *s));
3410 1.17 fvdl extern int inflate_addhistory __P((
3411 1.1 paulus inflate_blocks_statef *,
3412 1.7 christos z_streamp));
3413 1.1 paulus
3414 1.17 fvdl extern int inflate_packet_flush __P((
3415 1.1 paulus inflate_blocks_statef *));
3416 1.17 fvdl
3417 1.7 christos /* --- infblock.h */
3418 1.1 paulus
3419 1.7 christos #ifndef NO_DUMMY_DECL
3420 1.7 christos struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3421 1.1 paulus #endif
3422 1.1 paulus
3423 1.17 fvdl typedef enum {
3424 1.1 paulus METHOD, /* waiting for method byte */
3425 1.1 paulus FLAG, /* waiting for flag byte */
3426 1.7 christos DICT4, /* four dictionary check bytes to go */
3427 1.7 christos DICT3, /* three dictionary check bytes to go */
3428 1.7 christos DICT2, /* two dictionary check bytes to go */
3429 1.7 christos DICT1, /* one dictionary check byte to go */
3430 1.7 christos DICT0, /* waiting for inflateSetDictionary */
3431 1.1 paulus BLOCKS, /* decompressing blocks */
3432 1.1 paulus CHECK4, /* four check bytes to go */
3433 1.1 paulus CHECK3, /* three check bytes to go */
3434 1.1 paulus CHECK2, /* two check bytes to go */
3435 1.1 paulus CHECK1, /* one check byte to go */
3436 1.1 paulus DONE, /* finished check, done */
3437 1.1 paulus BAD} /* got an error--stay here */
3438 1.17 fvdl inflate_mode;
3439 1.17 fvdl
3440 1.17 fvdl /* inflate private state */
3441 1.17 fvdl struct internal_state {
3442 1.17 fvdl
3443 1.17 fvdl /* mode */
3444 1.17 fvdl inflate_mode mode; /* current inflate mode */
3445 1.1 paulus
3446 1.1 paulus /* mode dependent information */
3447 1.1 paulus union {
3448 1.1 paulus uInt method; /* if FLAGS, method byte */
3449 1.1 paulus struct {
3450 1.1 paulus uLong was; /* computed check value */
3451 1.1 paulus uLong need; /* stream check value */
3452 1.1 paulus } check; /* if CHECK, check values to compare */
3453 1.1 paulus uInt marker; /* if BAD, inflateSync's marker bytes count */
3454 1.1 paulus } sub; /* submode */
3455 1.1 paulus
3456 1.1 paulus /* mode independent information */
3457 1.1 paulus int nowrap; /* flag for no wrapper */
3458 1.1 paulus uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3459 1.20 perry inflate_blocks_statef
3460 1.1 paulus *blocks; /* current inflate_blocks state */
3461 1.1 paulus
3462 1.1 paulus };
3463 1.1 paulus
3464 1.1 paulus
3465 1.17 fvdl int ZEXPORT inflateReset(z)
3466 1.7 christos z_streamp z;
3467 1.1 paulus {
3468 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3469 1.1 paulus return Z_STREAM_ERROR;
3470 1.1 paulus z->total_in = z->total_out = 0;
3471 1.1 paulus z->msg = Z_NULL;
3472 1.1 paulus z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3473 1.17 fvdl inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3474 1.17 fvdl Tracev((stderr, "inflate: reset\n"));
3475 1.1 paulus return Z_OK;
3476 1.1 paulus }
3477 1.1 paulus
3478 1.1 paulus
3479 1.17 fvdl int ZEXPORT inflateEnd(z)
3480 1.7 christos z_streamp z;
3481 1.1 paulus {
3482 1.1 paulus if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3483 1.1 paulus return Z_STREAM_ERROR;
3484 1.1 paulus if (z->state->blocks != Z_NULL)
3485 1.17 fvdl inflate_blocks_free(z->state->blocks, z);
3486 1.7 christos ZFREE(z, z->state);
3487 1.1 paulus z->state = Z_NULL;
3488 1.17 fvdl Tracev((stderr, "inflate: end\n"));
3489 1.1 paulus return Z_OK;
3490 1.1 paulus }
3491 1.1 paulus
3492 1.1 paulus
3493 1.21 christos int ZEXPORT inflateInit2_(z, w, vers, stream_size)
3494 1.7 christos z_streamp z;
3495 1.1 paulus int w;
3496 1.21 christos const char *vers;
3497 1.7 christos int stream_size;
3498 1.1 paulus {
3499 1.21 christos if (vers == Z_NULL || vers[0] != ZLIB_VERSION[0] ||
3500 1.7 christos stream_size != sizeof(z_stream))
3501 1.7 christos return Z_VERSION_ERROR;
3502 1.7 christos
3503 1.1 paulus /* initialize state */
3504 1.1 paulus if (z == Z_NULL)
3505 1.1 paulus return Z_STREAM_ERROR;
3506 1.7 christos z->msg = Z_NULL;
3507 1.7 christos #ifndef NO_ZCFUNCS
3508 1.7 christos if (z->zalloc == Z_NULL)
3509 1.7 christos {
3510 1.7 christos z->zalloc = zcalloc;
3511 1.7 christos z->opaque = (voidpf)0;
3512 1.7 christos }
3513 1.7 christos if (z->zfree == Z_NULL) z->zfree = zcfree;
3514 1.7 christos #endif
3515 1.1 paulus if ((z->state = (struct internal_state FAR *)
3516 1.7 christos ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3517 1.1 paulus return Z_MEM_ERROR;
3518 1.1 paulus z->state->blocks = Z_NULL;
3519 1.1 paulus
3520 1.1 paulus /* handle undocumented nowrap option (no zlib header or check) */
3521 1.1 paulus z->state->nowrap = 0;
3522 1.1 paulus if (w < 0)
3523 1.1 paulus {
3524 1.1 paulus w = - w;
3525 1.1 paulus z->state->nowrap = 1;
3526 1.1 paulus }
3527 1.1 paulus
3528 1.1 paulus /* set window size */
3529 1.1 paulus if (w < 8 || w > 15)
3530 1.1 paulus {
3531 1.1 paulus inflateEnd(z);
3532 1.1 paulus return Z_STREAM_ERROR;
3533 1.1 paulus }
3534 1.1 paulus z->state->wbits = (uInt)w;
3535 1.1 paulus
3536 1.1 paulus /* create inflate_blocks state */
3537 1.1 paulus if ((z->state->blocks =
3538 1.7 christos inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3539 1.1 paulus == Z_NULL)
3540 1.1 paulus {
3541 1.1 paulus inflateEnd(z);
3542 1.1 paulus return Z_MEM_ERROR;
3543 1.1 paulus }
3544 1.17 fvdl Tracev((stderr, "inflate: allocated\n"));
3545 1.1 paulus
3546 1.1 paulus /* reset state */
3547 1.1 paulus inflateReset(z);
3548 1.1 paulus return Z_OK;
3549 1.1 paulus }
3550 1.1 paulus
3551 1.1 paulus
3552 1.19 kristerw #if 0
3553 1.21 christos int ZEXPORT inflateInit_(z, vers, stream_size)
3554 1.7 christos z_streamp z;
3555 1.21 christos const char *vers;
3556 1.7 christos int stream_size;
3557 1.1 paulus {
3558 1.21 christos return inflateInit2_(z, DEF_WBITS, vers, stream_size);
3559 1.1 paulus }
3560 1.19 kristerw #endif
3561 1.1 paulus
3562 1.1 paulus
3563 1.1 paulus #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3564 1.1 paulus #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3565 1.1 paulus
3566 1.17 fvdl int ZEXPORT inflate(z, f)
3567 1.7 christos z_streamp z;
3568 1.1 paulus int f;
3569 1.1 paulus {
3570 1.17 fvdl int r, r2;
3571 1.1 paulus uInt b;
3572 1.1 paulus
3573 1.17 fvdl if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3574 1.1 paulus return Z_STREAM_ERROR;
3575 1.17 fvdl r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
3576 1.1 paulus r = Z_BUF_ERROR;
3577 1.1 paulus while (1) switch (z->state->mode)
3578 1.1 paulus {
3579 1.1 paulus case METHOD:
3580 1.1 paulus NEEDBYTE
3581 1.7 christos if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3582 1.1 paulus {
3583 1.1 paulus z->state->mode = BAD;
3584 1.21 christos z->msg = "unknown compression method";
3585 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3586 1.1 paulus break;
3587 1.1 paulus }
3588 1.1 paulus if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3589 1.1 paulus {
3590 1.1 paulus z->state->mode = BAD;
3591 1.21 christos z->msg = "invalid window size";
3592 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3593 1.1 paulus break;
3594 1.1 paulus }
3595 1.1 paulus z->state->mode = FLAG;
3596 1.1 paulus case FLAG:
3597 1.1 paulus NEEDBYTE
3598 1.7 christos b = NEXTBYTE;
3599 1.7 christos if (((z->state->sub.method << 8) + b) % 31)
3600 1.1 paulus {
3601 1.1 paulus z->state->mode = BAD;
3602 1.21 christos z->msg = "incorrect header check";
3603 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3604 1.1 paulus break;
3605 1.1 paulus }
3606 1.17 fvdl Tracev((stderr, "inflate: zlib header ok\n"));
3607 1.7 christos if (!(b & PRESET_DICT))
3608 1.1 paulus {
3609 1.7 christos z->state->mode = BLOCKS;
3610 1.17 fvdl break;
3611 1.1 paulus }
3612 1.7 christos z->state->mode = DICT4;
3613 1.7 christos case DICT4:
3614 1.7 christos NEEDBYTE
3615 1.7 christos z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3616 1.7 christos z->state->mode = DICT3;
3617 1.7 christos case DICT3:
3618 1.7 christos NEEDBYTE
3619 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3620 1.7 christos z->state->mode = DICT2;
3621 1.7 christos case DICT2:
3622 1.7 christos NEEDBYTE
3623 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3624 1.7 christos z->state->mode = DICT1;
3625 1.7 christos case DICT1:
3626 1.7 christos NEEDBYTE
3627 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE;
3628 1.7 christos z->adler = z->state->sub.check.need;
3629 1.7 christos z->state->mode = DICT0;
3630 1.7 christos return Z_NEED_DICT;
3631 1.7 christos case DICT0:
3632 1.7 christos z->state->mode = BAD;
3633 1.21 christos z->msg = "need dictionary";
3634 1.7 christos z->state->sub.marker = 0; /* can try inflateSync */
3635 1.7 christos return Z_STREAM_ERROR;
3636 1.1 paulus case BLOCKS:
3637 1.1 paulus r = inflate_blocks(z->state->blocks, z, r);
3638 1.1 paulus if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3639 1.17 fvdl r = inflate_packet_flush(z->state->blocks);
3640 1.1 paulus if (r == Z_DATA_ERROR)
3641 1.1 paulus {
3642 1.1 paulus z->state->mode = BAD;
3643 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3644 1.1 paulus break;
3645 1.1 paulus }
3646 1.17 fvdl if (r == Z_OK)
3647 1.17 fvdl r = r2;
3648 1.1 paulus if (r != Z_STREAM_END)
3649 1.1 paulus return r;
3650 1.17 fvdl r = r2;
3651 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3652 1.1 paulus if (z->state->nowrap)
3653 1.1 paulus {
3654 1.1 paulus z->state->mode = DONE;
3655 1.1 paulus break;
3656 1.1 paulus }
3657 1.1 paulus z->state->mode = CHECK4;
3658 1.1 paulus case CHECK4:
3659 1.1 paulus NEEDBYTE
3660 1.1 paulus z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3661 1.1 paulus z->state->mode = CHECK3;
3662 1.1 paulus case CHECK3:
3663 1.1 paulus NEEDBYTE
3664 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3665 1.1 paulus z->state->mode = CHECK2;
3666 1.1 paulus case CHECK2:
3667 1.1 paulus NEEDBYTE
3668 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3669 1.1 paulus z->state->mode = CHECK1;
3670 1.1 paulus case CHECK1:
3671 1.1 paulus NEEDBYTE
3672 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE;
3673 1.1 paulus
3674 1.1 paulus if (z->state->sub.check.was != z->state->sub.check.need)
3675 1.1 paulus {
3676 1.1 paulus z->state->mode = BAD;
3677 1.21 christos z->msg = "incorrect data check";
3678 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3679 1.1 paulus break;
3680 1.1 paulus }
3681 1.17 fvdl Tracev((stderr, "inflate: zlib check ok\n"));
3682 1.1 paulus z->state->mode = DONE;
3683 1.1 paulus case DONE:
3684 1.1 paulus return Z_STREAM_END;
3685 1.1 paulus case BAD:
3686 1.1 paulus return Z_DATA_ERROR;
3687 1.1 paulus default:
3688 1.1 paulus return Z_STREAM_ERROR;
3689 1.1 paulus }
3690 1.1 paulus empty:
3691 1.1 paulus if (f != Z_PACKET_FLUSH)
3692 1.1 paulus return r;
3693 1.1 paulus z->state->mode = BAD;
3694 1.21 christos z->msg = "need more for packet flush";
3695 1.17 fvdl z->state->sub.marker = 0;
3696 1.1 paulus return Z_DATA_ERROR;
3697 1.1 paulus }
3698 1.1 paulus
3699 1.7 christos
3700 1.19 kristerw #if 0
3701 1.17 fvdl int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
3702 1.7 christos z_streamp z;
3703 1.7 christos const Bytef *dictionary;
3704 1.7 christos uInt dictLength;
3705 1.7 christos {
3706 1.7 christos uInt length = dictLength;
3707 1.7 christos
3708 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3709 1.7 christos return Z_STREAM_ERROR;
3710 1.7 christos
3711 1.7 christos if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3712 1.7 christos z->adler = 1L;
3713 1.7 christos
3714 1.7 christos if (length >= ((uInt)1<<z->state->wbits))
3715 1.7 christos {
3716 1.7 christos length = (1<<z->state->wbits)-1;
3717 1.7 christos dictionary += dictLength - length;
3718 1.7 christos }
3719 1.7 christos inflate_set_dictionary(z->state->blocks, dictionary, length);
3720 1.7 christos z->state->mode = BLOCKS;
3721 1.7 christos return Z_OK;
3722 1.7 christos }
3723 1.19 kristerw #endif
3724 1.7 christos
3725 1.1 paulus /*
3726 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
3727 1.1 paulus * without performing any output. The output buffer must be "caught up";
3728 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
3729 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
3730 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
3731 1.1 paulus * will have been updated if need be.
3732 1.1 paulus */
3733 1.1 paulus
3734 1.1 paulus int inflateIncomp(z)
3735 1.1 paulus z_stream *z;
3736 1.1 paulus {
3737 1.1 paulus if (z->state->mode != BLOCKS)
3738 1.1 paulus return Z_DATA_ERROR;
3739 1.1 paulus return inflate_addhistory(z->state->blocks, z);
3740 1.1 paulus }
3741 1.1 paulus
3742 1.19 kristerw #if 0
3743 1.17 fvdl int ZEXPORT inflateSync(z)
3744 1.7 christos z_streamp z;
3745 1.1 paulus {
3746 1.1 paulus uInt n; /* number of bytes to look at */
3747 1.1 paulus Bytef *p; /* pointer to bytes */
3748 1.1 paulus uInt m; /* number of marker bytes found in a row */
3749 1.1 paulus uLong r, w; /* temporaries to save total_in and total_out */
3750 1.1 paulus
3751 1.1 paulus /* set up */
3752 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3753 1.1 paulus return Z_STREAM_ERROR;
3754 1.1 paulus if (z->state->mode != BAD)
3755 1.1 paulus {
3756 1.1 paulus z->state->mode = BAD;
3757 1.1 paulus z->state->sub.marker = 0;
3758 1.1 paulus }
3759 1.1 paulus if ((n = z->avail_in) == 0)
3760 1.1 paulus return Z_BUF_ERROR;
3761 1.1 paulus p = z->next_in;
3762 1.1 paulus m = z->state->sub.marker;
3763 1.1 paulus
3764 1.1 paulus /* search */
3765 1.1 paulus while (n && m < 4)
3766 1.1 paulus {
3767 1.17 fvdl static const Byte mark[4] = {0, 0, 0xff, 0xff};
3768 1.17 fvdl if (*p == mark[m])
3769 1.1 paulus m++;
3770 1.1 paulus else if (*p)
3771 1.1 paulus m = 0;
3772 1.1 paulus else
3773 1.1 paulus m = 4 - m;
3774 1.1 paulus p++, n--;
3775 1.1 paulus }
3776 1.1 paulus
3777 1.1 paulus /* restore */
3778 1.1 paulus z->total_in += p - z->next_in;
3779 1.1 paulus z->next_in = p;
3780 1.1 paulus z->avail_in = n;
3781 1.1 paulus z->state->sub.marker = m;
3782 1.1 paulus
3783 1.1 paulus /* return no joy or set up to restart on a new block */
3784 1.1 paulus if (m != 4)
3785 1.1 paulus return Z_DATA_ERROR;
3786 1.1 paulus r = z->total_in; w = z->total_out;
3787 1.1 paulus inflateReset(z);
3788 1.1 paulus z->total_in = r; z->total_out = w;
3789 1.1 paulus z->state->mode = BLOCKS;
3790 1.1 paulus return Z_OK;
3791 1.1 paulus }
3792 1.19 kristerw #endif
3793 1.1 paulus
3794 1.17 fvdl
3795 1.17 fvdl /* Returns true if inflate is currently at the end of a block generated
3796 1.17 fvdl * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
3797 1.17 fvdl * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
3798 1.17 fvdl * but removes the length bytes of the resulting empty stored block. When
3799 1.17 fvdl * decompressing, PPP checks that at the end of input packet, inflate is
3800 1.17 fvdl * waiting for these length bytes.
3801 1.17 fvdl */
3802 1.19 kristerw #if 0
3803 1.17 fvdl int ZEXPORT inflateSyncPoint(z)
3804 1.17 fvdl z_streamp z;
3805 1.17 fvdl {
3806 1.17 fvdl if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
3807 1.17 fvdl return Z_STREAM_ERROR;
3808 1.17 fvdl return inflate_blocks_sync_point(z->state->blocks);
3809 1.17 fvdl }
3810 1.19 kristerw #endif
3811 1.1 paulus #undef NEEDBYTE
3812 1.1 paulus #undef NEXTBYTE
3813 1.7 christos /* --- inflate.c */
3814 1.7 christos
3815 1.7 christos /* +++ infblock.c */
3816 1.17 fvdl
3817 1.7 christos /* infblock.c -- interpret and process block types to last block
3818 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3819 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3820 1.7 christos */
3821 1.7 christos
3822 1.7 christos /* #include "zutil.h" */
3823 1.7 christos /* #include "infblock.h" */
3824 1.7 christos
3825 1.7 christos /* +++ inftrees.h */
3826 1.17 fvdl
3827 1.7 christos /* inftrees.h -- header to use inftrees.c
3828 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3829 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3830 1.7 christos */
3831 1.7 christos
3832 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3833 1.7 christos part of the implementation of the compression library and is
3834 1.7 christos subject to change. Applications should only use zlib.h.
3835 1.7 christos */
3836 1.7 christos
3837 1.7 christos /* Huffman code lookup table entry--this entry is four bytes for machines
3838 1.7 christos that have 16-bit pointers (e.g. PC's in the small or medium model). */
3839 1.7 christos
3840 1.7 christos typedef struct inflate_huft_s FAR inflate_huft;
3841 1.7 christos
3842 1.7 christos struct inflate_huft_s {
3843 1.7 christos union {
3844 1.7 christos struct {
3845 1.7 christos Byte Exop; /* number of extra bits or operation */
3846 1.7 christos Byte Bits; /* number of bits in this code or subcode */
3847 1.7 christos } what;
3848 1.17 fvdl uInt pad; /* pad structure to a power of 2 (4 bytes for */
3849 1.17 fvdl } word; /* 16-bit, 8 bytes for 32-bit int's) */
3850 1.17 fvdl uInt base; /* literal, length base, distance base,
3851 1.17 fvdl or table offset */
3852 1.7 christos };
3853 1.7 christos
3854 1.17 fvdl /* Maximum size of dynamic tree. The maximum found in a long but non-
3855 1.17 fvdl exhaustive search was 1004 huft structures (850 for length/literals
3856 1.17 fvdl and 154 for distances, the latter actually the result of an
3857 1.17 fvdl exhaustive search). The actual maximum is not known, but the
3858 1.17 fvdl value below is more than safe. */
3859 1.17 fvdl #define MANY 1440
3860 1.7 christos
3861 1.17 fvdl extern int inflate_trees_bits __P((
3862 1.7 christos uIntf *, /* 19 code lengths */
3863 1.7 christos uIntf *, /* bits tree desired/actual depth */
3864 1.7 christos inflate_huft * FAR *, /* bits tree result */
3865 1.17 fvdl inflate_huft *, /* space for trees */
3866 1.17 fvdl z_streamp)); /* for messages */
3867 1.7 christos
3868 1.17 fvdl extern int inflate_trees_dynamic __P((
3869 1.7 christos uInt, /* number of literal/length codes */
3870 1.7 christos uInt, /* number of distance codes */
3871 1.7 christos uIntf *, /* that many (total) code lengths */
3872 1.7 christos uIntf *, /* literal desired/actual bit depth */
3873 1.7 christos uIntf *, /* distance desired/actual bit depth */
3874 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3875 1.7 christos inflate_huft * FAR *, /* distance tree result */
3876 1.17 fvdl inflate_huft *, /* space for trees */
3877 1.17 fvdl z_streamp)); /* for messages */
3878 1.7 christos
3879 1.17 fvdl extern int inflate_trees_fixed __P((
3880 1.7 christos uIntf *, /* literal desired/actual bit depth */
3881 1.7 christos uIntf *, /* distance desired/actual bit depth */
3882 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3883 1.17 fvdl inflate_huft * FAR *, /* distance tree result */
3884 1.17 fvdl z_streamp)); /* for memory allocation */
3885 1.7 christos /* --- inftrees.h */
3886 1.7 christos
3887 1.7 christos /* +++ infcodes.h */
3888 1.17 fvdl
3889 1.7 christos /* infcodes.h -- header to use infcodes.c
3890 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3891 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3892 1.7 christos */
3893 1.7 christos
3894 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3895 1.7 christos part of the implementation of the compression library and is
3896 1.7 christos subject to change. Applications should only use zlib.h.
3897 1.7 christos */
3898 1.7 christos
3899 1.7 christos struct inflate_codes_state;
3900 1.7 christos typedef struct inflate_codes_state FAR inflate_codes_statef;
3901 1.7 christos
3902 1.17 fvdl extern inflate_codes_statef *inflate_codes_new __P((
3903 1.7 christos uInt, uInt,
3904 1.7 christos inflate_huft *, inflate_huft *,
3905 1.7 christos z_streamp ));
3906 1.7 christos
3907 1.17 fvdl extern int inflate_codes __P((
3908 1.7 christos inflate_blocks_statef *,
3909 1.7 christos z_streamp ,
3910 1.7 christos int));
3911 1.7 christos
3912 1.17 fvdl extern void inflate_codes_free __P((
3913 1.7 christos inflate_codes_statef *,
3914 1.7 christos z_streamp ));
3915 1.1 paulus
3916 1.7 christos /* --- infcodes.h */
3917 1.7 christos
3918 1.7 christos /* +++ infutil.h */
3919 1.17 fvdl
3920 1.1 paulus /* infutil.h -- types and macros common to blocks and codes
3921 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
3922 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
3923 1.1 paulus */
3924 1.1 paulus
3925 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3926 1.1 paulus part of the implementation of the compression library and is
3927 1.1 paulus subject to change. Applications should only use zlib.h.
3928 1.1 paulus */
3929 1.1 paulus
3930 1.7 christos #ifndef _INFUTIL_H
3931 1.7 christos #define _INFUTIL_H
3932 1.1 paulus
3933 1.7 christos typedef enum {
3934 1.1 paulus TYPE, /* get type bits (3, including end bit) */
3935 1.1 paulus LENS, /* get lengths for stored */
3936 1.1 paulus STORED, /* processing stored block */
3937 1.1 paulus TABLE, /* get table lengths */
3938 1.1 paulus BTREE, /* get bit lengths tree for a dynamic block */
3939 1.1 paulus DTREE, /* get length, distance trees for a dynamic block */
3940 1.1 paulus CODES, /* processing fixed or dynamic block */
3941 1.1 paulus DRY, /* output remaining window bytes */
3942 1.7 christos DONEB, /* finished last block, done */
3943 1.7 christos BADB} /* got a data error--stuck here */
3944 1.7 christos inflate_block_mode;
3945 1.7 christos
3946 1.7 christos /* inflate blocks semi-private state */
3947 1.7 christos struct inflate_blocks_state {
3948 1.7 christos
3949 1.7 christos /* mode */
3950 1.7 christos inflate_block_mode mode; /* current inflate_block mode */
3951 1.1 paulus
3952 1.1 paulus /* mode dependent information */
3953 1.1 paulus union {
3954 1.1 paulus uInt left; /* if STORED, bytes left to copy */
3955 1.1 paulus struct {
3956 1.1 paulus uInt table; /* table lengths (14 bits) */
3957 1.1 paulus uInt index; /* index into blens (or border) */
3958 1.1 paulus uIntf *blens; /* bit lengths of codes */
3959 1.1 paulus uInt bb; /* bit length tree depth */
3960 1.1 paulus inflate_huft *tb; /* bit length decoding tree */
3961 1.1 paulus } trees; /* if DTREE, decoding info for trees */
3962 1.1 paulus struct {
3963 1.20 perry inflate_codes_statef
3964 1.1 paulus *codes;
3965 1.1 paulus } decode; /* if CODES, current state */
3966 1.1 paulus } sub; /* submode */
3967 1.1 paulus uInt last; /* true if this block is the last block */
3968 1.1 paulus
3969 1.1 paulus /* mode independent information */
3970 1.1 paulus uInt bitk; /* bits in bit buffer */
3971 1.1 paulus uLong bitb; /* bit buffer */
3972 1.17 fvdl inflate_huft *hufts; /* single malloc for tree space */
3973 1.1 paulus Bytef *window; /* sliding window */
3974 1.1 paulus Bytef *end; /* one byte after sliding window */
3975 1.1 paulus Bytef *read; /* window read pointer */
3976 1.1 paulus Bytef *write; /* window write pointer */
3977 1.1 paulus check_func checkfn; /* check function */
3978 1.1 paulus uLong check; /* check on output */
3979 1.1 paulus
3980 1.1 paulus };
3981 1.1 paulus
3982 1.1 paulus
3983 1.1 paulus /* defines for inflate input/output */
3984 1.1 paulus /* update pointers and return */
3985 1.1 paulus #define UPDBITS {s->bitb=b;s->bitk=k;}
3986 1.1 paulus #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3987 1.1 paulus #define UPDOUT {s->write=q;}
3988 1.1 paulus #define UPDATE {UPDBITS UPDIN UPDOUT}
3989 1.1 paulus #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3990 1.1 paulus /* get bytes and bits */
3991 1.1 paulus #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3992 1.1 paulus #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3993 1.1 paulus #define NEXTBYTE (n--,*p++)
3994 1.1 paulus #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3995 1.1 paulus #define DUMPBITS(j) {b>>=(j);k-=(j);}
3996 1.1 paulus /* output bytes */
3997 1.7 christos #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3998 1.7 christos #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3999 1.17 fvdl #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
4000 1.1 paulus #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
4001 1.17 fvdl #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
4002 1.1 paulus #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
4003 1.1 paulus /* load local pointers */
4004 1.1 paulus #define LOAD {LOADIN LOADOUT}
4005 1.1 paulus
4006 1.7 christos /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
4007 1.17 fvdl extern uInt inflate_mask[17];
4008 1.1 paulus
4009 1.1 paulus /* copy as much as possible from the sliding window to the output area */
4010 1.17 fvdl extern int inflate_flush __P((
4011 1.1 paulus inflate_blocks_statef *,
4012 1.7 christos z_streamp ,
4013 1.1 paulus int));
4014 1.1 paulus
4015 1.7 christos #ifndef NO_DUMMY_DECL
4016 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4017 1.7 christos #endif
4018 1.1 paulus
4019 1.7 christos #endif
4020 1.7 christos /* --- infutil.h */
4021 1.1 paulus
4022 1.7 christos #ifndef NO_DUMMY_DECL
4023 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4024 1.7 christos #endif
4025 1.1 paulus
4026 1.17 fvdl /* simplify the use of the inflate_huft type with some defines */
4027 1.17 fvdl #define exop word.what.Exop
4028 1.17 fvdl #define bits word.what.Bits
4029 1.17 fvdl
4030 1.1 paulus /* Table for deflate from PKZIP's appnote.txt. */
4031 1.7 christos local const uInt border[] = { /* Order of the bit length code lengths */
4032 1.1 paulus 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
4033 1.1 paulus
4034 1.1 paulus /*
4035 1.1 paulus Notes beyond the 1.93a appnote.txt:
4036 1.1 paulus
4037 1.1 paulus 1. Distance pointers never point before the beginning of the output
4038 1.1 paulus stream.
4039 1.1 paulus 2. Distance pointers can point back across blocks, up to 32k away.
4040 1.1 paulus 3. There is an implied maximum of 7 bits for the bit length table and
4041 1.1 paulus 15 bits for the actual data.
4042 1.1 paulus 4. If only one code exists, then it is encoded using one bit. (Zero
4043 1.1 paulus would be more efficient, but perhaps a little confusing.) If two
4044 1.1 paulus codes exist, they are coded using one bit each (0 and 1).
4045 1.1 paulus 5. There is no way of sending zero distance codes--a dummy must be
4046 1.1 paulus sent if there are none. (History: a pre 2.0 version of PKZIP would
4047 1.1 paulus store blocks with no distance codes, but this was discovered to be
4048 1.1 paulus too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
4049 1.1 paulus zero distance codes, which is sent as one code of zero bits in
4050 1.1 paulus length.
4051 1.1 paulus 6. There are up to 286 literal/length codes. Code 256 represents the
4052 1.1 paulus end-of-block. Note however that the static length tree defines
4053 1.1 paulus 288 codes just to fill out the Huffman codes. Codes 286 and 287
4054 1.1 paulus cannot be used though, since there is no length base or extra bits
4055 1.1 paulus defined for them. Similarily, there are up to 30 distance codes.
4056 1.1 paulus However, static trees define 32 codes (all 5 bits) to fill out the
4057 1.1 paulus Huffman codes, but the last two had better not show up in the data.
4058 1.1 paulus 7. Unzip can check dynamic Huffman blocks for complete code sets.
4059 1.1 paulus The exception is that a single code would not be complete (see #4).
4060 1.1 paulus 8. The five bits following the block type is really the number of
4061 1.1 paulus literal codes sent minus 257.
4062 1.1 paulus 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4063 1.1 paulus (1+6+6). Therefore, to output three times the length, you output
4064 1.1 paulus three codes (1+1+1), whereas to output four times the same length,
4065 1.1 paulus you only need two codes (1+3). Hmm.
4066 1.1 paulus 10. In the tree reconstruction algorithm, Code = Code + Increment
4067 1.1 paulus only if BitLength(i) is not zero. (Pretty obvious.)
4068 1.1 paulus 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
4069 1.1 paulus 12. Note: length code 284 can represent 227-258, but length code 285
4070 1.1 paulus really is 258. The last length deserves its own, short code
4071 1.1 paulus since it gets used a lot in very redundant files. The length
4072 1.1 paulus 258 is special since 258 - 3 (the min match length) is 255.
4073 1.1 paulus 13. The literal/length and distance code bit lengths are read as a
4074 1.1 paulus single stream of lengths. It is possible (and advantageous) for
4075 1.1 paulus a repeat code (16, 17, or 18) to go across the boundary between
4076 1.1 paulus the two sets of lengths.
4077 1.1 paulus */
4078 1.1 paulus
4079 1.1 paulus
4080 1.7 christos void inflate_blocks_reset(s, z, c)
4081 1.1 paulus inflate_blocks_statef *s;
4082 1.7 christos z_streamp z;
4083 1.1 paulus uLongf *c;
4084 1.1 paulus {
4085 1.17 fvdl if (c != Z_NULL)
4086 1.1 paulus *c = s->check;
4087 1.1 paulus if (s->mode == BTREE || s->mode == DTREE)
4088 1.7 christos ZFREE(z, s->sub.trees.blens);
4089 1.1 paulus if (s->mode == CODES)
4090 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
4091 1.1 paulus s->mode = TYPE;
4092 1.1 paulus s->bitk = 0;
4093 1.1 paulus s->bitb = 0;
4094 1.1 paulus s->read = s->write = s->window;
4095 1.1 paulus if (s->checkfn != Z_NULL)
4096 1.17 fvdl z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
4097 1.17 fvdl Tracev((stderr, "inflate: blocks reset\n"));
4098 1.1 paulus }
4099 1.1 paulus
4100 1.1 paulus
4101 1.7 christos inflate_blocks_statef *inflate_blocks_new(z, c, w)
4102 1.7 christos z_streamp z;
4103 1.1 paulus check_func c;
4104 1.1 paulus uInt w;
4105 1.1 paulus {
4106 1.1 paulus inflate_blocks_statef *s;
4107 1.1 paulus
4108 1.7 christos if ((s = (inflate_blocks_statef *)ZALLOC
4109 1.1 paulus (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
4110 1.1 paulus return s;
4111 1.17 fvdl if ((s->hufts =
4112 1.17 fvdl (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
4113 1.17 fvdl {
4114 1.17 fvdl ZFREE(z, s);
4115 1.17 fvdl return Z_NULL;
4116 1.17 fvdl }
4117 1.7 christos if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4118 1.1 paulus {
4119 1.17 fvdl ZFREE(z, s->hufts);
4120 1.7 christos ZFREE(z, s);
4121 1.1 paulus return Z_NULL;
4122 1.1 paulus }
4123 1.1 paulus s->end = s->window + w;
4124 1.1 paulus s->checkfn = c;
4125 1.1 paulus s->mode = TYPE;
4126 1.17 fvdl Tracev((stderr, "inflate: blocks allocated\n"));
4127 1.17 fvdl inflate_blocks_reset(s, z, Z_NULL);
4128 1.1 paulus return s;
4129 1.1 paulus }
4130 1.1 paulus
4131 1.1 paulus
4132 1.7 christos int inflate_blocks(s, z, r)
4133 1.1 paulus inflate_blocks_statef *s;
4134 1.7 christos z_streamp z;
4135 1.1 paulus int r;
4136 1.1 paulus {
4137 1.1 paulus uInt t; /* temporary storage */
4138 1.1 paulus uLong b; /* bit buffer */
4139 1.1 paulus uInt k; /* bits in bit buffer */
4140 1.1 paulus Bytef *p; /* input data pointer */
4141 1.1 paulus uInt n; /* bytes available there */
4142 1.1 paulus Bytef *q; /* output window write pointer */
4143 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4144 1.1 paulus
4145 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
4146 1.1 paulus LOAD
4147 1.1 paulus
4148 1.1 paulus /* process input based on current state */
4149 1.1 paulus while (1) switch (s->mode)
4150 1.1 paulus {
4151 1.1 paulus case TYPE:
4152 1.1 paulus NEEDBITS(3)
4153 1.1 paulus t = (uInt)b & 7;
4154 1.1 paulus s->last = t & 1;
4155 1.1 paulus switch (t >> 1)
4156 1.1 paulus {
4157 1.1 paulus case 0: /* stored */
4158 1.17 fvdl Tracev((stderr, "inflate: stored block%s\n",
4159 1.1 paulus s->last ? " (last)" : ""));
4160 1.1 paulus DUMPBITS(3)
4161 1.1 paulus t = k & 7; /* go to byte boundary */
4162 1.1 paulus DUMPBITS(t)
4163 1.1 paulus s->mode = LENS; /* get length of stored block */
4164 1.1 paulus break;
4165 1.1 paulus case 1: /* fixed */
4166 1.17 fvdl Tracev((stderr, "inflate: fixed codes block%s\n",
4167 1.1 paulus s->last ? " (last)" : ""));
4168 1.1 paulus {
4169 1.1 paulus uInt bl, bd;
4170 1.1 paulus inflate_huft *tl, *td;
4171 1.1 paulus
4172 1.17 fvdl inflate_trees_fixed(&bl, &bd, &tl, &td, z);
4173 1.1 paulus s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
4174 1.1 paulus if (s->sub.decode.codes == Z_NULL)
4175 1.1 paulus {
4176 1.1 paulus r = Z_MEM_ERROR;
4177 1.1 paulus LEAVE
4178 1.1 paulus }
4179 1.1 paulus }
4180 1.1 paulus DUMPBITS(3)
4181 1.1 paulus s->mode = CODES;
4182 1.1 paulus break;
4183 1.1 paulus case 2: /* dynamic */
4184 1.17 fvdl Tracev((stderr, "inflate: dynamic codes block%s\n",
4185 1.1 paulus s->last ? " (last)" : ""));
4186 1.1 paulus DUMPBITS(3)
4187 1.1 paulus s->mode = TABLE;
4188 1.1 paulus break;
4189 1.1 paulus case 3: /* illegal */
4190 1.1 paulus DUMPBITS(3)
4191 1.1 paulus s->mode = BADB;
4192 1.21 christos z->msg = "invalid block type";
4193 1.1 paulus r = Z_DATA_ERROR;
4194 1.1 paulus LEAVE
4195 1.1 paulus }
4196 1.1 paulus break;
4197 1.1 paulus case LENS:
4198 1.1 paulus NEEDBITS(32)
4199 1.7 christos if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4200 1.1 paulus {
4201 1.1 paulus s->mode = BADB;
4202 1.21 christos z->msg = "invalid stored block lengths";
4203 1.1 paulus r = Z_DATA_ERROR;
4204 1.1 paulus LEAVE
4205 1.1 paulus }
4206 1.1 paulus s->sub.left = (uInt)b & 0xffff;
4207 1.1 paulus b = k = 0; /* dump bits */
4208 1.1 paulus Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
4209 1.7 christos s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4210 1.1 paulus break;
4211 1.1 paulus case STORED:
4212 1.1 paulus if (n == 0)
4213 1.1 paulus LEAVE
4214 1.1 paulus NEEDOUT
4215 1.1 paulus t = s->sub.left;
4216 1.1 paulus if (t > n) t = n;
4217 1.1 paulus if (t > m) t = m;
4218 1.1 paulus zmemcpy(q, p, t);
4219 1.1 paulus p += t; n -= t;
4220 1.1 paulus q += t; m -= t;
4221 1.1 paulus if ((s->sub.left -= t) != 0)
4222 1.1 paulus break;
4223 1.1 paulus Tracev((stderr, "inflate: stored end, %lu total out\n",
4224 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
4225 1.1 paulus (s->end - s->read) + (q - s->window))));
4226 1.1 paulus s->mode = s->last ? DRY : TYPE;
4227 1.1 paulus break;
4228 1.1 paulus case TABLE:
4229 1.1 paulus NEEDBITS(14)
4230 1.1 paulus s->sub.trees.table = t = (uInt)b & 0x3fff;
4231 1.1 paulus #ifndef PKZIP_BUG_WORKAROUND
4232 1.1 paulus if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4233 1.1 paulus {
4234 1.1 paulus s->mode = BADB;
4235 1.21 christos z->msg = "too many length or distance symbols";
4236 1.1 paulus r = Z_DATA_ERROR;
4237 1.1 paulus LEAVE
4238 1.1 paulus }
4239 1.1 paulus #endif
4240 1.1 paulus t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4241 1.1 paulus if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
4242 1.1 paulus {
4243 1.1 paulus r = Z_MEM_ERROR;
4244 1.1 paulus LEAVE
4245 1.1 paulus }
4246 1.1 paulus DUMPBITS(14)
4247 1.1 paulus s->sub.trees.index = 0;
4248 1.1 paulus Tracev((stderr, "inflate: table sizes ok\n"));
4249 1.1 paulus s->mode = BTREE;
4250 1.1 paulus case BTREE:
4251 1.1 paulus while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4252 1.1 paulus {
4253 1.1 paulus NEEDBITS(3)
4254 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
4255 1.1 paulus DUMPBITS(3)
4256 1.1 paulus }
4257 1.1 paulus while (s->sub.trees.index < 19)
4258 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
4259 1.1 paulus s->sub.trees.bb = 7;
4260 1.1 paulus t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4261 1.17 fvdl &s->sub.trees.tb, s->hufts, z);
4262 1.1 paulus if (t != Z_OK)
4263 1.1 paulus {
4264 1.1 paulus r = t;
4265 1.1 paulus if (r == Z_DATA_ERROR)
4266 1.17 fvdl {
4267 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4268 1.1 paulus s->mode = BADB;
4269 1.17 fvdl }
4270 1.1 paulus LEAVE
4271 1.1 paulus }
4272 1.1 paulus s->sub.trees.index = 0;
4273 1.1 paulus Tracev((stderr, "inflate: bits tree ok\n"));
4274 1.1 paulus s->mode = DTREE;
4275 1.1 paulus case DTREE:
4276 1.1 paulus while (t = s->sub.trees.table,
4277 1.1 paulus s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
4278 1.1 paulus {
4279 1.1 paulus inflate_huft *h;
4280 1.1 paulus uInt i, j, c;
4281 1.1 paulus
4282 1.1 paulus t = s->sub.trees.bb;
4283 1.1 paulus NEEDBITS(t)
4284 1.1 paulus h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4285 1.17 fvdl t = h->bits;
4286 1.17 fvdl c = h->base;
4287 1.1 paulus if (c < 16)
4288 1.1 paulus {
4289 1.1 paulus DUMPBITS(t)
4290 1.1 paulus s->sub.trees.blens[s->sub.trees.index++] = c;
4291 1.1 paulus }
4292 1.1 paulus else /* c == 16..18 */
4293 1.1 paulus {
4294 1.1 paulus i = c == 18 ? 7 : c - 14;
4295 1.1 paulus j = c == 18 ? 11 : 3;
4296 1.1 paulus NEEDBITS(t + i)
4297 1.1 paulus DUMPBITS(t)
4298 1.1 paulus j += (uInt)b & inflate_mask[i];
4299 1.1 paulus DUMPBITS(i)
4300 1.1 paulus i = s->sub.trees.index;
4301 1.1 paulus t = s->sub.trees.table;
4302 1.1 paulus if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
4303 1.1 paulus (c == 16 && i < 1))
4304 1.1 paulus {
4305 1.7 christos ZFREE(z, s->sub.trees.blens);
4306 1.1 paulus s->mode = BADB;
4307 1.21 christos z->msg = "invalid bit length repeat";
4308 1.1 paulus r = Z_DATA_ERROR;
4309 1.1 paulus LEAVE
4310 1.1 paulus }
4311 1.1 paulus c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4312 1.1 paulus do {
4313 1.1 paulus s->sub.trees.blens[i++] = c;
4314 1.1 paulus } while (--j);
4315 1.1 paulus s->sub.trees.index = i;
4316 1.1 paulus }
4317 1.1 paulus }
4318 1.1 paulus s->sub.trees.tb = Z_NULL;
4319 1.1 paulus {
4320 1.1 paulus uInt bl, bd;
4321 1.1 paulus inflate_huft *tl, *td;
4322 1.1 paulus inflate_codes_statef *c;
4323 1.1 paulus
4324 1.1 paulus bl = 9; /* must be <= 9 for lookahead assumptions */
4325 1.1 paulus bd = 6; /* must be <= 9 for lookahead assumptions */
4326 1.1 paulus t = s->sub.trees.table;
4327 1.1 paulus t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
4328 1.17 fvdl s->sub.trees.blens, &bl, &bd, &tl, &td,
4329 1.17 fvdl s->hufts, z);
4330 1.1 paulus if (t != Z_OK)
4331 1.1 paulus {
4332 1.1 paulus if (t == (uInt)Z_DATA_ERROR)
4333 1.17 fvdl {
4334 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4335 1.1 paulus s->mode = BADB;
4336 1.17 fvdl }
4337 1.1 paulus r = t;
4338 1.1 paulus LEAVE
4339 1.1 paulus }
4340 1.17 fvdl Tracev((stderr, "inflate: trees ok\n"));
4341 1.1 paulus if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
4342 1.1 paulus {
4343 1.1 paulus r = Z_MEM_ERROR;
4344 1.1 paulus LEAVE
4345 1.1 paulus }
4346 1.1 paulus s->sub.decode.codes = c;
4347 1.1 paulus }
4348 1.17 fvdl ZFREE(z, s->sub.trees.blens);
4349 1.1 paulus s->mode = CODES;
4350 1.1 paulus case CODES:
4351 1.1 paulus UPDATE
4352 1.1 paulus if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4353 1.1 paulus return inflate_flush(s, z, r);
4354 1.1 paulus r = Z_OK;
4355 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
4356 1.1 paulus LOAD
4357 1.1 paulus Tracev((stderr, "inflate: codes end, %lu total out\n",
4358 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
4359 1.1 paulus (s->end - s->read) + (q - s->window))));
4360 1.1 paulus if (!s->last)
4361 1.1 paulus {
4362 1.1 paulus s->mode = TYPE;
4363 1.1 paulus break;
4364 1.1 paulus }
4365 1.1 paulus s->mode = DRY;
4366 1.1 paulus case DRY:
4367 1.1 paulus FLUSH
4368 1.1 paulus if (s->read != s->write)
4369 1.1 paulus LEAVE
4370 1.1 paulus s->mode = DONEB;
4371 1.1 paulus case DONEB:
4372 1.1 paulus r = Z_STREAM_END;
4373 1.1 paulus LEAVE
4374 1.1 paulus case BADB:
4375 1.1 paulus r = Z_DATA_ERROR;
4376 1.1 paulus LEAVE
4377 1.1 paulus default:
4378 1.1 paulus r = Z_STREAM_ERROR;
4379 1.1 paulus LEAVE
4380 1.1 paulus }
4381 1.1 paulus }
4382 1.1 paulus
4383 1.1 paulus
4384 1.17 fvdl int inflate_blocks_free(s, z)
4385 1.1 paulus inflate_blocks_statef *s;
4386 1.7 christos z_streamp z;
4387 1.1 paulus {
4388 1.17 fvdl inflate_blocks_reset(s, z, Z_NULL);
4389 1.7 christos ZFREE(z, s->window);
4390 1.17 fvdl ZFREE(z, s->hufts);
4391 1.7 christos ZFREE(z, s);
4392 1.17 fvdl Tracev((stderr, "inflate: blocks freed\n"));
4393 1.1 paulus return Z_OK;
4394 1.1 paulus }
4395 1.1 paulus
4396 1.7 christos
4397 1.19 kristerw #if 0
4398 1.7 christos void inflate_set_dictionary(s, d, n)
4399 1.7 christos inflate_blocks_statef *s;
4400 1.7 christos const Bytef *d;
4401 1.7 christos uInt n;
4402 1.7 christos {
4403 1.17 fvdl zmemcpy(s->window, d, n);
4404 1.7 christos s->read = s->write = s->window + n;
4405 1.7 christos }
4406 1.19 kristerw #endif
4407 1.7 christos
4408 1.1 paulus /*
4409 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
4410 1.1 paulus * without performing any output. The output buffer must be "caught up";
4411 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
4412 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
4413 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
4414 1.1 paulus * will have been updated if need be.
4415 1.1 paulus */
4416 1.7 christos int inflate_addhistory(s, z)
4417 1.1 paulus inflate_blocks_statef *s;
4418 1.1 paulus z_stream *z;
4419 1.1 paulus {
4420 1.1 paulus uLong b; /* bit buffer */ /* NOT USED HERE */
4421 1.1 paulus uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4422 1.1 paulus uInt t; /* temporary storage */
4423 1.1 paulus Bytef *p; /* input data pointer */
4424 1.1 paulus uInt n; /* bytes available there */
4425 1.1 paulus Bytef *q; /* output window write pointer */
4426 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4427 1.1 paulus
4428 1.1 paulus if (s->read != s->write)
4429 1.1 paulus return Z_STREAM_ERROR;
4430 1.1 paulus if (s->mode != TYPE)
4431 1.1 paulus return Z_DATA_ERROR;
4432 1.1 paulus
4433 1.1 paulus /* we're ready to rock */
4434 1.1 paulus LOAD
4435 1.1 paulus /* while there is input ready, copy to output buffer, moving
4436 1.1 paulus * pointers as needed.
4437 1.1 paulus */
4438 1.1 paulus while (n) {
4439 1.1 paulus t = n; /* how many to do */
4440 1.1 paulus /* is there room until end of buffer? */
4441 1.1 paulus if (t > m) t = m;
4442 1.1 paulus /* update check information */
4443 1.1 paulus if (s->checkfn != Z_NULL)
4444 1.1 paulus s->check = (*s->checkfn)(s->check, q, t);
4445 1.1 paulus zmemcpy(q, p, t);
4446 1.1 paulus q += t;
4447 1.1 paulus p += t;
4448 1.1 paulus n -= t;
4449 1.1 paulus z->total_out += t;
4450 1.1 paulus s->read = q; /* drag read pointer forward */
4451 1.7 christos /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4452 1.1 paulus if (q == s->end) {
4453 1.1 paulus s->read = q = s->window;
4454 1.1 paulus m = WAVAIL;
4455 1.1 paulus }
4456 1.1 paulus }
4457 1.1 paulus UPDATE
4458 1.1 paulus return Z_OK;
4459 1.1 paulus }
4460 1.1 paulus
4461 1.1 paulus
4462 1.1 paulus /*
4463 1.1 paulus * At the end of a Deflate-compressed PPP packet, we expect to have seen
4464 1.1 paulus * a `stored' block type value but not the (zero) length bytes.
4465 1.1 paulus */
4466 1.7 christos int inflate_packet_flush(s)
4467 1.1 paulus inflate_blocks_statef *s;
4468 1.1 paulus {
4469 1.1 paulus if (s->mode != LENS)
4470 1.1 paulus return Z_DATA_ERROR;
4471 1.1 paulus s->mode = TYPE;
4472 1.1 paulus return Z_OK;
4473 1.1 paulus }
4474 1.17 fvdl
4475 1.17 fvdl /* Returns true if inflate is currently at the end of a block generated
4476 1.20 perry * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4477 1.17 fvdl * IN assertion: s != Z_NULL
4478 1.17 fvdl */
4479 1.19 kristerw #if 0
4480 1.17 fvdl int inflate_blocks_sync_point(s)
4481 1.17 fvdl inflate_blocks_statef *s;
4482 1.17 fvdl {
4483 1.17 fvdl return s->mode == LENS;
4484 1.17 fvdl }
4485 1.19 kristerw #endif
4486 1.7 christos /* --- infblock.c */
4487 1.1 paulus
4488 1.17 fvdl
4489 1.7 christos /* +++ inftrees.c */
4490 1.17 fvdl
4491 1.1 paulus /* inftrees.c -- generate Huffman trees for efficient decoding
4492 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
4493 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
4494 1.1 paulus */
4495 1.1 paulus
4496 1.7 christos /* #include "zutil.h" */
4497 1.7 christos /* #include "inftrees.h" */
4498 1.7 christos
4499 1.17 fvdl #if !defined(BUILDFIXED) && !defined(STDC)
4500 1.17 fvdl # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
4501 1.17 fvdl #endif
4502 1.17 fvdl
4503 1.17 fvdl const char inflate_copyright[] =
4504 1.17 fvdl " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
4505 1.7 christos /*
4506 1.7 christos If you use the zlib library in a product, an acknowledgment is welcome
4507 1.7 christos in the documentation of your product. If for some reason you cannot
4508 1.7 christos include such an acknowledgment, I would appreciate that you keep this
4509 1.7 christos copyright string in the executable of your product.
4510 1.7 christos */
4511 1.7 christos
4512 1.7 christos #ifndef NO_DUMMY_DECL
4513 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4514 1.7 christos #endif
4515 1.7 christos
4516 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4517 1.1 paulus #define exop word.what.Exop
4518 1.1 paulus #define bits word.what.Bits
4519 1.1 paulus
4520 1.1 paulus
4521 1.17 fvdl local int huft_build __P((
4522 1.1 paulus uIntf *, /* code lengths in bits */
4523 1.1 paulus uInt, /* number of codes */
4524 1.1 paulus uInt, /* number of "simple" codes */
4525 1.7 christos const uIntf *, /* list of base values for non-simple codes */
4526 1.7 christos const uIntf *, /* list of extra bits for non-simple codes */
4527 1.1 paulus inflate_huft * FAR*,/* result: starting table */
4528 1.1 paulus uIntf *, /* maximum lookup bits (returns actual) */
4529 1.17 fvdl inflate_huft *, /* space for trees */
4530 1.17 fvdl uInt *, /* hufts used in space */
4531 1.17 fvdl uIntf * )); /* space for values */
4532 1.1 paulus
4533 1.1 paulus /* Tables for deflate from PKZIP's appnote.txt. */
4534 1.7 christos local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4535 1.1 paulus 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4536 1.1 paulus 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4537 1.7 christos /* see note #13 above about 258 */
4538 1.7 christos local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4539 1.1 paulus 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4540 1.7 christos 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4541 1.7 christos local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4542 1.1 paulus 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4543 1.1 paulus 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4544 1.1 paulus 8193, 12289, 16385, 24577};
4545 1.7 christos local const uInt cpdext[30] = { /* Extra bits for distance codes */
4546 1.1 paulus 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4547 1.1 paulus 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4548 1.1 paulus 12, 12, 13, 13};
4549 1.1 paulus
4550 1.1 paulus /*
4551 1.1 paulus Huffman code decoding is performed using a multi-level table lookup.
4552 1.1 paulus The fastest way to decode is to simply build a lookup table whose
4553 1.1 paulus size is determined by the longest code. However, the time it takes
4554 1.1 paulus to build this table can also be a factor if the data being decoded
4555 1.1 paulus is not very long. The most common codes are necessarily the
4556 1.1 paulus shortest codes, so those codes dominate the decoding time, and hence
4557 1.1 paulus the speed. The idea is you can have a shorter table that decodes the
4558 1.1 paulus shorter, more probable codes, and then point to subsidiary tables for
4559 1.1 paulus the longer codes. The time it costs to decode the longer codes is
4560 1.1 paulus then traded against the time it takes to make longer tables.
4561 1.1 paulus
4562 1.1 paulus This results of this trade are in the variables lbits and dbits
4563 1.1 paulus below. lbits is the number of bits the first level table for literal/
4564 1.1 paulus length codes can decode in one step, and dbits is the same thing for
4565 1.1 paulus the distance codes. Subsequent tables are also less than or equal to
4566 1.1 paulus those sizes. These values may be adjusted either when all of the
4567 1.1 paulus codes are shorter than that, in which case the longest code length in
4568 1.1 paulus bits is used, or when the shortest code is *longer* than the requested
4569 1.1 paulus table size, in which case the length of the shortest code in bits is
4570 1.1 paulus used.
4571 1.1 paulus
4572 1.1 paulus There are two different values for the two tables, since they code a
4573 1.1 paulus different number of possibilities each. The literal/length table
4574 1.1 paulus codes 286 possible values, or in a flat code, a little over eight
4575 1.1 paulus bits. The distance table codes 30 possible values, or a little less
4576 1.1 paulus than five bits, flat. The optimum values for speed end up being
4577 1.1 paulus about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4578 1.1 paulus The optimum values may differ though from machine to machine, and
4579 1.1 paulus possibly even between compilers. Your mileage may vary.
4580 1.1 paulus */
4581 1.1 paulus
4582 1.1 paulus
4583 1.1 paulus /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4584 1.1 paulus #define BMAX 15 /* maximum bit length of any code */
4585 1.1 paulus
4586 1.17 fvdl local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
4587 1.1 paulus uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4588 1.17 fvdl uInt n; /* number of codes (assumed <= 288) */
4589 1.1 paulus uInt s; /* number of simple-valued codes (0..s-1) */
4590 1.7 christos const uIntf *d; /* list of base values for non-simple codes */
4591 1.7 christos const uIntf *e; /* list of extra bits for non-simple codes */
4592 1.1 paulus inflate_huft * FAR *t; /* result: starting table */
4593 1.1 paulus uIntf *m; /* maximum lookup bits, returns actual */
4594 1.17 fvdl inflate_huft *hp; /* space for trees */
4595 1.17 fvdl uInt *hn; /* hufts used in space */
4596 1.17 fvdl uIntf *v; /* working area: values in order of bit length */
4597 1.1 paulus /* Given a list of code lengths and a maximum table size, make a set of
4598 1.1 paulus tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4599 1.1 paulus if the given code set is incomplete (the tables are still built in this
4600 1.17 fvdl case), or Z_DATA_ERROR if the input is invalid. */
4601 1.1 paulus {
4602 1.1 paulus
4603 1.1 paulus uInt a; /* counter for codes of length k */
4604 1.1 paulus uInt c[BMAX+1]; /* bit length count table */
4605 1.1 paulus uInt f; /* i repeats in table every f entries */
4606 1.1 paulus int g; /* maximum code length */
4607 1.1 paulus int h; /* table level */
4608 1.17 fvdl uInt i; /* counter, current code */
4609 1.17 fvdl uInt j; /* counter */
4610 1.17 fvdl int k; /* number of bits in current code */
4611 1.1 paulus int l; /* bits per table (returned in m) */
4612 1.17 fvdl uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
4613 1.17 fvdl uIntf *p; /* pointer into c[], b[], or v[] */
4614 1.1 paulus inflate_huft *q; /* points to current table */
4615 1.1 paulus struct inflate_huft_s r; /* table entry for structure assignment */
4616 1.1 paulus inflate_huft *u[BMAX]; /* table stack */
4617 1.17 fvdl int w; /* bits before this table == (l * h) */
4618 1.1 paulus uInt x[BMAX+1]; /* bit offsets, then code stack */
4619 1.1 paulus uIntf *xp; /* pointer into x */
4620 1.1 paulus int y; /* number of dummy codes added */
4621 1.1 paulus uInt z; /* number of entries in current table */
4622 1.1 paulus
4623 1.1 paulus
4624 1.1 paulus /* Generate counts for each bit length */
4625 1.1 paulus p = c;
4626 1.1 paulus #define C0 *p++ = 0;
4627 1.1 paulus #define C2 C0 C0 C0 C0
4628 1.1 paulus #define C4 C2 C2 C2 C2
4629 1.1 paulus C4 /* clear c[]--assume BMAX+1 is 16 */
4630 1.1 paulus p = b; i = n;
4631 1.1 paulus do {
4632 1.1 paulus c[*p++]++; /* assume all entries <= BMAX */
4633 1.1 paulus } while (--i);
4634 1.1 paulus if (c[0] == n) /* null input--all zero length codes */
4635 1.1 paulus {
4636 1.1 paulus *t = (inflate_huft *)Z_NULL;
4637 1.1 paulus *m = 0;
4638 1.1 paulus return Z_OK;
4639 1.1 paulus }
4640 1.1 paulus
4641 1.1 paulus
4642 1.1 paulus /* Find minimum and maximum length, bound *m by those */
4643 1.1 paulus l = *m;
4644 1.1 paulus for (j = 1; j <= BMAX; j++)
4645 1.1 paulus if (c[j])
4646 1.1 paulus break;
4647 1.1 paulus k = j; /* minimum code length */
4648 1.1 paulus if ((uInt)l < j)
4649 1.1 paulus l = j;
4650 1.1 paulus for (i = BMAX; i; i--)
4651 1.1 paulus if (c[i])
4652 1.1 paulus break;
4653 1.1 paulus g = i; /* maximum code length */
4654 1.1 paulus if ((uInt)l > i)
4655 1.1 paulus l = i;
4656 1.1 paulus *m = l;
4657 1.1 paulus
4658 1.1 paulus
4659 1.1 paulus /* Adjust last length count to fill out codes, if needed */
4660 1.1 paulus for (y = 1 << j; j < i; j++, y <<= 1)
4661 1.1 paulus if ((y -= c[j]) < 0)
4662 1.1 paulus return Z_DATA_ERROR;
4663 1.1 paulus if ((y -= c[i]) < 0)
4664 1.1 paulus return Z_DATA_ERROR;
4665 1.1 paulus c[i] += y;
4666 1.1 paulus
4667 1.1 paulus
4668 1.1 paulus /* Generate starting offsets into the value table for each length */
4669 1.1 paulus x[1] = j = 0;
4670 1.1 paulus p = c + 1; xp = x + 2;
4671 1.1 paulus while (--i) { /* note that i == g from above */
4672 1.1 paulus *xp++ = (j += *p++);
4673 1.1 paulus }
4674 1.1 paulus
4675 1.1 paulus
4676 1.1 paulus /* Make a table of values in order of bit lengths */
4677 1.1 paulus p = b; i = 0;
4678 1.1 paulus do {
4679 1.1 paulus if ((j = *p++) != 0)
4680 1.1 paulus v[x[j]++] = i;
4681 1.1 paulus } while (++i < n);
4682 1.17 fvdl n = x[g]; /* set n to length of v */
4683 1.1 paulus
4684 1.1 paulus
4685 1.1 paulus /* Generate the Huffman codes and for each, make the table entries */
4686 1.1 paulus x[0] = i = 0; /* first Huffman code is zero */
4687 1.1 paulus p = v; /* grab values in bit order */
4688 1.1 paulus h = -1; /* no tables yet--level -1 */
4689 1.1 paulus w = -l; /* bits decoded == (l * h) */
4690 1.1 paulus u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4691 1.1 paulus q = (inflate_huft *)Z_NULL; /* ditto */
4692 1.1 paulus z = 0; /* ditto */
4693 1.1 paulus
4694 1.1 paulus /* go through the bit lengths (k already is bits in shortest code) */
4695 1.1 paulus for (; k <= g; k++)
4696 1.1 paulus {
4697 1.1 paulus a = c[k];
4698 1.1 paulus while (a--)
4699 1.1 paulus {
4700 1.1 paulus /* here i is the Huffman code of length k bits for value *p */
4701 1.1 paulus /* make tables up to required level */
4702 1.1 paulus while (k > w + l)
4703 1.1 paulus {
4704 1.1 paulus h++;
4705 1.1 paulus w += l; /* previous table always l bits */
4706 1.1 paulus
4707 1.1 paulus /* compute minimum size table less than or equal to l bits */
4708 1.7 christos z = g - w;
4709 1.7 christos z = z > (uInt)l ? l : z; /* table size upper limit */
4710 1.1 paulus if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4711 1.1 paulus { /* too few codes for k-w bit table */
4712 1.1 paulus f -= a + 1; /* deduct codes from patterns left */
4713 1.1 paulus xp = c + k;
4714 1.1 paulus if (j < z)
4715 1.1 paulus while (++j < z) /* try smaller tables up to z bits */
4716 1.1 paulus {
4717 1.1 paulus if ((f <<= 1) <= *++xp)
4718 1.1 paulus break; /* enough codes to use up j bits */
4719 1.1 paulus f -= *xp; /* else deduct codes from patterns */
4720 1.1 paulus }
4721 1.1 paulus }
4722 1.1 paulus z = 1 << j; /* table entries for j-bit table */
4723 1.1 paulus
4724 1.17 fvdl /* allocate new table */
4725 1.17 fvdl if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
4726 1.17 fvdl return Z_DATA_ERROR; /* overflow of MANY */
4727 1.17 fvdl u[h] = q = hp + *hn;
4728 1.17 fvdl *hn += z;
4729 1.1 paulus
4730 1.1 paulus /* connect to last table, if there is one */
4731 1.1 paulus if (h)
4732 1.1 paulus {
4733 1.1 paulus x[h] = i; /* save pattern for backing up */
4734 1.1 paulus r.bits = (Byte)l; /* bits to dump before this table */
4735 1.1 paulus r.exop = (Byte)j; /* bits in this table */
4736 1.17 fvdl j = i >> (w - l);
4737 1.17 fvdl r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
4738 1.1 paulus u[h-1][j] = r; /* connect to last table */
4739 1.1 paulus }
4740 1.17 fvdl else
4741 1.17 fvdl *t = q; /* first table is returned result */
4742 1.1 paulus }
4743 1.1 paulus
4744 1.1 paulus /* set up table entry in r */
4745 1.1 paulus r.bits = (Byte)(k - w);
4746 1.1 paulus if (p >= v + n)
4747 1.1 paulus r.exop = 128 + 64; /* out of values--invalid code */
4748 1.1 paulus else if (*p < s)
4749 1.1 paulus {
4750 1.1 paulus r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4751 1.1 paulus r.base = *p++; /* simple code is just the value */
4752 1.1 paulus }
4753 1.1 paulus else
4754 1.1 paulus {
4755 1.7 christos r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4756 1.1 paulus r.base = d[*p++ - s];
4757 1.1 paulus }
4758 1.1 paulus
4759 1.1 paulus /* fill code-like entries with r */
4760 1.1 paulus f = 1 << (k - w);
4761 1.1 paulus for (j = i >> w; j < z; j += f)
4762 1.1 paulus q[j] = r;
4763 1.1 paulus
4764 1.1 paulus /* backwards increment the k-bit code i */
4765 1.1 paulus for (j = 1 << (k - 1); i & j; j >>= 1)
4766 1.1 paulus i ^= j;
4767 1.1 paulus i ^= j;
4768 1.1 paulus
4769 1.1 paulus /* backup over finished tables */
4770 1.17 fvdl mask = (1 << w) - 1; /* needed on HP, cc -O bug */
4771 1.17 fvdl while ((i & mask) != x[h])
4772 1.1 paulus {
4773 1.1 paulus h--; /* don't need to update q */
4774 1.1 paulus w -= l;
4775 1.17 fvdl mask = (1 << w) - 1;
4776 1.1 paulus }
4777 1.1 paulus }
4778 1.1 paulus }
4779 1.1 paulus
4780 1.1 paulus
4781 1.1 paulus /* Return Z_BUF_ERROR if we were given an incomplete table */
4782 1.1 paulus return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4783 1.1 paulus }
4784 1.1 paulus
4785 1.1 paulus
4786 1.17 fvdl int inflate_trees_bits(c, bb, tb, hp, z)
4787 1.1 paulus uIntf *c; /* 19 code lengths */
4788 1.1 paulus uIntf *bb; /* bits tree desired/actual depth */
4789 1.1 paulus inflate_huft * FAR *tb; /* bits tree result */
4790 1.17 fvdl inflate_huft *hp; /* space for trees */
4791 1.17 fvdl z_streamp z; /* for messages */
4792 1.1 paulus {
4793 1.1 paulus int r;
4794 1.17 fvdl uInt hn = 0; /* hufts used in space */
4795 1.17 fvdl uIntf *v; /* work area for huft_build */
4796 1.1 paulus
4797 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
4798 1.17 fvdl return Z_MEM_ERROR;
4799 1.17 fvdl r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
4800 1.17 fvdl tb, bb, hp, &hn, v);
4801 1.1 paulus if (r == Z_DATA_ERROR)
4802 1.21 christos z->msg = "oversubscribed dynamic bit lengths tree";
4803 1.7 christos else if (r == Z_BUF_ERROR || *bb == 0)
4804 1.1 paulus {
4805 1.21 christos z->msg = "incomplete dynamic bit lengths tree";
4806 1.1 paulus r = Z_DATA_ERROR;
4807 1.1 paulus }
4808 1.17 fvdl ZFREE(z, v);
4809 1.1 paulus return r;
4810 1.1 paulus }
4811 1.1 paulus
4812 1.1 paulus
4813 1.17 fvdl int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
4814 1.1 paulus uInt nl; /* number of literal/length codes */
4815 1.1 paulus uInt nd; /* number of distance codes */
4816 1.1 paulus uIntf *c; /* that many (total) code lengths */
4817 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4818 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4819 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4820 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4821 1.17 fvdl inflate_huft *hp; /* space for trees */
4822 1.17 fvdl z_streamp z; /* for messages */
4823 1.1 paulus {
4824 1.1 paulus int r;
4825 1.17 fvdl uInt hn = 0; /* hufts used in space */
4826 1.17 fvdl uIntf *v; /* work area for huft_build */
4827 1.17 fvdl
4828 1.17 fvdl /* allocate work area */
4829 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4830 1.17 fvdl return Z_MEM_ERROR;
4831 1.1 paulus
4832 1.1 paulus /* build literal/length tree */
4833 1.17 fvdl r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
4834 1.7 christos if (r != Z_OK || *bl == 0)
4835 1.1 paulus {
4836 1.1 paulus if (r == Z_DATA_ERROR)
4837 1.21 christos z->msg = "oversubscribed literal/length tree";
4838 1.7 christos else if (r != Z_MEM_ERROR)
4839 1.1 paulus {
4840 1.21 christos z->msg = "incomplete literal/length tree";
4841 1.1 paulus r = Z_DATA_ERROR;
4842 1.1 paulus }
4843 1.17 fvdl ZFREE(z, v);
4844 1.1 paulus return r;
4845 1.1 paulus }
4846 1.1 paulus
4847 1.1 paulus /* build distance tree */
4848 1.17 fvdl r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
4849 1.7 christos if (r != Z_OK || (*bd == 0 && nl > 257))
4850 1.1 paulus {
4851 1.1 paulus if (r == Z_DATA_ERROR)
4852 1.21 christos z->msg = "oversubscribed distance tree";
4853 1.1 paulus else if (r == Z_BUF_ERROR) {
4854 1.1 paulus #ifdef PKZIP_BUG_WORKAROUND
4855 1.1 paulus r = Z_OK;
4856 1.1 paulus }
4857 1.1 paulus #else
4858 1.21 christos z->msg = "incomplete distance tree";
4859 1.7 christos r = Z_DATA_ERROR;
4860 1.7 christos }
4861 1.7 christos else if (r != Z_MEM_ERROR)
4862 1.7 christos {
4863 1.21 christos z->msg = "empty distance tree with lengths";
4864 1.1 paulus r = Z_DATA_ERROR;
4865 1.1 paulus }
4866 1.17 fvdl ZFREE(z, v);
4867 1.1 paulus return r;
4868 1.1 paulus #endif
4869 1.1 paulus }
4870 1.1 paulus
4871 1.1 paulus /* done */
4872 1.17 fvdl ZFREE(z, v);
4873 1.1 paulus return Z_OK;
4874 1.1 paulus }
4875 1.1 paulus
4876 1.1 paulus
4877 1.1 paulus /* build fixed tables only once--keep them here */
4878 1.17 fvdl #ifdef BUILDFIXED
4879 1.1 paulus local int fixed_built = 0;
4880 1.17 fvdl #define FIXEDH 544 /* number of hufts used by fixed tables */
4881 1.1 paulus local inflate_huft fixed_mem[FIXEDH];
4882 1.1 paulus local uInt fixed_bl;
4883 1.1 paulus local uInt fixed_bd;
4884 1.1 paulus local inflate_huft *fixed_tl;
4885 1.1 paulus local inflate_huft *fixed_td;
4886 1.17 fvdl #else
4887 1.17 fvdl
4888 1.17 fvdl /* +++ inffixed.h */
4889 1.17 fvdl /* inffixed.h -- table for decoding fixed codes
4890 1.17 fvdl * Generated automatically by the maketree.c program
4891 1.17 fvdl */
4892 1.17 fvdl
4893 1.17 fvdl /* WARNING: this file should *not* be used by applications. It is
4894 1.17 fvdl part of the implementation of the compression library and is
4895 1.17 fvdl subject to change. Applications should only use zlib.h.
4896 1.17 fvdl */
4897 1.1 paulus
4898 1.17 fvdl local uInt fixed_bl = 9;
4899 1.17 fvdl local uInt fixed_bd = 5;
4900 1.17 fvdl local inflate_huft fixed_tl[] = {
4901 1.17 fvdl {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4902 1.17 fvdl {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
4903 1.17 fvdl {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
4904 1.17 fvdl {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
4905 1.17 fvdl {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
4906 1.17 fvdl {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
4907 1.17 fvdl {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
4908 1.17 fvdl {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
4909 1.17 fvdl {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4910 1.17 fvdl {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
4911 1.17 fvdl {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
4912 1.17 fvdl {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
4913 1.17 fvdl {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
4914 1.17 fvdl {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
4915 1.17 fvdl {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
4916 1.17 fvdl {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
4917 1.17 fvdl {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4918 1.17 fvdl {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
4919 1.17 fvdl {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
4920 1.17 fvdl {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
4921 1.17 fvdl {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
4922 1.17 fvdl {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
4923 1.17 fvdl {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
4924 1.17 fvdl {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
4925 1.17 fvdl {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4926 1.17 fvdl {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
4927 1.17 fvdl {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
4928 1.17 fvdl {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
4929 1.17 fvdl {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
4930 1.17 fvdl {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
4931 1.17 fvdl {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
4932 1.17 fvdl {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
4933 1.17 fvdl {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4934 1.17 fvdl {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
4935 1.17 fvdl {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
4936 1.17 fvdl {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
4937 1.17 fvdl {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
4938 1.17 fvdl {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
4939 1.17 fvdl {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
4940 1.17 fvdl {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
4941 1.17 fvdl {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4942 1.17 fvdl {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
4943 1.17 fvdl {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
4944 1.17 fvdl {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
4945 1.17 fvdl {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
4946 1.17 fvdl {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
4947 1.17 fvdl {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
4948 1.17 fvdl {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
4949 1.17 fvdl {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4950 1.17 fvdl {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
4951 1.17 fvdl {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
4952 1.17 fvdl {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
4953 1.17 fvdl {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
4954 1.17 fvdl {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
4955 1.17 fvdl {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
4956 1.17 fvdl {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
4957 1.17 fvdl {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4958 1.17 fvdl {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
4959 1.17 fvdl {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
4960 1.17 fvdl {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
4961 1.17 fvdl {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
4962 1.17 fvdl {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
4963 1.17 fvdl {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
4964 1.17 fvdl {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
4965 1.17 fvdl {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4966 1.17 fvdl {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
4967 1.17 fvdl {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
4968 1.17 fvdl {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
4969 1.17 fvdl {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
4970 1.17 fvdl {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
4971 1.17 fvdl {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
4972 1.17 fvdl {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
4973 1.17 fvdl {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4974 1.17 fvdl {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
4975 1.17 fvdl {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
4976 1.17 fvdl {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
4977 1.17 fvdl {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
4978 1.17 fvdl {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
4979 1.17 fvdl {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
4980 1.17 fvdl {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
4981 1.17 fvdl {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4982 1.17 fvdl {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
4983 1.17 fvdl {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
4984 1.17 fvdl {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
4985 1.17 fvdl {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
4986 1.17 fvdl {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
4987 1.17 fvdl {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
4988 1.17 fvdl {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
4989 1.17 fvdl {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4990 1.17 fvdl {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
4991 1.17 fvdl {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
4992 1.17 fvdl {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
4993 1.17 fvdl {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
4994 1.17 fvdl {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
4995 1.17 fvdl {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
4996 1.17 fvdl {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
4997 1.17 fvdl {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4998 1.17 fvdl {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
4999 1.17 fvdl {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
5000 1.17 fvdl {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
5001 1.17 fvdl {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
5002 1.17 fvdl {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
5003 1.17 fvdl {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
5004 1.17 fvdl {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
5005 1.17 fvdl {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
5006 1.17 fvdl {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
5007 1.17 fvdl {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
5008 1.17 fvdl {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
5009 1.17 fvdl {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
5010 1.17 fvdl {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
5011 1.17 fvdl {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
5012 1.17 fvdl {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
5013 1.17 fvdl {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
5014 1.17 fvdl {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
5015 1.17 fvdl {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
5016 1.17 fvdl {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
5017 1.17 fvdl {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
5018 1.17 fvdl {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
5019 1.17 fvdl {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
5020 1.17 fvdl {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
5021 1.17 fvdl {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
5022 1.17 fvdl {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
5023 1.17 fvdl {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
5024 1.17 fvdl {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
5025 1.17 fvdl {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
5026 1.17 fvdl {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
5027 1.17 fvdl {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
5028 1.17 fvdl {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
5029 1.17 fvdl };
5030 1.17 fvdl local inflate_huft fixed_td[] = {
5031 1.17 fvdl {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
5032 1.17 fvdl {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
5033 1.17 fvdl {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
5034 1.17 fvdl {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
5035 1.17 fvdl {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
5036 1.17 fvdl {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
5037 1.17 fvdl {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
5038 1.17 fvdl {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
5039 1.17 fvdl };
5040 1.17 fvdl /* --- inffixed.h */
5041 1.1 paulus
5042 1.17 fvdl #endif
5043 1.1 paulus
5044 1.1 paulus
5045 1.17 fvdl int inflate_trees_fixed(bl, bd, tl, td, z)
5046 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
5047 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
5048 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
5049 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
5050 1.17 fvdl z_streamp z; /* for memory allocation */
5051 1.1 paulus {
5052 1.17 fvdl #ifdef BUILDFIXED
5053 1.17 fvdl /* build fixed tables if not already */
5054 1.1 paulus if (!fixed_built)
5055 1.1 paulus {
5056 1.1 paulus int k; /* temporary variable */
5057 1.17 fvdl uInt f = 0; /* number of hufts used in fixed_mem */
5058 1.17 fvdl uIntf *c; /* length list for huft_build */
5059 1.17 fvdl uIntf *v; /* work area for huft_build */
5060 1.17 fvdl
5061 1.17 fvdl /* allocate memory */
5062 1.17 fvdl if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5063 1.17 fvdl return Z_MEM_ERROR;
5064 1.17 fvdl if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
5065 1.17 fvdl {
5066 1.17 fvdl ZFREE(z, c);
5067 1.17 fvdl return Z_MEM_ERROR;
5068 1.17 fvdl }
5069 1.1 paulus
5070 1.1 paulus /* literal table */
5071 1.1 paulus for (k = 0; k < 144; k++)
5072 1.1 paulus c[k] = 8;
5073 1.1 paulus for (; k < 256; k++)
5074 1.1 paulus c[k] = 9;
5075 1.1 paulus for (; k < 280; k++)
5076 1.1 paulus c[k] = 7;
5077 1.1 paulus for (; k < 288; k++)
5078 1.1 paulus c[k] = 8;
5079 1.17 fvdl fixed_bl = 9;
5080 1.17 fvdl huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
5081 1.17 fvdl fixed_mem, &f, v);
5082 1.1 paulus
5083 1.1 paulus /* distance table */
5084 1.1 paulus for (k = 0; k < 30; k++)
5085 1.1 paulus c[k] = 5;
5086 1.1 paulus fixed_bd = 5;
5087 1.17 fvdl huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
5088 1.17 fvdl fixed_mem, &f, v);
5089 1.1 paulus
5090 1.1 paulus /* done */
5091 1.17 fvdl ZFREE(z, v);
5092 1.17 fvdl ZFREE(z, c);
5093 1.1 paulus fixed_built = 1;
5094 1.1 paulus }
5095 1.17 fvdl #endif
5096 1.1 paulus *bl = fixed_bl;
5097 1.1 paulus *bd = fixed_bd;
5098 1.1 paulus *tl = fixed_tl;
5099 1.1 paulus *td = fixed_td;
5100 1.1 paulus return Z_OK;
5101 1.1 paulus }
5102 1.7 christos /* --- inftrees.c */
5103 1.1 paulus
5104 1.7 christos /* +++ infcodes.c */
5105 1.17 fvdl
5106 1.1 paulus /* infcodes.c -- process literals and length/distance pairs
5107 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5108 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5109 1.1 paulus */
5110 1.1 paulus
5111 1.7 christos /* #include "zutil.h" */
5112 1.7 christos /* #include "inftrees.h" */
5113 1.7 christos /* #include "infblock.h" */
5114 1.7 christos /* #include "infcodes.h" */
5115 1.7 christos /* #include "infutil.h" */
5116 1.7 christos
5117 1.7 christos /* +++ inffast.h */
5118 1.17 fvdl
5119 1.7 christos /* inffast.h -- header to use inffast.c
5120 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5121 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5122 1.7 christos */
5123 1.7 christos
5124 1.7 christos /* WARNING: this file should *not* be used by applications. It is
5125 1.7 christos part of the implementation of the compression library and is
5126 1.7 christos subject to change. Applications should only use zlib.h.
5127 1.7 christos */
5128 1.7 christos
5129 1.17 fvdl extern int inflate_fast __P((
5130 1.7 christos uInt,
5131 1.7 christos uInt,
5132 1.7 christos inflate_huft *,
5133 1.7 christos inflate_huft *,
5134 1.7 christos inflate_blocks_statef *,
5135 1.7 christos z_streamp ));
5136 1.7 christos /* --- inffast.h */
5137 1.7 christos
5138 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
5139 1.1 paulus #define exop word.what.Exop
5140 1.1 paulus #define bits word.what.Bits
5141 1.1 paulus
5142 1.17 fvdl typedef enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5143 1.1 paulus START, /* x: set up for LEN */
5144 1.1 paulus LEN, /* i: get length/literal/eob next */
5145 1.1 paulus LENEXT, /* i: getting length extra (have base) */
5146 1.1 paulus DIST, /* i: get distance next */
5147 1.1 paulus DISTEXT, /* i: getting distance extra */
5148 1.1 paulus COPY, /* o: copying bytes in window, waiting for space */
5149 1.1 paulus LIT, /* o: got literal, waiting for output space */
5150 1.1 paulus WASH, /* o: got eob, possibly still output waiting */
5151 1.1 paulus END, /* x: got eob and all data flushed */
5152 1.1 paulus BADCODE} /* x: got error */
5153 1.17 fvdl inflate_codes_mode;
5154 1.17 fvdl
5155 1.17 fvdl /* inflate codes private state */
5156 1.17 fvdl struct inflate_codes_state {
5157 1.17 fvdl
5158 1.17 fvdl /* mode */
5159 1.17 fvdl inflate_codes_mode mode; /* current inflate_codes mode */
5160 1.1 paulus
5161 1.1 paulus /* mode dependent information */
5162 1.1 paulus uInt len;
5163 1.1 paulus union {
5164 1.1 paulus struct {
5165 1.1 paulus inflate_huft *tree; /* pointer into tree */
5166 1.1 paulus uInt need; /* bits needed */
5167 1.1 paulus } code; /* if LEN or DIST, where in tree */
5168 1.1 paulus uInt lit; /* if LIT, literal */
5169 1.1 paulus struct {
5170 1.1 paulus uInt get; /* bits to get for extra */
5171 1.1 paulus uInt dist; /* distance back to copy from */
5172 1.1 paulus } copy; /* if EXT or COPY, where and how much */
5173 1.1 paulus } sub; /* submode */
5174 1.1 paulus
5175 1.1 paulus /* mode independent information */
5176 1.1 paulus Byte lbits; /* ltree bits decoded per branch */
5177 1.1 paulus Byte dbits; /* dtree bits decoder per branch */
5178 1.1 paulus inflate_huft *ltree; /* literal/length/eob tree */
5179 1.1 paulus inflate_huft *dtree; /* distance tree */
5180 1.1 paulus
5181 1.1 paulus };
5182 1.1 paulus
5183 1.1 paulus
5184 1.7 christos inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
5185 1.1 paulus uInt bl, bd;
5186 1.7 christos inflate_huft *tl;
5187 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
5188 1.7 christos z_streamp z;
5189 1.1 paulus {
5190 1.1 paulus inflate_codes_statef *c;
5191 1.1 paulus
5192 1.1 paulus if ((c = (inflate_codes_statef *)
5193 1.1 paulus ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
5194 1.1 paulus {
5195 1.1 paulus c->mode = START;
5196 1.1 paulus c->lbits = (Byte)bl;
5197 1.1 paulus c->dbits = (Byte)bd;
5198 1.1 paulus c->ltree = tl;
5199 1.1 paulus c->dtree = td;
5200 1.1 paulus Tracev((stderr, "inflate: codes new\n"));
5201 1.1 paulus }
5202 1.1 paulus return c;
5203 1.1 paulus }
5204 1.1 paulus
5205 1.1 paulus
5206 1.7 christos int inflate_codes(s, z, r)
5207 1.1 paulus inflate_blocks_statef *s;
5208 1.7 christos z_streamp z;
5209 1.1 paulus int r;
5210 1.1 paulus {
5211 1.1 paulus uInt j; /* temporary storage */
5212 1.1 paulus inflate_huft *t; /* temporary pointer */
5213 1.1 paulus uInt e; /* extra bits or operation */
5214 1.1 paulus uLong b; /* bit buffer */
5215 1.1 paulus uInt k; /* bits in bit buffer */
5216 1.1 paulus Bytef *p; /* input data pointer */
5217 1.1 paulus uInt n; /* bytes available there */
5218 1.1 paulus Bytef *q; /* output window write pointer */
5219 1.1 paulus uInt m; /* bytes to end of window or read pointer */
5220 1.1 paulus Bytef *f; /* pointer to copy strings from */
5221 1.1 paulus inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
5222 1.1 paulus
5223 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
5224 1.1 paulus LOAD
5225 1.1 paulus
5226 1.1 paulus /* process input and output based on current state */
5227 1.1 paulus while (1) switch (c->mode)
5228 1.1 paulus { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5229 1.1 paulus case START: /* x: set up for LEN */
5230 1.1 paulus #ifndef SLOW
5231 1.1 paulus if (m >= 258 && n >= 10)
5232 1.1 paulus {
5233 1.1 paulus UPDATE
5234 1.1 paulus r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
5235 1.1 paulus LOAD
5236 1.1 paulus if (r != Z_OK)
5237 1.1 paulus {
5238 1.1 paulus c->mode = r == Z_STREAM_END ? WASH : BADCODE;
5239 1.1 paulus break;
5240 1.1 paulus }
5241 1.1 paulus }
5242 1.1 paulus #endif /* !SLOW */
5243 1.1 paulus c->sub.code.need = c->lbits;
5244 1.1 paulus c->sub.code.tree = c->ltree;
5245 1.1 paulus c->mode = LEN;
5246 1.1 paulus case LEN: /* i: get length/literal/eob next */
5247 1.1 paulus j = c->sub.code.need;
5248 1.1 paulus NEEDBITS(j)
5249 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5250 1.1 paulus DUMPBITS(t->bits)
5251 1.1 paulus e = (uInt)(t->exop);
5252 1.1 paulus if (e == 0) /* literal */
5253 1.1 paulus {
5254 1.1 paulus c->sub.lit = t->base;
5255 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5256 1.1 paulus "inflate: literal '%c'\n" :
5257 1.1 paulus "inflate: literal 0x%02x\n", t->base));
5258 1.1 paulus c->mode = LIT;
5259 1.1 paulus break;
5260 1.1 paulus }
5261 1.1 paulus if (e & 16) /* length */
5262 1.1 paulus {
5263 1.1 paulus c->sub.copy.get = e & 15;
5264 1.1 paulus c->len = t->base;
5265 1.1 paulus c->mode = LENEXT;
5266 1.1 paulus break;
5267 1.1 paulus }
5268 1.1 paulus if ((e & 64) == 0) /* next table */
5269 1.1 paulus {
5270 1.1 paulus c->sub.code.need = e;
5271 1.17 fvdl c->sub.code.tree = t + t->base;
5272 1.1 paulus break;
5273 1.1 paulus }
5274 1.1 paulus if (e & 32) /* end of block */
5275 1.1 paulus {
5276 1.1 paulus Tracevv((stderr, "inflate: end of block\n"));
5277 1.1 paulus c->mode = WASH;
5278 1.1 paulus break;
5279 1.1 paulus }
5280 1.1 paulus c->mode = BADCODE; /* invalid code */
5281 1.21 christos z->msg = "invalid literal/length code";
5282 1.1 paulus r = Z_DATA_ERROR;
5283 1.1 paulus LEAVE
5284 1.1 paulus case LENEXT: /* i: getting length extra (have base) */
5285 1.1 paulus j = c->sub.copy.get;
5286 1.1 paulus NEEDBITS(j)
5287 1.1 paulus c->len += (uInt)b & inflate_mask[j];
5288 1.1 paulus DUMPBITS(j)
5289 1.1 paulus c->sub.code.need = c->dbits;
5290 1.1 paulus c->sub.code.tree = c->dtree;
5291 1.1 paulus Tracevv((stderr, "inflate: length %u\n", c->len));
5292 1.1 paulus c->mode = DIST;
5293 1.1 paulus case DIST: /* i: get distance next */
5294 1.1 paulus j = c->sub.code.need;
5295 1.1 paulus NEEDBITS(j)
5296 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5297 1.1 paulus DUMPBITS(t->bits)
5298 1.1 paulus e = (uInt)(t->exop);
5299 1.1 paulus if (e & 16) /* distance */
5300 1.1 paulus {
5301 1.1 paulus c->sub.copy.get = e & 15;
5302 1.1 paulus c->sub.copy.dist = t->base;
5303 1.1 paulus c->mode = DISTEXT;
5304 1.1 paulus break;
5305 1.1 paulus }
5306 1.1 paulus if ((e & 64) == 0) /* next table */
5307 1.1 paulus {
5308 1.1 paulus c->sub.code.need = e;
5309 1.17 fvdl c->sub.code.tree = t + t->base;
5310 1.1 paulus break;
5311 1.1 paulus }
5312 1.1 paulus c->mode = BADCODE; /* invalid code */
5313 1.21 christos z->msg = "invalid distance code";
5314 1.1 paulus r = Z_DATA_ERROR;
5315 1.1 paulus LEAVE
5316 1.1 paulus case DISTEXT: /* i: getting distance extra */
5317 1.1 paulus j = c->sub.copy.get;
5318 1.1 paulus NEEDBITS(j)
5319 1.1 paulus c->sub.copy.dist += (uInt)b & inflate_mask[j];
5320 1.1 paulus DUMPBITS(j)
5321 1.1 paulus Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
5322 1.1 paulus c->mode = COPY;
5323 1.1 paulus case COPY: /* o: copying bytes in window, waiting for space */
5324 1.1 paulus f = q - c->sub.copy.dist;
5325 1.17 fvdl while (f < s->window) /* modulo window size-"while" instead */
5326 1.17 fvdl f += s->end - s->window; /* of "if" handles invalid distances */
5327 1.1 paulus while (c->len)
5328 1.1 paulus {
5329 1.1 paulus NEEDOUT
5330 1.1 paulus OUTBYTE(*f++)
5331 1.1 paulus if (f == s->end)
5332 1.1 paulus f = s->window;
5333 1.1 paulus c->len--;
5334 1.1 paulus }
5335 1.1 paulus c->mode = START;
5336 1.1 paulus break;
5337 1.1 paulus case LIT: /* o: got literal, waiting for output space */
5338 1.1 paulus NEEDOUT
5339 1.1 paulus OUTBYTE(c->sub.lit)
5340 1.1 paulus c->mode = START;
5341 1.1 paulus break;
5342 1.1 paulus case WASH: /* o: got eob, possibly more output */
5343 1.17 fvdl if (k > 7) /* return unused byte, if any */
5344 1.17 fvdl {
5345 1.17 fvdl Assert(k < 16, "inflate_codes grabbed too many bytes")
5346 1.17 fvdl k -= 8;
5347 1.17 fvdl n++;
5348 1.17 fvdl p--; /* can always return one */
5349 1.17 fvdl }
5350 1.1 paulus FLUSH
5351 1.1 paulus if (s->read != s->write)
5352 1.1 paulus LEAVE
5353 1.1 paulus c->mode = END;
5354 1.1 paulus case END:
5355 1.1 paulus r = Z_STREAM_END;
5356 1.1 paulus LEAVE
5357 1.1 paulus case BADCODE: /* x: got error */
5358 1.1 paulus r = Z_DATA_ERROR;
5359 1.1 paulus LEAVE
5360 1.1 paulus default:
5361 1.1 paulus r = Z_STREAM_ERROR;
5362 1.1 paulus LEAVE
5363 1.1 paulus }
5364 1.17 fvdl #ifdef NEED_DUMMY_RETURN
5365 1.17 fvdl return Z_STREAM_ERROR; /* Some dumb compilers complain without this */
5366 1.17 fvdl #endif
5367 1.1 paulus }
5368 1.1 paulus
5369 1.1 paulus
5370 1.7 christos void inflate_codes_free(c, z)
5371 1.1 paulus inflate_codes_statef *c;
5372 1.7 christos z_streamp z;
5373 1.1 paulus {
5374 1.7 christos ZFREE(z, c);
5375 1.1 paulus Tracev((stderr, "inflate: codes free\n"));
5376 1.1 paulus }
5377 1.7 christos /* --- infcodes.c */
5378 1.1 paulus
5379 1.7 christos /* +++ infutil.c */
5380 1.17 fvdl
5381 1.1 paulus /* inflate_util.c -- data and routines common to blocks and codes
5382 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5383 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5384 1.1 paulus */
5385 1.1 paulus
5386 1.7 christos /* #include "zutil.h" */
5387 1.7 christos /* #include "infblock.h" */
5388 1.7 christos /* #include "inftrees.h" */
5389 1.7 christos /* #include "infcodes.h" */
5390 1.7 christos /* #include "infutil.h" */
5391 1.7 christos
5392 1.7 christos #ifndef NO_DUMMY_DECL
5393 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5394 1.7 christos #endif
5395 1.7 christos
5396 1.7 christos /* And'ing with mask[n] masks the lower n bits */
5397 1.17 fvdl uInt inflate_mask[17] = {
5398 1.7 christos 0x0000,
5399 1.7 christos 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5400 1.7 christos 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5401 1.7 christos };
5402 1.7 christos
5403 1.7 christos
5404 1.1 paulus /* copy as much as possible from the sliding window to the output area */
5405 1.7 christos int inflate_flush(s, z, r)
5406 1.1 paulus inflate_blocks_statef *s;
5407 1.7 christos z_streamp z;
5408 1.1 paulus int r;
5409 1.1 paulus {
5410 1.1 paulus uInt n;
5411 1.7 christos Bytef *p;
5412 1.7 christos Bytef *q;
5413 1.1 paulus
5414 1.1 paulus /* local copies of source and destination pointers */
5415 1.1 paulus p = z->next_out;
5416 1.1 paulus q = s->read;
5417 1.1 paulus
5418 1.1 paulus /* compute number of bytes to copy as far as end of window */
5419 1.1 paulus n = (uInt)((q <= s->write ? s->write : s->end) - q);
5420 1.1 paulus if (n > z->avail_out) n = z->avail_out;
5421 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
5422 1.1 paulus
5423 1.1 paulus /* update counters */
5424 1.1 paulus z->avail_out -= n;
5425 1.1 paulus z->total_out += n;
5426 1.1 paulus
5427 1.1 paulus /* update check information */
5428 1.1 paulus if (s->checkfn != Z_NULL)
5429 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
5430 1.1 paulus
5431 1.1 paulus /* copy as far as end of window */
5432 1.7 christos if (p != Z_NULL) {
5433 1.1 paulus zmemcpy(p, q, n);
5434 1.1 paulus p += n;
5435 1.1 paulus }
5436 1.1 paulus q += n;
5437 1.1 paulus
5438 1.1 paulus /* see if more to copy at beginning of window */
5439 1.1 paulus if (q == s->end)
5440 1.1 paulus {
5441 1.1 paulus /* wrap pointers */
5442 1.1 paulus q = s->window;
5443 1.1 paulus if (s->write == s->end)
5444 1.1 paulus s->write = s->window;
5445 1.1 paulus
5446 1.1 paulus /* compute bytes to copy */
5447 1.1 paulus n = (uInt)(s->write - q);
5448 1.1 paulus if (n > z->avail_out) n = z->avail_out;
5449 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
5450 1.1 paulus
5451 1.1 paulus /* update counters */
5452 1.1 paulus z->avail_out -= n;
5453 1.1 paulus z->total_out += n;
5454 1.1 paulus
5455 1.1 paulus /* update check information */
5456 1.1 paulus if (s->checkfn != Z_NULL)
5457 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
5458 1.1 paulus
5459 1.1 paulus /* copy */
5460 1.17 fvdl if (p != NULL) {
5461 1.1 paulus zmemcpy(p, q, n);
5462 1.1 paulus p += n;
5463 1.1 paulus }
5464 1.1 paulus q += n;
5465 1.1 paulus }
5466 1.1 paulus
5467 1.1 paulus /* update pointers */
5468 1.1 paulus z->next_out = p;
5469 1.1 paulus s->read = q;
5470 1.1 paulus
5471 1.1 paulus /* done */
5472 1.1 paulus return r;
5473 1.1 paulus }
5474 1.7 christos /* --- infutil.c */
5475 1.1 paulus
5476 1.7 christos /* +++ inffast.c */
5477 1.17 fvdl
5478 1.1 paulus /* inffast.c -- process literals and length/distance pairs fast
5479 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5480 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5481 1.1 paulus */
5482 1.1 paulus
5483 1.7 christos /* #include "zutil.h" */
5484 1.7 christos /* #include "inftrees.h" */
5485 1.7 christos /* #include "infblock.h" */
5486 1.7 christos /* #include "infcodes.h" */
5487 1.7 christos /* #include "infutil.h" */
5488 1.7 christos /* #include "inffast.h" */
5489 1.7 christos
5490 1.7 christos #ifndef NO_DUMMY_DECL
5491 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5492 1.7 christos #endif
5493 1.7 christos
5494 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
5495 1.1 paulus #define exop word.what.Exop
5496 1.1 paulus #define bits word.what.Bits
5497 1.1 paulus
5498 1.1 paulus /* macros for bit input with no checking and for returning unused bytes */
5499 1.1 paulus #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
5500 1.17 fvdl #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
5501 1.1 paulus
5502 1.1 paulus /* Called with number of bytes left to write in window at least 258
5503 1.1 paulus (the maximum string length) and number of input bytes available
5504 1.1 paulus at least ten. The ten bytes are six bytes for the longest length/
5505 1.1 paulus distance pair plus four bytes for overloading the bit buffer. */
5506 1.1 paulus
5507 1.7 christos int inflate_fast(bl, bd, tl, td, s, z)
5508 1.1 paulus uInt bl, bd;
5509 1.7 christos inflate_huft *tl;
5510 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
5511 1.1 paulus inflate_blocks_statef *s;
5512 1.7 christos z_streamp z;
5513 1.1 paulus {
5514 1.1 paulus inflate_huft *t; /* temporary pointer */
5515 1.1 paulus uInt e; /* extra bits or operation */
5516 1.1 paulus uLong b; /* bit buffer */
5517 1.1 paulus uInt k; /* bits in bit buffer */
5518 1.1 paulus Bytef *p; /* input data pointer */
5519 1.1 paulus uInt n; /* bytes available there */
5520 1.1 paulus Bytef *q; /* output window write pointer */
5521 1.1 paulus uInt m; /* bytes to end of window or read pointer */
5522 1.1 paulus uInt ml; /* mask for literal/length tree */
5523 1.1 paulus uInt md; /* mask for distance tree */
5524 1.1 paulus uInt c; /* bytes to copy */
5525 1.1 paulus uInt d; /* distance back to copy from */
5526 1.1 paulus Bytef *r; /* copy source pointer */
5527 1.1 paulus
5528 1.1 paulus /* load input, output, bit values */
5529 1.1 paulus LOAD
5530 1.1 paulus
5531 1.1 paulus /* initialize masks */
5532 1.1 paulus ml = inflate_mask[bl];
5533 1.1 paulus md = inflate_mask[bd];
5534 1.1 paulus
5535 1.1 paulus /* do until not enough input or output space for fast loop */
5536 1.1 paulus do { /* assume called with m >= 258 && n >= 10 */
5537 1.1 paulus /* get literal/length code */
5538 1.1 paulus GRABBITS(20) /* max bits for literal/length code */
5539 1.1 paulus if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5540 1.1 paulus {
5541 1.1 paulus DUMPBITS(t->bits)
5542 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5543 1.1 paulus "inflate: * literal '%c'\n" :
5544 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5545 1.1 paulus *q++ = (Byte)t->base;
5546 1.1 paulus m--;
5547 1.1 paulus continue;
5548 1.1 paulus }
5549 1.1 paulus do {
5550 1.1 paulus DUMPBITS(t->bits)
5551 1.1 paulus if (e & 16)
5552 1.1 paulus {
5553 1.1 paulus /* get extra bits for length */
5554 1.1 paulus e &= 15;
5555 1.1 paulus c = t->base + ((uInt)b & inflate_mask[e]);
5556 1.1 paulus DUMPBITS(e)
5557 1.1 paulus Tracevv((stderr, "inflate: * length %u\n", c));
5558 1.1 paulus
5559 1.1 paulus /* decode distance base of block to copy */
5560 1.1 paulus GRABBITS(15); /* max bits for distance code */
5561 1.1 paulus e = (t = td + ((uInt)b & md))->exop;
5562 1.1 paulus do {
5563 1.1 paulus DUMPBITS(t->bits)
5564 1.1 paulus if (e & 16)
5565 1.1 paulus {
5566 1.1 paulus /* get extra bits to add to distance base */
5567 1.1 paulus e &= 15;
5568 1.1 paulus GRABBITS(e) /* get extra bits (up to 13) */
5569 1.1 paulus d = t->base + ((uInt)b & inflate_mask[e]);
5570 1.1 paulus DUMPBITS(e)
5571 1.1 paulus Tracevv((stderr, "inflate: * distance %u\n", d));
5572 1.1 paulus
5573 1.1 paulus /* do the copy */
5574 1.1 paulus m -= c;
5575 1.17 fvdl r = q - d;
5576 1.17 fvdl if (r < s->window) /* wrap if needed */
5577 1.1 paulus {
5578 1.17 fvdl do {
5579 1.17 fvdl r += s->end - s->window; /* force pointer in window */
5580 1.17 fvdl } while (r < s->window); /* covers invalid distances */
5581 1.17 fvdl e = s->end - r;
5582 1.17 fvdl if (c > e)
5583 1.1 paulus {
5584 1.17 fvdl c -= e; /* wrapped copy */
5585 1.1 paulus do {
5586 1.17 fvdl *q++ = *r++;
5587 1.1 paulus } while (--e);
5588 1.17 fvdl r = s->window;
5589 1.17 fvdl do {
5590 1.17 fvdl *q++ = *r++;
5591 1.17 fvdl } while (--c);
5592 1.1 paulus }
5593 1.17 fvdl else /* normal copy */
5594 1.17 fvdl {
5595 1.17 fvdl *q++ = *r++; c--;
5596 1.17 fvdl *q++ = *r++; c--;
5597 1.17 fvdl do {
5598 1.17 fvdl *q++ = *r++;
5599 1.17 fvdl } while (--c);
5600 1.17 fvdl }
5601 1.17 fvdl }
5602 1.17 fvdl else /* normal copy */
5603 1.17 fvdl {
5604 1.17 fvdl *q++ = *r++; c--;
5605 1.17 fvdl *q++ = *r++; c--;
5606 1.17 fvdl do {
5607 1.17 fvdl *q++ = *r++;
5608 1.17 fvdl } while (--c);
5609 1.1 paulus }
5610 1.1 paulus break;
5611 1.1 paulus }
5612 1.1 paulus else if ((e & 64) == 0)
5613 1.17 fvdl {
5614 1.17 fvdl t += t->base;
5615 1.17 fvdl e = (t += ((uInt)b & inflate_mask[e]))->exop;
5616 1.17 fvdl }
5617 1.1 paulus else
5618 1.1 paulus {
5619 1.21 christos z->msg = "invalid distance code";
5620 1.1 paulus UNGRAB
5621 1.1 paulus UPDATE
5622 1.1 paulus return Z_DATA_ERROR;
5623 1.1 paulus }
5624 1.1 paulus } while (1);
5625 1.1 paulus break;
5626 1.1 paulus }
5627 1.1 paulus if ((e & 64) == 0)
5628 1.1 paulus {
5629 1.17 fvdl t += t->base;
5630 1.17 fvdl if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
5631 1.1 paulus {
5632 1.1 paulus DUMPBITS(t->bits)
5633 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5634 1.1 paulus "inflate: * literal '%c'\n" :
5635 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5636 1.1 paulus *q++ = (Byte)t->base;
5637 1.1 paulus m--;
5638 1.1 paulus break;
5639 1.1 paulus }
5640 1.1 paulus }
5641 1.1 paulus else if (e & 32)
5642 1.1 paulus {
5643 1.1 paulus Tracevv((stderr, "inflate: * end of block\n"));
5644 1.1 paulus UNGRAB
5645 1.1 paulus UPDATE
5646 1.1 paulus return Z_STREAM_END;
5647 1.1 paulus }
5648 1.1 paulus else
5649 1.1 paulus {
5650 1.21 christos z->msg = "invalid literal/length code";
5651 1.1 paulus UNGRAB
5652 1.1 paulus UPDATE
5653 1.1 paulus return Z_DATA_ERROR;
5654 1.1 paulus }
5655 1.1 paulus } while (1);
5656 1.1 paulus } while (m >= 258 && n >= 10);
5657 1.1 paulus
5658 1.1 paulus /* not enough input or output--restore pointers and return */
5659 1.1 paulus UNGRAB
5660 1.1 paulus UPDATE
5661 1.1 paulus return Z_OK;
5662 1.1 paulus }
5663 1.7 christos /* --- inffast.c */
5664 1.1 paulus
5665 1.7 christos /* +++ zutil.c */
5666 1.17 fvdl
5667 1.1 paulus /* zutil.c -- target dependent utility functions for the compression library
5668 1.17 fvdl * Copyright (C) 1995-2002 Jean-loup Gailly.
5669 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5670 1.1 paulus */
5671 1.1 paulus
5672 1.17 fvdl /* @(#) Id */
5673 1.7 christos
5674 1.7 christos #ifdef DEBUG_ZLIB
5675 1.7 christos #include <stdio.h>
5676 1.7 christos #endif
5677 1.7 christos
5678 1.7 christos /* #include "zutil.h" */
5679 1.1 paulus
5680 1.7 christos #ifndef NO_DUMMY_DECL
5681 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
5682 1.7 christos #endif
5683 1.7 christos
5684 1.7 christos #ifndef STDC
5685 1.17 fvdl extern void exit __P((int));
5686 1.7 christos #endif
5687 1.1 paulus
5688 1.17 fvdl const char *z_errmsg[10] = {
5689 1.7 christos "need dictionary", /* Z_NEED_DICT 2 */
5690 1.7 christos "stream end", /* Z_STREAM_END 1 */
5691 1.7 christos "", /* Z_OK 0 */
5692 1.7 christos "file error", /* Z_ERRNO (-1) */
5693 1.7 christos "stream error", /* Z_STREAM_ERROR (-2) */
5694 1.7 christos "data error", /* Z_DATA_ERROR (-3) */
5695 1.7 christos "insufficient memory", /* Z_MEM_ERROR (-4) */
5696 1.7 christos "buffer error", /* Z_BUF_ERROR (-5) */
5697 1.7 christos "incompatible version",/* Z_VERSION_ERROR (-6) */
5698 1.1 paulus ""};
5699 1.1 paulus
5700 1.1 paulus
5701 1.19 kristerw #if 0
5702 1.17 fvdl const char * ZEXPORT zlibVersion()
5703 1.7 christos {
5704 1.7 christos return ZLIB_VERSION;
5705 1.7 christos }
5706 1.19 kristerw #endif
5707 1.7 christos
5708 1.7 christos #ifdef DEBUG_ZLIB
5709 1.17 fvdl
5710 1.17 fvdl # ifndef verbose
5711 1.17 fvdl # define verbose 0
5712 1.17 fvdl # endif
5713 1.17 fvdl int z_verbose = verbose;
5714 1.17 fvdl
5715 1.7 christos void z_error (m)
5716 1.7 christos char *m;
5717 1.7 christos {
5718 1.7 christos fprintf(stderr, "%s\n", m);
5719 1.7 christos exit(1);
5720 1.7 christos }
5721 1.7 christos #endif
5722 1.7 christos
5723 1.17 fvdl /* exported to allow conversion of error code to string for compress() and
5724 1.17 fvdl * uncompress()
5725 1.17 fvdl */
5726 1.19 kristerw #if 0
5727 1.17 fvdl const char * ZEXPORT zError(err)
5728 1.17 fvdl int err;
5729 1.17 fvdl {
5730 1.17 fvdl return ERR_MSG(err);
5731 1.17 fvdl }
5732 1.19 kristerw #endif
5733 1.17 fvdl
5734 1.17 fvdl
5735 1.7 christos #ifndef HAVE_MEMCPY
5736 1.7 christos
5737 1.7 christos void zmemcpy(dest, source, len)
5738 1.7 christos Bytef* dest;
5739 1.17 fvdl const Bytef* source;
5740 1.7 christos uInt len;
5741 1.7 christos {
5742 1.7 christos if (len == 0) return;
5743 1.7 christos do {
5744 1.7 christos *dest++ = *source++; /* ??? to be unrolled */
5745 1.7 christos } while (--len != 0);
5746 1.7 christos }
5747 1.7 christos
5748 1.7 christos int zmemcmp(s1, s2, len)
5749 1.17 fvdl const Bytef* s1;
5750 1.17 fvdl const Bytef* s2;
5751 1.7 christos uInt len;
5752 1.7 christos {
5753 1.7 christos uInt j;
5754 1.7 christos
5755 1.7 christos for (j = 0; j < len; j++) {
5756 1.7 christos if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5757 1.7 christos }
5758 1.7 christos return 0;
5759 1.7 christos }
5760 1.7 christos
5761 1.7 christos void zmemzero(dest, len)
5762 1.7 christos Bytef* dest;
5763 1.7 christos uInt len;
5764 1.7 christos {
5765 1.7 christos if (len == 0) return;
5766 1.7 christos do {
5767 1.7 christos *dest++ = 0; /* ??? to be unrolled */
5768 1.7 christos } while (--len != 0);
5769 1.7 christos }
5770 1.7 christos #endif
5771 1.7 christos
5772 1.7 christos #ifdef __TURBOC__
5773 1.7 christos #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5774 1.7 christos /* Small and medium model in Turbo C are for now limited to near allocation
5775 1.7 christos * with reduced MAX_WBITS and MAX_MEM_LEVEL
5776 1.7 christos */
5777 1.7 christos # define MY_ZCALLOC
5778 1.7 christos
5779 1.7 christos /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5780 1.7 christos * and farmalloc(64K) returns a pointer with an offset of 8, so we
5781 1.7 christos * must fix the pointer. Warning: the pointer must be put back to its
5782 1.7 christos * original form in order to free it, use zcfree().
5783 1.7 christos */
5784 1.7 christos
5785 1.7 christos #define MAX_PTR 10
5786 1.7 christos /* 10*64K = 640K */
5787 1.7 christos
5788 1.7 christos local int next_ptr = 0;
5789 1.7 christos
5790 1.7 christos typedef struct ptr_table_s {
5791 1.7 christos voidpf org_ptr;
5792 1.7 christos voidpf new_ptr;
5793 1.7 christos } ptr_table;
5794 1.7 christos
5795 1.7 christos local ptr_table table[MAX_PTR];
5796 1.7 christos /* This table is used to remember the original form of pointers
5797 1.7 christos * to large buffers (64K). Such pointers are normalized with a zero offset.
5798 1.7 christos * Since MSDOS is not a preemptive multitasking OS, this table is not
5799 1.7 christos * protected from concurrent access. This hack doesn't work anyway on
5800 1.7 christos * a protected system like OS/2. Use Microsoft C instead.
5801 1.7 christos */
5802 1.7 christos
5803 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5804 1.7 christos {
5805 1.7 christos voidpf buf = opaque; /* just to make some compilers happy */
5806 1.7 christos ulg bsize = (ulg)items*size;
5807 1.7 christos
5808 1.7 christos /* If we allocate less than 65520 bytes, we assume that farmalloc
5809 1.7 christos * will return a usable pointer which doesn't have to be normalized.
5810 1.7 christos */
5811 1.7 christos if (bsize < 65520L) {
5812 1.7 christos buf = farmalloc(bsize);
5813 1.7 christos if (*(ush*)&buf != 0) return buf;
5814 1.7 christos } else {
5815 1.7 christos buf = farmalloc(bsize + 16L);
5816 1.7 christos }
5817 1.7 christos if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5818 1.7 christos table[next_ptr].org_ptr = buf;
5819 1.7 christos
5820 1.7 christos /* Normalize the pointer to seg:0 */
5821 1.7 christos *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5822 1.7 christos *(ush*)&buf = 0;
5823 1.7 christos table[next_ptr++].new_ptr = buf;
5824 1.7 christos return buf;
5825 1.7 christos }
5826 1.7 christos
5827 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5828 1.7 christos {
5829 1.7 christos int n;
5830 1.7 christos if (*(ush*)&ptr != 0) { /* object < 64K */
5831 1.7 christos farfree(ptr);
5832 1.7 christos return;
5833 1.7 christos }
5834 1.7 christos /* Find the original pointer */
5835 1.7 christos for (n = 0; n < next_ptr; n++) {
5836 1.7 christos if (ptr != table[n].new_ptr) continue;
5837 1.7 christos
5838 1.7 christos farfree(table[n].org_ptr);
5839 1.7 christos while (++n < next_ptr) {
5840 1.7 christos table[n-1] = table[n];
5841 1.7 christos }
5842 1.7 christos next_ptr--;
5843 1.7 christos return;
5844 1.7 christos }
5845 1.7 christos ptr = opaque; /* just to make some compilers happy */
5846 1.7 christos Assert(0, "zcfree: ptr not found");
5847 1.7 christos }
5848 1.7 christos #endif
5849 1.7 christos #endif /* __TURBOC__ */
5850 1.7 christos
5851 1.7 christos
5852 1.7 christos #if defined(M_I86) && !defined(__32BIT__)
5853 1.7 christos /* Microsoft C in 16-bit mode */
5854 1.7 christos
5855 1.7 christos # define MY_ZCALLOC
5856 1.7 christos
5857 1.17 fvdl #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
5858 1.7 christos # define _halloc halloc
5859 1.7 christos # define _hfree hfree
5860 1.7 christos #endif
5861 1.7 christos
5862 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5863 1.7 christos {
5864 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5865 1.7 christos return _halloc((long)items, size);
5866 1.7 christos }
5867 1.7 christos
5868 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5869 1.7 christos {
5870 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5871 1.7 christos _hfree(ptr);
5872 1.7 christos }
5873 1.7 christos
5874 1.7 christos #endif /* MSC */
5875 1.7 christos
5876 1.7 christos
5877 1.7 christos #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5878 1.7 christos
5879 1.7 christos #ifndef STDC
5880 1.17 fvdl extern voidp calloc __P((uInt items, uInt size));
5881 1.17 fvdl extern void free __P((voidpf ptr));
5882 1.7 christos #endif
5883 1.7 christos
5884 1.7 christos voidpf zcalloc (opaque, items, size)
5885 1.7 christos voidpf opaque;
5886 1.7 christos unsigned items;
5887 1.7 christos unsigned size;
5888 1.7 christos {
5889 1.7 christos if (opaque) items += size - size; /* make compiler happy */
5890 1.7 christos return (voidpf)calloc(items, size);
5891 1.7 christos }
5892 1.7 christos
5893 1.7 christos void zcfree (opaque, ptr)
5894 1.7 christos voidpf opaque;
5895 1.7 christos voidpf ptr;
5896 1.7 christos {
5897 1.7 christos free(ptr);
5898 1.7 christos if (opaque) return; /* make compiler happy */
5899 1.7 christos }
5900 1.7 christos
5901 1.7 christos #endif /* MY_ZCALLOC */
5902 1.7 christos /* --- zutil.c */
5903 1.7 christos
5904 1.7 christos /* +++ adler32.c */
5905 1.1 paulus /* adler32.c -- compute the Adler-32 checksum of a data stream
5906 1.17 fvdl * Copyright (C) 1995-2002 Mark Adler
5907 1.20 perry * For conditions of distribution and use, see copyright notice in zlib.h
5908 1.1 paulus */
5909 1.1 paulus
5910 1.23 christos /* @(#) $Id: zlib.c,v 1.23 2006/01/14 18:58:05 christos Exp $ */
5911 1.7 christos
5912 1.7 christos /* #include "zlib.h" */
5913 1.1 paulus
5914 1.1 paulus #define BASE 65521L /* largest prime smaller than 65536 */
5915 1.1 paulus #define NMAX 5552
5916 1.1 paulus /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5917 1.1 paulus
5918 1.7 christos #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5919 1.7 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5920 1.7 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5921 1.7 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5922 1.7 christos #define DO16(buf) DO8(buf,0); DO8(buf,8);
5923 1.1 paulus
5924 1.1 paulus /* ========================================================================= */
5925 1.17 fvdl uLong ZEXPORT adler32(adler, buf, len)
5926 1.1 paulus uLong adler;
5927 1.7 christos const Bytef *buf;
5928 1.1 paulus uInt len;
5929 1.1 paulus {
5930 1.1 paulus unsigned long s1 = adler & 0xffff;
5931 1.1 paulus unsigned long s2 = (adler >> 16) & 0xffff;
5932 1.1 paulus int k;
5933 1.1 paulus
5934 1.1 paulus if (buf == Z_NULL) return 1L;
5935 1.1 paulus
5936 1.1 paulus while (len > 0) {
5937 1.1 paulus k = len < NMAX ? len : NMAX;
5938 1.1 paulus len -= k;
5939 1.1 paulus while (k >= 16) {
5940 1.1 paulus DO16(buf);
5941 1.7 christos buf += 16;
5942 1.1 paulus k -= 16;
5943 1.1 paulus }
5944 1.1 paulus if (k != 0) do {
5945 1.7 christos s1 += *buf++;
5946 1.7 christos s2 += s1;
5947 1.1 paulus } while (--k);
5948 1.1 paulus s1 %= BASE;
5949 1.1 paulus s2 %= BASE;
5950 1.1 paulus }
5951 1.1 paulus return (s2 << 16) | s1;
5952 1.1 paulus }
5953 1.7 christos /* --- adler32.c */
5954 1.17 fvdl
5955