zlib.c revision 1.5 1 1.5 fvdl /* $NetBSD: zlib.c,v 1.5 1997/03/13 20:11:53 fvdl Exp $ */
2 1.1 paulus
3 1.1 paulus /*
4 1.1 paulus * This file is derived from various .h and .c files from the zlib-0.95
5 1.1 paulus * distribution by Jean-loup Gailly and Mark Adler, with some additions
6 1.1 paulus * by Paul Mackerras to aid in implementing Deflate compression and
7 1.1 paulus * decompression for PPP packets. See zlib.h for conditions of
8 1.1 paulus * distribution and use.
9 1.1 paulus *
10 1.1 paulus * Changes that have been made include:
11 1.1 paulus * - changed functions not used outside this file to "local"
12 1.1 paulus * - added minCompression parameter to deflateInit2
13 1.1 paulus * - added Z_PACKET_FLUSH (see zlib.h for details)
14 1.1 paulus * - added inflateIncomp
15 1.4 christos *
16 1.4 christos * Id: zlib.c,v 1.5 1997/03/04 03:26:35 paulus Exp
17 1.1 paulus */
18 1.1 paulus
19 1.4 christos /*
20 1.4 christos * ==FILEVERSION 960926==
21 1.4 christos *
22 1.4 christos * This marker is used by the Linux installation script to determine
23 1.4 christos * whether an up-to-date version of this file is already installed.
24 1.4 christos */
25 1.1 paulus
26 1.1 paulus /*+++++*/
27 1.1 paulus /* zutil.h -- internal interface and configuration of the compression library
28 1.1 paulus * Copyright (C) 1995 Jean-loup Gailly.
29 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
30 1.1 paulus */
31 1.1 paulus
32 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
33 1.1 paulus part of the implementation of the compression library and is
34 1.1 paulus subject to change. Applications should only use zlib.h.
35 1.1 paulus */
36 1.1 paulus
37 1.1 paulus /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
38 1.1 paulus
39 1.1 paulus #define _Z_UTIL_H
40 1.1 paulus
41 1.1 paulus #include "zlib.h"
42 1.1 paulus
43 1.1 paulus #ifndef local
44 1.1 paulus # define local static
45 1.1 paulus #endif
46 1.1 paulus /* compile with -Dlocal if your debugger can't find static symbols */
47 1.1 paulus
48 1.1 paulus #define FAR
49 1.1 paulus
50 1.1 paulus typedef unsigned char uch;
51 1.1 paulus typedef uch FAR uchf;
52 1.1 paulus typedef unsigned short ush;
53 1.1 paulus typedef ush FAR ushf;
54 1.1 paulus typedef unsigned long ulg;
55 1.1 paulus
56 1.1 paulus extern char *z_errmsg[]; /* indexed by 1-zlib_error */
57 1.1 paulus
58 1.1 paulus #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
59 1.1 paulus /* To be used only when the state is known to be valid */
60 1.1 paulus
61 1.1 paulus #ifndef NULL
62 1.1 paulus #define NULL ((void *) 0)
63 1.1 paulus #endif
64 1.1 paulus
65 1.1 paulus /* common constants */
66 1.1 paulus
67 1.1 paulus #define DEFLATED 8
68 1.1 paulus
69 1.1 paulus #ifndef DEF_WBITS
70 1.1 paulus # define DEF_WBITS MAX_WBITS
71 1.1 paulus #endif
72 1.1 paulus /* default windowBits for decompression. MAX_WBITS is for compression only */
73 1.1 paulus
74 1.1 paulus #if MAX_MEM_LEVEL >= 8
75 1.1 paulus # define DEF_MEM_LEVEL 8
76 1.1 paulus #else
77 1.1 paulus # define DEF_MEM_LEVEL MAX_MEM_LEVEL
78 1.1 paulus #endif
79 1.1 paulus /* default memLevel */
80 1.1 paulus
81 1.1 paulus #define STORED_BLOCK 0
82 1.1 paulus #define STATIC_TREES 1
83 1.1 paulus #define DYN_TREES 2
84 1.1 paulus /* The three kinds of block type */
85 1.1 paulus
86 1.1 paulus #define MIN_MATCH 3
87 1.1 paulus #define MAX_MATCH 258
88 1.1 paulus /* The minimum and maximum match lengths */
89 1.1 paulus
90 1.1 paulus /* functions */
91 1.1 paulus
92 1.1 paulus #if defined(KERNEL) || defined(_KERNEL)
93 1.4 christos #include <sys/types.h>
94 1.4 christos #include <sys/time.h>
95 1.4 christos #include <sys/systm.h>
96 1.1 paulus # define zmemcpy(d, s, n) bcopy((s), (d), (n))
97 1.1 paulus # define zmemzero bzero
98 1.4 christos
99 1.1 paulus #else
100 1.4 christos #if defined(__KERNEL__)
101 1.4 christos /* Assume this is Linux */
102 1.4 christos #include <linux/string.h>
103 1.4 christos #define zmemcpy memcpy
104 1.4 christos #define zmemzero(dest, len) memset(dest, 0, len)
105 1.4 christos
106 1.4 christos #else /* not kernel */
107 1.1 paulus #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
108 1.1 paulus # define HAVE_MEMCPY
109 1.1 paulus #endif
110 1.1 paulus #ifdef HAVE_MEMCPY
111 1.1 paulus # define zmemcpy memcpy
112 1.1 paulus # define zmemzero(dest, len) memset(dest, 0, len)
113 1.1 paulus #else
114 1.1 paulus extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
115 1.1 paulus extern void zmemzero OF((Bytef* dest, uInt len));
116 1.1 paulus #endif
117 1.4 christos #endif /* __KERNEL__ */
118 1.4 christos #endif /* KERNEL */
119 1.1 paulus
120 1.1 paulus /* Diagnostic functions */
121 1.1 paulus #ifdef DEBUG_ZLIB
122 1.1 paulus # include <stdio.h>
123 1.1 paulus # ifndef verbose
124 1.1 paulus # define verbose 0
125 1.1 paulus # endif
126 1.1 paulus # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
127 1.1 paulus # define Trace(x) fprintf x
128 1.1 paulus # define Tracev(x) {if (verbose) fprintf x ;}
129 1.1 paulus # define Tracevv(x) {if (verbose>1) fprintf x ;}
130 1.1 paulus # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
131 1.1 paulus # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
132 1.1 paulus #else
133 1.1 paulus # define Assert(cond,msg)
134 1.1 paulus # define Trace(x)
135 1.1 paulus # define Tracev(x)
136 1.1 paulus # define Tracevv(x)
137 1.1 paulus # define Tracec(c,x)
138 1.1 paulus # define Tracecv(c,x)
139 1.1 paulus #endif
140 1.1 paulus
141 1.1 paulus
142 1.1 paulus typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
143 1.1 paulus
144 1.1 paulus /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
145 1.1 paulus /* void zcfree OF((voidpf opaque, voidpf ptr)); */
146 1.1 paulus
147 1.1 paulus #define ZALLOC(strm, items, size) \
148 1.1 paulus (*((strm)->zalloc))((strm)->opaque, (items), (size))
149 1.1 paulus #define ZFREE(strm, addr, size) \
150 1.1 paulus (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
151 1.1 paulus #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
152 1.1 paulus
153 1.1 paulus /* deflate.h -- internal compression state
154 1.1 paulus * Copyright (C) 1995 Jean-loup Gailly
155 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
156 1.1 paulus */
157 1.1 paulus
158 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
159 1.1 paulus part of the implementation of the compression library and is
160 1.1 paulus subject to change. Applications should only use zlib.h.
161 1.1 paulus */
162 1.1 paulus
163 1.1 paulus
164 1.1 paulus /*+++++*/
165 1.1 paulus /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
166 1.1 paulus
167 1.1 paulus /* ===========================================================================
168 1.1 paulus * Internal compression state.
169 1.1 paulus */
170 1.1 paulus
171 1.1 paulus /* Data type */
172 1.1 paulus #define BINARY 0
173 1.1 paulus #define ASCII 1
174 1.1 paulus #define UNKNOWN 2
175 1.1 paulus
176 1.1 paulus #define LENGTH_CODES 29
177 1.1 paulus /* number of length codes, not counting the special END_BLOCK code */
178 1.1 paulus
179 1.1 paulus #define LITERALS 256
180 1.1 paulus /* number of literal bytes 0..255 */
181 1.1 paulus
182 1.1 paulus #define L_CODES (LITERALS+1+LENGTH_CODES)
183 1.1 paulus /* number of Literal or Length codes, including the END_BLOCK code */
184 1.1 paulus
185 1.1 paulus #define D_CODES 30
186 1.1 paulus /* number of distance codes */
187 1.1 paulus
188 1.1 paulus #define BL_CODES 19
189 1.1 paulus /* number of codes used to transfer the bit lengths */
190 1.1 paulus
191 1.1 paulus #define HEAP_SIZE (2*L_CODES+1)
192 1.1 paulus /* maximum heap size */
193 1.1 paulus
194 1.1 paulus #define MAX_BITS 15
195 1.1 paulus /* All codes must not exceed MAX_BITS bits */
196 1.1 paulus
197 1.1 paulus #define INIT_STATE 42
198 1.1 paulus #define BUSY_STATE 113
199 1.1 paulus #define FLUSH_STATE 124
200 1.1 paulus #define FINISH_STATE 666
201 1.1 paulus /* Stream status */
202 1.1 paulus
203 1.1 paulus
204 1.1 paulus /* Data structure describing a single value and its code string. */
205 1.1 paulus typedef struct ct_data_s {
206 1.1 paulus union {
207 1.1 paulus ush freq; /* frequency count */
208 1.1 paulus ush code; /* bit string */
209 1.1 paulus } fc;
210 1.1 paulus union {
211 1.1 paulus ush dad; /* father node in Huffman tree */
212 1.1 paulus ush len; /* length of bit string */
213 1.1 paulus } dl;
214 1.1 paulus } FAR ct_data;
215 1.1 paulus
216 1.1 paulus #define Freq fc.freq
217 1.1 paulus #define Code fc.code
218 1.1 paulus #define Dad dl.dad
219 1.1 paulus #define Len dl.len
220 1.1 paulus
221 1.1 paulus typedef struct static_tree_desc_s static_tree_desc;
222 1.1 paulus
223 1.1 paulus typedef struct tree_desc_s {
224 1.1 paulus ct_data *dyn_tree; /* the dynamic tree */
225 1.1 paulus int max_code; /* largest code with non zero frequency */
226 1.1 paulus static_tree_desc *stat_desc; /* the corresponding static tree */
227 1.1 paulus } FAR tree_desc;
228 1.1 paulus
229 1.1 paulus typedef ush Pos;
230 1.1 paulus typedef Pos FAR Posf;
231 1.1 paulus typedef unsigned IPos;
232 1.1 paulus
233 1.1 paulus /* A Pos is an index in the character window. We use short instead of int to
234 1.1 paulus * save space in the various tables. IPos is used only for parameter passing.
235 1.1 paulus */
236 1.1 paulus
237 1.1 paulus typedef struct deflate_state {
238 1.1 paulus z_stream *strm; /* pointer back to this zlib stream */
239 1.1 paulus int status; /* as the name implies */
240 1.1 paulus Bytef *pending_buf; /* output still pending */
241 1.1 paulus Bytef *pending_out; /* next pending byte to output to the stream */
242 1.1 paulus int pending; /* nb of bytes in the pending buffer */
243 1.1 paulus uLong adler; /* adler32 of uncompressed data */
244 1.1 paulus int noheader; /* suppress zlib header and adler32 */
245 1.1 paulus Byte data_type; /* UNKNOWN, BINARY or ASCII */
246 1.1 paulus Byte method; /* STORED (for zip only) or DEFLATED */
247 1.1 paulus int minCompr; /* min size decrease for Z_FLUSH_NOSTORE */
248 1.1 paulus
249 1.1 paulus /* used by deflate.c: */
250 1.1 paulus
251 1.1 paulus uInt w_size; /* LZ77 window size (32K by default) */
252 1.1 paulus uInt w_bits; /* log2(w_size) (8..16) */
253 1.1 paulus uInt w_mask; /* w_size - 1 */
254 1.1 paulus
255 1.1 paulus Bytef *window;
256 1.1 paulus /* Sliding window. Input bytes are read into the second half of the window,
257 1.1 paulus * and move to the first half later to keep a dictionary of at least wSize
258 1.1 paulus * bytes. With this organization, matches are limited to a distance of
259 1.1 paulus * wSize-MAX_MATCH bytes, but this ensures that IO is always
260 1.1 paulus * performed with a length multiple of the block size. Also, it limits
261 1.1 paulus * the window size to 64K, which is quite useful on MSDOS.
262 1.1 paulus * To do: use the user input buffer as sliding window.
263 1.1 paulus */
264 1.1 paulus
265 1.1 paulus ulg window_size;
266 1.1 paulus /* Actual size of window: 2*wSize, except when the user input buffer
267 1.1 paulus * is directly used as sliding window.
268 1.1 paulus */
269 1.1 paulus
270 1.1 paulus Posf *prev;
271 1.1 paulus /* Link to older string with same hash index. To limit the size of this
272 1.1 paulus * array to 64K, this link is maintained only for the last 32K strings.
273 1.1 paulus * An index in this array is thus a window index modulo 32K.
274 1.1 paulus */
275 1.1 paulus
276 1.1 paulus Posf *head; /* Heads of the hash chains or NIL. */
277 1.1 paulus
278 1.1 paulus uInt ins_h; /* hash index of string to be inserted */
279 1.1 paulus uInt hash_size; /* number of elements in hash table */
280 1.1 paulus uInt hash_bits; /* log2(hash_size) */
281 1.1 paulus uInt hash_mask; /* hash_size-1 */
282 1.1 paulus
283 1.1 paulus uInt hash_shift;
284 1.1 paulus /* Number of bits by which ins_h must be shifted at each input
285 1.1 paulus * step. It must be such that after MIN_MATCH steps, the oldest
286 1.1 paulus * byte no longer takes part in the hash key, that is:
287 1.1 paulus * hash_shift * MIN_MATCH >= hash_bits
288 1.1 paulus */
289 1.1 paulus
290 1.1 paulus long block_start;
291 1.1 paulus /* Window position at the beginning of the current output block. Gets
292 1.1 paulus * negative when the window is moved backwards.
293 1.1 paulus */
294 1.1 paulus
295 1.1 paulus uInt match_length; /* length of best match */
296 1.1 paulus IPos prev_match; /* previous match */
297 1.1 paulus int match_available; /* set if previous match exists */
298 1.1 paulus uInt strstart; /* start of string to insert */
299 1.1 paulus uInt match_start; /* start of matching string */
300 1.1 paulus uInt lookahead; /* number of valid bytes ahead in window */
301 1.1 paulus
302 1.1 paulus uInt prev_length;
303 1.1 paulus /* Length of the best match at previous step. Matches not greater than this
304 1.1 paulus * are discarded. This is used in the lazy match evaluation.
305 1.1 paulus */
306 1.1 paulus
307 1.1 paulus uInt max_chain_length;
308 1.1 paulus /* To speed up deflation, hash chains are never searched beyond this
309 1.1 paulus * length. A higher limit improves compression ratio but degrades the
310 1.1 paulus * speed.
311 1.1 paulus */
312 1.1 paulus
313 1.1 paulus uInt max_lazy_match;
314 1.1 paulus /* Attempt to find a better match only when the current match is strictly
315 1.1 paulus * smaller than this value. This mechanism is used only for compression
316 1.1 paulus * levels >= 4.
317 1.1 paulus */
318 1.1 paulus # define max_insert_length max_lazy_match
319 1.1 paulus /* Insert new strings in the hash table only if the match length is not
320 1.1 paulus * greater than this length. This saves time but degrades compression.
321 1.1 paulus * max_insert_length is used only for compression levels <= 3.
322 1.1 paulus */
323 1.1 paulus
324 1.1 paulus int level; /* compression level (1..9) */
325 1.1 paulus int strategy; /* favor or force Huffman coding*/
326 1.1 paulus
327 1.1 paulus uInt good_match;
328 1.1 paulus /* Use a faster search when the previous match is longer than this */
329 1.1 paulus
330 1.1 paulus int nice_match; /* Stop searching when current match exceeds this */
331 1.1 paulus
332 1.1 paulus /* used by trees.c: */
333 1.1 paulus /* Didn't use ct_data typedef below to supress compiler warning */
334 1.1 paulus struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
335 1.1 paulus struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
336 1.1 paulus struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
337 1.1 paulus
338 1.1 paulus struct tree_desc_s l_desc; /* desc. for literal tree */
339 1.1 paulus struct tree_desc_s d_desc; /* desc. for distance tree */
340 1.1 paulus struct tree_desc_s bl_desc; /* desc. for bit length tree */
341 1.1 paulus
342 1.1 paulus ush bl_count[MAX_BITS+1];
343 1.1 paulus /* number of codes at each bit length for an optimal tree */
344 1.1 paulus
345 1.1 paulus int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
346 1.1 paulus int heap_len; /* number of elements in the heap */
347 1.1 paulus int heap_max; /* element of largest frequency */
348 1.1 paulus /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
349 1.1 paulus * The same heap array is used to build all trees.
350 1.1 paulus */
351 1.1 paulus
352 1.1 paulus uch depth[2*L_CODES+1];
353 1.1 paulus /* Depth of each subtree used as tie breaker for trees of equal frequency
354 1.1 paulus */
355 1.1 paulus
356 1.1 paulus uchf *l_buf; /* buffer for literals or lengths */
357 1.1 paulus
358 1.1 paulus uInt lit_bufsize;
359 1.1 paulus /* Size of match buffer for literals/lengths. There are 4 reasons for
360 1.1 paulus * limiting lit_bufsize to 64K:
361 1.1 paulus * - frequencies can be kept in 16 bit counters
362 1.1 paulus * - if compression is not successful for the first block, all input
363 1.1 paulus * data is still in the window so we can still emit a stored block even
364 1.1 paulus * when input comes from standard input. (This can also be done for
365 1.1 paulus * all blocks if lit_bufsize is not greater than 32K.)
366 1.1 paulus * - if compression is not successful for a file smaller than 64K, we can
367 1.1 paulus * even emit a stored file instead of a stored block (saving 5 bytes).
368 1.1 paulus * This is applicable only for zip (not gzip or zlib).
369 1.1 paulus * - creating new Huffman trees less frequently may not provide fast
370 1.1 paulus * adaptation to changes in the input data statistics. (Take for
371 1.1 paulus * example a binary file with poorly compressible code followed by
372 1.1 paulus * a highly compressible string table.) Smaller buffer sizes give
373 1.1 paulus * fast adaptation but have of course the overhead of transmitting
374 1.1 paulus * trees more frequently.
375 1.1 paulus * - I can't count above 4
376 1.1 paulus */
377 1.1 paulus
378 1.1 paulus uInt last_lit; /* running index in l_buf */
379 1.1 paulus
380 1.1 paulus ushf *d_buf;
381 1.1 paulus /* Buffer for distances. To simplify the code, d_buf and l_buf have
382 1.1 paulus * the same number of elements. To use different lengths, an extra flag
383 1.1 paulus * array would be necessary.
384 1.1 paulus */
385 1.1 paulus
386 1.1 paulus ulg opt_len; /* bit length of current block with optimal trees */
387 1.1 paulus ulg static_len; /* bit length of current block with static trees */
388 1.1 paulus ulg compressed_len; /* total bit length of compressed file */
389 1.1 paulus uInt matches; /* number of string matches in current block */
390 1.1 paulus int last_eob_len; /* bit length of EOB code for last block */
391 1.1 paulus
392 1.1 paulus #ifdef DEBUG_ZLIB
393 1.1 paulus ulg bits_sent; /* bit length of the compressed data */
394 1.1 paulus #endif
395 1.1 paulus
396 1.1 paulus ush bi_buf;
397 1.1 paulus /* Output buffer. bits are inserted starting at the bottom (least
398 1.1 paulus * significant bits).
399 1.1 paulus */
400 1.1 paulus int bi_valid;
401 1.1 paulus /* Number of valid bits in bi_buf. All bits above the last valid bit
402 1.1 paulus * are always zero.
403 1.1 paulus */
404 1.1 paulus
405 1.1 paulus uInt blocks_in_packet;
406 1.1 paulus /* Number of blocks produced since the last time Z_PACKET_FLUSH
407 1.1 paulus * was used.
408 1.1 paulus */
409 1.1 paulus
410 1.1 paulus } FAR deflate_state;
411 1.1 paulus
412 1.1 paulus /* Output a byte on the stream.
413 1.1 paulus * IN assertion: there is enough room in pending_buf.
414 1.1 paulus */
415 1.1 paulus #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
416 1.1 paulus
417 1.1 paulus
418 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
419 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
420 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
421 1.1 paulus */
422 1.1 paulus
423 1.1 paulus #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
424 1.1 paulus /* In order to simplify the code, particularly on 16 bit machines, match
425 1.1 paulus * distances are limited to MAX_DIST instead of WSIZE.
426 1.1 paulus */
427 1.1 paulus
428 1.1 paulus /* in trees.c */
429 1.1 paulus local void ct_init OF((deflate_state *s));
430 1.1 paulus local int ct_tally OF((deflate_state *s, int dist, int lc));
431 1.1 paulus local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
432 1.1 paulus int flush));
433 1.1 paulus local void ct_align OF((deflate_state *s));
434 1.1 paulus local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
435 1.1 paulus int eof));
436 1.1 paulus local void ct_stored_type_only OF((deflate_state *s));
437 1.1 paulus
438 1.1 paulus
439 1.1 paulus /*+++++*/
440 1.1 paulus /* deflate.c -- compress data using the deflation algorithm
441 1.1 paulus * Copyright (C) 1995 Jean-loup Gailly.
442 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
443 1.1 paulus */
444 1.1 paulus
445 1.1 paulus /*
446 1.1 paulus * ALGORITHM
447 1.1 paulus *
448 1.1 paulus * The "deflation" process depends on being able to identify portions
449 1.1 paulus * of the input text which are identical to earlier input (within a
450 1.1 paulus * sliding window trailing behind the input currently being processed).
451 1.1 paulus *
452 1.1 paulus * The most straightforward technique turns out to be the fastest for
453 1.1 paulus * most input files: try all possible matches and select the longest.
454 1.1 paulus * The key feature of this algorithm is that insertions into the string
455 1.1 paulus * dictionary are very simple and thus fast, and deletions are avoided
456 1.1 paulus * completely. Insertions are performed at each input character, whereas
457 1.1 paulus * string matches are performed only when the previous match ends. So it
458 1.1 paulus * is preferable to spend more time in matches to allow very fast string
459 1.1 paulus * insertions and avoid deletions. The matching algorithm for small
460 1.1 paulus * strings is inspired from that of Rabin & Karp. A brute force approach
461 1.1 paulus * is used to find longer strings when a small match has been found.
462 1.1 paulus * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
463 1.1 paulus * (by Leonid Broukhis).
464 1.1 paulus * A previous version of this file used a more sophisticated algorithm
465 1.1 paulus * (by Fiala and Greene) which is guaranteed to run in linear amortized
466 1.1 paulus * time, but has a larger average cost, uses more memory and is patented.
467 1.1 paulus * However the F&G algorithm may be faster for some highly redundant
468 1.1 paulus * files if the parameter max_chain_length (described below) is too large.
469 1.1 paulus *
470 1.1 paulus * ACKNOWLEDGEMENTS
471 1.1 paulus *
472 1.1 paulus * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
473 1.1 paulus * I found it in 'freeze' written by Leonid Broukhis.
474 1.1 paulus * Thanks to many people for bug reports and testing.
475 1.1 paulus *
476 1.1 paulus * REFERENCES
477 1.1 paulus *
478 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
479 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
480 1.1 paulus *
481 1.1 paulus * A description of the Rabin and Karp algorithm is given in the book
482 1.1 paulus * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
483 1.1 paulus *
484 1.1 paulus * Fiala,E.R., and Greene,D.H.
485 1.1 paulus * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
486 1.1 paulus *
487 1.1 paulus */
488 1.1 paulus
489 1.1 paulus /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
490 1.1 paulus
491 1.5 fvdl #if 0
492 1.1 paulus local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
493 1.5 fvdl #endif
494 1.1 paulus /*
495 1.1 paulus If you use the zlib library in a product, an acknowledgment is welcome
496 1.1 paulus in the documentation of your product. If for some reason you cannot
497 1.1 paulus include such an acknowledgment, I would appreciate that you keep this
498 1.1 paulus copyright string in the executable of your product.
499 1.1 paulus */
500 1.1 paulus
501 1.1 paulus #define NIL 0
502 1.1 paulus /* Tail of hash chains */
503 1.1 paulus
504 1.1 paulus #ifndef TOO_FAR
505 1.1 paulus # define TOO_FAR 4096
506 1.1 paulus #endif
507 1.1 paulus /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
508 1.1 paulus
509 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
510 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
511 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
512 1.1 paulus */
513 1.1 paulus
514 1.1 paulus /* Values for max_lazy_match, good_match and max_chain_length, depending on
515 1.1 paulus * the desired pack level (0..9). The values given below have been tuned to
516 1.1 paulus * exclude worst case performance for pathological files. Better values may be
517 1.1 paulus * found for specific files.
518 1.1 paulus */
519 1.1 paulus
520 1.1 paulus typedef struct config_s {
521 1.1 paulus ush good_length; /* reduce lazy search above this match length */
522 1.1 paulus ush max_lazy; /* do not perform lazy search above this match length */
523 1.1 paulus ush nice_length; /* quit search above this match length */
524 1.1 paulus ush max_chain;
525 1.1 paulus } config;
526 1.1 paulus
527 1.1 paulus local config configuration_table[10] = {
528 1.1 paulus /* good lazy nice chain */
529 1.1 paulus /* 0 */ {0, 0, 0, 0}, /* store only */
530 1.1 paulus /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
531 1.1 paulus /* 2 */ {4, 5, 16, 8},
532 1.1 paulus /* 3 */ {4, 6, 32, 32},
533 1.1 paulus
534 1.1 paulus /* 4 */ {4, 4, 16, 16}, /* lazy matches */
535 1.1 paulus /* 5 */ {8, 16, 32, 32},
536 1.1 paulus /* 6 */ {8, 16, 128, 128},
537 1.1 paulus /* 7 */ {8, 32, 128, 256},
538 1.1 paulus /* 8 */ {32, 128, 258, 1024},
539 1.1 paulus /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
540 1.1 paulus
541 1.1 paulus /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
542 1.1 paulus * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
543 1.1 paulus * meaning.
544 1.1 paulus */
545 1.1 paulus
546 1.1 paulus #define EQUAL 0
547 1.1 paulus /* result of memcmp for equal strings */
548 1.1 paulus
549 1.1 paulus /* ===========================================================================
550 1.1 paulus * Prototypes for local functions.
551 1.1 paulus */
552 1.1 paulus
553 1.1 paulus local void fill_window OF((deflate_state *s));
554 1.1 paulus local int deflate_fast OF((deflate_state *s, int flush));
555 1.1 paulus local int deflate_slow OF((deflate_state *s, int flush));
556 1.1 paulus local void lm_init OF((deflate_state *s));
557 1.1 paulus local int longest_match OF((deflate_state *s, IPos cur_match));
558 1.1 paulus local void putShortMSB OF((deflate_state *s, uInt b));
559 1.1 paulus local void flush_pending OF((z_stream *strm));
560 1.1 paulus local int read_buf OF((z_stream *strm, charf *buf, unsigned size));
561 1.1 paulus #ifdef ASMV
562 1.1 paulus void match_init OF((void)); /* asm code initialization */
563 1.1 paulus #endif
564 1.1 paulus
565 1.1 paulus #ifdef DEBUG_ZLIB
566 1.1 paulus local void check_match OF((deflate_state *s, IPos start, IPos match,
567 1.1 paulus int length));
568 1.1 paulus #endif
569 1.1 paulus
570 1.1 paulus
571 1.1 paulus /* ===========================================================================
572 1.1 paulus * Update a hash value with the given input byte
573 1.1 paulus * IN assertion: all calls to to UPDATE_HASH are made with consecutive
574 1.1 paulus * input characters, so that a running hash key can be computed from the
575 1.1 paulus * previous key instead of complete recalculation each time.
576 1.1 paulus */
577 1.1 paulus #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
578 1.1 paulus
579 1.1 paulus
580 1.1 paulus /* ===========================================================================
581 1.1 paulus * Insert string str in the dictionary and set match_head to the previous head
582 1.1 paulus * of the hash chain (the most recent string with same hash key). Return
583 1.1 paulus * the previous length of the hash chain.
584 1.1 paulus * IN assertion: all calls to to INSERT_STRING are made with consecutive
585 1.1 paulus * input characters and the first MIN_MATCH bytes of str are valid
586 1.1 paulus * (except for the last MIN_MATCH-1 bytes of the input file).
587 1.1 paulus */
588 1.1 paulus #define INSERT_STRING(s, str, match_head) \
589 1.1 paulus (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
590 1.1 paulus s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
591 1.1 paulus s->head[s->ins_h] = (str))
592 1.1 paulus
593 1.1 paulus /* ===========================================================================
594 1.1 paulus * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
595 1.1 paulus * prev[] will be initialized on the fly.
596 1.1 paulus */
597 1.1 paulus #define CLEAR_HASH(s) \
598 1.1 paulus s->head[s->hash_size-1] = NIL; \
599 1.1 paulus zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
600 1.1 paulus
601 1.1 paulus /* ========================================================================= */
602 1.1 paulus int deflateInit (strm, level)
603 1.1 paulus z_stream *strm;
604 1.1 paulus int level;
605 1.1 paulus {
606 1.1 paulus return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
607 1.1 paulus 0, 0);
608 1.1 paulus /* To do: ignore strm->next_in if we use it as window */
609 1.1 paulus }
610 1.1 paulus
611 1.1 paulus /* ========================================================================= */
612 1.1 paulus int deflateInit2 (strm, level, method, windowBits, memLevel,
613 1.1 paulus strategy, minCompression)
614 1.1 paulus z_stream *strm;
615 1.1 paulus int level;
616 1.1 paulus int method;
617 1.1 paulus int windowBits;
618 1.1 paulus int memLevel;
619 1.1 paulus int strategy;
620 1.1 paulus int minCompression;
621 1.1 paulus {
622 1.1 paulus deflate_state *s;
623 1.1 paulus int noheader = 0;
624 1.1 paulus
625 1.1 paulus if (strm == Z_NULL) return Z_STREAM_ERROR;
626 1.1 paulus
627 1.1 paulus strm->msg = Z_NULL;
628 1.1 paulus /* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
629 1.1 paulus /* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
630 1.1 paulus
631 1.1 paulus if (level == Z_DEFAULT_COMPRESSION) level = 6;
632 1.1 paulus
633 1.1 paulus if (windowBits < 0) { /* undocumented feature: suppress zlib header */
634 1.1 paulus noheader = 1;
635 1.1 paulus windowBits = -windowBits;
636 1.1 paulus }
637 1.1 paulus if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
638 1.1 paulus windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
639 1.1 paulus return Z_STREAM_ERROR;
640 1.1 paulus }
641 1.1 paulus s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
642 1.1 paulus if (s == Z_NULL) return Z_MEM_ERROR;
643 1.1 paulus strm->state = (struct internal_state FAR *)s;
644 1.1 paulus s->strm = strm;
645 1.1 paulus
646 1.1 paulus s->noheader = noheader;
647 1.1 paulus s->w_bits = windowBits;
648 1.1 paulus s->w_size = 1 << s->w_bits;
649 1.1 paulus s->w_mask = s->w_size - 1;
650 1.1 paulus
651 1.1 paulus s->hash_bits = memLevel + 7;
652 1.1 paulus s->hash_size = 1 << s->hash_bits;
653 1.1 paulus s->hash_mask = s->hash_size - 1;
654 1.1 paulus s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
655 1.1 paulus
656 1.1 paulus s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
657 1.1 paulus s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
658 1.1 paulus s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
659 1.1 paulus
660 1.1 paulus s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
661 1.1 paulus
662 1.1 paulus s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
663 1.1 paulus
664 1.1 paulus if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
665 1.1 paulus s->pending_buf == Z_NULL) {
666 1.1 paulus strm->msg = z_errmsg[1-Z_MEM_ERROR];
667 1.1 paulus deflateEnd (strm);
668 1.1 paulus return Z_MEM_ERROR;
669 1.1 paulus }
670 1.1 paulus s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
671 1.1 paulus s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
672 1.1 paulus /* We overlay pending_buf and d_buf+l_buf. This works since the average
673 1.1 paulus * output size for (length,distance) codes is <= 32 bits (worst case
674 1.1 paulus * is 15+15+13=33).
675 1.1 paulus */
676 1.1 paulus
677 1.1 paulus s->level = level;
678 1.1 paulus s->strategy = strategy;
679 1.1 paulus s->method = (Byte)method;
680 1.1 paulus s->minCompr = minCompression;
681 1.1 paulus s->blocks_in_packet = 0;
682 1.1 paulus
683 1.1 paulus return deflateReset(strm);
684 1.1 paulus }
685 1.1 paulus
686 1.1 paulus /* ========================================================================= */
687 1.1 paulus int deflateReset (strm)
688 1.1 paulus z_stream *strm;
689 1.1 paulus {
690 1.1 paulus deflate_state *s;
691 1.1 paulus
692 1.1 paulus if (strm == Z_NULL || strm->state == Z_NULL ||
693 1.1 paulus strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
694 1.1 paulus
695 1.1 paulus strm->total_in = strm->total_out = 0;
696 1.1 paulus strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
697 1.1 paulus strm->data_type = Z_UNKNOWN;
698 1.1 paulus
699 1.1 paulus s = (deflate_state *)strm->state;
700 1.1 paulus s->pending = 0;
701 1.1 paulus s->pending_out = s->pending_buf;
702 1.1 paulus
703 1.1 paulus if (s->noheader < 0) {
704 1.1 paulus s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
705 1.1 paulus }
706 1.1 paulus s->status = s->noheader ? BUSY_STATE : INIT_STATE;
707 1.1 paulus s->adler = 1;
708 1.1 paulus
709 1.1 paulus ct_init(s);
710 1.1 paulus lm_init(s);
711 1.1 paulus
712 1.1 paulus return Z_OK;
713 1.1 paulus }
714 1.1 paulus
715 1.1 paulus /* =========================================================================
716 1.1 paulus * Put a short in the pending buffer. The 16-bit value is put in MSB order.
717 1.1 paulus * IN assertion: the stream state is correct and there is enough room in
718 1.1 paulus * pending_buf.
719 1.1 paulus */
720 1.1 paulus local void putShortMSB (s, b)
721 1.1 paulus deflate_state *s;
722 1.1 paulus uInt b;
723 1.1 paulus {
724 1.1 paulus put_byte(s, (Byte)(b >> 8));
725 1.1 paulus put_byte(s, (Byte)(b & 0xff));
726 1.1 paulus }
727 1.1 paulus
728 1.1 paulus /* =========================================================================
729 1.1 paulus * Flush as much pending output as possible.
730 1.1 paulus */
731 1.1 paulus local void flush_pending(strm)
732 1.1 paulus z_stream *strm;
733 1.1 paulus {
734 1.1 paulus deflate_state *state = (deflate_state *) strm->state;
735 1.1 paulus unsigned len = state->pending;
736 1.1 paulus
737 1.1 paulus if (len > strm->avail_out) len = strm->avail_out;
738 1.1 paulus if (len == 0) return;
739 1.1 paulus
740 1.1 paulus if (strm->next_out != NULL) {
741 1.1 paulus zmemcpy(strm->next_out, state->pending_out, len);
742 1.1 paulus strm->next_out += len;
743 1.1 paulus }
744 1.1 paulus state->pending_out += len;
745 1.1 paulus strm->total_out += len;
746 1.1 paulus strm->avail_out -= len;
747 1.1 paulus state->pending -= len;
748 1.1 paulus if (state->pending == 0) {
749 1.1 paulus state->pending_out = state->pending_buf;
750 1.1 paulus }
751 1.1 paulus }
752 1.1 paulus
753 1.1 paulus /* ========================================================================= */
754 1.1 paulus int deflate (strm, flush)
755 1.1 paulus z_stream *strm;
756 1.1 paulus int flush;
757 1.1 paulus {
758 1.1 paulus deflate_state *state = (deflate_state *) strm->state;
759 1.1 paulus
760 1.1 paulus if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
761 1.1 paulus
762 1.1 paulus if (strm->next_in == Z_NULL && strm->avail_in != 0) {
763 1.1 paulus ERR_RETURN(strm, Z_STREAM_ERROR);
764 1.1 paulus }
765 1.1 paulus if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
766 1.1 paulus
767 1.1 paulus state->strm = strm; /* just in case */
768 1.1 paulus
769 1.1 paulus /* Write the zlib header */
770 1.1 paulus if (state->status == INIT_STATE) {
771 1.1 paulus
772 1.1 paulus uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
773 1.1 paulus uInt level_flags = (state->level-1) >> 1;
774 1.1 paulus
775 1.1 paulus if (level_flags > 3) level_flags = 3;
776 1.1 paulus header |= (level_flags << 6);
777 1.1 paulus header += 31 - (header % 31);
778 1.1 paulus
779 1.1 paulus state->status = BUSY_STATE;
780 1.1 paulus putShortMSB(state, header);
781 1.1 paulus }
782 1.1 paulus
783 1.1 paulus /* Flush as much pending output as possible */
784 1.1 paulus if (state->pending != 0) {
785 1.1 paulus flush_pending(strm);
786 1.1 paulus if (strm->avail_out == 0) return Z_OK;
787 1.1 paulus }
788 1.1 paulus
789 1.1 paulus /* If we came back in here to get the last output from
790 1.1 paulus * a previous flush, we're done for now.
791 1.1 paulus */
792 1.1 paulus if (state->status == FLUSH_STATE) {
793 1.1 paulus state->status = BUSY_STATE;
794 1.1 paulus if (flush != Z_NO_FLUSH && flush != Z_FINISH)
795 1.1 paulus return Z_OK;
796 1.1 paulus }
797 1.1 paulus
798 1.1 paulus /* User must not provide more input after the first FINISH: */
799 1.1 paulus if (state->status == FINISH_STATE && strm->avail_in != 0) {
800 1.1 paulus ERR_RETURN(strm, Z_BUF_ERROR);
801 1.1 paulus }
802 1.1 paulus
803 1.1 paulus /* Start a new block or continue the current one.
804 1.1 paulus */
805 1.1 paulus if (strm->avail_in != 0 || state->lookahead != 0 ||
806 1.1 paulus (flush == Z_FINISH && state->status != FINISH_STATE)) {
807 1.1 paulus int quit;
808 1.1 paulus
809 1.1 paulus if (flush == Z_FINISH) {
810 1.1 paulus state->status = FINISH_STATE;
811 1.1 paulus }
812 1.1 paulus if (state->level <= 3) {
813 1.1 paulus quit = deflate_fast(state, flush);
814 1.1 paulus } else {
815 1.1 paulus quit = deflate_slow(state, flush);
816 1.1 paulus }
817 1.1 paulus if (quit || strm->avail_out == 0)
818 1.1 paulus return Z_OK;
819 1.1 paulus /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
820 1.1 paulus * of deflate should use the same flush parameter to make sure
821 1.1 paulus * that the flush is complete. So we don't have to output an
822 1.1 paulus * empty block here, this will be done at next call. This also
823 1.1 paulus * ensures that for a very small output buffer, we emit at most
824 1.1 paulus * one empty block.
825 1.1 paulus */
826 1.1 paulus }
827 1.1 paulus
828 1.1 paulus /* If a flush was requested, we have a little more to output now. */
829 1.1 paulus if (flush != Z_NO_FLUSH && flush != Z_FINISH
830 1.1 paulus && state->status != FINISH_STATE) {
831 1.1 paulus switch (flush) {
832 1.1 paulus case Z_PARTIAL_FLUSH:
833 1.1 paulus ct_align(state);
834 1.1 paulus break;
835 1.1 paulus case Z_PACKET_FLUSH:
836 1.1 paulus /* Output just the 3-bit `stored' block type value,
837 1.1 paulus but not a zero length. */
838 1.1 paulus ct_stored_type_only(state);
839 1.1 paulus break;
840 1.1 paulus default:
841 1.1 paulus ct_stored_block(state, (char*)0, 0L, 0);
842 1.1 paulus /* For a full flush, this empty block will be recognized
843 1.1 paulus * as a special marker by inflate_sync().
844 1.1 paulus */
845 1.1 paulus if (flush == Z_FULL_FLUSH) {
846 1.1 paulus CLEAR_HASH(state); /* forget history */
847 1.1 paulus }
848 1.1 paulus }
849 1.1 paulus flush_pending(strm);
850 1.1 paulus if (strm->avail_out == 0) {
851 1.1 paulus /* We'll have to come back to get the rest of the output;
852 1.1 paulus * this ensures we don't output a second zero-length stored
853 1.1 paulus * block (or whatever).
854 1.1 paulus */
855 1.1 paulus state->status = FLUSH_STATE;
856 1.1 paulus return Z_OK;
857 1.1 paulus }
858 1.1 paulus }
859 1.1 paulus
860 1.1 paulus Assert(strm->avail_out > 0, "bug2");
861 1.1 paulus
862 1.1 paulus if (flush != Z_FINISH) return Z_OK;
863 1.1 paulus if (state->noheader) return Z_STREAM_END;
864 1.1 paulus
865 1.1 paulus /* Write the zlib trailer (adler32) */
866 1.1 paulus putShortMSB(state, (uInt)(state->adler >> 16));
867 1.1 paulus putShortMSB(state, (uInt)(state->adler & 0xffff));
868 1.1 paulus flush_pending(strm);
869 1.1 paulus /* If avail_out is zero, the application will call deflate again
870 1.1 paulus * to flush the rest.
871 1.1 paulus */
872 1.1 paulus state->noheader = -1; /* write the trailer only once! */
873 1.1 paulus return state->pending != 0 ? Z_OK : Z_STREAM_END;
874 1.1 paulus }
875 1.1 paulus
876 1.1 paulus /* ========================================================================= */
877 1.1 paulus int deflateEnd (strm)
878 1.1 paulus z_stream *strm;
879 1.1 paulus {
880 1.1 paulus deflate_state *state = (deflate_state *) strm->state;
881 1.1 paulus
882 1.1 paulus if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
883 1.1 paulus
884 1.1 paulus TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
885 1.1 paulus TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
886 1.1 paulus TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
887 1.1 paulus TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
888 1.1 paulus
889 1.1 paulus ZFREE(strm, state, sizeof(deflate_state));
890 1.1 paulus strm->state = Z_NULL;
891 1.1 paulus
892 1.1 paulus return Z_OK;
893 1.1 paulus }
894 1.1 paulus
895 1.1 paulus /* ===========================================================================
896 1.1 paulus * Read a new buffer from the current input stream, update the adler32
897 1.1 paulus * and total number of bytes read.
898 1.1 paulus */
899 1.1 paulus local int read_buf(strm, buf, size)
900 1.1 paulus z_stream *strm;
901 1.1 paulus charf *buf;
902 1.1 paulus unsigned size;
903 1.1 paulus {
904 1.1 paulus unsigned len = strm->avail_in;
905 1.1 paulus deflate_state *state = (deflate_state *) strm->state;
906 1.1 paulus
907 1.1 paulus if (len > size) len = size;
908 1.1 paulus if (len == 0) return 0;
909 1.1 paulus
910 1.1 paulus strm->avail_in -= len;
911 1.1 paulus
912 1.1 paulus if (!state->noheader) {
913 1.1 paulus state->adler = adler32(state->adler, strm->next_in, len);
914 1.1 paulus }
915 1.1 paulus zmemcpy(buf, strm->next_in, len);
916 1.1 paulus strm->next_in += len;
917 1.1 paulus strm->total_in += len;
918 1.1 paulus
919 1.1 paulus return (int)len;
920 1.1 paulus }
921 1.1 paulus
922 1.1 paulus /* ===========================================================================
923 1.1 paulus * Initialize the "longest match" routines for a new zlib stream
924 1.1 paulus */
925 1.1 paulus local void lm_init (s)
926 1.1 paulus deflate_state *s;
927 1.1 paulus {
928 1.1 paulus s->window_size = (ulg)2L*s->w_size;
929 1.1 paulus
930 1.1 paulus CLEAR_HASH(s);
931 1.1 paulus
932 1.1 paulus /* Set the default configuration parameters:
933 1.1 paulus */
934 1.1 paulus s->max_lazy_match = configuration_table[s->level].max_lazy;
935 1.1 paulus s->good_match = configuration_table[s->level].good_length;
936 1.1 paulus s->nice_match = configuration_table[s->level].nice_length;
937 1.1 paulus s->max_chain_length = configuration_table[s->level].max_chain;
938 1.1 paulus
939 1.1 paulus s->strstart = 0;
940 1.1 paulus s->block_start = 0L;
941 1.1 paulus s->lookahead = 0;
942 1.1 paulus s->match_length = MIN_MATCH-1;
943 1.1 paulus s->match_available = 0;
944 1.1 paulus s->ins_h = 0;
945 1.1 paulus #ifdef ASMV
946 1.1 paulus match_init(); /* initialize the asm code */
947 1.1 paulus #endif
948 1.1 paulus }
949 1.1 paulus
950 1.1 paulus /* ===========================================================================
951 1.1 paulus * Set match_start to the longest match starting at the given string and
952 1.1 paulus * return its length. Matches shorter or equal to prev_length are discarded,
953 1.1 paulus * in which case the result is equal to prev_length and match_start is
954 1.1 paulus * garbage.
955 1.1 paulus * IN assertions: cur_match is the head of the hash chain for the current
956 1.1 paulus * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
957 1.1 paulus */
958 1.1 paulus #ifndef ASMV
959 1.1 paulus /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
960 1.1 paulus * match.S. The code will be functionally equivalent.
961 1.1 paulus */
962 1.1 paulus local int longest_match(s, cur_match)
963 1.1 paulus deflate_state *s;
964 1.1 paulus IPos cur_match; /* current match */
965 1.1 paulus {
966 1.1 paulus unsigned chain_length = s->max_chain_length;/* max hash chain length */
967 1.1 paulus register Bytef *scan = s->window + s->strstart; /* current string */
968 1.1 paulus register Bytef *match; /* matched string */
969 1.1 paulus register int len; /* length of current match */
970 1.1 paulus int best_len = s->prev_length; /* best match length so far */
971 1.1 paulus IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
972 1.1 paulus s->strstart - (IPos)MAX_DIST(s) : NIL;
973 1.1 paulus /* Stop when cur_match becomes <= limit. To simplify the code,
974 1.1 paulus * we prevent matches with the string of window index 0.
975 1.1 paulus */
976 1.1 paulus Posf *prev = s->prev;
977 1.1 paulus uInt wmask = s->w_mask;
978 1.1 paulus
979 1.1 paulus #ifdef UNALIGNED_OK
980 1.1 paulus /* Compare two bytes at a time. Note: this is not always beneficial.
981 1.1 paulus * Try with and without -DUNALIGNED_OK to check.
982 1.1 paulus */
983 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
984 1.1 paulus register ush scan_start = *(ushf*)scan;
985 1.1 paulus register ush scan_end = *(ushf*)(scan+best_len-1);
986 1.1 paulus #else
987 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH;
988 1.1 paulus register Byte scan_end1 = scan[best_len-1];
989 1.1 paulus register Byte scan_end = scan[best_len];
990 1.1 paulus #endif
991 1.1 paulus
992 1.1 paulus /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
993 1.1 paulus * It is easy to get rid of this optimization if necessary.
994 1.1 paulus */
995 1.1 paulus Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
996 1.1 paulus
997 1.1 paulus /* Do not waste too much time if we already have a good match: */
998 1.1 paulus if (s->prev_length >= s->good_match) {
999 1.1 paulus chain_length >>= 2;
1000 1.1 paulus }
1001 1.1 paulus Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1002 1.1 paulus
1003 1.1 paulus do {
1004 1.1 paulus Assert(cur_match < s->strstart, "no future");
1005 1.1 paulus match = s->window + cur_match;
1006 1.1 paulus
1007 1.1 paulus /* Skip to next match if the match length cannot increase
1008 1.1 paulus * or if the match length is less than 2:
1009 1.1 paulus */
1010 1.1 paulus #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1011 1.1 paulus /* This code assumes sizeof(unsigned short) == 2. Do not use
1012 1.1 paulus * UNALIGNED_OK if your compiler uses a different size.
1013 1.1 paulus */
1014 1.1 paulus if (*(ushf*)(match+best_len-1) != scan_end ||
1015 1.1 paulus *(ushf*)match != scan_start) continue;
1016 1.1 paulus
1017 1.1 paulus /* It is not necessary to compare scan[2] and match[2] since they are
1018 1.1 paulus * always equal when the other bytes match, given that the hash keys
1019 1.1 paulus * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1020 1.1 paulus * strstart+3, +5, ... up to strstart+257. We check for insufficient
1021 1.1 paulus * lookahead only every 4th comparison; the 128th check will be made
1022 1.1 paulus * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1023 1.1 paulus * necessary to put more guard bytes at the end of the window, or
1024 1.1 paulus * to check more often for insufficient lookahead.
1025 1.1 paulus */
1026 1.1 paulus Assert(scan[2] == match[2], "scan[2]?");
1027 1.1 paulus scan++, match++;
1028 1.1 paulus do {
1029 1.1 paulus } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1030 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1031 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1032 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1033 1.1 paulus scan < strend);
1034 1.1 paulus /* The funny "do {}" generates better code on most compilers */
1035 1.1 paulus
1036 1.1 paulus /* Here, scan <= window+strstart+257 */
1037 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1038 1.1 paulus if (*scan == *match) scan++;
1039 1.1 paulus
1040 1.1 paulus len = (MAX_MATCH - 1) - (int)(strend-scan);
1041 1.1 paulus scan = strend - (MAX_MATCH-1);
1042 1.1 paulus
1043 1.1 paulus #else /* UNALIGNED_OK */
1044 1.1 paulus
1045 1.1 paulus if (match[best_len] != scan_end ||
1046 1.1 paulus match[best_len-1] != scan_end1 ||
1047 1.1 paulus *match != *scan ||
1048 1.1 paulus *++match != scan[1]) continue;
1049 1.1 paulus
1050 1.1 paulus /* The check at best_len-1 can be removed because it will be made
1051 1.1 paulus * again later. (This heuristic is not always a win.)
1052 1.1 paulus * It is not necessary to compare scan[2] and match[2] since they
1053 1.1 paulus * are always equal when the other bytes match, given that
1054 1.1 paulus * the hash keys are equal and that HASH_BITS >= 8.
1055 1.1 paulus */
1056 1.1 paulus scan += 2, match++;
1057 1.1 paulus Assert(*scan == *match, "match[2]?");
1058 1.1 paulus
1059 1.1 paulus /* We check for insufficient lookahead only every 8th comparison;
1060 1.1 paulus * the 256th check will be made at strstart+258.
1061 1.1 paulus */
1062 1.1 paulus do {
1063 1.1 paulus } while (*++scan == *++match && *++scan == *++match &&
1064 1.1 paulus *++scan == *++match && *++scan == *++match &&
1065 1.1 paulus *++scan == *++match && *++scan == *++match &&
1066 1.1 paulus *++scan == *++match && *++scan == *++match &&
1067 1.1 paulus scan < strend);
1068 1.1 paulus
1069 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1070 1.1 paulus
1071 1.1 paulus len = MAX_MATCH - (int)(strend - scan);
1072 1.1 paulus scan = strend - MAX_MATCH;
1073 1.1 paulus
1074 1.1 paulus #endif /* UNALIGNED_OK */
1075 1.1 paulus
1076 1.1 paulus if (len > best_len) {
1077 1.1 paulus s->match_start = cur_match;
1078 1.1 paulus best_len = len;
1079 1.1 paulus if (len >= s->nice_match) break;
1080 1.1 paulus #ifdef UNALIGNED_OK
1081 1.1 paulus scan_end = *(ushf*)(scan+best_len-1);
1082 1.1 paulus #else
1083 1.1 paulus scan_end1 = scan[best_len-1];
1084 1.1 paulus scan_end = scan[best_len];
1085 1.1 paulus #endif
1086 1.1 paulus }
1087 1.1 paulus } while ((cur_match = prev[cur_match & wmask]) > limit
1088 1.1 paulus && --chain_length != 0);
1089 1.1 paulus
1090 1.1 paulus return best_len;
1091 1.1 paulus }
1092 1.1 paulus #endif /* ASMV */
1093 1.1 paulus
1094 1.1 paulus #ifdef DEBUG_ZLIB
1095 1.1 paulus /* ===========================================================================
1096 1.1 paulus * Check that the match at match_start is indeed a match.
1097 1.1 paulus */
1098 1.1 paulus local void check_match(s, start, match, length)
1099 1.1 paulus deflate_state *s;
1100 1.1 paulus IPos start, match;
1101 1.1 paulus int length;
1102 1.1 paulus {
1103 1.1 paulus /* check that the match is indeed a match */
1104 1.1 paulus if (memcmp((charf *)s->window + match,
1105 1.1 paulus (charf *)s->window + start, length) != EQUAL) {
1106 1.1 paulus fprintf(stderr,
1107 1.1 paulus " start %u, match %u, length %d\n",
1108 1.1 paulus start, match, length);
1109 1.1 paulus do { fprintf(stderr, "%c%c", s->window[match++],
1110 1.1 paulus s->window[start++]); } while (--length != 0);
1111 1.1 paulus z_error("invalid match");
1112 1.1 paulus }
1113 1.1 paulus if (verbose > 1) {
1114 1.1 paulus fprintf(stderr,"\\[%d,%d]", start-match, length);
1115 1.1 paulus do { putc(s->window[start++], stderr); } while (--length != 0);
1116 1.1 paulus }
1117 1.1 paulus }
1118 1.1 paulus #else
1119 1.1 paulus # define check_match(s, start, match, length)
1120 1.1 paulus #endif
1121 1.1 paulus
1122 1.1 paulus /* ===========================================================================
1123 1.1 paulus * Fill the window when the lookahead becomes insufficient.
1124 1.1 paulus * Updates strstart and lookahead.
1125 1.1 paulus *
1126 1.1 paulus * IN assertion: lookahead < MIN_LOOKAHEAD
1127 1.1 paulus * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1128 1.1 paulus * At least one byte has been read, or avail_in == 0; reads are
1129 1.1 paulus * performed for at least two bytes (required for the zip translate_eol
1130 1.1 paulus * option -- not supported here).
1131 1.1 paulus */
1132 1.1 paulus local void fill_window(s)
1133 1.1 paulus deflate_state *s;
1134 1.1 paulus {
1135 1.1 paulus register unsigned n, m;
1136 1.1 paulus register Posf *p;
1137 1.1 paulus unsigned more; /* Amount of free space at the end of the window. */
1138 1.1 paulus uInt wsize = s->w_size;
1139 1.1 paulus
1140 1.1 paulus do {
1141 1.1 paulus more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1142 1.1 paulus
1143 1.1 paulus /* Deal with !@#$% 64K limit: */
1144 1.1 paulus if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1145 1.1 paulus more = wsize;
1146 1.1 paulus } else if (more == (unsigned)(-1)) {
1147 1.1 paulus /* Very unlikely, but possible on 16 bit machine if strstart == 0
1148 1.1 paulus * and lookahead == 1 (input done one byte at time)
1149 1.1 paulus */
1150 1.1 paulus more--;
1151 1.1 paulus
1152 1.1 paulus /* If the window is almost full and there is insufficient lookahead,
1153 1.1 paulus * move the upper half to the lower one to make room in the upper half.
1154 1.1 paulus */
1155 1.1 paulus } else if (s->strstart >= wsize+MAX_DIST(s)) {
1156 1.1 paulus
1157 1.1 paulus /* By the IN assertion, the window is not empty so we can't confuse
1158 1.1 paulus * more == 0 with more == 64K on a 16 bit machine.
1159 1.1 paulus */
1160 1.1 paulus zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1161 1.1 paulus (unsigned)wsize);
1162 1.1 paulus s->match_start -= wsize;
1163 1.1 paulus s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1164 1.1 paulus
1165 1.1 paulus s->block_start -= (long) wsize;
1166 1.1 paulus
1167 1.1 paulus /* Slide the hash table (could be avoided with 32 bit values
1168 1.1 paulus at the expense of memory usage):
1169 1.1 paulus */
1170 1.1 paulus n = s->hash_size;
1171 1.1 paulus p = &s->head[n];
1172 1.1 paulus do {
1173 1.1 paulus m = *--p;
1174 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1175 1.1 paulus } while (--n);
1176 1.1 paulus
1177 1.1 paulus n = wsize;
1178 1.1 paulus p = &s->prev[n];
1179 1.1 paulus do {
1180 1.1 paulus m = *--p;
1181 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1182 1.1 paulus /* If n is not on any hash chain, prev[n] is garbage but
1183 1.1 paulus * its value will never be used.
1184 1.1 paulus */
1185 1.1 paulus } while (--n);
1186 1.1 paulus
1187 1.1 paulus more += wsize;
1188 1.1 paulus }
1189 1.1 paulus if (s->strm->avail_in == 0) return;
1190 1.1 paulus
1191 1.1 paulus /* If there was no sliding:
1192 1.1 paulus * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1193 1.1 paulus * more == window_size - lookahead - strstart
1194 1.1 paulus * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1195 1.1 paulus * => more >= window_size - 2*WSIZE + 2
1196 1.1 paulus * In the BIG_MEM or MMAP case (not yet supported),
1197 1.1 paulus * window_size == input_size + MIN_LOOKAHEAD &&
1198 1.1 paulus * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1199 1.1 paulus * Otherwise, window_size == 2*WSIZE so more >= 2.
1200 1.1 paulus * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1201 1.1 paulus */
1202 1.1 paulus Assert(more >= 2, "more < 2");
1203 1.1 paulus
1204 1.1 paulus n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1205 1.1 paulus more);
1206 1.1 paulus s->lookahead += n;
1207 1.1 paulus
1208 1.1 paulus /* Initialize the hash value now that we have some input: */
1209 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1210 1.1 paulus s->ins_h = s->window[s->strstart];
1211 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1212 1.1 paulus #if MIN_MATCH != 3
1213 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1214 1.1 paulus #endif
1215 1.1 paulus }
1216 1.1 paulus /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1217 1.1 paulus * but this is not important since only literal bytes will be emitted.
1218 1.1 paulus */
1219 1.1 paulus
1220 1.1 paulus } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1221 1.1 paulus }
1222 1.1 paulus
1223 1.1 paulus /* ===========================================================================
1224 1.1 paulus * Flush the current block, with given end-of-file flag.
1225 1.1 paulus * IN assertion: strstart is set to the end of the current match.
1226 1.1 paulus */
1227 1.1 paulus #define FLUSH_BLOCK_ONLY(s, flush) { \
1228 1.1 paulus ct_flush_block(s, (s->block_start >= 0L ? \
1229 1.1 paulus (charf *)&s->window[(unsigned)s->block_start] : \
1230 1.1 paulus (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1231 1.1 paulus s->block_start = s->strstart; \
1232 1.1 paulus flush_pending(s->strm); \
1233 1.1 paulus Tracev((stderr,"[FLUSH]")); \
1234 1.1 paulus }
1235 1.1 paulus
1236 1.1 paulus /* Same but force premature exit if necessary. */
1237 1.1 paulus #define FLUSH_BLOCK(s, flush) { \
1238 1.1 paulus FLUSH_BLOCK_ONLY(s, flush); \
1239 1.1 paulus if (s->strm->avail_out == 0) return 1; \
1240 1.1 paulus }
1241 1.1 paulus
1242 1.1 paulus /* ===========================================================================
1243 1.1 paulus * Compress as much as possible from the input stream, return true if
1244 1.1 paulus * processing was terminated prematurely (no more input or output space).
1245 1.1 paulus * This function does not perform lazy evaluationof matches and inserts
1246 1.1 paulus * new strings in the dictionary only for unmatched strings or for short
1247 1.1 paulus * matches. It is used only for the fast compression options.
1248 1.1 paulus */
1249 1.1 paulus local int deflate_fast(s, flush)
1250 1.1 paulus deflate_state *s;
1251 1.1 paulus int flush;
1252 1.1 paulus {
1253 1.1 paulus IPos hash_head = NIL; /* head of the hash chain */
1254 1.1 paulus int bflush; /* set if current block must be flushed */
1255 1.1 paulus
1256 1.1 paulus s->prev_length = MIN_MATCH-1;
1257 1.1 paulus
1258 1.1 paulus for (;;) {
1259 1.1 paulus /* Make sure that we always have enough lookahead, except
1260 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1261 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1262 1.1 paulus * string following the next match.
1263 1.1 paulus */
1264 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1265 1.1 paulus fill_window(s);
1266 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1267 1.1 paulus
1268 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1269 1.1 paulus }
1270 1.1 paulus
1271 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1272 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1273 1.1 paulus */
1274 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1275 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1276 1.1 paulus }
1277 1.1 paulus
1278 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1279 1.1 paulus * At this point we have always match_length < MIN_MATCH
1280 1.1 paulus */
1281 1.1 paulus if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1282 1.1 paulus /* To simplify the code, we prevent matches with the string
1283 1.1 paulus * of window index 0 (in particular we have to avoid a match
1284 1.1 paulus * of the string with itself at the start of the input file).
1285 1.1 paulus */
1286 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1287 1.1 paulus s->match_length = longest_match (s, hash_head);
1288 1.1 paulus }
1289 1.1 paulus /* longest_match() sets match_start */
1290 1.1 paulus
1291 1.1 paulus if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1292 1.1 paulus }
1293 1.1 paulus if (s->match_length >= MIN_MATCH) {
1294 1.1 paulus check_match(s, s->strstart, s->match_start, s->match_length);
1295 1.1 paulus
1296 1.1 paulus bflush = ct_tally(s, s->strstart - s->match_start,
1297 1.1 paulus s->match_length - MIN_MATCH);
1298 1.1 paulus
1299 1.1 paulus s->lookahead -= s->match_length;
1300 1.1 paulus
1301 1.1 paulus /* Insert new strings in the hash table only if the match length
1302 1.1 paulus * is not too large. This saves time but degrades compression.
1303 1.1 paulus */
1304 1.1 paulus if (s->match_length <= s->max_insert_length &&
1305 1.1 paulus s->lookahead >= MIN_MATCH) {
1306 1.1 paulus s->match_length--; /* string at strstart already in hash table */
1307 1.1 paulus do {
1308 1.1 paulus s->strstart++;
1309 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1310 1.1 paulus /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1311 1.1 paulus * always MIN_MATCH bytes ahead.
1312 1.1 paulus */
1313 1.1 paulus } while (--s->match_length != 0);
1314 1.1 paulus s->strstart++;
1315 1.1 paulus } else {
1316 1.1 paulus s->strstart += s->match_length;
1317 1.1 paulus s->match_length = 0;
1318 1.1 paulus s->ins_h = s->window[s->strstart];
1319 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1320 1.1 paulus #if MIN_MATCH != 3
1321 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1322 1.1 paulus #endif
1323 1.1 paulus /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1324 1.1 paulus * matter since it will be recomputed at next deflate call.
1325 1.1 paulus */
1326 1.1 paulus }
1327 1.1 paulus } else {
1328 1.1 paulus /* No match, output a literal byte */
1329 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart]));
1330 1.1 paulus bflush = ct_tally (s, 0, s->window[s->strstart]);
1331 1.1 paulus s->lookahead--;
1332 1.1 paulus s->strstart++;
1333 1.1 paulus }
1334 1.1 paulus if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1335 1.1 paulus }
1336 1.1 paulus FLUSH_BLOCK(s, flush);
1337 1.1 paulus return 0; /* normal exit */
1338 1.1 paulus }
1339 1.1 paulus
1340 1.1 paulus /* ===========================================================================
1341 1.1 paulus * Same as above, but achieves better compression. We use a lazy
1342 1.1 paulus * evaluation for matches: a match is finally adopted only if there is
1343 1.1 paulus * no better match at the next window position.
1344 1.1 paulus */
1345 1.1 paulus local int deflate_slow(s, flush)
1346 1.1 paulus deflate_state *s;
1347 1.1 paulus int flush;
1348 1.1 paulus {
1349 1.1 paulus IPos hash_head = NIL; /* head of hash chain */
1350 1.1 paulus int bflush; /* set if current block must be flushed */
1351 1.1 paulus
1352 1.1 paulus /* Process the input block. */
1353 1.1 paulus for (;;) {
1354 1.1 paulus /* Make sure that we always have enough lookahead, except
1355 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1356 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1357 1.1 paulus * string following the next match.
1358 1.1 paulus */
1359 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1360 1.1 paulus fill_window(s);
1361 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1362 1.1 paulus
1363 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1364 1.1 paulus }
1365 1.1 paulus
1366 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1367 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1368 1.1 paulus */
1369 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1370 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1371 1.1 paulus }
1372 1.1 paulus
1373 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1374 1.1 paulus */
1375 1.1 paulus s->prev_length = s->match_length, s->prev_match = s->match_start;
1376 1.1 paulus s->match_length = MIN_MATCH-1;
1377 1.1 paulus
1378 1.1 paulus if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1379 1.1 paulus s->strstart - hash_head <= MAX_DIST(s)) {
1380 1.1 paulus /* To simplify the code, we prevent matches with the string
1381 1.1 paulus * of window index 0 (in particular we have to avoid a match
1382 1.1 paulus * of the string with itself at the start of the input file).
1383 1.1 paulus */
1384 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1385 1.1 paulus s->match_length = longest_match (s, hash_head);
1386 1.1 paulus }
1387 1.1 paulus /* longest_match() sets match_start */
1388 1.1 paulus if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1389 1.1 paulus
1390 1.1 paulus if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1391 1.1 paulus (s->match_length == MIN_MATCH &&
1392 1.1 paulus s->strstart - s->match_start > TOO_FAR))) {
1393 1.1 paulus
1394 1.1 paulus /* If prev_match is also MIN_MATCH, match_start is garbage
1395 1.1 paulus * but we will ignore the current match anyway.
1396 1.1 paulus */
1397 1.1 paulus s->match_length = MIN_MATCH-1;
1398 1.1 paulus }
1399 1.1 paulus }
1400 1.1 paulus /* If there was a match at the previous step and the current
1401 1.1 paulus * match is not better, output the previous match:
1402 1.1 paulus */
1403 1.1 paulus if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1404 1.1 paulus uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1405 1.1 paulus /* Do not insert strings in hash table beyond this. */
1406 1.1 paulus
1407 1.1 paulus check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1408 1.1 paulus
1409 1.1 paulus bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1410 1.1 paulus s->prev_length - MIN_MATCH);
1411 1.1 paulus
1412 1.1 paulus /* Insert in hash table all strings up to the end of the match.
1413 1.1 paulus * strstart-1 and strstart are already inserted. If there is not
1414 1.1 paulus * enough lookahead, the last two strings are not inserted in
1415 1.1 paulus * the hash table.
1416 1.1 paulus */
1417 1.1 paulus s->lookahead -= s->prev_length-1;
1418 1.1 paulus s->prev_length -= 2;
1419 1.1 paulus do {
1420 1.1 paulus if (++s->strstart <= max_insert) {
1421 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1422 1.1 paulus }
1423 1.1 paulus } while (--s->prev_length != 0);
1424 1.1 paulus s->match_available = 0;
1425 1.1 paulus s->match_length = MIN_MATCH-1;
1426 1.1 paulus s->strstart++;
1427 1.1 paulus
1428 1.1 paulus if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1429 1.1 paulus
1430 1.1 paulus } else if (s->match_available) {
1431 1.1 paulus /* If there was no match at the previous position, output a
1432 1.1 paulus * single literal. If there was a match but the current match
1433 1.1 paulus * is longer, truncate the previous match to a single literal.
1434 1.1 paulus */
1435 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1436 1.1 paulus if (ct_tally (s, 0, s->window[s->strstart-1])) {
1437 1.1 paulus FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1438 1.1 paulus }
1439 1.1 paulus s->strstart++;
1440 1.1 paulus s->lookahead--;
1441 1.1 paulus if (s->strm->avail_out == 0) return 1;
1442 1.1 paulus } else {
1443 1.1 paulus /* There is no previous match to compare with, wait for
1444 1.1 paulus * the next step to decide.
1445 1.1 paulus */
1446 1.1 paulus s->match_available = 1;
1447 1.1 paulus s->strstart++;
1448 1.1 paulus s->lookahead--;
1449 1.1 paulus }
1450 1.1 paulus }
1451 1.1 paulus Assert (flush != Z_NO_FLUSH, "no flush?");
1452 1.1 paulus if (s->match_available) {
1453 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1454 1.1 paulus ct_tally (s, 0, s->window[s->strstart-1]);
1455 1.1 paulus s->match_available = 0;
1456 1.1 paulus }
1457 1.1 paulus FLUSH_BLOCK(s, flush);
1458 1.1 paulus return 0;
1459 1.1 paulus }
1460 1.1 paulus
1461 1.1 paulus
1462 1.1 paulus /*+++++*/
1463 1.1 paulus /* trees.c -- output deflated data using Huffman coding
1464 1.1 paulus * Copyright (C) 1995 Jean-loup Gailly
1465 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
1466 1.1 paulus */
1467 1.1 paulus
1468 1.1 paulus /*
1469 1.1 paulus * ALGORITHM
1470 1.1 paulus *
1471 1.1 paulus * The "deflation" process uses several Huffman trees. The more
1472 1.1 paulus * common source values are represented by shorter bit sequences.
1473 1.1 paulus *
1474 1.1 paulus * Each code tree is stored in a compressed form which is itself
1475 1.1 paulus * a Huffman encoding of the lengths of all the code strings (in
1476 1.1 paulus * ascending order by source values). The actual code strings are
1477 1.1 paulus * reconstructed from the lengths in the inflate process, as described
1478 1.1 paulus * in the deflate specification.
1479 1.1 paulus *
1480 1.1 paulus * REFERENCES
1481 1.1 paulus *
1482 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1483 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1484 1.1 paulus *
1485 1.1 paulus * Storer, James A.
1486 1.1 paulus * Data Compression: Methods and Theory, pp. 49-50.
1487 1.1 paulus * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1488 1.1 paulus *
1489 1.1 paulus * Sedgewick, R.
1490 1.1 paulus * Algorithms, p290.
1491 1.1 paulus * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1492 1.1 paulus */
1493 1.1 paulus
1494 1.1 paulus /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1495 1.1 paulus
1496 1.1 paulus #ifdef DEBUG_ZLIB
1497 1.1 paulus # include <ctype.h>
1498 1.1 paulus #endif
1499 1.1 paulus
1500 1.1 paulus /* ===========================================================================
1501 1.1 paulus * Constants
1502 1.1 paulus */
1503 1.1 paulus
1504 1.1 paulus #define MAX_BL_BITS 7
1505 1.1 paulus /* Bit length codes must not exceed MAX_BL_BITS bits */
1506 1.1 paulus
1507 1.1 paulus #define END_BLOCK 256
1508 1.1 paulus /* end of block literal code */
1509 1.1 paulus
1510 1.1 paulus #define REP_3_6 16
1511 1.1 paulus /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1512 1.1 paulus
1513 1.1 paulus #define REPZ_3_10 17
1514 1.1 paulus /* repeat a zero length 3-10 times (3 bits of repeat count) */
1515 1.1 paulus
1516 1.1 paulus #define REPZ_11_138 18
1517 1.1 paulus /* repeat a zero length 11-138 times (7 bits of repeat count) */
1518 1.1 paulus
1519 1.1 paulus local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1520 1.1 paulus = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1521 1.1 paulus
1522 1.1 paulus local int extra_dbits[D_CODES] /* extra bits for each distance code */
1523 1.1 paulus = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1524 1.1 paulus
1525 1.1 paulus local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1526 1.1 paulus = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1527 1.1 paulus
1528 1.1 paulus local uch bl_order[BL_CODES]
1529 1.1 paulus = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1530 1.1 paulus /* The lengths of the bit length codes are sent in order of decreasing
1531 1.1 paulus * probability, to avoid transmitting the lengths for unused bit length codes.
1532 1.1 paulus */
1533 1.1 paulus
1534 1.1 paulus #define Buf_size (8 * 2*sizeof(char))
1535 1.1 paulus /* Number of bits used within bi_buf. (bi_buf might be implemented on
1536 1.1 paulus * more than 16 bits on some systems.)
1537 1.1 paulus */
1538 1.1 paulus
1539 1.1 paulus /* ===========================================================================
1540 1.1 paulus * Local data. These are initialized only once.
1541 1.1 paulus * To do: initialize at compile time to be completely reentrant. ???
1542 1.1 paulus */
1543 1.1 paulus
1544 1.1 paulus local ct_data static_ltree[L_CODES+2];
1545 1.1 paulus /* The static literal tree. Since the bit lengths are imposed, there is no
1546 1.1 paulus * need for the L_CODES extra codes used during heap construction. However
1547 1.1 paulus * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1548 1.1 paulus * below).
1549 1.1 paulus */
1550 1.1 paulus
1551 1.1 paulus local ct_data static_dtree[D_CODES];
1552 1.1 paulus /* The static distance tree. (Actually a trivial tree since all codes use
1553 1.1 paulus * 5 bits.)
1554 1.1 paulus */
1555 1.1 paulus
1556 1.1 paulus local uch dist_code[512];
1557 1.1 paulus /* distance codes. The first 256 values correspond to the distances
1558 1.1 paulus * 3 .. 258, the last 256 values correspond to the top 8 bits of
1559 1.1 paulus * the 15 bit distances.
1560 1.1 paulus */
1561 1.1 paulus
1562 1.1 paulus local uch length_code[MAX_MATCH-MIN_MATCH+1];
1563 1.1 paulus /* length code for each normalized match length (0 == MIN_MATCH) */
1564 1.1 paulus
1565 1.1 paulus local int base_length[LENGTH_CODES];
1566 1.1 paulus /* First normalized length for each code (0 = MIN_MATCH) */
1567 1.1 paulus
1568 1.1 paulus local int base_dist[D_CODES];
1569 1.1 paulus /* First normalized distance for each code (0 = distance of 1) */
1570 1.1 paulus
1571 1.1 paulus struct static_tree_desc_s {
1572 1.1 paulus ct_data *static_tree; /* static tree or NULL */
1573 1.1 paulus intf *extra_bits; /* extra bits for each code or NULL */
1574 1.1 paulus int extra_base; /* base index for extra_bits */
1575 1.1 paulus int elems; /* max number of elements in the tree */
1576 1.1 paulus int max_length; /* max bit length for the codes */
1577 1.1 paulus };
1578 1.1 paulus
1579 1.1 paulus local static_tree_desc static_l_desc =
1580 1.1 paulus {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1581 1.1 paulus
1582 1.1 paulus local static_tree_desc static_d_desc =
1583 1.1 paulus {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1584 1.1 paulus
1585 1.1 paulus local static_tree_desc static_bl_desc =
1586 1.1 paulus {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1587 1.1 paulus
1588 1.1 paulus /* ===========================================================================
1589 1.1 paulus * Local (static) routines in this file.
1590 1.1 paulus */
1591 1.1 paulus
1592 1.1 paulus local void ct_static_init OF((void));
1593 1.1 paulus local void init_block OF((deflate_state *s));
1594 1.1 paulus local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1595 1.1 paulus local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1596 1.1 paulus local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1597 1.1 paulus local void build_tree OF((deflate_state *s, tree_desc *desc));
1598 1.1 paulus local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1599 1.1 paulus local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1600 1.1 paulus local int build_bl_tree OF((deflate_state *s));
1601 1.1 paulus local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1602 1.1 paulus int blcodes));
1603 1.1 paulus local void compress_block OF((deflate_state *s, ct_data *ltree,
1604 1.1 paulus ct_data *dtree));
1605 1.1 paulus local void set_data_type OF((deflate_state *s));
1606 1.1 paulus local unsigned bi_reverse OF((unsigned value, int length));
1607 1.1 paulus local void bi_windup OF((deflate_state *s));
1608 1.1 paulus local void bi_flush OF((deflate_state *s));
1609 1.1 paulus local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1610 1.1 paulus int header));
1611 1.1 paulus
1612 1.1 paulus #ifndef DEBUG_ZLIB
1613 1.1 paulus # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1614 1.1 paulus /* Send a code of the given tree. c and tree must not have side effects */
1615 1.1 paulus
1616 1.1 paulus #else /* DEBUG_ZLIB */
1617 1.1 paulus # define send_code(s, c, tree) \
1618 1.1 paulus { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1619 1.1 paulus send_bits(s, tree[c].Code, tree[c].Len); }
1620 1.1 paulus #endif
1621 1.1 paulus
1622 1.1 paulus #define d_code(dist) \
1623 1.1 paulus ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1624 1.1 paulus /* Mapping from a distance to a distance code. dist is the distance - 1 and
1625 1.1 paulus * must not have side effects. dist_code[256] and dist_code[257] are never
1626 1.1 paulus * used.
1627 1.1 paulus */
1628 1.1 paulus
1629 1.1 paulus /* ===========================================================================
1630 1.1 paulus * Output a short LSB first on the stream.
1631 1.1 paulus * IN assertion: there is enough room in pendingBuf.
1632 1.1 paulus */
1633 1.1 paulus #define put_short(s, w) { \
1634 1.1 paulus put_byte(s, (uch)((w) & 0xff)); \
1635 1.1 paulus put_byte(s, (uch)((ush)(w) >> 8)); \
1636 1.1 paulus }
1637 1.1 paulus
1638 1.1 paulus /* ===========================================================================
1639 1.1 paulus * Send a value on a given number of bits.
1640 1.1 paulus * IN assertion: length <= 16 and value fits in length bits.
1641 1.1 paulus */
1642 1.1 paulus #ifdef DEBUG_ZLIB
1643 1.1 paulus local void send_bits OF((deflate_state *s, int value, int length));
1644 1.1 paulus
1645 1.1 paulus local void send_bits(s, value, length)
1646 1.1 paulus deflate_state *s;
1647 1.1 paulus int value; /* value to send */
1648 1.1 paulus int length; /* number of bits */
1649 1.1 paulus {
1650 1.1 paulus Tracev((stderr," l %2d v %4x ", length, value));
1651 1.1 paulus Assert(length > 0 && length <= 15, "invalid length");
1652 1.1 paulus s->bits_sent += (ulg)length;
1653 1.1 paulus
1654 1.1 paulus /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1655 1.1 paulus * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1656 1.1 paulus * unused bits in value.
1657 1.1 paulus */
1658 1.1 paulus if (s->bi_valid > (int)Buf_size - length) {
1659 1.1 paulus s->bi_buf |= (value << s->bi_valid);
1660 1.1 paulus put_short(s, s->bi_buf);
1661 1.1 paulus s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1662 1.1 paulus s->bi_valid += length - Buf_size;
1663 1.1 paulus } else {
1664 1.1 paulus s->bi_buf |= value << s->bi_valid;
1665 1.1 paulus s->bi_valid += length;
1666 1.1 paulus }
1667 1.1 paulus }
1668 1.1 paulus #else /* !DEBUG_ZLIB */
1669 1.1 paulus
1670 1.1 paulus #define send_bits(s, value, length) \
1671 1.1 paulus { int len = length;\
1672 1.1 paulus if (s->bi_valid > (int)Buf_size - len) {\
1673 1.1 paulus int val = value;\
1674 1.1 paulus s->bi_buf |= (val << s->bi_valid);\
1675 1.1 paulus put_short(s, s->bi_buf);\
1676 1.1 paulus s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1677 1.1 paulus s->bi_valid += len - Buf_size;\
1678 1.1 paulus } else {\
1679 1.1 paulus s->bi_buf |= (value) << s->bi_valid;\
1680 1.1 paulus s->bi_valid += len;\
1681 1.1 paulus }\
1682 1.1 paulus }
1683 1.1 paulus #endif /* DEBUG_ZLIB */
1684 1.1 paulus
1685 1.1 paulus
1686 1.1 paulus #define MAX(a,b) (a >= b ? a : b)
1687 1.1 paulus /* the arguments must not have side effects */
1688 1.1 paulus
1689 1.1 paulus /* ===========================================================================
1690 1.1 paulus * Initialize the various 'constant' tables.
1691 1.1 paulus * To do: do this at compile time.
1692 1.1 paulus */
1693 1.1 paulus local void ct_static_init()
1694 1.1 paulus {
1695 1.1 paulus int n; /* iterates over tree elements */
1696 1.1 paulus int bits; /* bit counter */
1697 1.1 paulus int length; /* length value */
1698 1.1 paulus int code; /* code value */
1699 1.1 paulus int dist; /* distance index */
1700 1.1 paulus ush bl_count[MAX_BITS+1];
1701 1.1 paulus /* number of codes at each bit length for an optimal tree */
1702 1.1 paulus
1703 1.1 paulus /* Initialize the mapping length (0..255) -> length code (0..28) */
1704 1.1 paulus length = 0;
1705 1.1 paulus for (code = 0; code < LENGTH_CODES-1; code++) {
1706 1.1 paulus base_length[code] = length;
1707 1.1 paulus for (n = 0; n < (1<<extra_lbits[code]); n++) {
1708 1.1 paulus length_code[length++] = (uch)code;
1709 1.1 paulus }
1710 1.1 paulus }
1711 1.1 paulus Assert (length == 256, "ct_static_init: length != 256");
1712 1.1 paulus /* Note that the length 255 (match length 258) can be represented
1713 1.1 paulus * in two different ways: code 284 + 5 bits or code 285, so we
1714 1.1 paulus * overwrite length_code[255] to use the best encoding:
1715 1.1 paulus */
1716 1.1 paulus length_code[length-1] = (uch)code;
1717 1.1 paulus
1718 1.1 paulus /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1719 1.1 paulus dist = 0;
1720 1.1 paulus for (code = 0 ; code < 16; code++) {
1721 1.1 paulus base_dist[code] = dist;
1722 1.1 paulus for (n = 0; n < (1<<extra_dbits[code]); n++) {
1723 1.1 paulus dist_code[dist++] = (uch)code;
1724 1.1 paulus }
1725 1.1 paulus }
1726 1.1 paulus Assert (dist == 256, "ct_static_init: dist != 256");
1727 1.1 paulus dist >>= 7; /* from now on, all distances are divided by 128 */
1728 1.1 paulus for ( ; code < D_CODES; code++) {
1729 1.1 paulus base_dist[code] = dist << 7;
1730 1.1 paulus for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1731 1.1 paulus dist_code[256 + dist++] = (uch)code;
1732 1.1 paulus }
1733 1.1 paulus }
1734 1.1 paulus Assert (dist == 256, "ct_static_init: 256+dist != 512");
1735 1.1 paulus
1736 1.1 paulus /* Construct the codes of the static literal tree */
1737 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1738 1.1 paulus n = 0;
1739 1.1 paulus while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1740 1.1 paulus while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1741 1.1 paulus while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1742 1.1 paulus while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1743 1.1 paulus /* Codes 286 and 287 do not exist, but we must include them in the
1744 1.1 paulus * tree construction to get a canonical Huffman tree (longest code
1745 1.1 paulus * all ones)
1746 1.1 paulus */
1747 1.1 paulus gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1748 1.1 paulus
1749 1.1 paulus /* The static distance tree is trivial: */
1750 1.1 paulus for (n = 0; n < D_CODES; n++) {
1751 1.1 paulus static_dtree[n].Len = 5;
1752 1.1 paulus static_dtree[n].Code = bi_reverse(n, 5);
1753 1.1 paulus }
1754 1.1 paulus }
1755 1.1 paulus
1756 1.1 paulus /* ===========================================================================
1757 1.1 paulus * Initialize the tree data structures for a new zlib stream.
1758 1.1 paulus */
1759 1.1 paulus local void ct_init(s)
1760 1.1 paulus deflate_state *s;
1761 1.1 paulus {
1762 1.1 paulus if (static_dtree[0].Len == 0) {
1763 1.1 paulus ct_static_init(); /* To do: at compile time */
1764 1.1 paulus }
1765 1.1 paulus
1766 1.1 paulus s->compressed_len = 0L;
1767 1.1 paulus
1768 1.1 paulus s->l_desc.dyn_tree = s->dyn_ltree;
1769 1.1 paulus s->l_desc.stat_desc = &static_l_desc;
1770 1.1 paulus
1771 1.1 paulus s->d_desc.dyn_tree = s->dyn_dtree;
1772 1.1 paulus s->d_desc.stat_desc = &static_d_desc;
1773 1.1 paulus
1774 1.1 paulus s->bl_desc.dyn_tree = s->bl_tree;
1775 1.1 paulus s->bl_desc.stat_desc = &static_bl_desc;
1776 1.1 paulus
1777 1.1 paulus s->bi_buf = 0;
1778 1.1 paulus s->bi_valid = 0;
1779 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
1780 1.1 paulus #ifdef DEBUG_ZLIB
1781 1.1 paulus s->bits_sent = 0L;
1782 1.1 paulus #endif
1783 1.1 paulus s->blocks_in_packet = 0;
1784 1.1 paulus
1785 1.1 paulus /* Initialize the first block of the first file: */
1786 1.1 paulus init_block(s);
1787 1.1 paulus }
1788 1.1 paulus
1789 1.1 paulus /* ===========================================================================
1790 1.1 paulus * Initialize a new block.
1791 1.1 paulus */
1792 1.1 paulus local void init_block(s)
1793 1.1 paulus deflate_state *s;
1794 1.1 paulus {
1795 1.1 paulus int n; /* iterates over tree elements */
1796 1.1 paulus
1797 1.1 paulus /* Initialize the trees. */
1798 1.1 paulus for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1799 1.1 paulus for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1800 1.1 paulus for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1801 1.1 paulus
1802 1.1 paulus s->dyn_ltree[END_BLOCK].Freq = 1;
1803 1.1 paulus s->opt_len = s->static_len = 0L;
1804 1.1 paulus s->last_lit = s->matches = 0;
1805 1.1 paulus }
1806 1.1 paulus
1807 1.1 paulus #define SMALLEST 1
1808 1.1 paulus /* Index within the heap array of least frequent node in the Huffman tree */
1809 1.1 paulus
1810 1.1 paulus
1811 1.1 paulus /* ===========================================================================
1812 1.1 paulus * Remove the smallest element from the heap and recreate the heap with
1813 1.1 paulus * one less element. Updates heap and heap_len.
1814 1.1 paulus */
1815 1.1 paulus #define pqremove(s, tree, top) \
1816 1.1 paulus {\
1817 1.1 paulus top = s->heap[SMALLEST]; \
1818 1.1 paulus s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1819 1.1 paulus pqdownheap(s, tree, SMALLEST); \
1820 1.1 paulus }
1821 1.1 paulus
1822 1.1 paulus /* ===========================================================================
1823 1.1 paulus * Compares to subtrees, using the tree depth as tie breaker when
1824 1.1 paulus * the subtrees have equal frequency. This minimizes the worst case length.
1825 1.1 paulus */
1826 1.1 paulus #define smaller(tree, n, m, depth) \
1827 1.1 paulus (tree[n].Freq < tree[m].Freq || \
1828 1.1 paulus (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1829 1.1 paulus
1830 1.1 paulus /* ===========================================================================
1831 1.1 paulus * Restore the heap property by moving down the tree starting at node k,
1832 1.1 paulus * exchanging a node with the smallest of its two sons if necessary, stopping
1833 1.1 paulus * when the heap property is re-established (each father smaller than its
1834 1.1 paulus * two sons).
1835 1.1 paulus */
1836 1.1 paulus local void pqdownheap(s, tree, k)
1837 1.1 paulus deflate_state *s;
1838 1.1 paulus ct_data *tree; /* the tree to restore */
1839 1.1 paulus int k; /* node to move down */
1840 1.1 paulus {
1841 1.1 paulus int v = s->heap[k];
1842 1.1 paulus int j = k << 1; /* left son of k */
1843 1.1 paulus while (j <= s->heap_len) {
1844 1.1 paulus /* Set j to the smallest of the two sons: */
1845 1.1 paulus if (j < s->heap_len &&
1846 1.1 paulus smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1847 1.1 paulus j++;
1848 1.1 paulus }
1849 1.1 paulus /* Exit if v is smaller than both sons */
1850 1.1 paulus if (smaller(tree, v, s->heap[j], s->depth)) break;
1851 1.1 paulus
1852 1.1 paulus /* Exchange v with the smallest son */
1853 1.1 paulus s->heap[k] = s->heap[j]; k = j;
1854 1.1 paulus
1855 1.1 paulus /* And continue down the tree, setting j to the left son of k */
1856 1.1 paulus j <<= 1;
1857 1.1 paulus }
1858 1.1 paulus s->heap[k] = v;
1859 1.1 paulus }
1860 1.1 paulus
1861 1.1 paulus /* ===========================================================================
1862 1.1 paulus * Compute the optimal bit lengths for a tree and update the total bit length
1863 1.1 paulus * for the current block.
1864 1.1 paulus * IN assertion: the fields freq and dad are set, heap[heap_max] and
1865 1.1 paulus * above are the tree nodes sorted by increasing frequency.
1866 1.1 paulus * OUT assertions: the field len is set to the optimal bit length, the
1867 1.1 paulus * array bl_count contains the frequencies for each bit length.
1868 1.1 paulus * The length opt_len is updated; static_len is also updated if stree is
1869 1.1 paulus * not null.
1870 1.1 paulus */
1871 1.1 paulus local void gen_bitlen(s, desc)
1872 1.1 paulus deflate_state *s;
1873 1.1 paulus tree_desc *desc; /* the tree descriptor */
1874 1.1 paulus {
1875 1.1 paulus ct_data *tree = desc->dyn_tree;
1876 1.1 paulus int max_code = desc->max_code;
1877 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
1878 1.1 paulus intf *extra = desc->stat_desc->extra_bits;
1879 1.1 paulus int base = desc->stat_desc->extra_base;
1880 1.1 paulus int max_length = desc->stat_desc->max_length;
1881 1.1 paulus int h; /* heap index */
1882 1.1 paulus int n, m; /* iterate over the tree elements */
1883 1.1 paulus int bits; /* bit length */
1884 1.1 paulus int xbits; /* extra bits */
1885 1.1 paulus ush f; /* frequency */
1886 1.1 paulus int overflow = 0; /* number of elements with bit length too large */
1887 1.1 paulus
1888 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1889 1.1 paulus
1890 1.1 paulus /* In a first pass, compute the optimal bit lengths (which may
1891 1.1 paulus * overflow in the case of the bit length tree).
1892 1.1 paulus */
1893 1.1 paulus tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1894 1.1 paulus
1895 1.1 paulus for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1896 1.1 paulus n = s->heap[h];
1897 1.1 paulus bits = tree[tree[n].Dad].Len + 1;
1898 1.1 paulus if (bits > max_length) bits = max_length, overflow++;
1899 1.1 paulus tree[n].Len = (ush)bits;
1900 1.1 paulus /* We overwrite tree[n].Dad which is no longer needed */
1901 1.1 paulus
1902 1.1 paulus if (n > max_code) continue; /* not a leaf node */
1903 1.1 paulus
1904 1.1 paulus s->bl_count[bits]++;
1905 1.1 paulus xbits = 0;
1906 1.1 paulus if (n >= base) xbits = extra[n-base];
1907 1.1 paulus f = tree[n].Freq;
1908 1.1 paulus s->opt_len += (ulg)f * (bits + xbits);
1909 1.1 paulus if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1910 1.1 paulus }
1911 1.1 paulus if (overflow == 0) return;
1912 1.1 paulus
1913 1.1 paulus Trace((stderr,"\nbit length overflow\n"));
1914 1.1 paulus /* This happens for example on obj2 and pic of the Calgary corpus */
1915 1.1 paulus
1916 1.1 paulus /* Find the first bit length which could increase: */
1917 1.1 paulus do {
1918 1.1 paulus bits = max_length-1;
1919 1.1 paulus while (s->bl_count[bits] == 0) bits--;
1920 1.1 paulus s->bl_count[bits]--; /* move one leaf down the tree */
1921 1.1 paulus s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1922 1.1 paulus s->bl_count[max_length]--;
1923 1.1 paulus /* The brother of the overflow item also moves one step up,
1924 1.1 paulus * but this does not affect bl_count[max_length]
1925 1.1 paulus */
1926 1.1 paulus overflow -= 2;
1927 1.1 paulus } while (overflow > 0);
1928 1.1 paulus
1929 1.1 paulus /* Now recompute all bit lengths, scanning in increasing frequency.
1930 1.1 paulus * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1931 1.1 paulus * lengths instead of fixing only the wrong ones. This idea is taken
1932 1.1 paulus * from 'ar' written by Haruhiko Okumura.)
1933 1.1 paulus */
1934 1.1 paulus for (bits = max_length; bits != 0; bits--) {
1935 1.1 paulus n = s->bl_count[bits];
1936 1.1 paulus while (n != 0) {
1937 1.1 paulus m = s->heap[--h];
1938 1.1 paulus if (m > max_code) continue;
1939 1.1 paulus if (tree[m].Len != (unsigned) bits) {
1940 1.1 paulus Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1941 1.1 paulus s->opt_len += ((long)bits - (long)tree[m].Len)
1942 1.1 paulus *(long)tree[m].Freq;
1943 1.1 paulus tree[m].Len = (ush)bits;
1944 1.1 paulus }
1945 1.1 paulus n--;
1946 1.1 paulus }
1947 1.1 paulus }
1948 1.1 paulus }
1949 1.1 paulus
1950 1.1 paulus /* ===========================================================================
1951 1.1 paulus * Generate the codes for a given tree and bit counts (which need not be
1952 1.1 paulus * optimal).
1953 1.1 paulus * IN assertion: the array bl_count contains the bit length statistics for
1954 1.1 paulus * the given tree and the field len is set for all tree elements.
1955 1.1 paulus * OUT assertion: the field code is set for all tree elements of non
1956 1.1 paulus * zero code length.
1957 1.1 paulus */
1958 1.1 paulus local void gen_codes (tree, max_code, bl_count)
1959 1.1 paulus ct_data *tree; /* the tree to decorate */
1960 1.1 paulus int max_code; /* largest code with non zero frequency */
1961 1.1 paulus ushf *bl_count; /* number of codes at each bit length */
1962 1.1 paulus {
1963 1.1 paulus ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1964 1.1 paulus ush code = 0; /* running code value */
1965 1.1 paulus int bits; /* bit index */
1966 1.1 paulus int n; /* code index */
1967 1.1 paulus
1968 1.1 paulus /* The distribution counts are first used to generate the code values
1969 1.1 paulus * without bit reversal.
1970 1.1 paulus */
1971 1.1 paulus for (bits = 1; bits <= MAX_BITS; bits++) {
1972 1.1 paulus next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1973 1.1 paulus }
1974 1.1 paulus /* Check that the bit counts in bl_count are consistent. The last code
1975 1.1 paulus * must be all ones.
1976 1.1 paulus */
1977 1.1 paulus Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1978 1.1 paulus "inconsistent bit counts");
1979 1.1 paulus Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1980 1.1 paulus
1981 1.1 paulus for (n = 0; n <= max_code; n++) {
1982 1.1 paulus int len = tree[n].Len;
1983 1.1 paulus if (len == 0) continue;
1984 1.1 paulus /* Now reverse the bits */
1985 1.1 paulus tree[n].Code = bi_reverse(next_code[len]++, len);
1986 1.1 paulus
1987 1.1 paulus Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1988 1.1 paulus n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1989 1.1 paulus }
1990 1.1 paulus }
1991 1.1 paulus
1992 1.1 paulus /* ===========================================================================
1993 1.1 paulus * Construct one Huffman tree and assigns the code bit strings and lengths.
1994 1.1 paulus * Update the total bit length for the current block.
1995 1.1 paulus * IN assertion: the field freq is set for all tree elements.
1996 1.1 paulus * OUT assertions: the fields len and code are set to the optimal bit length
1997 1.1 paulus * and corresponding code. The length opt_len is updated; static_len is
1998 1.1 paulus * also updated if stree is not null. The field max_code is set.
1999 1.1 paulus */
2000 1.1 paulus local void build_tree(s, desc)
2001 1.1 paulus deflate_state *s;
2002 1.1 paulus tree_desc *desc; /* the tree descriptor */
2003 1.1 paulus {
2004 1.1 paulus ct_data *tree = desc->dyn_tree;
2005 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
2006 1.1 paulus int elems = desc->stat_desc->elems;
2007 1.1 paulus int n, m; /* iterate over heap elements */
2008 1.1 paulus int max_code = -1; /* largest code with non zero frequency */
2009 1.1 paulus int node; /* new node being created */
2010 1.1 paulus
2011 1.1 paulus /* Construct the initial heap, with least frequent element in
2012 1.1 paulus * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2013 1.1 paulus * heap[0] is not used.
2014 1.1 paulus */
2015 1.1 paulus s->heap_len = 0, s->heap_max = HEAP_SIZE;
2016 1.1 paulus
2017 1.1 paulus for (n = 0; n < elems; n++) {
2018 1.1 paulus if (tree[n].Freq != 0) {
2019 1.1 paulus s->heap[++(s->heap_len)] = max_code = n;
2020 1.1 paulus s->depth[n] = 0;
2021 1.1 paulus } else {
2022 1.1 paulus tree[n].Len = 0;
2023 1.1 paulus }
2024 1.1 paulus }
2025 1.1 paulus
2026 1.1 paulus /* The pkzip format requires that at least one distance code exists,
2027 1.1 paulus * and that at least one bit should be sent even if there is only one
2028 1.1 paulus * possible code. So to avoid special checks later on we force at least
2029 1.1 paulus * two codes of non zero frequency.
2030 1.1 paulus */
2031 1.1 paulus while (s->heap_len < 2) {
2032 1.1 paulus node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2033 1.1 paulus tree[node].Freq = 1;
2034 1.1 paulus s->depth[node] = 0;
2035 1.1 paulus s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2036 1.1 paulus /* node is 0 or 1 so it does not have extra bits */
2037 1.1 paulus }
2038 1.1 paulus desc->max_code = max_code;
2039 1.1 paulus
2040 1.1 paulus /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2041 1.1 paulus * establish sub-heaps of increasing lengths:
2042 1.1 paulus */
2043 1.1 paulus for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2044 1.1 paulus
2045 1.1 paulus /* Construct the Huffman tree by repeatedly combining the least two
2046 1.1 paulus * frequent nodes.
2047 1.1 paulus */
2048 1.1 paulus node = elems; /* next internal node of the tree */
2049 1.1 paulus do {
2050 1.1 paulus pqremove(s, tree, n); /* n = node of least frequency */
2051 1.1 paulus m = s->heap[SMALLEST]; /* m = node of next least frequency */
2052 1.1 paulus
2053 1.1 paulus s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2054 1.1 paulus s->heap[--(s->heap_max)] = m;
2055 1.1 paulus
2056 1.1 paulus /* Create a new node father of n and m */
2057 1.1 paulus tree[node].Freq = tree[n].Freq + tree[m].Freq;
2058 1.1 paulus s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2059 1.1 paulus tree[n].Dad = tree[m].Dad = (ush)node;
2060 1.1 paulus #ifdef DUMP_BL_TREE
2061 1.1 paulus if (tree == s->bl_tree) {
2062 1.1 paulus fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2063 1.1 paulus node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2064 1.1 paulus }
2065 1.1 paulus #endif
2066 1.1 paulus /* and insert the new node in the heap */
2067 1.1 paulus s->heap[SMALLEST] = node++;
2068 1.1 paulus pqdownheap(s, tree, SMALLEST);
2069 1.1 paulus
2070 1.1 paulus } while (s->heap_len >= 2);
2071 1.1 paulus
2072 1.1 paulus s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2073 1.1 paulus
2074 1.1 paulus /* At this point, the fields freq and dad are set. We can now
2075 1.1 paulus * generate the bit lengths.
2076 1.1 paulus */
2077 1.1 paulus gen_bitlen(s, (tree_desc *)desc);
2078 1.1 paulus
2079 1.1 paulus /* The field len is now set, we can generate the bit codes */
2080 1.1 paulus gen_codes ((ct_data *)tree, max_code, s->bl_count);
2081 1.1 paulus }
2082 1.1 paulus
2083 1.1 paulus /* ===========================================================================
2084 1.1 paulus * Scan a literal or distance tree to determine the frequencies of the codes
2085 1.1 paulus * in the bit length tree.
2086 1.1 paulus */
2087 1.1 paulus local void scan_tree (s, tree, max_code)
2088 1.1 paulus deflate_state *s;
2089 1.1 paulus ct_data *tree; /* the tree to be scanned */
2090 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2091 1.1 paulus {
2092 1.1 paulus int n; /* iterates over all tree elements */
2093 1.1 paulus int prevlen = -1; /* last emitted length */
2094 1.1 paulus int curlen; /* length of current code */
2095 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2096 1.1 paulus int count = 0; /* repeat count of the current code */
2097 1.1 paulus int max_count = 7; /* max repeat count */
2098 1.1 paulus int min_count = 4; /* min repeat count */
2099 1.1 paulus
2100 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2101 1.1 paulus tree[max_code+1].Len = (ush)0xffff; /* guard */
2102 1.1 paulus
2103 1.1 paulus for (n = 0; n <= max_code; n++) {
2104 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2105 1.1 paulus if (++count < max_count && curlen == nextlen) {
2106 1.1 paulus continue;
2107 1.1 paulus } else if (count < min_count) {
2108 1.1 paulus s->bl_tree[curlen].Freq += count;
2109 1.1 paulus } else if (curlen != 0) {
2110 1.1 paulus if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2111 1.1 paulus s->bl_tree[REP_3_6].Freq++;
2112 1.1 paulus } else if (count <= 10) {
2113 1.1 paulus s->bl_tree[REPZ_3_10].Freq++;
2114 1.1 paulus } else {
2115 1.1 paulus s->bl_tree[REPZ_11_138].Freq++;
2116 1.1 paulus }
2117 1.1 paulus count = 0; prevlen = curlen;
2118 1.1 paulus if (nextlen == 0) {
2119 1.1 paulus max_count = 138, min_count = 3;
2120 1.1 paulus } else if (curlen == nextlen) {
2121 1.1 paulus max_count = 6, min_count = 3;
2122 1.1 paulus } else {
2123 1.1 paulus max_count = 7, min_count = 4;
2124 1.1 paulus }
2125 1.1 paulus }
2126 1.1 paulus }
2127 1.1 paulus
2128 1.1 paulus /* ===========================================================================
2129 1.1 paulus * Send a literal or distance tree in compressed form, using the codes in
2130 1.1 paulus * bl_tree.
2131 1.1 paulus */
2132 1.1 paulus local void send_tree (s, tree, max_code)
2133 1.1 paulus deflate_state *s;
2134 1.1 paulus ct_data *tree; /* the tree to be scanned */
2135 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2136 1.1 paulus {
2137 1.1 paulus int n; /* iterates over all tree elements */
2138 1.1 paulus int prevlen = -1; /* last emitted length */
2139 1.1 paulus int curlen; /* length of current code */
2140 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2141 1.1 paulus int count = 0; /* repeat count of the current code */
2142 1.1 paulus int max_count = 7; /* max repeat count */
2143 1.1 paulus int min_count = 4; /* min repeat count */
2144 1.1 paulus
2145 1.1 paulus /* tree[max_code+1].Len = -1; */ /* guard already set */
2146 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2147 1.1 paulus
2148 1.1 paulus for (n = 0; n <= max_code; n++) {
2149 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2150 1.1 paulus if (++count < max_count && curlen == nextlen) {
2151 1.1 paulus continue;
2152 1.1 paulus } else if (count < min_count) {
2153 1.1 paulus do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2154 1.1 paulus
2155 1.1 paulus } else if (curlen != 0) {
2156 1.1 paulus if (curlen != prevlen) {
2157 1.1 paulus send_code(s, curlen, s->bl_tree); count--;
2158 1.1 paulus }
2159 1.1 paulus Assert(count >= 3 && count <= 6, " 3_6?");
2160 1.1 paulus send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2161 1.1 paulus
2162 1.1 paulus } else if (count <= 10) {
2163 1.1 paulus send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2164 1.1 paulus
2165 1.1 paulus } else {
2166 1.1 paulus send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2167 1.1 paulus }
2168 1.1 paulus count = 0; prevlen = curlen;
2169 1.1 paulus if (nextlen == 0) {
2170 1.1 paulus max_count = 138, min_count = 3;
2171 1.1 paulus } else if (curlen == nextlen) {
2172 1.1 paulus max_count = 6, min_count = 3;
2173 1.1 paulus } else {
2174 1.1 paulus max_count = 7, min_count = 4;
2175 1.1 paulus }
2176 1.1 paulus }
2177 1.1 paulus }
2178 1.1 paulus
2179 1.1 paulus /* ===========================================================================
2180 1.1 paulus * Construct the Huffman tree for the bit lengths and return the index in
2181 1.1 paulus * bl_order of the last bit length code to send.
2182 1.1 paulus */
2183 1.1 paulus local int build_bl_tree(s)
2184 1.1 paulus deflate_state *s;
2185 1.1 paulus {
2186 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2187 1.1 paulus
2188 1.1 paulus /* Determine the bit length frequencies for literal and distance trees */
2189 1.1 paulus scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2190 1.1 paulus scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2191 1.1 paulus
2192 1.1 paulus /* Build the bit length tree: */
2193 1.1 paulus build_tree(s, (tree_desc *)(&(s->bl_desc)));
2194 1.1 paulus /* opt_len now includes the length of the tree representations, except
2195 1.1 paulus * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2196 1.1 paulus */
2197 1.1 paulus
2198 1.1 paulus /* Determine the number of bit length codes to send. The pkzip format
2199 1.1 paulus * requires that at least 4 bit length codes be sent. (appnote.txt says
2200 1.1 paulus * 3 but the actual value used is 4.)
2201 1.1 paulus */
2202 1.1 paulus for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2203 1.1 paulus if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2204 1.1 paulus }
2205 1.1 paulus /* Update opt_len to include the bit length tree and counts */
2206 1.1 paulus s->opt_len += 3*(max_blindex+1) + 5+5+4;
2207 1.1 paulus Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2208 1.1 paulus s->opt_len, s->static_len));
2209 1.1 paulus
2210 1.1 paulus return max_blindex;
2211 1.1 paulus }
2212 1.1 paulus
2213 1.1 paulus /* ===========================================================================
2214 1.1 paulus * Send the header for a block using dynamic Huffman trees: the counts, the
2215 1.1 paulus * lengths of the bit length codes, the literal tree and the distance tree.
2216 1.1 paulus * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2217 1.1 paulus */
2218 1.1 paulus local void send_all_trees(s, lcodes, dcodes, blcodes)
2219 1.1 paulus deflate_state *s;
2220 1.1 paulus int lcodes, dcodes, blcodes; /* number of codes for each tree */
2221 1.1 paulus {
2222 1.1 paulus int rank; /* index in bl_order */
2223 1.1 paulus
2224 1.1 paulus Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2225 1.1 paulus Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2226 1.1 paulus "too many codes");
2227 1.1 paulus Tracev((stderr, "\nbl counts: "));
2228 1.1 paulus send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2229 1.1 paulus send_bits(s, dcodes-1, 5);
2230 1.1 paulus send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2231 1.1 paulus for (rank = 0; rank < blcodes; rank++) {
2232 1.1 paulus Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2233 1.1 paulus send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2234 1.1 paulus }
2235 1.1 paulus Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2236 1.1 paulus
2237 1.1 paulus send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2238 1.1 paulus Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2239 1.1 paulus
2240 1.1 paulus send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2241 1.1 paulus Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2242 1.1 paulus }
2243 1.1 paulus
2244 1.1 paulus /* ===========================================================================
2245 1.1 paulus * Send a stored block
2246 1.1 paulus */
2247 1.1 paulus local void ct_stored_block(s, buf, stored_len, eof)
2248 1.1 paulus deflate_state *s;
2249 1.1 paulus charf *buf; /* input block */
2250 1.1 paulus ulg stored_len; /* length of input block */
2251 1.1 paulus int eof; /* true if this is the last block for a file */
2252 1.1 paulus {
2253 1.1 paulus send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2254 1.1 paulus s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2255 1.1 paulus s->compressed_len += (stored_len + 4) << 3;
2256 1.1 paulus
2257 1.1 paulus copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2258 1.1 paulus }
2259 1.1 paulus
2260 1.1 paulus /* Send just the `stored block' type code without any length bytes or data.
2261 1.1 paulus */
2262 1.1 paulus local void ct_stored_type_only(s)
2263 1.1 paulus deflate_state *s;
2264 1.1 paulus {
2265 1.1 paulus send_bits(s, (STORED_BLOCK << 1), 3);
2266 1.1 paulus bi_windup(s);
2267 1.1 paulus s->compressed_len = (s->compressed_len + 3) & ~7L;
2268 1.1 paulus }
2269 1.1 paulus
2270 1.1 paulus
2271 1.1 paulus /* ===========================================================================
2272 1.1 paulus * Send one empty static block to give enough lookahead for inflate.
2273 1.1 paulus * This takes 10 bits, of which 7 may remain in the bit buffer.
2274 1.1 paulus * The current inflate code requires 9 bits of lookahead. If the EOB
2275 1.1 paulus * code for the previous block was coded on 5 bits or less, inflate
2276 1.1 paulus * may have only 5+3 bits of lookahead to decode this EOB.
2277 1.1 paulus * (There are no problems if the previous block is stored or fixed.)
2278 1.1 paulus */
2279 1.1 paulus local void ct_align(s)
2280 1.1 paulus deflate_state *s;
2281 1.1 paulus {
2282 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2283 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2284 1.1 paulus s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2285 1.1 paulus bi_flush(s);
2286 1.1 paulus /* Of the 10 bits for the empty block, we have already sent
2287 1.1 paulus * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2288 1.1 paulus * block was thus its length plus what we have just sent.
2289 1.1 paulus */
2290 1.1 paulus if (s->last_eob_len + 10 - s->bi_valid < 9) {
2291 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2292 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2293 1.1 paulus s->compressed_len += 10L;
2294 1.1 paulus bi_flush(s);
2295 1.1 paulus }
2296 1.1 paulus s->last_eob_len = 7;
2297 1.1 paulus }
2298 1.1 paulus
2299 1.1 paulus /* ===========================================================================
2300 1.1 paulus * Determine the best encoding for the current block: dynamic trees, static
2301 1.1 paulus * trees or store, and output the encoded block to the zip file. This function
2302 1.1 paulus * returns the total compressed length for the file so far.
2303 1.1 paulus */
2304 1.1 paulus local ulg ct_flush_block(s, buf, stored_len, flush)
2305 1.1 paulus deflate_state *s;
2306 1.1 paulus charf *buf; /* input block, or NULL if too old */
2307 1.1 paulus ulg stored_len; /* length of input block */
2308 1.1 paulus int flush; /* Z_FINISH if this is the last block for a file */
2309 1.1 paulus {
2310 1.1 paulus ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2311 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2312 1.1 paulus int eof = flush == Z_FINISH;
2313 1.1 paulus
2314 1.1 paulus ++s->blocks_in_packet;
2315 1.1 paulus
2316 1.1 paulus /* Check if the file is ascii or binary */
2317 1.1 paulus if (s->data_type == UNKNOWN) set_data_type(s);
2318 1.1 paulus
2319 1.1 paulus /* Construct the literal and distance trees */
2320 1.1 paulus build_tree(s, (tree_desc *)(&(s->l_desc)));
2321 1.1 paulus Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2322 1.1 paulus s->static_len));
2323 1.1 paulus
2324 1.1 paulus build_tree(s, (tree_desc *)(&(s->d_desc)));
2325 1.1 paulus Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2326 1.1 paulus s->static_len));
2327 1.1 paulus /* At this point, opt_len and static_len are the total bit lengths of
2328 1.1 paulus * the compressed block data, excluding the tree representations.
2329 1.1 paulus */
2330 1.1 paulus
2331 1.1 paulus /* Build the bit length tree for the above two trees, and get the index
2332 1.1 paulus * in bl_order of the last bit length code to send.
2333 1.1 paulus */
2334 1.1 paulus max_blindex = build_bl_tree(s);
2335 1.1 paulus
2336 1.1 paulus /* Determine the best encoding. Compute first the block length in bytes */
2337 1.1 paulus opt_lenb = (s->opt_len+3+7)>>3;
2338 1.1 paulus static_lenb = (s->static_len+3+7)>>3;
2339 1.1 paulus
2340 1.1 paulus Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2341 1.1 paulus opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2342 1.1 paulus s->last_lit));
2343 1.1 paulus
2344 1.1 paulus if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2345 1.1 paulus
2346 1.1 paulus /* If compression failed and this is the first and last block,
2347 1.1 paulus * and if the .zip file can be seeked (to rewrite the local header),
2348 1.1 paulus * the whole file is transformed into a stored file:
2349 1.1 paulus */
2350 1.1 paulus #ifdef STORED_FILE_OK
2351 1.1 paulus # ifdef FORCE_STORED_FILE
2352 1.1 paulus if (eof && compressed_len == 0L) /* force stored file */
2353 1.1 paulus # else
2354 1.1 paulus if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2355 1.1 paulus # endif
2356 1.1 paulus {
2357 1.1 paulus /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2358 1.1 paulus if (buf == (charf*)0) error ("block vanished");
2359 1.1 paulus
2360 1.1 paulus copy_block(buf, (unsigned)stored_len, 0); /* without header */
2361 1.1 paulus s->compressed_len = stored_len << 3;
2362 1.1 paulus s->method = STORED;
2363 1.1 paulus } else
2364 1.1 paulus #endif /* STORED_FILE_OK */
2365 1.1 paulus
2366 1.1 paulus /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2367 1.1 paulus * compression, and this block contains all the data since the last
2368 1.1 paulus * time we used Z_PACKET_FLUSH, then just omit this block completely
2369 1.1 paulus * from the output.
2370 1.1 paulus */
2371 1.1 paulus if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2372 1.1 paulus && opt_lenb > stored_len - s->minCompr) {
2373 1.1 paulus s->blocks_in_packet = 0;
2374 1.1 paulus /* output nothing */
2375 1.1 paulus } else
2376 1.1 paulus
2377 1.1 paulus #ifdef FORCE_STORED
2378 1.1 paulus if (buf != (char*)0) /* force stored block */
2379 1.1 paulus #else
2380 1.1 paulus if (stored_len+4 <= opt_lenb && buf != (char*)0)
2381 1.1 paulus /* 4: two words for the lengths */
2382 1.1 paulus #endif
2383 1.1 paulus {
2384 1.1 paulus /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2385 1.1 paulus * Otherwise we can't have processed more than WSIZE input bytes since
2386 1.1 paulus * the last block flush, because compression would have been
2387 1.1 paulus * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2388 1.1 paulus * transform a block into a stored block.
2389 1.1 paulus */
2390 1.1 paulus ct_stored_block(s, buf, stored_len, eof);
2391 1.1 paulus } else
2392 1.1 paulus
2393 1.1 paulus #ifdef FORCE_STATIC
2394 1.1 paulus if (static_lenb >= 0) /* force static trees */
2395 1.1 paulus #else
2396 1.1 paulus if (static_lenb == opt_lenb)
2397 1.1 paulus #endif
2398 1.1 paulus {
2399 1.1 paulus send_bits(s, (STATIC_TREES<<1)+eof, 3);
2400 1.1 paulus compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2401 1.1 paulus s->compressed_len += 3 + s->static_len;
2402 1.1 paulus } else {
2403 1.1 paulus send_bits(s, (DYN_TREES<<1)+eof, 3);
2404 1.1 paulus send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2405 1.1 paulus max_blindex+1);
2406 1.1 paulus compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2407 1.1 paulus s->compressed_len += 3 + s->opt_len;
2408 1.1 paulus }
2409 1.1 paulus Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2410 1.1 paulus init_block(s);
2411 1.1 paulus
2412 1.1 paulus if (eof) {
2413 1.1 paulus bi_windup(s);
2414 1.1 paulus s->compressed_len += 7; /* align on byte boundary */
2415 1.1 paulus }
2416 1.1 paulus Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2417 1.1 paulus s->compressed_len-7*eof));
2418 1.1 paulus
2419 1.1 paulus return s->compressed_len >> 3;
2420 1.1 paulus }
2421 1.1 paulus
2422 1.1 paulus /* ===========================================================================
2423 1.1 paulus * Save the match info and tally the frequency counts. Return true if
2424 1.1 paulus * the current block must be flushed.
2425 1.1 paulus */
2426 1.1 paulus local int ct_tally (s, dist, lc)
2427 1.1 paulus deflate_state *s;
2428 1.1 paulus int dist; /* distance of matched string */
2429 1.1 paulus int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2430 1.1 paulus {
2431 1.1 paulus s->d_buf[s->last_lit] = (ush)dist;
2432 1.1 paulus s->l_buf[s->last_lit++] = (uch)lc;
2433 1.1 paulus if (dist == 0) {
2434 1.1 paulus /* lc is the unmatched char */
2435 1.1 paulus s->dyn_ltree[lc].Freq++;
2436 1.1 paulus } else {
2437 1.1 paulus s->matches++;
2438 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2439 1.1 paulus dist--; /* dist = match distance - 1 */
2440 1.1 paulus Assert((ush)dist < (ush)MAX_DIST(s) &&
2441 1.1 paulus (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2442 1.1 paulus (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2443 1.1 paulus
2444 1.1 paulus s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2445 1.1 paulus s->dyn_dtree[d_code(dist)].Freq++;
2446 1.1 paulus }
2447 1.1 paulus
2448 1.1 paulus /* Try to guess if it is profitable to stop the current block here */
2449 1.1 paulus if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2450 1.1 paulus /* Compute an upper bound for the compressed length */
2451 1.1 paulus ulg out_length = (ulg)s->last_lit*8L;
2452 1.1 paulus ulg in_length = (ulg)s->strstart - s->block_start;
2453 1.1 paulus int dcode;
2454 1.1 paulus for (dcode = 0; dcode < D_CODES; dcode++) {
2455 1.1 paulus out_length += (ulg)s->dyn_dtree[dcode].Freq *
2456 1.1 paulus (5L+extra_dbits[dcode]);
2457 1.1 paulus }
2458 1.1 paulus out_length >>= 3;
2459 1.1 paulus Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2460 1.1 paulus s->last_lit, in_length, out_length,
2461 1.1 paulus 100L - out_length*100L/in_length));
2462 1.1 paulus if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2463 1.1 paulus }
2464 1.1 paulus return (s->last_lit == s->lit_bufsize-1);
2465 1.1 paulus /* We avoid equality with lit_bufsize because of wraparound at 64K
2466 1.1 paulus * on 16 bit machines and because stored blocks are restricted to
2467 1.1 paulus * 64K-1 bytes.
2468 1.1 paulus */
2469 1.1 paulus }
2470 1.1 paulus
2471 1.1 paulus /* ===========================================================================
2472 1.1 paulus * Send the block data compressed using the given Huffman trees
2473 1.1 paulus */
2474 1.1 paulus local void compress_block(s, ltree, dtree)
2475 1.1 paulus deflate_state *s;
2476 1.1 paulus ct_data *ltree; /* literal tree */
2477 1.1 paulus ct_data *dtree; /* distance tree */
2478 1.1 paulus {
2479 1.1 paulus unsigned dist; /* distance of matched string */
2480 1.1 paulus int lc; /* match length or unmatched char (if dist == 0) */
2481 1.1 paulus unsigned lx = 0; /* running index in l_buf */
2482 1.1 paulus unsigned code; /* the code to send */
2483 1.1 paulus int extra; /* number of extra bits to send */
2484 1.1 paulus
2485 1.1 paulus if (s->last_lit != 0) do {
2486 1.1 paulus dist = s->d_buf[lx];
2487 1.1 paulus lc = s->l_buf[lx++];
2488 1.1 paulus if (dist == 0) {
2489 1.1 paulus send_code(s, lc, ltree); /* send a literal byte */
2490 1.1 paulus Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2491 1.1 paulus } else {
2492 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2493 1.1 paulus code = length_code[lc];
2494 1.1 paulus send_code(s, code+LITERALS+1, ltree); /* send the length code */
2495 1.1 paulus extra = extra_lbits[code];
2496 1.1 paulus if (extra != 0) {
2497 1.1 paulus lc -= base_length[code];
2498 1.1 paulus send_bits(s, lc, extra); /* send the extra length bits */
2499 1.1 paulus }
2500 1.1 paulus dist--; /* dist is now the match distance - 1 */
2501 1.1 paulus code = d_code(dist);
2502 1.1 paulus Assert (code < D_CODES, "bad d_code");
2503 1.1 paulus
2504 1.1 paulus send_code(s, code, dtree); /* send the distance code */
2505 1.1 paulus extra = extra_dbits[code];
2506 1.1 paulus if (extra != 0) {
2507 1.1 paulus dist -= base_dist[code];
2508 1.1 paulus send_bits(s, dist, extra); /* send the extra distance bits */
2509 1.1 paulus }
2510 1.1 paulus } /* literal or match pair ? */
2511 1.1 paulus
2512 1.1 paulus /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2513 1.1 paulus Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2514 1.1 paulus
2515 1.1 paulus } while (lx < s->last_lit);
2516 1.1 paulus
2517 1.1 paulus send_code(s, END_BLOCK, ltree);
2518 1.1 paulus s->last_eob_len = ltree[END_BLOCK].Len;
2519 1.1 paulus }
2520 1.1 paulus
2521 1.1 paulus /* ===========================================================================
2522 1.1 paulus * Set the data type to ASCII or BINARY, using a crude approximation:
2523 1.1 paulus * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2524 1.1 paulus * IN assertion: the fields freq of dyn_ltree are set and the total of all
2525 1.1 paulus * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2526 1.1 paulus */
2527 1.1 paulus local void set_data_type(s)
2528 1.1 paulus deflate_state *s;
2529 1.1 paulus {
2530 1.1 paulus int n = 0;
2531 1.1 paulus unsigned ascii_freq = 0;
2532 1.1 paulus unsigned bin_freq = 0;
2533 1.1 paulus while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2534 1.1 paulus while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2535 1.1 paulus while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2536 1.1 paulus s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2537 1.1 paulus }
2538 1.1 paulus
2539 1.1 paulus /* ===========================================================================
2540 1.1 paulus * Reverse the first len bits of a code, using straightforward code (a faster
2541 1.1 paulus * method would use a table)
2542 1.1 paulus * IN assertion: 1 <= len <= 15
2543 1.1 paulus */
2544 1.1 paulus local unsigned bi_reverse(code, len)
2545 1.1 paulus unsigned code; /* the value to invert */
2546 1.1 paulus int len; /* its bit length */
2547 1.1 paulus {
2548 1.1 paulus register unsigned res = 0;
2549 1.1 paulus do {
2550 1.1 paulus res |= code & 1;
2551 1.1 paulus code >>= 1, res <<= 1;
2552 1.1 paulus } while (--len > 0);
2553 1.1 paulus return res >> 1;
2554 1.1 paulus }
2555 1.1 paulus
2556 1.1 paulus /* ===========================================================================
2557 1.1 paulus * Flush the bit buffer, keeping at most 7 bits in it.
2558 1.1 paulus */
2559 1.1 paulus local void bi_flush(s)
2560 1.1 paulus deflate_state *s;
2561 1.1 paulus {
2562 1.1 paulus if (s->bi_valid == 16) {
2563 1.1 paulus put_short(s, s->bi_buf);
2564 1.1 paulus s->bi_buf = 0;
2565 1.1 paulus s->bi_valid = 0;
2566 1.1 paulus } else if (s->bi_valid >= 8) {
2567 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2568 1.1 paulus s->bi_buf >>= 8;
2569 1.1 paulus s->bi_valid -= 8;
2570 1.1 paulus }
2571 1.1 paulus }
2572 1.1 paulus
2573 1.1 paulus /* ===========================================================================
2574 1.1 paulus * Flush the bit buffer and align the output on a byte boundary
2575 1.1 paulus */
2576 1.1 paulus local void bi_windup(s)
2577 1.1 paulus deflate_state *s;
2578 1.1 paulus {
2579 1.1 paulus if (s->bi_valid > 8) {
2580 1.1 paulus put_short(s, s->bi_buf);
2581 1.1 paulus } else if (s->bi_valid > 0) {
2582 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2583 1.1 paulus }
2584 1.1 paulus s->bi_buf = 0;
2585 1.1 paulus s->bi_valid = 0;
2586 1.1 paulus #ifdef DEBUG_ZLIB
2587 1.1 paulus s->bits_sent = (s->bits_sent+7) & ~7;
2588 1.1 paulus #endif
2589 1.1 paulus }
2590 1.1 paulus
2591 1.1 paulus /* ===========================================================================
2592 1.1 paulus * Copy a stored block, storing first the length and its
2593 1.1 paulus * one's complement if requested.
2594 1.1 paulus */
2595 1.1 paulus local void copy_block(s, buf, len, header)
2596 1.1 paulus deflate_state *s;
2597 1.1 paulus charf *buf; /* the input data */
2598 1.1 paulus unsigned len; /* its length */
2599 1.1 paulus int header; /* true if block header must be written */
2600 1.1 paulus {
2601 1.1 paulus bi_windup(s); /* align on byte boundary */
2602 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2603 1.1 paulus
2604 1.1 paulus if (header) {
2605 1.1 paulus put_short(s, (ush)len);
2606 1.1 paulus put_short(s, (ush)~len);
2607 1.1 paulus #ifdef DEBUG_ZLIB
2608 1.1 paulus s->bits_sent += 2*16;
2609 1.1 paulus #endif
2610 1.1 paulus }
2611 1.1 paulus #ifdef DEBUG_ZLIB
2612 1.1 paulus s->bits_sent += (ulg)len<<3;
2613 1.1 paulus #endif
2614 1.1 paulus while (len--) {
2615 1.1 paulus put_byte(s, *buf++);
2616 1.1 paulus }
2617 1.1 paulus }
2618 1.1 paulus
2619 1.1 paulus
2620 1.1 paulus /*+++++*/
2621 1.1 paulus /* infblock.h -- header to use infblock.c
2622 1.1 paulus * Copyright (C) 1995 Mark Adler
2623 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
2624 1.1 paulus */
2625 1.1 paulus
2626 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
2627 1.1 paulus part of the implementation of the compression library and is
2628 1.1 paulus subject to change. Applications should only use zlib.h.
2629 1.1 paulus */
2630 1.1 paulus
2631 1.1 paulus struct inflate_blocks_state;
2632 1.1 paulus typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2633 1.1 paulus
2634 1.1 paulus local inflate_blocks_statef * inflate_blocks_new OF((
2635 1.1 paulus z_stream *z,
2636 1.1 paulus check_func c, /* check function */
2637 1.1 paulus uInt w)); /* window size */
2638 1.1 paulus
2639 1.1 paulus local int inflate_blocks OF((
2640 1.1 paulus inflate_blocks_statef *,
2641 1.1 paulus z_stream *,
2642 1.1 paulus int)); /* initial return code */
2643 1.1 paulus
2644 1.1 paulus local void inflate_blocks_reset OF((
2645 1.1 paulus inflate_blocks_statef *,
2646 1.1 paulus z_stream *,
2647 1.1 paulus uLongf *)); /* check value on output */
2648 1.1 paulus
2649 1.1 paulus local int inflate_blocks_free OF((
2650 1.1 paulus inflate_blocks_statef *,
2651 1.1 paulus z_stream *,
2652 1.1 paulus uLongf *)); /* check value on output */
2653 1.1 paulus
2654 1.1 paulus local int inflate_addhistory OF((
2655 1.1 paulus inflate_blocks_statef *,
2656 1.1 paulus z_stream *));
2657 1.1 paulus
2658 1.1 paulus local int inflate_packet_flush OF((
2659 1.1 paulus inflate_blocks_statef *));
2660 1.1 paulus
2661 1.1 paulus /*+++++*/
2662 1.1 paulus /* inftrees.h -- header to use inftrees.c
2663 1.1 paulus * Copyright (C) 1995 Mark Adler
2664 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
2665 1.1 paulus */
2666 1.1 paulus
2667 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
2668 1.1 paulus part of the implementation of the compression library and is
2669 1.1 paulus subject to change. Applications should only use zlib.h.
2670 1.1 paulus */
2671 1.1 paulus
2672 1.1 paulus /* Huffman code lookup table entry--this entry is four bytes for machines
2673 1.1 paulus that have 16-bit pointers (e.g. PC's in the small or medium model). */
2674 1.1 paulus
2675 1.1 paulus typedef struct inflate_huft_s FAR inflate_huft;
2676 1.1 paulus
2677 1.1 paulus struct inflate_huft_s {
2678 1.1 paulus union {
2679 1.1 paulus struct {
2680 1.1 paulus Byte Exop; /* number of extra bits or operation */
2681 1.1 paulus Byte Bits; /* number of bits in this code or subcode */
2682 1.1 paulus } what;
2683 1.1 paulus uInt Nalloc; /* number of these allocated here */
2684 1.1 paulus Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2685 1.1 paulus } word; /* 16-bit, 8 bytes for 32-bit machines) */
2686 1.1 paulus union {
2687 1.1 paulus uInt Base; /* literal, length base, or distance base */
2688 1.1 paulus inflate_huft *Next; /* pointer to next level of table */
2689 1.1 paulus } more;
2690 1.1 paulus };
2691 1.1 paulus
2692 1.1 paulus #ifdef DEBUG_ZLIB
2693 1.1 paulus local uInt inflate_hufts;
2694 1.1 paulus #endif
2695 1.1 paulus
2696 1.1 paulus local int inflate_trees_bits OF((
2697 1.1 paulus uIntf *, /* 19 code lengths */
2698 1.1 paulus uIntf *, /* bits tree desired/actual depth */
2699 1.1 paulus inflate_huft * FAR *, /* bits tree result */
2700 1.1 paulus z_stream *)); /* for zalloc, zfree functions */
2701 1.1 paulus
2702 1.1 paulus local int inflate_trees_dynamic OF((
2703 1.1 paulus uInt, /* number of literal/length codes */
2704 1.1 paulus uInt, /* number of distance codes */
2705 1.1 paulus uIntf *, /* that many (total) code lengths */
2706 1.1 paulus uIntf *, /* literal desired/actual bit depth */
2707 1.1 paulus uIntf *, /* distance desired/actual bit depth */
2708 1.1 paulus inflate_huft * FAR *, /* literal/length tree result */
2709 1.1 paulus inflate_huft * FAR *, /* distance tree result */
2710 1.1 paulus z_stream *)); /* for zalloc, zfree functions */
2711 1.1 paulus
2712 1.1 paulus local int inflate_trees_fixed OF((
2713 1.1 paulus uIntf *, /* literal desired/actual bit depth */
2714 1.1 paulus uIntf *, /* distance desired/actual bit depth */
2715 1.1 paulus inflate_huft * FAR *, /* literal/length tree result */
2716 1.1 paulus inflate_huft * FAR *)); /* distance tree result */
2717 1.1 paulus
2718 1.1 paulus local int inflate_trees_free OF((
2719 1.1 paulus inflate_huft *, /* tables to free */
2720 1.1 paulus z_stream *)); /* for zfree function */
2721 1.1 paulus
2722 1.1 paulus
2723 1.1 paulus /*+++++*/
2724 1.1 paulus /* infcodes.h -- header to use infcodes.c
2725 1.1 paulus * Copyright (C) 1995 Mark Adler
2726 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
2727 1.1 paulus */
2728 1.1 paulus
2729 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
2730 1.1 paulus part of the implementation of the compression library and is
2731 1.1 paulus subject to change. Applications should only use zlib.h.
2732 1.1 paulus */
2733 1.1 paulus
2734 1.1 paulus struct inflate_codes_state;
2735 1.1 paulus typedef struct inflate_codes_state FAR inflate_codes_statef;
2736 1.1 paulus
2737 1.1 paulus local inflate_codes_statef *inflate_codes_new OF((
2738 1.1 paulus uInt, uInt,
2739 1.1 paulus inflate_huft *, inflate_huft *,
2740 1.1 paulus z_stream *));
2741 1.1 paulus
2742 1.1 paulus local int inflate_codes OF((
2743 1.1 paulus inflate_blocks_statef *,
2744 1.1 paulus z_stream *,
2745 1.1 paulus int));
2746 1.1 paulus
2747 1.1 paulus local void inflate_codes_free OF((
2748 1.1 paulus inflate_codes_statef *,
2749 1.1 paulus z_stream *));
2750 1.1 paulus
2751 1.1 paulus
2752 1.1 paulus /*+++++*/
2753 1.1 paulus /* inflate.c -- zlib interface to inflate modules
2754 1.1 paulus * Copyright (C) 1995 Mark Adler
2755 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
2756 1.1 paulus */
2757 1.1 paulus
2758 1.1 paulus /* inflate private state */
2759 1.1 paulus struct internal_state {
2760 1.1 paulus
2761 1.1 paulus /* mode */
2762 1.1 paulus enum {
2763 1.1 paulus METHOD, /* waiting for method byte */
2764 1.1 paulus FLAG, /* waiting for flag byte */
2765 1.1 paulus BLOCKS, /* decompressing blocks */
2766 1.1 paulus CHECK4, /* four check bytes to go */
2767 1.1 paulus CHECK3, /* three check bytes to go */
2768 1.1 paulus CHECK2, /* two check bytes to go */
2769 1.1 paulus CHECK1, /* one check byte to go */
2770 1.1 paulus DONE, /* finished check, done */
2771 1.1 paulus BAD} /* got an error--stay here */
2772 1.1 paulus mode; /* current inflate mode */
2773 1.1 paulus
2774 1.1 paulus /* mode dependent information */
2775 1.1 paulus union {
2776 1.1 paulus uInt method; /* if FLAGS, method byte */
2777 1.1 paulus struct {
2778 1.1 paulus uLong was; /* computed check value */
2779 1.1 paulus uLong need; /* stream check value */
2780 1.1 paulus } check; /* if CHECK, check values to compare */
2781 1.1 paulus uInt marker; /* if BAD, inflateSync's marker bytes count */
2782 1.1 paulus } sub; /* submode */
2783 1.1 paulus
2784 1.1 paulus /* mode independent information */
2785 1.1 paulus int nowrap; /* flag for no wrapper */
2786 1.1 paulus uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2787 1.1 paulus inflate_blocks_statef
2788 1.1 paulus *blocks; /* current inflate_blocks state */
2789 1.1 paulus
2790 1.1 paulus };
2791 1.1 paulus
2792 1.1 paulus
2793 1.1 paulus int inflateReset(z)
2794 1.1 paulus z_stream *z;
2795 1.1 paulus {
2796 1.1 paulus uLong c;
2797 1.1 paulus
2798 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
2799 1.1 paulus return Z_STREAM_ERROR;
2800 1.1 paulus z->total_in = z->total_out = 0;
2801 1.1 paulus z->msg = Z_NULL;
2802 1.1 paulus z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2803 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &c);
2804 1.1 paulus Trace((stderr, "inflate: reset\n"));
2805 1.1 paulus return Z_OK;
2806 1.1 paulus }
2807 1.1 paulus
2808 1.1 paulus
2809 1.1 paulus int inflateEnd(z)
2810 1.1 paulus z_stream *z;
2811 1.1 paulus {
2812 1.1 paulus uLong c;
2813 1.1 paulus
2814 1.1 paulus if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2815 1.1 paulus return Z_STREAM_ERROR;
2816 1.1 paulus if (z->state->blocks != Z_NULL)
2817 1.1 paulus inflate_blocks_free(z->state->blocks, z, &c);
2818 1.1 paulus ZFREE(z, z->state, sizeof(struct internal_state));
2819 1.1 paulus z->state = Z_NULL;
2820 1.1 paulus Trace((stderr, "inflate: end\n"));
2821 1.1 paulus return Z_OK;
2822 1.1 paulus }
2823 1.1 paulus
2824 1.1 paulus
2825 1.1 paulus int inflateInit2(z, w)
2826 1.1 paulus z_stream *z;
2827 1.1 paulus int w;
2828 1.1 paulus {
2829 1.1 paulus /* initialize state */
2830 1.1 paulus if (z == Z_NULL)
2831 1.1 paulus return Z_STREAM_ERROR;
2832 1.1 paulus /* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2833 1.1 paulus /* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2834 1.1 paulus if ((z->state = (struct internal_state FAR *)
2835 1.1 paulus ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2836 1.1 paulus return Z_MEM_ERROR;
2837 1.1 paulus z->state->blocks = Z_NULL;
2838 1.1 paulus
2839 1.1 paulus /* handle undocumented nowrap option (no zlib header or check) */
2840 1.1 paulus z->state->nowrap = 0;
2841 1.1 paulus if (w < 0)
2842 1.1 paulus {
2843 1.1 paulus w = - w;
2844 1.1 paulus z->state->nowrap = 1;
2845 1.1 paulus }
2846 1.1 paulus
2847 1.1 paulus /* set window size */
2848 1.1 paulus if (w < 8 || w > 15)
2849 1.1 paulus {
2850 1.1 paulus inflateEnd(z);
2851 1.1 paulus return Z_STREAM_ERROR;
2852 1.1 paulus }
2853 1.1 paulus z->state->wbits = (uInt)w;
2854 1.1 paulus
2855 1.1 paulus /* create inflate_blocks state */
2856 1.1 paulus if ((z->state->blocks =
2857 1.1 paulus inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2858 1.1 paulus == Z_NULL)
2859 1.1 paulus {
2860 1.1 paulus inflateEnd(z);
2861 1.1 paulus return Z_MEM_ERROR;
2862 1.1 paulus }
2863 1.1 paulus Trace((stderr, "inflate: allocated\n"));
2864 1.1 paulus
2865 1.1 paulus /* reset state */
2866 1.1 paulus inflateReset(z);
2867 1.1 paulus return Z_OK;
2868 1.1 paulus }
2869 1.1 paulus
2870 1.1 paulus
2871 1.1 paulus int inflateInit(z)
2872 1.1 paulus z_stream *z;
2873 1.1 paulus {
2874 1.1 paulus return inflateInit2(z, DEF_WBITS);
2875 1.1 paulus }
2876 1.1 paulus
2877 1.1 paulus
2878 1.1 paulus #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2879 1.1 paulus #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2880 1.1 paulus
2881 1.1 paulus int inflate(z, f)
2882 1.1 paulus z_stream *z;
2883 1.1 paulus int f;
2884 1.1 paulus {
2885 1.1 paulus int r;
2886 1.1 paulus uInt b;
2887 1.1 paulus
2888 1.1 paulus if (z == Z_NULL || z->next_in == Z_NULL)
2889 1.1 paulus return Z_STREAM_ERROR;
2890 1.1 paulus r = Z_BUF_ERROR;
2891 1.1 paulus while (1) switch (z->state->mode)
2892 1.1 paulus {
2893 1.1 paulus case METHOD:
2894 1.1 paulus NEEDBYTE
2895 1.1 paulus if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2896 1.1 paulus {
2897 1.1 paulus z->state->mode = BAD;
2898 1.1 paulus z->msg = "unknown compression method";
2899 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
2900 1.1 paulus break;
2901 1.1 paulus }
2902 1.1 paulus if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2903 1.1 paulus {
2904 1.1 paulus z->state->mode = BAD;
2905 1.1 paulus z->msg = "invalid window size";
2906 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
2907 1.1 paulus break;
2908 1.1 paulus }
2909 1.1 paulus z->state->mode = FLAG;
2910 1.1 paulus case FLAG:
2911 1.1 paulus NEEDBYTE
2912 1.1 paulus if ((b = NEXTBYTE) & 0x20)
2913 1.1 paulus {
2914 1.1 paulus z->state->mode = BAD;
2915 1.1 paulus z->msg = "invalid reserved bit";
2916 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
2917 1.1 paulus break;
2918 1.1 paulus }
2919 1.1 paulus if (((z->state->sub.method << 8) + b) % 31)
2920 1.1 paulus {
2921 1.1 paulus z->state->mode = BAD;
2922 1.1 paulus z->msg = "incorrect header check";
2923 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
2924 1.1 paulus break;
2925 1.1 paulus }
2926 1.1 paulus Trace((stderr, "inflate: zlib header ok\n"));
2927 1.1 paulus z->state->mode = BLOCKS;
2928 1.1 paulus case BLOCKS:
2929 1.1 paulus r = inflate_blocks(z->state->blocks, z, r);
2930 1.1 paulus if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2931 1.1 paulus r = inflate_packet_flush(z->state->blocks);
2932 1.1 paulus if (r == Z_DATA_ERROR)
2933 1.1 paulus {
2934 1.1 paulus z->state->mode = BAD;
2935 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
2936 1.1 paulus break;
2937 1.1 paulus }
2938 1.1 paulus if (r != Z_STREAM_END)
2939 1.1 paulus return r;
2940 1.1 paulus r = Z_OK;
2941 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2942 1.1 paulus if (z->state->nowrap)
2943 1.1 paulus {
2944 1.1 paulus z->state->mode = DONE;
2945 1.1 paulus break;
2946 1.1 paulus }
2947 1.1 paulus z->state->mode = CHECK4;
2948 1.1 paulus case CHECK4:
2949 1.1 paulus NEEDBYTE
2950 1.1 paulus z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2951 1.1 paulus z->state->mode = CHECK3;
2952 1.1 paulus case CHECK3:
2953 1.1 paulus NEEDBYTE
2954 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2955 1.1 paulus z->state->mode = CHECK2;
2956 1.1 paulus case CHECK2:
2957 1.1 paulus NEEDBYTE
2958 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2959 1.1 paulus z->state->mode = CHECK1;
2960 1.1 paulus case CHECK1:
2961 1.1 paulus NEEDBYTE
2962 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE;
2963 1.1 paulus
2964 1.1 paulus if (z->state->sub.check.was != z->state->sub.check.need)
2965 1.1 paulus {
2966 1.1 paulus z->state->mode = BAD;
2967 1.1 paulus z->msg = "incorrect data check";
2968 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
2969 1.1 paulus break;
2970 1.1 paulus }
2971 1.1 paulus Trace((stderr, "inflate: zlib check ok\n"));
2972 1.1 paulus z->state->mode = DONE;
2973 1.1 paulus case DONE:
2974 1.1 paulus return Z_STREAM_END;
2975 1.1 paulus case BAD:
2976 1.1 paulus return Z_DATA_ERROR;
2977 1.1 paulus default:
2978 1.1 paulus return Z_STREAM_ERROR;
2979 1.1 paulus }
2980 1.1 paulus
2981 1.1 paulus empty:
2982 1.1 paulus if (f != Z_PACKET_FLUSH)
2983 1.1 paulus return r;
2984 1.1 paulus z->state->mode = BAD;
2985 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
2986 1.1 paulus return Z_DATA_ERROR;
2987 1.1 paulus }
2988 1.1 paulus
2989 1.1 paulus /*
2990 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
2991 1.1 paulus * without performing any output. The output buffer must be "caught up";
2992 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
2993 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
2994 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
2995 1.1 paulus * will have been updated if need be.
2996 1.1 paulus */
2997 1.1 paulus
2998 1.1 paulus int inflateIncomp(z)
2999 1.1 paulus z_stream *z;
3000 1.1 paulus {
3001 1.1 paulus if (z->state->mode != BLOCKS)
3002 1.1 paulus return Z_DATA_ERROR;
3003 1.1 paulus return inflate_addhistory(z->state->blocks, z);
3004 1.1 paulus }
3005 1.1 paulus
3006 1.1 paulus
3007 1.1 paulus int inflateSync(z)
3008 1.1 paulus z_stream *z;
3009 1.1 paulus {
3010 1.1 paulus uInt n; /* number of bytes to look at */
3011 1.1 paulus Bytef *p; /* pointer to bytes */
3012 1.1 paulus uInt m; /* number of marker bytes found in a row */
3013 1.1 paulus uLong r, w; /* temporaries to save total_in and total_out */
3014 1.1 paulus
3015 1.1 paulus /* set up */
3016 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3017 1.1 paulus return Z_STREAM_ERROR;
3018 1.1 paulus if (z->state->mode != BAD)
3019 1.1 paulus {
3020 1.1 paulus z->state->mode = BAD;
3021 1.1 paulus z->state->sub.marker = 0;
3022 1.1 paulus }
3023 1.1 paulus if ((n = z->avail_in) == 0)
3024 1.1 paulus return Z_BUF_ERROR;
3025 1.1 paulus p = z->next_in;
3026 1.1 paulus m = z->state->sub.marker;
3027 1.1 paulus
3028 1.1 paulus /* search */
3029 1.1 paulus while (n && m < 4)
3030 1.1 paulus {
3031 1.1 paulus if (*p == (Byte)(m < 2 ? 0 : 0xff))
3032 1.1 paulus m++;
3033 1.1 paulus else if (*p)
3034 1.1 paulus m = 0;
3035 1.1 paulus else
3036 1.1 paulus m = 4 - m;
3037 1.1 paulus p++, n--;
3038 1.1 paulus }
3039 1.1 paulus
3040 1.1 paulus /* restore */
3041 1.1 paulus z->total_in += p - z->next_in;
3042 1.1 paulus z->next_in = p;
3043 1.1 paulus z->avail_in = n;
3044 1.1 paulus z->state->sub.marker = m;
3045 1.1 paulus
3046 1.1 paulus /* return no joy or set up to restart on a new block */
3047 1.1 paulus if (m != 4)
3048 1.1 paulus return Z_DATA_ERROR;
3049 1.1 paulus r = z->total_in; w = z->total_out;
3050 1.1 paulus inflateReset(z);
3051 1.1 paulus z->total_in = r; z->total_out = w;
3052 1.1 paulus z->state->mode = BLOCKS;
3053 1.1 paulus return Z_OK;
3054 1.1 paulus }
3055 1.1 paulus
3056 1.1 paulus #undef NEEDBYTE
3057 1.1 paulus #undef NEXTBYTE
3058 1.1 paulus
3059 1.1 paulus /*+++++*/
3060 1.1 paulus /* infutil.h -- types and macros common to blocks and codes
3061 1.1 paulus * Copyright (C) 1995 Mark Adler
3062 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3063 1.1 paulus */
3064 1.1 paulus
3065 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3066 1.1 paulus part of the implementation of the compression library and is
3067 1.1 paulus subject to change. Applications should only use zlib.h.
3068 1.1 paulus */
3069 1.1 paulus
3070 1.1 paulus /* inflate blocks semi-private state */
3071 1.1 paulus struct inflate_blocks_state {
3072 1.1 paulus
3073 1.1 paulus /* mode */
3074 1.1 paulus enum {
3075 1.1 paulus TYPE, /* get type bits (3, including end bit) */
3076 1.1 paulus LENS, /* get lengths for stored */
3077 1.1 paulus STORED, /* processing stored block */
3078 1.1 paulus TABLE, /* get table lengths */
3079 1.1 paulus BTREE, /* get bit lengths tree for a dynamic block */
3080 1.1 paulus DTREE, /* get length, distance trees for a dynamic block */
3081 1.1 paulus CODES, /* processing fixed or dynamic block */
3082 1.1 paulus DRY, /* output remaining window bytes */
3083 1.1 paulus DONEB, /* finished last block, done */
3084 1.1 paulus BADB} /* got a data error--stuck here */
3085 1.1 paulus mode; /* current inflate_block mode */
3086 1.1 paulus
3087 1.1 paulus /* mode dependent information */
3088 1.1 paulus union {
3089 1.1 paulus uInt left; /* if STORED, bytes left to copy */
3090 1.1 paulus struct {
3091 1.1 paulus uInt table; /* table lengths (14 bits) */
3092 1.1 paulus uInt index; /* index into blens (or border) */
3093 1.1 paulus uIntf *blens; /* bit lengths of codes */
3094 1.1 paulus uInt bb; /* bit length tree depth */
3095 1.1 paulus inflate_huft *tb; /* bit length decoding tree */
3096 1.1 paulus int nblens; /* # elements allocated at blens */
3097 1.1 paulus } trees; /* if DTREE, decoding info for trees */
3098 1.1 paulus struct {
3099 1.1 paulus inflate_huft *tl, *td; /* trees to free */
3100 1.1 paulus inflate_codes_statef
3101 1.1 paulus *codes;
3102 1.1 paulus } decode; /* if CODES, current state */
3103 1.1 paulus } sub; /* submode */
3104 1.1 paulus uInt last; /* true if this block is the last block */
3105 1.1 paulus
3106 1.1 paulus /* mode independent information */
3107 1.1 paulus uInt bitk; /* bits in bit buffer */
3108 1.1 paulus uLong bitb; /* bit buffer */
3109 1.1 paulus Bytef *window; /* sliding window */
3110 1.1 paulus Bytef *end; /* one byte after sliding window */
3111 1.1 paulus Bytef *read; /* window read pointer */
3112 1.1 paulus Bytef *write; /* window write pointer */
3113 1.1 paulus check_func checkfn; /* check function */
3114 1.1 paulus uLong check; /* check on output */
3115 1.1 paulus
3116 1.1 paulus };
3117 1.1 paulus
3118 1.1 paulus
3119 1.1 paulus /* defines for inflate input/output */
3120 1.1 paulus /* update pointers and return */
3121 1.1 paulus #define UPDBITS {s->bitb=b;s->bitk=k;}
3122 1.1 paulus #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3123 1.1 paulus #define UPDOUT {s->write=q;}
3124 1.1 paulus #define UPDATE {UPDBITS UPDIN UPDOUT}
3125 1.1 paulus #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3126 1.1 paulus /* get bytes and bits */
3127 1.1 paulus #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3128 1.1 paulus #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3129 1.1 paulus #define NEXTBYTE (n--,*p++)
3130 1.1 paulus #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3131 1.1 paulus #define DUMPBITS(j) {b>>=(j);k-=(j);}
3132 1.1 paulus /* output bytes */
3133 1.1 paulus #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3134 1.1 paulus #define LOADOUT {q=s->write;m=WAVAIL;}
3135 1.1 paulus #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3136 1.1 paulus #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3137 1.1 paulus #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3138 1.1 paulus #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3139 1.1 paulus /* load local pointers */
3140 1.1 paulus #define LOAD {LOADIN LOADOUT}
3141 1.1 paulus
3142 1.1 paulus /* And'ing with mask[n] masks the lower n bits */
3143 1.1 paulus local uInt inflate_mask[] = {
3144 1.1 paulus 0x0000,
3145 1.1 paulus 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3146 1.1 paulus 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3147 1.1 paulus };
3148 1.1 paulus
3149 1.1 paulus /* copy as much as possible from the sliding window to the output area */
3150 1.1 paulus local int inflate_flush OF((
3151 1.1 paulus inflate_blocks_statef *,
3152 1.1 paulus z_stream *,
3153 1.1 paulus int));
3154 1.1 paulus
3155 1.1 paulus /*+++++*/
3156 1.1 paulus /* inffast.h -- header to use inffast.c
3157 1.1 paulus * Copyright (C) 1995 Mark Adler
3158 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3159 1.1 paulus */
3160 1.1 paulus
3161 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3162 1.1 paulus part of the implementation of the compression library and is
3163 1.1 paulus subject to change. Applications should only use zlib.h.
3164 1.1 paulus */
3165 1.1 paulus
3166 1.1 paulus local int inflate_fast OF((
3167 1.1 paulus uInt,
3168 1.1 paulus uInt,
3169 1.1 paulus inflate_huft *,
3170 1.1 paulus inflate_huft *,
3171 1.1 paulus inflate_blocks_statef *,
3172 1.1 paulus z_stream *));
3173 1.1 paulus
3174 1.1 paulus
3175 1.1 paulus /*+++++*/
3176 1.1 paulus /* infblock.c -- interpret and process block types to last block
3177 1.1 paulus * Copyright (C) 1995 Mark Adler
3178 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3179 1.1 paulus */
3180 1.1 paulus
3181 1.1 paulus /* Table for deflate from PKZIP's appnote.txt. */
3182 1.1 paulus local uInt border[] = { /* Order of the bit length code lengths */
3183 1.1 paulus 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3184 1.1 paulus
3185 1.1 paulus /*
3186 1.1 paulus Notes beyond the 1.93a appnote.txt:
3187 1.1 paulus
3188 1.1 paulus 1. Distance pointers never point before the beginning of the output
3189 1.1 paulus stream.
3190 1.1 paulus 2. Distance pointers can point back across blocks, up to 32k away.
3191 1.1 paulus 3. There is an implied maximum of 7 bits for the bit length table and
3192 1.1 paulus 15 bits for the actual data.
3193 1.1 paulus 4. If only one code exists, then it is encoded using one bit. (Zero
3194 1.1 paulus would be more efficient, but perhaps a little confusing.) If two
3195 1.1 paulus codes exist, they are coded using one bit each (0 and 1).
3196 1.1 paulus 5. There is no way of sending zero distance codes--a dummy must be
3197 1.1 paulus sent if there are none. (History: a pre 2.0 version of PKZIP would
3198 1.1 paulus store blocks with no distance codes, but this was discovered to be
3199 1.1 paulus too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3200 1.1 paulus zero distance codes, which is sent as one code of zero bits in
3201 1.1 paulus length.
3202 1.1 paulus 6. There are up to 286 literal/length codes. Code 256 represents the
3203 1.1 paulus end-of-block. Note however that the static length tree defines
3204 1.1 paulus 288 codes just to fill out the Huffman codes. Codes 286 and 287
3205 1.1 paulus cannot be used though, since there is no length base or extra bits
3206 1.1 paulus defined for them. Similarily, there are up to 30 distance codes.
3207 1.1 paulus However, static trees define 32 codes (all 5 bits) to fill out the
3208 1.1 paulus Huffman codes, but the last two had better not show up in the data.
3209 1.1 paulus 7. Unzip can check dynamic Huffman blocks for complete code sets.
3210 1.1 paulus The exception is that a single code would not be complete (see #4).
3211 1.1 paulus 8. The five bits following the block type is really the number of
3212 1.1 paulus literal codes sent minus 257.
3213 1.1 paulus 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3214 1.1 paulus (1+6+6). Therefore, to output three times the length, you output
3215 1.1 paulus three codes (1+1+1), whereas to output four times the same length,
3216 1.1 paulus you only need two codes (1+3). Hmm.
3217 1.1 paulus 10. In the tree reconstruction algorithm, Code = Code + Increment
3218 1.1 paulus only if BitLength(i) is not zero. (Pretty obvious.)
3219 1.1 paulus 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3220 1.1 paulus 12. Note: length code 284 can represent 227-258, but length code 285
3221 1.1 paulus really is 258. The last length deserves its own, short code
3222 1.1 paulus since it gets used a lot in very redundant files. The length
3223 1.1 paulus 258 is special since 258 - 3 (the min match length) is 255.
3224 1.1 paulus 13. The literal/length and distance code bit lengths are read as a
3225 1.1 paulus single stream of lengths. It is possible (and advantageous) for
3226 1.1 paulus a repeat code (16, 17, or 18) to go across the boundary between
3227 1.1 paulus the two sets of lengths.
3228 1.1 paulus */
3229 1.1 paulus
3230 1.1 paulus
3231 1.1 paulus local void inflate_blocks_reset(s, z, c)
3232 1.1 paulus inflate_blocks_statef *s;
3233 1.1 paulus z_stream *z;
3234 1.1 paulus uLongf *c;
3235 1.1 paulus {
3236 1.1 paulus if (s->checkfn != Z_NULL)
3237 1.1 paulus *c = s->check;
3238 1.1 paulus if (s->mode == BTREE || s->mode == DTREE)
3239 1.1 paulus ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3240 1.1 paulus if (s->mode == CODES)
3241 1.1 paulus {
3242 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3243 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3244 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3245 1.1 paulus }
3246 1.1 paulus s->mode = TYPE;
3247 1.1 paulus s->bitk = 0;
3248 1.1 paulus s->bitb = 0;
3249 1.1 paulus s->read = s->write = s->window;
3250 1.1 paulus if (s->checkfn != Z_NULL)
3251 1.1 paulus s->check = (*s->checkfn)(0L, Z_NULL, 0);
3252 1.1 paulus Trace((stderr, "inflate: blocks reset\n"));
3253 1.1 paulus }
3254 1.1 paulus
3255 1.1 paulus
3256 1.1 paulus local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3257 1.1 paulus z_stream *z;
3258 1.1 paulus check_func c;
3259 1.1 paulus uInt w;
3260 1.1 paulus {
3261 1.1 paulus inflate_blocks_statef *s;
3262 1.1 paulus
3263 1.1 paulus if ((s = (inflate_blocks_statef *)ZALLOC
3264 1.1 paulus (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3265 1.1 paulus return s;
3266 1.1 paulus if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3267 1.1 paulus {
3268 1.1 paulus ZFREE(z, s, sizeof(struct inflate_blocks_state));
3269 1.1 paulus return Z_NULL;
3270 1.1 paulus }
3271 1.1 paulus s->end = s->window + w;
3272 1.1 paulus s->checkfn = c;
3273 1.1 paulus s->mode = TYPE;
3274 1.1 paulus Trace((stderr, "inflate: blocks allocated\n"));
3275 1.1 paulus inflate_blocks_reset(s, z, &s->check);
3276 1.1 paulus return s;
3277 1.1 paulus }
3278 1.1 paulus
3279 1.1 paulus
3280 1.1 paulus local int inflate_blocks(s, z, r)
3281 1.1 paulus inflate_blocks_statef *s;
3282 1.1 paulus z_stream *z;
3283 1.1 paulus int r;
3284 1.1 paulus {
3285 1.1 paulus uInt t; /* temporary storage */
3286 1.1 paulus uLong b; /* bit buffer */
3287 1.1 paulus uInt k; /* bits in bit buffer */
3288 1.1 paulus Bytef *p; /* input data pointer */
3289 1.1 paulus uInt n; /* bytes available there */
3290 1.1 paulus Bytef *q; /* output window write pointer */
3291 1.1 paulus uInt m; /* bytes to end of window or read pointer */
3292 1.1 paulus
3293 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
3294 1.1 paulus LOAD
3295 1.1 paulus
3296 1.1 paulus /* process input based on current state */
3297 1.1 paulus while (1) switch (s->mode)
3298 1.1 paulus {
3299 1.1 paulus case TYPE:
3300 1.1 paulus NEEDBITS(3)
3301 1.1 paulus t = (uInt)b & 7;
3302 1.1 paulus s->last = t & 1;
3303 1.1 paulus switch (t >> 1)
3304 1.1 paulus {
3305 1.1 paulus case 0: /* stored */
3306 1.1 paulus Trace((stderr, "inflate: stored block%s\n",
3307 1.1 paulus s->last ? " (last)" : ""));
3308 1.1 paulus DUMPBITS(3)
3309 1.1 paulus t = k & 7; /* go to byte boundary */
3310 1.1 paulus DUMPBITS(t)
3311 1.1 paulus s->mode = LENS; /* get length of stored block */
3312 1.1 paulus break;
3313 1.1 paulus case 1: /* fixed */
3314 1.1 paulus Trace((stderr, "inflate: fixed codes block%s\n",
3315 1.1 paulus s->last ? " (last)" : ""));
3316 1.1 paulus {
3317 1.1 paulus uInt bl, bd;
3318 1.1 paulus inflate_huft *tl, *td;
3319 1.1 paulus
3320 1.1 paulus inflate_trees_fixed(&bl, &bd, &tl, &td);
3321 1.1 paulus s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3322 1.1 paulus if (s->sub.decode.codes == Z_NULL)
3323 1.1 paulus {
3324 1.1 paulus r = Z_MEM_ERROR;
3325 1.1 paulus LEAVE
3326 1.1 paulus }
3327 1.1 paulus s->sub.decode.tl = Z_NULL; /* don't try to free these */
3328 1.1 paulus s->sub.decode.td = Z_NULL;
3329 1.1 paulus }
3330 1.1 paulus DUMPBITS(3)
3331 1.1 paulus s->mode = CODES;
3332 1.1 paulus break;
3333 1.1 paulus case 2: /* dynamic */
3334 1.1 paulus Trace((stderr, "inflate: dynamic codes block%s\n",
3335 1.1 paulus s->last ? " (last)" : ""));
3336 1.1 paulus DUMPBITS(3)
3337 1.1 paulus s->mode = TABLE;
3338 1.1 paulus break;
3339 1.1 paulus case 3: /* illegal */
3340 1.1 paulus DUMPBITS(3)
3341 1.1 paulus s->mode = BADB;
3342 1.1 paulus z->msg = "invalid block type";
3343 1.1 paulus r = Z_DATA_ERROR;
3344 1.1 paulus LEAVE
3345 1.1 paulus }
3346 1.1 paulus break;
3347 1.1 paulus case LENS:
3348 1.1 paulus NEEDBITS(32)
3349 1.1 paulus if (((~b) >> 16) != (b & 0xffff))
3350 1.1 paulus {
3351 1.1 paulus s->mode = BADB;
3352 1.1 paulus z->msg = "invalid stored block lengths";
3353 1.1 paulus r = Z_DATA_ERROR;
3354 1.1 paulus LEAVE
3355 1.1 paulus }
3356 1.1 paulus s->sub.left = (uInt)b & 0xffff;
3357 1.1 paulus b = k = 0; /* dump bits */
3358 1.1 paulus Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3359 1.1 paulus s->mode = s->sub.left ? STORED : TYPE;
3360 1.1 paulus break;
3361 1.1 paulus case STORED:
3362 1.1 paulus if (n == 0)
3363 1.1 paulus LEAVE
3364 1.1 paulus NEEDOUT
3365 1.1 paulus t = s->sub.left;
3366 1.1 paulus if (t > n) t = n;
3367 1.1 paulus if (t > m) t = m;
3368 1.1 paulus zmemcpy(q, p, t);
3369 1.1 paulus p += t; n -= t;
3370 1.1 paulus q += t; m -= t;
3371 1.1 paulus if ((s->sub.left -= t) != 0)
3372 1.1 paulus break;
3373 1.1 paulus Tracev((stderr, "inflate: stored end, %lu total out\n",
3374 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3375 1.1 paulus (s->end - s->read) + (q - s->window))));
3376 1.1 paulus s->mode = s->last ? DRY : TYPE;
3377 1.1 paulus break;
3378 1.1 paulus case TABLE:
3379 1.1 paulus NEEDBITS(14)
3380 1.1 paulus s->sub.trees.table = t = (uInt)b & 0x3fff;
3381 1.1 paulus #ifndef PKZIP_BUG_WORKAROUND
3382 1.1 paulus if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3383 1.1 paulus {
3384 1.1 paulus s->mode = BADB;
3385 1.1 paulus z->msg = "too many length or distance symbols";
3386 1.1 paulus r = Z_DATA_ERROR;
3387 1.1 paulus LEAVE
3388 1.1 paulus }
3389 1.1 paulus #endif
3390 1.1 paulus t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3391 1.1 paulus if (t < 19)
3392 1.1 paulus t = 19;
3393 1.1 paulus if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3394 1.1 paulus {
3395 1.1 paulus r = Z_MEM_ERROR;
3396 1.1 paulus LEAVE
3397 1.1 paulus }
3398 1.1 paulus s->sub.trees.nblens = t;
3399 1.1 paulus DUMPBITS(14)
3400 1.1 paulus s->sub.trees.index = 0;
3401 1.1 paulus Tracev((stderr, "inflate: table sizes ok\n"));
3402 1.1 paulus s->mode = BTREE;
3403 1.1 paulus case BTREE:
3404 1.1 paulus while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3405 1.1 paulus {
3406 1.1 paulus NEEDBITS(3)
3407 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3408 1.1 paulus DUMPBITS(3)
3409 1.1 paulus }
3410 1.1 paulus while (s->sub.trees.index < 19)
3411 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3412 1.1 paulus s->sub.trees.bb = 7;
3413 1.1 paulus t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3414 1.1 paulus &s->sub.trees.tb, z);
3415 1.1 paulus if (t != Z_OK)
3416 1.1 paulus {
3417 1.1 paulus r = t;
3418 1.1 paulus if (r == Z_DATA_ERROR)
3419 1.1 paulus s->mode = BADB;
3420 1.1 paulus LEAVE
3421 1.1 paulus }
3422 1.1 paulus s->sub.trees.index = 0;
3423 1.1 paulus Tracev((stderr, "inflate: bits tree ok\n"));
3424 1.1 paulus s->mode = DTREE;
3425 1.1 paulus case DTREE:
3426 1.1 paulus while (t = s->sub.trees.table,
3427 1.1 paulus s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3428 1.1 paulus {
3429 1.1 paulus inflate_huft *h;
3430 1.1 paulus uInt i, j, c;
3431 1.1 paulus
3432 1.1 paulus t = s->sub.trees.bb;
3433 1.1 paulus NEEDBITS(t)
3434 1.1 paulus h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3435 1.1 paulus t = h->word.what.Bits;
3436 1.1 paulus c = h->more.Base;
3437 1.1 paulus if (c < 16)
3438 1.1 paulus {
3439 1.1 paulus DUMPBITS(t)
3440 1.1 paulus s->sub.trees.blens[s->sub.trees.index++] = c;
3441 1.1 paulus }
3442 1.1 paulus else /* c == 16..18 */
3443 1.1 paulus {
3444 1.1 paulus i = c == 18 ? 7 : c - 14;
3445 1.1 paulus j = c == 18 ? 11 : 3;
3446 1.1 paulus NEEDBITS(t + i)
3447 1.1 paulus DUMPBITS(t)
3448 1.1 paulus j += (uInt)b & inflate_mask[i];
3449 1.1 paulus DUMPBITS(i)
3450 1.1 paulus i = s->sub.trees.index;
3451 1.1 paulus t = s->sub.trees.table;
3452 1.1 paulus if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3453 1.1 paulus (c == 16 && i < 1))
3454 1.1 paulus {
3455 1.1 paulus s->mode = BADB;
3456 1.1 paulus z->msg = "invalid bit length repeat";
3457 1.1 paulus r = Z_DATA_ERROR;
3458 1.1 paulus LEAVE
3459 1.1 paulus }
3460 1.1 paulus c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3461 1.1 paulus do {
3462 1.1 paulus s->sub.trees.blens[i++] = c;
3463 1.1 paulus } while (--j);
3464 1.1 paulus s->sub.trees.index = i;
3465 1.1 paulus }
3466 1.1 paulus }
3467 1.1 paulus inflate_trees_free(s->sub.trees.tb, z);
3468 1.1 paulus s->sub.trees.tb = Z_NULL;
3469 1.1 paulus {
3470 1.1 paulus uInt bl, bd;
3471 1.1 paulus inflate_huft *tl, *td;
3472 1.1 paulus inflate_codes_statef *c;
3473 1.1 paulus
3474 1.1 paulus bl = 9; /* must be <= 9 for lookahead assumptions */
3475 1.1 paulus bd = 6; /* must be <= 9 for lookahead assumptions */
3476 1.1 paulus t = s->sub.trees.table;
3477 1.1 paulus t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3478 1.1 paulus s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3479 1.1 paulus if (t != Z_OK)
3480 1.1 paulus {
3481 1.1 paulus if (t == (uInt)Z_DATA_ERROR)
3482 1.1 paulus s->mode = BADB;
3483 1.1 paulus r = t;
3484 1.1 paulus LEAVE
3485 1.1 paulus }
3486 1.1 paulus Tracev((stderr, "inflate: trees ok\n"));
3487 1.1 paulus if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3488 1.1 paulus {
3489 1.1 paulus inflate_trees_free(td, z);
3490 1.1 paulus inflate_trees_free(tl, z);
3491 1.1 paulus r = Z_MEM_ERROR;
3492 1.1 paulus LEAVE
3493 1.1 paulus }
3494 1.1 paulus ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3495 1.1 paulus s->sub.decode.codes = c;
3496 1.1 paulus s->sub.decode.tl = tl;
3497 1.1 paulus s->sub.decode.td = td;
3498 1.1 paulus }
3499 1.1 paulus s->mode = CODES;
3500 1.1 paulus case CODES:
3501 1.1 paulus UPDATE
3502 1.1 paulus if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3503 1.1 paulus return inflate_flush(s, z, r);
3504 1.1 paulus r = Z_OK;
3505 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3506 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3507 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3508 1.1 paulus LOAD
3509 1.1 paulus Tracev((stderr, "inflate: codes end, %lu total out\n",
3510 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3511 1.1 paulus (s->end - s->read) + (q - s->window))));
3512 1.1 paulus if (!s->last)
3513 1.1 paulus {
3514 1.1 paulus s->mode = TYPE;
3515 1.1 paulus break;
3516 1.1 paulus }
3517 1.1 paulus if (k > 7) /* return unused byte, if any */
3518 1.1 paulus {
3519 1.1 paulus Assert(k < 16, "inflate_codes grabbed too many bytes")
3520 1.1 paulus k -= 8;
3521 1.1 paulus n++;
3522 1.1 paulus p--; /* can always return one */
3523 1.1 paulus }
3524 1.1 paulus s->mode = DRY;
3525 1.1 paulus case DRY:
3526 1.1 paulus FLUSH
3527 1.1 paulus if (s->read != s->write)
3528 1.1 paulus LEAVE
3529 1.1 paulus s->mode = DONEB;
3530 1.1 paulus case DONEB:
3531 1.1 paulus r = Z_STREAM_END;
3532 1.1 paulus LEAVE
3533 1.1 paulus case BADB:
3534 1.1 paulus r = Z_DATA_ERROR;
3535 1.1 paulus LEAVE
3536 1.1 paulus default:
3537 1.1 paulus r = Z_STREAM_ERROR;
3538 1.1 paulus LEAVE
3539 1.1 paulus }
3540 1.1 paulus }
3541 1.1 paulus
3542 1.1 paulus
3543 1.1 paulus local int inflate_blocks_free(s, z, c)
3544 1.1 paulus inflate_blocks_statef *s;
3545 1.1 paulus z_stream *z;
3546 1.1 paulus uLongf *c;
3547 1.1 paulus {
3548 1.1 paulus inflate_blocks_reset(s, z, c);
3549 1.1 paulus ZFREE(z, s->window, s->end - s->window);
3550 1.1 paulus ZFREE(z, s, sizeof(struct inflate_blocks_state));
3551 1.1 paulus Trace((stderr, "inflate: blocks freed\n"));
3552 1.1 paulus return Z_OK;
3553 1.1 paulus }
3554 1.1 paulus
3555 1.1 paulus /*
3556 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
3557 1.1 paulus * without performing any output. The output buffer must be "caught up";
3558 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
3559 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
3560 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
3561 1.1 paulus * will have been updated if need be.
3562 1.1 paulus */
3563 1.1 paulus local int inflate_addhistory(s, z)
3564 1.1 paulus inflate_blocks_statef *s;
3565 1.1 paulus z_stream *z;
3566 1.1 paulus {
3567 1.1 paulus uLong b; /* bit buffer */ /* NOT USED HERE */
3568 1.1 paulus uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3569 1.1 paulus uInt t; /* temporary storage */
3570 1.1 paulus Bytef *p; /* input data pointer */
3571 1.1 paulus uInt n; /* bytes available there */
3572 1.1 paulus Bytef *q; /* output window write pointer */
3573 1.1 paulus uInt m; /* bytes to end of window or read pointer */
3574 1.1 paulus
3575 1.1 paulus if (s->read != s->write)
3576 1.1 paulus return Z_STREAM_ERROR;
3577 1.1 paulus if (s->mode != TYPE)
3578 1.1 paulus return Z_DATA_ERROR;
3579 1.1 paulus
3580 1.1 paulus /* we're ready to rock */
3581 1.1 paulus LOAD
3582 1.1 paulus /* while there is input ready, copy to output buffer, moving
3583 1.1 paulus * pointers as needed.
3584 1.1 paulus */
3585 1.1 paulus while (n) {
3586 1.1 paulus t = n; /* how many to do */
3587 1.1 paulus /* is there room until end of buffer? */
3588 1.1 paulus if (t > m) t = m;
3589 1.1 paulus /* update check information */
3590 1.1 paulus if (s->checkfn != Z_NULL)
3591 1.1 paulus s->check = (*s->checkfn)(s->check, q, t);
3592 1.1 paulus zmemcpy(q, p, t);
3593 1.1 paulus q += t;
3594 1.1 paulus p += t;
3595 1.1 paulus n -= t;
3596 1.1 paulus z->total_out += t;
3597 1.1 paulus s->read = q; /* drag read pointer forward */
3598 1.1 paulus /* WRAP */ /* expand WRAP macro by hand to handle s->read */
3599 1.1 paulus if (q == s->end) {
3600 1.1 paulus s->read = q = s->window;
3601 1.1 paulus m = WAVAIL;
3602 1.1 paulus }
3603 1.1 paulus }
3604 1.1 paulus UPDATE
3605 1.1 paulus return Z_OK;
3606 1.1 paulus }
3607 1.1 paulus
3608 1.1 paulus
3609 1.1 paulus /*
3610 1.1 paulus * At the end of a Deflate-compressed PPP packet, we expect to have seen
3611 1.1 paulus * a `stored' block type value but not the (zero) length bytes.
3612 1.1 paulus */
3613 1.1 paulus local int inflate_packet_flush(s)
3614 1.1 paulus inflate_blocks_statef *s;
3615 1.1 paulus {
3616 1.1 paulus if (s->mode != LENS)
3617 1.1 paulus return Z_DATA_ERROR;
3618 1.1 paulus s->mode = TYPE;
3619 1.1 paulus return Z_OK;
3620 1.1 paulus }
3621 1.1 paulus
3622 1.1 paulus
3623 1.1 paulus /*+++++*/
3624 1.1 paulus /* inftrees.c -- generate Huffman trees for efficient decoding
3625 1.1 paulus * Copyright (C) 1995 Mark Adler
3626 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3627 1.1 paulus */
3628 1.1 paulus
3629 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
3630 1.1 paulus #define base more.Base
3631 1.1 paulus #define next more.Next
3632 1.1 paulus #define exop word.what.Exop
3633 1.1 paulus #define bits word.what.Bits
3634 1.1 paulus
3635 1.1 paulus
3636 1.1 paulus local int huft_build OF((
3637 1.1 paulus uIntf *, /* code lengths in bits */
3638 1.1 paulus uInt, /* number of codes */
3639 1.1 paulus uInt, /* number of "simple" codes */
3640 1.1 paulus uIntf *, /* list of base values for non-simple codes */
3641 1.1 paulus uIntf *, /* list of extra bits for non-simple codes */
3642 1.1 paulus inflate_huft * FAR*,/* result: starting table */
3643 1.1 paulus uIntf *, /* maximum lookup bits (returns actual) */
3644 1.1 paulus z_stream *)); /* for zalloc function */
3645 1.1 paulus
3646 1.1 paulus local voidpf falloc OF((
3647 1.1 paulus voidpf, /* opaque pointer (not used) */
3648 1.1 paulus uInt, /* number of items */
3649 1.1 paulus uInt)); /* size of item */
3650 1.1 paulus
3651 1.1 paulus local void ffree OF((
3652 1.1 paulus voidpf q, /* opaque pointer (not used) */
3653 1.1 paulus voidpf p, /* what to free (not used) */
3654 1.1 paulus uInt n)); /* number of bytes (not used) */
3655 1.1 paulus
3656 1.1 paulus /* Tables for deflate from PKZIP's appnote.txt. */
3657 1.1 paulus local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3658 1.1 paulus 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3659 1.1 paulus 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3660 1.1 paulus /* actually lengths - 2; also see note #13 above about 258 */
3661 1.1 paulus local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3662 1.1 paulus 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3663 1.1 paulus 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3664 1.1 paulus local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3665 1.1 paulus 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3666 1.1 paulus 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3667 1.1 paulus 8193, 12289, 16385, 24577};
3668 1.1 paulus local uInt cpdext[] = { /* Extra bits for distance codes */
3669 1.1 paulus 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3670 1.1 paulus 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3671 1.1 paulus 12, 12, 13, 13};
3672 1.1 paulus
3673 1.1 paulus /*
3674 1.1 paulus Huffman code decoding is performed using a multi-level table lookup.
3675 1.1 paulus The fastest way to decode is to simply build a lookup table whose
3676 1.1 paulus size is determined by the longest code. However, the time it takes
3677 1.1 paulus to build this table can also be a factor if the data being decoded
3678 1.1 paulus is not very long. The most common codes are necessarily the
3679 1.1 paulus shortest codes, so those codes dominate the decoding time, and hence
3680 1.1 paulus the speed. The idea is you can have a shorter table that decodes the
3681 1.1 paulus shorter, more probable codes, and then point to subsidiary tables for
3682 1.1 paulus the longer codes. The time it costs to decode the longer codes is
3683 1.1 paulus then traded against the time it takes to make longer tables.
3684 1.1 paulus
3685 1.1 paulus This results of this trade are in the variables lbits and dbits
3686 1.1 paulus below. lbits is the number of bits the first level table for literal/
3687 1.1 paulus length codes can decode in one step, and dbits is the same thing for
3688 1.1 paulus the distance codes. Subsequent tables are also less than or equal to
3689 1.1 paulus those sizes. These values may be adjusted either when all of the
3690 1.1 paulus codes are shorter than that, in which case the longest code length in
3691 1.1 paulus bits is used, or when the shortest code is *longer* than the requested
3692 1.1 paulus table size, in which case the length of the shortest code in bits is
3693 1.1 paulus used.
3694 1.1 paulus
3695 1.1 paulus There are two different values for the two tables, since they code a
3696 1.1 paulus different number of possibilities each. The literal/length table
3697 1.1 paulus codes 286 possible values, or in a flat code, a little over eight
3698 1.1 paulus bits. The distance table codes 30 possible values, or a little less
3699 1.1 paulus than five bits, flat. The optimum values for speed end up being
3700 1.1 paulus about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3701 1.1 paulus The optimum values may differ though from machine to machine, and
3702 1.1 paulus possibly even between compilers. Your mileage may vary.
3703 1.1 paulus */
3704 1.1 paulus
3705 1.1 paulus
3706 1.1 paulus /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3707 1.1 paulus #define BMAX 15 /* maximum bit length of any code */
3708 1.1 paulus #define N_MAX 288 /* maximum number of codes in any set */
3709 1.1 paulus
3710 1.1 paulus #ifdef DEBUG_ZLIB
3711 1.1 paulus uInt inflate_hufts;
3712 1.1 paulus #endif
3713 1.1 paulus
3714 1.1 paulus local int huft_build(b, n, s, d, e, t, m, zs)
3715 1.1 paulus uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3716 1.1 paulus uInt n; /* number of codes (assumed <= N_MAX) */
3717 1.1 paulus uInt s; /* number of simple-valued codes (0..s-1) */
3718 1.1 paulus uIntf *d; /* list of base values for non-simple codes */
3719 1.1 paulus uIntf *e; /* list of extra bits for non-simple codes */
3720 1.1 paulus inflate_huft * FAR *t; /* result: starting table */
3721 1.1 paulus uIntf *m; /* maximum lookup bits, returns actual */
3722 1.1 paulus z_stream *zs; /* for zalloc function */
3723 1.1 paulus /* Given a list of code lengths and a maximum table size, make a set of
3724 1.1 paulus tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3725 1.1 paulus if the given code set is incomplete (the tables are still built in this
3726 1.1 paulus case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3727 1.1 paulus over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3728 1.1 paulus {
3729 1.1 paulus
3730 1.1 paulus uInt a; /* counter for codes of length k */
3731 1.1 paulus uInt c[BMAX+1]; /* bit length count table */
3732 1.1 paulus uInt f; /* i repeats in table every f entries */
3733 1.1 paulus int g; /* maximum code length */
3734 1.1 paulus int h; /* table level */
3735 1.1 paulus register uInt i; /* counter, current code */
3736 1.1 paulus register uInt j; /* counter */
3737 1.1 paulus register int k; /* number of bits in current code */
3738 1.1 paulus int l; /* bits per table (returned in m) */
3739 1.1 paulus register uIntf *p; /* pointer into c[], b[], or v[] */
3740 1.1 paulus inflate_huft *q; /* points to current table */
3741 1.1 paulus struct inflate_huft_s r; /* table entry for structure assignment */
3742 1.1 paulus inflate_huft *u[BMAX]; /* table stack */
3743 1.1 paulus uInt v[N_MAX]; /* values in order of bit length */
3744 1.1 paulus register int w; /* bits before this table == (l * h) */
3745 1.1 paulus uInt x[BMAX+1]; /* bit offsets, then code stack */
3746 1.1 paulus uIntf *xp; /* pointer into x */
3747 1.1 paulus int y; /* number of dummy codes added */
3748 1.1 paulus uInt z; /* number of entries in current table */
3749 1.1 paulus
3750 1.1 paulus
3751 1.1 paulus /* Generate counts for each bit length */
3752 1.1 paulus p = c;
3753 1.1 paulus #define C0 *p++ = 0;
3754 1.1 paulus #define C2 C0 C0 C0 C0
3755 1.1 paulus #define C4 C2 C2 C2 C2
3756 1.1 paulus C4 /* clear c[]--assume BMAX+1 is 16 */
3757 1.1 paulus p = b; i = n;
3758 1.1 paulus do {
3759 1.1 paulus c[*p++]++; /* assume all entries <= BMAX */
3760 1.1 paulus } while (--i);
3761 1.1 paulus if (c[0] == n) /* null input--all zero length codes */
3762 1.1 paulus {
3763 1.1 paulus *t = (inflate_huft *)Z_NULL;
3764 1.1 paulus *m = 0;
3765 1.1 paulus return Z_OK;
3766 1.1 paulus }
3767 1.1 paulus
3768 1.1 paulus
3769 1.1 paulus /* Find minimum and maximum length, bound *m by those */
3770 1.1 paulus l = *m;
3771 1.1 paulus for (j = 1; j <= BMAX; j++)
3772 1.1 paulus if (c[j])
3773 1.1 paulus break;
3774 1.1 paulus k = j; /* minimum code length */
3775 1.1 paulus if ((uInt)l < j)
3776 1.1 paulus l = j;
3777 1.1 paulus for (i = BMAX; i; i--)
3778 1.1 paulus if (c[i])
3779 1.1 paulus break;
3780 1.1 paulus g = i; /* maximum code length */
3781 1.1 paulus if ((uInt)l > i)
3782 1.1 paulus l = i;
3783 1.1 paulus *m = l;
3784 1.1 paulus
3785 1.1 paulus
3786 1.1 paulus /* Adjust last length count to fill out codes, if needed */
3787 1.1 paulus for (y = 1 << j; j < i; j++, y <<= 1)
3788 1.1 paulus if ((y -= c[j]) < 0)
3789 1.1 paulus return Z_DATA_ERROR;
3790 1.1 paulus if ((y -= c[i]) < 0)
3791 1.1 paulus return Z_DATA_ERROR;
3792 1.1 paulus c[i] += y;
3793 1.1 paulus
3794 1.1 paulus
3795 1.1 paulus /* Generate starting offsets into the value table for each length */
3796 1.1 paulus x[1] = j = 0;
3797 1.1 paulus p = c + 1; xp = x + 2;
3798 1.1 paulus while (--i) { /* note that i == g from above */
3799 1.1 paulus *xp++ = (j += *p++);
3800 1.1 paulus }
3801 1.1 paulus
3802 1.1 paulus
3803 1.1 paulus /* Make a table of values in order of bit lengths */
3804 1.1 paulus p = b; i = 0;
3805 1.1 paulus do {
3806 1.1 paulus if ((j = *p++) != 0)
3807 1.1 paulus v[x[j]++] = i;
3808 1.1 paulus } while (++i < n);
3809 1.1 paulus
3810 1.1 paulus
3811 1.1 paulus /* Generate the Huffman codes and for each, make the table entries */
3812 1.1 paulus x[0] = i = 0; /* first Huffman code is zero */
3813 1.1 paulus p = v; /* grab values in bit order */
3814 1.1 paulus h = -1; /* no tables yet--level -1 */
3815 1.1 paulus w = -l; /* bits decoded == (l * h) */
3816 1.1 paulus u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3817 1.1 paulus q = (inflate_huft *)Z_NULL; /* ditto */
3818 1.1 paulus z = 0; /* ditto */
3819 1.1 paulus
3820 1.1 paulus /* go through the bit lengths (k already is bits in shortest code) */
3821 1.1 paulus for (; k <= g; k++)
3822 1.1 paulus {
3823 1.1 paulus a = c[k];
3824 1.1 paulus while (a--)
3825 1.1 paulus {
3826 1.1 paulus /* here i is the Huffman code of length k bits for value *p */
3827 1.1 paulus /* make tables up to required level */
3828 1.1 paulus while (k > w + l)
3829 1.1 paulus {
3830 1.1 paulus h++;
3831 1.1 paulus w += l; /* previous table always l bits */
3832 1.1 paulus
3833 1.1 paulus /* compute minimum size table less than or equal to l bits */
3834 1.1 paulus z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3835 1.1 paulus if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3836 1.1 paulus { /* too few codes for k-w bit table */
3837 1.1 paulus f -= a + 1; /* deduct codes from patterns left */
3838 1.1 paulus xp = c + k;
3839 1.1 paulus if (j < z)
3840 1.1 paulus while (++j < z) /* try smaller tables up to z bits */
3841 1.1 paulus {
3842 1.1 paulus if ((f <<= 1) <= *++xp)
3843 1.1 paulus break; /* enough codes to use up j bits */
3844 1.1 paulus f -= *xp; /* else deduct codes from patterns */
3845 1.1 paulus }
3846 1.1 paulus }
3847 1.1 paulus z = 1 << j; /* table entries for j-bit table */
3848 1.1 paulus
3849 1.1 paulus /* allocate and link in new table */
3850 1.1 paulus if ((q = (inflate_huft *)ZALLOC
3851 1.1 paulus (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3852 1.1 paulus {
3853 1.1 paulus if (h)
3854 1.1 paulus inflate_trees_free(u[0], zs);
3855 1.1 paulus return Z_MEM_ERROR; /* not enough memory */
3856 1.1 paulus }
3857 1.1 paulus q->word.Nalloc = z + 1;
3858 1.1 paulus #ifdef DEBUG_ZLIB
3859 1.1 paulus inflate_hufts += z + 1;
3860 1.1 paulus #endif
3861 1.1 paulus *t = q + 1; /* link to list for huft_free() */
3862 1.1 paulus *(t = &(q->next)) = Z_NULL;
3863 1.1 paulus u[h] = ++q; /* table starts after link */
3864 1.1 paulus
3865 1.1 paulus /* connect to last table, if there is one */
3866 1.1 paulus if (h)
3867 1.1 paulus {
3868 1.1 paulus x[h] = i; /* save pattern for backing up */
3869 1.1 paulus r.bits = (Byte)l; /* bits to dump before this table */
3870 1.1 paulus r.exop = (Byte)j; /* bits in this table */
3871 1.1 paulus r.next = q; /* pointer to this table */
3872 1.1 paulus j = i >> (w - l); /* (get around Turbo C bug) */
3873 1.1 paulus u[h-1][j] = r; /* connect to last table */
3874 1.1 paulus }
3875 1.1 paulus }
3876 1.1 paulus
3877 1.1 paulus /* set up table entry in r */
3878 1.1 paulus r.bits = (Byte)(k - w);
3879 1.1 paulus if (p >= v + n)
3880 1.1 paulus r.exop = 128 + 64; /* out of values--invalid code */
3881 1.1 paulus else if (*p < s)
3882 1.1 paulus {
3883 1.1 paulus r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3884 1.1 paulus r.base = *p++; /* simple code is just the value */
3885 1.1 paulus }
3886 1.1 paulus else
3887 1.1 paulus {
3888 1.1 paulus r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3889 1.1 paulus r.base = d[*p++ - s];
3890 1.1 paulus }
3891 1.1 paulus
3892 1.1 paulus /* fill code-like entries with r */
3893 1.1 paulus f = 1 << (k - w);
3894 1.1 paulus for (j = i >> w; j < z; j += f)
3895 1.1 paulus q[j] = r;
3896 1.1 paulus
3897 1.1 paulus /* backwards increment the k-bit code i */
3898 1.1 paulus for (j = 1 << (k - 1); i & j; j >>= 1)
3899 1.1 paulus i ^= j;
3900 1.1 paulus i ^= j;
3901 1.1 paulus
3902 1.1 paulus /* backup over finished tables */
3903 1.1 paulus while ((i & ((1 << w) - 1)) != x[h])
3904 1.1 paulus {
3905 1.1 paulus h--; /* don't need to update q */
3906 1.1 paulus w -= l;
3907 1.1 paulus }
3908 1.1 paulus }
3909 1.1 paulus }
3910 1.1 paulus
3911 1.1 paulus
3912 1.1 paulus /* Return Z_BUF_ERROR if we were given an incomplete table */
3913 1.1 paulus return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3914 1.1 paulus }
3915 1.1 paulus
3916 1.1 paulus
3917 1.1 paulus local int inflate_trees_bits(c, bb, tb, z)
3918 1.1 paulus uIntf *c; /* 19 code lengths */
3919 1.1 paulus uIntf *bb; /* bits tree desired/actual depth */
3920 1.1 paulus inflate_huft * FAR *tb; /* bits tree result */
3921 1.1 paulus z_stream *z; /* for zfree function */
3922 1.1 paulus {
3923 1.1 paulus int r;
3924 1.1 paulus
3925 1.1 paulus r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3926 1.1 paulus if (r == Z_DATA_ERROR)
3927 1.1 paulus z->msg = "oversubscribed dynamic bit lengths tree";
3928 1.1 paulus else if (r == Z_BUF_ERROR)
3929 1.1 paulus {
3930 1.1 paulus inflate_trees_free(*tb, z);
3931 1.1 paulus z->msg = "incomplete dynamic bit lengths tree";
3932 1.1 paulus r = Z_DATA_ERROR;
3933 1.1 paulus }
3934 1.1 paulus return r;
3935 1.1 paulus }
3936 1.1 paulus
3937 1.1 paulus
3938 1.1 paulus local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3939 1.1 paulus uInt nl; /* number of literal/length codes */
3940 1.1 paulus uInt nd; /* number of distance codes */
3941 1.1 paulus uIntf *c; /* that many (total) code lengths */
3942 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
3943 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
3944 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
3945 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
3946 1.1 paulus z_stream *z; /* for zfree function */
3947 1.1 paulus {
3948 1.1 paulus int r;
3949 1.1 paulus
3950 1.1 paulus /* build literal/length tree */
3951 1.1 paulus if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3952 1.1 paulus {
3953 1.1 paulus if (r == Z_DATA_ERROR)
3954 1.1 paulus z->msg = "oversubscribed literal/length tree";
3955 1.1 paulus else if (r == Z_BUF_ERROR)
3956 1.1 paulus {
3957 1.1 paulus inflate_trees_free(*tl, z);
3958 1.1 paulus z->msg = "incomplete literal/length tree";
3959 1.1 paulus r = Z_DATA_ERROR;
3960 1.1 paulus }
3961 1.1 paulus return r;
3962 1.1 paulus }
3963 1.1 paulus
3964 1.1 paulus /* build distance tree */
3965 1.1 paulus if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3966 1.1 paulus {
3967 1.1 paulus if (r == Z_DATA_ERROR)
3968 1.1 paulus z->msg = "oversubscribed literal/length tree";
3969 1.1 paulus else if (r == Z_BUF_ERROR) {
3970 1.1 paulus #ifdef PKZIP_BUG_WORKAROUND
3971 1.1 paulus r = Z_OK;
3972 1.1 paulus }
3973 1.1 paulus #else
3974 1.1 paulus inflate_trees_free(*td, z);
3975 1.1 paulus z->msg = "incomplete literal/length tree";
3976 1.1 paulus r = Z_DATA_ERROR;
3977 1.1 paulus }
3978 1.1 paulus inflate_trees_free(*tl, z);
3979 1.1 paulus return r;
3980 1.1 paulus #endif
3981 1.1 paulus }
3982 1.1 paulus
3983 1.1 paulus /* done */
3984 1.1 paulus return Z_OK;
3985 1.1 paulus }
3986 1.1 paulus
3987 1.1 paulus
3988 1.1 paulus /* build fixed tables only once--keep them here */
3989 1.1 paulus local int fixed_lock = 0;
3990 1.1 paulus local int fixed_built = 0;
3991 1.1 paulus #define FIXEDH 530 /* number of hufts used by fixed tables */
3992 1.1 paulus local uInt fixed_left = FIXEDH;
3993 1.1 paulus local inflate_huft fixed_mem[FIXEDH];
3994 1.1 paulus local uInt fixed_bl;
3995 1.1 paulus local uInt fixed_bd;
3996 1.1 paulus local inflate_huft *fixed_tl;
3997 1.1 paulus local inflate_huft *fixed_td;
3998 1.1 paulus
3999 1.1 paulus
4000 1.1 paulus local voidpf falloc(q, n, s)
4001 1.1 paulus voidpf q; /* opaque pointer (not used) */
4002 1.1 paulus uInt n; /* number of items */
4003 1.1 paulus uInt s; /* size of item */
4004 1.1 paulus {
4005 1.1 paulus Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4006 1.1 paulus "inflate_trees falloc overflow");
4007 1.1 paulus if (q) s++; /* to make some compilers happy */
4008 1.1 paulus fixed_left -= n;
4009 1.1 paulus return (voidpf)(fixed_mem + fixed_left);
4010 1.1 paulus }
4011 1.1 paulus
4012 1.1 paulus
4013 1.1 paulus local void ffree(q, p, n)
4014 1.1 paulus voidpf q;
4015 1.1 paulus voidpf p;
4016 1.1 paulus uInt n;
4017 1.1 paulus {
4018 1.1 paulus Assert(0, "inflate_trees ffree called!");
4019 1.1 paulus if (q) q = p; /* to make some compilers happy */
4020 1.1 paulus }
4021 1.1 paulus
4022 1.1 paulus
4023 1.1 paulus local int inflate_trees_fixed(bl, bd, tl, td)
4024 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4025 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4026 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4027 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4028 1.1 paulus {
4029 1.1 paulus /* build fixed tables if not built already--lock out other instances */
4030 1.1 paulus while (++fixed_lock > 1)
4031 1.1 paulus fixed_lock--;
4032 1.1 paulus if (!fixed_built)
4033 1.1 paulus {
4034 1.1 paulus int k; /* temporary variable */
4035 1.1 paulus unsigned c[288]; /* length list for huft_build */
4036 1.1 paulus z_stream z; /* for falloc function */
4037 1.1 paulus
4038 1.1 paulus /* set up fake z_stream for memory routines */
4039 1.1 paulus z.zalloc = falloc;
4040 1.1 paulus z.zfree = ffree;
4041 1.1 paulus z.opaque = Z_NULL;
4042 1.1 paulus
4043 1.1 paulus /* literal table */
4044 1.1 paulus for (k = 0; k < 144; k++)
4045 1.1 paulus c[k] = 8;
4046 1.1 paulus for (; k < 256; k++)
4047 1.1 paulus c[k] = 9;
4048 1.1 paulus for (; k < 280; k++)
4049 1.1 paulus c[k] = 7;
4050 1.1 paulus for (; k < 288; k++)
4051 1.1 paulus c[k] = 8;
4052 1.1 paulus fixed_bl = 7;
4053 1.1 paulus huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4054 1.1 paulus
4055 1.1 paulus /* distance table */
4056 1.1 paulus for (k = 0; k < 30; k++)
4057 1.1 paulus c[k] = 5;
4058 1.1 paulus fixed_bd = 5;
4059 1.1 paulus huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4060 1.1 paulus
4061 1.1 paulus /* done */
4062 1.1 paulus fixed_built = 1;
4063 1.1 paulus }
4064 1.1 paulus fixed_lock--;
4065 1.1 paulus *bl = fixed_bl;
4066 1.1 paulus *bd = fixed_bd;
4067 1.1 paulus *tl = fixed_tl;
4068 1.1 paulus *td = fixed_td;
4069 1.1 paulus return Z_OK;
4070 1.1 paulus }
4071 1.1 paulus
4072 1.1 paulus
4073 1.1 paulus local int inflate_trees_free(t, z)
4074 1.1 paulus inflate_huft *t; /* table to free */
4075 1.1 paulus z_stream *z; /* for zfree function */
4076 1.1 paulus /* Free the malloc'ed tables built by huft_build(), which makes a linked
4077 1.1 paulus list of the tables it made, with the links in a dummy first entry of
4078 1.1 paulus each table. */
4079 1.1 paulus {
4080 1.1 paulus register inflate_huft *p, *q;
4081 1.1 paulus
4082 1.1 paulus /* Go through linked list, freeing from the malloced (t[-1]) address. */
4083 1.1 paulus p = t;
4084 1.1 paulus while (p != Z_NULL)
4085 1.1 paulus {
4086 1.1 paulus q = (--p)->next;
4087 1.1 paulus ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4088 1.1 paulus p = q;
4089 1.1 paulus }
4090 1.1 paulus return Z_OK;
4091 1.1 paulus }
4092 1.1 paulus
4093 1.1 paulus /*+++++*/
4094 1.1 paulus /* infcodes.c -- process literals and length/distance pairs
4095 1.1 paulus * Copyright (C) 1995 Mark Adler
4096 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4097 1.1 paulus */
4098 1.1 paulus
4099 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4100 1.1 paulus #define base more.Base
4101 1.1 paulus #define next more.Next
4102 1.1 paulus #define exop word.what.Exop
4103 1.1 paulus #define bits word.what.Bits
4104 1.1 paulus
4105 1.1 paulus /* inflate codes private state */
4106 1.1 paulus struct inflate_codes_state {
4107 1.1 paulus
4108 1.1 paulus /* mode */
4109 1.1 paulus enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4110 1.1 paulus START, /* x: set up for LEN */
4111 1.1 paulus LEN, /* i: get length/literal/eob next */
4112 1.1 paulus LENEXT, /* i: getting length extra (have base) */
4113 1.1 paulus DIST, /* i: get distance next */
4114 1.1 paulus DISTEXT, /* i: getting distance extra */
4115 1.1 paulus COPY, /* o: copying bytes in window, waiting for space */
4116 1.1 paulus LIT, /* o: got literal, waiting for output space */
4117 1.1 paulus WASH, /* o: got eob, possibly still output waiting */
4118 1.1 paulus END, /* x: got eob and all data flushed */
4119 1.1 paulus BADCODE} /* x: got error */
4120 1.1 paulus mode; /* current inflate_codes mode */
4121 1.1 paulus
4122 1.1 paulus /* mode dependent information */
4123 1.1 paulus uInt len;
4124 1.1 paulus union {
4125 1.1 paulus struct {
4126 1.1 paulus inflate_huft *tree; /* pointer into tree */
4127 1.1 paulus uInt need; /* bits needed */
4128 1.1 paulus } code; /* if LEN or DIST, where in tree */
4129 1.1 paulus uInt lit; /* if LIT, literal */
4130 1.1 paulus struct {
4131 1.1 paulus uInt get; /* bits to get for extra */
4132 1.1 paulus uInt dist; /* distance back to copy from */
4133 1.1 paulus } copy; /* if EXT or COPY, where and how much */
4134 1.1 paulus } sub; /* submode */
4135 1.1 paulus
4136 1.1 paulus /* mode independent information */
4137 1.1 paulus Byte lbits; /* ltree bits decoded per branch */
4138 1.1 paulus Byte dbits; /* dtree bits decoder per branch */
4139 1.1 paulus inflate_huft *ltree; /* literal/length/eob tree */
4140 1.1 paulus inflate_huft *dtree; /* distance tree */
4141 1.1 paulus
4142 1.1 paulus };
4143 1.1 paulus
4144 1.1 paulus
4145 1.1 paulus local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4146 1.1 paulus uInt bl, bd;
4147 1.1 paulus inflate_huft *tl, *td;
4148 1.1 paulus z_stream *z;
4149 1.1 paulus {
4150 1.1 paulus inflate_codes_statef *c;
4151 1.1 paulus
4152 1.1 paulus if ((c = (inflate_codes_statef *)
4153 1.1 paulus ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4154 1.1 paulus {
4155 1.1 paulus c->mode = START;
4156 1.1 paulus c->lbits = (Byte)bl;
4157 1.1 paulus c->dbits = (Byte)bd;
4158 1.1 paulus c->ltree = tl;
4159 1.1 paulus c->dtree = td;
4160 1.1 paulus Tracev((stderr, "inflate: codes new\n"));
4161 1.1 paulus }
4162 1.1 paulus return c;
4163 1.1 paulus }
4164 1.1 paulus
4165 1.1 paulus
4166 1.1 paulus local int inflate_codes(s, z, r)
4167 1.1 paulus inflate_blocks_statef *s;
4168 1.1 paulus z_stream *z;
4169 1.1 paulus int r;
4170 1.1 paulus {
4171 1.1 paulus uInt j; /* temporary storage */
4172 1.1 paulus inflate_huft *t; /* temporary pointer */
4173 1.1 paulus uInt e; /* extra bits or operation */
4174 1.1 paulus uLong b; /* bit buffer */
4175 1.1 paulus uInt k; /* bits in bit buffer */
4176 1.1 paulus Bytef *p; /* input data pointer */
4177 1.1 paulus uInt n; /* bytes available there */
4178 1.1 paulus Bytef *q; /* output window write pointer */
4179 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4180 1.1 paulus Bytef *f; /* pointer to copy strings from */
4181 1.1 paulus inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4182 1.1 paulus
4183 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
4184 1.1 paulus LOAD
4185 1.1 paulus
4186 1.1 paulus /* process input and output based on current state */
4187 1.1 paulus while (1) switch (c->mode)
4188 1.1 paulus { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4189 1.1 paulus case START: /* x: set up for LEN */
4190 1.1 paulus #ifndef SLOW
4191 1.1 paulus if (m >= 258 && n >= 10)
4192 1.1 paulus {
4193 1.1 paulus UPDATE
4194 1.1 paulus r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4195 1.1 paulus LOAD
4196 1.1 paulus if (r != Z_OK)
4197 1.1 paulus {
4198 1.1 paulus c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4199 1.1 paulus break;
4200 1.1 paulus }
4201 1.1 paulus }
4202 1.1 paulus #endif /* !SLOW */
4203 1.1 paulus c->sub.code.need = c->lbits;
4204 1.1 paulus c->sub.code.tree = c->ltree;
4205 1.1 paulus c->mode = LEN;
4206 1.1 paulus case LEN: /* i: get length/literal/eob next */
4207 1.1 paulus j = c->sub.code.need;
4208 1.1 paulus NEEDBITS(j)
4209 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4210 1.1 paulus DUMPBITS(t->bits)
4211 1.1 paulus e = (uInt)(t->exop);
4212 1.1 paulus if (e == 0) /* literal */
4213 1.1 paulus {
4214 1.1 paulus c->sub.lit = t->base;
4215 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4216 1.1 paulus "inflate: literal '%c'\n" :
4217 1.1 paulus "inflate: literal 0x%02x\n", t->base));
4218 1.1 paulus c->mode = LIT;
4219 1.1 paulus break;
4220 1.1 paulus }
4221 1.1 paulus if (e & 16) /* length */
4222 1.1 paulus {
4223 1.1 paulus c->sub.copy.get = e & 15;
4224 1.1 paulus c->len = t->base;
4225 1.1 paulus c->mode = LENEXT;
4226 1.1 paulus break;
4227 1.1 paulus }
4228 1.1 paulus if ((e & 64) == 0) /* next table */
4229 1.1 paulus {
4230 1.1 paulus c->sub.code.need = e;
4231 1.1 paulus c->sub.code.tree = t->next;
4232 1.1 paulus break;
4233 1.1 paulus }
4234 1.1 paulus if (e & 32) /* end of block */
4235 1.1 paulus {
4236 1.1 paulus Tracevv((stderr, "inflate: end of block\n"));
4237 1.1 paulus c->mode = WASH;
4238 1.1 paulus break;
4239 1.1 paulus }
4240 1.1 paulus c->mode = BADCODE; /* invalid code */
4241 1.1 paulus z->msg = "invalid literal/length code";
4242 1.1 paulus r = Z_DATA_ERROR;
4243 1.1 paulus LEAVE
4244 1.1 paulus case LENEXT: /* i: getting length extra (have base) */
4245 1.1 paulus j = c->sub.copy.get;
4246 1.1 paulus NEEDBITS(j)
4247 1.1 paulus c->len += (uInt)b & inflate_mask[j];
4248 1.1 paulus DUMPBITS(j)
4249 1.1 paulus c->sub.code.need = c->dbits;
4250 1.1 paulus c->sub.code.tree = c->dtree;
4251 1.1 paulus Tracevv((stderr, "inflate: length %u\n", c->len));
4252 1.1 paulus c->mode = DIST;
4253 1.1 paulus case DIST: /* i: get distance next */
4254 1.1 paulus j = c->sub.code.need;
4255 1.1 paulus NEEDBITS(j)
4256 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4257 1.1 paulus DUMPBITS(t->bits)
4258 1.1 paulus e = (uInt)(t->exop);
4259 1.1 paulus if (e & 16) /* distance */
4260 1.1 paulus {
4261 1.1 paulus c->sub.copy.get = e & 15;
4262 1.1 paulus c->sub.copy.dist = t->base;
4263 1.1 paulus c->mode = DISTEXT;
4264 1.1 paulus break;
4265 1.1 paulus }
4266 1.1 paulus if ((e & 64) == 0) /* next table */
4267 1.1 paulus {
4268 1.1 paulus c->sub.code.need = e;
4269 1.1 paulus c->sub.code.tree = t->next;
4270 1.1 paulus break;
4271 1.1 paulus }
4272 1.1 paulus c->mode = BADCODE; /* invalid code */
4273 1.1 paulus z->msg = "invalid distance code";
4274 1.1 paulus r = Z_DATA_ERROR;
4275 1.1 paulus LEAVE
4276 1.1 paulus case DISTEXT: /* i: getting distance extra */
4277 1.1 paulus j = c->sub.copy.get;
4278 1.1 paulus NEEDBITS(j)
4279 1.1 paulus c->sub.copy.dist += (uInt)b & inflate_mask[j];
4280 1.1 paulus DUMPBITS(j)
4281 1.1 paulus Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4282 1.1 paulus c->mode = COPY;
4283 1.1 paulus case COPY: /* o: copying bytes in window, waiting for space */
4284 1.1 paulus #ifndef __TURBOC__ /* Turbo C bug for following expression */
4285 1.1 paulus f = (uInt)(q - s->window) < c->sub.copy.dist ?
4286 1.1 paulus s->end - (c->sub.copy.dist - (q - s->window)) :
4287 1.1 paulus q - c->sub.copy.dist;
4288 1.1 paulus #else
4289 1.1 paulus f = q - c->sub.copy.dist;
4290 1.1 paulus if ((uInt)(q - s->window) < c->sub.copy.dist)
4291 1.1 paulus f = s->end - (c->sub.copy.dist - (q - s->window));
4292 1.1 paulus #endif
4293 1.1 paulus while (c->len)
4294 1.1 paulus {
4295 1.1 paulus NEEDOUT
4296 1.1 paulus OUTBYTE(*f++)
4297 1.1 paulus if (f == s->end)
4298 1.1 paulus f = s->window;
4299 1.1 paulus c->len--;
4300 1.1 paulus }
4301 1.1 paulus c->mode = START;
4302 1.1 paulus break;
4303 1.1 paulus case LIT: /* o: got literal, waiting for output space */
4304 1.1 paulus NEEDOUT
4305 1.1 paulus OUTBYTE(c->sub.lit)
4306 1.1 paulus c->mode = START;
4307 1.1 paulus break;
4308 1.1 paulus case WASH: /* o: got eob, possibly more output */
4309 1.1 paulus FLUSH
4310 1.1 paulus if (s->read != s->write)
4311 1.1 paulus LEAVE
4312 1.1 paulus c->mode = END;
4313 1.1 paulus case END:
4314 1.1 paulus r = Z_STREAM_END;
4315 1.1 paulus LEAVE
4316 1.1 paulus case BADCODE: /* x: got error */
4317 1.1 paulus r = Z_DATA_ERROR;
4318 1.1 paulus LEAVE
4319 1.1 paulus default:
4320 1.1 paulus r = Z_STREAM_ERROR;
4321 1.1 paulus LEAVE
4322 1.1 paulus }
4323 1.1 paulus }
4324 1.1 paulus
4325 1.1 paulus
4326 1.1 paulus local void inflate_codes_free(c, z)
4327 1.1 paulus inflate_codes_statef *c;
4328 1.1 paulus z_stream *z;
4329 1.1 paulus {
4330 1.1 paulus ZFREE(z, c, sizeof(struct inflate_codes_state));
4331 1.1 paulus Tracev((stderr, "inflate: codes free\n"));
4332 1.1 paulus }
4333 1.1 paulus
4334 1.1 paulus /*+++++*/
4335 1.1 paulus /* inflate_util.c -- data and routines common to blocks and codes
4336 1.1 paulus * Copyright (C) 1995 Mark Adler
4337 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4338 1.1 paulus */
4339 1.1 paulus
4340 1.1 paulus /* copy as much as possible from the sliding window to the output area */
4341 1.1 paulus local int inflate_flush(s, z, r)
4342 1.1 paulus inflate_blocks_statef *s;
4343 1.1 paulus z_stream *z;
4344 1.1 paulus int r;
4345 1.1 paulus {
4346 1.1 paulus uInt n;
4347 1.1 paulus Bytef *p, *q;
4348 1.1 paulus
4349 1.1 paulus /* local copies of source and destination pointers */
4350 1.1 paulus p = z->next_out;
4351 1.1 paulus q = s->read;
4352 1.1 paulus
4353 1.1 paulus /* compute number of bytes to copy as far as end of window */
4354 1.1 paulus n = (uInt)((q <= s->write ? s->write : s->end) - q);
4355 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4356 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4357 1.1 paulus
4358 1.1 paulus /* update counters */
4359 1.1 paulus z->avail_out -= n;
4360 1.1 paulus z->total_out += n;
4361 1.1 paulus
4362 1.1 paulus /* update check information */
4363 1.1 paulus if (s->checkfn != Z_NULL)
4364 1.1 paulus s->check = (*s->checkfn)(s->check, q, n);
4365 1.1 paulus
4366 1.1 paulus /* copy as far as end of window */
4367 1.1 paulus if (p != NULL) {
4368 1.1 paulus zmemcpy(p, q, n);
4369 1.1 paulus p += n;
4370 1.1 paulus }
4371 1.1 paulus q += n;
4372 1.1 paulus
4373 1.1 paulus /* see if more to copy at beginning of window */
4374 1.1 paulus if (q == s->end)
4375 1.1 paulus {
4376 1.1 paulus /* wrap pointers */
4377 1.1 paulus q = s->window;
4378 1.1 paulus if (s->write == s->end)
4379 1.1 paulus s->write = s->window;
4380 1.1 paulus
4381 1.1 paulus /* compute bytes to copy */
4382 1.1 paulus n = (uInt)(s->write - q);
4383 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4384 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4385 1.1 paulus
4386 1.1 paulus /* update counters */
4387 1.1 paulus z->avail_out -= n;
4388 1.1 paulus z->total_out += n;
4389 1.1 paulus
4390 1.1 paulus /* update check information */
4391 1.1 paulus if (s->checkfn != Z_NULL)
4392 1.1 paulus s->check = (*s->checkfn)(s->check, q, n);
4393 1.1 paulus
4394 1.1 paulus /* copy */
4395 1.1 paulus if (p != NULL) {
4396 1.1 paulus zmemcpy(p, q, n);
4397 1.1 paulus p += n;
4398 1.1 paulus }
4399 1.1 paulus q += n;
4400 1.1 paulus }
4401 1.1 paulus
4402 1.1 paulus /* update pointers */
4403 1.1 paulus z->next_out = p;
4404 1.1 paulus s->read = q;
4405 1.1 paulus
4406 1.1 paulus /* done */
4407 1.1 paulus return r;
4408 1.1 paulus }
4409 1.1 paulus
4410 1.1 paulus
4411 1.1 paulus /*+++++*/
4412 1.1 paulus /* inffast.c -- process literals and length/distance pairs fast
4413 1.1 paulus * Copyright (C) 1995 Mark Adler
4414 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4415 1.1 paulus */
4416 1.1 paulus
4417 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4418 1.1 paulus #define base more.Base
4419 1.1 paulus #define next more.Next
4420 1.1 paulus #define exop word.what.Exop
4421 1.1 paulus #define bits word.what.Bits
4422 1.1 paulus
4423 1.1 paulus /* macros for bit input with no checking and for returning unused bytes */
4424 1.1 paulus #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4425 1.1 paulus #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4426 1.1 paulus
4427 1.1 paulus /* Called with number of bytes left to write in window at least 258
4428 1.1 paulus (the maximum string length) and number of input bytes available
4429 1.1 paulus at least ten. The ten bytes are six bytes for the longest length/
4430 1.1 paulus distance pair plus four bytes for overloading the bit buffer. */
4431 1.1 paulus
4432 1.1 paulus local int inflate_fast(bl, bd, tl, td, s, z)
4433 1.1 paulus uInt bl, bd;
4434 1.1 paulus inflate_huft *tl, *td;
4435 1.1 paulus inflate_blocks_statef *s;
4436 1.1 paulus z_stream *z;
4437 1.1 paulus {
4438 1.1 paulus inflate_huft *t; /* temporary pointer */
4439 1.1 paulus uInt e; /* extra bits or operation */
4440 1.1 paulus uLong b; /* bit buffer */
4441 1.1 paulus uInt k; /* bits in bit buffer */
4442 1.1 paulus Bytef *p; /* input data pointer */
4443 1.1 paulus uInt n; /* bytes available there */
4444 1.1 paulus Bytef *q; /* output window write pointer */
4445 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4446 1.1 paulus uInt ml; /* mask for literal/length tree */
4447 1.1 paulus uInt md; /* mask for distance tree */
4448 1.1 paulus uInt c; /* bytes to copy */
4449 1.1 paulus uInt d; /* distance back to copy from */
4450 1.1 paulus Bytef *r; /* copy source pointer */
4451 1.1 paulus
4452 1.1 paulus /* load input, output, bit values */
4453 1.1 paulus LOAD
4454 1.1 paulus
4455 1.1 paulus /* initialize masks */
4456 1.1 paulus ml = inflate_mask[bl];
4457 1.1 paulus md = inflate_mask[bd];
4458 1.1 paulus
4459 1.1 paulus /* do until not enough input or output space for fast loop */
4460 1.1 paulus do { /* assume called with m >= 258 && n >= 10 */
4461 1.1 paulus /* get literal/length code */
4462 1.1 paulus GRABBITS(20) /* max bits for literal/length code */
4463 1.1 paulus if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4464 1.1 paulus {
4465 1.1 paulus DUMPBITS(t->bits)
4466 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4467 1.1 paulus "inflate: * literal '%c'\n" :
4468 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
4469 1.1 paulus *q++ = (Byte)t->base;
4470 1.1 paulus m--;
4471 1.1 paulus continue;
4472 1.1 paulus }
4473 1.1 paulus do {
4474 1.1 paulus DUMPBITS(t->bits)
4475 1.1 paulus if (e & 16)
4476 1.1 paulus {
4477 1.1 paulus /* get extra bits for length */
4478 1.1 paulus e &= 15;
4479 1.1 paulus c = t->base + ((uInt)b & inflate_mask[e]);
4480 1.1 paulus DUMPBITS(e)
4481 1.1 paulus Tracevv((stderr, "inflate: * length %u\n", c));
4482 1.1 paulus
4483 1.1 paulus /* decode distance base of block to copy */
4484 1.1 paulus GRABBITS(15); /* max bits for distance code */
4485 1.1 paulus e = (t = td + ((uInt)b & md))->exop;
4486 1.1 paulus do {
4487 1.1 paulus DUMPBITS(t->bits)
4488 1.1 paulus if (e & 16)
4489 1.1 paulus {
4490 1.1 paulus /* get extra bits to add to distance base */
4491 1.1 paulus e &= 15;
4492 1.1 paulus GRABBITS(e) /* get extra bits (up to 13) */
4493 1.1 paulus d = t->base + ((uInt)b & inflate_mask[e]);
4494 1.1 paulus DUMPBITS(e)
4495 1.1 paulus Tracevv((stderr, "inflate: * distance %u\n", d));
4496 1.1 paulus
4497 1.1 paulus /* do the copy */
4498 1.1 paulus m -= c;
4499 1.1 paulus if ((uInt)(q - s->window) >= d) /* offset before dest */
4500 1.1 paulus { /* just copy */
4501 1.1 paulus r = q - d;
4502 1.1 paulus *q++ = *r++; c--; /* minimum count is three, */
4503 1.1 paulus *q++ = *r++; c--; /* so unroll loop a little */
4504 1.1 paulus }
4505 1.1 paulus else /* else offset after destination */
4506 1.1 paulus {
4507 1.1 paulus e = d - (q - s->window); /* bytes from offset to end */
4508 1.1 paulus r = s->end - e; /* pointer to offset */
4509 1.1 paulus if (c > e) /* if source crosses, */
4510 1.1 paulus {
4511 1.1 paulus c -= e; /* copy to end of window */
4512 1.1 paulus do {
4513 1.1 paulus *q++ = *r++;
4514 1.1 paulus } while (--e);
4515 1.1 paulus r = s->window; /* copy rest from start of window */
4516 1.1 paulus }
4517 1.1 paulus }
4518 1.1 paulus do { /* copy all or what's left */
4519 1.1 paulus *q++ = *r++;
4520 1.1 paulus } while (--c);
4521 1.1 paulus break;
4522 1.1 paulus }
4523 1.1 paulus else if ((e & 64) == 0)
4524 1.1 paulus e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4525 1.1 paulus else
4526 1.1 paulus {
4527 1.1 paulus z->msg = "invalid distance code";
4528 1.1 paulus UNGRAB
4529 1.1 paulus UPDATE
4530 1.1 paulus return Z_DATA_ERROR;
4531 1.1 paulus }
4532 1.1 paulus } while (1);
4533 1.1 paulus break;
4534 1.1 paulus }
4535 1.1 paulus if ((e & 64) == 0)
4536 1.1 paulus {
4537 1.1 paulus if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4538 1.1 paulus {
4539 1.1 paulus DUMPBITS(t->bits)
4540 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4541 1.1 paulus "inflate: * literal '%c'\n" :
4542 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
4543 1.1 paulus *q++ = (Byte)t->base;
4544 1.1 paulus m--;
4545 1.1 paulus break;
4546 1.1 paulus }
4547 1.1 paulus }
4548 1.1 paulus else if (e & 32)
4549 1.1 paulus {
4550 1.1 paulus Tracevv((stderr, "inflate: * end of block\n"));
4551 1.1 paulus UNGRAB
4552 1.1 paulus UPDATE
4553 1.1 paulus return Z_STREAM_END;
4554 1.1 paulus }
4555 1.1 paulus else
4556 1.1 paulus {
4557 1.1 paulus z->msg = "invalid literal/length code";
4558 1.1 paulus UNGRAB
4559 1.1 paulus UPDATE
4560 1.1 paulus return Z_DATA_ERROR;
4561 1.1 paulus }
4562 1.1 paulus } while (1);
4563 1.1 paulus } while (m >= 258 && n >= 10);
4564 1.1 paulus
4565 1.1 paulus /* not enough input or output--restore pointers and return */
4566 1.1 paulus UNGRAB
4567 1.1 paulus UPDATE
4568 1.1 paulus return Z_OK;
4569 1.1 paulus }
4570 1.1 paulus
4571 1.1 paulus
4572 1.1 paulus /*+++++*/
4573 1.1 paulus /* zutil.c -- target dependent utility functions for the compression library
4574 1.1 paulus * Copyright (C) 1995 Jean-loup Gailly.
4575 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4576 1.1 paulus */
4577 1.1 paulus
4578 1.1 paulus /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4579 1.1 paulus
4580 1.1 paulus char *zlib_version = ZLIB_VERSION;
4581 1.1 paulus
4582 1.1 paulus char *z_errmsg[] = {
4583 1.1 paulus "stream end", /* Z_STREAM_END 1 */
4584 1.1 paulus "", /* Z_OK 0 */
4585 1.1 paulus "file error", /* Z_ERRNO (-1) */
4586 1.1 paulus "stream error", /* Z_STREAM_ERROR (-2) */
4587 1.1 paulus "data error", /* Z_DATA_ERROR (-3) */
4588 1.1 paulus "insufficient memory", /* Z_MEM_ERROR (-4) */
4589 1.1 paulus "buffer error", /* Z_BUF_ERROR (-5) */
4590 1.1 paulus ""};
4591 1.1 paulus
4592 1.1 paulus
4593 1.1 paulus /*+++++*/
4594 1.1 paulus /* adler32.c -- compute the Adler-32 checksum of a data stream
4595 1.1 paulus * Copyright (C) 1995 Mark Adler
4596 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4597 1.1 paulus */
4598 1.1 paulus
4599 1.1 paulus /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4600 1.1 paulus
4601 1.1 paulus #define BASE 65521L /* largest prime smaller than 65536 */
4602 1.1 paulus #define NMAX 5552
4603 1.1 paulus /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4604 1.1 paulus
4605 1.1 paulus #define DO1(buf) {s1 += *buf++; s2 += s1;}
4606 1.1 paulus #define DO2(buf) DO1(buf); DO1(buf);
4607 1.1 paulus #define DO4(buf) DO2(buf); DO2(buf);
4608 1.1 paulus #define DO8(buf) DO4(buf); DO4(buf);
4609 1.1 paulus #define DO16(buf) DO8(buf); DO8(buf);
4610 1.1 paulus
4611 1.1 paulus /* ========================================================================= */
4612 1.1 paulus uLong adler32(adler, buf, len)
4613 1.1 paulus uLong adler;
4614 1.1 paulus Bytef *buf;
4615 1.1 paulus uInt len;
4616 1.1 paulus {
4617 1.1 paulus unsigned long s1 = adler & 0xffff;
4618 1.1 paulus unsigned long s2 = (adler >> 16) & 0xffff;
4619 1.1 paulus int k;
4620 1.1 paulus
4621 1.1 paulus if (buf == Z_NULL) return 1L;
4622 1.1 paulus
4623 1.1 paulus while (len > 0) {
4624 1.1 paulus k = len < NMAX ? len : NMAX;
4625 1.1 paulus len -= k;
4626 1.1 paulus while (k >= 16) {
4627 1.1 paulus DO16(buf);
4628 1.1 paulus k -= 16;
4629 1.1 paulus }
4630 1.1 paulus if (k != 0) do {
4631 1.1 paulus DO1(buf);
4632 1.1 paulus } while (--k);
4633 1.1 paulus s1 %= BASE;
4634 1.1 paulus s2 %= BASE;
4635 1.1 paulus }
4636 1.1 paulus return (s2 << 16) | s1;
4637 1.1 paulus }
4638