zlib.c revision 1.7 1 1.1 paulus /*
2 1.7 christos * This file is derived from various .h and .c files from the zlib-1.0.4
3 1.1 paulus * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 1.1 paulus * by Paul Mackerras to aid in implementing Deflate compression and
5 1.1 paulus * decompression for PPP packets. See zlib.h for conditions of
6 1.1 paulus * distribution and use.
7 1.1 paulus *
8 1.1 paulus * Changes that have been made include:
9 1.1 paulus * - added Z_PACKET_FLUSH (see zlib.h for details)
10 1.7 christos * - added inflateIncomp and deflateOutputPending
11 1.7 christos * - allow strm->next_out to be NULL, meaning discard the output
12 1.4 christos *
13 1.7 christos * $Id: zlib.c,v 1.7 1998/05/02 14:34:25 christos Exp $
14 1.1 paulus */
15 1.1 paulus
16 1.4 christos /*
17 1.7 christos * ==FILEVERSION 971210==
18 1.4 christos *
19 1.4 christos * This marker is used by the Linux installation script to determine
20 1.4 christos * whether an up-to-date version of this file is already installed.
21 1.4 christos */
22 1.1 paulus
23 1.7 christos #define NO_DUMMY_DECL
24 1.7 christos #define NO_ZCFUNCS
25 1.7 christos #define MY_ZCALLOC
26 1.7 christos
27 1.7 christos #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
28 1.7 christos #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
29 1.7 christos #endif
30 1.7 christos
31 1.7 christos
32 1.7 christos /* +++ zutil.h */
33 1.1 paulus /* zutil.h -- internal interface and configuration of the compression library
34 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
35 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
36 1.1 paulus */
37 1.1 paulus
38 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
39 1.1 paulus part of the implementation of the compression library and is
40 1.1 paulus subject to change. Applications should only use zlib.h.
41 1.1 paulus */
42 1.1 paulus
43 1.7 christos /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
44 1.1 paulus
45 1.7 christos #ifndef _Z_UTIL_H
46 1.1 paulus #define _Z_UTIL_H
47 1.1 paulus
48 1.1 paulus #include "zlib.h"
49 1.1 paulus
50 1.7 christos #if defined(KERNEL) || defined(_KERNEL)
51 1.7 christos /* Assume this is a *BSD or SVR4 kernel */
52 1.7 christos #include <sys/types.h>
53 1.7 christos #include <sys/time.h>
54 1.7 christos #include <sys/systm.h>
55 1.7 christos # define HAVE_MEMCPY
56 1.7 christos # define memcpy(d, s, n) bcopy((s), (d), (n))
57 1.7 christos # define memset(d, v, n) bzero((d), (n))
58 1.7 christos # define memcmp bcmp
59 1.7 christos
60 1.7 christos #else
61 1.7 christos #if defined(__KERNEL__)
62 1.7 christos /* Assume this is a Linux kernel */
63 1.7 christos #include <linux/string.h>
64 1.7 christos #define HAVE_MEMCPY
65 1.7 christos
66 1.7 christos #else /* not kernel */
67 1.7 christos
68 1.7 christos #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
69 1.7 christos # include <stddef.h>
70 1.7 christos # include <errno.h>
71 1.7 christos #else
72 1.7 christos extern int errno;
73 1.7 christos #endif
74 1.7 christos #ifdef STDC
75 1.7 christos # include <string.h>
76 1.7 christos # include <stdlib.h>
77 1.7 christos #endif
78 1.7 christos #endif /* __KERNEL__ */
79 1.7 christos #endif /* _KERNEL || KERNEL */
80 1.7 christos
81 1.1 paulus #ifndef local
82 1.1 paulus # define local static
83 1.1 paulus #endif
84 1.1 paulus /* compile with -Dlocal if your debugger can't find static symbols */
85 1.1 paulus
86 1.1 paulus typedef unsigned char uch;
87 1.1 paulus typedef uch FAR uchf;
88 1.1 paulus typedef unsigned short ush;
89 1.1 paulus typedef ush FAR ushf;
90 1.1 paulus typedef unsigned long ulg;
91 1.1 paulus
92 1.7 christos extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
93 1.7 christos /* (size given to avoid silly warnings with Visual C++) */
94 1.1 paulus
95 1.7 christos #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
96 1.7 christos
97 1.7 christos #define ERR_RETURN(strm,err) \
98 1.7 christos return (strm->msg = (char*)ERR_MSG(err), (err))
99 1.1 paulus /* To be used only when the state is known to be valid */
100 1.1 paulus
101 1.1 paulus /* common constants */
102 1.1 paulus
103 1.1 paulus #ifndef DEF_WBITS
104 1.1 paulus # define DEF_WBITS MAX_WBITS
105 1.1 paulus #endif
106 1.1 paulus /* default windowBits for decompression. MAX_WBITS is for compression only */
107 1.1 paulus
108 1.1 paulus #if MAX_MEM_LEVEL >= 8
109 1.1 paulus # define DEF_MEM_LEVEL 8
110 1.1 paulus #else
111 1.1 paulus # define DEF_MEM_LEVEL MAX_MEM_LEVEL
112 1.1 paulus #endif
113 1.1 paulus /* default memLevel */
114 1.1 paulus
115 1.1 paulus #define STORED_BLOCK 0
116 1.1 paulus #define STATIC_TREES 1
117 1.1 paulus #define DYN_TREES 2
118 1.1 paulus /* The three kinds of block type */
119 1.1 paulus
120 1.1 paulus #define MIN_MATCH 3
121 1.1 paulus #define MAX_MATCH 258
122 1.1 paulus /* The minimum and maximum match lengths */
123 1.1 paulus
124 1.7 christos #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
125 1.7 christos
126 1.7 christos /* target dependencies */
127 1.7 christos
128 1.7 christos #ifdef MSDOS
129 1.7 christos # define OS_CODE 0x00
130 1.7 christos # ifdef __TURBOC__
131 1.7 christos # include <alloc.h>
132 1.7 christos # else /* MSC or DJGPP */
133 1.7 christos # include <malloc.h>
134 1.7 christos # endif
135 1.7 christos #endif
136 1.7 christos
137 1.7 christos #ifdef OS2
138 1.7 christos # define OS_CODE 0x06
139 1.7 christos #endif
140 1.7 christos
141 1.7 christos #ifdef WIN32 /* Window 95 & Windows NT */
142 1.7 christos # define OS_CODE 0x0b
143 1.7 christos #endif
144 1.7 christos
145 1.7 christos #if defined(VAXC) || defined(VMS)
146 1.7 christos # define OS_CODE 0x02
147 1.7 christos # define FOPEN(name, mode) \
148 1.7 christos fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
149 1.7 christos #endif
150 1.7 christos
151 1.7 christos #ifdef AMIGA
152 1.7 christos # define OS_CODE 0x01
153 1.7 christos #endif
154 1.7 christos
155 1.7 christos #if defined(ATARI) || defined(atarist)
156 1.7 christos # define OS_CODE 0x05
157 1.7 christos #endif
158 1.7 christos
159 1.7 christos #ifdef MACOS
160 1.7 christos # define OS_CODE 0x07
161 1.7 christos #endif
162 1.7 christos
163 1.7 christos #ifdef __50SERIES /* Prime/PRIMOS */
164 1.7 christos # define OS_CODE 0x0F
165 1.7 christos #endif
166 1.7 christos
167 1.7 christos #ifdef TOPS20
168 1.7 christos # define OS_CODE 0x0a
169 1.7 christos #endif
170 1.7 christos
171 1.7 christos #if defined(_BEOS_) || defined(RISCOS)
172 1.7 christos # define fdopen(fd,mode) NULL /* No fdopen() */
173 1.7 christos #endif
174 1.7 christos
175 1.7 christos /* Common defaults */
176 1.7 christos
177 1.7 christos #ifndef OS_CODE
178 1.7 christos # define OS_CODE 0x03 /* assume Unix */
179 1.7 christos #endif
180 1.7 christos
181 1.7 christos #ifndef FOPEN
182 1.7 christos # define FOPEN(name, mode) fopen((name), (mode))
183 1.7 christos #endif
184 1.7 christos
185 1.1 paulus /* functions */
186 1.1 paulus
187 1.7 christos #ifdef HAVE_STRERROR
188 1.7 christos extern char *strerror OF((int));
189 1.7 christos # define zstrerror(errnum) strerror(errnum)
190 1.1 paulus #else
191 1.7 christos # define zstrerror(errnum) ""
192 1.7 christos #endif
193 1.4 christos
194 1.7 christos #if defined(pyr)
195 1.7 christos # define NO_MEMCPY
196 1.7 christos #endif
197 1.7 christos #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
198 1.7 christos /* Use our own functions for small and medium model with MSC <= 5.0.
199 1.7 christos * You may have to use the same strategy for Borland C (untested).
200 1.7 christos */
201 1.7 christos # define NO_MEMCPY
202 1.7 christos #endif
203 1.1 paulus #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
204 1.1 paulus # define HAVE_MEMCPY
205 1.1 paulus #endif
206 1.1 paulus #ifdef HAVE_MEMCPY
207 1.7 christos # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
208 1.7 christos # define zmemcpy _fmemcpy
209 1.7 christos # define zmemcmp _fmemcmp
210 1.7 christos # define zmemzero(dest, len) _fmemset(dest, 0, len)
211 1.7 christos # else
212 1.1 paulus # define zmemcpy memcpy
213 1.7 christos # define zmemcmp memcmp
214 1.1 paulus # define zmemzero(dest, len) memset(dest, 0, len)
215 1.7 christos # endif
216 1.1 paulus #else
217 1.1 paulus extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
218 1.7 christos extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
219 1.1 paulus extern void zmemzero OF((Bytef* dest, uInt len));
220 1.1 paulus #endif
221 1.1 paulus
222 1.1 paulus /* Diagnostic functions */
223 1.1 paulus #ifdef DEBUG_ZLIB
224 1.1 paulus # include <stdio.h>
225 1.1 paulus # ifndef verbose
226 1.1 paulus # define verbose 0
227 1.1 paulus # endif
228 1.7 christos extern void z_error OF((char *m));
229 1.1 paulus # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
230 1.1 paulus # define Trace(x) fprintf x
231 1.1 paulus # define Tracev(x) {if (verbose) fprintf x ;}
232 1.1 paulus # define Tracevv(x) {if (verbose>1) fprintf x ;}
233 1.1 paulus # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
234 1.1 paulus # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
235 1.1 paulus #else
236 1.1 paulus # define Assert(cond,msg)
237 1.1 paulus # define Trace(x)
238 1.1 paulus # define Tracev(x)
239 1.1 paulus # define Tracevv(x)
240 1.1 paulus # define Tracec(c,x)
241 1.1 paulus # define Tracecv(c,x)
242 1.1 paulus #endif
243 1.1 paulus
244 1.1 paulus
245 1.7 christos typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
246 1.1 paulus
247 1.7 christos voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
248 1.7 christos void zcfree OF((voidpf opaque, voidpf ptr));
249 1.1 paulus
250 1.1 paulus #define ZALLOC(strm, items, size) \
251 1.1 paulus (*((strm)->zalloc))((strm)->opaque, (items), (size))
252 1.7 christos #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
253 1.7 christos #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
254 1.7 christos
255 1.7 christos #endif /* _Z_UTIL_H */
256 1.7 christos /* --- zutil.h */
257 1.1 paulus
258 1.7 christos /* +++ deflate.h */
259 1.1 paulus /* deflate.h -- internal compression state
260 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly
261 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
262 1.1 paulus */
263 1.1 paulus
264 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
265 1.1 paulus part of the implementation of the compression library and is
266 1.1 paulus subject to change. Applications should only use zlib.h.
267 1.1 paulus */
268 1.1 paulus
269 1.7 christos /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
270 1.1 paulus
271 1.7 christos #ifndef _DEFLATE_H
272 1.7 christos #define _DEFLATE_H
273 1.7 christos
274 1.7 christos /* #include "zutil.h" */
275 1.1 paulus
276 1.1 paulus /* ===========================================================================
277 1.1 paulus * Internal compression state.
278 1.1 paulus */
279 1.1 paulus
280 1.1 paulus #define LENGTH_CODES 29
281 1.1 paulus /* number of length codes, not counting the special END_BLOCK code */
282 1.1 paulus
283 1.1 paulus #define LITERALS 256
284 1.1 paulus /* number of literal bytes 0..255 */
285 1.1 paulus
286 1.1 paulus #define L_CODES (LITERALS+1+LENGTH_CODES)
287 1.1 paulus /* number of Literal or Length codes, including the END_BLOCK code */
288 1.1 paulus
289 1.1 paulus #define D_CODES 30
290 1.1 paulus /* number of distance codes */
291 1.1 paulus
292 1.1 paulus #define BL_CODES 19
293 1.1 paulus /* number of codes used to transfer the bit lengths */
294 1.1 paulus
295 1.1 paulus #define HEAP_SIZE (2*L_CODES+1)
296 1.1 paulus /* maximum heap size */
297 1.1 paulus
298 1.1 paulus #define MAX_BITS 15
299 1.1 paulus /* All codes must not exceed MAX_BITS bits */
300 1.1 paulus
301 1.1 paulus #define INIT_STATE 42
302 1.1 paulus #define BUSY_STATE 113
303 1.1 paulus #define FINISH_STATE 666
304 1.1 paulus /* Stream status */
305 1.1 paulus
306 1.1 paulus
307 1.1 paulus /* Data structure describing a single value and its code string. */
308 1.1 paulus typedef struct ct_data_s {
309 1.1 paulus union {
310 1.1 paulus ush freq; /* frequency count */
311 1.1 paulus ush code; /* bit string */
312 1.1 paulus } fc;
313 1.1 paulus union {
314 1.1 paulus ush dad; /* father node in Huffman tree */
315 1.1 paulus ush len; /* length of bit string */
316 1.1 paulus } dl;
317 1.1 paulus } FAR ct_data;
318 1.1 paulus
319 1.1 paulus #define Freq fc.freq
320 1.1 paulus #define Code fc.code
321 1.1 paulus #define Dad dl.dad
322 1.1 paulus #define Len dl.len
323 1.1 paulus
324 1.1 paulus typedef struct static_tree_desc_s static_tree_desc;
325 1.1 paulus
326 1.1 paulus typedef struct tree_desc_s {
327 1.1 paulus ct_data *dyn_tree; /* the dynamic tree */
328 1.1 paulus int max_code; /* largest code with non zero frequency */
329 1.1 paulus static_tree_desc *stat_desc; /* the corresponding static tree */
330 1.1 paulus } FAR tree_desc;
331 1.1 paulus
332 1.1 paulus typedef ush Pos;
333 1.1 paulus typedef Pos FAR Posf;
334 1.1 paulus typedef unsigned IPos;
335 1.1 paulus
336 1.1 paulus /* A Pos is an index in the character window. We use short instead of int to
337 1.1 paulus * save space in the various tables. IPos is used only for parameter passing.
338 1.1 paulus */
339 1.1 paulus
340 1.1 paulus typedef struct deflate_state {
341 1.7 christos z_streamp strm; /* pointer back to this zlib stream */
342 1.1 paulus int status; /* as the name implies */
343 1.1 paulus Bytef *pending_buf; /* output still pending */
344 1.7 christos ulg pending_buf_size; /* size of pending_buf */
345 1.1 paulus Bytef *pending_out; /* next pending byte to output to the stream */
346 1.1 paulus int pending; /* nb of bytes in the pending buffer */
347 1.1 paulus int noheader; /* suppress zlib header and adler32 */
348 1.7 christos Byte data_type; /* UNKNOWN, BINARY or ASCII */
349 1.1 paulus Byte method; /* STORED (for zip only) or DEFLATED */
350 1.7 christos int last_flush; /* value of flush param for previous deflate call */
351 1.1 paulus
352 1.1 paulus /* used by deflate.c: */
353 1.1 paulus
354 1.1 paulus uInt w_size; /* LZ77 window size (32K by default) */
355 1.1 paulus uInt w_bits; /* log2(w_size) (8..16) */
356 1.1 paulus uInt w_mask; /* w_size - 1 */
357 1.1 paulus
358 1.1 paulus Bytef *window;
359 1.1 paulus /* Sliding window. Input bytes are read into the second half of the window,
360 1.1 paulus * and move to the first half later to keep a dictionary of at least wSize
361 1.1 paulus * bytes. With this organization, matches are limited to a distance of
362 1.1 paulus * wSize-MAX_MATCH bytes, but this ensures that IO is always
363 1.1 paulus * performed with a length multiple of the block size. Also, it limits
364 1.1 paulus * the window size to 64K, which is quite useful on MSDOS.
365 1.1 paulus * To do: use the user input buffer as sliding window.
366 1.1 paulus */
367 1.1 paulus
368 1.1 paulus ulg window_size;
369 1.1 paulus /* Actual size of window: 2*wSize, except when the user input buffer
370 1.1 paulus * is directly used as sliding window.
371 1.1 paulus */
372 1.1 paulus
373 1.1 paulus Posf *prev;
374 1.1 paulus /* Link to older string with same hash index. To limit the size of this
375 1.1 paulus * array to 64K, this link is maintained only for the last 32K strings.
376 1.1 paulus * An index in this array is thus a window index modulo 32K.
377 1.1 paulus */
378 1.1 paulus
379 1.1 paulus Posf *head; /* Heads of the hash chains or NIL. */
380 1.1 paulus
381 1.1 paulus uInt ins_h; /* hash index of string to be inserted */
382 1.1 paulus uInt hash_size; /* number of elements in hash table */
383 1.1 paulus uInt hash_bits; /* log2(hash_size) */
384 1.1 paulus uInt hash_mask; /* hash_size-1 */
385 1.1 paulus
386 1.1 paulus uInt hash_shift;
387 1.1 paulus /* Number of bits by which ins_h must be shifted at each input
388 1.1 paulus * step. It must be such that after MIN_MATCH steps, the oldest
389 1.1 paulus * byte no longer takes part in the hash key, that is:
390 1.1 paulus * hash_shift * MIN_MATCH >= hash_bits
391 1.1 paulus */
392 1.1 paulus
393 1.1 paulus long block_start;
394 1.1 paulus /* Window position at the beginning of the current output block. Gets
395 1.1 paulus * negative when the window is moved backwards.
396 1.1 paulus */
397 1.1 paulus
398 1.1 paulus uInt match_length; /* length of best match */
399 1.1 paulus IPos prev_match; /* previous match */
400 1.1 paulus int match_available; /* set if previous match exists */
401 1.1 paulus uInt strstart; /* start of string to insert */
402 1.1 paulus uInt match_start; /* start of matching string */
403 1.1 paulus uInt lookahead; /* number of valid bytes ahead in window */
404 1.1 paulus
405 1.1 paulus uInt prev_length;
406 1.1 paulus /* Length of the best match at previous step. Matches not greater than this
407 1.1 paulus * are discarded. This is used in the lazy match evaluation.
408 1.1 paulus */
409 1.1 paulus
410 1.1 paulus uInt max_chain_length;
411 1.1 paulus /* To speed up deflation, hash chains are never searched beyond this
412 1.1 paulus * length. A higher limit improves compression ratio but degrades the
413 1.1 paulus * speed.
414 1.1 paulus */
415 1.1 paulus
416 1.1 paulus uInt max_lazy_match;
417 1.1 paulus /* Attempt to find a better match only when the current match is strictly
418 1.1 paulus * smaller than this value. This mechanism is used only for compression
419 1.1 paulus * levels >= 4.
420 1.1 paulus */
421 1.1 paulus # define max_insert_length max_lazy_match
422 1.1 paulus /* Insert new strings in the hash table only if the match length is not
423 1.1 paulus * greater than this length. This saves time but degrades compression.
424 1.1 paulus * max_insert_length is used only for compression levels <= 3.
425 1.1 paulus */
426 1.1 paulus
427 1.1 paulus int level; /* compression level (1..9) */
428 1.1 paulus int strategy; /* favor or force Huffman coding*/
429 1.1 paulus
430 1.1 paulus uInt good_match;
431 1.1 paulus /* Use a faster search when the previous match is longer than this */
432 1.1 paulus
433 1.7 christos int nice_match; /* Stop searching when current match exceeds this */
434 1.1 paulus
435 1.1 paulus /* used by trees.c: */
436 1.1 paulus /* Didn't use ct_data typedef below to supress compiler warning */
437 1.1 paulus struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
438 1.1 paulus struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
439 1.1 paulus struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
440 1.1 paulus
441 1.1 paulus struct tree_desc_s l_desc; /* desc. for literal tree */
442 1.1 paulus struct tree_desc_s d_desc; /* desc. for distance tree */
443 1.1 paulus struct tree_desc_s bl_desc; /* desc. for bit length tree */
444 1.1 paulus
445 1.1 paulus ush bl_count[MAX_BITS+1];
446 1.1 paulus /* number of codes at each bit length for an optimal tree */
447 1.1 paulus
448 1.1 paulus int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
449 1.1 paulus int heap_len; /* number of elements in the heap */
450 1.1 paulus int heap_max; /* element of largest frequency */
451 1.1 paulus /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
452 1.1 paulus * The same heap array is used to build all trees.
453 1.1 paulus */
454 1.1 paulus
455 1.1 paulus uch depth[2*L_CODES+1];
456 1.1 paulus /* Depth of each subtree used as tie breaker for trees of equal frequency
457 1.1 paulus */
458 1.1 paulus
459 1.1 paulus uchf *l_buf; /* buffer for literals or lengths */
460 1.1 paulus
461 1.1 paulus uInt lit_bufsize;
462 1.1 paulus /* Size of match buffer for literals/lengths. There are 4 reasons for
463 1.1 paulus * limiting lit_bufsize to 64K:
464 1.1 paulus * - frequencies can be kept in 16 bit counters
465 1.1 paulus * - if compression is not successful for the first block, all input
466 1.1 paulus * data is still in the window so we can still emit a stored block even
467 1.1 paulus * when input comes from standard input. (This can also be done for
468 1.1 paulus * all blocks if lit_bufsize is not greater than 32K.)
469 1.1 paulus * - if compression is not successful for a file smaller than 64K, we can
470 1.1 paulus * even emit a stored file instead of a stored block (saving 5 bytes).
471 1.1 paulus * This is applicable only for zip (not gzip or zlib).
472 1.1 paulus * - creating new Huffman trees less frequently may not provide fast
473 1.1 paulus * adaptation to changes in the input data statistics. (Take for
474 1.1 paulus * example a binary file with poorly compressible code followed by
475 1.1 paulus * a highly compressible string table.) Smaller buffer sizes give
476 1.1 paulus * fast adaptation but have of course the overhead of transmitting
477 1.1 paulus * trees more frequently.
478 1.1 paulus * - I can't count above 4
479 1.1 paulus */
480 1.1 paulus
481 1.1 paulus uInt last_lit; /* running index in l_buf */
482 1.1 paulus
483 1.1 paulus ushf *d_buf;
484 1.1 paulus /* Buffer for distances. To simplify the code, d_buf and l_buf have
485 1.1 paulus * the same number of elements. To use different lengths, an extra flag
486 1.1 paulus * array would be necessary.
487 1.1 paulus */
488 1.1 paulus
489 1.1 paulus ulg opt_len; /* bit length of current block with optimal trees */
490 1.1 paulus ulg static_len; /* bit length of current block with static trees */
491 1.1 paulus ulg compressed_len; /* total bit length of compressed file */
492 1.1 paulus uInt matches; /* number of string matches in current block */
493 1.1 paulus int last_eob_len; /* bit length of EOB code for last block */
494 1.1 paulus
495 1.1 paulus #ifdef DEBUG_ZLIB
496 1.1 paulus ulg bits_sent; /* bit length of the compressed data */
497 1.1 paulus #endif
498 1.1 paulus
499 1.1 paulus ush bi_buf;
500 1.1 paulus /* Output buffer. bits are inserted starting at the bottom (least
501 1.1 paulus * significant bits).
502 1.1 paulus */
503 1.1 paulus int bi_valid;
504 1.1 paulus /* Number of valid bits in bi_buf. All bits above the last valid bit
505 1.1 paulus * are always zero.
506 1.1 paulus */
507 1.1 paulus
508 1.1 paulus } FAR deflate_state;
509 1.1 paulus
510 1.1 paulus /* Output a byte on the stream.
511 1.1 paulus * IN assertion: there is enough room in pending_buf.
512 1.1 paulus */
513 1.1 paulus #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
514 1.1 paulus
515 1.1 paulus
516 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
517 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
518 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
519 1.1 paulus */
520 1.1 paulus
521 1.1 paulus #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
522 1.1 paulus /* In order to simplify the code, particularly on 16 bit machines, match
523 1.1 paulus * distances are limited to MAX_DIST instead of WSIZE.
524 1.1 paulus */
525 1.1 paulus
526 1.1 paulus /* in trees.c */
527 1.7 christos void _tr_init OF((deflate_state *s));
528 1.7 christos int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
529 1.7 christos ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
530 1.7 christos int eof));
531 1.7 christos void _tr_align OF((deflate_state *s));
532 1.7 christos void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
533 1.1 paulus int eof));
534 1.7 christos void _tr_stored_type_only OF((deflate_state *));
535 1.1 paulus
536 1.7 christos #endif
537 1.7 christos /* --- deflate.h */
538 1.1 paulus
539 1.7 christos /* +++ deflate.c */
540 1.1 paulus /* deflate.c -- compress data using the deflation algorithm
541 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
542 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
543 1.1 paulus */
544 1.1 paulus
545 1.1 paulus /*
546 1.1 paulus * ALGORITHM
547 1.1 paulus *
548 1.1 paulus * The "deflation" process depends on being able to identify portions
549 1.1 paulus * of the input text which are identical to earlier input (within a
550 1.1 paulus * sliding window trailing behind the input currently being processed).
551 1.1 paulus *
552 1.1 paulus * The most straightforward technique turns out to be the fastest for
553 1.1 paulus * most input files: try all possible matches and select the longest.
554 1.1 paulus * The key feature of this algorithm is that insertions into the string
555 1.1 paulus * dictionary are very simple and thus fast, and deletions are avoided
556 1.1 paulus * completely. Insertions are performed at each input character, whereas
557 1.1 paulus * string matches are performed only when the previous match ends. So it
558 1.1 paulus * is preferable to spend more time in matches to allow very fast string
559 1.1 paulus * insertions and avoid deletions. The matching algorithm for small
560 1.1 paulus * strings is inspired from that of Rabin & Karp. A brute force approach
561 1.1 paulus * is used to find longer strings when a small match has been found.
562 1.1 paulus * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
563 1.1 paulus * (by Leonid Broukhis).
564 1.1 paulus * A previous version of this file used a more sophisticated algorithm
565 1.1 paulus * (by Fiala and Greene) which is guaranteed to run in linear amortized
566 1.1 paulus * time, but has a larger average cost, uses more memory and is patented.
567 1.1 paulus * However the F&G algorithm may be faster for some highly redundant
568 1.1 paulus * files if the parameter max_chain_length (described below) is too large.
569 1.1 paulus *
570 1.1 paulus * ACKNOWLEDGEMENTS
571 1.1 paulus *
572 1.1 paulus * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
573 1.1 paulus * I found it in 'freeze' written by Leonid Broukhis.
574 1.1 paulus * Thanks to many people for bug reports and testing.
575 1.1 paulus *
576 1.1 paulus * REFERENCES
577 1.1 paulus *
578 1.7 christos * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
579 1.7 christos * Available in ftp://ds.internic.net/rfc/rfc1951.txt
580 1.1 paulus *
581 1.1 paulus * A description of the Rabin and Karp algorithm is given in the book
582 1.1 paulus * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
583 1.1 paulus *
584 1.1 paulus * Fiala,E.R., and Greene,D.H.
585 1.1 paulus * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
586 1.1 paulus *
587 1.1 paulus */
588 1.1 paulus
589 1.7 christos /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
590 1.7 christos
591 1.7 christos /* #include "deflate.h" */
592 1.1 paulus
593 1.7 christos char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
594 1.1 paulus /*
595 1.1 paulus If you use the zlib library in a product, an acknowledgment is welcome
596 1.1 paulus in the documentation of your product. If for some reason you cannot
597 1.1 paulus include such an acknowledgment, I would appreciate that you keep this
598 1.1 paulus copyright string in the executable of your product.
599 1.1 paulus */
600 1.1 paulus
601 1.7 christos /* ===========================================================================
602 1.7 christos * Function prototypes.
603 1.7 christos */
604 1.7 christos typedef enum {
605 1.7 christos need_more, /* block not completed, need more input or more output */
606 1.7 christos block_done, /* block flush performed */
607 1.7 christos finish_started, /* finish started, need only more output at next deflate */
608 1.7 christos finish_done /* finish done, accept no more input or output */
609 1.7 christos } block_state;
610 1.7 christos
611 1.7 christos typedef block_state (*compress_func) OF((deflate_state *s, int flush));
612 1.7 christos /* Compression function. Returns the block state after the call. */
613 1.7 christos
614 1.7 christos local void fill_window OF((deflate_state *s));
615 1.7 christos local block_state deflate_stored OF((deflate_state *s, int flush));
616 1.7 christos local block_state deflate_fast OF((deflate_state *s, int flush));
617 1.7 christos local block_state deflate_slow OF((deflate_state *s, int flush));
618 1.7 christos local void lm_init OF((deflate_state *s));
619 1.7 christos local void putShortMSB OF((deflate_state *s, uInt b));
620 1.7 christos local void flush_pending OF((z_streamp strm));
621 1.7 christos local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
622 1.7 christos #ifdef ASMV
623 1.7 christos void match_init OF((void)); /* asm code initialization */
624 1.7 christos uInt longest_match OF((deflate_state *s, IPos cur_match));
625 1.7 christos #else
626 1.7 christos local uInt longest_match OF((deflate_state *s, IPos cur_match));
627 1.7 christos #endif
628 1.7 christos
629 1.7 christos #ifdef DEBUG_ZLIB
630 1.7 christos local void check_match OF((deflate_state *s, IPos start, IPos match,
631 1.7 christos int length));
632 1.7 christos #endif
633 1.7 christos
634 1.7 christos /* ===========================================================================
635 1.7 christos * Local data
636 1.7 christos */
637 1.7 christos
638 1.1 paulus #define NIL 0
639 1.1 paulus /* Tail of hash chains */
640 1.1 paulus
641 1.1 paulus #ifndef TOO_FAR
642 1.1 paulus # define TOO_FAR 4096
643 1.1 paulus #endif
644 1.1 paulus /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
645 1.1 paulus
646 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
647 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
648 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
649 1.1 paulus */
650 1.1 paulus
651 1.1 paulus /* Values for max_lazy_match, good_match and max_chain_length, depending on
652 1.1 paulus * the desired pack level (0..9). The values given below have been tuned to
653 1.1 paulus * exclude worst case performance for pathological files. Better values may be
654 1.1 paulus * found for specific files.
655 1.1 paulus */
656 1.1 paulus typedef struct config_s {
657 1.1 paulus ush good_length; /* reduce lazy search above this match length */
658 1.1 paulus ush max_lazy; /* do not perform lazy search above this match length */
659 1.1 paulus ush nice_length; /* quit search above this match length */
660 1.1 paulus ush max_chain;
661 1.7 christos compress_func func;
662 1.1 paulus } config;
663 1.1 paulus
664 1.1 paulus local config configuration_table[10] = {
665 1.1 paulus /* good lazy nice chain */
666 1.7 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
667 1.7 christos /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
668 1.7 christos /* 2 */ {4, 5, 16, 8, deflate_fast},
669 1.7 christos /* 3 */ {4, 6, 32, 32, deflate_fast},
670 1.7 christos
671 1.7 christos /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
672 1.7 christos /* 5 */ {8, 16, 32, 32, deflate_slow},
673 1.7 christos /* 6 */ {8, 16, 128, 128, deflate_slow},
674 1.7 christos /* 7 */ {8, 32, 128, 256, deflate_slow},
675 1.7 christos /* 8 */ {32, 128, 258, 1024, deflate_slow},
676 1.7 christos /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
677 1.1 paulus
678 1.1 paulus /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
679 1.1 paulus * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
680 1.1 paulus * meaning.
681 1.1 paulus */
682 1.1 paulus
683 1.1 paulus #define EQUAL 0
684 1.1 paulus /* result of memcmp for equal strings */
685 1.1 paulus
686 1.7 christos #ifndef NO_DUMMY_DECL
687 1.7 christos struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
688 1.1 paulus #endif
689 1.1 paulus
690 1.1 paulus /* ===========================================================================
691 1.1 paulus * Update a hash value with the given input byte
692 1.1 paulus * IN assertion: all calls to to UPDATE_HASH are made with consecutive
693 1.1 paulus * input characters, so that a running hash key can be computed from the
694 1.1 paulus * previous key instead of complete recalculation each time.
695 1.1 paulus */
696 1.1 paulus #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
697 1.1 paulus
698 1.1 paulus
699 1.1 paulus /* ===========================================================================
700 1.1 paulus * Insert string str in the dictionary and set match_head to the previous head
701 1.1 paulus * of the hash chain (the most recent string with same hash key). Return
702 1.1 paulus * the previous length of the hash chain.
703 1.1 paulus * IN assertion: all calls to to INSERT_STRING are made with consecutive
704 1.1 paulus * input characters and the first MIN_MATCH bytes of str are valid
705 1.1 paulus * (except for the last MIN_MATCH-1 bytes of the input file).
706 1.1 paulus */
707 1.1 paulus #define INSERT_STRING(s, str, match_head) \
708 1.1 paulus (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
709 1.1 paulus s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
710 1.7 christos s->head[s->ins_h] = (Pos)(str))
711 1.1 paulus
712 1.1 paulus /* ===========================================================================
713 1.1 paulus * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
714 1.1 paulus * prev[] will be initialized on the fly.
715 1.1 paulus */
716 1.1 paulus #define CLEAR_HASH(s) \
717 1.1 paulus s->head[s->hash_size-1] = NIL; \
718 1.1 paulus zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
719 1.1 paulus
720 1.1 paulus /* ========================================================================= */
721 1.7 christos int deflateInit_(strm, level, version, stream_size)
722 1.7 christos z_streamp strm;
723 1.1 paulus int level;
724 1.7 christos const char *version;
725 1.7 christos int stream_size;
726 1.1 paulus {
727 1.7 christos return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
728 1.7 christos Z_DEFAULT_STRATEGY, version, stream_size);
729 1.1 paulus /* To do: ignore strm->next_in if we use it as window */
730 1.1 paulus }
731 1.1 paulus
732 1.1 paulus /* ========================================================================= */
733 1.7 christos int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
734 1.7 christos version, stream_size)
735 1.7 christos z_streamp strm;
736 1.1 paulus int level;
737 1.1 paulus int method;
738 1.1 paulus int windowBits;
739 1.1 paulus int memLevel;
740 1.1 paulus int strategy;
741 1.7 christos const char *version;
742 1.7 christos int stream_size;
743 1.1 paulus {
744 1.1 paulus deflate_state *s;
745 1.1 paulus int noheader = 0;
746 1.7 christos static char* my_version = ZLIB_VERSION;
747 1.1 paulus
748 1.7 christos ushf *overlay;
749 1.7 christos /* We overlay pending_buf and d_buf+l_buf. This works since the average
750 1.7 christos * output size for (length,distance) codes is <= 24 bits.
751 1.7 christos */
752 1.7 christos
753 1.7 christos if (version == Z_NULL || version[0] != my_version[0] ||
754 1.7 christos stream_size != sizeof(z_stream)) {
755 1.7 christos return Z_VERSION_ERROR;
756 1.7 christos }
757 1.1 paulus if (strm == Z_NULL) return Z_STREAM_ERROR;
758 1.1 paulus
759 1.1 paulus strm->msg = Z_NULL;
760 1.7 christos #ifndef NO_ZCFUNCS
761 1.7 christos if (strm->zalloc == Z_NULL) {
762 1.7 christos strm->zalloc = zcalloc;
763 1.7 christos strm->opaque = (voidpf)0;
764 1.7 christos }
765 1.7 christos if (strm->zfree == Z_NULL) strm->zfree = zcfree;
766 1.7 christos #endif
767 1.1 paulus
768 1.1 paulus if (level == Z_DEFAULT_COMPRESSION) level = 6;
769 1.1 paulus
770 1.1 paulus if (windowBits < 0) { /* undocumented feature: suppress zlib header */
771 1.1 paulus noheader = 1;
772 1.1 paulus windowBits = -windowBits;
773 1.1 paulus }
774 1.7 christos if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
775 1.7 christos windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
776 1.7 christos strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
777 1.1 paulus return Z_STREAM_ERROR;
778 1.1 paulus }
779 1.7 christos s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
780 1.1 paulus if (s == Z_NULL) return Z_MEM_ERROR;
781 1.1 paulus strm->state = (struct internal_state FAR *)s;
782 1.1 paulus s->strm = strm;
783 1.1 paulus
784 1.1 paulus s->noheader = noheader;
785 1.1 paulus s->w_bits = windowBits;
786 1.1 paulus s->w_size = 1 << s->w_bits;
787 1.1 paulus s->w_mask = s->w_size - 1;
788 1.1 paulus
789 1.1 paulus s->hash_bits = memLevel + 7;
790 1.1 paulus s->hash_size = 1 << s->hash_bits;
791 1.1 paulus s->hash_mask = s->hash_size - 1;
792 1.1 paulus s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
793 1.1 paulus
794 1.7 christos s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
795 1.7 christos s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
796 1.7 christos s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
797 1.1 paulus
798 1.1 paulus s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
799 1.1 paulus
800 1.7 christos overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
801 1.7 christos s->pending_buf = (uchf *) overlay;
802 1.7 christos s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
803 1.1 paulus
804 1.1 paulus if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
805 1.1 paulus s->pending_buf == Z_NULL) {
806 1.7 christos strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
807 1.1 paulus deflateEnd (strm);
808 1.1 paulus return Z_MEM_ERROR;
809 1.1 paulus }
810 1.7 christos s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
811 1.7 christos s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
812 1.1 paulus
813 1.1 paulus s->level = level;
814 1.1 paulus s->strategy = strategy;
815 1.1 paulus s->method = (Byte)method;
816 1.1 paulus
817 1.1 paulus return deflateReset(strm);
818 1.1 paulus }
819 1.1 paulus
820 1.1 paulus /* ========================================================================= */
821 1.7 christos int deflateSetDictionary (strm, dictionary, dictLength)
822 1.7 christos z_streamp strm;
823 1.7 christos const Bytef *dictionary;
824 1.7 christos uInt dictLength;
825 1.7 christos {
826 1.7 christos deflate_state *s;
827 1.7 christos uInt length = dictLength;
828 1.7 christos uInt n;
829 1.7 christos IPos hash_head = 0;
830 1.7 christos
831 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
832 1.7 christos return Z_STREAM_ERROR;
833 1.7 christos
834 1.7 christos s = (deflate_state *) strm->state;
835 1.7 christos if (s->status != INIT_STATE) return Z_STREAM_ERROR;
836 1.7 christos
837 1.7 christos strm->adler = adler32(strm->adler, dictionary, dictLength);
838 1.7 christos
839 1.7 christos if (length < MIN_MATCH) return Z_OK;
840 1.7 christos if (length > MAX_DIST(s)) {
841 1.7 christos length = MAX_DIST(s);
842 1.7 christos #ifndef USE_DICT_HEAD
843 1.7 christos dictionary += dictLength - length; /* use the tail of the dictionary */
844 1.7 christos #endif
845 1.7 christos }
846 1.7 christos zmemcpy((charf *)s->window, dictionary, length);
847 1.7 christos s->strstart = length;
848 1.7 christos s->block_start = (long)length;
849 1.7 christos
850 1.7 christos /* Insert all strings in the hash table (except for the last two bytes).
851 1.7 christos * s->lookahead stays null, so s->ins_h will be recomputed at the next
852 1.7 christos * call of fill_window.
853 1.7 christos */
854 1.7 christos s->ins_h = s->window[0];
855 1.7 christos UPDATE_HASH(s, s->ins_h, s->window[1]);
856 1.7 christos for (n = 0; n <= length - MIN_MATCH; n++) {
857 1.7 christos INSERT_STRING(s, n, hash_head);
858 1.7 christos }
859 1.7 christos if (hash_head) hash_head = 0; /* to make compiler happy */
860 1.7 christos return Z_OK;
861 1.7 christos }
862 1.7 christos
863 1.7 christos /* ========================================================================= */
864 1.1 paulus int deflateReset (strm)
865 1.7 christos z_streamp strm;
866 1.1 paulus {
867 1.1 paulus deflate_state *s;
868 1.1 paulus
869 1.1 paulus if (strm == Z_NULL || strm->state == Z_NULL ||
870 1.7 christos strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
871 1.1 paulus
872 1.1 paulus strm->total_in = strm->total_out = 0;
873 1.1 paulus strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
874 1.1 paulus strm->data_type = Z_UNKNOWN;
875 1.1 paulus
876 1.1 paulus s = (deflate_state *)strm->state;
877 1.1 paulus s->pending = 0;
878 1.1 paulus s->pending_out = s->pending_buf;
879 1.1 paulus
880 1.1 paulus if (s->noheader < 0) {
881 1.1 paulus s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
882 1.1 paulus }
883 1.1 paulus s->status = s->noheader ? BUSY_STATE : INIT_STATE;
884 1.7 christos strm->adler = 1;
885 1.7 christos s->last_flush = Z_NO_FLUSH;
886 1.1 paulus
887 1.7 christos _tr_init(s);
888 1.1 paulus lm_init(s);
889 1.1 paulus
890 1.1 paulus return Z_OK;
891 1.1 paulus }
892 1.1 paulus
893 1.7 christos /* ========================================================================= */
894 1.7 christos int deflateParams(strm, level, strategy)
895 1.7 christos z_streamp strm;
896 1.7 christos int level;
897 1.7 christos int strategy;
898 1.7 christos {
899 1.7 christos deflate_state *s;
900 1.7 christos compress_func func;
901 1.7 christos int err = Z_OK;
902 1.7 christos
903 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
904 1.7 christos s = (deflate_state *) strm->state;
905 1.7 christos
906 1.7 christos if (level == Z_DEFAULT_COMPRESSION) {
907 1.7 christos level = 6;
908 1.7 christos }
909 1.7 christos if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
910 1.7 christos return Z_STREAM_ERROR;
911 1.7 christos }
912 1.7 christos func = configuration_table[s->level].func;
913 1.7 christos
914 1.7 christos if (func != configuration_table[level].func && strm->total_in != 0) {
915 1.7 christos /* Flush the last buffer: */
916 1.7 christos err = deflate(strm, Z_PARTIAL_FLUSH);
917 1.7 christos }
918 1.7 christos if (s->level != level) {
919 1.7 christos s->level = level;
920 1.7 christos s->max_lazy_match = configuration_table[level].max_lazy;
921 1.7 christos s->good_match = configuration_table[level].good_length;
922 1.7 christos s->nice_match = configuration_table[level].nice_length;
923 1.7 christos s->max_chain_length = configuration_table[level].max_chain;
924 1.7 christos }
925 1.7 christos s->strategy = strategy;
926 1.7 christos return err;
927 1.7 christos }
928 1.7 christos
929 1.1 paulus /* =========================================================================
930 1.1 paulus * Put a short in the pending buffer. The 16-bit value is put in MSB order.
931 1.1 paulus * IN assertion: the stream state is correct and there is enough room in
932 1.1 paulus * pending_buf.
933 1.1 paulus */
934 1.1 paulus local void putShortMSB (s, b)
935 1.1 paulus deflate_state *s;
936 1.1 paulus uInt b;
937 1.1 paulus {
938 1.1 paulus put_byte(s, (Byte)(b >> 8));
939 1.1 paulus put_byte(s, (Byte)(b & 0xff));
940 1.1 paulus }
941 1.1 paulus
942 1.1 paulus /* =========================================================================
943 1.7 christos * Flush as much pending output as possible. All deflate() output goes
944 1.7 christos * through this function so some applications may wish to modify it
945 1.7 christos * to avoid allocating a large strm->next_out buffer and copying into it.
946 1.7 christos * (See also read_buf()).
947 1.1 paulus */
948 1.1 paulus local void flush_pending(strm)
949 1.7 christos z_streamp strm;
950 1.1 paulus {
951 1.7 christos deflate_state *s = (deflate_state *) strm->state;
952 1.7 christos unsigned len = s->pending;
953 1.1 paulus
954 1.1 paulus if (len > strm->avail_out) len = strm->avail_out;
955 1.1 paulus if (len == 0) return;
956 1.1 paulus
957 1.7 christos if (strm->next_out != Z_NULL) {
958 1.7 christos zmemcpy(strm->next_out, s->pending_out, len);
959 1.1 paulus strm->next_out += len;
960 1.1 paulus }
961 1.7 christos s->pending_out += len;
962 1.1 paulus strm->total_out += len;
963 1.7 christos strm->avail_out -= len;
964 1.7 christos s->pending -= len;
965 1.7 christos if (s->pending == 0) {
966 1.7 christos s->pending_out = s->pending_buf;
967 1.1 paulus }
968 1.1 paulus }
969 1.1 paulus
970 1.1 paulus /* ========================================================================= */
971 1.1 paulus int deflate (strm, flush)
972 1.7 christos z_streamp strm;
973 1.1 paulus int flush;
974 1.1 paulus {
975 1.7 christos int old_flush; /* value of flush param for previous deflate call */
976 1.7 christos deflate_state *s;
977 1.7 christos
978 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL ||
979 1.7 christos flush > Z_FINISH || flush < 0) {
980 1.7 christos return Z_STREAM_ERROR;
981 1.7 christos }
982 1.7 christos s = (deflate_state *) strm->state;
983 1.1 paulus
984 1.7 christos if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
985 1.7 christos (s->status == FINISH_STATE && flush != Z_FINISH)) {
986 1.1 paulus ERR_RETURN(strm, Z_STREAM_ERROR);
987 1.1 paulus }
988 1.1 paulus if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
989 1.1 paulus
990 1.7 christos s->strm = strm; /* just in case */
991 1.7 christos old_flush = s->last_flush;
992 1.7 christos s->last_flush = flush;
993 1.1 paulus
994 1.1 paulus /* Write the zlib header */
995 1.7 christos if (s->status == INIT_STATE) {
996 1.1 paulus
997 1.7 christos uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
998 1.7 christos uInt level_flags = (s->level-1) >> 1;
999 1.1 paulus
1000 1.1 paulus if (level_flags > 3) level_flags = 3;
1001 1.1 paulus header |= (level_flags << 6);
1002 1.7 christos if (s->strstart != 0) header |= PRESET_DICT;
1003 1.1 paulus header += 31 - (header % 31);
1004 1.1 paulus
1005 1.7 christos s->status = BUSY_STATE;
1006 1.7 christos putShortMSB(s, header);
1007 1.7 christos
1008 1.7 christos /* Save the adler32 of the preset dictionary: */
1009 1.7 christos if (s->strstart != 0) {
1010 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1011 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1012 1.7 christos }
1013 1.7 christos strm->adler = 1L;
1014 1.1 paulus }
1015 1.1 paulus
1016 1.1 paulus /* Flush as much pending output as possible */
1017 1.7 christos if (s->pending != 0) {
1018 1.1 paulus flush_pending(strm);
1019 1.7 christos if (strm->avail_out == 0) {
1020 1.7 christos /* Since avail_out is 0, deflate will be called again with
1021 1.7 christos * more output space, but possibly with both pending and
1022 1.7 christos * avail_in equal to zero. There won't be anything to do,
1023 1.7 christos * but this is not an error situation so make sure we
1024 1.7 christos * return OK instead of BUF_ERROR at next call of deflate:
1025 1.7 christos */
1026 1.7 christos s->last_flush = -1;
1027 1.7 christos return Z_OK;
1028 1.7 christos }
1029 1.1 paulus
1030 1.7 christos /* Make sure there is something to do and avoid duplicate consecutive
1031 1.7 christos * flushes. For repeated and useless calls with Z_FINISH, we keep
1032 1.7 christos * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1033 1.1 paulus */
1034 1.7 christos } else if (strm->avail_in == 0 && flush <= old_flush &&
1035 1.7 christos flush != Z_FINISH) {
1036 1.7 christos ERR_RETURN(strm, Z_BUF_ERROR);
1037 1.1 paulus }
1038 1.1 paulus
1039 1.1 paulus /* User must not provide more input after the first FINISH: */
1040 1.7 christos if (s->status == FINISH_STATE && strm->avail_in != 0) {
1041 1.1 paulus ERR_RETURN(strm, Z_BUF_ERROR);
1042 1.1 paulus }
1043 1.1 paulus
1044 1.1 paulus /* Start a new block or continue the current one.
1045 1.1 paulus */
1046 1.7 christos if (strm->avail_in != 0 || s->lookahead != 0 ||
1047 1.7 christos (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1048 1.7 christos block_state bstate;
1049 1.1 paulus
1050 1.7 christos bstate = (*(configuration_table[s->level].func))(s, flush);
1051 1.7 christos
1052 1.7 christos if (bstate == finish_started || bstate == finish_done) {
1053 1.7 christos s->status = FINISH_STATE;
1054 1.1 paulus }
1055 1.7 christos if (bstate == need_more || bstate == finish_started) {
1056 1.7 christos if (strm->avail_out == 0) {
1057 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1058 1.7 christos }
1059 1.1 paulus return Z_OK;
1060 1.7 christos /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1061 1.7 christos * of deflate should use the same flush parameter to make sure
1062 1.7 christos * that the flush is complete. So we don't have to output an
1063 1.7 christos * empty block here, this will be done at next call. This also
1064 1.7 christos * ensures that for a very small output buffer, we emit at most
1065 1.7 christos * one empty block.
1066 1.1 paulus */
1067 1.7 christos }
1068 1.7 christos if (bstate == block_done) {
1069 1.7 christos if (flush == Z_PARTIAL_FLUSH) {
1070 1.7 christos _tr_align(s);
1071 1.7 christos } else if (flush == Z_PACKET_FLUSH) {
1072 1.7 christos /* Output just the 3-bit `stored' block type value,
1073 1.7 christos but not a zero length. */
1074 1.7 christos _tr_stored_type_only(s);
1075 1.7 christos } else { /* FULL_FLUSH or SYNC_FLUSH */
1076 1.7 christos _tr_stored_block(s, (char*)0, 0L, 0);
1077 1.7 christos /* For a full flush, this empty block will be recognized
1078 1.7 christos * as a special marker by inflate_sync().
1079 1.7 christos */
1080 1.7 christos if (flush == Z_FULL_FLUSH) {
1081 1.7 christos CLEAR_HASH(s); /* forget history */
1082 1.7 christos }
1083 1.7 christos }
1084 1.7 christos flush_pending(strm);
1085 1.7 christos if (strm->avail_out == 0) {
1086 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1087 1.7 christos return Z_OK;
1088 1.1 paulus }
1089 1.7 christos }
1090 1.1 paulus }
1091 1.1 paulus Assert(strm->avail_out > 0, "bug2");
1092 1.1 paulus
1093 1.1 paulus if (flush != Z_FINISH) return Z_OK;
1094 1.7 christos if (s->noheader) return Z_STREAM_END;
1095 1.1 paulus
1096 1.1 paulus /* Write the zlib trailer (adler32) */
1097 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1098 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1099 1.1 paulus flush_pending(strm);
1100 1.1 paulus /* If avail_out is zero, the application will call deflate again
1101 1.1 paulus * to flush the rest.
1102 1.1 paulus */
1103 1.7 christos s->noheader = -1; /* write the trailer only once! */
1104 1.7 christos return s->pending != 0 ? Z_OK : Z_STREAM_END;
1105 1.1 paulus }
1106 1.1 paulus
1107 1.1 paulus /* ========================================================================= */
1108 1.1 paulus int deflateEnd (strm)
1109 1.7 christos z_streamp strm;
1110 1.1 paulus {
1111 1.7 christos int status;
1112 1.7 christos deflate_state *s;
1113 1.1 paulus
1114 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1115 1.7 christos s = (deflate_state *) strm->state;
1116 1.1 paulus
1117 1.7 christos status = s->status;
1118 1.7 christos if (status != INIT_STATE && status != BUSY_STATE &&
1119 1.7 christos status != FINISH_STATE) {
1120 1.7 christos return Z_STREAM_ERROR;
1121 1.7 christos }
1122 1.1 paulus
1123 1.7 christos /* Deallocate in reverse order of allocations: */
1124 1.7 christos TRY_FREE(strm, s->pending_buf);
1125 1.7 christos TRY_FREE(strm, s->head);
1126 1.7 christos TRY_FREE(strm, s->prev);
1127 1.7 christos TRY_FREE(strm, s->window);
1128 1.7 christos
1129 1.7 christos ZFREE(strm, s);
1130 1.1 paulus strm->state = Z_NULL;
1131 1.1 paulus
1132 1.7 christos return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1133 1.7 christos }
1134 1.7 christos
1135 1.7 christos /* =========================================================================
1136 1.7 christos * Copy the source state to the destination state.
1137 1.7 christos */
1138 1.7 christos int deflateCopy (dest, source)
1139 1.7 christos z_streamp dest;
1140 1.7 christos z_streamp source;
1141 1.7 christos {
1142 1.7 christos deflate_state *ds;
1143 1.7 christos deflate_state *ss;
1144 1.7 christos ushf *overlay;
1145 1.7 christos
1146 1.7 christos if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1147 1.7 christos return Z_STREAM_ERROR;
1148 1.7 christos ss = (deflate_state *) source->state;
1149 1.7 christos
1150 1.7 christos zmemcpy(dest, source, sizeof(*dest));
1151 1.7 christos
1152 1.7 christos ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1153 1.7 christos if (ds == Z_NULL) return Z_MEM_ERROR;
1154 1.7 christos dest->state = (struct internal_state FAR *) ds;
1155 1.7 christos zmemcpy(ds, ss, sizeof(*ds));
1156 1.7 christos ds->strm = dest;
1157 1.7 christos
1158 1.7 christos ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1159 1.7 christos ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1160 1.7 christos ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1161 1.7 christos overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1162 1.7 christos ds->pending_buf = (uchf *) overlay;
1163 1.7 christos
1164 1.7 christos if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1165 1.7 christos ds->pending_buf == Z_NULL) {
1166 1.7 christos deflateEnd (dest);
1167 1.7 christos return Z_MEM_ERROR;
1168 1.7 christos }
1169 1.7 christos /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1170 1.7 christos zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1171 1.7 christos zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1172 1.7 christos zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1173 1.7 christos zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1174 1.7 christos
1175 1.7 christos ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1176 1.7 christos ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1177 1.7 christos ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1178 1.7 christos
1179 1.7 christos ds->l_desc.dyn_tree = ds->dyn_ltree;
1180 1.7 christos ds->d_desc.dyn_tree = ds->dyn_dtree;
1181 1.7 christos ds->bl_desc.dyn_tree = ds->bl_tree;
1182 1.7 christos
1183 1.1 paulus return Z_OK;
1184 1.1 paulus }
1185 1.1 paulus
1186 1.1 paulus /* ===========================================================================
1187 1.7 christos * Return the number of bytes of output which are immediately available
1188 1.7 christos * for output from the decompressor.
1189 1.7 christos */
1190 1.7 christos int deflateOutputPending (strm)
1191 1.7 christos z_streamp strm;
1192 1.7 christos {
1193 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1194 1.7 christos
1195 1.7 christos return ((deflate_state *)(strm->state))->pending;
1196 1.7 christos }
1197 1.7 christos
1198 1.7 christos /* ===========================================================================
1199 1.1 paulus * Read a new buffer from the current input stream, update the adler32
1200 1.7 christos * and total number of bytes read. All deflate() input goes through
1201 1.7 christos * this function so some applications may wish to modify it to avoid
1202 1.7 christos * allocating a large strm->next_in buffer and copying from it.
1203 1.7 christos * (See also flush_pending()).
1204 1.1 paulus */
1205 1.1 paulus local int read_buf(strm, buf, size)
1206 1.7 christos z_streamp strm;
1207 1.1 paulus charf *buf;
1208 1.1 paulus unsigned size;
1209 1.1 paulus {
1210 1.1 paulus unsigned len = strm->avail_in;
1211 1.1 paulus
1212 1.1 paulus if (len > size) len = size;
1213 1.1 paulus if (len == 0) return 0;
1214 1.1 paulus
1215 1.1 paulus strm->avail_in -= len;
1216 1.1 paulus
1217 1.7 christos if (!((deflate_state *)(strm->state))->noheader) {
1218 1.7 christos strm->adler = adler32(strm->adler, strm->next_in, len);
1219 1.1 paulus }
1220 1.1 paulus zmemcpy(buf, strm->next_in, len);
1221 1.1 paulus strm->next_in += len;
1222 1.1 paulus strm->total_in += len;
1223 1.1 paulus
1224 1.1 paulus return (int)len;
1225 1.1 paulus }
1226 1.1 paulus
1227 1.1 paulus /* ===========================================================================
1228 1.1 paulus * Initialize the "longest match" routines for a new zlib stream
1229 1.1 paulus */
1230 1.1 paulus local void lm_init (s)
1231 1.1 paulus deflate_state *s;
1232 1.1 paulus {
1233 1.1 paulus s->window_size = (ulg)2L*s->w_size;
1234 1.1 paulus
1235 1.1 paulus CLEAR_HASH(s);
1236 1.1 paulus
1237 1.1 paulus /* Set the default configuration parameters:
1238 1.1 paulus */
1239 1.1 paulus s->max_lazy_match = configuration_table[s->level].max_lazy;
1240 1.1 paulus s->good_match = configuration_table[s->level].good_length;
1241 1.1 paulus s->nice_match = configuration_table[s->level].nice_length;
1242 1.1 paulus s->max_chain_length = configuration_table[s->level].max_chain;
1243 1.1 paulus
1244 1.1 paulus s->strstart = 0;
1245 1.1 paulus s->block_start = 0L;
1246 1.1 paulus s->lookahead = 0;
1247 1.7 christos s->match_length = s->prev_length = MIN_MATCH-1;
1248 1.1 paulus s->match_available = 0;
1249 1.1 paulus s->ins_h = 0;
1250 1.1 paulus #ifdef ASMV
1251 1.1 paulus match_init(); /* initialize the asm code */
1252 1.1 paulus #endif
1253 1.1 paulus }
1254 1.1 paulus
1255 1.1 paulus /* ===========================================================================
1256 1.1 paulus * Set match_start to the longest match starting at the given string and
1257 1.1 paulus * return its length. Matches shorter or equal to prev_length are discarded,
1258 1.1 paulus * in which case the result is equal to prev_length and match_start is
1259 1.1 paulus * garbage.
1260 1.1 paulus * IN assertions: cur_match is the head of the hash chain for the current
1261 1.1 paulus * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1262 1.7 christos * OUT assertion: the match length is not greater than s->lookahead.
1263 1.1 paulus */
1264 1.1 paulus #ifndef ASMV
1265 1.1 paulus /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1266 1.1 paulus * match.S. The code will be functionally equivalent.
1267 1.1 paulus */
1268 1.7 christos local uInt longest_match(s, cur_match)
1269 1.1 paulus deflate_state *s;
1270 1.1 paulus IPos cur_match; /* current match */
1271 1.1 paulus {
1272 1.1 paulus unsigned chain_length = s->max_chain_length;/* max hash chain length */
1273 1.1 paulus register Bytef *scan = s->window + s->strstart; /* current string */
1274 1.1 paulus register Bytef *match; /* matched string */
1275 1.1 paulus register int len; /* length of current match */
1276 1.1 paulus int best_len = s->prev_length; /* best match length so far */
1277 1.7 christos int nice_match = s->nice_match; /* stop if match long enough */
1278 1.1 paulus IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1279 1.1 paulus s->strstart - (IPos)MAX_DIST(s) : NIL;
1280 1.1 paulus /* Stop when cur_match becomes <= limit. To simplify the code,
1281 1.1 paulus * we prevent matches with the string of window index 0.
1282 1.1 paulus */
1283 1.1 paulus Posf *prev = s->prev;
1284 1.1 paulus uInt wmask = s->w_mask;
1285 1.1 paulus
1286 1.1 paulus #ifdef UNALIGNED_OK
1287 1.1 paulus /* Compare two bytes at a time. Note: this is not always beneficial.
1288 1.1 paulus * Try with and without -DUNALIGNED_OK to check.
1289 1.1 paulus */
1290 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1291 1.1 paulus register ush scan_start = *(ushf*)scan;
1292 1.1 paulus register ush scan_end = *(ushf*)(scan+best_len-1);
1293 1.1 paulus #else
1294 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1295 1.1 paulus register Byte scan_end1 = scan[best_len-1];
1296 1.1 paulus register Byte scan_end = scan[best_len];
1297 1.1 paulus #endif
1298 1.1 paulus
1299 1.1 paulus /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1300 1.1 paulus * It is easy to get rid of this optimization if necessary.
1301 1.1 paulus */
1302 1.1 paulus Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1303 1.1 paulus
1304 1.1 paulus /* Do not waste too much time if we already have a good match: */
1305 1.1 paulus if (s->prev_length >= s->good_match) {
1306 1.1 paulus chain_length >>= 2;
1307 1.1 paulus }
1308 1.7 christos /* Do not look for matches beyond the end of the input. This is necessary
1309 1.7 christos * to make deflate deterministic.
1310 1.7 christos */
1311 1.7 christos if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1312 1.7 christos
1313 1.1 paulus Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1314 1.1 paulus
1315 1.1 paulus do {
1316 1.1 paulus Assert(cur_match < s->strstart, "no future");
1317 1.1 paulus match = s->window + cur_match;
1318 1.1 paulus
1319 1.1 paulus /* Skip to next match if the match length cannot increase
1320 1.1 paulus * or if the match length is less than 2:
1321 1.1 paulus */
1322 1.1 paulus #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1323 1.1 paulus /* This code assumes sizeof(unsigned short) == 2. Do not use
1324 1.1 paulus * UNALIGNED_OK if your compiler uses a different size.
1325 1.1 paulus */
1326 1.1 paulus if (*(ushf*)(match+best_len-1) != scan_end ||
1327 1.1 paulus *(ushf*)match != scan_start) continue;
1328 1.1 paulus
1329 1.1 paulus /* It is not necessary to compare scan[2] and match[2] since they are
1330 1.1 paulus * always equal when the other bytes match, given that the hash keys
1331 1.1 paulus * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1332 1.1 paulus * strstart+3, +5, ... up to strstart+257. We check for insufficient
1333 1.1 paulus * lookahead only every 4th comparison; the 128th check will be made
1334 1.1 paulus * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1335 1.1 paulus * necessary to put more guard bytes at the end of the window, or
1336 1.1 paulus * to check more often for insufficient lookahead.
1337 1.1 paulus */
1338 1.1 paulus Assert(scan[2] == match[2], "scan[2]?");
1339 1.1 paulus scan++, match++;
1340 1.1 paulus do {
1341 1.1 paulus } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 1.1 paulus scan < strend);
1346 1.1 paulus /* The funny "do {}" generates better code on most compilers */
1347 1.1 paulus
1348 1.1 paulus /* Here, scan <= window+strstart+257 */
1349 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1350 1.1 paulus if (*scan == *match) scan++;
1351 1.1 paulus
1352 1.1 paulus len = (MAX_MATCH - 1) - (int)(strend-scan);
1353 1.1 paulus scan = strend - (MAX_MATCH-1);
1354 1.1 paulus
1355 1.1 paulus #else /* UNALIGNED_OK */
1356 1.1 paulus
1357 1.1 paulus if (match[best_len] != scan_end ||
1358 1.1 paulus match[best_len-1] != scan_end1 ||
1359 1.1 paulus *match != *scan ||
1360 1.1 paulus *++match != scan[1]) continue;
1361 1.1 paulus
1362 1.1 paulus /* The check at best_len-1 can be removed because it will be made
1363 1.1 paulus * again later. (This heuristic is not always a win.)
1364 1.1 paulus * It is not necessary to compare scan[2] and match[2] since they
1365 1.1 paulus * are always equal when the other bytes match, given that
1366 1.1 paulus * the hash keys are equal and that HASH_BITS >= 8.
1367 1.1 paulus */
1368 1.1 paulus scan += 2, match++;
1369 1.1 paulus Assert(*scan == *match, "match[2]?");
1370 1.1 paulus
1371 1.1 paulus /* We check for insufficient lookahead only every 8th comparison;
1372 1.1 paulus * the 256th check will be made at strstart+258.
1373 1.1 paulus */
1374 1.1 paulus do {
1375 1.1 paulus } while (*++scan == *++match && *++scan == *++match &&
1376 1.1 paulus *++scan == *++match && *++scan == *++match &&
1377 1.1 paulus *++scan == *++match && *++scan == *++match &&
1378 1.1 paulus *++scan == *++match && *++scan == *++match &&
1379 1.1 paulus scan < strend);
1380 1.1 paulus
1381 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1382 1.1 paulus
1383 1.1 paulus len = MAX_MATCH - (int)(strend - scan);
1384 1.1 paulus scan = strend - MAX_MATCH;
1385 1.1 paulus
1386 1.1 paulus #endif /* UNALIGNED_OK */
1387 1.1 paulus
1388 1.1 paulus if (len > best_len) {
1389 1.1 paulus s->match_start = cur_match;
1390 1.1 paulus best_len = len;
1391 1.7 christos if (len >= nice_match) break;
1392 1.1 paulus #ifdef UNALIGNED_OK
1393 1.1 paulus scan_end = *(ushf*)(scan+best_len-1);
1394 1.1 paulus #else
1395 1.1 paulus scan_end1 = scan[best_len-1];
1396 1.1 paulus scan_end = scan[best_len];
1397 1.1 paulus #endif
1398 1.1 paulus }
1399 1.1 paulus } while ((cur_match = prev[cur_match & wmask]) > limit
1400 1.1 paulus && --chain_length != 0);
1401 1.1 paulus
1402 1.7 christos if ((uInt)best_len <= s->lookahead) return best_len;
1403 1.7 christos return s->lookahead;
1404 1.1 paulus }
1405 1.1 paulus #endif /* ASMV */
1406 1.1 paulus
1407 1.1 paulus #ifdef DEBUG_ZLIB
1408 1.1 paulus /* ===========================================================================
1409 1.1 paulus * Check that the match at match_start is indeed a match.
1410 1.1 paulus */
1411 1.1 paulus local void check_match(s, start, match, length)
1412 1.1 paulus deflate_state *s;
1413 1.1 paulus IPos start, match;
1414 1.1 paulus int length;
1415 1.1 paulus {
1416 1.1 paulus /* check that the match is indeed a match */
1417 1.7 christos if (zmemcmp((charf *)s->window + match,
1418 1.1 paulus (charf *)s->window + start, length) != EQUAL) {
1419 1.7 christos fprintf(stderr, " start %u, match %u, length %d\n",
1420 1.7 christos start, match, length);
1421 1.7 christos do {
1422 1.7 christos fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1423 1.7 christos } while (--length != 0);
1424 1.1 paulus z_error("invalid match");
1425 1.1 paulus }
1426 1.7 christos if (z_verbose > 1) {
1427 1.1 paulus fprintf(stderr,"\\[%d,%d]", start-match, length);
1428 1.1 paulus do { putc(s->window[start++], stderr); } while (--length != 0);
1429 1.1 paulus }
1430 1.1 paulus }
1431 1.1 paulus #else
1432 1.1 paulus # define check_match(s, start, match, length)
1433 1.1 paulus #endif
1434 1.1 paulus
1435 1.1 paulus /* ===========================================================================
1436 1.1 paulus * Fill the window when the lookahead becomes insufficient.
1437 1.1 paulus * Updates strstart and lookahead.
1438 1.1 paulus *
1439 1.1 paulus * IN assertion: lookahead < MIN_LOOKAHEAD
1440 1.1 paulus * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1441 1.1 paulus * At least one byte has been read, or avail_in == 0; reads are
1442 1.1 paulus * performed for at least two bytes (required for the zip translate_eol
1443 1.1 paulus * option -- not supported here).
1444 1.1 paulus */
1445 1.1 paulus local void fill_window(s)
1446 1.1 paulus deflate_state *s;
1447 1.1 paulus {
1448 1.1 paulus register unsigned n, m;
1449 1.1 paulus register Posf *p;
1450 1.1 paulus unsigned more; /* Amount of free space at the end of the window. */
1451 1.1 paulus uInt wsize = s->w_size;
1452 1.1 paulus
1453 1.1 paulus do {
1454 1.1 paulus more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1455 1.1 paulus
1456 1.1 paulus /* Deal with !@#$% 64K limit: */
1457 1.1 paulus if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1458 1.1 paulus more = wsize;
1459 1.7 christos
1460 1.1 paulus } else if (more == (unsigned)(-1)) {
1461 1.1 paulus /* Very unlikely, but possible on 16 bit machine if strstart == 0
1462 1.1 paulus * and lookahead == 1 (input done one byte at time)
1463 1.1 paulus */
1464 1.1 paulus more--;
1465 1.1 paulus
1466 1.1 paulus /* If the window is almost full and there is insufficient lookahead,
1467 1.1 paulus * move the upper half to the lower one to make room in the upper half.
1468 1.1 paulus */
1469 1.1 paulus } else if (s->strstart >= wsize+MAX_DIST(s)) {
1470 1.1 paulus
1471 1.1 paulus zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1472 1.1 paulus (unsigned)wsize);
1473 1.1 paulus s->match_start -= wsize;
1474 1.1 paulus s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1475 1.1 paulus s->block_start -= (long) wsize;
1476 1.1 paulus
1477 1.1 paulus /* Slide the hash table (could be avoided with 32 bit values
1478 1.7 christos at the expense of memory usage). We slide even when level == 0
1479 1.7 christos to keep the hash table consistent if we switch back to level > 0
1480 1.7 christos later. (Using level 0 permanently is not an optimal usage of
1481 1.7 christos zlib, so we don't care about this pathological case.)
1482 1.1 paulus */
1483 1.1 paulus n = s->hash_size;
1484 1.1 paulus p = &s->head[n];
1485 1.1 paulus do {
1486 1.1 paulus m = *--p;
1487 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1488 1.1 paulus } while (--n);
1489 1.1 paulus
1490 1.1 paulus n = wsize;
1491 1.1 paulus p = &s->prev[n];
1492 1.1 paulus do {
1493 1.1 paulus m = *--p;
1494 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1495 1.1 paulus /* If n is not on any hash chain, prev[n] is garbage but
1496 1.1 paulus * its value will never be used.
1497 1.1 paulus */
1498 1.1 paulus } while (--n);
1499 1.1 paulus more += wsize;
1500 1.1 paulus }
1501 1.1 paulus if (s->strm->avail_in == 0) return;
1502 1.1 paulus
1503 1.1 paulus /* If there was no sliding:
1504 1.1 paulus * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1505 1.1 paulus * more == window_size - lookahead - strstart
1506 1.1 paulus * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1507 1.1 paulus * => more >= window_size - 2*WSIZE + 2
1508 1.1 paulus * In the BIG_MEM or MMAP case (not yet supported),
1509 1.1 paulus * window_size == input_size + MIN_LOOKAHEAD &&
1510 1.1 paulus * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1511 1.1 paulus * Otherwise, window_size == 2*WSIZE so more >= 2.
1512 1.1 paulus * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1513 1.1 paulus */
1514 1.1 paulus Assert(more >= 2, "more < 2");
1515 1.1 paulus
1516 1.1 paulus n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1517 1.1 paulus more);
1518 1.1 paulus s->lookahead += n;
1519 1.1 paulus
1520 1.1 paulus /* Initialize the hash value now that we have some input: */
1521 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1522 1.1 paulus s->ins_h = s->window[s->strstart];
1523 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1524 1.1 paulus #if MIN_MATCH != 3
1525 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1526 1.1 paulus #endif
1527 1.1 paulus }
1528 1.1 paulus /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1529 1.1 paulus * but this is not important since only literal bytes will be emitted.
1530 1.1 paulus */
1531 1.1 paulus
1532 1.1 paulus } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1533 1.1 paulus }
1534 1.1 paulus
1535 1.1 paulus /* ===========================================================================
1536 1.1 paulus * Flush the current block, with given end-of-file flag.
1537 1.1 paulus * IN assertion: strstart is set to the end of the current match.
1538 1.1 paulus */
1539 1.7 christos #define FLUSH_BLOCK_ONLY(s, eof) { \
1540 1.7 christos _tr_flush_block(s, (s->block_start >= 0L ? \
1541 1.7 christos (charf *)&s->window[(unsigned)s->block_start] : \
1542 1.7 christos (charf *)Z_NULL), \
1543 1.7 christos (ulg)((long)s->strstart - s->block_start), \
1544 1.7 christos (eof)); \
1545 1.1 paulus s->block_start = s->strstart; \
1546 1.1 paulus flush_pending(s->strm); \
1547 1.1 paulus Tracev((stderr,"[FLUSH]")); \
1548 1.1 paulus }
1549 1.1 paulus
1550 1.1 paulus /* Same but force premature exit if necessary. */
1551 1.7 christos #define FLUSH_BLOCK(s, eof) { \
1552 1.7 christos FLUSH_BLOCK_ONLY(s, eof); \
1553 1.7 christos if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1554 1.7 christos }
1555 1.7 christos
1556 1.7 christos /* ===========================================================================
1557 1.7 christos * Copy without compression as much as possible from the input stream, return
1558 1.7 christos * the current block state.
1559 1.7 christos * This function does not insert new strings in the dictionary since
1560 1.7 christos * uncompressible data is probably not useful. This function is used
1561 1.7 christos * only for the level=0 compression option.
1562 1.7 christos * NOTE: this function should be optimized to avoid extra copying from
1563 1.7 christos * window to pending_buf.
1564 1.7 christos */
1565 1.7 christos local block_state deflate_stored(s, flush)
1566 1.7 christos deflate_state *s;
1567 1.7 christos int flush;
1568 1.7 christos {
1569 1.7 christos /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1570 1.7 christos * to pending_buf_size, and each stored block has a 5 byte header:
1571 1.7 christos */
1572 1.7 christos ulg max_block_size = 0xffff;
1573 1.7 christos ulg max_start;
1574 1.7 christos
1575 1.7 christos if (max_block_size > s->pending_buf_size - 5) {
1576 1.7 christos max_block_size = s->pending_buf_size - 5;
1577 1.7 christos }
1578 1.7 christos
1579 1.7 christos /* Copy as much as possible from input to output: */
1580 1.7 christos for (;;) {
1581 1.7 christos /* Fill the window as much as possible: */
1582 1.7 christos if (s->lookahead <= 1) {
1583 1.7 christos
1584 1.7 christos Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1585 1.7 christos s->block_start >= (long)s->w_size, "slide too late");
1586 1.7 christos
1587 1.7 christos fill_window(s);
1588 1.7 christos if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1589 1.7 christos
1590 1.7 christos if (s->lookahead == 0) break; /* flush the current block */
1591 1.7 christos }
1592 1.7 christos Assert(s->block_start >= 0L, "block gone");
1593 1.7 christos
1594 1.7 christos s->strstart += s->lookahead;
1595 1.7 christos s->lookahead = 0;
1596 1.7 christos
1597 1.7 christos /* Emit a stored block if pending_buf will be full: */
1598 1.7 christos max_start = s->block_start + max_block_size;
1599 1.7 christos if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1600 1.7 christos /* strstart == 0 is possible when wraparound on 16-bit machine */
1601 1.7 christos s->lookahead = (uInt)(s->strstart - max_start);
1602 1.7 christos s->strstart = (uInt)max_start;
1603 1.7 christos FLUSH_BLOCK(s, 0);
1604 1.7 christos }
1605 1.7 christos /* Flush if we may have to slide, otherwise block_start may become
1606 1.7 christos * negative and the data will be gone:
1607 1.7 christos */
1608 1.7 christos if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1609 1.7 christos FLUSH_BLOCK(s, 0);
1610 1.7 christos }
1611 1.7 christos }
1612 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1613 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1614 1.1 paulus }
1615 1.1 paulus
1616 1.1 paulus /* ===========================================================================
1617 1.7 christos * Compress as much as possible from the input stream, return the current
1618 1.7 christos * block state.
1619 1.7 christos * This function does not perform lazy evaluation of matches and inserts
1620 1.1 paulus * new strings in the dictionary only for unmatched strings or for short
1621 1.1 paulus * matches. It is used only for the fast compression options.
1622 1.1 paulus */
1623 1.7 christos local block_state deflate_fast(s, flush)
1624 1.1 paulus deflate_state *s;
1625 1.1 paulus int flush;
1626 1.1 paulus {
1627 1.1 paulus IPos hash_head = NIL; /* head of the hash chain */
1628 1.7 christos int bflush; /* set if current block must be flushed */
1629 1.1 paulus
1630 1.1 paulus for (;;) {
1631 1.1 paulus /* Make sure that we always have enough lookahead, except
1632 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1633 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1634 1.1 paulus * string following the next match.
1635 1.1 paulus */
1636 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1637 1.1 paulus fill_window(s);
1638 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1639 1.7 christos return need_more;
1640 1.7 christos }
1641 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1642 1.1 paulus }
1643 1.1 paulus
1644 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1645 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1646 1.1 paulus */
1647 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1648 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1649 1.1 paulus }
1650 1.1 paulus
1651 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1652 1.1 paulus * At this point we have always match_length < MIN_MATCH
1653 1.1 paulus */
1654 1.1 paulus if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1655 1.1 paulus /* To simplify the code, we prevent matches with the string
1656 1.1 paulus * of window index 0 (in particular we have to avoid a match
1657 1.1 paulus * of the string with itself at the start of the input file).
1658 1.1 paulus */
1659 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1660 1.1 paulus s->match_length = longest_match (s, hash_head);
1661 1.1 paulus }
1662 1.1 paulus /* longest_match() sets match_start */
1663 1.1 paulus }
1664 1.1 paulus if (s->match_length >= MIN_MATCH) {
1665 1.1 paulus check_match(s, s->strstart, s->match_start, s->match_length);
1666 1.1 paulus
1667 1.7 christos bflush = _tr_tally(s, s->strstart - s->match_start,
1668 1.7 christos s->match_length - MIN_MATCH);
1669 1.1 paulus
1670 1.1 paulus s->lookahead -= s->match_length;
1671 1.1 paulus
1672 1.1 paulus /* Insert new strings in the hash table only if the match length
1673 1.1 paulus * is not too large. This saves time but degrades compression.
1674 1.1 paulus */
1675 1.1 paulus if (s->match_length <= s->max_insert_length &&
1676 1.1 paulus s->lookahead >= MIN_MATCH) {
1677 1.1 paulus s->match_length--; /* string at strstart already in hash table */
1678 1.1 paulus do {
1679 1.1 paulus s->strstart++;
1680 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1681 1.1 paulus /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1682 1.1 paulus * always MIN_MATCH bytes ahead.
1683 1.1 paulus */
1684 1.1 paulus } while (--s->match_length != 0);
1685 1.1 paulus s->strstart++;
1686 1.1 paulus } else {
1687 1.1 paulus s->strstart += s->match_length;
1688 1.1 paulus s->match_length = 0;
1689 1.1 paulus s->ins_h = s->window[s->strstart];
1690 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1691 1.1 paulus #if MIN_MATCH != 3
1692 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1693 1.1 paulus #endif
1694 1.1 paulus /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1695 1.1 paulus * matter since it will be recomputed at next deflate call.
1696 1.1 paulus */
1697 1.1 paulus }
1698 1.1 paulus } else {
1699 1.1 paulus /* No match, output a literal byte */
1700 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart]));
1701 1.7 christos bflush = _tr_tally (s, 0, s->window[s->strstart]);
1702 1.1 paulus s->lookahead--;
1703 1.1 paulus s->strstart++;
1704 1.1 paulus }
1705 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1706 1.1 paulus }
1707 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1708 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1709 1.1 paulus }
1710 1.1 paulus
1711 1.1 paulus /* ===========================================================================
1712 1.1 paulus * Same as above, but achieves better compression. We use a lazy
1713 1.1 paulus * evaluation for matches: a match is finally adopted only if there is
1714 1.1 paulus * no better match at the next window position.
1715 1.1 paulus */
1716 1.7 christos local block_state deflate_slow(s, flush)
1717 1.1 paulus deflate_state *s;
1718 1.1 paulus int flush;
1719 1.1 paulus {
1720 1.1 paulus IPos hash_head = NIL; /* head of hash chain */
1721 1.1 paulus int bflush; /* set if current block must be flushed */
1722 1.1 paulus
1723 1.1 paulus /* Process the input block. */
1724 1.1 paulus for (;;) {
1725 1.1 paulus /* Make sure that we always have enough lookahead, except
1726 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1727 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1728 1.1 paulus * string following the next match.
1729 1.1 paulus */
1730 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1731 1.1 paulus fill_window(s);
1732 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1733 1.7 christos return need_more;
1734 1.7 christos }
1735 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1736 1.1 paulus }
1737 1.1 paulus
1738 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1739 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1740 1.1 paulus */
1741 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1742 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1743 1.1 paulus }
1744 1.1 paulus
1745 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1746 1.1 paulus */
1747 1.1 paulus s->prev_length = s->match_length, s->prev_match = s->match_start;
1748 1.1 paulus s->match_length = MIN_MATCH-1;
1749 1.1 paulus
1750 1.1 paulus if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1751 1.1 paulus s->strstart - hash_head <= MAX_DIST(s)) {
1752 1.1 paulus /* To simplify the code, we prevent matches with the string
1753 1.1 paulus * of window index 0 (in particular we have to avoid a match
1754 1.1 paulus * of the string with itself at the start of the input file).
1755 1.1 paulus */
1756 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1757 1.1 paulus s->match_length = longest_match (s, hash_head);
1758 1.1 paulus }
1759 1.1 paulus /* longest_match() sets match_start */
1760 1.1 paulus
1761 1.1 paulus if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1762 1.1 paulus (s->match_length == MIN_MATCH &&
1763 1.1 paulus s->strstart - s->match_start > TOO_FAR))) {
1764 1.1 paulus
1765 1.1 paulus /* If prev_match is also MIN_MATCH, match_start is garbage
1766 1.1 paulus * but we will ignore the current match anyway.
1767 1.1 paulus */
1768 1.1 paulus s->match_length = MIN_MATCH-1;
1769 1.1 paulus }
1770 1.1 paulus }
1771 1.1 paulus /* If there was a match at the previous step and the current
1772 1.1 paulus * match is not better, output the previous match:
1773 1.1 paulus */
1774 1.1 paulus if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1775 1.1 paulus uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1776 1.1 paulus /* Do not insert strings in hash table beyond this. */
1777 1.1 paulus
1778 1.1 paulus check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1779 1.1 paulus
1780 1.7 christos bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1781 1.7 christos s->prev_length - MIN_MATCH);
1782 1.1 paulus
1783 1.1 paulus /* Insert in hash table all strings up to the end of the match.
1784 1.1 paulus * strstart-1 and strstart are already inserted. If there is not
1785 1.1 paulus * enough lookahead, the last two strings are not inserted in
1786 1.1 paulus * the hash table.
1787 1.1 paulus */
1788 1.1 paulus s->lookahead -= s->prev_length-1;
1789 1.1 paulus s->prev_length -= 2;
1790 1.1 paulus do {
1791 1.1 paulus if (++s->strstart <= max_insert) {
1792 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1793 1.1 paulus }
1794 1.1 paulus } while (--s->prev_length != 0);
1795 1.1 paulus s->match_available = 0;
1796 1.1 paulus s->match_length = MIN_MATCH-1;
1797 1.1 paulus s->strstart++;
1798 1.1 paulus
1799 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1800 1.1 paulus
1801 1.1 paulus } else if (s->match_available) {
1802 1.1 paulus /* If there was no match at the previous position, output a
1803 1.1 paulus * single literal. If there was a match but the current match
1804 1.1 paulus * is longer, truncate the previous match to a single literal.
1805 1.1 paulus */
1806 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1807 1.7 christos if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1808 1.7 christos FLUSH_BLOCK_ONLY(s, 0);
1809 1.1 paulus }
1810 1.1 paulus s->strstart++;
1811 1.1 paulus s->lookahead--;
1812 1.7 christos if (s->strm->avail_out == 0) return need_more;
1813 1.1 paulus } else {
1814 1.1 paulus /* There is no previous match to compare with, wait for
1815 1.1 paulus * the next step to decide.
1816 1.1 paulus */
1817 1.1 paulus s->match_available = 1;
1818 1.1 paulus s->strstart++;
1819 1.1 paulus s->lookahead--;
1820 1.1 paulus }
1821 1.1 paulus }
1822 1.1 paulus Assert (flush != Z_NO_FLUSH, "no flush?");
1823 1.1 paulus if (s->match_available) {
1824 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1825 1.7 christos _tr_tally (s, 0, s->window[s->strstart-1]);
1826 1.1 paulus s->match_available = 0;
1827 1.1 paulus }
1828 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1829 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1830 1.1 paulus }
1831 1.7 christos /* --- deflate.c */
1832 1.1 paulus
1833 1.7 christos /* +++ trees.c */
1834 1.1 paulus /* trees.c -- output deflated data using Huffman coding
1835 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly
1836 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
1837 1.1 paulus */
1838 1.1 paulus
1839 1.1 paulus /*
1840 1.1 paulus * ALGORITHM
1841 1.1 paulus *
1842 1.1 paulus * The "deflation" process uses several Huffman trees. The more
1843 1.1 paulus * common source values are represented by shorter bit sequences.
1844 1.1 paulus *
1845 1.1 paulus * Each code tree is stored in a compressed form which is itself
1846 1.1 paulus * a Huffman encoding of the lengths of all the code strings (in
1847 1.1 paulus * ascending order by source values). The actual code strings are
1848 1.1 paulus * reconstructed from the lengths in the inflate process, as described
1849 1.1 paulus * in the deflate specification.
1850 1.1 paulus *
1851 1.1 paulus * REFERENCES
1852 1.1 paulus *
1853 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1854 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1855 1.1 paulus *
1856 1.1 paulus * Storer, James A.
1857 1.1 paulus * Data Compression: Methods and Theory, pp. 49-50.
1858 1.1 paulus * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1859 1.1 paulus *
1860 1.1 paulus * Sedgewick, R.
1861 1.1 paulus * Algorithms, p290.
1862 1.1 paulus * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1863 1.1 paulus */
1864 1.1 paulus
1865 1.7 christos /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1866 1.7 christos
1867 1.7 christos /* #include "deflate.h" */
1868 1.1 paulus
1869 1.1 paulus #ifdef DEBUG_ZLIB
1870 1.1 paulus # include <ctype.h>
1871 1.1 paulus #endif
1872 1.1 paulus
1873 1.1 paulus /* ===========================================================================
1874 1.1 paulus * Constants
1875 1.1 paulus */
1876 1.1 paulus
1877 1.1 paulus #define MAX_BL_BITS 7
1878 1.1 paulus /* Bit length codes must not exceed MAX_BL_BITS bits */
1879 1.1 paulus
1880 1.1 paulus #define END_BLOCK 256
1881 1.1 paulus /* end of block literal code */
1882 1.1 paulus
1883 1.1 paulus #define REP_3_6 16
1884 1.1 paulus /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1885 1.1 paulus
1886 1.1 paulus #define REPZ_3_10 17
1887 1.1 paulus /* repeat a zero length 3-10 times (3 bits of repeat count) */
1888 1.1 paulus
1889 1.1 paulus #define REPZ_11_138 18
1890 1.1 paulus /* repeat a zero length 11-138 times (7 bits of repeat count) */
1891 1.1 paulus
1892 1.1 paulus local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1893 1.1 paulus = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1894 1.1 paulus
1895 1.1 paulus local int extra_dbits[D_CODES] /* extra bits for each distance code */
1896 1.1 paulus = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1897 1.1 paulus
1898 1.1 paulus local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1899 1.1 paulus = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1900 1.1 paulus
1901 1.1 paulus local uch bl_order[BL_CODES]
1902 1.1 paulus = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1903 1.1 paulus /* The lengths of the bit length codes are sent in order of decreasing
1904 1.1 paulus * probability, to avoid transmitting the lengths for unused bit length codes.
1905 1.1 paulus */
1906 1.1 paulus
1907 1.1 paulus #define Buf_size (8 * 2*sizeof(char))
1908 1.1 paulus /* Number of bits used within bi_buf. (bi_buf might be implemented on
1909 1.1 paulus * more than 16 bits on some systems.)
1910 1.1 paulus */
1911 1.1 paulus
1912 1.1 paulus /* ===========================================================================
1913 1.1 paulus * Local data. These are initialized only once.
1914 1.1 paulus */
1915 1.1 paulus
1916 1.1 paulus local ct_data static_ltree[L_CODES+2];
1917 1.1 paulus /* The static literal tree. Since the bit lengths are imposed, there is no
1918 1.1 paulus * need for the L_CODES extra codes used during heap construction. However
1919 1.7 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1920 1.1 paulus * below).
1921 1.1 paulus */
1922 1.1 paulus
1923 1.1 paulus local ct_data static_dtree[D_CODES];
1924 1.1 paulus /* The static distance tree. (Actually a trivial tree since all codes use
1925 1.1 paulus * 5 bits.)
1926 1.1 paulus */
1927 1.1 paulus
1928 1.1 paulus local uch dist_code[512];
1929 1.1 paulus /* distance codes. The first 256 values correspond to the distances
1930 1.1 paulus * 3 .. 258, the last 256 values correspond to the top 8 bits of
1931 1.1 paulus * the 15 bit distances.
1932 1.1 paulus */
1933 1.1 paulus
1934 1.1 paulus local uch length_code[MAX_MATCH-MIN_MATCH+1];
1935 1.1 paulus /* length code for each normalized match length (0 == MIN_MATCH) */
1936 1.1 paulus
1937 1.1 paulus local int base_length[LENGTH_CODES];
1938 1.1 paulus /* First normalized length for each code (0 = MIN_MATCH) */
1939 1.1 paulus
1940 1.1 paulus local int base_dist[D_CODES];
1941 1.1 paulus /* First normalized distance for each code (0 = distance of 1) */
1942 1.1 paulus
1943 1.1 paulus struct static_tree_desc_s {
1944 1.1 paulus ct_data *static_tree; /* static tree or NULL */
1945 1.1 paulus intf *extra_bits; /* extra bits for each code or NULL */
1946 1.1 paulus int extra_base; /* base index for extra_bits */
1947 1.1 paulus int elems; /* max number of elements in the tree */
1948 1.1 paulus int max_length; /* max bit length for the codes */
1949 1.1 paulus };
1950 1.1 paulus
1951 1.1 paulus local static_tree_desc static_l_desc =
1952 1.1 paulus {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1953 1.1 paulus
1954 1.1 paulus local static_tree_desc static_d_desc =
1955 1.1 paulus {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1956 1.1 paulus
1957 1.1 paulus local static_tree_desc static_bl_desc =
1958 1.1 paulus {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1959 1.1 paulus
1960 1.1 paulus /* ===========================================================================
1961 1.1 paulus * Local (static) routines in this file.
1962 1.1 paulus */
1963 1.1 paulus
1964 1.7 christos local void tr_static_init OF((void));
1965 1.1 paulus local void init_block OF((deflate_state *s));
1966 1.1 paulus local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1967 1.1 paulus local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1968 1.1 paulus local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1969 1.1 paulus local void build_tree OF((deflate_state *s, tree_desc *desc));
1970 1.1 paulus local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1971 1.1 paulus local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1972 1.1 paulus local int build_bl_tree OF((deflate_state *s));
1973 1.1 paulus local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1974 1.1 paulus int blcodes));
1975 1.1 paulus local void compress_block OF((deflate_state *s, ct_data *ltree,
1976 1.1 paulus ct_data *dtree));
1977 1.1 paulus local void set_data_type OF((deflate_state *s));
1978 1.1 paulus local unsigned bi_reverse OF((unsigned value, int length));
1979 1.1 paulus local void bi_windup OF((deflate_state *s));
1980 1.1 paulus local void bi_flush OF((deflate_state *s));
1981 1.1 paulus local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1982 1.1 paulus int header));
1983 1.1 paulus
1984 1.1 paulus #ifndef DEBUG_ZLIB
1985 1.1 paulus # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1986 1.1 paulus /* Send a code of the given tree. c and tree must not have side effects */
1987 1.1 paulus
1988 1.1 paulus #else /* DEBUG_ZLIB */
1989 1.1 paulus # define send_code(s, c, tree) \
1990 1.7 christos { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1991 1.1 paulus send_bits(s, tree[c].Code, tree[c].Len); }
1992 1.1 paulus #endif
1993 1.1 paulus
1994 1.1 paulus #define d_code(dist) \
1995 1.1 paulus ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1996 1.1 paulus /* Mapping from a distance to a distance code. dist is the distance - 1 and
1997 1.1 paulus * must not have side effects. dist_code[256] and dist_code[257] are never
1998 1.1 paulus * used.
1999 1.1 paulus */
2000 1.1 paulus
2001 1.1 paulus /* ===========================================================================
2002 1.1 paulus * Output a short LSB first on the stream.
2003 1.1 paulus * IN assertion: there is enough room in pendingBuf.
2004 1.1 paulus */
2005 1.1 paulus #define put_short(s, w) { \
2006 1.1 paulus put_byte(s, (uch)((w) & 0xff)); \
2007 1.1 paulus put_byte(s, (uch)((ush)(w) >> 8)); \
2008 1.1 paulus }
2009 1.1 paulus
2010 1.1 paulus /* ===========================================================================
2011 1.1 paulus * Send a value on a given number of bits.
2012 1.1 paulus * IN assertion: length <= 16 and value fits in length bits.
2013 1.1 paulus */
2014 1.1 paulus #ifdef DEBUG_ZLIB
2015 1.1 paulus local void send_bits OF((deflate_state *s, int value, int length));
2016 1.1 paulus
2017 1.1 paulus local void send_bits(s, value, length)
2018 1.1 paulus deflate_state *s;
2019 1.1 paulus int value; /* value to send */
2020 1.1 paulus int length; /* number of bits */
2021 1.1 paulus {
2022 1.7 christos Tracevv((stderr," l %2d v %4x ", length, value));
2023 1.1 paulus Assert(length > 0 && length <= 15, "invalid length");
2024 1.1 paulus s->bits_sent += (ulg)length;
2025 1.1 paulus
2026 1.1 paulus /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2027 1.1 paulus * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2028 1.1 paulus * unused bits in value.
2029 1.1 paulus */
2030 1.1 paulus if (s->bi_valid > (int)Buf_size - length) {
2031 1.1 paulus s->bi_buf |= (value << s->bi_valid);
2032 1.1 paulus put_short(s, s->bi_buf);
2033 1.1 paulus s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2034 1.1 paulus s->bi_valid += length - Buf_size;
2035 1.1 paulus } else {
2036 1.1 paulus s->bi_buf |= value << s->bi_valid;
2037 1.1 paulus s->bi_valid += length;
2038 1.1 paulus }
2039 1.1 paulus }
2040 1.1 paulus #else /* !DEBUG_ZLIB */
2041 1.1 paulus
2042 1.1 paulus #define send_bits(s, value, length) \
2043 1.1 paulus { int len = length;\
2044 1.1 paulus if (s->bi_valid > (int)Buf_size - len) {\
2045 1.1 paulus int val = value;\
2046 1.1 paulus s->bi_buf |= (val << s->bi_valid);\
2047 1.1 paulus put_short(s, s->bi_buf);\
2048 1.1 paulus s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2049 1.1 paulus s->bi_valid += len - Buf_size;\
2050 1.1 paulus } else {\
2051 1.1 paulus s->bi_buf |= (value) << s->bi_valid;\
2052 1.1 paulus s->bi_valid += len;\
2053 1.1 paulus }\
2054 1.1 paulus }
2055 1.1 paulus #endif /* DEBUG_ZLIB */
2056 1.1 paulus
2057 1.1 paulus
2058 1.1 paulus #define MAX(a,b) (a >= b ? a : b)
2059 1.1 paulus /* the arguments must not have side effects */
2060 1.1 paulus
2061 1.1 paulus /* ===========================================================================
2062 1.7 christos * Initialize the various 'constant' tables. In a multi-threaded environment,
2063 1.7 christos * this function may be called by two threads concurrently, but this is
2064 1.7 christos * harmless since both invocations do exactly the same thing.
2065 1.1 paulus */
2066 1.7 christos local void tr_static_init()
2067 1.1 paulus {
2068 1.7 christos static int static_init_done = 0;
2069 1.1 paulus int n; /* iterates over tree elements */
2070 1.1 paulus int bits; /* bit counter */
2071 1.1 paulus int length; /* length value */
2072 1.1 paulus int code; /* code value */
2073 1.1 paulus int dist; /* distance index */
2074 1.1 paulus ush bl_count[MAX_BITS+1];
2075 1.1 paulus /* number of codes at each bit length for an optimal tree */
2076 1.1 paulus
2077 1.7 christos if (static_init_done) return;
2078 1.7 christos
2079 1.1 paulus /* Initialize the mapping length (0..255) -> length code (0..28) */
2080 1.1 paulus length = 0;
2081 1.1 paulus for (code = 0; code < LENGTH_CODES-1; code++) {
2082 1.1 paulus base_length[code] = length;
2083 1.1 paulus for (n = 0; n < (1<<extra_lbits[code]); n++) {
2084 1.1 paulus length_code[length++] = (uch)code;
2085 1.1 paulus }
2086 1.1 paulus }
2087 1.7 christos Assert (length == 256, "tr_static_init: length != 256");
2088 1.1 paulus /* Note that the length 255 (match length 258) can be represented
2089 1.1 paulus * in two different ways: code 284 + 5 bits or code 285, so we
2090 1.1 paulus * overwrite length_code[255] to use the best encoding:
2091 1.1 paulus */
2092 1.1 paulus length_code[length-1] = (uch)code;
2093 1.1 paulus
2094 1.1 paulus /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2095 1.1 paulus dist = 0;
2096 1.1 paulus for (code = 0 ; code < 16; code++) {
2097 1.1 paulus base_dist[code] = dist;
2098 1.1 paulus for (n = 0; n < (1<<extra_dbits[code]); n++) {
2099 1.1 paulus dist_code[dist++] = (uch)code;
2100 1.1 paulus }
2101 1.1 paulus }
2102 1.7 christos Assert (dist == 256, "tr_static_init: dist != 256");
2103 1.1 paulus dist >>= 7; /* from now on, all distances are divided by 128 */
2104 1.1 paulus for ( ; code < D_CODES; code++) {
2105 1.1 paulus base_dist[code] = dist << 7;
2106 1.1 paulus for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2107 1.1 paulus dist_code[256 + dist++] = (uch)code;
2108 1.1 paulus }
2109 1.1 paulus }
2110 1.7 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
2111 1.1 paulus
2112 1.1 paulus /* Construct the codes of the static literal tree */
2113 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2114 1.1 paulus n = 0;
2115 1.1 paulus while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2116 1.1 paulus while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2117 1.1 paulus while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2118 1.1 paulus while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2119 1.1 paulus /* Codes 286 and 287 do not exist, but we must include them in the
2120 1.1 paulus * tree construction to get a canonical Huffman tree (longest code
2121 1.1 paulus * all ones)
2122 1.1 paulus */
2123 1.1 paulus gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2124 1.1 paulus
2125 1.1 paulus /* The static distance tree is trivial: */
2126 1.1 paulus for (n = 0; n < D_CODES; n++) {
2127 1.1 paulus static_dtree[n].Len = 5;
2128 1.7 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2129 1.1 paulus }
2130 1.7 christos static_init_done = 1;
2131 1.1 paulus }
2132 1.1 paulus
2133 1.1 paulus /* ===========================================================================
2134 1.1 paulus * Initialize the tree data structures for a new zlib stream.
2135 1.1 paulus */
2136 1.7 christos void _tr_init(s)
2137 1.1 paulus deflate_state *s;
2138 1.1 paulus {
2139 1.7 christos tr_static_init();
2140 1.1 paulus
2141 1.1 paulus s->compressed_len = 0L;
2142 1.1 paulus
2143 1.1 paulus s->l_desc.dyn_tree = s->dyn_ltree;
2144 1.1 paulus s->l_desc.stat_desc = &static_l_desc;
2145 1.1 paulus
2146 1.1 paulus s->d_desc.dyn_tree = s->dyn_dtree;
2147 1.1 paulus s->d_desc.stat_desc = &static_d_desc;
2148 1.1 paulus
2149 1.1 paulus s->bl_desc.dyn_tree = s->bl_tree;
2150 1.1 paulus s->bl_desc.stat_desc = &static_bl_desc;
2151 1.1 paulus
2152 1.1 paulus s->bi_buf = 0;
2153 1.1 paulus s->bi_valid = 0;
2154 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2155 1.1 paulus #ifdef DEBUG_ZLIB
2156 1.1 paulus s->bits_sent = 0L;
2157 1.1 paulus #endif
2158 1.1 paulus
2159 1.1 paulus /* Initialize the first block of the first file: */
2160 1.1 paulus init_block(s);
2161 1.1 paulus }
2162 1.1 paulus
2163 1.1 paulus /* ===========================================================================
2164 1.1 paulus * Initialize a new block.
2165 1.1 paulus */
2166 1.1 paulus local void init_block(s)
2167 1.1 paulus deflate_state *s;
2168 1.1 paulus {
2169 1.1 paulus int n; /* iterates over tree elements */
2170 1.1 paulus
2171 1.1 paulus /* Initialize the trees. */
2172 1.1 paulus for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2173 1.1 paulus for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2174 1.1 paulus for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2175 1.1 paulus
2176 1.1 paulus s->dyn_ltree[END_BLOCK].Freq = 1;
2177 1.1 paulus s->opt_len = s->static_len = 0L;
2178 1.1 paulus s->last_lit = s->matches = 0;
2179 1.1 paulus }
2180 1.1 paulus
2181 1.1 paulus #define SMALLEST 1
2182 1.1 paulus /* Index within the heap array of least frequent node in the Huffman tree */
2183 1.1 paulus
2184 1.1 paulus
2185 1.1 paulus /* ===========================================================================
2186 1.1 paulus * Remove the smallest element from the heap and recreate the heap with
2187 1.1 paulus * one less element. Updates heap and heap_len.
2188 1.1 paulus */
2189 1.1 paulus #define pqremove(s, tree, top) \
2190 1.1 paulus {\
2191 1.1 paulus top = s->heap[SMALLEST]; \
2192 1.1 paulus s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2193 1.1 paulus pqdownheap(s, tree, SMALLEST); \
2194 1.1 paulus }
2195 1.1 paulus
2196 1.1 paulus /* ===========================================================================
2197 1.1 paulus * Compares to subtrees, using the tree depth as tie breaker when
2198 1.1 paulus * the subtrees have equal frequency. This minimizes the worst case length.
2199 1.1 paulus */
2200 1.1 paulus #define smaller(tree, n, m, depth) \
2201 1.1 paulus (tree[n].Freq < tree[m].Freq || \
2202 1.1 paulus (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2203 1.1 paulus
2204 1.1 paulus /* ===========================================================================
2205 1.1 paulus * Restore the heap property by moving down the tree starting at node k,
2206 1.1 paulus * exchanging a node with the smallest of its two sons if necessary, stopping
2207 1.1 paulus * when the heap property is re-established (each father smaller than its
2208 1.1 paulus * two sons).
2209 1.1 paulus */
2210 1.1 paulus local void pqdownheap(s, tree, k)
2211 1.1 paulus deflate_state *s;
2212 1.1 paulus ct_data *tree; /* the tree to restore */
2213 1.1 paulus int k; /* node to move down */
2214 1.1 paulus {
2215 1.1 paulus int v = s->heap[k];
2216 1.1 paulus int j = k << 1; /* left son of k */
2217 1.1 paulus while (j <= s->heap_len) {
2218 1.1 paulus /* Set j to the smallest of the two sons: */
2219 1.1 paulus if (j < s->heap_len &&
2220 1.1 paulus smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2221 1.1 paulus j++;
2222 1.1 paulus }
2223 1.1 paulus /* Exit if v is smaller than both sons */
2224 1.1 paulus if (smaller(tree, v, s->heap[j], s->depth)) break;
2225 1.1 paulus
2226 1.1 paulus /* Exchange v with the smallest son */
2227 1.1 paulus s->heap[k] = s->heap[j]; k = j;
2228 1.1 paulus
2229 1.1 paulus /* And continue down the tree, setting j to the left son of k */
2230 1.1 paulus j <<= 1;
2231 1.1 paulus }
2232 1.1 paulus s->heap[k] = v;
2233 1.1 paulus }
2234 1.1 paulus
2235 1.1 paulus /* ===========================================================================
2236 1.1 paulus * Compute the optimal bit lengths for a tree and update the total bit length
2237 1.1 paulus * for the current block.
2238 1.1 paulus * IN assertion: the fields freq and dad are set, heap[heap_max] and
2239 1.1 paulus * above are the tree nodes sorted by increasing frequency.
2240 1.1 paulus * OUT assertions: the field len is set to the optimal bit length, the
2241 1.1 paulus * array bl_count contains the frequencies for each bit length.
2242 1.1 paulus * The length opt_len is updated; static_len is also updated if stree is
2243 1.1 paulus * not null.
2244 1.1 paulus */
2245 1.1 paulus local void gen_bitlen(s, desc)
2246 1.1 paulus deflate_state *s;
2247 1.1 paulus tree_desc *desc; /* the tree descriptor */
2248 1.1 paulus {
2249 1.1 paulus ct_data *tree = desc->dyn_tree;
2250 1.1 paulus int max_code = desc->max_code;
2251 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
2252 1.1 paulus intf *extra = desc->stat_desc->extra_bits;
2253 1.1 paulus int base = desc->stat_desc->extra_base;
2254 1.1 paulus int max_length = desc->stat_desc->max_length;
2255 1.1 paulus int h; /* heap index */
2256 1.1 paulus int n, m; /* iterate over the tree elements */
2257 1.1 paulus int bits; /* bit length */
2258 1.1 paulus int xbits; /* extra bits */
2259 1.1 paulus ush f; /* frequency */
2260 1.1 paulus int overflow = 0; /* number of elements with bit length too large */
2261 1.1 paulus
2262 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2263 1.1 paulus
2264 1.1 paulus /* In a first pass, compute the optimal bit lengths (which may
2265 1.1 paulus * overflow in the case of the bit length tree).
2266 1.1 paulus */
2267 1.1 paulus tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2268 1.1 paulus
2269 1.1 paulus for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2270 1.1 paulus n = s->heap[h];
2271 1.1 paulus bits = tree[tree[n].Dad].Len + 1;
2272 1.1 paulus if (bits > max_length) bits = max_length, overflow++;
2273 1.1 paulus tree[n].Len = (ush)bits;
2274 1.1 paulus /* We overwrite tree[n].Dad which is no longer needed */
2275 1.1 paulus
2276 1.1 paulus if (n > max_code) continue; /* not a leaf node */
2277 1.1 paulus
2278 1.1 paulus s->bl_count[bits]++;
2279 1.1 paulus xbits = 0;
2280 1.1 paulus if (n >= base) xbits = extra[n-base];
2281 1.1 paulus f = tree[n].Freq;
2282 1.1 paulus s->opt_len += (ulg)f * (bits + xbits);
2283 1.1 paulus if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2284 1.1 paulus }
2285 1.1 paulus if (overflow == 0) return;
2286 1.1 paulus
2287 1.1 paulus Trace((stderr,"\nbit length overflow\n"));
2288 1.1 paulus /* This happens for example on obj2 and pic of the Calgary corpus */
2289 1.1 paulus
2290 1.1 paulus /* Find the first bit length which could increase: */
2291 1.1 paulus do {
2292 1.1 paulus bits = max_length-1;
2293 1.1 paulus while (s->bl_count[bits] == 0) bits--;
2294 1.1 paulus s->bl_count[bits]--; /* move one leaf down the tree */
2295 1.1 paulus s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2296 1.1 paulus s->bl_count[max_length]--;
2297 1.1 paulus /* The brother of the overflow item also moves one step up,
2298 1.1 paulus * but this does not affect bl_count[max_length]
2299 1.1 paulus */
2300 1.1 paulus overflow -= 2;
2301 1.1 paulus } while (overflow > 0);
2302 1.1 paulus
2303 1.1 paulus /* Now recompute all bit lengths, scanning in increasing frequency.
2304 1.1 paulus * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2305 1.1 paulus * lengths instead of fixing only the wrong ones. This idea is taken
2306 1.1 paulus * from 'ar' written by Haruhiko Okumura.)
2307 1.1 paulus */
2308 1.1 paulus for (bits = max_length; bits != 0; bits--) {
2309 1.1 paulus n = s->bl_count[bits];
2310 1.1 paulus while (n != 0) {
2311 1.1 paulus m = s->heap[--h];
2312 1.1 paulus if (m > max_code) continue;
2313 1.1 paulus if (tree[m].Len != (unsigned) bits) {
2314 1.1 paulus Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2315 1.1 paulus s->opt_len += ((long)bits - (long)tree[m].Len)
2316 1.1 paulus *(long)tree[m].Freq;
2317 1.1 paulus tree[m].Len = (ush)bits;
2318 1.1 paulus }
2319 1.1 paulus n--;
2320 1.1 paulus }
2321 1.1 paulus }
2322 1.1 paulus }
2323 1.1 paulus
2324 1.1 paulus /* ===========================================================================
2325 1.1 paulus * Generate the codes for a given tree and bit counts (which need not be
2326 1.1 paulus * optimal).
2327 1.1 paulus * IN assertion: the array bl_count contains the bit length statistics for
2328 1.1 paulus * the given tree and the field len is set for all tree elements.
2329 1.1 paulus * OUT assertion: the field code is set for all tree elements of non
2330 1.1 paulus * zero code length.
2331 1.1 paulus */
2332 1.1 paulus local void gen_codes (tree, max_code, bl_count)
2333 1.1 paulus ct_data *tree; /* the tree to decorate */
2334 1.1 paulus int max_code; /* largest code with non zero frequency */
2335 1.1 paulus ushf *bl_count; /* number of codes at each bit length */
2336 1.1 paulus {
2337 1.1 paulus ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2338 1.1 paulus ush code = 0; /* running code value */
2339 1.1 paulus int bits; /* bit index */
2340 1.1 paulus int n; /* code index */
2341 1.1 paulus
2342 1.1 paulus /* The distribution counts are first used to generate the code values
2343 1.1 paulus * without bit reversal.
2344 1.1 paulus */
2345 1.1 paulus for (bits = 1; bits <= MAX_BITS; bits++) {
2346 1.1 paulus next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2347 1.1 paulus }
2348 1.1 paulus /* Check that the bit counts in bl_count are consistent. The last code
2349 1.1 paulus * must be all ones.
2350 1.1 paulus */
2351 1.1 paulus Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2352 1.1 paulus "inconsistent bit counts");
2353 1.1 paulus Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2354 1.1 paulus
2355 1.1 paulus for (n = 0; n <= max_code; n++) {
2356 1.1 paulus int len = tree[n].Len;
2357 1.1 paulus if (len == 0) continue;
2358 1.1 paulus /* Now reverse the bits */
2359 1.1 paulus tree[n].Code = bi_reverse(next_code[len]++, len);
2360 1.1 paulus
2361 1.7 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2362 1.1 paulus n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2363 1.1 paulus }
2364 1.1 paulus }
2365 1.1 paulus
2366 1.1 paulus /* ===========================================================================
2367 1.1 paulus * Construct one Huffman tree and assigns the code bit strings and lengths.
2368 1.1 paulus * Update the total bit length for the current block.
2369 1.1 paulus * IN assertion: the field freq is set for all tree elements.
2370 1.1 paulus * OUT assertions: the fields len and code are set to the optimal bit length
2371 1.1 paulus * and corresponding code. The length opt_len is updated; static_len is
2372 1.1 paulus * also updated if stree is not null. The field max_code is set.
2373 1.1 paulus */
2374 1.1 paulus local void build_tree(s, desc)
2375 1.1 paulus deflate_state *s;
2376 1.1 paulus tree_desc *desc; /* the tree descriptor */
2377 1.1 paulus {
2378 1.1 paulus ct_data *tree = desc->dyn_tree;
2379 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
2380 1.1 paulus int elems = desc->stat_desc->elems;
2381 1.1 paulus int n, m; /* iterate over heap elements */
2382 1.1 paulus int max_code = -1; /* largest code with non zero frequency */
2383 1.1 paulus int node; /* new node being created */
2384 1.1 paulus
2385 1.1 paulus /* Construct the initial heap, with least frequent element in
2386 1.1 paulus * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2387 1.1 paulus * heap[0] is not used.
2388 1.1 paulus */
2389 1.1 paulus s->heap_len = 0, s->heap_max = HEAP_SIZE;
2390 1.1 paulus
2391 1.1 paulus for (n = 0; n < elems; n++) {
2392 1.1 paulus if (tree[n].Freq != 0) {
2393 1.1 paulus s->heap[++(s->heap_len)] = max_code = n;
2394 1.1 paulus s->depth[n] = 0;
2395 1.1 paulus } else {
2396 1.1 paulus tree[n].Len = 0;
2397 1.1 paulus }
2398 1.1 paulus }
2399 1.1 paulus
2400 1.1 paulus /* The pkzip format requires that at least one distance code exists,
2401 1.1 paulus * and that at least one bit should be sent even if there is only one
2402 1.1 paulus * possible code. So to avoid special checks later on we force at least
2403 1.1 paulus * two codes of non zero frequency.
2404 1.1 paulus */
2405 1.1 paulus while (s->heap_len < 2) {
2406 1.1 paulus node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2407 1.1 paulus tree[node].Freq = 1;
2408 1.1 paulus s->depth[node] = 0;
2409 1.1 paulus s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2410 1.1 paulus /* node is 0 or 1 so it does not have extra bits */
2411 1.1 paulus }
2412 1.1 paulus desc->max_code = max_code;
2413 1.1 paulus
2414 1.1 paulus /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2415 1.1 paulus * establish sub-heaps of increasing lengths:
2416 1.1 paulus */
2417 1.1 paulus for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2418 1.1 paulus
2419 1.1 paulus /* Construct the Huffman tree by repeatedly combining the least two
2420 1.1 paulus * frequent nodes.
2421 1.1 paulus */
2422 1.1 paulus node = elems; /* next internal node of the tree */
2423 1.1 paulus do {
2424 1.1 paulus pqremove(s, tree, n); /* n = node of least frequency */
2425 1.1 paulus m = s->heap[SMALLEST]; /* m = node of next least frequency */
2426 1.1 paulus
2427 1.1 paulus s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2428 1.1 paulus s->heap[--(s->heap_max)] = m;
2429 1.1 paulus
2430 1.1 paulus /* Create a new node father of n and m */
2431 1.1 paulus tree[node].Freq = tree[n].Freq + tree[m].Freq;
2432 1.1 paulus s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2433 1.1 paulus tree[n].Dad = tree[m].Dad = (ush)node;
2434 1.1 paulus #ifdef DUMP_BL_TREE
2435 1.1 paulus if (tree == s->bl_tree) {
2436 1.1 paulus fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2437 1.1 paulus node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2438 1.1 paulus }
2439 1.1 paulus #endif
2440 1.1 paulus /* and insert the new node in the heap */
2441 1.1 paulus s->heap[SMALLEST] = node++;
2442 1.1 paulus pqdownheap(s, tree, SMALLEST);
2443 1.1 paulus
2444 1.1 paulus } while (s->heap_len >= 2);
2445 1.1 paulus
2446 1.1 paulus s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2447 1.1 paulus
2448 1.1 paulus /* At this point, the fields freq and dad are set. We can now
2449 1.1 paulus * generate the bit lengths.
2450 1.1 paulus */
2451 1.1 paulus gen_bitlen(s, (tree_desc *)desc);
2452 1.1 paulus
2453 1.1 paulus /* The field len is now set, we can generate the bit codes */
2454 1.1 paulus gen_codes ((ct_data *)tree, max_code, s->bl_count);
2455 1.1 paulus }
2456 1.1 paulus
2457 1.1 paulus /* ===========================================================================
2458 1.1 paulus * Scan a literal or distance tree to determine the frequencies of the codes
2459 1.1 paulus * in the bit length tree.
2460 1.1 paulus */
2461 1.1 paulus local void scan_tree (s, tree, max_code)
2462 1.1 paulus deflate_state *s;
2463 1.1 paulus ct_data *tree; /* the tree to be scanned */
2464 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2465 1.1 paulus {
2466 1.1 paulus int n; /* iterates over all tree elements */
2467 1.1 paulus int prevlen = -1; /* last emitted length */
2468 1.1 paulus int curlen; /* length of current code */
2469 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2470 1.1 paulus int count = 0; /* repeat count of the current code */
2471 1.1 paulus int max_count = 7; /* max repeat count */
2472 1.1 paulus int min_count = 4; /* min repeat count */
2473 1.1 paulus
2474 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2475 1.1 paulus tree[max_code+1].Len = (ush)0xffff; /* guard */
2476 1.1 paulus
2477 1.1 paulus for (n = 0; n <= max_code; n++) {
2478 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2479 1.1 paulus if (++count < max_count && curlen == nextlen) {
2480 1.1 paulus continue;
2481 1.1 paulus } else if (count < min_count) {
2482 1.1 paulus s->bl_tree[curlen].Freq += count;
2483 1.1 paulus } else if (curlen != 0) {
2484 1.1 paulus if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2485 1.1 paulus s->bl_tree[REP_3_6].Freq++;
2486 1.1 paulus } else if (count <= 10) {
2487 1.1 paulus s->bl_tree[REPZ_3_10].Freq++;
2488 1.1 paulus } else {
2489 1.1 paulus s->bl_tree[REPZ_11_138].Freq++;
2490 1.1 paulus }
2491 1.1 paulus count = 0; prevlen = curlen;
2492 1.1 paulus if (nextlen == 0) {
2493 1.1 paulus max_count = 138, min_count = 3;
2494 1.1 paulus } else if (curlen == nextlen) {
2495 1.1 paulus max_count = 6, min_count = 3;
2496 1.1 paulus } else {
2497 1.1 paulus max_count = 7, min_count = 4;
2498 1.1 paulus }
2499 1.1 paulus }
2500 1.1 paulus }
2501 1.1 paulus
2502 1.1 paulus /* ===========================================================================
2503 1.1 paulus * Send a literal or distance tree in compressed form, using the codes in
2504 1.1 paulus * bl_tree.
2505 1.1 paulus */
2506 1.1 paulus local void send_tree (s, tree, max_code)
2507 1.1 paulus deflate_state *s;
2508 1.1 paulus ct_data *tree; /* the tree to be scanned */
2509 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2510 1.1 paulus {
2511 1.1 paulus int n; /* iterates over all tree elements */
2512 1.1 paulus int prevlen = -1; /* last emitted length */
2513 1.1 paulus int curlen; /* length of current code */
2514 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2515 1.1 paulus int count = 0; /* repeat count of the current code */
2516 1.1 paulus int max_count = 7; /* max repeat count */
2517 1.1 paulus int min_count = 4; /* min repeat count */
2518 1.1 paulus
2519 1.1 paulus /* tree[max_code+1].Len = -1; */ /* guard already set */
2520 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2521 1.1 paulus
2522 1.1 paulus for (n = 0; n <= max_code; n++) {
2523 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2524 1.1 paulus if (++count < max_count && curlen == nextlen) {
2525 1.1 paulus continue;
2526 1.1 paulus } else if (count < min_count) {
2527 1.1 paulus do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2528 1.1 paulus
2529 1.1 paulus } else if (curlen != 0) {
2530 1.1 paulus if (curlen != prevlen) {
2531 1.1 paulus send_code(s, curlen, s->bl_tree); count--;
2532 1.1 paulus }
2533 1.1 paulus Assert(count >= 3 && count <= 6, " 3_6?");
2534 1.1 paulus send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2535 1.1 paulus
2536 1.1 paulus } else if (count <= 10) {
2537 1.1 paulus send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2538 1.1 paulus
2539 1.1 paulus } else {
2540 1.1 paulus send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2541 1.1 paulus }
2542 1.1 paulus count = 0; prevlen = curlen;
2543 1.1 paulus if (nextlen == 0) {
2544 1.1 paulus max_count = 138, min_count = 3;
2545 1.1 paulus } else if (curlen == nextlen) {
2546 1.1 paulus max_count = 6, min_count = 3;
2547 1.1 paulus } else {
2548 1.1 paulus max_count = 7, min_count = 4;
2549 1.1 paulus }
2550 1.1 paulus }
2551 1.1 paulus }
2552 1.1 paulus
2553 1.1 paulus /* ===========================================================================
2554 1.1 paulus * Construct the Huffman tree for the bit lengths and return the index in
2555 1.1 paulus * bl_order of the last bit length code to send.
2556 1.1 paulus */
2557 1.1 paulus local int build_bl_tree(s)
2558 1.1 paulus deflate_state *s;
2559 1.1 paulus {
2560 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2561 1.1 paulus
2562 1.1 paulus /* Determine the bit length frequencies for literal and distance trees */
2563 1.1 paulus scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2564 1.1 paulus scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2565 1.1 paulus
2566 1.1 paulus /* Build the bit length tree: */
2567 1.1 paulus build_tree(s, (tree_desc *)(&(s->bl_desc)));
2568 1.1 paulus /* opt_len now includes the length of the tree representations, except
2569 1.1 paulus * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2570 1.1 paulus */
2571 1.1 paulus
2572 1.1 paulus /* Determine the number of bit length codes to send. The pkzip format
2573 1.1 paulus * requires that at least 4 bit length codes be sent. (appnote.txt says
2574 1.1 paulus * 3 but the actual value used is 4.)
2575 1.1 paulus */
2576 1.1 paulus for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2577 1.1 paulus if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2578 1.1 paulus }
2579 1.1 paulus /* Update opt_len to include the bit length tree and counts */
2580 1.1 paulus s->opt_len += 3*(max_blindex+1) + 5+5+4;
2581 1.1 paulus Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2582 1.1 paulus s->opt_len, s->static_len));
2583 1.1 paulus
2584 1.1 paulus return max_blindex;
2585 1.1 paulus }
2586 1.1 paulus
2587 1.1 paulus /* ===========================================================================
2588 1.1 paulus * Send the header for a block using dynamic Huffman trees: the counts, the
2589 1.1 paulus * lengths of the bit length codes, the literal tree and the distance tree.
2590 1.1 paulus * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2591 1.1 paulus */
2592 1.1 paulus local void send_all_trees(s, lcodes, dcodes, blcodes)
2593 1.1 paulus deflate_state *s;
2594 1.1 paulus int lcodes, dcodes, blcodes; /* number of codes for each tree */
2595 1.1 paulus {
2596 1.1 paulus int rank; /* index in bl_order */
2597 1.1 paulus
2598 1.1 paulus Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2599 1.1 paulus Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2600 1.1 paulus "too many codes");
2601 1.1 paulus Tracev((stderr, "\nbl counts: "));
2602 1.1 paulus send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2603 1.1 paulus send_bits(s, dcodes-1, 5);
2604 1.1 paulus send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2605 1.1 paulus for (rank = 0; rank < blcodes; rank++) {
2606 1.1 paulus Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2607 1.1 paulus send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2608 1.1 paulus }
2609 1.1 paulus Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2610 1.1 paulus
2611 1.1 paulus send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2612 1.1 paulus Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2613 1.1 paulus
2614 1.1 paulus send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2615 1.1 paulus Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2616 1.1 paulus }
2617 1.1 paulus
2618 1.1 paulus /* ===========================================================================
2619 1.1 paulus * Send a stored block
2620 1.1 paulus */
2621 1.7 christos void _tr_stored_block(s, buf, stored_len, eof)
2622 1.1 paulus deflate_state *s;
2623 1.1 paulus charf *buf; /* input block */
2624 1.1 paulus ulg stored_len; /* length of input block */
2625 1.1 paulus int eof; /* true if this is the last block for a file */
2626 1.1 paulus {
2627 1.1 paulus send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2628 1.7 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2629 1.1 paulus s->compressed_len += (stored_len + 4) << 3;
2630 1.1 paulus
2631 1.1 paulus copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2632 1.1 paulus }
2633 1.1 paulus
2634 1.1 paulus /* Send just the `stored block' type code without any length bytes or data.
2635 1.1 paulus */
2636 1.7 christos void _tr_stored_type_only(s)
2637 1.1 paulus deflate_state *s;
2638 1.1 paulus {
2639 1.1 paulus send_bits(s, (STORED_BLOCK << 1), 3);
2640 1.1 paulus bi_windup(s);
2641 1.1 paulus s->compressed_len = (s->compressed_len + 3) & ~7L;
2642 1.1 paulus }
2643 1.1 paulus
2644 1.1 paulus
2645 1.1 paulus /* ===========================================================================
2646 1.1 paulus * Send one empty static block to give enough lookahead for inflate.
2647 1.1 paulus * This takes 10 bits, of which 7 may remain in the bit buffer.
2648 1.7 christos * The current inflate code requires 9 bits of lookahead. If the
2649 1.7 christos * last two codes for the previous block (real code plus EOB) were coded
2650 1.7 christos * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2651 1.7 christos * the last real code. In this case we send two empty static blocks instead
2652 1.7 christos * of one. (There are no problems if the previous block is stored or fixed.)
2653 1.7 christos * To simplify the code, we assume the worst case of last real code encoded
2654 1.7 christos * on one bit only.
2655 1.1 paulus */
2656 1.7 christos void _tr_align(s)
2657 1.1 paulus deflate_state *s;
2658 1.1 paulus {
2659 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2660 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2661 1.1 paulus s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2662 1.1 paulus bi_flush(s);
2663 1.1 paulus /* Of the 10 bits for the empty block, we have already sent
2664 1.7 christos * (10 - bi_valid) bits. The lookahead for the last real code (before
2665 1.7 christos * the EOB of the previous block) was thus at least one plus the length
2666 1.7 christos * of the EOB plus what we have just sent of the empty static block.
2667 1.1 paulus */
2668 1.7 christos if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2669 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2670 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2671 1.1 paulus s->compressed_len += 10L;
2672 1.1 paulus bi_flush(s);
2673 1.1 paulus }
2674 1.1 paulus s->last_eob_len = 7;
2675 1.1 paulus }
2676 1.1 paulus
2677 1.1 paulus /* ===========================================================================
2678 1.1 paulus * Determine the best encoding for the current block: dynamic trees, static
2679 1.1 paulus * trees or store, and output the encoded block to the zip file. This function
2680 1.1 paulus * returns the total compressed length for the file so far.
2681 1.1 paulus */
2682 1.7 christos ulg _tr_flush_block(s, buf, stored_len, eof)
2683 1.1 paulus deflate_state *s;
2684 1.1 paulus charf *buf; /* input block, or NULL if too old */
2685 1.1 paulus ulg stored_len; /* length of input block */
2686 1.7 christos int eof; /* true if this is the last block for a file */
2687 1.1 paulus {
2688 1.1 paulus ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2689 1.7 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
2690 1.1 paulus
2691 1.7 christos /* Build the Huffman trees unless a stored block is forced */
2692 1.7 christos if (s->level > 0) {
2693 1.1 paulus
2694 1.7 christos /* Check if the file is ascii or binary */
2695 1.7 christos if (s->data_type == Z_UNKNOWN) set_data_type(s);
2696 1.1 paulus
2697 1.7 christos /* Construct the literal and distance trees */
2698 1.7 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
2699 1.7 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2700 1.7 christos s->static_len));
2701 1.7 christos
2702 1.7 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
2703 1.7 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2704 1.7 christos s->static_len));
2705 1.7 christos /* At this point, opt_len and static_len are the total bit lengths of
2706 1.7 christos * the compressed block data, excluding the tree representations.
2707 1.7 christos */
2708 1.7 christos
2709 1.7 christos /* Build the bit length tree for the above two trees, and get the index
2710 1.7 christos * in bl_order of the last bit length code to send.
2711 1.7 christos */
2712 1.7 christos max_blindex = build_bl_tree(s);
2713 1.7 christos
2714 1.7 christos /* Determine the best encoding. Compute first the block length in bytes*/
2715 1.7 christos opt_lenb = (s->opt_len+3+7)>>3;
2716 1.7 christos static_lenb = (s->static_len+3+7)>>3;
2717 1.7 christos
2718 1.7 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2719 1.7 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2720 1.7 christos s->last_lit));
2721 1.1 paulus
2722 1.7 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2723 1.1 paulus
2724 1.7 christos } else {
2725 1.7 christos Assert(buf != (char*)0, "lost buf");
2726 1.7 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2727 1.7 christos }
2728 1.1 paulus
2729 1.1 paulus /* If compression failed and this is the first and last block,
2730 1.1 paulus * and if the .zip file can be seeked (to rewrite the local header),
2731 1.1 paulus * the whole file is transformed into a stored file:
2732 1.1 paulus */
2733 1.1 paulus #ifdef STORED_FILE_OK
2734 1.1 paulus # ifdef FORCE_STORED_FILE
2735 1.7 christos if (eof && s->compressed_len == 0L) { /* force stored file */
2736 1.1 paulus # else
2737 1.7 christos if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2738 1.1 paulus # endif
2739 1.1 paulus /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2740 1.1 paulus if (buf == (charf*)0) error ("block vanished");
2741 1.1 paulus
2742 1.7 christos copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2743 1.1 paulus s->compressed_len = stored_len << 3;
2744 1.1 paulus s->method = STORED;
2745 1.1 paulus } else
2746 1.1 paulus #endif /* STORED_FILE_OK */
2747 1.1 paulus
2748 1.1 paulus #ifdef FORCE_STORED
2749 1.7 christos if (buf != (char*)0) { /* force stored block */
2750 1.1 paulus #else
2751 1.7 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2752 1.1 paulus /* 4: two words for the lengths */
2753 1.1 paulus #endif
2754 1.1 paulus /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2755 1.1 paulus * Otherwise we can't have processed more than WSIZE input bytes since
2756 1.1 paulus * the last block flush, because compression would have been
2757 1.1 paulus * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2758 1.1 paulus * transform a block into a stored block.
2759 1.1 paulus */
2760 1.7 christos _tr_stored_block(s, buf, stored_len, eof);
2761 1.1 paulus
2762 1.1 paulus #ifdef FORCE_STATIC
2763 1.7 christos } else if (static_lenb >= 0) { /* force static trees */
2764 1.1 paulus #else
2765 1.7 christos } else if (static_lenb == opt_lenb) {
2766 1.1 paulus #endif
2767 1.1 paulus send_bits(s, (STATIC_TREES<<1)+eof, 3);
2768 1.1 paulus compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2769 1.1 paulus s->compressed_len += 3 + s->static_len;
2770 1.1 paulus } else {
2771 1.1 paulus send_bits(s, (DYN_TREES<<1)+eof, 3);
2772 1.1 paulus send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2773 1.1 paulus max_blindex+1);
2774 1.1 paulus compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2775 1.1 paulus s->compressed_len += 3 + s->opt_len;
2776 1.1 paulus }
2777 1.1 paulus Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2778 1.1 paulus init_block(s);
2779 1.1 paulus
2780 1.1 paulus if (eof) {
2781 1.1 paulus bi_windup(s);
2782 1.1 paulus s->compressed_len += 7; /* align on byte boundary */
2783 1.1 paulus }
2784 1.1 paulus Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2785 1.1 paulus s->compressed_len-7*eof));
2786 1.1 paulus
2787 1.1 paulus return s->compressed_len >> 3;
2788 1.1 paulus }
2789 1.1 paulus
2790 1.1 paulus /* ===========================================================================
2791 1.1 paulus * Save the match info and tally the frequency counts. Return true if
2792 1.1 paulus * the current block must be flushed.
2793 1.1 paulus */
2794 1.7 christos int _tr_tally (s, dist, lc)
2795 1.1 paulus deflate_state *s;
2796 1.7 christos unsigned dist; /* distance of matched string */
2797 1.7 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2798 1.1 paulus {
2799 1.1 paulus s->d_buf[s->last_lit] = (ush)dist;
2800 1.1 paulus s->l_buf[s->last_lit++] = (uch)lc;
2801 1.1 paulus if (dist == 0) {
2802 1.1 paulus /* lc is the unmatched char */
2803 1.1 paulus s->dyn_ltree[lc].Freq++;
2804 1.1 paulus } else {
2805 1.1 paulus s->matches++;
2806 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2807 1.1 paulus dist--; /* dist = match distance - 1 */
2808 1.1 paulus Assert((ush)dist < (ush)MAX_DIST(s) &&
2809 1.1 paulus (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2810 1.7 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2811 1.1 paulus
2812 1.1 paulus s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2813 1.1 paulus s->dyn_dtree[d_code(dist)].Freq++;
2814 1.1 paulus }
2815 1.1 paulus
2816 1.1 paulus /* Try to guess if it is profitable to stop the current block here */
2817 1.1 paulus if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2818 1.1 paulus /* Compute an upper bound for the compressed length */
2819 1.1 paulus ulg out_length = (ulg)s->last_lit*8L;
2820 1.7 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
2821 1.1 paulus int dcode;
2822 1.1 paulus for (dcode = 0; dcode < D_CODES; dcode++) {
2823 1.1 paulus out_length += (ulg)s->dyn_dtree[dcode].Freq *
2824 1.1 paulus (5L+extra_dbits[dcode]);
2825 1.1 paulus }
2826 1.1 paulus out_length >>= 3;
2827 1.1 paulus Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2828 1.1 paulus s->last_lit, in_length, out_length,
2829 1.1 paulus 100L - out_length*100L/in_length));
2830 1.1 paulus if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2831 1.1 paulus }
2832 1.1 paulus return (s->last_lit == s->lit_bufsize-1);
2833 1.1 paulus /* We avoid equality with lit_bufsize because of wraparound at 64K
2834 1.1 paulus * on 16 bit machines and because stored blocks are restricted to
2835 1.1 paulus * 64K-1 bytes.
2836 1.1 paulus */
2837 1.1 paulus }
2838 1.1 paulus
2839 1.1 paulus /* ===========================================================================
2840 1.1 paulus * Send the block data compressed using the given Huffman trees
2841 1.1 paulus */
2842 1.1 paulus local void compress_block(s, ltree, dtree)
2843 1.1 paulus deflate_state *s;
2844 1.1 paulus ct_data *ltree; /* literal tree */
2845 1.1 paulus ct_data *dtree; /* distance tree */
2846 1.1 paulus {
2847 1.1 paulus unsigned dist; /* distance of matched string */
2848 1.1 paulus int lc; /* match length or unmatched char (if dist == 0) */
2849 1.1 paulus unsigned lx = 0; /* running index in l_buf */
2850 1.1 paulus unsigned code; /* the code to send */
2851 1.1 paulus int extra; /* number of extra bits to send */
2852 1.1 paulus
2853 1.1 paulus if (s->last_lit != 0) do {
2854 1.1 paulus dist = s->d_buf[lx];
2855 1.1 paulus lc = s->l_buf[lx++];
2856 1.1 paulus if (dist == 0) {
2857 1.1 paulus send_code(s, lc, ltree); /* send a literal byte */
2858 1.1 paulus Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2859 1.1 paulus } else {
2860 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2861 1.1 paulus code = length_code[lc];
2862 1.1 paulus send_code(s, code+LITERALS+1, ltree); /* send the length code */
2863 1.1 paulus extra = extra_lbits[code];
2864 1.1 paulus if (extra != 0) {
2865 1.1 paulus lc -= base_length[code];
2866 1.1 paulus send_bits(s, lc, extra); /* send the extra length bits */
2867 1.1 paulus }
2868 1.1 paulus dist--; /* dist is now the match distance - 1 */
2869 1.1 paulus code = d_code(dist);
2870 1.1 paulus Assert (code < D_CODES, "bad d_code");
2871 1.1 paulus
2872 1.1 paulus send_code(s, code, dtree); /* send the distance code */
2873 1.1 paulus extra = extra_dbits[code];
2874 1.1 paulus if (extra != 0) {
2875 1.1 paulus dist -= base_dist[code];
2876 1.1 paulus send_bits(s, dist, extra); /* send the extra distance bits */
2877 1.1 paulus }
2878 1.1 paulus } /* literal or match pair ? */
2879 1.1 paulus
2880 1.1 paulus /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2881 1.1 paulus Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2882 1.1 paulus
2883 1.1 paulus } while (lx < s->last_lit);
2884 1.1 paulus
2885 1.1 paulus send_code(s, END_BLOCK, ltree);
2886 1.1 paulus s->last_eob_len = ltree[END_BLOCK].Len;
2887 1.1 paulus }
2888 1.1 paulus
2889 1.1 paulus /* ===========================================================================
2890 1.7 christos * Set the data type to ASCII or BINARY, using a crude approximation:
2891 1.1 paulus * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2892 1.1 paulus * IN assertion: the fields freq of dyn_ltree are set and the total of all
2893 1.1 paulus * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2894 1.1 paulus */
2895 1.1 paulus local void set_data_type(s)
2896 1.1 paulus deflate_state *s;
2897 1.1 paulus {
2898 1.1 paulus int n = 0;
2899 1.1 paulus unsigned ascii_freq = 0;
2900 1.1 paulus unsigned bin_freq = 0;
2901 1.1 paulus while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2902 1.1 paulus while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2903 1.1 paulus while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2904 1.7 christos s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2905 1.1 paulus }
2906 1.1 paulus
2907 1.1 paulus /* ===========================================================================
2908 1.1 paulus * Reverse the first len bits of a code, using straightforward code (a faster
2909 1.1 paulus * method would use a table)
2910 1.1 paulus * IN assertion: 1 <= len <= 15
2911 1.1 paulus */
2912 1.1 paulus local unsigned bi_reverse(code, len)
2913 1.1 paulus unsigned code; /* the value to invert */
2914 1.1 paulus int len; /* its bit length */
2915 1.1 paulus {
2916 1.1 paulus register unsigned res = 0;
2917 1.1 paulus do {
2918 1.1 paulus res |= code & 1;
2919 1.1 paulus code >>= 1, res <<= 1;
2920 1.1 paulus } while (--len > 0);
2921 1.1 paulus return res >> 1;
2922 1.1 paulus }
2923 1.1 paulus
2924 1.1 paulus /* ===========================================================================
2925 1.1 paulus * Flush the bit buffer, keeping at most 7 bits in it.
2926 1.1 paulus */
2927 1.1 paulus local void bi_flush(s)
2928 1.1 paulus deflate_state *s;
2929 1.1 paulus {
2930 1.1 paulus if (s->bi_valid == 16) {
2931 1.1 paulus put_short(s, s->bi_buf);
2932 1.1 paulus s->bi_buf = 0;
2933 1.1 paulus s->bi_valid = 0;
2934 1.1 paulus } else if (s->bi_valid >= 8) {
2935 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2936 1.1 paulus s->bi_buf >>= 8;
2937 1.1 paulus s->bi_valid -= 8;
2938 1.1 paulus }
2939 1.1 paulus }
2940 1.1 paulus
2941 1.1 paulus /* ===========================================================================
2942 1.1 paulus * Flush the bit buffer and align the output on a byte boundary
2943 1.1 paulus */
2944 1.1 paulus local void bi_windup(s)
2945 1.1 paulus deflate_state *s;
2946 1.1 paulus {
2947 1.1 paulus if (s->bi_valid > 8) {
2948 1.1 paulus put_short(s, s->bi_buf);
2949 1.1 paulus } else if (s->bi_valid > 0) {
2950 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2951 1.1 paulus }
2952 1.1 paulus s->bi_buf = 0;
2953 1.1 paulus s->bi_valid = 0;
2954 1.1 paulus #ifdef DEBUG_ZLIB
2955 1.1 paulus s->bits_sent = (s->bits_sent+7) & ~7;
2956 1.1 paulus #endif
2957 1.1 paulus }
2958 1.1 paulus
2959 1.1 paulus /* ===========================================================================
2960 1.1 paulus * Copy a stored block, storing first the length and its
2961 1.1 paulus * one's complement if requested.
2962 1.1 paulus */
2963 1.1 paulus local void copy_block(s, buf, len, header)
2964 1.1 paulus deflate_state *s;
2965 1.1 paulus charf *buf; /* the input data */
2966 1.1 paulus unsigned len; /* its length */
2967 1.1 paulus int header; /* true if block header must be written */
2968 1.1 paulus {
2969 1.1 paulus bi_windup(s); /* align on byte boundary */
2970 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2971 1.1 paulus
2972 1.1 paulus if (header) {
2973 1.1 paulus put_short(s, (ush)len);
2974 1.1 paulus put_short(s, (ush)~len);
2975 1.1 paulus #ifdef DEBUG_ZLIB
2976 1.1 paulus s->bits_sent += 2*16;
2977 1.1 paulus #endif
2978 1.1 paulus }
2979 1.1 paulus #ifdef DEBUG_ZLIB
2980 1.1 paulus s->bits_sent += (ulg)len<<3;
2981 1.1 paulus #endif
2982 1.7 christos /* bundle up the put_byte(s, *buf++) calls */
2983 1.7 christos zmemcpy(&s->pending_buf[s->pending], buf, len);
2984 1.7 christos s->pending += len;
2985 1.1 paulus }
2986 1.7 christos /* --- trees.c */
2987 1.7 christos
2988 1.7 christos /* +++ inflate.c */
2989 1.7 christos /* inflate.c -- zlib interface to inflate modules
2990 1.7 christos * Copyright (C) 1995-1996 Mark Adler
2991 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
2992 1.7 christos */
2993 1.1 paulus
2994 1.7 christos /* #include "zutil.h" */
2995 1.1 paulus
2996 1.7 christos /* +++ infblock.h */
2997 1.1 paulus /* infblock.h -- header to use infblock.c
2998 1.7 christos * Copyright (C) 1995-1996 Mark Adler
2999 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3000 1.1 paulus */
3001 1.1 paulus
3002 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3003 1.1 paulus part of the implementation of the compression library and is
3004 1.1 paulus subject to change. Applications should only use zlib.h.
3005 1.1 paulus */
3006 1.1 paulus
3007 1.1 paulus struct inflate_blocks_state;
3008 1.1 paulus typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3009 1.1 paulus
3010 1.7 christos extern inflate_blocks_statef * inflate_blocks_new OF((
3011 1.7 christos z_streamp z,
3012 1.1 paulus check_func c, /* check function */
3013 1.1 paulus uInt w)); /* window size */
3014 1.1 paulus
3015 1.7 christos extern int inflate_blocks OF((
3016 1.1 paulus inflate_blocks_statef *,
3017 1.7 christos z_streamp ,
3018 1.1 paulus int)); /* initial return code */
3019 1.1 paulus
3020 1.7 christos extern void inflate_blocks_reset OF((
3021 1.1 paulus inflate_blocks_statef *,
3022 1.7 christos z_streamp ,
3023 1.1 paulus uLongf *)); /* check value on output */
3024 1.1 paulus
3025 1.7 christos extern int inflate_blocks_free OF((
3026 1.1 paulus inflate_blocks_statef *,
3027 1.7 christos z_streamp ,
3028 1.1 paulus uLongf *)); /* check value on output */
3029 1.1 paulus
3030 1.7 christos extern void inflate_set_dictionary OF((
3031 1.7 christos inflate_blocks_statef *s,
3032 1.7 christos const Bytef *d, /* dictionary */
3033 1.7 christos uInt n)); /* dictionary length */
3034 1.7 christos
3035 1.7 christos extern int inflate_addhistory OF((
3036 1.1 paulus inflate_blocks_statef *,
3037 1.7 christos z_streamp));
3038 1.1 paulus
3039 1.7 christos extern int inflate_packet_flush OF((
3040 1.1 paulus inflate_blocks_statef *));
3041 1.7 christos /* --- infblock.h */
3042 1.1 paulus
3043 1.7 christos #ifndef NO_DUMMY_DECL
3044 1.7 christos struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3045 1.1 paulus #endif
3046 1.1 paulus
3047 1.1 paulus /* inflate private state */
3048 1.1 paulus struct internal_state {
3049 1.1 paulus
3050 1.1 paulus /* mode */
3051 1.1 paulus enum {
3052 1.1 paulus METHOD, /* waiting for method byte */
3053 1.1 paulus FLAG, /* waiting for flag byte */
3054 1.7 christos DICT4, /* four dictionary check bytes to go */
3055 1.7 christos DICT3, /* three dictionary check bytes to go */
3056 1.7 christos DICT2, /* two dictionary check bytes to go */
3057 1.7 christos DICT1, /* one dictionary check byte to go */
3058 1.7 christos DICT0, /* waiting for inflateSetDictionary */
3059 1.1 paulus BLOCKS, /* decompressing blocks */
3060 1.1 paulus CHECK4, /* four check bytes to go */
3061 1.1 paulus CHECK3, /* three check bytes to go */
3062 1.1 paulus CHECK2, /* two check bytes to go */
3063 1.1 paulus CHECK1, /* one check byte to go */
3064 1.1 paulus DONE, /* finished check, done */
3065 1.1 paulus BAD} /* got an error--stay here */
3066 1.1 paulus mode; /* current inflate mode */
3067 1.1 paulus
3068 1.1 paulus /* mode dependent information */
3069 1.1 paulus union {
3070 1.1 paulus uInt method; /* if FLAGS, method byte */
3071 1.1 paulus struct {
3072 1.1 paulus uLong was; /* computed check value */
3073 1.1 paulus uLong need; /* stream check value */
3074 1.1 paulus } check; /* if CHECK, check values to compare */
3075 1.1 paulus uInt marker; /* if BAD, inflateSync's marker bytes count */
3076 1.1 paulus } sub; /* submode */
3077 1.1 paulus
3078 1.1 paulus /* mode independent information */
3079 1.1 paulus int nowrap; /* flag for no wrapper */
3080 1.1 paulus uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3081 1.1 paulus inflate_blocks_statef
3082 1.1 paulus *blocks; /* current inflate_blocks state */
3083 1.1 paulus
3084 1.1 paulus };
3085 1.1 paulus
3086 1.1 paulus
3087 1.1 paulus int inflateReset(z)
3088 1.7 christos z_streamp z;
3089 1.1 paulus {
3090 1.1 paulus uLong c;
3091 1.1 paulus
3092 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3093 1.1 paulus return Z_STREAM_ERROR;
3094 1.1 paulus z->total_in = z->total_out = 0;
3095 1.1 paulus z->msg = Z_NULL;
3096 1.1 paulus z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3097 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &c);
3098 1.1 paulus Trace((stderr, "inflate: reset\n"));
3099 1.1 paulus return Z_OK;
3100 1.1 paulus }
3101 1.1 paulus
3102 1.1 paulus
3103 1.1 paulus int inflateEnd(z)
3104 1.7 christos z_streamp z;
3105 1.1 paulus {
3106 1.1 paulus uLong c;
3107 1.1 paulus
3108 1.1 paulus if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3109 1.1 paulus return Z_STREAM_ERROR;
3110 1.1 paulus if (z->state->blocks != Z_NULL)
3111 1.1 paulus inflate_blocks_free(z->state->blocks, z, &c);
3112 1.7 christos ZFREE(z, z->state);
3113 1.1 paulus z->state = Z_NULL;
3114 1.1 paulus Trace((stderr, "inflate: end\n"));
3115 1.1 paulus return Z_OK;
3116 1.1 paulus }
3117 1.1 paulus
3118 1.1 paulus
3119 1.7 christos int inflateInit2_(z, w, version, stream_size)
3120 1.7 christos z_streamp z;
3121 1.1 paulus int w;
3122 1.7 christos const char *version;
3123 1.7 christos int stream_size;
3124 1.1 paulus {
3125 1.7 christos if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3126 1.7 christos stream_size != sizeof(z_stream))
3127 1.7 christos return Z_VERSION_ERROR;
3128 1.7 christos
3129 1.1 paulus /* initialize state */
3130 1.1 paulus if (z == Z_NULL)
3131 1.1 paulus return Z_STREAM_ERROR;
3132 1.7 christos z->msg = Z_NULL;
3133 1.7 christos #ifndef NO_ZCFUNCS
3134 1.7 christos if (z->zalloc == Z_NULL)
3135 1.7 christos {
3136 1.7 christos z->zalloc = zcalloc;
3137 1.7 christos z->opaque = (voidpf)0;
3138 1.7 christos }
3139 1.7 christos if (z->zfree == Z_NULL) z->zfree = zcfree;
3140 1.7 christos #endif
3141 1.1 paulus if ((z->state = (struct internal_state FAR *)
3142 1.7 christos ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3143 1.1 paulus return Z_MEM_ERROR;
3144 1.1 paulus z->state->blocks = Z_NULL;
3145 1.1 paulus
3146 1.1 paulus /* handle undocumented nowrap option (no zlib header or check) */
3147 1.1 paulus z->state->nowrap = 0;
3148 1.1 paulus if (w < 0)
3149 1.1 paulus {
3150 1.1 paulus w = - w;
3151 1.1 paulus z->state->nowrap = 1;
3152 1.1 paulus }
3153 1.1 paulus
3154 1.1 paulus /* set window size */
3155 1.1 paulus if (w < 8 || w > 15)
3156 1.1 paulus {
3157 1.1 paulus inflateEnd(z);
3158 1.1 paulus return Z_STREAM_ERROR;
3159 1.1 paulus }
3160 1.1 paulus z->state->wbits = (uInt)w;
3161 1.1 paulus
3162 1.1 paulus /* create inflate_blocks state */
3163 1.1 paulus if ((z->state->blocks =
3164 1.7 christos inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3165 1.1 paulus == Z_NULL)
3166 1.1 paulus {
3167 1.1 paulus inflateEnd(z);
3168 1.1 paulus return Z_MEM_ERROR;
3169 1.1 paulus }
3170 1.1 paulus Trace((stderr, "inflate: allocated\n"));
3171 1.1 paulus
3172 1.1 paulus /* reset state */
3173 1.1 paulus inflateReset(z);
3174 1.1 paulus return Z_OK;
3175 1.1 paulus }
3176 1.1 paulus
3177 1.1 paulus
3178 1.7 christos int inflateInit_(z, version, stream_size)
3179 1.7 christos z_streamp z;
3180 1.7 christos const char *version;
3181 1.7 christos int stream_size;
3182 1.1 paulus {
3183 1.7 christos return inflateInit2_(z, DEF_WBITS, version, stream_size);
3184 1.1 paulus }
3185 1.1 paulus
3186 1.1 paulus
3187 1.1 paulus #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3188 1.1 paulus #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3189 1.1 paulus
3190 1.1 paulus int inflate(z, f)
3191 1.7 christos z_streamp z;
3192 1.1 paulus int f;
3193 1.1 paulus {
3194 1.1 paulus int r;
3195 1.1 paulus uInt b;
3196 1.1 paulus
3197 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3198 1.1 paulus return Z_STREAM_ERROR;
3199 1.1 paulus r = Z_BUF_ERROR;
3200 1.1 paulus while (1) switch (z->state->mode)
3201 1.1 paulus {
3202 1.1 paulus case METHOD:
3203 1.1 paulus NEEDBYTE
3204 1.7 christos if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3205 1.1 paulus {
3206 1.1 paulus z->state->mode = BAD;
3207 1.7 christos z->msg = (char*)"unknown compression method";
3208 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3209 1.1 paulus break;
3210 1.1 paulus }
3211 1.1 paulus if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3212 1.1 paulus {
3213 1.1 paulus z->state->mode = BAD;
3214 1.7 christos z->msg = (char*)"invalid window size";
3215 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3216 1.1 paulus break;
3217 1.1 paulus }
3218 1.1 paulus z->state->mode = FLAG;
3219 1.1 paulus case FLAG:
3220 1.1 paulus NEEDBYTE
3221 1.7 christos b = NEXTBYTE;
3222 1.7 christos if (((z->state->sub.method << 8) + b) % 31)
3223 1.1 paulus {
3224 1.1 paulus z->state->mode = BAD;
3225 1.7 christos z->msg = (char*)"incorrect header check";
3226 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3227 1.1 paulus break;
3228 1.1 paulus }
3229 1.7 christos Trace((stderr, "inflate: zlib header ok\n"));
3230 1.7 christos if (!(b & PRESET_DICT))
3231 1.1 paulus {
3232 1.7 christos z->state->mode = BLOCKS;
3233 1.7 christos break;
3234 1.1 paulus }
3235 1.7 christos z->state->mode = DICT4;
3236 1.7 christos case DICT4:
3237 1.7 christos NEEDBYTE
3238 1.7 christos z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3239 1.7 christos z->state->mode = DICT3;
3240 1.7 christos case DICT3:
3241 1.7 christos NEEDBYTE
3242 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3243 1.7 christos z->state->mode = DICT2;
3244 1.7 christos case DICT2:
3245 1.7 christos NEEDBYTE
3246 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3247 1.7 christos z->state->mode = DICT1;
3248 1.7 christos case DICT1:
3249 1.7 christos NEEDBYTE
3250 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE;
3251 1.7 christos z->adler = z->state->sub.check.need;
3252 1.7 christos z->state->mode = DICT0;
3253 1.7 christos return Z_NEED_DICT;
3254 1.7 christos case DICT0:
3255 1.7 christos z->state->mode = BAD;
3256 1.7 christos z->msg = (char*)"need dictionary";
3257 1.7 christos z->state->sub.marker = 0; /* can try inflateSync */
3258 1.7 christos return Z_STREAM_ERROR;
3259 1.1 paulus case BLOCKS:
3260 1.1 paulus r = inflate_blocks(z->state->blocks, z, r);
3261 1.1 paulus if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3262 1.1 paulus r = inflate_packet_flush(z->state->blocks);
3263 1.1 paulus if (r == Z_DATA_ERROR)
3264 1.1 paulus {
3265 1.1 paulus z->state->mode = BAD;
3266 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3267 1.1 paulus break;
3268 1.1 paulus }
3269 1.1 paulus if (r != Z_STREAM_END)
3270 1.1 paulus return r;
3271 1.1 paulus r = Z_OK;
3272 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3273 1.1 paulus if (z->state->nowrap)
3274 1.1 paulus {
3275 1.1 paulus z->state->mode = DONE;
3276 1.1 paulus break;
3277 1.1 paulus }
3278 1.1 paulus z->state->mode = CHECK4;
3279 1.1 paulus case CHECK4:
3280 1.1 paulus NEEDBYTE
3281 1.1 paulus z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3282 1.1 paulus z->state->mode = CHECK3;
3283 1.1 paulus case CHECK3:
3284 1.1 paulus NEEDBYTE
3285 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3286 1.1 paulus z->state->mode = CHECK2;
3287 1.1 paulus case CHECK2:
3288 1.1 paulus NEEDBYTE
3289 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3290 1.1 paulus z->state->mode = CHECK1;
3291 1.1 paulus case CHECK1:
3292 1.1 paulus NEEDBYTE
3293 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE;
3294 1.1 paulus
3295 1.1 paulus if (z->state->sub.check.was != z->state->sub.check.need)
3296 1.1 paulus {
3297 1.1 paulus z->state->mode = BAD;
3298 1.7 christos z->msg = (char*)"incorrect data check";
3299 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3300 1.1 paulus break;
3301 1.1 paulus }
3302 1.1 paulus Trace((stderr, "inflate: zlib check ok\n"));
3303 1.1 paulus z->state->mode = DONE;
3304 1.1 paulus case DONE:
3305 1.1 paulus return Z_STREAM_END;
3306 1.1 paulus case BAD:
3307 1.1 paulus return Z_DATA_ERROR;
3308 1.1 paulus default:
3309 1.1 paulus return Z_STREAM_ERROR;
3310 1.1 paulus }
3311 1.1 paulus
3312 1.1 paulus empty:
3313 1.1 paulus if (f != Z_PACKET_FLUSH)
3314 1.1 paulus return r;
3315 1.1 paulus z->state->mode = BAD;
3316 1.7 christos z->msg = (char *)"need more for packet flush";
3317 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3318 1.1 paulus return Z_DATA_ERROR;
3319 1.1 paulus }
3320 1.1 paulus
3321 1.7 christos
3322 1.7 christos int inflateSetDictionary(z, dictionary, dictLength)
3323 1.7 christos z_streamp z;
3324 1.7 christos const Bytef *dictionary;
3325 1.7 christos uInt dictLength;
3326 1.7 christos {
3327 1.7 christos uInt length = dictLength;
3328 1.7 christos
3329 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3330 1.7 christos return Z_STREAM_ERROR;
3331 1.7 christos
3332 1.7 christos if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3333 1.7 christos z->adler = 1L;
3334 1.7 christos
3335 1.7 christos if (length >= ((uInt)1<<z->state->wbits))
3336 1.7 christos {
3337 1.7 christos length = (1<<z->state->wbits)-1;
3338 1.7 christos dictionary += dictLength - length;
3339 1.7 christos }
3340 1.7 christos inflate_set_dictionary(z->state->blocks, dictionary, length);
3341 1.7 christos z->state->mode = BLOCKS;
3342 1.7 christos return Z_OK;
3343 1.7 christos }
3344 1.7 christos
3345 1.1 paulus /*
3346 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
3347 1.1 paulus * without performing any output. The output buffer must be "caught up";
3348 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
3349 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
3350 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
3351 1.1 paulus * will have been updated if need be.
3352 1.1 paulus */
3353 1.1 paulus
3354 1.1 paulus int inflateIncomp(z)
3355 1.1 paulus z_stream *z;
3356 1.1 paulus {
3357 1.1 paulus if (z->state->mode != BLOCKS)
3358 1.1 paulus return Z_DATA_ERROR;
3359 1.1 paulus return inflate_addhistory(z->state->blocks, z);
3360 1.1 paulus }
3361 1.1 paulus
3362 1.1 paulus
3363 1.1 paulus int inflateSync(z)
3364 1.7 christos z_streamp z;
3365 1.1 paulus {
3366 1.1 paulus uInt n; /* number of bytes to look at */
3367 1.1 paulus Bytef *p; /* pointer to bytes */
3368 1.1 paulus uInt m; /* number of marker bytes found in a row */
3369 1.1 paulus uLong r, w; /* temporaries to save total_in and total_out */
3370 1.1 paulus
3371 1.1 paulus /* set up */
3372 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3373 1.1 paulus return Z_STREAM_ERROR;
3374 1.1 paulus if (z->state->mode != BAD)
3375 1.1 paulus {
3376 1.1 paulus z->state->mode = BAD;
3377 1.1 paulus z->state->sub.marker = 0;
3378 1.1 paulus }
3379 1.1 paulus if ((n = z->avail_in) == 0)
3380 1.1 paulus return Z_BUF_ERROR;
3381 1.1 paulus p = z->next_in;
3382 1.1 paulus m = z->state->sub.marker;
3383 1.1 paulus
3384 1.1 paulus /* search */
3385 1.1 paulus while (n && m < 4)
3386 1.1 paulus {
3387 1.1 paulus if (*p == (Byte)(m < 2 ? 0 : 0xff))
3388 1.1 paulus m++;
3389 1.1 paulus else if (*p)
3390 1.1 paulus m = 0;
3391 1.1 paulus else
3392 1.1 paulus m = 4 - m;
3393 1.1 paulus p++, n--;
3394 1.1 paulus }
3395 1.1 paulus
3396 1.1 paulus /* restore */
3397 1.1 paulus z->total_in += p - z->next_in;
3398 1.1 paulus z->next_in = p;
3399 1.1 paulus z->avail_in = n;
3400 1.1 paulus z->state->sub.marker = m;
3401 1.1 paulus
3402 1.1 paulus /* return no joy or set up to restart on a new block */
3403 1.1 paulus if (m != 4)
3404 1.1 paulus return Z_DATA_ERROR;
3405 1.1 paulus r = z->total_in; w = z->total_out;
3406 1.1 paulus inflateReset(z);
3407 1.1 paulus z->total_in = r; z->total_out = w;
3408 1.1 paulus z->state->mode = BLOCKS;
3409 1.1 paulus return Z_OK;
3410 1.1 paulus }
3411 1.1 paulus
3412 1.1 paulus #undef NEEDBYTE
3413 1.1 paulus #undef NEXTBYTE
3414 1.7 christos /* --- inflate.c */
3415 1.7 christos
3416 1.7 christos /* +++ infblock.c */
3417 1.7 christos /* infblock.c -- interpret and process block types to last block
3418 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3419 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3420 1.7 christos */
3421 1.7 christos
3422 1.7 christos /* #include "zutil.h" */
3423 1.7 christos /* #include "infblock.h" */
3424 1.7 christos
3425 1.7 christos /* +++ inftrees.h */
3426 1.7 christos /* inftrees.h -- header to use inftrees.c
3427 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3428 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3429 1.7 christos */
3430 1.7 christos
3431 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3432 1.7 christos part of the implementation of the compression library and is
3433 1.7 christos subject to change. Applications should only use zlib.h.
3434 1.7 christos */
3435 1.7 christos
3436 1.7 christos /* Huffman code lookup table entry--this entry is four bytes for machines
3437 1.7 christos that have 16-bit pointers (e.g. PC's in the small or medium model). */
3438 1.7 christos
3439 1.7 christos typedef struct inflate_huft_s FAR inflate_huft;
3440 1.7 christos
3441 1.7 christos struct inflate_huft_s {
3442 1.7 christos union {
3443 1.7 christos struct {
3444 1.7 christos Byte Exop; /* number of extra bits or operation */
3445 1.7 christos Byte Bits; /* number of bits in this code or subcode */
3446 1.7 christos } what;
3447 1.7 christos Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3448 1.7 christos } word; /* 16-bit, 8 bytes for 32-bit machines) */
3449 1.7 christos union {
3450 1.7 christos uInt Base; /* literal, length base, or distance base */
3451 1.7 christos inflate_huft *Next; /* pointer to next level of table */
3452 1.7 christos } more;
3453 1.7 christos };
3454 1.7 christos
3455 1.7 christos #ifdef DEBUG_ZLIB
3456 1.7 christos extern uInt inflate_hufts;
3457 1.7 christos #endif
3458 1.7 christos
3459 1.7 christos extern int inflate_trees_bits OF((
3460 1.7 christos uIntf *, /* 19 code lengths */
3461 1.7 christos uIntf *, /* bits tree desired/actual depth */
3462 1.7 christos inflate_huft * FAR *, /* bits tree result */
3463 1.7 christos z_streamp )); /* for zalloc, zfree functions */
3464 1.7 christos
3465 1.7 christos extern int inflate_trees_dynamic OF((
3466 1.7 christos uInt, /* number of literal/length codes */
3467 1.7 christos uInt, /* number of distance codes */
3468 1.7 christos uIntf *, /* that many (total) code lengths */
3469 1.7 christos uIntf *, /* literal desired/actual bit depth */
3470 1.7 christos uIntf *, /* distance desired/actual bit depth */
3471 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3472 1.7 christos inflate_huft * FAR *, /* distance tree result */
3473 1.7 christos z_streamp )); /* for zalloc, zfree functions */
3474 1.7 christos
3475 1.7 christos extern int inflate_trees_fixed OF((
3476 1.7 christos uIntf *, /* literal desired/actual bit depth */
3477 1.7 christos uIntf *, /* distance desired/actual bit depth */
3478 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3479 1.7 christos inflate_huft * FAR *)); /* distance tree result */
3480 1.7 christos
3481 1.7 christos extern int inflate_trees_free OF((
3482 1.7 christos inflate_huft *, /* tables to free */
3483 1.7 christos z_streamp )); /* for zfree function */
3484 1.7 christos
3485 1.7 christos /* --- inftrees.h */
3486 1.7 christos
3487 1.7 christos /* +++ infcodes.h */
3488 1.7 christos /* infcodes.h -- header to use infcodes.c
3489 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3490 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3491 1.7 christos */
3492 1.7 christos
3493 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3494 1.7 christos part of the implementation of the compression library and is
3495 1.7 christos subject to change. Applications should only use zlib.h.
3496 1.7 christos */
3497 1.7 christos
3498 1.7 christos struct inflate_codes_state;
3499 1.7 christos typedef struct inflate_codes_state FAR inflate_codes_statef;
3500 1.7 christos
3501 1.7 christos extern inflate_codes_statef *inflate_codes_new OF((
3502 1.7 christos uInt, uInt,
3503 1.7 christos inflate_huft *, inflate_huft *,
3504 1.7 christos z_streamp ));
3505 1.7 christos
3506 1.7 christos extern int inflate_codes OF((
3507 1.7 christos inflate_blocks_statef *,
3508 1.7 christos z_streamp ,
3509 1.7 christos int));
3510 1.7 christos
3511 1.7 christos extern void inflate_codes_free OF((
3512 1.7 christos inflate_codes_statef *,
3513 1.7 christos z_streamp ));
3514 1.1 paulus
3515 1.7 christos /* --- infcodes.h */
3516 1.7 christos
3517 1.7 christos /* +++ infutil.h */
3518 1.1 paulus /* infutil.h -- types and macros common to blocks and codes
3519 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3520 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3521 1.1 paulus */
3522 1.1 paulus
3523 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3524 1.1 paulus part of the implementation of the compression library and is
3525 1.1 paulus subject to change. Applications should only use zlib.h.
3526 1.1 paulus */
3527 1.1 paulus
3528 1.7 christos #ifndef _INFUTIL_H
3529 1.7 christos #define _INFUTIL_H
3530 1.1 paulus
3531 1.7 christos typedef enum {
3532 1.1 paulus TYPE, /* get type bits (3, including end bit) */
3533 1.1 paulus LENS, /* get lengths for stored */
3534 1.1 paulus STORED, /* processing stored block */
3535 1.1 paulus TABLE, /* get table lengths */
3536 1.1 paulus BTREE, /* get bit lengths tree for a dynamic block */
3537 1.1 paulus DTREE, /* get length, distance trees for a dynamic block */
3538 1.1 paulus CODES, /* processing fixed or dynamic block */
3539 1.1 paulus DRY, /* output remaining window bytes */
3540 1.7 christos DONEB, /* finished last block, done */
3541 1.7 christos BADB} /* got a data error--stuck here */
3542 1.7 christos inflate_block_mode;
3543 1.7 christos
3544 1.7 christos /* inflate blocks semi-private state */
3545 1.7 christos struct inflate_blocks_state {
3546 1.7 christos
3547 1.7 christos /* mode */
3548 1.7 christos inflate_block_mode mode; /* current inflate_block mode */
3549 1.1 paulus
3550 1.1 paulus /* mode dependent information */
3551 1.1 paulus union {
3552 1.1 paulus uInt left; /* if STORED, bytes left to copy */
3553 1.1 paulus struct {
3554 1.1 paulus uInt table; /* table lengths (14 bits) */
3555 1.1 paulus uInt index; /* index into blens (or border) */
3556 1.1 paulus uIntf *blens; /* bit lengths of codes */
3557 1.1 paulus uInt bb; /* bit length tree depth */
3558 1.1 paulus inflate_huft *tb; /* bit length decoding tree */
3559 1.1 paulus } trees; /* if DTREE, decoding info for trees */
3560 1.1 paulus struct {
3561 1.7 christos inflate_huft *tl;
3562 1.7 christos inflate_huft *td; /* trees to free */
3563 1.1 paulus inflate_codes_statef
3564 1.1 paulus *codes;
3565 1.1 paulus } decode; /* if CODES, current state */
3566 1.1 paulus } sub; /* submode */
3567 1.1 paulus uInt last; /* true if this block is the last block */
3568 1.1 paulus
3569 1.1 paulus /* mode independent information */
3570 1.1 paulus uInt bitk; /* bits in bit buffer */
3571 1.1 paulus uLong bitb; /* bit buffer */
3572 1.1 paulus Bytef *window; /* sliding window */
3573 1.1 paulus Bytef *end; /* one byte after sliding window */
3574 1.1 paulus Bytef *read; /* window read pointer */
3575 1.1 paulus Bytef *write; /* window write pointer */
3576 1.1 paulus check_func checkfn; /* check function */
3577 1.1 paulus uLong check; /* check on output */
3578 1.1 paulus
3579 1.1 paulus };
3580 1.1 paulus
3581 1.1 paulus
3582 1.1 paulus /* defines for inflate input/output */
3583 1.1 paulus /* update pointers and return */
3584 1.1 paulus #define UPDBITS {s->bitb=b;s->bitk=k;}
3585 1.1 paulus #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3586 1.1 paulus #define UPDOUT {s->write=q;}
3587 1.1 paulus #define UPDATE {UPDBITS UPDIN UPDOUT}
3588 1.1 paulus #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3589 1.1 paulus /* get bytes and bits */
3590 1.1 paulus #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3591 1.1 paulus #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3592 1.1 paulus #define NEXTBYTE (n--,*p++)
3593 1.1 paulus #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3594 1.1 paulus #define DUMPBITS(j) {b>>=(j);k-=(j);}
3595 1.1 paulus /* output bytes */
3596 1.7 christos #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3597 1.7 christos #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3598 1.7 christos #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3599 1.1 paulus #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3600 1.7 christos #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3601 1.1 paulus #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3602 1.1 paulus /* load local pointers */
3603 1.1 paulus #define LOAD {LOADIN LOADOUT}
3604 1.1 paulus
3605 1.7 christos /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3606 1.7 christos extern uInt inflate_mask[17];
3607 1.1 paulus
3608 1.1 paulus /* copy as much as possible from the sliding window to the output area */
3609 1.7 christos extern int inflate_flush OF((
3610 1.1 paulus inflate_blocks_statef *,
3611 1.7 christos z_streamp ,
3612 1.1 paulus int));
3613 1.1 paulus
3614 1.7 christos #ifndef NO_DUMMY_DECL
3615 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
3616 1.7 christos #endif
3617 1.1 paulus
3618 1.7 christos #endif
3619 1.7 christos /* --- infutil.h */
3620 1.1 paulus
3621 1.7 christos #ifndef NO_DUMMY_DECL
3622 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3623 1.7 christos #endif
3624 1.1 paulus
3625 1.1 paulus /* Table for deflate from PKZIP's appnote.txt. */
3626 1.7 christos local const uInt border[] = { /* Order of the bit length code lengths */
3627 1.1 paulus 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3628 1.1 paulus
3629 1.1 paulus /*
3630 1.1 paulus Notes beyond the 1.93a appnote.txt:
3631 1.1 paulus
3632 1.1 paulus 1. Distance pointers never point before the beginning of the output
3633 1.1 paulus stream.
3634 1.1 paulus 2. Distance pointers can point back across blocks, up to 32k away.
3635 1.1 paulus 3. There is an implied maximum of 7 bits for the bit length table and
3636 1.1 paulus 15 bits for the actual data.
3637 1.1 paulus 4. If only one code exists, then it is encoded using one bit. (Zero
3638 1.1 paulus would be more efficient, but perhaps a little confusing.) If two
3639 1.1 paulus codes exist, they are coded using one bit each (0 and 1).
3640 1.1 paulus 5. There is no way of sending zero distance codes--a dummy must be
3641 1.1 paulus sent if there are none. (History: a pre 2.0 version of PKZIP would
3642 1.1 paulus store blocks with no distance codes, but this was discovered to be
3643 1.1 paulus too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3644 1.1 paulus zero distance codes, which is sent as one code of zero bits in
3645 1.1 paulus length.
3646 1.1 paulus 6. There are up to 286 literal/length codes. Code 256 represents the
3647 1.1 paulus end-of-block. Note however that the static length tree defines
3648 1.1 paulus 288 codes just to fill out the Huffman codes. Codes 286 and 287
3649 1.1 paulus cannot be used though, since there is no length base or extra bits
3650 1.1 paulus defined for them. Similarily, there are up to 30 distance codes.
3651 1.1 paulus However, static trees define 32 codes (all 5 bits) to fill out the
3652 1.1 paulus Huffman codes, but the last two had better not show up in the data.
3653 1.1 paulus 7. Unzip can check dynamic Huffman blocks for complete code sets.
3654 1.1 paulus The exception is that a single code would not be complete (see #4).
3655 1.1 paulus 8. The five bits following the block type is really the number of
3656 1.1 paulus literal codes sent minus 257.
3657 1.1 paulus 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3658 1.1 paulus (1+6+6). Therefore, to output three times the length, you output
3659 1.1 paulus three codes (1+1+1), whereas to output four times the same length,
3660 1.1 paulus you only need two codes (1+3). Hmm.
3661 1.1 paulus 10. In the tree reconstruction algorithm, Code = Code + Increment
3662 1.1 paulus only if BitLength(i) is not zero. (Pretty obvious.)
3663 1.1 paulus 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3664 1.1 paulus 12. Note: length code 284 can represent 227-258, but length code 285
3665 1.1 paulus really is 258. The last length deserves its own, short code
3666 1.1 paulus since it gets used a lot in very redundant files. The length
3667 1.1 paulus 258 is special since 258 - 3 (the min match length) is 255.
3668 1.1 paulus 13. The literal/length and distance code bit lengths are read as a
3669 1.1 paulus single stream of lengths. It is possible (and advantageous) for
3670 1.1 paulus a repeat code (16, 17, or 18) to go across the boundary between
3671 1.1 paulus the two sets of lengths.
3672 1.1 paulus */
3673 1.1 paulus
3674 1.1 paulus
3675 1.7 christos void inflate_blocks_reset(s, z, c)
3676 1.1 paulus inflate_blocks_statef *s;
3677 1.7 christos z_streamp z;
3678 1.1 paulus uLongf *c;
3679 1.1 paulus {
3680 1.1 paulus if (s->checkfn != Z_NULL)
3681 1.1 paulus *c = s->check;
3682 1.1 paulus if (s->mode == BTREE || s->mode == DTREE)
3683 1.7 christos ZFREE(z, s->sub.trees.blens);
3684 1.1 paulus if (s->mode == CODES)
3685 1.1 paulus {
3686 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3687 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3688 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3689 1.1 paulus }
3690 1.1 paulus s->mode = TYPE;
3691 1.1 paulus s->bitk = 0;
3692 1.1 paulus s->bitb = 0;
3693 1.1 paulus s->read = s->write = s->window;
3694 1.1 paulus if (s->checkfn != Z_NULL)
3695 1.7 christos z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3696 1.1 paulus Trace((stderr, "inflate: blocks reset\n"));
3697 1.1 paulus }
3698 1.1 paulus
3699 1.1 paulus
3700 1.7 christos inflate_blocks_statef *inflate_blocks_new(z, c, w)
3701 1.7 christos z_streamp z;
3702 1.1 paulus check_func c;
3703 1.1 paulus uInt w;
3704 1.1 paulus {
3705 1.1 paulus inflate_blocks_statef *s;
3706 1.1 paulus
3707 1.7 christos if ((s = (inflate_blocks_statef *)ZALLOC
3708 1.1 paulus (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3709 1.1 paulus return s;
3710 1.7 christos if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3711 1.1 paulus {
3712 1.7 christos ZFREE(z, s);
3713 1.1 paulus return Z_NULL;
3714 1.1 paulus }
3715 1.1 paulus s->end = s->window + w;
3716 1.1 paulus s->checkfn = c;
3717 1.1 paulus s->mode = TYPE;
3718 1.1 paulus Trace((stderr, "inflate: blocks allocated\n"));
3719 1.1 paulus inflate_blocks_reset(s, z, &s->check);
3720 1.1 paulus return s;
3721 1.1 paulus }
3722 1.1 paulus
3723 1.1 paulus
3724 1.7 christos #ifdef DEBUG_ZLIB
3725 1.7 christos extern uInt inflate_hufts;
3726 1.7 christos #endif
3727 1.7 christos int inflate_blocks(s, z, r)
3728 1.1 paulus inflate_blocks_statef *s;
3729 1.7 christos z_streamp z;
3730 1.1 paulus int r;
3731 1.1 paulus {
3732 1.1 paulus uInt t; /* temporary storage */
3733 1.1 paulus uLong b; /* bit buffer */
3734 1.1 paulus uInt k; /* bits in bit buffer */
3735 1.1 paulus Bytef *p; /* input data pointer */
3736 1.1 paulus uInt n; /* bytes available there */
3737 1.1 paulus Bytef *q; /* output window write pointer */
3738 1.1 paulus uInt m; /* bytes to end of window or read pointer */
3739 1.1 paulus
3740 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
3741 1.1 paulus LOAD
3742 1.1 paulus
3743 1.1 paulus /* process input based on current state */
3744 1.1 paulus while (1) switch (s->mode)
3745 1.1 paulus {
3746 1.1 paulus case TYPE:
3747 1.1 paulus NEEDBITS(3)
3748 1.1 paulus t = (uInt)b & 7;
3749 1.1 paulus s->last = t & 1;
3750 1.1 paulus switch (t >> 1)
3751 1.1 paulus {
3752 1.1 paulus case 0: /* stored */
3753 1.1 paulus Trace((stderr, "inflate: stored block%s\n",
3754 1.1 paulus s->last ? " (last)" : ""));
3755 1.1 paulus DUMPBITS(3)
3756 1.1 paulus t = k & 7; /* go to byte boundary */
3757 1.1 paulus DUMPBITS(t)
3758 1.1 paulus s->mode = LENS; /* get length of stored block */
3759 1.1 paulus break;
3760 1.1 paulus case 1: /* fixed */
3761 1.1 paulus Trace((stderr, "inflate: fixed codes block%s\n",
3762 1.1 paulus s->last ? " (last)" : ""));
3763 1.1 paulus {
3764 1.1 paulus uInt bl, bd;
3765 1.1 paulus inflate_huft *tl, *td;
3766 1.1 paulus
3767 1.1 paulus inflate_trees_fixed(&bl, &bd, &tl, &td);
3768 1.1 paulus s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3769 1.1 paulus if (s->sub.decode.codes == Z_NULL)
3770 1.1 paulus {
3771 1.1 paulus r = Z_MEM_ERROR;
3772 1.1 paulus LEAVE
3773 1.1 paulus }
3774 1.1 paulus s->sub.decode.tl = Z_NULL; /* don't try to free these */
3775 1.1 paulus s->sub.decode.td = Z_NULL;
3776 1.1 paulus }
3777 1.1 paulus DUMPBITS(3)
3778 1.1 paulus s->mode = CODES;
3779 1.1 paulus break;
3780 1.1 paulus case 2: /* dynamic */
3781 1.1 paulus Trace((stderr, "inflate: dynamic codes block%s\n",
3782 1.1 paulus s->last ? " (last)" : ""));
3783 1.1 paulus DUMPBITS(3)
3784 1.1 paulus s->mode = TABLE;
3785 1.1 paulus break;
3786 1.1 paulus case 3: /* illegal */
3787 1.1 paulus DUMPBITS(3)
3788 1.1 paulus s->mode = BADB;
3789 1.7 christos z->msg = (char*)"invalid block type";
3790 1.1 paulus r = Z_DATA_ERROR;
3791 1.1 paulus LEAVE
3792 1.1 paulus }
3793 1.1 paulus break;
3794 1.1 paulus case LENS:
3795 1.1 paulus NEEDBITS(32)
3796 1.7 christos if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3797 1.1 paulus {
3798 1.1 paulus s->mode = BADB;
3799 1.7 christos z->msg = (char*)"invalid stored block lengths";
3800 1.1 paulus r = Z_DATA_ERROR;
3801 1.1 paulus LEAVE
3802 1.1 paulus }
3803 1.1 paulus s->sub.left = (uInt)b & 0xffff;
3804 1.1 paulus b = k = 0; /* dump bits */
3805 1.1 paulus Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3806 1.7 christos s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3807 1.1 paulus break;
3808 1.1 paulus case STORED:
3809 1.1 paulus if (n == 0)
3810 1.1 paulus LEAVE
3811 1.1 paulus NEEDOUT
3812 1.1 paulus t = s->sub.left;
3813 1.1 paulus if (t > n) t = n;
3814 1.1 paulus if (t > m) t = m;
3815 1.1 paulus zmemcpy(q, p, t);
3816 1.1 paulus p += t; n -= t;
3817 1.1 paulus q += t; m -= t;
3818 1.1 paulus if ((s->sub.left -= t) != 0)
3819 1.1 paulus break;
3820 1.1 paulus Tracev((stderr, "inflate: stored end, %lu total out\n",
3821 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3822 1.1 paulus (s->end - s->read) + (q - s->window))));
3823 1.1 paulus s->mode = s->last ? DRY : TYPE;
3824 1.1 paulus break;
3825 1.1 paulus case TABLE:
3826 1.1 paulus NEEDBITS(14)
3827 1.1 paulus s->sub.trees.table = t = (uInt)b & 0x3fff;
3828 1.1 paulus #ifndef PKZIP_BUG_WORKAROUND
3829 1.1 paulus if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3830 1.1 paulus {
3831 1.1 paulus s->mode = BADB;
3832 1.7 christos z->msg = (char*)"too many length or distance symbols";
3833 1.1 paulus r = Z_DATA_ERROR;
3834 1.1 paulus LEAVE
3835 1.1 paulus }
3836 1.1 paulus #endif
3837 1.1 paulus t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3838 1.1 paulus if (t < 19)
3839 1.1 paulus t = 19;
3840 1.1 paulus if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3841 1.1 paulus {
3842 1.1 paulus r = Z_MEM_ERROR;
3843 1.1 paulus LEAVE
3844 1.1 paulus }
3845 1.1 paulus DUMPBITS(14)
3846 1.1 paulus s->sub.trees.index = 0;
3847 1.1 paulus Tracev((stderr, "inflate: table sizes ok\n"));
3848 1.1 paulus s->mode = BTREE;
3849 1.1 paulus case BTREE:
3850 1.1 paulus while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3851 1.1 paulus {
3852 1.1 paulus NEEDBITS(3)
3853 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3854 1.1 paulus DUMPBITS(3)
3855 1.1 paulus }
3856 1.1 paulus while (s->sub.trees.index < 19)
3857 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3858 1.1 paulus s->sub.trees.bb = 7;
3859 1.1 paulus t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3860 1.1 paulus &s->sub.trees.tb, z);
3861 1.1 paulus if (t != Z_OK)
3862 1.1 paulus {
3863 1.7 christos ZFREE(z, s->sub.trees.blens);
3864 1.1 paulus r = t;
3865 1.1 paulus if (r == Z_DATA_ERROR)
3866 1.1 paulus s->mode = BADB;
3867 1.1 paulus LEAVE
3868 1.1 paulus }
3869 1.1 paulus s->sub.trees.index = 0;
3870 1.1 paulus Tracev((stderr, "inflate: bits tree ok\n"));
3871 1.1 paulus s->mode = DTREE;
3872 1.1 paulus case DTREE:
3873 1.1 paulus while (t = s->sub.trees.table,
3874 1.1 paulus s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3875 1.1 paulus {
3876 1.1 paulus inflate_huft *h;
3877 1.1 paulus uInt i, j, c;
3878 1.1 paulus
3879 1.1 paulus t = s->sub.trees.bb;
3880 1.1 paulus NEEDBITS(t)
3881 1.1 paulus h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3882 1.1 paulus t = h->word.what.Bits;
3883 1.1 paulus c = h->more.Base;
3884 1.1 paulus if (c < 16)
3885 1.1 paulus {
3886 1.1 paulus DUMPBITS(t)
3887 1.1 paulus s->sub.trees.blens[s->sub.trees.index++] = c;
3888 1.1 paulus }
3889 1.1 paulus else /* c == 16..18 */
3890 1.1 paulus {
3891 1.1 paulus i = c == 18 ? 7 : c - 14;
3892 1.1 paulus j = c == 18 ? 11 : 3;
3893 1.1 paulus NEEDBITS(t + i)
3894 1.1 paulus DUMPBITS(t)
3895 1.1 paulus j += (uInt)b & inflate_mask[i];
3896 1.1 paulus DUMPBITS(i)
3897 1.1 paulus i = s->sub.trees.index;
3898 1.1 paulus t = s->sub.trees.table;
3899 1.1 paulus if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3900 1.1 paulus (c == 16 && i < 1))
3901 1.1 paulus {
3902 1.7 christos inflate_trees_free(s->sub.trees.tb, z);
3903 1.7 christos ZFREE(z, s->sub.trees.blens);
3904 1.1 paulus s->mode = BADB;
3905 1.7 christos z->msg = (char*)"invalid bit length repeat";
3906 1.1 paulus r = Z_DATA_ERROR;
3907 1.1 paulus LEAVE
3908 1.1 paulus }
3909 1.1 paulus c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3910 1.1 paulus do {
3911 1.1 paulus s->sub.trees.blens[i++] = c;
3912 1.1 paulus } while (--j);
3913 1.1 paulus s->sub.trees.index = i;
3914 1.1 paulus }
3915 1.1 paulus }
3916 1.1 paulus inflate_trees_free(s->sub.trees.tb, z);
3917 1.1 paulus s->sub.trees.tb = Z_NULL;
3918 1.1 paulus {
3919 1.1 paulus uInt bl, bd;
3920 1.1 paulus inflate_huft *tl, *td;
3921 1.1 paulus inflate_codes_statef *c;
3922 1.1 paulus
3923 1.1 paulus bl = 9; /* must be <= 9 for lookahead assumptions */
3924 1.1 paulus bd = 6; /* must be <= 9 for lookahead assumptions */
3925 1.1 paulus t = s->sub.trees.table;
3926 1.7 christos #ifdef DEBUG_ZLIB
3927 1.7 christos inflate_hufts = 0;
3928 1.7 christos #endif
3929 1.1 paulus t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3930 1.1 paulus s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3931 1.7 christos ZFREE(z, s->sub.trees.blens);
3932 1.1 paulus if (t != Z_OK)
3933 1.1 paulus {
3934 1.1 paulus if (t == (uInt)Z_DATA_ERROR)
3935 1.1 paulus s->mode = BADB;
3936 1.1 paulus r = t;
3937 1.1 paulus LEAVE
3938 1.1 paulus }
3939 1.7 christos Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3940 1.7 christos inflate_hufts, sizeof(inflate_huft)));
3941 1.1 paulus if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3942 1.1 paulus {
3943 1.1 paulus inflate_trees_free(td, z);
3944 1.1 paulus inflate_trees_free(tl, z);
3945 1.1 paulus r = Z_MEM_ERROR;
3946 1.1 paulus LEAVE
3947 1.1 paulus }
3948 1.1 paulus s->sub.decode.codes = c;
3949 1.1 paulus s->sub.decode.tl = tl;
3950 1.1 paulus s->sub.decode.td = td;
3951 1.1 paulus }
3952 1.1 paulus s->mode = CODES;
3953 1.1 paulus case CODES:
3954 1.1 paulus UPDATE
3955 1.1 paulus if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3956 1.1 paulus return inflate_flush(s, z, r);
3957 1.1 paulus r = Z_OK;
3958 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3959 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3960 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3961 1.1 paulus LOAD
3962 1.1 paulus Tracev((stderr, "inflate: codes end, %lu total out\n",
3963 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3964 1.1 paulus (s->end - s->read) + (q - s->window))));
3965 1.1 paulus if (!s->last)
3966 1.1 paulus {
3967 1.1 paulus s->mode = TYPE;
3968 1.1 paulus break;
3969 1.1 paulus }
3970 1.1 paulus if (k > 7) /* return unused byte, if any */
3971 1.1 paulus {
3972 1.1 paulus Assert(k < 16, "inflate_codes grabbed too many bytes")
3973 1.1 paulus k -= 8;
3974 1.1 paulus n++;
3975 1.1 paulus p--; /* can always return one */
3976 1.1 paulus }
3977 1.1 paulus s->mode = DRY;
3978 1.1 paulus case DRY:
3979 1.1 paulus FLUSH
3980 1.1 paulus if (s->read != s->write)
3981 1.1 paulus LEAVE
3982 1.1 paulus s->mode = DONEB;
3983 1.1 paulus case DONEB:
3984 1.1 paulus r = Z_STREAM_END;
3985 1.1 paulus LEAVE
3986 1.1 paulus case BADB:
3987 1.1 paulus r = Z_DATA_ERROR;
3988 1.1 paulus LEAVE
3989 1.1 paulus default:
3990 1.1 paulus r = Z_STREAM_ERROR;
3991 1.1 paulus LEAVE
3992 1.1 paulus }
3993 1.1 paulus }
3994 1.1 paulus
3995 1.1 paulus
3996 1.7 christos int inflate_blocks_free(s, z, c)
3997 1.1 paulus inflate_blocks_statef *s;
3998 1.7 christos z_streamp z;
3999 1.1 paulus uLongf *c;
4000 1.1 paulus {
4001 1.1 paulus inflate_blocks_reset(s, z, c);
4002 1.7 christos ZFREE(z, s->window);
4003 1.7 christos ZFREE(z, s);
4004 1.1 paulus Trace((stderr, "inflate: blocks freed\n"));
4005 1.1 paulus return Z_OK;
4006 1.1 paulus }
4007 1.1 paulus
4008 1.7 christos
4009 1.7 christos void inflate_set_dictionary(s, d, n)
4010 1.7 christos inflate_blocks_statef *s;
4011 1.7 christos const Bytef *d;
4012 1.7 christos uInt n;
4013 1.7 christos {
4014 1.7 christos zmemcpy((charf *)s->window, d, n);
4015 1.7 christos s->read = s->write = s->window + n;
4016 1.7 christos }
4017 1.7 christos
4018 1.1 paulus /*
4019 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
4020 1.1 paulus * without performing any output. The output buffer must be "caught up";
4021 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
4022 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
4023 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
4024 1.1 paulus * will have been updated if need be.
4025 1.1 paulus */
4026 1.7 christos int inflate_addhistory(s, z)
4027 1.1 paulus inflate_blocks_statef *s;
4028 1.1 paulus z_stream *z;
4029 1.1 paulus {
4030 1.1 paulus uLong b; /* bit buffer */ /* NOT USED HERE */
4031 1.1 paulus uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4032 1.1 paulus uInt t; /* temporary storage */
4033 1.1 paulus Bytef *p; /* input data pointer */
4034 1.1 paulus uInt n; /* bytes available there */
4035 1.1 paulus Bytef *q; /* output window write pointer */
4036 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4037 1.1 paulus
4038 1.1 paulus if (s->read != s->write)
4039 1.1 paulus return Z_STREAM_ERROR;
4040 1.1 paulus if (s->mode != TYPE)
4041 1.1 paulus return Z_DATA_ERROR;
4042 1.1 paulus
4043 1.1 paulus /* we're ready to rock */
4044 1.1 paulus LOAD
4045 1.1 paulus /* while there is input ready, copy to output buffer, moving
4046 1.1 paulus * pointers as needed.
4047 1.1 paulus */
4048 1.1 paulus while (n) {
4049 1.1 paulus t = n; /* how many to do */
4050 1.1 paulus /* is there room until end of buffer? */
4051 1.1 paulus if (t > m) t = m;
4052 1.1 paulus /* update check information */
4053 1.1 paulus if (s->checkfn != Z_NULL)
4054 1.1 paulus s->check = (*s->checkfn)(s->check, q, t);
4055 1.1 paulus zmemcpy(q, p, t);
4056 1.1 paulus q += t;
4057 1.1 paulus p += t;
4058 1.1 paulus n -= t;
4059 1.1 paulus z->total_out += t;
4060 1.1 paulus s->read = q; /* drag read pointer forward */
4061 1.7 christos /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4062 1.1 paulus if (q == s->end) {
4063 1.1 paulus s->read = q = s->window;
4064 1.1 paulus m = WAVAIL;
4065 1.1 paulus }
4066 1.1 paulus }
4067 1.1 paulus UPDATE
4068 1.1 paulus return Z_OK;
4069 1.1 paulus }
4070 1.1 paulus
4071 1.1 paulus
4072 1.1 paulus /*
4073 1.1 paulus * At the end of a Deflate-compressed PPP packet, we expect to have seen
4074 1.1 paulus * a `stored' block type value but not the (zero) length bytes.
4075 1.1 paulus */
4076 1.7 christos int inflate_packet_flush(s)
4077 1.1 paulus inflate_blocks_statef *s;
4078 1.1 paulus {
4079 1.1 paulus if (s->mode != LENS)
4080 1.1 paulus return Z_DATA_ERROR;
4081 1.1 paulus s->mode = TYPE;
4082 1.1 paulus return Z_OK;
4083 1.1 paulus }
4084 1.7 christos /* --- infblock.c */
4085 1.1 paulus
4086 1.7 christos /* +++ inftrees.c */
4087 1.1 paulus /* inftrees.c -- generate Huffman trees for efficient decoding
4088 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4089 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4090 1.1 paulus */
4091 1.1 paulus
4092 1.7 christos /* #include "zutil.h" */
4093 1.7 christos /* #include "inftrees.h" */
4094 1.7 christos
4095 1.7 christos char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4096 1.7 christos /*
4097 1.7 christos If you use the zlib library in a product, an acknowledgment is welcome
4098 1.7 christos in the documentation of your product. If for some reason you cannot
4099 1.7 christos include such an acknowledgment, I would appreciate that you keep this
4100 1.7 christos copyright string in the executable of your product.
4101 1.7 christos */
4102 1.7 christos
4103 1.7 christos #ifndef NO_DUMMY_DECL
4104 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4105 1.7 christos #endif
4106 1.7 christos
4107 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4108 1.1 paulus #define base more.Base
4109 1.1 paulus #define next more.Next
4110 1.1 paulus #define exop word.what.Exop
4111 1.1 paulus #define bits word.what.Bits
4112 1.1 paulus
4113 1.1 paulus
4114 1.1 paulus local int huft_build OF((
4115 1.1 paulus uIntf *, /* code lengths in bits */
4116 1.1 paulus uInt, /* number of codes */
4117 1.1 paulus uInt, /* number of "simple" codes */
4118 1.7 christos const uIntf *, /* list of base values for non-simple codes */
4119 1.7 christos const uIntf *, /* list of extra bits for non-simple codes */
4120 1.1 paulus inflate_huft * FAR*,/* result: starting table */
4121 1.1 paulus uIntf *, /* maximum lookup bits (returns actual) */
4122 1.7 christos z_streamp )); /* for zalloc function */
4123 1.1 paulus
4124 1.1 paulus local voidpf falloc OF((
4125 1.1 paulus voidpf, /* opaque pointer (not used) */
4126 1.1 paulus uInt, /* number of items */
4127 1.1 paulus uInt)); /* size of item */
4128 1.1 paulus
4129 1.1 paulus /* Tables for deflate from PKZIP's appnote.txt. */
4130 1.7 christos local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4131 1.1 paulus 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4132 1.1 paulus 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4133 1.7 christos /* see note #13 above about 258 */
4134 1.7 christos local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4135 1.1 paulus 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4136 1.7 christos 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4137 1.7 christos local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4138 1.1 paulus 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4139 1.1 paulus 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4140 1.1 paulus 8193, 12289, 16385, 24577};
4141 1.7 christos local const uInt cpdext[30] = { /* Extra bits for distance codes */
4142 1.1 paulus 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4143 1.1 paulus 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4144 1.1 paulus 12, 12, 13, 13};
4145 1.1 paulus
4146 1.1 paulus /*
4147 1.1 paulus Huffman code decoding is performed using a multi-level table lookup.
4148 1.1 paulus The fastest way to decode is to simply build a lookup table whose
4149 1.1 paulus size is determined by the longest code. However, the time it takes
4150 1.1 paulus to build this table can also be a factor if the data being decoded
4151 1.1 paulus is not very long. The most common codes are necessarily the
4152 1.1 paulus shortest codes, so those codes dominate the decoding time, and hence
4153 1.1 paulus the speed. The idea is you can have a shorter table that decodes the
4154 1.1 paulus shorter, more probable codes, and then point to subsidiary tables for
4155 1.1 paulus the longer codes. The time it costs to decode the longer codes is
4156 1.1 paulus then traded against the time it takes to make longer tables.
4157 1.1 paulus
4158 1.1 paulus This results of this trade are in the variables lbits and dbits
4159 1.1 paulus below. lbits is the number of bits the first level table for literal/
4160 1.1 paulus length codes can decode in one step, and dbits is the same thing for
4161 1.1 paulus the distance codes. Subsequent tables are also less than or equal to
4162 1.1 paulus those sizes. These values may be adjusted either when all of the
4163 1.1 paulus codes are shorter than that, in which case the longest code length in
4164 1.1 paulus bits is used, or when the shortest code is *longer* than the requested
4165 1.1 paulus table size, in which case the length of the shortest code in bits is
4166 1.1 paulus used.
4167 1.1 paulus
4168 1.1 paulus There are two different values for the two tables, since they code a
4169 1.1 paulus different number of possibilities each. The literal/length table
4170 1.1 paulus codes 286 possible values, or in a flat code, a little over eight
4171 1.1 paulus bits. The distance table codes 30 possible values, or a little less
4172 1.1 paulus than five bits, flat. The optimum values for speed end up being
4173 1.1 paulus about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4174 1.1 paulus The optimum values may differ though from machine to machine, and
4175 1.1 paulus possibly even between compilers. Your mileage may vary.
4176 1.1 paulus */
4177 1.1 paulus
4178 1.1 paulus
4179 1.1 paulus /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4180 1.1 paulus #define BMAX 15 /* maximum bit length of any code */
4181 1.1 paulus #define N_MAX 288 /* maximum number of codes in any set */
4182 1.1 paulus
4183 1.1 paulus #ifdef DEBUG_ZLIB
4184 1.1 paulus uInt inflate_hufts;
4185 1.1 paulus #endif
4186 1.1 paulus
4187 1.1 paulus local int huft_build(b, n, s, d, e, t, m, zs)
4188 1.1 paulus uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4189 1.1 paulus uInt n; /* number of codes (assumed <= N_MAX) */
4190 1.1 paulus uInt s; /* number of simple-valued codes (0..s-1) */
4191 1.7 christos const uIntf *d; /* list of base values for non-simple codes */
4192 1.7 christos const uIntf *e; /* list of extra bits for non-simple codes */
4193 1.1 paulus inflate_huft * FAR *t; /* result: starting table */
4194 1.1 paulus uIntf *m; /* maximum lookup bits, returns actual */
4195 1.7 christos z_streamp zs; /* for zalloc function */
4196 1.1 paulus /* Given a list of code lengths and a maximum table size, make a set of
4197 1.1 paulus tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4198 1.1 paulus if the given code set is incomplete (the tables are still built in this
4199 1.7 christos case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4200 1.7 christos lengths), or Z_MEM_ERROR if not enough memory. */
4201 1.1 paulus {
4202 1.1 paulus
4203 1.1 paulus uInt a; /* counter for codes of length k */
4204 1.1 paulus uInt c[BMAX+1]; /* bit length count table */
4205 1.1 paulus uInt f; /* i repeats in table every f entries */
4206 1.1 paulus int g; /* maximum code length */
4207 1.1 paulus int h; /* table level */
4208 1.1 paulus register uInt i; /* counter, current code */
4209 1.1 paulus register uInt j; /* counter */
4210 1.1 paulus register int k; /* number of bits in current code */
4211 1.1 paulus int l; /* bits per table (returned in m) */
4212 1.1 paulus register uIntf *p; /* pointer into c[], b[], or v[] */
4213 1.1 paulus inflate_huft *q; /* points to current table */
4214 1.1 paulus struct inflate_huft_s r; /* table entry for structure assignment */
4215 1.1 paulus inflate_huft *u[BMAX]; /* table stack */
4216 1.1 paulus uInt v[N_MAX]; /* values in order of bit length */
4217 1.1 paulus register int w; /* bits before this table == (l * h) */
4218 1.1 paulus uInt x[BMAX+1]; /* bit offsets, then code stack */
4219 1.1 paulus uIntf *xp; /* pointer into x */
4220 1.1 paulus int y; /* number of dummy codes added */
4221 1.1 paulus uInt z; /* number of entries in current table */
4222 1.1 paulus
4223 1.1 paulus
4224 1.1 paulus /* Generate counts for each bit length */
4225 1.1 paulus p = c;
4226 1.1 paulus #define C0 *p++ = 0;
4227 1.1 paulus #define C2 C0 C0 C0 C0
4228 1.1 paulus #define C4 C2 C2 C2 C2
4229 1.1 paulus C4 /* clear c[]--assume BMAX+1 is 16 */
4230 1.1 paulus p = b; i = n;
4231 1.1 paulus do {
4232 1.1 paulus c[*p++]++; /* assume all entries <= BMAX */
4233 1.1 paulus } while (--i);
4234 1.1 paulus if (c[0] == n) /* null input--all zero length codes */
4235 1.1 paulus {
4236 1.1 paulus *t = (inflate_huft *)Z_NULL;
4237 1.1 paulus *m = 0;
4238 1.1 paulus return Z_OK;
4239 1.1 paulus }
4240 1.1 paulus
4241 1.1 paulus
4242 1.1 paulus /* Find minimum and maximum length, bound *m by those */
4243 1.1 paulus l = *m;
4244 1.1 paulus for (j = 1; j <= BMAX; j++)
4245 1.1 paulus if (c[j])
4246 1.1 paulus break;
4247 1.1 paulus k = j; /* minimum code length */
4248 1.1 paulus if ((uInt)l < j)
4249 1.1 paulus l = j;
4250 1.1 paulus for (i = BMAX; i; i--)
4251 1.1 paulus if (c[i])
4252 1.1 paulus break;
4253 1.1 paulus g = i; /* maximum code length */
4254 1.1 paulus if ((uInt)l > i)
4255 1.1 paulus l = i;
4256 1.1 paulus *m = l;
4257 1.1 paulus
4258 1.1 paulus
4259 1.1 paulus /* Adjust last length count to fill out codes, if needed */
4260 1.1 paulus for (y = 1 << j; j < i; j++, y <<= 1)
4261 1.1 paulus if ((y -= c[j]) < 0)
4262 1.1 paulus return Z_DATA_ERROR;
4263 1.1 paulus if ((y -= c[i]) < 0)
4264 1.1 paulus return Z_DATA_ERROR;
4265 1.1 paulus c[i] += y;
4266 1.1 paulus
4267 1.1 paulus
4268 1.1 paulus /* Generate starting offsets into the value table for each length */
4269 1.1 paulus x[1] = j = 0;
4270 1.1 paulus p = c + 1; xp = x + 2;
4271 1.1 paulus while (--i) { /* note that i == g from above */
4272 1.1 paulus *xp++ = (j += *p++);
4273 1.1 paulus }
4274 1.1 paulus
4275 1.1 paulus
4276 1.1 paulus /* Make a table of values in order of bit lengths */
4277 1.1 paulus p = b; i = 0;
4278 1.1 paulus do {
4279 1.1 paulus if ((j = *p++) != 0)
4280 1.1 paulus v[x[j]++] = i;
4281 1.1 paulus } while (++i < n);
4282 1.7 christos n = x[g]; /* set n to length of v */
4283 1.1 paulus
4284 1.1 paulus
4285 1.1 paulus /* Generate the Huffman codes and for each, make the table entries */
4286 1.1 paulus x[0] = i = 0; /* first Huffman code is zero */
4287 1.1 paulus p = v; /* grab values in bit order */
4288 1.1 paulus h = -1; /* no tables yet--level -1 */
4289 1.1 paulus w = -l; /* bits decoded == (l * h) */
4290 1.1 paulus u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4291 1.1 paulus q = (inflate_huft *)Z_NULL; /* ditto */
4292 1.1 paulus z = 0; /* ditto */
4293 1.1 paulus
4294 1.1 paulus /* go through the bit lengths (k already is bits in shortest code) */
4295 1.1 paulus for (; k <= g; k++)
4296 1.1 paulus {
4297 1.1 paulus a = c[k];
4298 1.1 paulus while (a--)
4299 1.1 paulus {
4300 1.1 paulus /* here i is the Huffman code of length k bits for value *p */
4301 1.1 paulus /* make tables up to required level */
4302 1.1 paulus while (k > w + l)
4303 1.1 paulus {
4304 1.1 paulus h++;
4305 1.1 paulus w += l; /* previous table always l bits */
4306 1.1 paulus
4307 1.1 paulus /* compute minimum size table less than or equal to l bits */
4308 1.7 christos z = g - w;
4309 1.7 christos z = z > (uInt)l ? l : z; /* table size upper limit */
4310 1.1 paulus if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4311 1.1 paulus { /* too few codes for k-w bit table */
4312 1.1 paulus f -= a + 1; /* deduct codes from patterns left */
4313 1.1 paulus xp = c + k;
4314 1.1 paulus if (j < z)
4315 1.1 paulus while (++j < z) /* try smaller tables up to z bits */
4316 1.1 paulus {
4317 1.1 paulus if ((f <<= 1) <= *++xp)
4318 1.1 paulus break; /* enough codes to use up j bits */
4319 1.1 paulus f -= *xp; /* else deduct codes from patterns */
4320 1.1 paulus }
4321 1.1 paulus }
4322 1.1 paulus z = 1 << j; /* table entries for j-bit table */
4323 1.1 paulus
4324 1.1 paulus /* allocate and link in new table */
4325 1.1 paulus if ((q = (inflate_huft *)ZALLOC
4326 1.1 paulus (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4327 1.1 paulus {
4328 1.1 paulus if (h)
4329 1.1 paulus inflate_trees_free(u[0], zs);
4330 1.1 paulus return Z_MEM_ERROR; /* not enough memory */
4331 1.1 paulus }
4332 1.1 paulus #ifdef DEBUG_ZLIB
4333 1.1 paulus inflate_hufts += z + 1;
4334 1.1 paulus #endif
4335 1.1 paulus *t = q + 1; /* link to list for huft_free() */
4336 1.1 paulus *(t = &(q->next)) = Z_NULL;
4337 1.1 paulus u[h] = ++q; /* table starts after link */
4338 1.1 paulus
4339 1.1 paulus /* connect to last table, if there is one */
4340 1.1 paulus if (h)
4341 1.1 paulus {
4342 1.1 paulus x[h] = i; /* save pattern for backing up */
4343 1.1 paulus r.bits = (Byte)l; /* bits to dump before this table */
4344 1.1 paulus r.exop = (Byte)j; /* bits in this table */
4345 1.1 paulus r.next = q; /* pointer to this table */
4346 1.1 paulus j = i >> (w - l); /* (get around Turbo C bug) */
4347 1.1 paulus u[h-1][j] = r; /* connect to last table */
4348 1.1 paulus }
4349 1.1 paulus }
4350 1.1 paulus
4351 1.1 paulus /* set up table entry in r */
4352 1.1 paulus r.bits = (Byte)(k - w);
4353 1.1 paulus if (p >= v + n)
4354 1.1 paulus r.exop = 128 + 64; /* out of values--invalid code */
4355 1.1 paulus else if (*p < s)
4356 1.1 paulus {
4357 1.1 paulus r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4358 1.1 paulus r.base = *p++; /* simple code is just the value */
4359 1.1 paulus }
4360 1.1 paulus else
4361 1.1 paulus {
4362 1.7 christos r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4363 1.1 paulus r.base = d[*p++ - s];
4364 1.1 paulus }
4365 1.1 paulus
4366 1.1 paulus /* fill code-like entries with r */
4367 1.1 paulus f = 1 << (k - w);
4368 1.1 paulus for (j = i >> w; j < z; j += f)
4369 1.1 paulus q[j] = r;
4370 1.1 paulus
4371 1.1 paulus /* backwards increment the k-bit code i */
4372 1.1 paulus for (j = 1 << (k - 1); i & j; j >>= 1)
4373 1.1 paulus i ^= j;
4374 1.1 paulus i ^= j;
4375 1.1 paulus
4376 1.1 paulus /* backup over finished tables */
4377 1.1 paulus while ((i & ((1 << w) - 1)) != x[h])
4378 1.1 paulus {
4379 1.1 paulus h--; /* don't need to update q */
4380 1.1 paulus w -= l;
4381 1.1 paulus }
4382 1.1 paulus }
4383 1.1 paulus }
4384 1.1 paulus
4385 1.1 paulus
4386 1.1 paulus /* Return Z_BUF_ERROR if we were given an incomplete table */
4387 1.1 paulus return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4388 1.1 paulus }
4389 1.1 paulus
4390 1.1 paulus
4391 1.7 christos int inflate_trees_bits(c, bb, tb, z)
4392 1.1 paulus uIntf *c; /* 19 code lengths */
4393 1.1 paulus uIntf *bb; /* bits tree desired/actual depth */
4394 1.1 paulus inflate_huft * FAR *tb; /* bits tree result */
4395 1.7 christos z_streamp z; /* for zfree function */
4396 1.1 paulus {
4397 1.1 paulus int r;
4398 1.1 paulus
4399 1.1 paulus r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4400 1.1 paulus if (r == Z_DATA_ERROR)
4401 1.7 christos z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4402 1.7 christos else if (r == Z_BUF_ERROR || *bb == 0)
4403 1.1 paulus {
4404 1.1 paulus inflate_trees_free(*tb, z);
4405 1.7 christos z->msg = (char*)"incomplete dynamic bit lengths tree";
4406 1.1 paulus r = Z_DATA_ERROR;
4407 1.1 paulus }
4408 1.1 paulus return r;
4409 1.1 paulus }
4410 1.1 paulus
4411 1.1 paulus
4412 1.7 christos int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4413 1.1 paulus uInt nl; /* number of literal/length codes */
4414 1.1 paulus uInt nd; /* number of distance codes */
4415 1.1 paulus uIntf *c; /* that many (total) code lengths */
4416 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4417 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4418 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4419 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4420 1.7 christos z_streamp z; /* for zfree function */
4421 1.1 paulus {
4422 1.1 paulus int r;
4423 1.1 paulus
4424 1.1 paulus /* build literal/length tree */
4425 1.7 christos r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4426 1.7 christos if (r != Z_OK || *bl == 0)
4427 1.1 paulus {
4428 1.1 paulus if (r == Z_DATA_ERROR)
4429 1.7 christos z->msg = (char*)"oversubscribed literal/length tree";
4430 1.7 christos else if (r != Z_MEM_ERROR)
4431 1.1 paulus {
4432 1.1 paulus inflate_trees_free(*tl, z);
4433 1.7 christos z->msg = (char*)"incomplete literal/length tree";
4434 1.1 paulus r = Z_DATA_ERROR;
4435 1.1 paulus }
4436 1.1 paulus return r;
4437 1.1 paulus }
4438 1.1 paulus
4439 1.1 paulus /* build distance tree */
4440 1.7 christos r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4441 1.7 christos if (r != Z_OK || (*bd == 0 && nl > 257))
4442 1.1 paulus {
4443 1.1 paulus if (r == Z_DATA_ERROR)
4444 1.7 christos z->msg = (char*)"oversubscribed distance tree";
4445 1.1 paulus else if (r == Z_BUF_ERROR) {
4446 1.1 paulus #ifdef PKZIP_BUG_WORKAROUND
4447 1.1 paulus r = Z_OK;
4448 1.1 paulus }
4449 1.1 paulus #else
4450 1.1 paulus inflate_trees_free(*td, z);
4451 1.7 christos z->msg = (char*)"incomplete distance tree";
4452 1.7 christos r = Z_DATA_ERROR;
4453 1.7 christos }
4454 1.7 christos else if (r != Z_MEM_ERROR)
4455 1.7 christos {
4456 1.7 christos z->msg = (char*)"empty distance tree with lengths";
4457 1.1 paulus r = Z_DATA_ERROR;
4458 1.1 paulus }
4459 1.1 paulus inflate_trees_free(*tl, z);
4460 1.1 paulus return r;
4461 1.1 paulus #endif
4462 1.1 paulus }
4463 1.1 paulus
4464 1.1 paulus /* done */
4465 1.1 paulus return Z_OK;
4466 1.1 paulus }
4467 1.1 paulus
4468 1.1 paulus
4469 1.1 paulus /* build fixed tables only once--keep them here */
4470 1.1 paulus local int fixed_built = 0;
4471 1.1 paulus #define FIXEDH 530 /* number of hufts used by fixed tables */
4472 1.1 paulus local inflate_huft fixed_mem[FIXEDH];
4473 1.1 paulus local uInt fixed_bl;
4474 1.1 paulus local uInt fixed_bd;
4475 1.1 paulus local inflate_huft *fixed_tl;
4476 1.1 paulus local inflate_huft *fixed_td;
4477 1.1 paulus
4478 1.1 paulus
4479 1.1 paulus local voidpf falloc(q, n, s)
4480 1.7 christos voidpf q; /* opaque pointer */
4481 1.1 paulus uInt n; /* number of items */
4482 1.1 paulus uInt s; /* size of item */
4483 1.1 paulus {
4484 1.7 christos Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4485 1.1 paulus "inflate_trees falloc overflow");
4486 1.7 christos *(intf *)q -= n+s-s; /* s-s to avoid warning */
4487 1.7 christos return (voidpf)(fixed_mem + *(intf *)q);
4488 1.1 paulus }
4489 1.1 paulus
4490 1.1 paulus
4491 1.7 christos int inflate_trees_fixed(bl, bd, tl, td)
4492 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4493 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4494 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4495 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4496 1.1 paulus {
4497 1.7 christos /* build fixed tables if not already (multiple overlapped executions ok) */
4498 1.1 paulus if (!fixed_built)
4499 1.1 paulus {
4500 1.1 paulus int k; /* temporary variable */
4501 1.1 paulus unsigned c[288]; /* length list for huft_build */
4502 1.1 paulus z_stream z; /* for falloc function */
4503 1.7 christos int f = FIXEDH; /* number of hufts left in fixed_mem */
4504 1.1 paulus
4505 1.1 paulus /* set up fake z_stream for memory routines */
4506 1.1 paulus z.zalloc = falloc;
4507 1.7 christos z.zfree = Z_NULL;
4508 1.7 christos z.opaque = (voidpf)&f;
4509 1.1 paulus
4510 1.1 paulus /* literal table */
4511 1.1 paulus for (k = 0; k < 144; k++)
4512 1.1 paulus c[k] = 8;
4513 1.1 paulus for (; k < 256; k++)
4514 1.1 paulus c[k] = 9;
4515 1.1 paulus for (; k < 280; k++)
4516 1.1 paulus c[k] = 7;
4517 1.1 paulus for (; k < 288; k++)
4518 1.1 paulus c[k] = 8;
4519 1.1 paulus fixed_bl = 7;
4520 1.1 paulus huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4521 1.1 paulus
4522 1.1 paulus /* distance table */
4523 1.1 paulus for (k = 0; k < 30; k++)
4524 1.1 paulus c[k] = 5;
4525 1.1 paulus fixed_bd = 5;
4526 1.1 paulus huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4527 1.1 paulus
4528 1.1 paulus /* done */
4529 1.7 christos Assert(f == 0, "invalid build of fixed tables");
4530 1.1 paulus fixed_built = 1;
4531 1.1 paulus }
4532 1.1 paulus *bl = fixed_bl;
4533 1.1 paulus *bd = fixed_bd;
4534 1.1 paulus *tl = fixed_tl;
4535 1.1 paulus *td = fixed_td;
4536 1.1 paulus return Z_OK;
4537 1.1 paulus }
4538 1.1 paulus
4539 1.1 paulus
4540 1.7 christos int inflate_trees_free(t, z)
4541 1.1 paulus inflate_huft *t; /* table to free */
4542 1.7 christos z_streamp z; /* for zfree function */
4543 1.1 paulus /* Free the malloc'ed tables built by huft_build(), which makes a linked
4544 1.1 paulus list of the tables it made, with the links in a dummy first entry of
4545 1.1 paulus each table. */
4546 1.1 paulus {
4547 1.7 christos register inflate_huft *p, *q, *r;
4548 1.1 paulus
4549 1.7 christos /* Reverse linked list */
4550 1.7 christos p = Z_NULL;
4551 1.7 christos q = t;
4552 1.7 christos while (q != Z_NULL)
4553 1.7 christos {
4554 1.7 christos r = (q - 1)->next;
4555 1.7 christos (q - 1)->next = p;
4556 1.7 christos p = q;
4557 1.7 christos q = r;
4558 1.7 christos }
4559 1.1 paulus /* Go through linked list, freeing from the malloced (t[-1]) address. */
4560 1.1 paulus while (p != Z_NULL)
4561 1.1 paulus {
4562 1.1 paulus q = (--p)->next;
4563 1.7 christos ZFREE(z,p);
4564 1.1 paulus p = q;
4565 1.1 paulus }
4566 1.1 paulus return Z_OK;
4567 1.1 paulus }
4568 1.7 christos /* --- inftrees.c */
4569 1.1 paulus
4570 1.7 christos /* +++ infcodes.c */
4571 1.1 paulus /* infcodes.c -- process literals and length/distance pairs
4572 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4573 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4574 1.1 paulus */
4575 1.1 paulus
4576 1.7 christos /* #include "zutil.h" */
4577 1.7 christos /* #include "inftrees.h" */
4578 1.7 christos /* #include "infblock.h" */
4579 1.7 christos /* #include "infcodes.h" */
4580 1.7 christos /* #include "infutil.h" */
4581 1.7 christos
4582 1.7 christos /* +++ inffast.h */
4583 1.7 christos /* inffast.h -- header to use inffast.c
4584 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4585 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
4586 1.7 christos */
4587 1.7 christos
4588 1.7 christos /* WARNING: this file should *not* be used by applications. It is
4589 1.7 christos part of the implementation of the compression library and is
4590 1.7 christos subject to change. Applications should only use zlib.h.
4591 1.7 christos */
4592 1.7 christos
4593 1.7 christos extern int inflate_fast OF((
4594 1.7 christos uInt,
4595 1.7 christos uInt,
4596 1.7 christos inflate_huft *,
4597 1.7 christos inflate_huft *,
4598 1.7 christos inflate_blocks_statef *,
4599 1.7 christos z_streamp ));
4600 1.7 christos /* --- inffast.h */
4601 1.7 christos
4602 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4603 1.1 paulus #define base more.Base
4604 1.1 paulus #define next more.Next
4605 1.1 paulus #define exop word.what.Exop
4606 1.1 paulus #define bits word.what.Bits
4607 1.1 paulus
4608 1.1 paulus /* inflate codes private state */
4609 1.1 paulus struct inflate_codes_state {
4610 1.1 paulus
4611 1.1 paulus /* mode */
4612 1.1 paulus enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4613 1.1 paulus START, /* x: set up for LEN */
4614 1.1 paulus LEN, /* i: get length/literal/eob next */
4615 1.1 paulus LENEXT, /* i: getting length extra (have base) */
4616 1.1 paulus DIST, /* i: get distance next */
4617 1.1 paulus DISTEXT, /* i: getting distance extra */
4618 1.1 paulus COPY, /* o: copying bytes in window, waiting for space */
4619 1.1 paulus LIT, /* o: got literal, waiting for output space */
4620 1.1 paulus WASH, /* o: got eob, possibly still output waiting */
4621 1.1 paulus END, /* x: got eob and all data flushed */
4622 1.1 paulus BADCODE} /* x: got error */
4623 1.1 paulus mode; /* current inflate_codes mode */
4624 1.1 paulus
4625 1.1 paulus /* mode dependent information */
4626 1.1 paulus uInt len;
4627 1.1 paulus union {
4628 1.1 paulus struct {
4629 1.1 paulus inflate_huft *tree; /* pointer into tree */
4630 1.1 paulus uInt need; /* bits needed */
4631 1.1 paulus } code; /* if LEN or DIST, where in tree */
4632 1.1 paulus uInt lit; /* if LIT, literal */
4633 1.1 paulus struct {
4634 1.1 paulus uInt get; /* bits to get for extra */
4635 1.1 paulus uInt dist; /* distance back to copy from */
4636 1.1 paulus } copy; /* if EXT or COPY, where and how much */
4637 1.1 paulus } sub; /* submode */
4638 1.1 paulus
4639 1.1 paulus /* mode independent information */
4640 1.1 paulus Byte lbits; /* ltree bits decoded per branch */
4641 1.1 paulus Byte dbits; /* dtree bits decoder per branch */
4642 1.1 paulus inflate_huft *ltree; /* literal/length/eob tree */
4643 1.1 paulus inflate_huft *dtree; /* distance tree */
4644 1.1 paulus
4645 1.1 paulus };
4646 1.1 paulus
4647 1.1 paulus
4648 1.7 christos inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4649 1.1 paulus uInt bl, bd;
4650 1.7 christos inflate_huft *tl;
4651 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
4652 1.7 christos z_streamp z;
4653 1.1 paulus {
4654 1.1 paulus inflate_codes_statef *c;
4655 1.1 paulus
4656 1.1 paulus if ((c = (inflate_codes_statef *)
4657 1.1 paulus ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4658 1.1 paulus {
4659 1.1 paulus c->mode = START;
4660 1.1 paulus c->lbits = (Byte)bl;
4661 1.1 paulus c->dbits = (Byte)bd;
4662 1.1 paulus c->ltree = tl;
4663 1.1 paulus c->dtree = td;
4664 1.1 paulus Tracev((stderr, "inflate: codes new\n"));
4665 1.1 paulus }
4666 1.1 paulus return c;
4667 1.1 paulus }
4668 1.1 paulus
4669 1.1 paulus
4670 1.7 christos int inflate_codes(s, z, r)
4671 1.1 paulus inflate_blocks_statef *s;
4672 1.7 christos z_streamp z;
4673 1.1 paulus int r;
4674 1.1 paulus {
4675 1.1 paulus uInt j; /* temporary storage */
4676 1.1 paulus inflate_huft *t; /* temporary pointer */
4677 1.1 paulus uInt e; /* extra bits or operation */
4678 1.1 paulus uLong b; /* bit buffer */
4679 1.1 paulus uInt k; /* bits in bit buffer */
4680 1.1 paulus Bytef *p; /* input data pointer */
4681 1.1 paulus uInt n; /* bytes available there */
4682 1.1 paulus Bytef *q; /* output window write pointer */
4683 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4684 1.1 paulus Bytef *f; /* pointer to copy strings from */
4685 1.1 paulus inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4686 1.1 paulus
4687 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
4688 1.1 paulus LOAD
4689 1.1 paulus
4690 1.1 paulus /* process input and output based on current state */
4691 1.1 paulus while (1) switch (c->mode)
4692 1.1 paulus { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4693 1.1 paulus case START: /* x: set up for LEN */
4694 1.1 paulus #ifndef SLOW
4695 1.1 paulus if (m >= 258 && n >= 10)
4696 1.1 paulus {
4697 1.1 paulus UPDATE
4698 1.1 paulus r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4699 1.1 paulus LOAD
4700 1.1 paulus if (r != Z_OK)
4701 1.1 paulus {
4702 1.1 paulus c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4703 1.1 paulus break;
4704 1.1 paulus }
4705 1.1 paulus }
4706 1.1 paulus #endif /* !SLOW */
4707 1.1 paulus c->sub.code.need = c->lbits;
4708 1.1 paulus c->sub.code.tree = c->ltree;
4709 1.1 paulus c->mode = LEN;
4710 1.1 paulus case LEN: /* i: get length/literal/eob next */
4711 1.1 paulus j = c->sub.code.need;
4712 1.1 paulus NEEDBITS(j)
4713 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4714 1.1 paulus DUMPBITS(t->bits)
4715 1.1 paulus e = (uInt)(t->exop);
4716 1.1 paulus if (e == 0) /* literal */
4717 1.1 paulus {
4718 1.1 paulus c->sub.lit = t->base;
4719 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4720 1.1 paulus "inflate: literal '%c'\n" :
4721 1.1 paulus "inflate: literal 0x%02x\n", t->base));
4722 1.1 paulus c->mode = LIT;
4723 1.1 paulus break;
4724 1.1 paulus }
4725 1.1 paulus if (e & 16) /* length */
4726 1.1 paulus {
4727 1.1 paulus c->sub.copy.get = e & 15;
4728 1.1 paulus c->len = t->base;
4729 1.1 paulus c->mode = LENEXT;
4730 1.1 paulus break;
4731 1.1 paulus }
4732 1.1 paulus if ((e & 64) == 0) /* next table */
4733 1.1 paulus {
4734 1.1 paulus c->sub.code.need = e;
4735 1.1 paulus c->sub.code.tree = t->next;
4736 1.1 paulus break;
4737 1.1 paulus }
4738 1.1 paulus if (e & 32) /* end of block */
4739 1.1 paulus {
4740 1.1 paulus Tracevv((stderr, "inflate: end of block\n"));
4741 1.1 paulus c->mode = WASH;
4742 1.1 paulus break;
4743 1.1 paulus }
4744 1.1 paulus c->mode = BADCODE; /* invalid code */
4745 1.7 christos z->msg = (char*)"invalid literal/length code";
4746 1.1 paulus r = Z_DATA_ERROR;
4747 1.1 paulus LEAVE
4748 1.1 paulus case LENEXT: /* i: getting length extra (have base) */
4749 1.1 paulus j = c->sub.copy.get;
4750 1.1 paulus NEEDBITS(j)
4751 1.1 paulus c->len += (uInt)b & inflate_mask[j];
4752 1.1 paulus DUMPBITS(j)
4753 1.1 paulus c->sub.code.need = c->dbits;
4754 1.1 paulus c->sub.code.tree = c->dtree;
4755 1.1 paulus Tracevv((stderr, "inflate: length %u\n", c->len));
4756 1.1 paulus c->mode = DIST;
4757 1.1 paulus case DIST: /* i: get distance next */
4758 1.1 paulus j = c->sub.code.need;
4759 1.1 paulus NEEDBITS(j)
4760 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4761 1.1 paulus DUMPBITS(t->bits)
4762 1.1 paulus e = (uInt)(t->exop);
4763 1.1 paulus if (e & 16) /* distance */
4764 1.1 paulus {
4765 1.1 paulus c->sub.copy.get = e & 15;
4766 1.1 paulus c->sub.copy.dist = t->base;
4767 1.1 paulus c->mode = DISTEXT;
4768 1.1 paulus break;
4769 1.1 paulus }
4770 1.1 paulus if ((e & 64) == 0) /* next table */
4771 1.1 paulus {
4772 1.1 paulus c->sub.code.need = e;
4773 1.1 paulus c->sub.code.tree = t->next;
4774 1.1 paulus break;
4775 1.1 paulus }
4776 1.1 paulus c->mode = BADCODE; /* invalid code */
4777 1.7 christos z->msg = (char*)"invalid distance code";
4778 1.1 paulus r = Z_DATA_ERROR;
4779 1.1 paulus LEAVE
4780 1.1 paulus case DISTEXT: /* i: getting distance extra */
4781 1.1 paulus j = c->sub.copy.get;
4782 1.1 paulus NEEDBITS(j)
4783 1.1 paulus c->sub.copy.dist += (uInt)b & inflate_mask[j];
4784 1.1 paulus DUMPBITS(j)
4785 1.1 paulus Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4786 1.1 paulus c->mode = COPY;
4787 1.1 paulus case COPY: /* o: copying bytes in window, waiting for space */
4788 1.1 paulus #ifndef __TURBOC__ /* Turbo C bug for following expression */
4789 1.1 paulus f = (uInt)(q - s->window) < c->sub.copy.dist ?
4790 1.1 paulus s->end - (c->sub.copy.dist - (q - s->window)) :
4791 1.1 paulus q - c->sub.copy.dist;
4792 1.1 paulus #else
4793 1.1 paulus f = q - c->sub.copy.dist;
4794 1.1 paulus if ((uInt)(q - s->window) < c->sub.copy.dist)
4795 1.7 christos f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4796 1.1 paulus #endif
4797 1.1 paulus while (c->len)
4798 1.1 paulus {
4799 1.1 paulus NEEDOUT
4800 1.1 paulus OUTBYTE(*f++)
4801 1.1 paulus if (f == s->end)
4802 1.1 paulus f = s->window;
4803 1.1 paulus c->len--;
4804 1.1 paulus }
4805 1.1 paulus c->mode = START;
4806 1.1 paulus break;
4807 1.1 paulus case LIT: /* o: got literal, waiting for output space */
4808 1.1 paulus NEEDOUT
4809 1.1 paulus OUTBYTE(c->sub.lit)
4810 1.1 paulus c->mode = START;
4811 1.1 paulus break;
4812 1.1 paulus case WASH: /* o: got eob, possibly more output */
4813 1.1 paulus FLUSH
4814 1.1 paulus if (s->read != s->write)
4815 1.1 paulus LEAVE
4816 1.1 paulus c->mode = END;
4817 1.1 paulus case END:
4818 1.1 paulus r = Z_STREAM_END;
4819 1.1 paulus LEAVE
4820 1.1 paulus case BADCODE: /* x: got error */
4821 1.1 paulus r = Z_DATA_ERROR;
4822 1.1 paulus LEAVE
4823 1.1 paulus default:
4824 1.1 paulus r = Z_STREAM_ERROR;
4825 1.1 paulus LEAVE
4826 1.1 paulus }
4827 1.1 paulus }
4828 1.1 paulus
4829 1.1 paulus
4830 1.7 christos void inflate_codes_free(c, z)
4831 1.1 paulus inflate_codes_statef *c;
4832 1.7 christos z_streamp z;
4833 1.1 paulus {
4834 1.7 christos ZFREE(z, c);
4835 1.1 paulus Tracev((stderr, "inflate: codes free\n"));
4836 1.1 paulus }
4837 1.7 christos /* --- infcodes.c */
4838 1.1 paulus
4839 1.7 christos /* +++ infutil.c */
4840 1.1 paulus /* inflate_util.c -- data and routines common to blocks and codes
4841 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4842 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4843 1.1 paulus */
4844 1.1 paulus
4845 1.7 christos /* #include "zutil.h" */
4846 1.7 christos /* #include "infblock.h" */
4847 1.7 christos /* #include "inftrees.h" */
4848 1.7 christos /* #include "infcodes.h" */
4849 1.7 christos /* #include "infutil.h" */
4850 1.7 christos
4851 1.7 christos #ifndef NO_DUMMY_DECL
4852 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4853 1.7 christos #endif
4854 1.7 christos
4855 1.7 christos /* And'ing with mask[n] masks the lower n bits */
4856 1.7 christos uInt inflate_mask[17] = {
4857 1.7 christos 0x0000,
4858 1.7 christos 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4859 1.7 christos 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4860 1.7 christos };
4861 1.7 christos
4862 1.7 christos
4863 1.1 paulus /* copy as much as possible from the sliding window to the output area */
4864 1.7 christos int inflate_flush(s, z, r)
4865 1.1 paulus inflate_blocks_statef *s;
4866 1.7 christos z_streamp z;
4867 1.1 paulus int r;
4868 1.1 paulus {
4869 1.1 paulus uInt n;
4870 1.7 christos Bytef *p;
4871 1.7 christos Bytef *q;
4872 1.1 paulus
4873 1.1 paulus /* local copies of source and destination pointers */
4874 1.1 paulus p = z->next_out;
4875 1.1 paulus q = s->read;
4876 1.1 paulus
4877 1.1 paulus /* compute number of bytes to copy as far as end of window */
4878 1.1 paulus n = (uInt)((q <= s->write ? s->write : s->end) - q);
4879 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4880 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4881 1.1 paulus
4882 1.1 paulus /* update counters */
4883 1.1 paulus z->avail_out -= n;
4884 1.1 paulus z->total_out += n;
4885 1.1 paulus
4886 1.1 paulus /* update check information */
4887 1.1 paulus if (s->checkfn != Z_NULL)
4888 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
4889 1.1 paulus
4890 1.1 paulus /* copy as far as end of window */
4891 1.7 christos if (p != Z_NULL) {
4892 1.1 paulus zmemcpy(p, q, n);
4893 1.1 paulus p += n;
4894 1.1 paulus }
4895 1.1 paulus q += n;
4896 1.1 paulus
4897 1.1 paulus /* see if more to copy at beginning of window */
4898 1.1 paulus if (q == s->end)
4899 1.1 paulus {
4900 1.1 paulus /* wrap pointers */
4901 1.1 paulus q = s->window;
4902 1.1 paulus if (s->write == s->end)
4903 1.1 paulus s->write = s->window;
4904 1.1 paulus
4905 1.1 paulus /* compute bytes to copy */
4906 1.1 paulus n = (uInt)(s->write - q);
4907 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4908 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4909 1.1 paulus
4910 1.1 paulus /* update counters */
4911 1.1 paulus z->avail_out -= n;
4912 1.1 paulus z->total_out += n;
4913 1.1 paulus
4914 1.1 paulus /* update check information */
4915 1.1 paulus if (s->checkfn != Z_NULL)
4916 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
4917 1.1 paulus
4918 1.1 paulus /* copy */
4919 1.7 christos if (p != Z_NULL) {
4920 1.1 paulus zmemcpy(p, q, n);
4921 1.1 paulus p += n;
4922 1.1 paulus }
4923 1.1 paulus q += n;
4924 1.1 paulus }
4925 1.1 paulus
4926 1.1 paulus /* update pointers */
4927 1.1 paulus z->next_out = p;
4928 1.1 paulus s->read = q;
4929 1.1 paulus
4930 1.1 paulus /* done */
4931 1.1 paulus return r;
4932 1.1 paulus }
4933 1.7 christos /* --- infutil.c */
4934 1.1 paulus
4935 1.7 christos /* +++ inffast.c */
4936 1.1 paulus /* inffast.c -- process literals and length/distance pairs fast
4937 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4938 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4939 1.1 paulus */
4940 1.1 paulus
4941 1.7 christos /* #include "zutil.h" */
4942 1.7 christos /* #include "inftrees.h" */
4943 1.7 christos /* #include "infblock.h" */
4944 1.7 christos /* #include "infcodes.h" */
4945 1.7 christos /* #include "infutil.h" */
4946 1.7 christos /* #include "inffast.h" */
4947 1.7 christos
4948 1.7 christos #ifndef NO_DUMMY_DECL
4949 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4950 1.7 christos #endif
4951 1.7 christos
4952 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4953 1.1 paulus #define base more.Base
4954 1.1 paulus #define next more.Next
4955 1.1 paulus #define exop word.what.Exop
4956 1.1 paulus #define bits word.what.Bits
4957 1.1 paulus
4958 1.1 paulus /* macros for bit input with no checking and for returning unused bytes */
4959 1.1 paulus #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4960 1.1 paulus #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4961 1.1 paulus
4962 1.1 paulus /* Called with number of bytes left to write in window at least 258
4963 1.1 paulus (the maximum string length) and number of input bytes available
4964 1.1 paulus at least ten. The ten bytes are six bytes for the longest length/
4965 1.1 paulus distance pair plus four bytes for overloading the bit buffer. */
4966 1.1 paulus
4967 1.7 christos int inflate_fast(bl, bd, tl, td, s, z)
4968 1.1 paulus uInt bl, bd;
4969 1.7 christos inflate_huft *tl;
4970 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
4971 1.1 paulus inflate_blocks_statef *s;
4972 1.7 christos z_streamp z;
4973 1.1 paulus {
4974 1.1 paulus inflate_huft *t; /* temporary pointer */
4975 1.1 paulus uInt e; /* extra bits or operation */
4976 1.1 paulus uLong b; /* bit buffer */
4977 1.1 paulus uInt k; /* bits in bit buffer */
4978 1.1 paulus Bytef *p; /* input data pointer */
4979 1.1 paulus uInt n; /* bytes available there */
4980 1.1 paulus Bytef *q; /* output window write pointer */
4981 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4982 1.1 paulus uInt ml; /* mask for literal/length tree */
4983 1.1 paulus uInt md; /* mask for distance tree */
4984 1.1 paulus uInt c; /* bytes to copy */
4985 1.1 paulus uInt d; /* distance back to copy from */
4986 1.1 paulus Bytef *r; /* copy source pointer */
4987 1.1 paulus
4988 1.1 paulus /* load input, output, bit values */
4989 1.1 paulus LOAD
4990 1.1 paulus
4991 1.1 paulus /* initialize masks */
4992 1.1 paulus ml = inflate_mask[bl];
4993 1.1 paulus md = inflate_mask[bd];
4994 1.1 paulus
4995 1.1 paulus /* do until not enough input or output space for fast loop */
4996 1.1 paulus do { /* assume called with m >= 258 && n >= 10 */
4997 1.1 paulus /* get literal/length code */
4998 1.1 paulus GRABBITS(20) /* max bits for literal/length code */
4999 1.1 paulus if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5000 1.1 paulus {
5001 1.1 paulus DUMPBITS(t->bits)
5002 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5003 1.1 paulus "inflate: * literal '%c'\n" :
5004 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5005 1.1 paulus *q++ = (Byte)t->base;
5006 1.1 paulus m--;
5007 1.1 paulus continue;
5008 1.1 paulus }
5009 1.1 paulus do {
5010 1.1 paulus DUMPBITS(t->bits)
5011 1.1 paulus if (e & 16)
5012 1.1 paulus {
5013 1.1 paulus /* get extra bits for length */
5014 1.1 paulus e &= 15;
5015 1.1 paulus c = t->base + ((uInt)b & inflate_mask[e]);
5016 1.1 paulus DUMPBITS(e)
5017 1.1 paulus Tracevv((stderr, "inflate: * length %u\n", c));
5018 1.1 paulus
5019 1.1 paulus /* decode distance base of block to copy */
5020 1.1 paulus GRABBITS(15); /* max bits for distance code */
5021 1.1 paulus e = (t = td + ((uInt)b & md))->exop;
5022 1.1 paulus do {
5023 1.1 paulus DUMPBITS(t->bits)
5024 1.1 paulus if (e & 16)
5025 1.1 paulus {
5026 1.1 paulus /* get extra bits to add to distance base */
5027 1.1 paulus e &= 15;
5028 1.1 paulus GRABBITS(e) /* get extra bits (up to 13) */
5029 1.1 paulus d = t->base + ((uInt)b & inflate_mask[e]);
5030 1.1 paulus DUMPBITS(e)
5031 1.1 paulus Tracevv((stderr, "inflate: * distance %u\n", d));
5032 1.1 paulus
5033 1.1 paulus /* do the copy */
5034 1.1 paulus m -= c;
5035 1.1 paulus if ((uInt)(q - s->window) >= d) /* offset before dest */
5036 1.1 paulus { /* just copy */
5037 1.1 paulus r = q - d;
5038 1.1 paulus *q++ = *r++; c--; /* minimum count is three, */
5039 1.1 paulus *q++ = *r++; c--; /* so unroll loop a little */
5040 1.1 paulus }
5041 1.1 paulus else /* else offset after destination */
5042 1.1 paulus {
5043 1.7 christos e = d - (uInt)(q - s->window); /* bytes from offset to end */
5044 1.1 paulus r = s->end - e; /* pointer to offset */
5045 1.1 paulus if (c > e) /* if source crosses, */
5046 1.1 paulus {
5047 1.1 paulus c -= e; /* copy to end of window */
5048 1.1 paulus do {
5049 1.1 paulus *q++ = *r++;
5050 1.1 paulus } while (--e);
5051 1.1 paulus r = s->window; /* copy rest from start of window */
5052 1.1 paulus }
5053 1.1 paulus }
5054 1.1 paulus do { /* copy all or what's left */
5055 1.1 paulus *q++ = *r++;
5056 1.1 paulus } while (--c);
5057 1.1 paulus break;
5058 1.1 paulus }
5059 1.1 paulus else if ((e & 64) == 0)
5060 1.1 paulus e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5061 1.1 paulus else
5062 1.1 paulus {
5063 1.7 christos z->msg = (char*)"invalid distance code";
5064 1.1 paulus UNGRAB
5065 1.1 paulus UPDATE
5066 1.1 paulus return Z_DATA_ERROR;
5067 1.1 paulus }
5068 1.1 paulus } while (1);
5069 1.1 paulus break;
5070 1.1 paulus }
5071 1.1 paulus if ((e & 64) == 0)
5072 1.1 paulus {
5073 1.1 paulus if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5074 1.1 paulus {
5075 1.1 paulus DUMPBITS(t->bits)
5076 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5077 1.1 paulus "inflate: * literal '%c'\n" :
5078 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5079 1.1 paulus *q++ = (Byte)t->base;
5080 1.1 paulus m--;
5081 1.1 paulus break;
5082 1.1 paulus }
5083 1.1 paulus }
5084 1.1 paulus else if (e & 32)
5085 1.1 paulus {
5086 1.1 paulus Tracevv((stderr, "inflate: * end of block\n"));
5087 1.1 paulus UNGRAB
5088 1.1 paulus UPDATE
5089 1.1 paulus return Z_STREAM_END;
5090 1.1 paulus }
5091 1.1 paulus else
5092 1.1 paulus {
5093 1.7 christos z->msg = (char*)"invalid literal/length code";
5094 1.1 paulus UNGRAB
5095 1.1 paulus UPDATE
5096 1.1 paulus return Z_DATA_ERROR;
5097 1.1 paulus }
5098 1.1 paulus } while (1);
5099 1.1 paulus } while (m >= 258 && n >= 10);
5100 1.1 paulus
5101 1.1 paulus /* not enough input or output--restore pointers and return */
5102 1.1 paulus UNGRAB
5103 1.1 paulus UPDATE
5104 1.1 paulus return Z_OK;
5105 1.1 paulus }
5106 1.7 christos /* --- inffast.c */
5107 1.1 paulus
5108 1.7 christos /* +++ zutil.c */
5109 1.1 paulus /* zutil.c -- target dependent utility functions for the compression library
5110 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
5111 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
5112 1.1 paulus */
5113 1.1 paulus
5114 1.7 christos /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5115 1.7 christos
5116 1.7 christos #ifdef DEBUG_ZLIB
5117 1.7 christos #include <stdio.h>
5118 1.7 christos #endif
5119 1.7 christos
5120 1.7 christos /* #include "zutil.h" */
5121 1.1 paulus
5122 1.7 christos #ifndef NO_DUMMY_DECL
5123 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
5124 1.7 christos #endif
5125 1.7 christos
5126 1.7 christos #ifndef STDC
5127 1.7 christos extern void exit OF((int));
5128 1.7 christos #endif
5129 1.1 paulus
5130 1.7 christos const char *z_errmsg[10] = {
5131 1.7 christos "need dictionary", /* Z_NEED_DICT 2 */
5132 1.7 christos "stream end", /* Z_STREAM_END 1 */
5133 1.7 christos "", /* Z_OK 0 */
5134 1.7 christos "file error", /* Z_ERRNO (-1) */
5135 1.7 christos "stream error", /* Z_STREAM_ERROR (-2) */
5136 1.7 christos "data error", /* Z_DATA_ERROR (-3) */
5137 1.7 christos "insufficient memory", /* Z_MEM_ERROR (-4) */
5138 1.7 christos "buffer error", /* Z_BUF_ERROR (-5) */
5139 1.7 christos "incompatible version",/* Z_VERSION_ERROR (-6) */
5140 1.1 paulus ""};
5141 1.1 paulus
5142 1.1 paulus
5143 1.7 christos const char *zlibVersion()
5144 1.7 christos {
5145 1.7 christos return ZLIB_VERSION;
5146 1.7 christos }
5147 1.7 christos
5148 1.7 christos #ifdef DEBUG_ZLIB
5149 1.7 christos void z_error (m)
5150 1.7 christos char *m;
5151 1.7 christos {
5152 1.7 christos fprintf(stderr, "%s\n", m);
5153 1.7 christos exit(1);
5154 1.7 christos }
5155 1.7 christos #endif
5156 1.7 christos
5157 1.7 christos #ifndef HAVE_MEMCPY
5158 1.7 christos
5159 1.7 christos void zmemcpy(dest, source, len)
5160 1.7 christos Bytef* dest;
5161 1.7 christos Bytef* source;
5162 1.7 christos uInt len;
5163 1.7 christos {
5164 1.7 christos if (len == 0) return;
5165 1.7 christos do {
5166 1.7 christos *dest++ = *source++; /* ??? to be unrolled */
5167 1.7 christos } while (--len != 0);
5168 1.7 christos }
5169 1.7 christos
5170 1.7 christos int zmemcmp(s1, s2, len)
5171 1.7 christos Bytef* s1;
5172 1.7 christos Bytef* s2;
5173 1.7 christos uInt len;
5174 1.7 christos {
5175 1.7 christos uInt j;
5176 1.7 christos
5177 1.7 christos for (j = 0; j < len; j++) {
5178 1.7 christos if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5179 1.7 christos }
5180 1.7 christos return 0;
5181 1.7 christos }
5182 1.7 christos
5183 1.7 christos void zmemzero(dest, len)
5184 1.7 christos Bytef* dest;
5185 1.7 christos uInt len;
5186 1.7 christos {
5187 1.7 christos if (len == 0) return;
5188 1.7 christos do {
5189 1.7 christos *dest++ = 0; /* ??? to be unrolled */
5190 1.7 christos } while (--len != 0);
5191 1.7 christos }
5192 1.7 christos #endif
5193 1.7 christos
5194 1.7 christos #ifdef __TURBOC__
5195 1.7 christos #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5196 1.7 christos /* Small and medium model in Turbo C are for now limited to near allocation
5197 1.7 christos * with reduced MAX_WBITS and MAX_MEM_LEVEL
5198 1.7 christos */
5199 1.7 christos # define MY_ZCALLOC
5200 1.7 christos
5201 1.7 christos /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5202 1.7 christos * and farmalloc(64K) returns a pointer with an offset of 8, so we
5203 1.7 christos * must fix the pointer. Warning: the pointer must be put back to its
5204 1.7 christos * original form in order to free it, use zcfree().
5205 1.7 christos */
5206 1.7 christos
5207 1.7 christos #define MAX_PTR 10
5208 1.7 christos /* 10*64K = 640K */
5209 1.7 christos
5210 1.7 christos local int next_ptr = 0;
5211 1.7 christos
5212 1.7 christos typedef struct ptr_table_s {
5213 1.7 christos voidpf org_ptr;
5214 1.7 christos voidpf new_ptr;
5215 1.7 christos } ptr_table;
5216 1.7 christos
5217 1.7 christos local ptr_table table[MAX_PTR];
5218 1.7 christos /* This table is used to remember the original form of pointers
5219 1.7 christos * to large buffers (64K). Such pointers are normalized with a zero offset.
5220 1.7 christos * Since MSDOS is not a preemptive multitasking OS, this table is not
5221 1.7 christos * protected from concurrent access. This hack doesn't work anyway on
5222 1.7 christos * a protected system like OS/2. Use Microsoft C instead.
5223 1.7 christos */
5224 1.7 christos
5225 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5226 1.7 christos {
5227 1.7 christos voidpf buf = opaque; /* just to make some compilers happy */
5228 1.7 christos ulg bsize = (ulg)items*size;
5229 1.7 christos
5230 1.7 christos /* If we allocate less than 65520 bytes, we assume that farmalloc
5231 1.7 christos * will return a usable pointer which doesn't have to be normalized.
5232 1.7 christos */
5233 1.7 christos if (bsize < 65520L) {
5234 1.7 christos buf = farmalloc(bsize);
5235 1.7 christos if (*(ush*)&buf != 0) return buf;
5236 1.7 christos } else {
5237 1.7 christos buf = farmalloc(bsize + 16L);
5238 1.7 christos }
5239 1.7 christos if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5240 1.7 christos table[next_ptr].org_ptr = buf;
5241 1.7 christos
5242 1.7 christos /* Normalize the pointer to seg:0 */
5243 1.7 christos *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5244 1.7 christos *(ush*)&buf = 0;
5245 1.7 christos table[next_ptr++].new_ptr = buf;
5246 1.7 christos return buf;
5247 1.7 christos }
5248 1.7 christos
5249 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5250 1.7 christos {
5251 1.7 christos int n;
5252 1.7 christos if (*(ush*)&ptr != 0) { /* object < 64K */
5253 1.7 christos farfree(ptr);
5254 1.7 christos return;
5255 1.7 christos }
5256 1.7 christos /* Find the original pointer */
5257 1.7 christos for (n = 0; n < next_ptr; n++) {
5258 1.7 christos if (ptr != table[n].new_ptr) continue;
5259 1.7 christos
5260 1.7 christos farfree(table[n].org_ptr);
5261 1.7 christos while (++n < next_ptr) {
5262 1.7 christos table[n-1] = table[n];
5263 1.7 christos }
5264 1.7 christos next_ptr--;
5265 1.7 christos return;
5266 1.7 christos }
5267 1.7 christos ptr = opaque; /* just to make some compilers happy */
5268 1.7 christos Assert(0, "zcfree: ptr not found");
5269 1.7 christos }
5270 1.7 christos #endif
5271 1.7 christos #endif /* __TURBOC__ */
5272 1.7 christos
5273 1.7 christos
5274 1.7 christos #if defined(M_I86) && !defined(__32BIT__)
5275 1.7 christos /* Microsoft C in 16-bit mode */
5276 1.7 christos
5277 1.7 christos # define MY_ZCALLOC
5278 1.7 christos
5279 1.7 christos #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5280 1.7 christos # define _halloc halloc
5281 1.7 christos # define _hfree hfree
5282 1.7 christos #endif
5283 1.7 christos
5284 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5285 1.7 christos {
5286 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5287 1.7 christos return _halloc((long)items, size);
5288 1.7 christos }
5289 1.7 christos
5290 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5291 1.7 christos {
5292 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5293 1.7 christos _hfree(ptr);
5294 1.7 christos }
5295 1.7 christos
5296 1.7 christos #endif /* MSC */
5297 1.7 christos
5298 1.7 christos
5299 1.7 christos #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5300 1.7 christos
5301 1.7 christos #ifndef STDC
5302 1.7 christos extern voidp calloc OF((uInt items, uInt size));
5303 1.7 christos extern void free OF((voidpf ptr));
5304 1.7 christos #endif
5305 1.7 christos
5306 1.7 christos voidpf zcalloc (opaque, items, size)
5307 1.7 christos voidpf opaque;
5308 1.7 christos unsigned items;
5309 1.7 christos unsigned size;
5310 1.7 christos {
5311 1.7 christos if (opaque) items += size - size; /* make compiler happy */
5312 1.7 christos return (voidpf)calloc(items, size);
5313 1.7 christos }
5314 1.7 christos
5315 1.7 christos void zcfree (opaque, ptr)
5316 1.7 christos voidpf opaque;
5317 1.7 christos voidpf ptr;
5318 1.7 christos {
5319 1.7 christos free(ptr);
5320 1.7 christos if (opaque) return; /* make compiler happy */
5321 1.7 christos }
5322 1.7 christos
5323 1.7 christos #endif /* MY_ZCALLOC */
5324 1.7 christos /* --- zutil.c */
5325 1.7 christos
5326 1.7 christos /* +++ adler32.c */
5327 1.1 paulus /* adler32.c -- compute the Adler-32 checksum of a data stream
5328 1.7 christos * Copyright (C) 1995-1996 Mark Adler
5329 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
5330 1.1 paulus */
5331 1.1 paulus
5332 1.7 christos /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5333 1.7 christos
5334 1.7 christos /* #include "zlib.h" */
5335 1.1 paulus
5336 1.1 paulus #define BASE 65521L /* largest prime smaller than 65536 */
5337 1.1 paulus #define NMAX 5552
5338 1.1 paulus /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5339 1.1 paulus
5340 1.7 christos #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5341 1.7 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5342 1.7 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5343 1.7 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5344 1.7 christos #define DO16(buf) DO8(buf,0); DO8(buf,8);
5345 1.1 paulus
5346 1.1 paulus /* ========================================================================= */
5347 1.1 paulus uLong adler32(adler, buf, len)
5348 1.1 paulus uLong adler;
5349 1.7 christos const Bytef *buf;
5350 1.1 paulus uInt len;
5351 1.1 paulus {
5352 1.1 paulus unsigned long s1 = adler & 0xffff;
5353 1.1 paulus unsigned long s2 = (adler >> 16) & 0xffff;
5354 1.1 paulus int k;
5355 1.1 paulus
5356 1.1 paulus if (buf == Z_NULL) return 1L;
5357 1.1 paulus
5358 1.1 paulus while (len > 0) {
5359 1.1 paulus k = len < NMAX ? len : NMAX;
5360 1.1 paulus len -= k;
5361 1.1 paulus while (k >= 16) {
5362 1.1 paulus DO16(buf);
5363 1.7 christos buf += 16;
5364 1.1 paulus k -= 16;
5365 1.1 paulus }
5366 1.1 paulus if (k != 0) do {
5367 1.7 christos s1 += *buf++;
5368 1.7 christos s2 += s1;
5369 1.1 paulus } while (--k);
5370 1.1 paulus s1 %= BASE;
5371 1.1 paulus s2 %= BASE;
5372 1.1 paulus }
5373 1.1 paulus return (s2 << 16) | s1;
5374 1.1 paulus }
5375 1.7 christos /* --- adler32.c */
5376