zlib.c revision 1.9 1 1.9 ragge /* $NetBSD: zlib.c,v 1.9 1999/11/19 22:07:12 ragge Exp $ */
2 1.1 paulus /*
3 1.7 christos * This file is derived from various .h and .c files from the zlib-1.0.4
4 1.1 paulus * distribution by Jean-loup Gailly and Mark Adler, with some additions
5 1.1 paulus * by Paul Mackerras to aid in implementing Deflate compression and
6 1.1 paulus * decompression for PPP packets. See zlib.h for conditions of
7 1.1 paulus * distribution and use.
8 1.1 paulus *
9 1.1 paulus * Changes that have been made include:
10 1.1 paulus * - added Z_PACKET_FLUSH (see zlib.h for details)
11 1.7 christos * - added inflateIncomp and deflateOutputPending
12 1.7 christos * - allow strm->next_out to be NULL, meaning discard the output
13 1.4 christos *
14 1.9 ragge * $Id: zlib.c,v 1.9 1999/11/19 22:07:12 ragge Exp $
15 1.1 paulus */
16 1.1 paulus
17 1.4 christos /*
18 1.7 christos * ==FILEVERSION 971210==
19 1.4 christos *
20 1.4 christos * This marker is used by the Linux installation script to determine
21 1.4 christos * whether an up-to-date version of this file is already installed.
22 1.4 christos */
23 1.1 paulus
24 1.7 christos #define NO_DUMMY_DECL
25 1.7 christos #define NO_ZCFUNCS
26 1.7 christos #define MY_ZCALLOC
27 1.7 christos
28 1.7 christos #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
29 1.7 christos #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
30 1.7 christos #endif
31 1.7 christos
32 1.7 christos
33 1.7 christos /* +++ zutil.h */
34 1.1 paulus /* zutil.h -- internal interface and configuration of the compression library
35 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
36 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
37 1.1 paulus */
38 1.1 paulus
39 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
40 1.1 paulus part of the implementation of the compression library and is
41 1.1 paulus subject to change. Applications should only use zlib.h.
42 1.1 paulus */
43 1.1 paulus
44 1.7 christos /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45 1.1 paulus
46 1.7 christos #ifndef _Z_UTIL_H
47 1.1 paulus #define _Z_UTIL_H
48 1.1 paulus
49 1.1 paulus #include "zlib.h"
50 1.1 paulus
51 1.7 christos #if defined(KERNEL) || defined(_KERNEL)
52 1.7 christos /* Assume this is a *BSD or SVR4 kernel */
53 1.9 ragge #include <sys/param.h>
54 1.7 christos #include <sys/time.h>
55 1.7 christos #include <sys/systm.h>
56 1.7 christos # define HAVE_MEMCPY
57 1.7 christos # define memcpy(d, s, n) bcopy((s), (d), (n))
58 1.7 christos # define memset(d, v, n) bzero((d), (n))
59 1.7 christos # define memcmp bcmp
60 1.7 christos
61 1.7 christos #else
62 1.7 christos #if defined(__KERNEL__)
63 1.7 christos /* Assume this is a Linux kernel */
64 1.7 christos #include <linux/string.h>
65 1.7 christos #define HAVE_MEMCPY
66 1.7 christos
67 1.7 christos #else /* not kernel */
68 1.7 christos
69 1.7 christos #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70 1.7 christos # include <stddef.h>
71 1.7 christos # include <errno.h>
72 1.7 christos #else
73 1.7 christos extern int errno;
74 1.7 christos #endif
75 1.7 christos #ifdef STDC
76 1.7 christos # include <string.h>
77 1.7 christos # include <stdlib.h>
78 1.7 christos #endif
79 1.7 christos #endif /* __KERNEL__ */
80 1.7 christos #endif /* _KERNEL || KERNEL */
81 1.7 christos
82 1.1 paulus #ifndef local
83 1.1 paulus # define local static
84 1.1 paulus #endif
85 1.1 paulus /* compile with -Dlocal if your debugger can't find static symbols */
86 1.1 paulus
87 1.1 paulus typedef unsigned char uch;
88 1.1 paulus typedef uch FAR uchf;
89 1.1 paulus typedef unsigned short ush;
90 1.1 paulus typedef ush FAR ushf;
91 1.1 paulus typedef unsigned long ulg;
92 1.1 paulus
93 1.7 christos extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
94 1.7 christos /* (size given to avoid silly warnings with Visual C++) */
95 1.1 paulus
96 1.7 christos #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97 1.7 christos
98 1.7 christos #define ERR_RETURN(strm,err) \
99 1.7 christos return (strm->msg = (char*)ERR_MSG(err), (err))
100 1.1 paulus /* To be used only when the state is known to be valid */
101 1.1 paulus
102 1.1 paulus /* common constants */
103 1.1 paulus
104 1.1 paulus #ifndef DEF_WBITS
105 1.1 paulus # define DEF_WBITS MAX_WBITS
106 1.1 paulus #endif
107 1.1 paulus /* default windowBits for decompression. MAX_WBITS is for compression only */
108 1.1 paulus
109 1.1 paulus #if MAX_MEM_LEVEL >= 8
110 1.1 paulus # define DEF_MEM_LEVEL 8
111 1.1 paulus #else
112 1.1 paulus # define DEF_MEM_LEVEL MAX_MEM_LEVEL
113 1.1 paulus #endif
114 1.1 paulus /* default memLevel */
115 1.1 paulus
116 1.1 paulus #define STORED_BLOCK 0
117 1.1 paulus #define STATIC_TREES 1
118 1.1 paulus #define DYN_TREES 2
119 1.1 paulus /* The three kinds of block type */
120 1.1 paulus
121 1.1 paulus #define MIN_MATCH 3
122 1.1 paulus #define MAX_MATCH 258
123 1.1 paulus /* The minimum and maximum match lengths */
124 1.1 paulus
125 1.7 christos #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126 1.7 christos
127 1.7 christos /* target dependencies */
128 1.7 christos
129 1.7 christos #ifdef MSDOS
130 1.7 christos # define OS_CODE 0x00
131 1.7 christos # ifdef __TURBOC__
132 1.7 christos # include <alloc.h>
133 1.7 christos # else /* MSC or DJGPP */
134 1.7 christos # include <malloc.h>
135 1.7 christos # endif
136 1.7 christos #endif
137 1.7 christos
138 1.7 christos #ifdef OS2
139 1.7 christos # define OS_CODE 0x06
140 1.7 christos #endif
141 1.7 christos
142 1.7 christos #ifdef WIN32 /* Window 95 & Windows NT */
143 1.7 christos # define OS_CODE 0x0b
144 1.7 christos #endif
145 1.7 christos
146 1.7 christos #if defined(VAXC) || defined(VMS)
147 1.7 christos # define OS_CODE 0x02
148 1.7 christos # define FOPEN(name, mode) \
149 1.7 christos fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150 1.7 christos #endif
151 1.7 christos
152 1.7 christos #ifdef AMIGA
153 1.7 christos # define OS_CODE 0x01
154 1.7 christos #endif
155 1.7 christos
156 1.7 christos #if defined(ATARI) || defined(atarist)
157 1.7 christos # define OS_CODE 0x05
158 1.7 christos #endif
159 1.7 christos
160 1.7 christos #ifdef MACOS
161 1.7 christos # define OS_CODE 0x07
162 1.7 christos #endif
163 1.7 christos
164 1.7 christos #ifdef __50SERIES /* Prime/PRIMOS */
165 1.7 christos # define OS_CODE 0x0F
166 1.7 christos #endif
167 1.7 christos
168 1.7 christos #ifdef TOPS20
169 1.7 christos # define OS_CODE 0x0a
170 1.7 christos #endif
171 1.7 christos
172 1.7 christos #if defined(_BEOS_) || defined(RISCOS)
173 1.7 christos # define fdopen(fd,mode) NULL /* No fdopen() */
174 1.7 christos #endif
175 1.7 christos
176 1.7 christos /* Common defaults */
177 1.7 christos
178 1.7 christos #ifndef OS_CODE
179 1.7 christos # define OS_CODE 0x03 /* assume Unix */
180 1.7 christos #endif
181 1.7 christos
182 1.7 christos #ifndef FOPEN
183 1.7 christos # define FOPEN(name, mode) fopen((name), (mode))
184 1.7 christos #endif
185 1.7 christos
186 1.1 paulus /* functions */
187 1.1 paulus
188 1.7 christos #ifdef HAVE_STRERROR
189 1.7 christos extern char *strerror OF((int));
190 1.7 christos # define zstrerror(errnum) strerror(errnum)
191 1.1 paulus #else
192 1.7 christos # define zstrerror(errnum) ""
193 1.7 christos #endif
194 1.4 christos
195 1.7 christos #if defined(pyr)
196 1.7 christos # define NO_MEMCPY
197 1.7 christos #endif
198 1.7 christos #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199 1.7 christos /* Use our own functions for small and medium model with MSC <= 5.0.
200 1.7 christos * You may have to use the same strategy for Borland C (untested).
201 1.7 christos */
202 1.7 christos # define NO_MEMCPY
203 1.7 christos #endif
204 1.1 paulus #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205 1.1 paulus # define HAVE_MEMCPY
206 1.1 paulus #endif
207 1.1 paulus #ifdef HAVE_MEMCPY
208 1.7 christos # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209 1.7 christos # define zmemcpy _fmemcpy
210 1.7 christos # define zmemcmp _fmemcmp
211 1.7 christos # define zmemzero(dest, len) _fmemset(dest, 0, len)
212 1.7 christos # else
213 1.1 paulus # define zmemcpy memcpy
214 1.7 christos # define zmemcmp memcmp
215 1.1 paulus # define zmemzero(dest, len) memset(dest, 0, len)
216 1.7 christos # endif
217 1.1 paulus #else
218 1.1 paulus extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
219 1.7 christos extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
220 1.1 paulus extern void zmemzero OF((Bytef* dest, uInt len));
221 1.1 paulus #endif
222 1.1 paulus
223 1.1 paulus /* Diagnostic functions */
224 1.1 paulus #ifdef DEBUG_ZLIB
225 1.1 paulus # include <stdio.h>
226 1.1 paulus # ifndef verbose
227 1.1 paulus # define verbose 0
228 1.1 paulus # endif
229 1.7 christos extern void z_error OF((char *m));
230 1.1 paulus # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231 1.1 paulus # define Trace(x) fprintf x
232 1.1 paulus # define Tracev(x) {if (verbose) fprintf x ;}
233 1.1 paulus # define Tracevv(x) {if (verbose>1) fprintf x ;}
234 1.1 paulus # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235 1.1 paulus # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236 1.1 paulus #else
237 1.1 paulus # define Assert(cond,msg)
238 1.1 paulus # define Trace(x)
239 1.1 paulus # define Tracev(x)
240 1.1 paulus # define Tracevv(x)
241 1.1 paulus # define Tracec(c,x)
242 1.1 paulus # define Tracecv(c,x)
243 1.1 paulus #endif
244 1.1 paulus
245 1.1 paulus
246 1.7 christos typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247 1.1 paulus
248 1.7 christos voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249 1.7 christos void zcfree OF((voidpf opaque, voidpf ptr));
250 1.1 paulus
251 1.1 paulus #define ZALLOC(strm, items, size) \
252 1.1 paulus (*((strm)->zalloc))((strm)->opaque, (items), (size))
253 1.7 christos #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254 1.7 christos #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255 1.7 christos
256 1.7 christos #endif /* _Z_UTIL_H */
257 1.7 christos /* --- zutil.h */
258 1.1 paulus
259 1.7 christos /* +++ deflate.h */
260 1.1 paulus /* deflate.h -- internal compression state
261 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly
262 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
263 1.1 paulus */
264 1.1 paulus
265 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
266 1.1 paulus part of the implementation of the compression library and is
267 1.1 paulus subject to change. Applications should only use zlib.h.
268 1.1 paulus */
269 1.1 paulus
270 1.7 christos /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271 1.1 paulus
272 1.7 christos #ifndef _DEFLATE_H
273 1.7 christos #define _DEFLATE_H
274 1.7 christos
275 1.7 christos /* #include "zutil.h" */
276 1.1 paulus
277 1.1 paulus /* ===========================================================================
278 1.1 paulus * Internal compression state.
279 1.1 paulus */
280 1.1 paulus
281 1.1 paulus #define LENGTH_CODES 29
282 1.1 paulus /* number of length codes, not counting the special END_BLOCK code */
283 1.1 paulus
284 1.1 paulus #define LITERALS 256
285 1.1 paulus /* number of literal bytes 0..255 */
286 1.1 paulus
287 1.1 paulus #define L_CODES (LITERALS+1+LENGTH_CODES)
288 1.1 paulus /* number of Literal or Length codes, including the END_BLOCK code */
289 1.1 paulus
290 1.1 paulus #define D_CODES 30
291 1.1 paulus /* number of distance codes */
292 1.1 paulus
293 1.1 paulus #define BL_CODES 19
294 1.1 paulus /* number of codes used to transfer the bit lengths */
295 1.1 paulus
296 1.1 paulus #define HEAP_SIZE (2*L_CODES+1)
297 1.1 paulus /* maximum heap size */
298 1.1 paulus
299 1.1 paulus #define MAX_BITS 15
300 1.1 paulus /* All codes must not exceed MAX_BITS bits */
301 1.1 paulus
302 1.1 paulus #define INIT_STATE 42
303 1.1 paulus #define BUSY_STATE 113
304 1.1 paulus #define FINISH_STATE 666
305 1.1 paulus /* Stream status */
306 1.1 paulus
307 1.1 paulus
308 1.1 paulus /* Data structure describing a single value and its code string. */
309 1.1 paulus typedef struct ct_data_s {
310 1.1 paulus union {
311 1.1 paulus ush freq; /* frequency count */
312 1.1 paulus ush code; /* bit string */
313 1.1 paulus } fc;
314 1.1 paulus union {
315 1.1 paulus ush dad; /* father node in Huffman tree */
316 1.1 paulus ush len; /* length of bit string */
317 1.1 paulus } dl;
318 1.1 paulus } FAR ct_data;
319 1.1 paulus
320 1.1 paulus #define Freq fc.freq
321 1.1 paulus #define Code fc.code
322 1.1 paulus #define Dad dl.dad
323 1.1 paulus #define Len dl.len
324 1.1 paulus
325 1.1 paulus typedef struct static_tree_desc_s static_tree_desc;
326 1.1 paulus
327 1.1 paulus typedef struct tree_desc_s {
328 1.1 paulus ct_data *dyn_tree; /* the dynamic tree */
329 1.1 paulus int max_code; /* largest code with non zero frequency */
330 1.1 paulus static_tree_desc *stat_desc; /* the corresponding static tree */
331 1.1 paulus } FAR tree_desc;
332 1.1 paulus
333 1.1 paulus typedef ush Pos;
334 1.1 paulus typedef Pos FAR Posf;
335 1.1 paulus typedef unsigned IPos;
336 1.1 paulus
337 1.1 paulus /* A Pos is an index in the character window. We use short instead of int to
338 1.1 paulus * save space in the various tables. IPos is used only for parameter passing.
339 1.1 paulus */
340 1.1 paulus
341 1.1 paulus typedef struct deflate_state {
342 1.7 christos z_streamp strm; /* pointer back to this zlib stream */
343 1.1 paulus int status; /* as the name implies */
344 1.1 paulus Bytef *pending_buf; /* output still pending */
345 1.7 christos ulg pending_buf_size; /* size of pending_buf */
346 1.1 paulus Bytef *pending_out; /* next pending byte to output to the stream */
347 1.1 paulus int pending; /* nb of bytes in the pending buffer */
348 1.1 paulus int noheader; /* suppress zlib header and adler32 */
349 1.7 christos Byte data_type; /* UNKNOWN, BINARY or ASCII */
350 1.1 paulus Byte method; /* STORED (for zip only) or DEFLATED */
351 1.7 christos int last_flush; /* value of flush param for previous deflate call */
352 1.1 paulus
353 1.1 paulus /* used by deflate.c: */
354 1.1 paulus
355 1.1 paulus uInt w_size; /* LZ77 window size (32K by default) */
356 1.1 paulus uInt w_bits; /* log2(w_size) (8..16) */
357 1.1 paulus uInt w_mask; /* w_size - 1 */
358 1.1 paulus
359 1.1 paulus Bytef *window;
360 1.1 paulus /* Sliding window. Input bytes are read into the second half of the window,
361 1.1 paulus * and move to the first half later to keep a dictionary of at least wSize
362 1.1 paulus * bytes. With this organization, matches are limited to a distance of
363 1.1 paulus * wSize-MAX_MATCH bytes, but this ensures that IO is always
364 1.1 paulus * performed with a length multiple of the block size. Also, it limits
365 1.1 paulus * the window size to 64K, which is quite useful on MSDOS.
366 1.1 paulus * To do: use the user input buffer as sliding window.
367 1.1 paulus */
368 1.1 paulus
369 1.1 paulus ulg window_size;
370 1.1 paulus /* Actual size of window: 2*wSize, except when the user input buffer
371 1.1 paulus * is directly used as sliding window.
372 1.1 paulus */
373 1.1 paulus
374 1.1 paulus Posf *prev;
375 1.1 paulus /* Link to older string with same hash index. To limit the size of this
376 1.1 paulus * array to 64K, this link is maintained only for the last 32K strings.
377 1.1 paulus * An index in this array is thus a window index modulo 32K.
378 1.1 paulus */
379 1.1 paulus
380 1.1 paulus Posf *head; /* Heads of the hash chains or NIL. */
381 1.1 paulus
382 1.1 paulus uInt ins_h; /* hash index of string to be inserted */
383 1.1 paulus uInt hash_size; /* number of elements in hash table */
384 1.1 paulus uInt hash_bits; /* log2(hash_size) */
385 1.1 paulus uInt hash_mask; /* hash_size-1 */
386 1.1 paulus
387 1.1 paulus uInt hash_shift;
388 1.1 paulus /* Number of bits by which ins_h must be shifted at each input
389 1.1 paulus * step. It must be such that after MIN_MATCH steps, the oldest
390 1.1 paulus * byte no longer takes part in the hash key, that is:
391 1.1 paulus * hash_shift * MIN_MATCH >= hash_bits
392 1.1 paulus */
393 1.1 paulus
394 1.1 paulus long block_start;
395 1.1 paulus /* Window position at the beginning of the current output block. Gets
396 1.1 paulus * negative when the window is moved backwards.
397 1.1 paulus */
398 1.1 paulus
399 1.1 paulus uInt match_length; /* length of best match */
400 1.1 paulus IPos prev_match; /* previous match */
401 1.1 paulus int match_available; /* set if previous match exists */
402 1.1 paulus uInt strstart; /* start of string to insert */
403 1.1 paulus uInt match_start; /* start of matching string */
404 1.1 paulus uInt lookahead; /* number of valid bytes ahead in window */
405 1.1 paulus
406 1.1 paulus uInt prev_length;
407 1.1 paulus /* Length of the best match at previous step. Matches not greater than this
408 1.1 paulus * are discarded. This is used in the lazy match evaluation.
409 1.1 paulus */
410 1.1 paulus
411 1.1 paulus uInt max_chain_length;
412 1.1 paulus /* To speed up deflation, hash chains are never searched beyond this
413 1.1 paulus * length. A higher limit improves compression ratio but degrades the
414 1.1 paulus * speed.
415 1.1 paulus */
416 1.1 paulus
417 1.1 paulus uInt max_lazy_match;
418 1.1 paulus /* Attempt to find a better match only when the current match is strictly
419 1.1 paulus * smaller than this value. This mechanism is used only for compression
420 1.1 paulus * levels >= 4.
421 1.1 paulus */
422 1.1 paulus # define max_insert_length max_lazy_match
423 1.1 paulus /* Insert new strings in the hash table only if the match length is not
424 1.1 paulus * greater than this length. This saves time but degrades compression.
425 1.1 paulus * max_insert_length is used only for compression levels <= 3.
426 1.1 paulus */
427 1.1 paulus
428 1.1 paulus int level; /* compression level (1..9) */
429 1.1 paulus int strategy; /* favor or force Huffman coding*/
430 1.1 paulus
431 1.1 paulus uInt good_match;
432 1.1 paulus /* Use a faster search when the previous match is longer than this */
433 1.1 paulus
434 1.7 christos int nice_match; /* Stop searching when current match exceeds this */
435 1.1 paulus
436 1.1 paulus /* used by trees.c: */
437 1.1 paulus /* Didn't use ct_data typedef below to supress compiler warning */
438 1.1 paulus struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
439 1.1 paulus struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440 1.1 paulus struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
441 1.1 paulus
442 1.1 paulus struct tree_desc_s l_desc; /* desc. for literal tree */
443 1.1 paulus struct tree_desc_s d_desc; /* desc. for distance tree */
444 1.1 paulus struct tree_desc_s bl_desc; /* desc. for bit length tree */
445 1.1 paulus
446 1.1 paulus ush bl_count[MAX_BITS+1];
447 1.1 paulus /* number of codes at each bit length for an optimal tree */
448 1.1 paulus
449 1.1 paulus int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
450 1.1 paulus int heap_len; /* number of elements in the heap */
451 1.1 paulus int heap_max; /* element of largest frequency */
452 1.1 paulus /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453 1.1 paulus * The same heap array is used to build all trees.
454 1.1 paulus */
455 1.1 paulus
456 1.1 paulus uch depth[2*L_CODES+1];
457 1.1 paulus /* Depth of each subtree used as tie breaker for trees of equal frequency
458 1.1 paulus */
459 1.1 paulus
460 1.1 paulus uchf *l_buf; /* buffer for literals or lengths */
461 1.1 paulus
462 1.1 paulus uInt lit_bufsize;
463 1.1 paulus /* Size of match buffer for literals/lengths. There are 4 reasons for
464 1.1 paulus * limiting lit_bufsize to 64K:
465 1.1 paulus * - frequencies can be kept in 16 bit counters
466 1.1 paulus * - if compression is not successful for the first block, all input
467 1.1 paulus * data is still in the window so we can still emit a stored block even
468 1.1 paulus * when input comes from standard input. (This can also be done for
469 1.1 paulus * all blocks if lit_bufsize is not greater than 32K.)
470 1.1 paulus * - if compression is not successful for a file smaller than 64K, we can
471 1.1 paulus * even emit a stored file instead of a stored block (saving 5 bytes).
472 1.1 paulus * This is applicable only for zip (not gzip or zlib).
473 1.1 paulus * - creating new Huffman trees less frequently may not provide fast
474 1.1 paulus * adaptation to changes in the input data statistics. (Take for
475 1.1 paulus * example a binary file with poorly compressible code followed by
476 1.1 paulus * a highly compressible string table.) Smaller buffer sizes give
477 1.1 paulus * fast adaptation but have of course the overhead of transmitting
478 1.1 paulus * trees more frequently.
479 1.1 paulus * - I can't count above 4
480 1.1 paulus */
481 1.1 paulus
482 1.1 paulus uInt last_lit; /* running index in l_buf */
483 1.1 paulus
484 1.1 paulus ushf *d_buf;
485 1.1 paulus /* Buffer for distances. To simplify the code, d_buf and l_buf have
486 1.1 paulus * the same number of elements. To use different lengths, an extra flag
487 1.1 paulus * array would be necessary.
488 1.1 paulus */
489 1.1 paulus
490 1.1 paulus ulg opt_len; /* bit length of current block with optimal trees */
491 1.1 paulus ulg static_len; /* bit length of current block with static trees */
492 1.1 paulus ulg compressed_len; /* total bit length of compressed file */
493 1.1 paulus uInt matches; /* number of string matches in current block */
494 1.1 paulus int last_eob_len; /* bit length of EOB code for last block */
495 1.1 paulus
496 1.1 paulus #ifdef DEBUG_ZLIB
497 1.1 paulus ulg bits_sent; /* bit length of the compressed data */
498 1.1 paulus #endif
499 1.1 paulus
500 1.1 paulus ush bi_buf;
501 1.1 paulus /* Output buffer. bits are inserted starting at the bottom (least
502 1.1 paulus * significant bits).
503 1.1 paulus */
504 1.1 paulus int bi_valid;
505 1.1 paulus /* Number of valid bits in bi_buf. All bits above the last valid bit
506 1.1 paulus * are always zero.
507 1.1 paulus */
508 1.1 paulus
509 1.1 paulus } FAR deflate_state;
510 1.1 paulus
511 1.1 paulus /* Output a byte on the stream.
512 1.1 paulus * IN assertion: there is enough room in pending_buf.
513 1.1 paulus */
514 1.1 paulus #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515 1.1 paulus
516 1.1 paulus
517 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
519 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
520 1.1 paulus */
521 1.1 paulus
522 1.1 paulus #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
523 1.1 paulus /* In order to simplify the code, particularly on 16 bit machines, match
524 1.1 paulus * distances are limited to MAX_DIST instead of WSIZE.
525 1.1 paulus */
526 1.1 paulus
527 1.1 paulus /* in trees.c */
528 1.7 christos void _tr_init OF((deflate_state *s));
529 1.7 christos int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
530 1.7 christos ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
531 1.7 christos int eof));
532 1.7 christos void _tr_align OF((deflate_state *s));
533 1.7 christos void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534 1.1 paulus int eof));
535 1.7 christos void _tr_stored_type_only OF((deflate_state *));
536 1.1 paulus
537 1.7 christos #endif
538 1.7 christos /* --- deflate.h */
539 1.1 paulus
540 1.7 christos /* +++ deflate.c */
541 1.1 paulus /* deflate.c -- compress data using the deflation algorithm
542 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
543 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
544 1.1 paulus */
545 1.1 paulus
546 1.1 paulus /*
547 1.1 paulus * ALGORITHM
548 1.1 paulus *
549 1.1 paulus * The "deflation" process depends on being able to identify portions
550 1.1 paulus * of the input text which are identical to earlier input (within a
551 1.1 paulus * sliding window trailing behind the input currently being processed).
552 1.1 paulus *
553 1.1 paulus * The most straightforward technique turns out to be the fastest for
554 1.1 paulus * most input files: try all possible matches and select the longest.
555 1.1 paulus * The key feature of this algorithm is that insertions into the string
556 1.1 paulus * dictionary are very simple and thus fast, and deletions are avoided
557 1.1 paulus * completely. Insertions are performed at each input character, whereas
558 1.1 paulus * string matches are performed only when the previous match ends. So it
559 1.1 paulus * is preferable to spend more time in matches to allow very fast string
560 1.1 paulus * insertions and avoid deletions. The matching algorithm for small
561 1.1 paulus * strings is inspired from that of Rabin & Karp. A brute force approach
562 1.1 paulus * is used to find longer strings when a small match has been found.
563 1.1 paulus * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564 1.1 paulus * (by Leonid Broukhis).
565 1.1 paulus * A previous version of this file used a more sophisticated algorithm
566 1.1 paulus * (by Fiala and Greene) which is guaranteed to run in linear amortized
567 1.1 paulus * time, but has a larger average cost, uses more memory and is patented.
568 1.1 paulus * However the F&G algorithm may be faster for some highly redundant
569 1.1 paulus * files if the parameter max_chain_length (described below) is too large.
570 1.1 paulus *
571 1.1 paulus * ACKNOWLEDGEMENTS
572 1.1 paulus *
573 1.1 paulus * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574 1.1 paulus * I found it in 'freeze' written by Leonid Broukhis.
575 1.1 paulus * Thanks to many people for bug reports and testing.
576 1.1 paulus *
577 1.1 paulus * REFERENCES
578 1.1 paulus *
579 1.7 christos * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580 1.7 christos * Available in ftp://ds.internic.net/rfc/rfc1951.txt
581 1.1 paulus *
582 1.1 paulus * A description of the Rabin and Karp algorithm is given in the book
583 1.1 paulus * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584 1.1 paulus *
585 1.1 paulus * Fiala,E.R., and Greene,D.H.
586 1.1 paulus * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587 1.1 paulus *
588 1.1 paulus */
589 1.1 paulus
590 1.7 christos /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591 1.7 christos
592 1.7 christos /* #include "deflate.h" */
593 1.1 paulus
594 1.7 christos char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595 1.1 paulus /*
596 1.1 paulus If you use the zlib library in a product, an acknowledgment is welcome
597 1.1 paulus in the documentation of your product. If for some reason you cannot
598 1.1 paulus include such an acknowledgment, I would appreciate that you keep this
599 1.1 paulus copyright string in the executable of your product.
600 1.1 paulus */
601 1.1 paulus
602 1.7 christos /* ===========================================================================
603 1.7 christos * Function prototypes.
604 1.7 christos */
605 1.7 christos typedef enum {
606 1.7 christos need_more, /* block not completed, need more input or more output */
607 1.7 christos block_done, /* block flush performed */
608 1.7 christos finish_started, /* finish started, need only more output at next deflate */
609 1.7 christos finish_done /* finish done, accept no more input or output */
610 1.7 christos } block_state;
611 1.7 christos
612 1.7 christos typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613 1.7 christos /* Compression function. Returns the block state after the call. */
614 1.7 christos
615 1.7 christos local void fill_window OF((deflate_state *s));
616 1.7 christos local block_state deflate_stored OF((deflate_state *s, int flush));
617 1.7 christos local block_state deflate_fast OF((deflate_state *s, int flush));
618 1.7 christos local block_state deflate_slow OF((deflate_state *s, int flush));
619 1.7 christos local void lm_init OF((deflate_state *s));
620 1.7 christos local void putShortMSB OF((deflate_state *s, uInt b));
621 1.7 christos local void flush_pending OF((z_streamp strm));
622 1.7 christos local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
623 1.7 christos #ifdef ASMV
624 1.7 christos void match_init OF((void)); /* asm code initialization */
625 1.7 christos uInt longest_match OF((deflate_state *s, IPos cur_match));
626 1.7 christos #else
627 1.7 christos local uInt longest_match OF((deflate_state *s, IPos cur_match));
628 1.7 christos #endif
629 1.7 christos
630 1.7 christos #ifdef DEBUG_ZLIB
631 1.7 christos local void check_match OF((deflate_state *s, IPos start, IPos match,
632 1.7 christos int length));
633 1.7 christos #endif
634 1.7 christos
635 1.7 christos /* ===========================================================================
636 1.7 christos * Local data
637 1.7 christos */
638 1.7 christos
639 1.1 paulus #define NIL 0
640 1.1 paulus /* Tail of hash chains */
641 1.1 paulus
642 1.1 paulus #ifndef TOO_FAR
643 1.1 paulus # define TOO_FAR 4096
644 1.1 paulus #endif
645 1.1 paulus /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646 1.1 paulus
647 1.1 paulus #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648 1.1 paulus /* Minimum amount of lookahead, except at the end of the input file.
649 1.1 paulus * See deflate.c for comments about the MIN_MATCH+1.
650 1.1 paulus */
651 1.1 paulus
652 1.1 paulus /* Values for max_lazy_match, good_match and max_chain_length, depending on
653 1.1 paulus * the desired pack level (0..9). The values given below have been tuned to
654 1.1 paulus * exclude worst case performance for pathological files. Better values may be
655 1.1 paulus * found for specific files.
656 1.1 paulus */
657 1.1 paulus typedef struct config_s {
658 1.1 paulus ush good_length; /* reduce lazy search above this match length */
659 1.1 paulus ush max_lazy; /* do not perform lazy search above this match length */
660 1.1 paulus ush nice_length; /* quit search above this match length */
661 1.1 paulus ush max_chain;
662 1.7 christos compress_func func;
663 1.1 paulus } config;
664 1.1 paulus
665 1.1 paulus local config configuration_table[10] = {
666 1.1 paulus /* good lazy nice chain */
667 1.7 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
668 1.7 christos /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
669 1.7 christos /* 2 */ {4, 5, 16, 8, deflate_fast},
670 1.7 christos /* 3 */ {4, 6, 32, 32, deflate_fast},
671 1.7 christos
672 1.7 christos /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
673 1.7 christos /* 5 */ {8, 16, 32, 32, deflate_slow},
674 1.7 christos /* 6 */ {8, 16, 128, 128, deflate_slow},
675 1.7 christos /* 7 */ {8, 32, 128, 256, deflate_slow},
676 1.7 christos /* 8 */ {32, 128, 258, 1024, deflate_slow},
677 1.7 christos /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678 1.1 paulus
679 1.1 paulus /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680 1.1 paulus * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681 1.1 paulus * meaning.
682 1.1 paulus */
683 1.1 paulus
684 1.1 paulus #define EQUAL 0
685 1.1 paulus /* result of memcmp for equal strings */
686 1.1 paulus
687 1.7 christos #ifndef NO_DUMMY_DECL
688 1.7 christos struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689 1.1 paulus #endif
690 1.1 paulus
691 1.1 paulus /* ===========================================================================
692 1.1 paulus * Update a hash value with the given input byte
693 1.1 paulus * IN assertion: all calls to to UPDATE_HASH are made with consecutive
694 1.1 paulus * input characters, so that a running hash key can be computed from the
695 1.1 paulus * previous key instead of complete recalculation each time.
696 1.1 paulus */
697 1.1 paulus #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698 1.1 paulus
699 1.1 paulus
700 1.1 paulus /* ===========================================================================
701 1.1 paulus * Insert string str in the dictionary and set match_head to the previous head
702 1.1 paulus * of the hash chain (the most recent string with same hash key). Return
703 1.1 paulus * the previous length of the hash chain.
704 1.1 paulus * IN assertion: all calls to to INSERT_STRING are made with consecutive
705 1.1 paulus * input characters and the first MIN_MATCH bytes of str are valid
706 1.1 paulus * (except for the last MIN_MATCH-1 bytes of the input file).
707 1.1 paulus */
708 1.1 paulus #define INSERT_STRING(s, str, match_head) \
709 1.1 paulus (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710 1.1 paulus s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711 1.7 christos s->head[s->ins_h] = (Pos)(str))
712 1.1 paulus
713 1.1 paulus /* ===========================================================================
714 1.1 paulus * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715 1.1 paulus * prev[] will be initialized on the fly.
716 1.1 paulus */
717 1.1 paulus #define CLEAR_HASH(s) \
718 1.1 paulus s->head[s->hash_size-1] = NIL; \
719 1.1 paulus zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720 1.1 paulus
721 1.1 paulus /* ========================================================================= */
722 1.7 christos int deflateInit_(strm, level, version, stream_size)
723 1.7 christos z_streamp strm;
724 1.1 paulus int level;
725 1.7 christos const char *version;
726 1.7 christos int stream_size;
727 1.1 paulus {
728 1.7 christos return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729 1.7 christos Z_DEFAULT_STRATEGY, version, stream_size);
730 1.1 paulus /* To do: ignore strm->next_in if we use it as window */
731 1.1 paulus }
732 1.1 paulus
733 1.1 paulus /* ========================================================================= */
734 1.7 christos int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735 1.7 christos version, stream_size)
736 1.7 christos z_streamp strm;
737 1.1 paulus int level;
738 1.1 paulus int method;
739 1.1 paulus int windowBits;
740 1.1 paulus int memLevel;
741 1.1 paulus int strategy;
742 1.7 christos const char *version;
743 1.7 christos int stream_size;
744 1.1 paulus {
745 1.1 paulus deflate_state *s;
746 1.1 paulus int noheader = 0;
747 1.7 christos static char* my_version = ZLIB_VERSION;
748 1.1 paulus
749 1.7 christos ushf *overlay;
750 1.7 christos /* We overlay pending_buf and d_buf+l_buf. This works since the average
751 1.7 christos * output size for (length,distance) codes is <= 24 bits.
752 1.7 christos */
753 1.7 christos
754 1.7 christos if (version == Z_NULL || version[0] != my_version[0] ||
755 1.7 christos stream_size != sizeof(z_stream)) {
756 1.7 christos return Z_VERSION_ERROR;
757 1.7 christos }
758 1.1 paulus if (strm == Z_NULL) return Z_STREAM_ERROR;
759 1.1 paulus
760 1.1 paulus strm->msg = Z_NULL;
761 1.7 christos #ifndef NO_ZCFUNCS
762 1.7 christos if (strm->zalloc == Z_NULL) {
763 1.7 christos strm->zalloc = zcalloc;
764 1.7 christos strm->opaque = (voidpf)0;
765 1.7 christos }
766 1.7 christos if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767 1.7 christos #endif
768 1.1 paulus
769 1.1 paulus if (level == Z_DEFAULT_COMPRESSION) level = 6;
770 1.1 paulus
771 1.1 paulus if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772 1.1 paulus noheader = 1;
773 1.1 paulus windowBits = -windowBits;
774 1.1 paulus }
775 1.7 christos if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776 1.7 christos windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777 1.7 christos strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778 1.1 paulus return Z_STREAM_ERROR;
779 1.1 paulus }
780 1.7 christos s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781 1.1 paulus if (s == Z_NULL) return Z_MEM_ERROR;
782 1.1 paulus strm->state = (struct internal_state FAR *)s;
783 1.1 paulus s->strm = strm;
784 1.1 paulus
785 1.1 paulus s->noheader = noheader;
786 1.1 paulus s->w_bits = windowBits;
787 1.1 paulus s->w_size = 1 << s->w_bits;
788 1.1 paulus s->w_mask = s->w_size - 1;
789 1.1 paulus
790 1.1 paulus s->hash_bits = memLevel + 7;
791 1.1 paulus s->hash_size = 1 << s->hash_bits;
792 1.1 paulus s->hash_mask = s->hash_size - 1;
793 1.1 paulus s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794 1.1 paulus
795 1.7 christos s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796 1.7 christos s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
797 1.7 christos s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
798 1.1 paulus
799 1.1 paulus s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800 1.1 paulus
801 1.7 christos overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802 1.7 christos s->pending_buf = (uchf *) overlay;
803 1.7 christos s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804 1.1 paulus
805 1.1 paulus if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806 1.1 paulus s->pending_buf == Z_NULL) {
807 1.7 christos strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808 1.1 paulus deflateEnd (strm);
809 1.1 paulus return Z_MEM_ERROR;
810 1.1 paulus }
811 1.7 christos s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812 1.7 christos s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813 1.1 paulus
814 1.1 paulus s->level = level;
815 1.1 paulus s->strategy = strategy;
816 1.1 paulus s->method = (Byte)method;
817 1.1 paulus
818 1.1 paulus return deflateReset(strm);
819 1.1 paulus }
820 1.1 paulus
821 1.1 paulus /* ========================================================================= */
822 1.7 christos int deflateSetDictionary (strm, dictionary, dictLength)
823 1.7 christos z_streamp strm;
824 1.7 christos const Bytef *dictionary;
825 1.7 christos uInt dictLength;
826 1.7 christos {
827 1.7 christos deflate_state *s;
828 1.7 christos uInt length = dictLength;
829 1.7 christos uInt n;
830 1.7 christos IPos hash_head = 0;
831 1.7 christos
832 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833 1.7 christos return Z_STREAM_ERROR;
834 1.7 christos
835 1.7 christos s = (deflate_state *) strm->state;
836 1.7 christos if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837 1.7 christos
838 1.7 christos strm->adler = adler32(strm->adler, dictionary, dictLength);
839 1.7 christos
840 1.7 christos if (length < MIN_MATCH) return Z_OK;
841 1.7 christos if (length > MAX_DIST(s)) {
842 1.7 christos length = MAX_DIST(s);
843 1.7 christos #ifndef USE_DICT_HEAD
844 1.7 christos dictionary += dictLength - length; /* use the tail of the dictionary */
845 1.7 christos #endif
846 1.7 christos }
847 1.7 christos zmemcpy((charf *)s->window, dictionary, length);
848 1.7 christos s->strstart = length;
849 1.7 christos s->block_start = (long)length;
850 1.7 christos
851 1.7 christos /* Insert all strings in the hash table (except for the last two bytes).
852 1.7 christos * s->lookahead stays null, so s->ins_h will be recomputed at the next
853 1.7 christos * call of fill_window.
854 1.7 christos */
855 1.7 christos s->ins_h = s->window[0];
856 1.7 christos UPDATE_HASH(s, s->ins_h, s->window[1]);
857 1.7 christos for (n = 0; n <= length - MIN_MATCH; n++) {
858 1.7 christos INSERT_STRING(s, n, hash_head);
859 1.7 christos }
860 1.7 christos if (hash_head) hash_head = 0; /* to make compiler happy */
861 1.7 christos return Z_OK;
862 1.7 christos }
863 1.7 christos
864 1.7 christos /* ========================================================================= */
865 1.1 paulus int deflateReset (strm)
866 1.7 christos z_streamp strm;
867 1.1 paulus {
868 1.1 paulus deflate_state *s;
869 1.1 paulus
870 1.1 paulus if (strm == Z_NULL || strm->state == Z_NULL ||
871 1.7 christos strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872 1.1 paulus
873 1.1 paulus strm->total_in = strm->total_out = 0;
874 1.1 paulus strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875 1.1 paulus strm->data_type = Z_UNKNOWN;
876 1.1 paulus
877 1.1 paulus s = (deflate_state *)strm->state;
878 1.1 paulus s->pending = 0;
879 1.1 paulus s->pending_out = s->pending_buf;
880 1.1 paulus
881 1.1 paulus if (s->noheader < 0) {
882 1.1 paulus s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883 1.1 paulus }
884 1.1 paulus s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885 1.7 christos strm->adler = 1;
886 1.7 christos s->last_flush = Z_NO_FLUSH;
887 1.1 paulus
888 1.7 christos _tr_init(s);
889 1.1 paulus lm_init(s);
890 1.1 paulus
891 1.1 paulus return Z_OK;
892 1.1 paulus }
893 1.1 paulus
894 1.7 christos /* ========================================================================= */
895 1.7 christos int deflateParams(strm, level, strategy)
896 1.7 christos z_streamp strm;
897 1.7 christos int level;
898 1.7 christos int strategy;
899 1.7 christos {
900 1.7 christos deflate_state *s;
901 1.7 christos compress_func func;
902 1.7 christos int err = Z_OK;
903 1.7 christos
904 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905 1.7 christos s = (deflate_state *) strm->state;
906 1.7 christos
907 1.7 christos if (level == Z_DEFAULT_COMPRESSION) {
908 1.7 christos level = 6;
909 1.7 christos }
910 1.7 christos if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911 1.7 christos return Z_STREAM_ERROR;
912 1.7 christos }
913 1.7 christos func = configuration_table[s->level].func;
914 1.7 christos
915 1.7 christos if (func != configuration_table[level].func && strm->total_in != 0) {
916 1.7 christos /* Flush the last buffer: */
917 1.7 christos err = deflate(strm, Z_PARTIAL_FLUSH);
918 1.7 christos }
919 1.7 christos if (s->level != level) {
920 1.7 christos s->level = level;
921 1.7 christos s->max_lazy_match = configuration_table[level].max_lazy;
922 1.7 christos s->good_match = configuration_table[level].good_length;
923 1.7 christos s->nice_match = configuration_table[level].nice_length;
924 1.7 christos s->max_chain_length = configuration_table[level].max_chain;
925 1.7 christos }
926 1.7 christos s->strategy = strategy;
927 1.7 christos return err;
928 1.7 christos }
929 1.7 christos
930 1.1 paulus /* =========================================================================
931 1.1 paulus * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932 1.1 paulus * IN assertion: the stream state is correct and there is enough room in
933 1.1 paulus * pending_buf.
934 1.1 paulus */
935 1.1 paulus local void putShortMSB (s, b)
936 1.1 paulus deflate_state *s;
937 1.1 paulus uInt b;
938 1.1 paulus {
939 1.1 paulus put_byte(s, (Byte)(b >> 8));
940 1.1 paulus put_byte(s, (Byte)(b & 0xff));
941 1.1 paulus }
942 1.1 paulus
943 1.1 paulus /* =========================================================================
944 1.7 christos * Flush as much pending output as possible. All deflate() output goes
945 1.7 christos * through this function so some applications may wish to modify it
946 1.7 christos * to avoid allocating a large strm->next_out buffer and copying into it.
947 1.7 christos * (See also read_buf()).
948 1.1 paulus */
949 1.1 paulus local void flush_pending(strm)
950 1.7 christos z_streamp strm;
951 1.1 paulus {
952 1.7 christos deflate_state *s = (deflate_state *) strm->state;
953 1.7 christos unsigned len = s->pending;
954 1.1 paulus
955 1.1 paulus if (len > strm->avail_out) len = strm->avail_out;
956 1.1 paulus if (len == 0) return;
957 1.1 paulus
958 1.7 christos if (strm->next_out != Z_NULL) {
959 1.7 christos zmemcpy(strm->next_out, s->pending_out, len);
960 1.1 paulus strm->next_out += len;
961 1.1 paulus }
962 1.7 christos s->pending_out += len;
963 1.1 paulus strm->total_out += len;
964 1.7 christos strm->avail_out -= len;
965 1.7 christos s->pending -= len;
966 1.7 christos if (s->pending == 0) {
967 1.7 christos s->pending_out = s->pending_buf;
968 1.1 paulus }
969 1.1 paulus }
970 1.1 paulus
971 1.1 paulus /* ========================================================================= */
972 1.1 paulus int deflate (strm, flush)
973 1.7 christos z_streamp strm;
974 1.1 paulus int flush;
975 1.1 paulus {
976 1.7 christos int old_flush; /* value of flush param for previous deflate call */
977 1.7 christos deflate_state *s;
978 1.7 christos
979 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL ||
980 1.7 christos flush > Z_FINISH || flush < 0) {
981 1.7 christos return Z_STREAM_ERROR;
982 1.7 christos }
983 1.7 christos s = (deflate_state *) strm->state;
984 1.1 paulus
985 1.7 christos if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986 1.7 christos (s->status == FINISH_STATE && flush != Z_FINISH)) {
987 1.1 paulus ERR_RETURN(strm, Z_STREAM_ERROR);
988 1.1 paulus }
989 1.1 paulus if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990 1.1 paulus
991 1.7 christos s->strm = strm; /* just in case */
992 1.7 christos old_flush = s->last_flush;
993 1.7 christos s->last_flush = flush;
994 1.1 paulus
995 1.1 paulus /* Write the zlib header */
996 1.7 christos if (s->status == INIT_STATE) {
997 1.1 paulus
998 1.7 christos uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999 1.7 christos uInt level_flags = (s->level-1) >> 1;
1000 1.1 paulus
1001 1.1 paulus if (level_flags > 3) level_flags = 3;
1002 1.1 paulus header |= (level_flags << 6);
1003 1.7 christos if (s->strstart != 0) header |= PRESET_DICT;
1004 1.1 paulus header += 31 - (header % 31);
1005 1.1 paulus
1006 1.7 christos s->status = BUSY_STATE;
1007 1.7 christos putShortMSB(s, header);
1008 1.7 christos
1009 1.7 christos /* Save the adler32 of the preset dictionary: */
1010 1.7 christos if (s->strstart != 0) {
1011 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1012 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013 1.7 christos }
1014 1.7 christos strm->adler = 1L;
1015 1.1 paulus }
1016 1.1 paulus
1017 1.1 paulus /* Flush as much pending output as possible */
1018 1.7 christos if (s->pending != 0) {
1019 1.1 paulus flush_pending(strm);
1020 1.7 christos if (strm->avail_out == 0) {
1021 1.7 christos /* Since avail_out is 0, deflate will be called again with
1022 1.7 christos * more output space, but possibly with both pending and
1023 1.7 christos * avail_in equal to zero. There won't be anything to do,
1024 1.7 christos * but this is not an error situation so make sure we
1025 1.7 christos * return OK instead of BUF_ERROR at next call of deflate:
1026 1.7 christos */
1027 1.7 christos s->last_flush = -1;
1028 1.7 christos return Z_OK;
1029 1.7 christos }
1030 1.1 paulus
1031 1.7 christos /* Make sure there is something to do and avoid duplicate consecutive
1032 1.7 christos * flushes. For repeated and useless calls with Z_FINISH, we keep
1033 1.7 christos * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034 1.1 paulus */
1035 1.7 christos } else if (strm->avail_in == 0 && flush <= old_flush &&
1036 1.7 christos flush != Z_FINISH) {
1037 1.7 christos ERR_RETURN(strm, Z_BUF_ERROR);
1038 1.1 paulus }
1039 1.1 paulus
1040 1.1 paulus /* User must not provide more input after the first FINISH: */
1041 1.7 christos if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042 1.1 paulus ERR_RETURN(strm, Z_BUF_ERROR);
1043 1.1 paulus }
1044 1.1 paulus
1045 1.1 paulus /* Start a new block or continue the current one.
1046 1.1 paulus */
1047 1.7 christos if (strm->avail_in != 0 || s->lookahead != 0 ||
1048 1.7 christos (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049 1.7 christos block_state bstate;
1050 1.1 paulus
1051 1.7 christos bstate = (*(configuration_table[s->level].func))(s, flush);
1052 1.7 christos
1053 1.7 christos if (bstate == finish_started || bstate == finish_done) {
1054 1.7 christos s->status = FINISH_STATE;
1055 1.1 paulus }
1056 1.7 christos if (bstate == need_more || bstate == finish_started) {
1057 1.7 christos if (strm->avail_out == 0) {
1058 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059 1.7 christos }
1060 1.1 paulus return Z_OK;
1061 1.7 christos /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062 1.7 christos * of deflate should use the same flush parameter to make sure
1063 1.7 christos * that the flush is complete. So we don't have to output an
1064 1.7 christos * empty block here, this will be done at next call. This also
1065 1.7 christos * ensures that for a very small output buffer, we emit at most
1066 1.7 christos * one empty block.
1067 1.1 paulus */
1068 1.7 christos }
1069 1.7 christos if (bstate == block_done) {
1070 1.7 christos if (flush == Z_PARTIAL_FLUSH) {
1071 1.7 christos _tr_align(s);
1072 1.7 christos } else if (flush == Z_PACKET_FLUSH) {
1073 1.7 christos /* Output just the 3-bit `stored' block type value,
1074 1.7 christos but not a zero length. */
1075 1.7 christos _tr_stored_type_only(s);
1076 1.7 christos } else { /* FULL_FLUSH or SYNC_FLUSH */
1077 1.7 christos _tr_stored_block(s, (char*)0, 0L, 0);
1078 1.7 christos /* For a full flush, this empty block will be recognized
1079 1.7 christos * as a special marker by inflate_sync().
1080 1.7 christos */
1081 1.7 christos if (flush == Z_FULL_FLUSH) {
1082 1.7 christos CLEAR_HASH(s); /* forget history */
1083 1.7 christos }
1084 1.7 christos }
1085 1.7 christos flush_pending(strm);
1086 1.7 christos if (strm->avail_out == 0) {
1087 1.7 christos s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088 1.7 christos return Z_OK;
1089 1.1 paulus }
1090 1.7 christos }
1091 1.1 paulus }
1092 1.1 paulus Assert(strm->avail_out > 0, "bug2");
1093 1.1 paulus
1094 1.1 paulus if (flush != Z_FINISH) return Z_OK;
1095 1.7 christos if (s->noheader) return Z_STREAM_END;
1096 1.1 paulus
1097 1.1 paulus /* Write the zlib trailer (adler32) */
1098 1.7 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1099 1.7 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100 1.1 paulus flush_pending(strm);
1101 1.1 paulus /* If avail_out is zero, the application will call deflate again
1102 1.1 paulus * to flush the rest.
1103 1.1 paulus */
1104 1.7 christos s->noheader = -1; /* write the trailer only once! */
1105 1.7 christos return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106 1.1 paulus }
1107 1.1 paulus
1108 1.1 paulus /* ========================================================================= */
1109 1.1 paulus int deflateEnd (strm)
1110 1.7 christos z_streamp strm;
1111 1.1 paulus {
1112 1.7 christos int status;
1113 1.7 christos deflate_state *s;
1114 1.1 paulus
1115 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116 1.7 christos s = (deflate_state *) strm->state;
1117 1.1 paulus
1118 1.7 christos status = s->status;
1119 1.7 christos if (status != INIT_STATE && status != BUSY_STATE &&
1120 1.7 christos status != FINISH_STATE) {
1121 1.7 christos return Z_STREAM_ERROR;
1122 1.7 christos }
1123 1.1 paulus
1124 1.7 christos /* Deallocate in reverse order of allocations: */
1125 1.7 christos TRY_FREE(strm, s->pending_buf);
1126 1.7 christos TRY_FREE(strm, s->head);
1127 1.7 christos TRY_FREE(strm, s->prev);
1128 1.7 christos TRY_FREE(strm, s->window);
1129 1.7 christos
1130 1.7 christos ZFREE(strm, s);
1131 1.1 paulus strm->state = Z_NULL;
1132 1.1 paulus
1133 1.7 christos return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134 1.7 christos }
1135 1.7 christos
1136 1.7 christos /* =========================================================================
1137 1.7 christos * Copy the source state to the destination state.
1138 1.7 christos */
1139 1.7 christos int deflateCopy (dest, source)
1140 1.7 christos z_streamp dest;
1141 1.7 christos z_streamp source;
1142 1.7 christos {
1143 1.7 christos deflate_state *ds;
1144 1.7 christos deflate_state *ss;
1145 1.7 christos ushf *overlay;
1146 1.7 christos
1147 1.7 christos if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148 1.7 christos return Z_STREAM_ERROR;
1149 1.7 christos ss = (deflate_state *) source->state;
1150 1.7 christos
1151 1.7 christos zmemcpy(dest, source, sizeof(*dest));
1152 1.7 christos
1153 1.7 christos ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154 1.7 christos if (ds == Z_NULL) return Z_MEM_ERROR;
1155 1.7 christos dest->state = (struct internal_state FAR *) ds;
1156 1.7 christos zmemcpy(ds, ss, sizeof(*ds));
1157 1.7 christos ds->strm = dest;
1158 1.7 christos
1159 1.7 christos ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160 1.7 christos ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1161 1.7 christos ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162 1.7 christos overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163 1.7 christos ds->pending_buf = (uchf *) overlay;
1164 1.7 christos
1165 1.7 christos if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166 1.7 christos ds->pending_buf == Z_NULL) {
1167 1.7 christos deflateEnd (dest);
1168 1.7 christos return Z_MEM_ERROR;
1169 1.7 christos }
1170 1.7 christos /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171 1.7 christos zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172 1.7 christos zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173 1.7 christos zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174 1.7 christos zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175 1.7 christos
1176 1.7 christos ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177 1.7 christos ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178 1.7 christos ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179 1.7 christos
1180 1.7 christos ds->l_desc.dyn_tree = ds->dyn_ltree;
1181 1.7 christos ds->d_desc.dyn_tree = ds->dyn_dtree;
1182 1.7 christos ds->bl_desc.dyn_tree = ds->bl_tree;
1183 1.7 christos
1184 1.1 paulus return Z_OK;
1185 1.1 paulus }
1186 1.1 paulus
1187 1.1 paulus /* ===========================================================================
1188 1.7 christos * Return the number of bytes of output which are immediately available
1189 1.7 christos * for output from the decompressor.
1190 1.7 christos */
1191 1.7 christos int deflateOutputPending (strm)
1192 1.7 christos z_streamp strm;
1193 1.7 christos {
1194 1.7 christos if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195 1.7 christos
1196 1.7 christos return ((deflate_state *)(strm->state))->pending;
1197 1.7 christos }
1198 1.7 christos
1199 1.7 christos /* ===========================================================================
1200 1.1 paulus * Read a new buffer from the current input stream, update the adler32
1201 1.7 christos * and total number of bytes read. All deflate() input goes through
1202 1.7 christos * this function so some applications may wish to modify it to avoid
1203 1.7 christos * allocating a large strm->next_in buffer and copying from it.
1204 1.7 christos * (See also flush_pending()).
1205 1.1 paulus */
1206 1.1 paulus local int read_buf(strm, buf, size)
1207 1.7 christos z_streamp strm;
1208 1.1 paulus charf *buf;
1209 1.1 paulus unsigned size;
1210 1.1 paulus {
1211 1.1 paulus unsigned len = strm->avail_in;
1212 1.1 paulus
1213 1.1 paulus if (len > size) len = size;
1214 1.1 paulus if (len == 0) return 0;
1215 1.1 paulus
1216 1.1 paulus strm->avail_in -= len;
1217 1.1 paulus
1218 1.7 christos if (!((deflate_state *)(strm->state))->noheader) {
1219 1.7 christos strm->adler = adler32(strm->adler, strm->next_in, len);
1220 1.1 paulus }
1221 1.1 paulus zmemcpy(buf, strm->next_in, len);
1222 1.1 paulus strm->next_in += len;
1223 1.1 paulus strm->total_in += len;
1224 1.1 paulus
1225 1.1 paulus return (int)len;
1226 1.1 paulus }
1227 1.1 paulus
1228 1.1 paulus /* ===========================================================================
1229 1.1 paulus * Initialize the "longest match" routines for a new zlib stream
1230 1.1 paulus */
1231 1.1 paulus local void lm_init (s)
1232 1.1 paulus deflate_state *s;
1233 1.1 paulus {
1234 1.1 paulus s->window_size = (ulg)2L*s->w_size;
1235 1.1 paulus
1236 1.1 paulus CLEAR_HASH(s);
1237 1.1 paulus
1238 1.1 paulus /* Set the default configuration parameters:
1239 1.1 paulus */
1240 1.1 paulus s->max_lazy_match = configuration_table[s->level].max_lazy;
1241 1.1 paulus s->good_match = configuration_table[s->level].good_length;
1242 1.1 paulus s->nice_match = configuration_table[s->level].nice_length;
1243 1.1 paulus s->max_chain_length = configuration_table[s->level].max_chain;
1244 1.1 paulus
1245 1.1 paulus s->strstart = 0;
1246 1.1 paulus s->block_start = 0L;
1247 1.1 paulus s->lookahead = 0;
1248 1.7 christos s->match_length = s->prev_length = MIN_MATCH-1;
1249 1.1 paulus s->match_available = 0;
1250 1.1 paulus s->ins_h = 0;
1251 1.1 paulus #ifdef ASMV
1252 1.1 paulus match_init(); /* initialize the asm code */
1253 1.1 paulus #endif
1254 1.1 paulus }
1255 1.1 paulus
1256 1.1 paulus /* ===========================================================================
1257 1.1 paulus * Set match_start to the longest match starting at the given string and
1258 1.1 paulus * return its length. Matches shorter or equal to prev_length are discarded,
1259 1.1 paulus * in which case the result is equal to prev_length and match_start is
1260 1.1 paulus * garbage.
1261 1.1 paulus * IN assertions: cur_match is the head of the hash chain for the current
1262 1.1 paulus * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263 1.7 christos * OUT assertion: the match length is not greater than s->lookahead.
1264 1.1 paulus */
1265 1.1 paulus #ifndef ASMV
1266 1.1 paulus /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267 1.1 paulus * match.S. The code will be functionally equivalent.
1268 1.1 paulus */
1269 1.7 christos local uInt longest_match(s, cur_match)
1270 1.1 paulus deflate_state *s;
1271 1.1 paulus IPos cur_match; /* current match */
1272 1.1 paulus {
1273 1.1 paulus unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274 1.1 paulus register Bytef *scan = s->window + s->strstart; /* current string */
1275 1.1 paulus register Bytef *match; /* matched string */
1276 1.1 paulus register int len; /* length of current match */
1277 1.1 paulus int best_len = s->prev_length; /* best match length so far */
1278 1.7 christos int nice_match = s->nice_match; /* stop if match long enough */
1279 1.1 paulus IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280 1.1 paulus s->strstart - (IPos)MAX_DIST(s) : NIL;
1281 1.1 paulus /* Stop when cur_match becomes <= limit. To simplify the code,
1282 1.1 paulus * we prevent matches with the string of window index 0.
1283 1.1 paulus */
1284 1.1 paulus Posf *prev = s->prev;
1285 1.1 paulus uInt wmask = s->w_mask;
1286 1.1 paulus
1287 1.1 paulus #ifdef UNALIGNED_OK
1288 1.1 paulus /* Compare two bytes at a time. Note: this is not always beneficial.
1289 1.1 paulus * Try with and without -DUNALIGNED_OK to check.
1290 1.1 paulus */
1291 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292 1.1 paulus register ush scan_start = *(ushf*)scan;
1293 1.1 paulus register ush scan_end = *(ushf*)(scan+best_len-1);
1294 1.1 paulus #else
1295 1.1 paulus register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296 1.1 paulus register Byte scan_end1 = scan[best_len-1];
1297 1.1 paulus register Byte scan_end = scan[best_len];
1298 1.1 paulus #endif
1299 1.1 paulus
1300 1.1 paulus /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301 1.1 paulus * It is easy to get rid of this optimization if necessary.
1302 1.1 paulus */
1303 1.1 paulus Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304 1.1 paulus
1305 1.1 paulus /* Do not waste too much time if we already have a good match: */
1306 1.1 paulus if (s->prev_length >= s->good_match) {
1307 1.1 paulus chain_length >>= 2;
1308 1.1 paulus }
1309 1.7 christos /* Do not look for matches beyond the end of the input. This is necessary
1310 1.7 christos * to make deflate deterministic.
1311 1.7 christos */
1312 1.7 christos if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313 1.7 christos
1314 1.1 paulus Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315 1.1 paulus
1316 1.1 paulus do {
1317 1.1 paulus Assert(cur_match < s->strstart, "no future");
1318 1.1 paulus match = s->window + cur_match;
1319 1.1 paulus
1320 1.1 paulus /* Skip to next match if the match length cannot increase
1321 1.1 paulus * or if the match length is less than 2:
1322 1.1 paulus */
1323 1.1 paulus #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324 1.1 paulus /* This code assumes sizeof(unsigned short) == 2. Do not use
1325 1.1 paulus * UNALIGNED_OK if your compiler uses a different size.
1326 1.1 paulus */
1327 1.1 paulus if (*(ushf*)(match+best_len-1) != scan_end ||
1328 1.1 paulus *(ushf*)match != scan_start) continue;
1329 1.1 paulus
1330 1.1 paulus /* It is not necessary to compare scan[2] and match[2] since they are
1331 1.1 paulus * always equal when the other bytes match, given that the hash keys
1332 1.1 paulus * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333 1.1 paulus * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334 1.1 paulus * lookahead only every 4th comparison; the 128th check will be made
1335 1.1 paulus * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336 1.1 paulus * necessary to put more guard bytes at the end of the window, or
1337 1.1 paulus * to check more often for insufficient lookahead.
1338 1.1 paulus */
1339 1.1 paulus Assert(scan[2] == match[2], "scan[2]?");
1340 1.1 paulus scan++, match++;
1341 1.1 paulus do {
1342 1.1 paulus } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 1.1 paulus *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346 1.1 paulus scan < strend);
1347 1.1 paulus /* The funny "do {}" generates better code on most compilers */
1348 1.1 paulus
1349 1.1 paulus /* Here, scan <= window+strstart+257 */
1350 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351 1.1 paulus if (*scan == *match) scan++;
1352 1.1 paulus
1353 1.1 paulus len = (MAX_MATCH - 1) - (int)(strend-scan);
1354 1.1 paulus scan = strend - (MAX_MATCH-1);
1355 1.1 paulus
1356 1.1 paulus #else /* UNALIGNED_OK */
1357 1.1 paulus
1358 1.1 paulus if (match[best_len] != scan_end ||
1359 1.1 paulus match[best_len-1] != scan_end1 ||
1360 1.1 paulus *match != *scan ||
1361 1.1 paulus *++match != scan[1]) continue;
1362 1.1 paulus
1363 1.1 paulus /* The check at best_len-1 can be removed because it will be made
1364 1.1 paulus * again later. (This heuristic is not always a win.)
1365 1.1 paulus * It is not necessary to compare scan[2] and match[2] since they
1366 1.1 paulus * are always equal when the other bytes match, given that
1367 1.1 paulus * the hash keys are equal and that HASH_BITS >= 8.
1368 1.1 paulus */
1369 1.1 paulus scan += 2, match++;
1370 1.1 paulus Assert(*scan == *match, "match[2]?");
1371 1.1 paulus
1372 1.1 paulus /* We check for insufficient lookahead only every 8th comparison;
1373 1.1 paulus * the 256th check will be made at strstart+258.
1374 1.1 paulus */
1375 1.1 paulus do {
1376 1.1 paulus } while (*++scan == *++match && *++scan == *++match &&
1377 1.1 paulus *++scan == *++match && *++scan == *++match &&
1378 1.1 paulus *++scan == *++match && *++scan == *++match &&
1379 1.1 paulus *++scan == *++match && *++scan == *++match &&
1380 1.1 paulus scan < strend);
1381 1.1 paulus
1382 1.1 paulus Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383 1.1 paulus
1384 1.1 paulus len = MAX_MATCH - (int)(strend - scan);
1385 1.1 paulus scan = strend - MAX_MATCH;
1386 1.1 paulus
1387 1.1 paulus #endif /* UNALIGNED_OK */
1388 1.1 paulus
1389 1.1 paulus if (len > best_len) {
1390 1.1 paulus s->match_start = cur_match;
1391 1.1 paulus best_len = len;
1392 1.7 christos if (len >= nice_match) break;
1393 1.1 paulus #ifdef UNALIGNED_OK
1394 1.1 paulus scan_end = *(ushf*)(scan+best_len-1);
1395 1.1 paulus #else
1396 1.1 paulus scan_end1 = scan[best_len-1];
1397 1.1 paulus scan_end = scan[best_len];
1398 1.1 paulus #endif
1399 1.1 paulus }
1400 1.1 paulus } while ((cur_match = prev[cur_match & wmask]) > limit
1401 1.1 paulus && --chain_length != 0);
1402 1.1 paulus
1403 1.7 christos if ((uInt)best_len <= s->lookahead) return best_len;
1404 1.7 christos return s->lookahead;
1405 1.1 paulus }
1406 1.1 paulus #endif /* ASMV */
1407 1.1 paulus
1408 1.1 paulus #ifdef DEBUG_ZLIB
1409 1.1 paulus /* ===========================================================================
1410 1.1 paulus * Check that the match at match_start is indeed a match.
1411 1.1 paulus */
1412 1.1 paulus local void check_match(s, start, match, length)
1413 1.1 paulus deflate_state *s;
1414 1.1 paulus IPos start, match;
1415 1.1 paulus int length;
1416 1.1 paulus {
1417 1.1 paulus /* check that the match is indeed a match */
1418 1.7 christos if (zmemcmp((charf *)s->window + match,
1419 1.1 paulus (charf *)s->window + start, length) != EQUAL) {
1420 1.7 christos fprintf(stderr, " start %u, match %u, length %d\n",
1421 1.7 christos start, match, length);
1422 1.7 christos do {
1423 1.7 christos fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424 1.7 christos } while (--length != 0);
1425 1.1 paulus z_error("invalid match");
1426 1.1 paulus }
1427 1.7 christos if (z_verbose > 1) {
1428 1.1 paulus fprintf(stderr,"\\[%d,%d]", start-match, length);
1429 1.1 paulus do { putc(s->window[start++], stderr); } while (--length != 0);
1430 1.1 paulus }
1431 1.1 paulus }
1432 1.1 paulus #else
1433 1.1 paulus # define check_match(s, start, match, length)
1434 1.1 paulus #endif
1435 1.1 paulus
1436 1.1 paulus /* ===========================================================================
1437 1.1 paulus * Fill the window when the lookahead becomes insufficient.
1438 1.1 paulus * Updates strstart and lookahead.
1439 1.1 paulus *
1440 1.1 paulus * IN assertion: lookahead < MIN_LOOKAHEAD
1441 1.1 paulus * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442 1.1 paulus * At least one byte has been read, or avail_in == 0; reads are
1443 1.1 paulus * performed for at least two bytes (required for the zip translate_eol
1444 1.1 paulus * option -- not supported here).
1445 1.1 paulus */
1446 1.1 paulus local void fill_window(s)
1447 1.1 paulus deflate_state *s;
1448 1.1 paulus {
1449 1.1 paulus register unsigned n, m;
1450 1.1 paulus register Posf *p;
1451 1.1 paulus unsigned more; /* Amount of free space at the end of the window. */
1452 1.1 paulus uInt wsize = s->w_size;
1453 1.1 paulus
1454 1.1 paulus do {
1455 1.1 paulus more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456 1.1 paulus
1457 1.1 paulus /* Deal with !@#$% 64K limit: */
1458 1.1 paulus if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459 1.1 paulus more = wsize;
1460 1.7 christos
1461 1.1 paulus } else if (more == (unsigned)(-1)) {
1462 1.1 paulus /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463 1.1 paulus * and lookahead == 1 (input done one byte at time)
1464 1.1 paulus */
1465 1.1 paulus more--;
1466 1.1 paulus
1467 1.1 paulus /* If the window is almost full and there is insufficient lookahead,
1468 1.1 paulus * move the upper half to the lower one to make room in the upper half.
1469 1.1 paulus */
1470 1.1 paulus } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471 1.1 paulus
1472 1.1 paulus zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473 1.1 paulus (unsigned)wsize);
1474 1.1 paulus s->match_start -= wsize;
1475 1.1 paulus s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1476 1.1 paulus s->block_start -= (long) wsize;
1477 1.1 paulus
1478 1.1 paulus /* Slide the hash table (could be avoided with 32 bit values
1479 1.7 christos at the expense of memory usage). We slide even when level == 0
1480 1.7 christos to keep the hash table consistent if we switch back to level > 0
1481 1.7 christos later. (Using level 0 permanently is not an optimal usage of
1482 1.7 christos zlib, so we don't care about this pathological case.)
1483 1.1 paulus */
1484 1.1 paulus n = s->hash_size;
1485 1.1 paulus p = &s->head[n];
1486 1.1 paulus do {
1487 1.1 paulus m = *--p;
1488 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489 1.1 paulus } while (--n);
1490 1.1 paulus
1491 1.1 paulus n = wsize;
1492 1.1 paulus p = &s->prev[n];
1493 1.1 paulus do {
1494 1.1 paulus m = *--p;
1495 1.1 paulus *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496 1.1 paulus /* If n is not on any hash chain, prev[n] is garbage but
1497 1.1 paulus * its value will never be used.
1498 1.1 paulus */
1499 1.1 paulus } while (--n);
1500 1.1 paulus more += wsize;
1501 1.1 paulus }
1502 1.1 paulus if (s->strm->avail_in == 0) return;
1503 1.1 paulus
1504 1.1 paulus /* If there was no sliding:
1505 1.1 paulus * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506 1.1 paulus * more == window_size - lookahead - strstart
1507 1.1 paulus * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508 1.1 paulus * => more >= window_size - 2*WSIZE + 2
1509 1.1 paulus * In the BIG_MEM or MMAP case (not yet supported),
1510 1.1 paulus * window_size == input_size + MIN_LOOKAHEAD &&
1511 1.1 paulus * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512 1.1 paulus * Otherwise, window_size == 2*WSIZE so more >= 2.
1513 1.1 paulus * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514 1.1 paulus */
1515 1.1 paulus Assert(more >= 2, "more < 2");
1516 1.1 paulus
1517 1.1 paulus n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518 1.1 paulus more);
1519 1.1 paulus s->lookahead += n;
1520 1.1 paulus
1521 1.1 paulus /* Initialize the hash value now that we have some input: */
1522 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1523 1.1 paulus s->ins_h = s->window[s->strstart];
1524 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525 1.1 paulus #if MIN_MATCH != 3
1526 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1527 1.1 paulus #endif
1528 1.1 paulus }
1529 1.1 paulus /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530 1.1 paulus * but this is not important since only literal bytes will be emitted.
1531 1.1 paulus */
1532 1.1 paulus
1533 1.1 paulus } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534 1.1 paulus }
1535 1.1 paulus
1536 1.1 paulus /* ===========================================================================
1537 1.1 paulus * Flush the current block, with given end-of-file flag.
1538 1.1 paulus * IN assertion: strstart is set to the end of the current match.
1539 1.1 paulus */
1540 1.7 christos #define FLUSH_BLOCK_ONLY(s, eof) { \
1541 1.7 christos _tr_flush_block(s, (s->block_start >= 0L ? \
1542 1.7 christos (charf *)&s->window[(unsigned)s->block_start] : \
1543 1.7 christos (charf *)Z_NULL), \
1544 1.7 christos (ulg)((long)s->strstart - s->block_start), \
1545 1.7 christos (eof)); \
1546 1.1 paulus s->block_start = s->strstart; \
1547 1.1 paulus flush_pending(s->strm); \
1548 1.1 paulus Tracev((stderr,"[FLUSH]")); \
1549 1.1 paulus }
1550 1.1 paulus
1551 1.1 paulus /* Same but force premature exit if necessary. */
1552 1.7 christos #define FLUSH_BLOCK(s, eof) { \
1553 1.7 christos FLUSH_BLOCK_ONLY(s, eof); \
1554 1.7 christos if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555 1.7 christos }
1556 1.7 christos
1557 1.7 christos /* ===========================================================================
1558 1.7 christos * Copy without compression as much as possible from the input stream, return
1559 1.7 christos * the current block state.
1560 1.7 christos * This function does not insert new strings in the dictionary since
1561 1.7 christos * uncompressible data is probably not useful. This function is used
1562 1.7 christos * only for the level=0 compression option.
1563 1.7 christos * NOTE: this function should be optimized to avoid extra copying from
1564 1.7 christos * window to pending_buf.
1565 1.7 christos */
1566 1.7 christos local block_state deflate_stored(s, flush)
1567 1.7 christos deflate_state *s;
1568 1.7 christos int flush;
1569 1.7 christos {
1570 1.7 christos /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571 1.7 christos * to pending_buf_size, and each stored block has a 5 byte header:
1572 1.7 christos */
1573 1.7 christos ulg max_block_size = 0xffff;
1574 1.7 christos ulg max_start;
1575 1.7 christos
1576 1.7 christos if (max_block_size > s->pending_buf_size - 5) {
1577 1.7 christos max_block_size = s->pending_buf_size - 5;
1578 1.7 christos }
1579 1.7 christos
1580 1.7 christos /* Copy as much as possible from input to output: */
1581 1.7 christos for (;;) {
1582 1.7 christos /* Fill the window as much as possible: */
1583 1.7 christos if (s->lookahead <= 1) {
1584 1.7 christos
1585 1.7 christos Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586 1.7 christos s->block_start >= (long)s->w_size, "slide too late");
1587 1.7 christos
1588 1.7 christos fill_window(s);
1589 1.7 christos if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590 1.7 christos
1591 1.7 christos if (s->lookahead == 0) break; /* flush the current block */
1592 1.7 christos }
1593 1.7 christos Assert(s->block_start >= 0L, "block gone");
1594 1.7 christos
1595 1.7 christos s->strstart += s->lookahead;
1596 1.7 christos s->lookahead = 0;
1597 1.7 christos
1598 1.7 christos /* Emit a stored block if pending_buf will be full: */
1599 1.7 christos max_start = s->block_start + max_block_size;
1600 1.7 christos if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601 1.7 christos /* strstart == 0 is possible when wraparound on 16-bit machine */
1602 1.7 christos s->lookahead = (uInt)(s->strstart - max_start);
1603 1.7 christos s->strstart = (uInt)max_start;
1604 1.7 christos FLUSH_BLOCK(s, 0);
1605 1.7 christos }
1606 1.7 christos /* Flush if we may have to slide, otherwise block_start may become
1607 1.7 christos * negative and the data will be gone:
1608 1.7 christos */
1609 1.7 christos if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610 1.7 christos FLUSH_BLOCK(s, 0);
1611 1.7 christos }
1612 1.7 christos }
1613 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1614 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1615 1.1 paulus }
1616 1.1 paulus
1617 1.1 paulus /* ===========================================================================
1618 1.7 christos * Compress as much as possible from the input stream, return the current
1619 1.7 christos * block state.
1620 1.7 christos * This function does not perform lazy evaluation of matches and inserts
1621 1.1 paulus * new strings in the dictionary only for unmatched strings or for short
1622 1.1 paulus * matches. It is used only for the fast compression options.
1623 1.1 paulus */
1624 1.7 christos local block_state deflate_fast(s, flush)
1625 1.1 paulus deflate_state *s;
1626 1.1 paulus int flush;
1627 1.1 paulus {
1628 1.1 paulus IPos hash_head = NIL; /* head of the hash chain */
1629 1.7 christos int bflush; /* set if current block must be flushed */
1630 1.1 paulus
1631 1.1 paulus for (;;) {
1632 1.1 paulus /* Make sure that we always have enough lookahead, except
1633 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1634 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1635 1.1 paulus * string following the next match.
1636 1.1 paulus */
1637 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1638 1.1 paulus fill_window(s);
1639 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640 1.7 christos return need_more;
1641 1.7 christos }
1642 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1643 1.1 paulus }
1644 1.1 paulus
1645 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1646 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1647 1.1 paulus */
1648 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1649 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1650 1.1 paulus }
1651 1.1 paulus
1652 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1653 1.1 paulus * At this point we have always match_length < MIN_MATCH
1654 1.1 paulus */
1655 1.1 paulus if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656 1.1 paulus /* To simplify the code, we prevent matches with the string
1657 1.1 paulus * of window index 0 (in particular we have to avoid a match
1658 1.1 paulus * of the string with itself at the start of the input file).
1659 1.1 paulus */
1660 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1661 1.1 paulus s->match_length = longest_match (s, hash_head);
1662 1.1 paulus }
1663 1.1 paulus /* longest_match() sets match_start */
1664 1.1 paulus }
1665 1.1 paulus if (s->match_length >= MIN_MATCH) {
1666 1.1 paulus check_match(s, s->strstart, s->match_start, s->match_length);
1667 1.1 paulus
1668 1.7 christos bflush = _tr_tally(s, s->strstart - s->match_start,
1669 1.7 christos s->match_length - MIN_MATCH);
1670 1.1 paulus
1671 1.1 paulus s->lookahead -= s->match_length;
1672 1.1 paulus
1673 1.1 paulus /* Insert new strings in the hash table only if the match length
1674 1.1 paulus * is not too large. This saves time but degrades compression.
1675 1.1 paulus */
1676 1.1 paulus if (s->match_length <= s->max_insert_length &&
1677 1.1 paulus s->lookahead >= MIN_MATCH) {
1678 1.1 paulus s->match_length--; /* string at strstart already in hash table */
1679 1.1 paulus do {
1680 1.1 paulus s->strstart++;
1681 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1682 1.1 paulus /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683 1.1 paulus * always MIN_MATCH bytes ahead.
1684 1.1 paulus */
1685 1.1 paulus } while (--s->match_length != 0);
1686 1.1 paulus s->strstart++;
1687 1.1 paulus } else {
1688 1.1 paulus s->strstart += s->match_length;
1689 1.1 paulus s->match_length = 0;
1690 1.1 paulus s->ins_h = s->window[s->strstart];
1691 1.1 paulus UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692 1.1 paulus #if MIN_MATCH != 3
1693 1.1 paulus Call UPDATE_HASH() MIN_MATCH-3 more times
1694 1.1 paulus #endif
1695 1.1 paulus /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696 1.1 paulus * matter since it will be recomputed at next deflate call.
1697 1.1 paulus */
1698 1.1 paulus }
1699 1.1 paulus } else {
1700 1.1 paulus /* No match, output a literal byte */
1701 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart]));
1702 1.7 christos bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703 1.1 paulus s->lookahead--;
1704 1.1 paulus s->strstart++;
1705 1.1 paulus }
1706 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1707 1.1 paulus }
1708 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1709 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1710 1.1 paulus }
1711 1.1 paulus
1712 1.1 paulus /* ===========================================================================
1713 1.1 paulus * Same as above, but achieves better compression. We use a lazy
1714 1.1 paulus * evaluation for matches: a match is finally adopted only if there is
1715 1.1 paulus * no better match at the next window position.
1716 1.1 paulus */
1717 1.7 christos local block_state deflate_slow(s, flush)
1718 1.1 paulus deflate_state *s;
1719 1.1 paulus int flush;
1720 1.1 paulus {
1721 1.1 paulus IPos hash_head = NIL; /* head of hash chain */
1722 1.1 paulus int bflush; /* set if current block must be flushed */
1723 1.1 paulus
1724 1.1 paulus /* Process the input block. */
1725 1.1 paulus for (;;) {
1726 1.1 paulus /* Make sure that we always have enough lookahead, except
1727 1.1 paulus * at the end of the input file. We need MAX_MATCH bytes
1728 1.1 paulus * for the next match, plus MIN_MATCH bytes to insert the
1729 1.1 paulus * string following the next match.
1730 1.1 paulus */
1731 1.1 paulus if (s->lookahead < MIN_LOOKAHEAD) {
1732 1.1 paulus fill_window(s);
1733 1.7 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734 1.7 christos return need_more;
1735 1.7 christos }
1736 1.1 paulus if (s->lookahead == 0) break; /* flush the current block */
1737 1.1 paulus }
1738 1.1 paulus
1739 1.1 paulus /* Insert the string window[strstart .. strstart+2] in the
1740 1.1 paulus * dictionary, and set hash_head to the head of the hash chain:
1741 1.1 paulus */
1742 1.1 paulus if (s->lookahead >= MIN_MATCH) {
1743 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1744 1.1 paulus }
1745 1.1 paulus
1746 1.1 paulus /* Find the longest match, discarding those <= prev_length.
1747 1.1 paulus */
1748 1.1 paulus s->prev_length = s->match_length, s->prev_match = s->match_start;
1749 1.1 paulus s->match_length = MIN_MATCH-1;
1750 1.1 paulus
1751 1.1 paulus if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752 1.1 paulus s->strstart - hash_head <= MAX_DIST(s)) {
1753 1.1 paulus /* To simplify the code, we prevent matches with the string
1754 1.1 paulus * of window index 0 (in particular we have to avoid a match
1755 1.1 paulus * of the string with itself at the start of the input file).
1756 1.1 paulus */
1757 1.1 paulus if (s->strategy != Z_HUFFMAN_ONLY) {
1758 1.1 paulus s->match_length = longest_match (s, hash_head);
1759 1.1 paulus }
1760 1.1 paulus /* longest_match() sets match_start */
1761 1.1 paulus
1762 1.1 paulus if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763 1.1 paulus (s->match_length == MIN_MATCH &&
1764 1.1 paulus s->strstart - s->match_start > TOO_FAR))) {
1765 1.1 paulus
1766 1.1 paulus /* If prev_match is also MIN_MATCH, match_start is garbage
1767 1.1 paulus * but we will ignore the current match anyway.
1768 1.1 paulus */
1769 1.1 paulus s->match_length = MIN_MATCH-1;
1770 1.1 paulus }
1771 1.1 paulus }
1772 1.1 paulus /* If there was a match at the previous step and the current
1773 1.1 paulus * match is not better, output the previous match:
1774 1.1 paulus */
1775 1.1 paulus if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776 1.1 paulus uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777 1.1 paulus /* Do not insert strings in hash table beyond this. */
1778 1.1 paulus
1779 1.1 paulus check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780 1.1 paulus
1781 1.7 christos bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782 1.7 christos s->prev_length - MIN_MATCH);
1783 1.1 paulus
1784 1.1 paulus /* Insert in hash table all strings up to the end of the match.
1785 1.1 paulus * strstart-1 and strstart are already inserted. If there is not
1786 1.1 paulus * enough lookahead, the last two strings are not inserted in
1787 1.1 paulus * the hash table.
1788 1.1 paulus */
1789 1.1 paulus s->lookahead -= s->prev_length-1;
1790 1.1 paulus s->prev_length -= 2;
1791 1.1 paulus do {
1792 1.1 paulus if (++s->strstart <= max_insert) {
1793 1.1 paulus INSERT_STRING(s, s->strstart, hash_head);
1794 1.1 paulus }
1795 1.1 paulus } while (--s->prev_length != 0);
1796 1.1 paulus s->match_available = 0;
1797 1.1 paulus s->match_length = MIN_MATCH-1;
1798 1.1 paulus s->strstart++;
1799 1.1 paulus
1800 1.7 christos if (bflush) FLUSH_BLOCK(s, 0);
1801 1.1 paulus
1802 1.1 paulus } else if (s->match_available) {
1803 1.1 paulus /* If there was no match at the previous position, output a
1804 1.1 paulus * single literal. If there was a match but the current match
1805 1.1 paulus * is longer, truncate the previous match to a single literal.
1806 1.1 paulus */
1807 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808 1.7 christos if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809 1.7 christos FLUSH_BLOCK_ONLY(s, 0);
1810 1.1 paulus }
1811 1.1 paulus s->strstart++;
1812 1.1 paulus s->lookahead--;
1813 1.7 christos if (s->strm->avail_out == 0) return need_more;
1814 1.1 paulus } else {
1815 1.1 paulus /* There is no previous match to compare with, wait for
1816 1.1 paulus * the next step to decide.
1817 1.1 paulus */
1818 1.1 paulus s->match_available = 1;
1819 1.1 paulus s->strstart++;
1820 1.1 paulus s->lookahead--;
1821 1.1 paulus }
1822 1.1 paulus }
1823 1.1 paulus Assert (flush != Z_NO_FLUSH, "no flush?");
1824 1.1 paulus if (s->match_available) {
1825 1.1 paulus Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826 1.7 christos _tr_tally (s, 0, s->window[s->strstart-1]);
1827 1.1 paulus s->match_available = 0;
1828 1.1 paulus }
1829 1.7 christos FLUSH_BLOCK(s, flush == Z_FINISH);
1830 1.7 christos return flush == Z_FINISH ? finish_done : block_done;
1831 1.1 paulus }
1832 1.7 christos /* --- deflate.c */
1833 1.1 paulus
1834 1.7 christos /* +++ trees.c */
1835 1.1 paulus /* trees.c -- output deflated data using Huffman coding
1836 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly
1837 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
1838 1.1 paulus */
1839 1.1 paulus
1840 1.1 paulus /*
1841 1.1 paulus * ALGORITHM
1842 1.1 paulus *
1843 1.1 paulus * The "deflation" process uses several Huffman trees. The more
1844 1.1 paulus * common source values are represented by shorter bit sequences.
1845 1.1 paulus *
1846 1.1 paulus * Each code tree is stored in a compressed form which is itself
1847 1.1 paulus * a Huffman encoding of the lengths of all the code strings (in
1848 1.1 paulus * ascending order by source values). The actual code strings are
1849 1.1 paulus * reconstructed from the lengths in the inflate process, as described
1850 1.1 paulus * in the deflate specification.
1851 1.1 paulus *
1852 1.1 paulus * REFERENCES
1853 1.1 paulus *
1854 1.1 paulus * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855 1.1 paulus * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856 1.1 paulus *
1857 1.1 paulus * Storer, James A.
1858 1.1 paulus * Data Compression: Methods and Theory, pp. 49-50.
1859 1.1 paulus * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1860 1.1 paulus *
1861 1.1 paulus * Sedgewick, R.
1862 1.1 paulus * Algorithms, p290.
1863 1.1 paulus * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864 1.1 paulus */
1865 1.1 paulus
1866 1.7 christos /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867 1.7 christos
1868 1.7 christos /* #include "deflate.h" */
1869 1.1 paulus
1870 1.1 paulus #ifdef DEBUG_ZLIB
1871 1.1 paulus # include <ctype.h>
1872 1.1 paulus #endif
1873 1.1 paulus
1874 1.1 paulus /* ===========================================================================
1875 1.1 paulus * Constants
1876 1.1 paulus */
1877 1.1 paulus
1878 1.1 paulus #define MAX_BL_BITS 7
1879 1.1 paulus /* Bit length codes must not exceed MAX_BL_BITS bits */
1880 1.1 paulus
1881 1.1 paulus #define END_BLOCK 256
1882 1.1 paulus /* end of block literal code */
1883 1.1 paulus
1884 1.1 paulus #define REP_3_6 16
1885 1.1 paulus /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886 1.1 paulus
1887 1.1 paulus #define REPZ_3_10 17
1888 1.1 paulus /* repeat a zero length 3-10 times (3 bits of repeat count) */
1889 1.1 paulus
1890 1.1 paulus #define REPZ_11_138 18
1891 1.1 paulus /* repeat a zero length 11-138 times (7 bits of repeat count) */
1892 1.1 paulus
1893 1.1 paulus local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894 1.1 paulus = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895 1.1 paulus
1896 1.1 paulus local int extra_dbits[D_CODES] /* extra bits for each distance code */
1897 1.1 paulus = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898 1.1 paulus
1899 1.1 paulus local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900 1.1 paulus = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901 1.1 paulus
1902 1.1 paulus local uch bl_order[BL_CODES]
1903 1.1 paulus = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904 1.1 paulus /* The lengths of the bit length codes are sent in order of decreasing
1905 1.1 paulus * probability, to avoid transmitting the lengths for unused bit length codes.
1906 1.1 paulus */
1907 1.1 paulus
1908 1.1 paulus #define Buf_size (8 * 2*sizeof(char))
1909 1.1 paulus /* Number of bits used within bi_buf. (bi_buf might be implemented on
1910 1.1 paulus * more than 16 bits on some systems.)
1911 1.1 paulus */
1912 1.1 paulus
1913 1.1 paulus /* ===========================================================================
1914 1.1 paulus * Local data. These are initialized only once.
1915 1.1 paulus */
1916 1.1 paulus
1917 1.1 paulus local ct_data static_ltree[L_CODES+2];
1918 1.1 paulus /* The static literal tree. Since the bit lengths are imposed, there is no
1919 1.1 paulus * need for the L_CODES extra codes used during heap construction. However
1920 1.7 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921 1.1 paulus * below).
1922 1.1 paulus */
1923 1.1 paulus
1924 1.1 paulus local ct_data static_dtree[D_CODES];
1925 1.1 paulus /* The static distance tree. (Actually a trivial tree since all codes use
1926 1.1 paulus * 5 bits.)
1927 1.1 paulus */
1928 1.1 paulus
1929 1.1 paulus local uch dist_code[512];
1930 1.1 paulus /* distance codes. The first 256 values correspond to the distances
1931 1.1 paulus * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932 1.1 paulus * the 15 bit distances.
1933 1.1 paulus */
1934 1.1 paulus
1935 1.1 paulus local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936 1.1 paulus /* length code for each normalized match length (0 == MIN_MATCH) */
1937 1.1 paulus
1938 1.1 paulus local int base_length[LENGTH_CODES];
1939 1.1 paulus /* First normalized length for each code (0 = MIN_MATCH) */
1940 1.1 paulus
1941 1.1 paulus local int base_dist[D_CODES];
1942 1.1 paulus /* First normalized distance for each code (0 = distance of 1) */
1943 1.1 paulus
1944 1.1 paulus struct static_tree_desc_s {
1945 1.1 paulus ct_data *static_tree; /* static tree or NULL */
1946 1.1 paulus intf *extra_bits; /* extra bits for each code or NULL */
1947 1.1 paulus int extra_base; /* base index for extra_bits */
1948 1.1 paulus int elems; /* max number of elements in the tree */
1949 1.1 paulus int max_length; /* max bit length for the codes */
1950 1.1 paulus };
1951 1.1 paulus
1952 1.1 paulus local static_tree_desc static_l_desc =
1953 1.1 paulus {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954 1.1 paulus
1955 1.1 paulus local static_tree_desc static_d_desc =
1956 1.1 paulus {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1957 1.1 paulus
1958 1.1 paulus local static_tree_desc static_bl_desc =
1959 1.1 paulus {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1960 1.1 paulus
1961 1.1 paulus /* ===========================================================================
1962 1.1 paulus * Local (static) routines in this file.
1963 1.1 paulus */
1964 1.1 paulus
1965 1.7 christos local void tr_static_init OF((void));
1966 1.1 paulus local void init_block OF((deflate_state *s));
1967 1.1 paulus local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1968 1.1 paulus local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1969 1.1 paulus local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1970 1.1 paulus local void build_tree OF((deflate_state *s, tree_desc *desc));
1971 1.1 paulus local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1972 1.1 paulus local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1973 1.1 paulus local int build_bl_tree OF((deflate_state *s));
1974 1.1 paulus local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975 1.1 paulus int blcodes));
1976 1.1 paulus local void compress_block OF((deflate_state *s, ct_data *ltree,
1977 1.1 paulus ct_data *dtree));
1978 1.1 paulus local void set_data_type OF((deflate_state *s));
1979 1.1 paulus local unsigned bi_reverse OF((unsigned value, int length));
1980 1.1 paulus local void bi_windup OF((deflate_state *s));
1981 1.1 paulus local void bi_flush OF((deflate_state *s));
1982 1.1 paulus local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1983 1.1 paulus int header));
1984 1.1 paulus
1985 1.1 paulus #ifndef DEBUG_ZLIB
1986 1.1 paulus # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987 1.1 paulus /* Send a code of the given tree. c and tree must not have side effects */
1988 1.1 paulus
1989 1.1 paulus #else /* DEBUG_ZLIB */
1990 1.1 paulus # define send_code(s, c, tree) \
1991 1.7 christos { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992 1.1 paulus send_bits(s, tree[c].Code, tree[c].Len); }
1993 1.1 paulus #endif
1994 1.1 paulus
1995 1.1 paulus #define d_code(dist) \
1996 1.1 paulus ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997 1.1 paulus /* Mapping from a distance to a distance code. dist is the distance - 1 and
1998 1.1 paulus * must not have side effects. dist_code[256] and dist_code[257] are never
1999 1.1 paulus * used.
2000 1.1 paulus */
2001 1.1 paulus
2002 1.1 paulus /* ===========================================================================
2003 1.1 paulus * Output a short LSB first on the stream.
2004 1.1 paulus * IN assertion: there is enough room in pendingBuf.
2005 1.1 paulus */
2006 1.1 paulus #define put_short(s, w) { \
2007 1.1 paulus put_byte(s, (uch)((w) & 0xff)); \
2008 1.1 paulus put_byte(s, (uch)((ush)(w) >> 8)); \
2009 1.1 paulus }
2010 1.1 paulus
2011 1.1 paulus /* ===========================================================================
2012 1.1 paulus * Send a value on a given number of bits.
2013 1.1 paulus * IN assertion: length <= 16 and value fits in length bits.
2014 1.1 paulus */
2015 1.1 paulus #ifdef DEBUG_ZLIB
2016 1.1 paulus local void send_bits OF((deflate_state *s, int value, int length));
2017 1.1 paulus
2018 1.1 paulus local void send_bits(s, value, length)
2019 1.1 paulus deflate_state *s;
2020 1.1 paulus int value; /* value to send */
2021 1.1 paulus int length; /* number of bits */
2022 1.1 paulus {
2023 1.7 christos Tracevv((stderr," l %2d v %4x ", length, value));
2024 1.1 paulus Assert(length > 0 && length <= 15, "invalid length");
2025 1.1 paulus s->bits_sent += (ulg)length;
2026 1.1 paulus
2027 1.1 paulus /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028 1.1 paulus * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029 1.1 paulus * unused bits in value.
2030 1.1 paulus */
2031 1.1 paulus if (s->bi_valid > (int)Buf_size - length) {
2032 1.1 paulus s->bi_buf |= (value << s->bi_valid);
2033 1.1 paulus put_short(s, s->bi_buf);
2034 1.1 paulus s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035 1.1 paulus s->bi_valid += length - Buf_size;
2036 1.1 paulus } else {
2037 1.1 paulus s->bi_buf |= value << s->bi_valid;
2038 1.1 paulus s->bi_valid += length;
2039 1.1 paulus }
2040 1.1 paulus }
2041 1.1 paulus #else /* !DEBUG_ZLIB */
2042 1.1 paulus
2043 1.1 paulus #define send_bits(s, value, length) \
2044 1.1 paulus { int len = length;\
2045 1.1 paulus if (s->bi_valid > (int)Buf_size - len) {\
2046 1.1 paulus int val = value;\
2047 1.1 paulus s->bi_buf |= (val << s->bi_valid);\
2048 1.1 paulus put_short(s, s->bi_buf);\
2049 1.1 paulus s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050 1.1 paulus s->bi_valid += len - Buf_size;\
2051 1.1 paulus } else {\
2052 1.1 paulus s->bi_buf |= (value) << s->bi_valid;\
2053 1.1 paulus s->bi_valid += len;\
2054 1.1 paulus }\
2055 1.1 paulus }
2056 1.1 paulus #endif /* DEBUG_ZLIB */
2057 1.1 paulus
2058 1.1 paulus
2059 1.1 paulus #define MAX(a,b) (a >= b ? a : b)
2060 1.1 paulus /* the arguments must not have side effects */
2061 1.1 paulus
2062 1.1 paulus /* ===========================================================================
2063 1.7 christos * Initialize the various 'constant' tables. In a multi-threaded environment,
2064 1.7 christos * this function may be called by two threads concurrently, but this is
2065 1.7 christos * harmless since both invocations do exactly the same thing.
2066 1.1 paulus */
2067 1.7 christos local void tr_static_init()
2068 1.1 paulus {
2069 1.7 christos static int static_init_done = 0;
2070 1.1 paulus int n; /* iterates over tree elements */
2071 1.1 paulus int bits; /* bit counter */
2072 1.1 paulus int length; /* length value */
2073 1.1 paulus int code; /* code value */
2074 1.1 paulus int dist; /* distance index */
2075 1.1 paulus ush bl_count[MAX_BITS+1];
2076 1.1 paulus /* number of codes at each bit length for an optimal tree */
2077 1.1 paulus
2078 1.7 christos if (static_init_done) return;
2079 1.7 christos
2080 1.1 paulus /* Initialize the mapping length (0..255) -> length code (0..28) */
2081 1.1 paulus length = 0;
2082 1.1 paulus for (code = 0; code < LENGTH_CODES-1; code++) {
2083 1.1 paulus base_length[code] = length;
2084 1.1 paulus for (n = 0; n < (1<<extra_lbits[code]); n++) {
2085 1.1 paulus length_code[length++] = (uch)code;
2086 1.1 paulus }
2087 1.1 paulus }
2088 1.7 christos Assert (length == 256, "tr_static_init: length != 256");
2089 1.1 paulus /* Note that the length 255 (match length 258) can be represented
2090 1.1 paulus * in two different ways: code 284 + 5 bits or code 285, so we
2091 1.1 paulus * overwrite length_code[255] to use the best encoding:
2092 1.1 paulus */
2093 1.1 paulus length_code[length-1] = (uch)code;
2094 1.1 paulus
2095 1.1 paulus /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2096 1.1 paulus dist = 0;
2097 1.1 paulus for (code = 0 ; code < 16; code++) {
2098 1.1 paulus base_dist[code] = dist;
2099 1.1 paulus for (n = 0; n < (1<<extra_dbits[code]); n++) {
2100 1.1 paulus dist_code[dist++] = (uch)code;
2101 1.1 paulus }
2102 1.1 paulus }
2103 1.7 christos Assert (dist == 256, "tr_static_init: dist != 256");
2104 1.1 paulus dist >>= 7; /* from now on, all distances are divided by 128 */
2105 1.1 paulus for ( ; code < D_CODES; code++) {
2106 1.1 paulus base_dist[code] = dist << 7;
2107 1.1 paulus for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2108 1.1 paulus dist_code[256 + dist++] = (uch)code;
2109 1.1 paulus }
2110 1.1 paulus }
2111 1.7 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
2112 1.1 paulus
2113 1.1 paulus /* Construct the codes of the static literal tree */
2114 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2115 1.1 paulus n = 0;
2116 1.1 paulus while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2117 1.1 paulus while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2118 1.1 paulus while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2119 1.1 paulus while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2120 1.1 paulus /* Codes 286 and 287 do not exist, but we must include them in the
2121 1.1 paulus * tree construction to get a canonical Huffman tree (longest code
2122 1.1 paulus * all ones)
2123 1.1 paulus */
2124 1.1 paulus gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2125 1.1 paulus
2126 1.1 paulus /* The static distance tree is trivial: */
2127 1.1 paulus for (n = 0; n < D_CODES; n++) {
2128 1.1 paulus static_dtree[n].Len = 5;
2129 1.7 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2130 1.1 paulus }
2131 1.7 christos static_init_done = 1;
2132 1.1 paulus }
2133 1.1 paulus
2134 1.1 paulus /* ===========================================================================
2135 1.1 paulus * Initialize the tree data structures for a new zlib stream.
2136 1.1 paulus */
2137 1.7 christos void _tr_init(s)
2138 1.1 paulus deflate_state *s;
2139 1.1 paulus {
2140 1.7 christos tr_static_init();
2141 1.1 paulus
2142 1.1 paulus s->compressed_len = 0L;
2143 1.1 paulus
2144 1.1 paulus s->l_desc.dyn_tree = s->dyn_ltree;
2145 1.1 paulus s->l_desc.stat_desc = &static_l_desc;
2146 1.1 paulus
2147 1.1 paulus s->d_desc.dyn_tree = s->dyn_dtree;
2148 1.1 paulus s->d_desc.stat_desc = &static_d_desc;
2149 1.1 paulus
2150 1.1 paulus s->bl_desc.dyn_tree = s->bl_tree;
2151 1.1 paulus s->bl_desc.stat_desc = &static_bl_desc;
2152 1.1 paulus
2153 1.1 paulus s->bi_buf = 0;
2154 1.1 paulus s->bi_valid = 0;
2155 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2156 1.1 paulus #ifdef DEBUG_ZLIB
2157 1.1 paulus s->bits_sent = 0L;
2158 1.1 paulus #endif
2159 1.1 paulus
2160 1.1 paulus /* Initialize the first block of the first file: */
2161 1.1 paulus init_block(s);
2162 1.1 paulus }
2163 1.1 paulus
2164 1.1 paulus /* ===========================================================================
2165 1.1 paulus * Initialize a new block.
2166 1.1 paulus */
2167 1.1 paulus local void init_block(s)
2168 1.1 paulus deflate_state *s;
2169 1.1 paulus {
2170 1.1 paulus int n; /* iterates over tree elements */
2171 1.1 paulus
2172 1.1 paulus /* Initialize the trees. */
2173 1.1 paulus for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2174 1.1 paulus for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2175 1.1 paulus for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2176 1.1 paulus
2177 1.1 paulus s->dyn_ltree[END_BLOCK].Freq = 1;
2178 1.1 paulus s->opt_len = s->static_len = 0L;
2179 1.1 paulus s->last_lit = s->matches = 0;
2180 1.1 paulus }
2181 1.1 paulus
2182 1.1 paulus #define SMALLEST 1
2183 1.1 paulus /* Index within the heap array of least frequent node in the Huffman tree */
2184 1.1 paulus
2185 1.1 paulus
2186 1.1 paulus /* ===========================================================================
2187 1.1 paulus * Remove the smallest element from the heap and recreate the heap with
2188 1.1 paulus * one less element. Updates heap and heap_len.
2189 1.1 paulus */
2190 1.1 paulus #define pqremove(s, tree, top) \
2191 1.1 paulus {\
2192 1.1 paulus top = s->heap[SMALLEST]; \
2193 1.1 paulus s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2194 1.1 paulus pqdownheap(s, tree, SMALLEST); \
2195 1.1 paulus }
2196 1.1 paulus
2197 1.1 paulus /* ===========================================================================
2198 1.1 paulus * Compares to subtrees, using the tree depth as tie breaker when
2199 1.1 paulus * the subtrees have equal frequency. This minimizes the worst case length.
2200 1.1 paulus */
2201 1.1 paulus #define smaller(tree, n, m, depth) \
2202 1.1 paulus (tree[n].Freq < tree[m].Freq || \
2203 1.1 paulus (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2204 1.1 paulus
2205 1.1 paulus /* ===========================================================================
2206 1.1 paulus * Restore the heap property by moving down the tree starting at node k,
2207 1.1 paulus * exchanging a node with the smallest of its two sons if necessary, stopping
2208 1.1 paulus * when the heap property is re-established (each father smaller than its
2209 1.1 paulus * two sons).
2210 1.1 paulus */
2211 1.1 paulus local void pqdownheap(s, tree, k)
2212 1.1 paulus deflate_state *s;
2213 1.1 paulus ct_data *tree; /* the tree to restore */
2214 1.1 paulus int k; /* node to move down */
2215 1.1 paulus {
2216 1.1 paulus int v = s->heap[k];
2217 1.1 paulus int j = k << 1; /* left son of k */
2218 1.1 paulus while (j <= s->heap_len) {
2219 1.1 paulus /* Set j to the smallest of the two sons: */
2220 1.1 paulus if (j < s->heap_len &&
2221 1.1 paulus smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2222 1.1 paulus j++;
2223 1.1 paulus }
2224 1.1 paulus /* Exit if v is smaller than both sons */
2225 1.1 paulus if (smaller(tree, v, s->heap[j], s->depth)) break;
2226 1.1 paulus
2227 1.1 paulus /* Exchange v with the smallest son */
2228 1.1 paulus s->heap[k] = s->heap[j]; k = j;
2229 1.1 paulus
2230 1.1 paulus /* And continue down the tree, setting j to the left son of k */
2231 1.1 paulus j <<= 1;
2232 1.1 paulus }
2233 1.1 paulus s->heap[k] = v;
2234 1.1 paulus }
2235 1.1 paulus
2236 1.1 paulus /* ===========================================================================
2237 1.1 paulus * Compute the optimal bit lengths for a tree and update the total bit length
2238 1.1 paulus * for the current block.
2239 1.1 paulus * IN assertion: the fields freq and dad are set, heap[heap_max] and
2240 1.1 paulus * above are the tree nodes sorted by increasing frequency.
2241 1.1 paulus * OUT assertions: the field len is set to the optimal bit length, the
2242 1.1 paulus * array bl_count contains the frequencies for each bit length.
2243 1.1 paulus * The length opt_len is updated; static_len is also updated if stree is
2244 1.1 paulus * not null.
2245 1.1 paulus */
2246 1.1 paulus local void gen_bitlen(s, desc)
2247 1.1 paulus deflate_state *s;
2248 1.1 paulus tree_desc *desc; /* the tree descriptor */
2249 1.1 paulus {
2250 1.1 paulus ct_data *tree = desc->dyn_tree;
2251 1.1 paulus int max_code = desc->max_code;
2252 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
2253 1.1 paulus intf *extra = desc->stat_desc->extra_bits;
2254 1.1 paulus int base = desc->stat_desc->extra_base;
2255 1.1 paulus int max_length = desc->stat_desc->max_length;
2256 1.1 paulus int h; /* heap index */
2257 1.1 paulus int n, m; /* iterate over the tree elements */
2258 1.1 paulus int bits; /* bit length */
2259 1.1 paulus int xbits; /* extra bits */
2260 1.1 paulus ush f; /* frequency */
2261 1.1 paulus int overflow = 0; /* number of elements with bit length too large */
2262 1.1 paulus
2263 1.1 paulus for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264 1.1 paulus
2265 1.1 paulus /* In a first pass, compute the optimal bit lengths (which may
2266 1.1 paulus * overflow in the case of the bit length tree).
2267 1.1 paulus */
2268 1.1 paulus tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269 1.1 paulus
2270 1.1 paulus for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271 1.1 paulus n = s->heap[h];
2272 1.1 paulus bits = tree[tree[n].Dad].Len + 1;
2273 1.1 paulus if (bits > max_length) bits = max_length, overflow++;
2274 1.1 paulus tree[n].Len = (ush)bits;
2275 1.1 paulus /* We overwrite tree[n].Dad which is no longer needed */
2276 1.1 paulus
2277 1.1 paulus if (n > max_code) continue; /* not a leaf node */
2278 1.1 paulus
2279 1.1 paulus s->bl_count[bits]++;
2280 1.1 paulus xbits = 0;
2281 1.1 paulus if (n >= base) xbits = extra[n-base];
2282 1.1 paulus f = tree[n].Freq;
2283 1.1 paulus s->opt_len += (ulg)f * (bits + xbits);
2284 1.1 paulus if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285 1.1 paulus }
2286 1.1 paulus if (overflow == 0) return;
2287 1.1 paulus
2288 1.1 paulus Trace((stderr,"\nbit length overflow\n"));
2289 1.1 paulus /* This happens for example on obj2 and pic of the Calgary corpus */
2290 1.1 paulus
2291 1.1 paulus /* Find the first bit length which could increase: */
2292 1.1 paulus do {
2293 1.1 paulus bits = max_length-1;
2294 1.1 paulus while (s->bl_count[bits] == 0) bits--;
2295 1.1 paulus s->bl_count[bits]--; /* move one leaf down the tree */
2296 1.1 paulus s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297 1.1 paulus s->bl_count[max_length]--;
2298 1.1 paulus /* The brother of the overflow item also moves one step up,
2299 1.1 paulus * but this does not affect bl_count[max_length]
2300 1.1 paulus */
2301 1.1 paulus overflow -= 2;
2302 1.1 paulus } while (overflow > 0);
2303 1.1 paulus
2304 1.1 paulus /* Now recompute all bit lengths, scanning in increasing frequency.
2305 1.1 paulus * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306 1.1 paulus * lengths instead of fixing only the wrong ones. This idea is taken
2307 1.1 paulus * from 'ar' written by Haruhiko Okumura.)
2308 1.1 paulus */
2309 1.1 paulus for (bits = max_length; bits != 0; bits--) {
2310 1.1 paulus n = s->bl_count[bits];
2311 1.1 paulus while (n != 0) {
2312 1.1 paulus m = s->heap[--h];
2313 1.1 paulus if (m > max_code) continue;
2314 1.1 paulus if (tree[m].Len != (unsigned) bits) {
2315 1.1 paulus Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316 1.1 paulus s->opt_len += ((long)bits - (long)tree[m].Len)
2317 1.1 paulus *(long)tree[m].Freq;
2318 1.1 paulus tree[m].Len = (ush)bits;
2319 1.1 paulus }
2320 1.1 paulus n--;
2321 1.1 paulus }
2322 1.1 paulus }
2323 1.1 paulus }
2324 1.1 paulus
2325 1.1 paulus /* ===========================================================================
2326 1.1 paulus * Generate the codes for a given tree and bit counts (which need not be
2327 1.1 paulus * optimal).
2328 1.1 paulus * IN assertion: the array bl_count contains the bit length statistics for
2329 1.1 paulus * the given tree and the field len is set for all tree elements.
2330 1.1 paulus * OUT assertion: the field code is set for all tree elements of non
2331 1.1 paulus * zero code length.
2332 1.1 paulus */
2333 1.1 paulus local void gen_codes (tree, max_code, bl_count)
2334 1.1 paulus ct_data *tree; /* the tree to decorate */
2335 1.1 paulus int max_code; /* largest code with non zero frequency */
2336 1.1 paulus ushf *bl_count; /* number of codes at each bit length */
2337 1.1 paulus {
2338 1.1 paulus ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2339 1.1 paulus ush code = 0; /* running code value */
2340 1.1 paulus int bits; /* bit index */
2341 1.1 paulus int n; /* code index */
2342 1.1 paulus
2343 1.1 paulus /* The distribution counts are first used to generate the code values
2344 1.1 paulus * without bit reversal.
2345 1.1 paulus */
2346 1.1 paulus for (bits = 1; bits <= MAX_BITS; bits++) {
2347 1.1 paulus next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2348 1.1 paulus }
2349 1.1 paulus /* Check that the bit counts in bl_count are consistent. The last code
2350 1.1 paulus * must be all ones.
2351 1.1 paulus */
2352 1.1 paulus Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2353 1.1 paulus "inconsistent bit counts");
2354 1.1 paulus Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2355 1.1 paulus
2356 1.1 paulus for (n = 0; n <= max_code; n++) {
2357 1.1 paulus int len = tree[n].Len;
2358 1.1 paulus if (len == 0) continue;
2359 1.1 paulus /* Now reverse the bits */
2360 1.1 paulus tree[n].Code = bi_reverse(next_code[len]++, len);
2361 1.1 paulus
2362 1.7 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2363 1.1 paulus n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2364 1.1 paulus }
2365 1.1 paulus }
2366 1.1 paulus
2367 1.1 paulus /* ===========================================================================
2368 1.1 paulus * Construct one Huffman tree and assigns the code bit strings and lengths.
2369 1.1 paulus * Update the total bit length for the current block.
2370 1.1 paulus * IN assertion: the field freq is set for all tree elements.
2371 1.1 paulus * OUT assertions: the fields len and code are set to the optimal bit length
2372 1.1 paulus * and corresponding code. The length opt_len is updated; static_len is
2373 1.1 paulus * also updated if stree is not null. The field max_code is set.
2374 1.1 paulus */
2375 1.1 paulus local void build_tree(s, desc)
2376 1.1 paulus deflate_state *s;
2377 1.1 paulus tree_desc *desc; /* the tree descriptor */
2378 1.1 paulus {
2379 1.1 paulus ct_data *tree = desc->dyn_tree;
2380 1.1 paulus ct_data *stree = desc->stat_desc->static_tree;
2381 1.1 paulus int elems = desc->stat_desc->elems;
2382 1.1 paulus int n, m; /* iterate over heap elements */
2383 1.1 paulus int max_code = -1; /* largest code with non zero frequency */
2384 1.1 paulus int node; /* new node being created */
2385 1.1 paulus
2386 1.1 paulus /* Construct the initial heap, with least frequent element in
2387 1.1 paulus * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2388 1.1 paulus * heap[0] is not used.
2389 1.1 paulus */
2390 1.1 paulus s->heap_len = 0, s->heap_max = HEAP_SIZE;
2391 1.1 paulus
2392 1.1 paulus for (n = 0; n < elems; n++) {
2393 1.1 paulus if (tree[n].Freq != 0) {
2394 1.1 paulus s->heap[++(s->heap_len)] = max_code = n;
2395 1.1 paulus s->depth[n] = 0;
2396 1.1 paulus } else {
2397 1.1 paulus tree[n].Len = 0;
2398 1.1 paulus }
2399 1.1 paulus }
2400 1.1 paulus
2401 1.1 paulus /* The pkzip format requires that at least one distance code exists,
2402 1.1 paulus * and that at least one bit should be sent even if there is only one
2403 1.1 paulus * possible code. So to avoid special checks later on we force at least
2404 1.1 paulus * two codes of non zero frequency.
2405 1.1 paulus */
2406 1.1 paulus while (s->heap_len < 2) {
2407 1.1 paulus node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2408 1.1 paulus tree[node].Freq = 1;
2409 1.1 paulus s->depth[node] = 0;
2410 1.1 paulus s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2411 1.1 paulus /* node is 0 or 1 so it does not have extra bits */
2412 1.1 paulus }
2413 1.1 paulus desc->max_code = max_code;
2414 1.1 paulus
2415 1.1 paulus /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2416 1.1 paulus * establish sub-heaps of increasing lengths:
2417 1.1 paulus */
2418 1.1 paulus for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2419 1.1 paulus
2420 1.1 paulus /* Construct the Huffman tree by repeatedly combining the least two
2421 1.1 paulus * frequent nodes.
2422 1.1 paulus */
2423 1.1 paulus node = elems; /* next internal node of the tree */
2424 1.1 paulus do {
2425 1.1 paulus pqremove(s, tree, n); /* n = node of least frequency */
2426 1.1 paulus m = s->heap[SMALLEST]; /* m = node of next least frequency */
2427 1.1 paulus
2428 1.1 paulus s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2429 1.1 paulus s->heap[--(s->heap_max)] = m;
2430 1.1 paulus
2431 1.1 paulus /* Create a new node father of n and m */
2432 1.1 paulus tree[node].Freq = tree[n].Freq + tree[m].Freq;
2433 1.1 paulus s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2434 1.1 paulus tree[n].Dad = tree[m].Dad = (ush)node;
2435 1.1 paulus #ifdef DUMP_BL_TREE
2436 1.1 paulus if (tree == s->bl_tree) {
2437 1.1 paulus fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2438 1.1 paulus node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2439 1.1 paulus }
2440 1.1 paulus #endif
2441 1.1 paulus /* and insert the new node in the heap */
2442 1.1 paulus s->heap[SMALLEST] = node++;
2443 1.1 paulus pqdownheap(s, tree, SMALLEST);
2444 1.1 paulus
2445 1.1 paulus } while (s->heap_len >= 2);
2446 1.1 paulus
2447 1.1 paulus s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2448 1.1 paulus
2449 1.1 paulus /* At this point, the fields freq and dad are set. We can now
2450 1.1 paulus * generate the bit lengths.
2451 1.1 paulus */
2452 1.1 paulus gen_bitlen(s, (tree_desc *)desc);
2453 1.1 paulus
2454 1.1 paulus /* The field len is now set, we can generate the bit codes */
2455 1.1 paulus gen_codes ((ct_data *)tree, max_code, s->bl_count);
2456 1.1 paulus }
2457 1.1 paulus
2458 1.1 paulus /* ===========================================================================
2459 1.1 paulus * Scan a literal or distance tree to determine the frequencies of the codes
2460 1.1 paulus * in the bit length tree.
2461 1.1 paulus */
2462 1.1 paulus local void scan_tree (s, tree, max_code)
2463 1.1 paulus deflate_state *s;
2464 1.1 paulus ct_data *tree; /* the tree to be scanned */
2465 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2466 1.1 paulus {
2467 1.1 paulus int n; /* iterates over all tree elements */
2468 1.1 paulus int prevlen = -1; /* last emitted length */
2469 1.1 paulus int curlen; /* length of current code */
2470 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2471 1.1 paulus int count = 0; /* repeat count of the current code */
2472 1.1 paulus int max_count = 7; /* max repeat count */
2473 1.1 paulus int min_count = 4; /* min repeat count */
2474 1.1 paulus
2475 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2476 1.1 paulus tree[max_code+1].Len = (ush)0xffff; /* guard */
2477 1.1 paulus
2478 1.1 paulus for (n = 0; n <= max_code; n++) {
2479 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2480 1.1 paulus if (++count < max_count && curlen == nextlen) {
2481 1.1 paulus continue;
2482 1.1 paulus } else if (count < min_count) {
2483 1.1 paulus s->bl_tree[curlen].Freq += count;
2484 1.1 paulus } else if (curlen != 0) {
2485 1.1 paulus if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2486 1.1 paulus s->bl_tree[REP_3_6].Freq++;
2487 1.1 paulus } else if (count <= 10) {
2488 1.1 paulus s->bl_tree[REPZ_3_10].Freq++;
2489 1.1 paulus } else {
2490 1.1 paulus s->bl_tree[REPZ_11_138].Freq++;
2491 1.1 paulus }
2492 1.1 paulus count = 0; prevlen = curlen;
2493 1.1 paulus if (nextlen == 0) {
2494 1.1 paulus max_count = 138, min_count = 3;
2495 1.1 paulus } else if (curlen == nextlen) {
2496 1.1 paulus max_count = 6, min_count = 3;
2497 1.1 paulus } else {
2498 1.1 paulus max_count = 7, min_count = 4;
2499 1.1 paulus }
2500 1.1 paulus }
2501 1.1 paulus }
2502 1.1 paulus
2503 1.1 paulus /* ===========================================================================
2504 1.1 paulus * Send a literal or distance tree in compressed form, using the codes in
2505 1.1 paulus * bl_tree.
2506 1.1 paulus */
2507 1.1 paulus local void send_tree (s, tree, max_code)
2508 1.1 paulus deflate_state *s;
2509 1.1 paulus ct_data *tree; /* the tree to be scanned */
2510 1.1 paulus int max_code; /* and its largest code of non zero frequency */
2511 1.1 paulus {
2512 1.1 paulus int n; /* iterates over all tree elements */
2513 1.1 paulus int prevlen = -1; /* last emitted length */
2514 1.1 paulus int curlen; /* length of current code */
2515 1.1 paulus int nextlen = tree[0].Len; /* length of next code */
2516 1.1 paulus int count = 0; /* repeat count of the current code */
2517 1.1 paulus int max_count = 7; /* max repeat count */
2518 1.1 paulus int min_count = 4; /* min repeat count */
2519 1.1 paulus
2520 1.1 paulus /* tree[max_code+1].Len = -1; */ /* guard already set */
2521 1.1 paulus if (nextlen == 0) max_count = 138, min_count = 3;
2522 1.1 paulus
2523 1.1 paulus for (n = 0; n <= max_code; n++) {
2524 1.1 paulus curlen = nextlen; nextlen = tree[n+1].Len;
2525 1.1 paulus if (++count < max_count && curlen == nextlen) {
2526 1.1 paulus continue;
2527 1.1 paulus } else if (count < min_count) {
2528 1.1 paulus do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2529 1.1 paulus
2530 1.1 paulus } else if (curlen != 0) {
2531 1.1 paulus if (curlen != prevlen) {
2532 1.1 paulus send_code(s, curlen, s->bl_tree); count--;
2533 1.1 paulus }
2534 1.1 paulus Assert(count >= 3 && count <= 6, " 3_6?");
2535 1.1 paulus send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2536 1.1 paulus
2537 1.1 paulus } else if (count <= 10) {
2538 1.1 paulus send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2539 1.1 paulus
2540 1.1 paulus } else {
2541 1.1 paulus send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2542 1.1 paulus }
2543 1.1 paulus count = 0; prevlen = curlen;
2544 1.1 paulus if (nextlen == 0) {
2545 1.1 paulus max_count = 138, min_count = 3;
2546 1.1 paulus } else if (curlen == nextlen) {
2547 1.1 paulus max_count = 6, min_count = 3;
2548 1.1 paulus } else {
2549 1.1 paulus max_count = 7, min_count = 4;
2550 1.1 paulus }
2551 1.1 paulus }
2552 1.1 paulus }
2553 1.1 paulus
2554 1.1 paulus /* ===========================================================================
2555 1.1 paulus * Construct the Huffman tree for the bit lengths and return the index in
2556 1.1 paulus * bl_order of the last bit length code to send.
2557 1.1 paulus */
2558 1.1 paulus local int build_bl_tree(s)
2559 1.1 paulus deflate_state *s;
2560 1.1 paulus {
2561 1.1 paulus int max_blindex; /* index of last bit length code of non zero freq */
2562 1.1 paulus
2563 1.1 paulus /* Determine the bit length frequencies for literal and distance trees */
2564 1.1 paulus scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2565 1.1 paulus scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2566 1.1 paulus
2567 1.1 paulus /* Build the bit length tree: */
2568 1.1 paulus build_tree(s, (tree_desc *)(&(s->bl_desc)));
2569 1.1 paulus /* opt_len now includes the length of the tree representations, except
2570 1.1 paulus * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2571 1.1 paulus */
2572 1.1 paulus
2573 1.1 paulus /* Determine the number of bit length codes to send. The pkzip format
2574 1.1 paulus * requires that at least 4 bit length codes be sent. (appnote.txt says
2575 1.1 paulus * 3 but the actual value used is 4.)
2576 1.1 paulus */
2577 1.1 paulus for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2578 1.1 paulus if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2579 1.1 paulus }
2580 1.1 paulus /* Update opt_len to include the bit length tree and counts */
2581 1.1 paulus s->opt_len += 3*(max_blindex+1) + 5+5+4;
2582 1.1 paulus Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2583 1.1 paulus s->opt_len, s->static_len));
2584 1.1 paulus
2585 1.1 paulus return max_blindex;
2586 1.1 paulus }
2587 1.1 paulus
2588 1.1 paulus /* ===========================================================================
2589 1.1 paulus * Send the header for a block using dynamic Huffman trees: the counts, the
2590 1.1 paulus * lengths of the bit length codes, the literal tree and the distance tree.
2591 1.1 paulus * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2592 1.1 paulus */
2593 1.1 paulus local void send_all_trees(s, lcodes, dcodes, blcodes)
2594 1.1 paulus deflate_state *s;
2595 1.1 paulus int lcodes, dcodes, blcodes; /* number of codes for each tree */
2596 1.1 paulus {
2597 1.1 paulus int rank; /* index in bl_order */
2598 1.1 paulus
2599 1.1 paulus Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2600 1.1 paulus Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2601 1.1 paulus "too many codes");
2602 1.1 paulus Tracev((stderr, "\nbl counts: "));
2603 1.1 paulus send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2604 1.1 paulus send_bits(s, dcodes-1, 5);
2605 1.1 paulus send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2606 1.1 paulus for (rank = 0; rank < blcodes; rank++) {
2607 1.1 paulus Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2608 1.1 paulus send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2609 1.1 paulus }
2610 1.1 paulus Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2611 1.1 paulus
2612 1.1 paulus send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2613 1.1 paulus Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2614 1.1 paulus
2615 1.1 paulus send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2616 1.1 paulus Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2617 1.1 paulus }
2618 1.1 paulus
2619 1.1 paulus /* ===========================================================================
2620 1.1 paulus * Send a stored block
2621 1.1 paulus */
2622 1.7 christos void _tr_stored_block(s, buf, stored_len, eof)
2623 1.1 paulus deflate_state *s;
2624 1.1 paulus charf *buf; /* input block */
2625 1.1 paulus ulg stored_len; /* length of input block */
2626 1.1 paulus int eof; /* true if this is the last block for a file */
2627 1.1 paulus {
2628 1.1 paulus send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2629 1.7 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2630 1.1 paulus s->compressed_len += (stored_len + 4) << 3;
2631 1.1 paulus
2632 1.1 paulus copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2633 1.1 paulus }
2634 1.1 paulus
2635 1.1 paulus /* Send just the `stored block' type code without any length bytes or data.
2636 1.1 paulus */
2637 1.7 christos void _tr_stored_type_only(s)
2638 1.1 paulus deflate_state *s;
2639 1.1 paulus {
2640 1.1 paulus send_bits(s, (STORED_BLOCK << 1), 3);
2641 1.1 paulus bi_windup(s);
2642 1.1 paulus s->compressed_len = (s->compressed_len + 3) & ~7L;
2643 1.1 paulus }
2644 1.1 paulus
2645 1.1 paulus
2646 1.1 paulus /* ===========================================================================
2647 1.1 paulus * Send one empty static block to give enough lookahead for inflate.
2648 1.1 paulus * This takes 10 bits, of which 7 may remain in the bit buffer.
2649 1.7 christos * The current inflate code requires 9 bits of lookahead. If the
2650 1.7 christos * last two codes for the previous block (real code plus EOB) were coded
2651 1.7 christos * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2652 1.7 christos * the last real code. In this case we send two empty static blocks instead
2653 1.7 christos * of one. (There are no problems if the previous block is stored or fixed.)
2654 1.7 christos * To simplify the code, we assume the worst case of last real code encoded
2655 1.7 christos * on one bit only.
2656 1.1 paulus */
2657 1.7 christos void _tr_align(s)
2658 1.1 paulus deflate_state *s;
2659 1.1 paulus {
2660 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2661 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2662 1.1 paulus s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2663 1.1 paulus bi_flush(s);
2664 1.1 paulus /* Of the 10 bits for the empty block, we have already sent
2665 1.7 christos * (10 - bi_valid) bits. The lookahead for the last real code (before
2666 1.7 christos * the EOB of the previous block) was thus at least one plus the length
2667 1.7 christos * of the EOB plus what we have just sent of the empty static block.
2668 1.1 paulus */
2669 1.7 christos if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2670 1.1 paulus send_bits(s, STATIC_TREES<<1, 3);
2671 1.1 paulus send_code(s, END_BLOCK, static_ltree);
2672 1.1 paulus s->compressed_len += 10L;
2673 1.1 paulus bi_flush(s);
2674 1.1 paulus }
2675 1.1 paulus s->last_eob_len = 7;
2676 1.1 paulus }
2677 1.1 paulus
2678 1.1 paulus /* ===========================================================================
2679 1.1 paulus * Determine the best encoding for the current block: dynamic trees, static
2680 1.1 paulus * trees or store, and output the encoded block to the zip file. This function
2681 1.1 paulus * returns the total compressed length for the file so far.
2682 1.1 paulus */
2683 1.7 christos ulg _tr_flush_block(s, buf, stored_len, eof)
2684 1.1 paulus deflate_state *s;
2685 1.1 paulus charf *buf; /* input block, or NULL if too old */
2686 1.1 paulus ulg stored_len; /* length of input block */
2687 1.7 christos int eof; /* true if this is the last block for a file */
2688 1.1 paulus {
2689 1.1 paulus ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2690 1.7 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
2691 1.1 paulus
2692 1.7 christos /* Build the Huffman trees unless a stored block is forced */
2693 1.7 christos if (s->level > 0) {
2694 1.1 paulus
2695 1.7 christos /* Check if the file is ascii or binary */
2696 1.7 christos if (s->data_type == Z_UNKNOWN) set_data_type(s);
2697 1.1 paulus
2698 1.7 christos /* Construct the literal and distance trees */
2699 1.7 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
2700 1.7 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2701 1.7 christos s->static_len));
2702 1.7 christos
2703 1.7 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
2704 1.7 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2705 1.7 christos s->static_len));
2706 1.7 christos /* At this point, opt_len and static_len are the total bit lengths of
2707 1.7 christos * the compressed block data, excluding the tree representations.
2708 1.7 christos */
2709 1.7 christos
2710 1.7 christos /* Build the bit length tree for the above two trees, and get the index
2711 1.7 christos * in bl_order of the last bit length code to send.
2712 1.7 christos */
2713 1.7 christos max_blindex = build_bl_tree(s);
2714 1.7 christos
2715 1.7 christos /* Determine the best encoding. Compute first the block length in bytes*/
2716 1.7 christos opt_lenb = (s->opt_len+3+7)>>3;
2717 1.7 christos static_lenb = (s->static_len+3+7)>>3;
2718 1.7 christos
2719 1.7 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2720 1.7 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2721 1.7 christos s->last_lit));
2722 1.1 paulus
2723 1.7 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2724 1.1 paulus
2725 1.7 christos } else {
2726 1.7 christos Assert(buf != (char*)0, "lost buf");
2727 1.7 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2728 1.7 christos }
2729 1.1 paulus
2730 1.1 paulus /* If compression failed and this is the first and last block,
2731 1.1 paulus * and if the .zip file can be seeked (to rewrite the local header),
2732 1.1 paulus * the whole file is transformed into a stored file:
2733 1.1 paulus */
2734 1.1 paulus #ifdef STORED_FILE_OK
2735 1.1 paulus # ifdef FORCE_STORED_FILE
2736 1.7 christos if (eof && s->compressed_len == 0L) { /* force stored file */
2737 1.1 paulus # else
2738 1.7 christos if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2739 1.1 paulus # endif
2740 1.1 paulus /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2741 1.1 paulus if (buf == (charf*)0) error ("block vanished");
2742 1.1 paulus
2743 1.7 christos copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2744 1.1 paulus s->compressed_len = stored_len << 3;
2745 1.1 paulus s->method = STORED;
2746 1.1 paulus } else
2747 1.1 paulus #endif /* STORED_FILE_OK */
2748 1.1 paulus
2749 1.1 paulus #ifdef FORCE_STORED
2750 1.7 christos if (buf != (char*)0) { /* force stored block */
2751 1.1 paulus #else
2752 1.7 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2753 1.1 paulus /* 4: two words for the lengths */
2754 1.1 paulus #endif
2755 1.1 paulus /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2756 1.1 paulus * Otherwise we can't have processed more than WSIZE input bytes since
2757 1.1 paulus * the last block flush, because compression would have been
2758 1.1 paulus * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2759 1.1 paulus * transform a block into a stored block.
2760 1.1 paulus */
2761 1.7 christos _tr_stored_block(s, buf, stored_len, eof);
2762 1.1 paulus
2763 1.1 paulus #ifdef FORCE_STATIC
2764 1.7 christos } else if (static_lenb >= 0) { /* force static trees */
2765 1.1 paulus #else
2766 1.7 christos } else if (static_lenb == opt_lenb) {
2767 1.1 paulus #endif
2768 1.1 paulus send_bits(s, (STATIC_TREES<<1)+eof, 3);
2769 1.1 paulus compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2770 1.1 paulus s->compressed_len += 3 + s->static_len;
2771 1.1 paulus } else {
2772 1.1 paulus send_bits(s, (DYN_TREES<<1)+eof, 3);
2773 1.1 paulus send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2774 1.1 paulus max_blindex+1);
2775 1.1 paulus compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2776 1.1 paulus s->compressed_len += 3 + s->opt_len;
2777 1.1 paulus }
2778 1.1 paulus Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2779 1.1 paulus init_block(s);
2780 1.1 paulus
2781 1.1 paulus if (eof) {
2782 1.1 paulus bi_windup(s);
2783 1.1 paulus s->compressed_len += 7; /* align on byte boundary */
2784 1.1 paulus }
2785 1.1 paulus Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2786 1.1 paulus s->compressed_len-7*eof));
2787 1.1 paulus
2788 1.1 paulus return s->compressed_len >> 3;
2789 1.1 paulus }
2790 1.1 paulus
2791 1.1 paulus /* ===========================================================================
2792 1.1 paulus * Save the match info and tally the frequency counts. Return true if
2793 1.1 paulus * the current block must be flushed.
2794 1.1 paulus */
2795 1.7 christos int _tr_tally (s, dist, lc)
2796 1.1 paulus deflate_state *s;
2797 1.7 christos unsigned dist; /* distance of matched string */
2798 1.7 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2799 1.1 paulus {
2800 1.1 paulus s->d_buf[s->last_lit] = (ush)dist;
2801 1.1 paulus s->l_buf[s->last_lit++] = (uch)lc;
2802 1.1 paulus if (dist == 0) {
2803 1.1 paulus /* lc is the unmatched char */
2804 1.1 paulus s->dyn_ltree[lc].Freq++;
2805 1.1 paulus } else {
2806 1.1 paulus s->matches++;
2807 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2808 1.1 paulus dist--; /* dist = match distance - 1 */
2809 1.1 paulus Assert((ush)dist < (ush)MAX_DIST(s) &&
2810 1.1 paulus (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2811 1.7 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2812 1.1 paulus
2813 1.1 paulus s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2814 1.1 paulus s->dyn_dtree[d_code(dist)].Freq++;
2815 1.1 paulus }
2816 1.1 paulus
2817 1.1 paulus /* Try to guess if it is profitable to stop the current block here */
2818 1.1 paulus if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2819 1.1 paulus /* Compute an upper bound for the compressed length */
2820 1.1 paulus ulg out_length = (ulg)s->last_lit*8L;
2821 1.7 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
2822 1.1 paulus int dcode;
2823 1.1 paulus for (dcode = 0; dcode < D_CODES; dcode++) {
2824 1.1 paulus out_length += (ulg)s->dyn_dtree[dcode].Freq *
2825 1.1 paulus (5L+extra_dbits[dcode]);
2826 1.1 paulus }
2827 1.1 paulus out_length >>= 3;
2828 1.1 paulus Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2829 1.1 paulus s->last_lit, in_length, out_length,
2830 1.1 paulus 100L - out_length*100L/in_length));
2831 1.1 paulus if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2832 1.1 paulus }
2833 1.1 paulus return (s->last_lit == s->lit_bufsize-1);
2834 1.1 paulus /* We avoid equality with lit_bufsize because of wraparound at 64K
2835 1.1 paulus * on 16 bit machines and because stored blocks are restricted to
2836 1.1 paulus * 64K-1 bytes.
2837 1.1 paulus */
2838 1.1 paulus }
2839 1.1 paulus
2840 1.1 paulus /* ===========================================================================
2841 1.1 paulus * Send the block data compressed using the given Huffman trees
2842 1.1 paulus */
2843 1.1 paulus local void compress_block(s, ltree, dtree)
2844 1.1 paulus deflate_state *s;
2845 1.1 paulus ct_data *ltree; /* literal tree */
2846 1.1 paulus ct_data *dtree; /* distance tree */
2847 1.1 paulus {
2848 1.1 paulus unsigned dist; /* distance of matched string */
2849 1.1 paulus int lc; /* match length or unmatched char (if dist == 0) */
2850 1.1 paulus unsigned lx = 0; /* running index in l_buf */
2851 1.1 paulus unsigned code; /* the code to send */
2852 1.1 paulus int extra; /* number of extra bits to send */
2853 1.1 paulus
2854 1.1 paulus if (s->last_lit != 0) do {
2855 1.1 paulus dist = s->d_buf[lx];
2856 1.1 paulus lc = s->l_buf[lx++];
2857 1.1 paulus if (dist == 0) {
2858 1.1 paulus send_code(s, lc, ltree); /* send a literal byte */
2859 1.1 paulus Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2860 1.1 paulus } else {
2861 1.1 paulus /* Here, lc is the match length - MIN_MATCH */
2862 1.1 paulus code = length_code[lc];
2863 1.1 paulus send_code(s, code+LITERALS+1, ltree); /* send the length code */
2864 1.1 paulus extra = extra_lbits[code];
2865 1.1 paulus if (extra != 0) {
2866 1.1 paulus lc -= base_length[code];
2867 1.1 paulus send_bits(s, lc, extra); /* send the extra length bits */
2868 1.1 paulus }
2869 1.1 paulus dist--; /* dist is now the match distance - 1 */
2870 1.1 paulus code = d_code(dist);
2871 1.1 paulus Assert (code < D_CODES, "bad d_code");
2872 1.1 paulus
2873 1.1 paulus send_code(s, code, dtree); /* send the distance code */
2874 1.1 paulus extra = extra_dbits[code];
2875 1.1 paulus if (extra != 0) {
2876 1.1 paulus dist -= base_dist[code];
2877 1.1 paulus send_bits(s, dist, extra); /* send the extra distance bits */
2878 1.1 paulus }
2879 1.1 paulus } /* literal or match pair ? */
2880 1.1 paulus
2881 1.1 paulus /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2882 1.1 paulus Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2883 1.1 paulus
2884 1.1 paulus } while (lx < s->last_lit);
2885 1.1 paulus
2886 1.1 paulus send_code(s, END_BLOCK, ltree);
2887 1.1 paulus s->last_eob_len = ltree[END_BLOCK].Len;
2888 1.1 paulus }
2889 1.1 paulus
2890 1.1 paulus /* ===========================================================================
2891 1.7 christos * Set the data type to ASCII or BINARY, using a crude approximation:
2892 1.1 paulus * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2893 1.1 paulus * IN assertion: the fields freq of dyn_ltree are set and the total of all
2894 1.1 paulus * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2895 1.1 paulus */
2896 1.1 paulus local void set_data_type(s)
2897 1.1 paulus deflate_state *s;
2898 1.1 paulus {
2899 1.1 paulus int n = 0;
2900 1.1 paulus unsigned ascii_freq = 0;
2901 1.1 paulus unsigned bin_freq = 0;
2902 1.1 paulus while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2903 1.1 paulus while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2904 1.1 paulus while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2905 1.7 christos s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2906 1.1 paulus }
2907 1.1 paulus
2908 1.1 paulus /* ===========================================================================
2909 1.1 paulus * Reverse the first len bits of a code, using straightforward code (a faster
2910 1.1 paulus * method would use a table)
2911 1.1 paulus * IN assertion: 1 <= len <= 15
2912 1.1 paulus */
2913 1.1 paulus local unsigned bi_reverse(code, len)
2914 1.1 paulus unsigned code; /* the value to invert */
2915 1.1 paulus int len; /* its bit length */
2916 1.1 paulus {
2917 1.1 paulus register unsigned res = 0;
2918 1.1 paulus do {
2919 1.1 paulus res |= code & 1;
2920 1.1 paulus code >>= 1, res <<= 1;
2921 1.1 paulus } while (--len > 0);
2922 1.1 paulus return res >> 1;
2923 1.1 paulus }
2924 1.1 paulus
2925 1.1 paulus /* ===========================================================================
2926 1.1 paulus * Flush the bit buffer, keeping at most 7 bits in it.
2927 1.1 paulus */
2928 1.1 paulus local void bi_flush(s)
2929 1.1 paulus deflate_state *s;
2930 1.1 paulus {
2931 1.1 paulus if (s->bi_valid == 16) {
2932 1.1 paulus put_short(s, s->bi_buf);
2933 1.1 paulus s->bi_buf = 0;
2934 1.1 paulus s->bi_valid = 0;
2935 1.1 paulus } else if (s->bi_valid >= 8) {
2936 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2937 1.1 paulus s->bi_buf >>= 8;
2938 1.1 paulus s->bi_valid -= 8;
2939 1.1 paulus }
2940 1.1 paulus }
2941 1.1 paulus
2942 1.1 paulus /* ===========================================================================
2943 1.1 paulus * Flush the bit buffer and align the output on a byte boundary
2944 1.1 paulus */
2945 1.1 paulus local void bi_windup(s)
2946 1.1 paulus deflate_state *s;
2947 1.1 paulus {
2948 1.1 paulus if (s->bi_valid > 8) {
2949 1.1 paulus put_short(s, s->bi_buf);
2950 1.1 paulus } else if (s->bi_valid > 0) {
2951 1.1 paulus put_byte(s, (Byte)s->bi_buf);
2952 1.1 paulus }
2953 1.1 paulus s->bi_buf = 0;
2954 1.1 paulus s->bi_valid = 0;
2955 1.1 paulus #ifdef DEBUG_ZLIB
2956 1.1 paulus s->bits_sent = (s->bits_sent+7) & ~7;
2957 1.1 paulus #endif
2958 1.1 paulus }
2959 1.1 paulus
2960 1.1 paulus /* ===========================================================================
2961 1.1 paulus * Copy a stored block, storing first the length and its
2962 1.1 paulus * one's complement if requested.
2963 1.1 paulus */
2964 1.1 paulus local void copy_block(s, buf, len, header)
2965 1.1 paulus deflate_state *s;
2966 1.1 paulus charf *buf; /* the input data */
2967 1.1 paulus unsigned len; /* its length */
2968 1.1 paulus int header; /* true if block header must be written */
2969 1.1 paulus {
2970 1.1 paulus bi_windup(s); /* align on byte boundary */
2971 1.1 paulus s->last_eob_len = 8; /* enough lookahead for inflate */
2972 1.1 paulus
2973 1.1 paulus if (header) {
2974 1.1 paulus put_short(s, (ush)len);
2975 1.1 paulus put_short(s, (ush)~len);
2976 1.1 paulus #ifdef DEBUG_ZLIB
2977 1.1 paulus s->bits_sent += 2*16;
2978 1.1 paulus #endif
2979 1.1 paulus }
2980 1.1 paulus #ifdef DEBUG_ZLIB
2981 1.1 paulus s->bits_sent += (ulg)len<<3;
2982 1.1 paulus #endif
2983 1.7 christos /* bundle up the put_byte(s, *buf++) calls */
2984 1.7 christos zmemcpy(&s->pending_buf[s->pending], buf, len);
2985 1.7 christos s->pending += len;
2986 1.1 paulus }
2987 1.7 christos /* --- trees.c */
2988 1.7 christos
2989 1.7 christos /* +++ inflate.c */
2990 1.7 christos /* inflate.c -- zlib interface to inflate modules
2991 1.7 christos * Copyright (C) 1995-1996 Mark Adler
2992 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
2993 1.7 christos */
2994 1.1 paulus
2995 1.7 christos /* #include "zutil.h" */
2996 1.1 paulus
2997 1.7 christos /* +++ infblock.h */
2998 1.1 paulus /* infblock.h -- header to use infblock.c
2999 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3000 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3001 1.1 paulus */
3002 1.1 paulus
3003 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3004 1.1 paulus part of the implementation of the compression library and is
3005 1.1 paulus subject to change. Applications should only use zlib.h.
3006 1.1 paulus */
3007 1.1 paulus
3008 1.1 paulus struct inflate_blocks_state;
3009 1.1 paulus typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3010 1.1 paulus
3011 1.7 christos extern inflate_blocks_statef * inflate_blocks_new OF((
3012 1.7 christos z_streamp z,
3013 1.1 paulus check_func c, /* check function */
3014 1.1 paulus uInt w)); /* window size */
3015 1.1 paulus
3016 1.7 christos extern int inflate_blocks OF((
3017 1.1 paulus inflate_blocks_statef *,
3018 1.7 christos z_streamp ,
3019 1.1 paulus int)); /* initial return code */
3020 1.1 paulus
3021 1.7 christos extern void inflate_blocks_reset OF((
3022 1.1 paulus inflate_blocks_statef *,
3023 1.7 christos z_streamp ,
3024 1.1 paulus uLongf *)); /* check value on output */
3025 1.1 paulus
3026 1.7 christos extern int inflate_blocks_free OF((
3027 1.1 paulus inflate_blocks_statef *,
3028 1.7 christos z_streamp ,
3029 1.1 paulus uLongf *)); /* check value on output */
3030 1.1 paulus
3031 1.7 christos extern void inflate_set_dictionary OF((
3032 1.7 christos inflate_blocks_statef *s,
3033 1.7 christos const Bytef *d, /* dictionary */
3034 1.7 christos uInt n)); /* dictionary length */
3035 1.7 christos
3036 1.7 christos extern int inflate_addhistory OF((
3037 1.1 paulus inflate_blocks_statef *,
3038 1.7 christos z_streamp));
3039 1.1 paulus
3040 1.7 christos extern int inflate_packet_flush OF((
3041 1.1 paulus inflate_blocks_statef *));
3042 1.7 christos /* --- infblock.h */
3043 1.1 paulus
3044 1.7 christos #ifndef NO_DUMMY_DECL
3045 1.7 christos struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3046 1.1 paulus #endif
3047 1.1 paulus
3048 1.1 paulus /* inflate private state */
3049 1.1 paulus struct internal_state {
3050 1.1 paulus
3051 1.1 paulus /* mode */
3052 1.1 paulus enum {
3053 1.1 paulus METHOD, /* waiting for method byte */
3054 1.1 paulus FLAG, /* waiting for flag byte */
3055 1.7 christos DICT4, /* four dictionary check bytes to go */
3056 1.7 christos DICT3, /* three dictionary check bytes to go */
3057 1.7 christos DICT2, /* two dictionary check bytes to go */
3058 1.7 christos DICT1, /* one dictionary check byte to go */
3059 1.7 christos DICT0, /* waiting for inflateSetDictionary */
3060 1.1 paulus BLOCKS, /* decompressing blocks */
3061 1.1 paulus CHECK4, /* four check bytes to go */
3062 1.1 paulus CHECK3, /* three check bytes to go */
3063 1.1 paulus CHECK2, /* two check bytes to go */
3064 1.1 paulus CHECK1, /* one check byte to go */
3065 1.1 paulus DONE, /* finished check, done */
3066 1.1 paulus BAD} /* got an error--stay here */
3067 1.1 paulus mode; /* current inflate mode */
3068 1.1 paulus
3069 1.1 paulus /* mode dependent information */
3070 1.1 paulus union {
3071 1.1 paulus uInt method; /* if FLAGS, method byte */
3072 1.1 paulus struct {
3073 1.1 paulus uLong was; /* computed check value */
3074 1.1 paulus uLong need; /* stream check value */
3075 1.1 paulus } check; /* if CHECK, check values to compare */
3076 1.1 paulus uInt marker; /* if BAD, inflateSync's marker bytes count */
3077 1.1 paulus } sub; /* submode */
3078 1.1 paulus
3079 1.1 paulus /* mode independent information */
3080 1.1 paulus int nowrap; /* flag for no wrapper */
3081 1.1 paulus uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3082 1.1 paulus inflate_blocks_statef
3083 1.1 paulus *blocks; /* current inflate_blocks state */
3084 1.1 paulus
3085 1.1 paulus };
3086 1.1 paulus
3087 1.1 paulus
3088 1.1 paulus int inflateReset(z)
3089 1.7 christos z_streamp z;
3090 1.1 paulus {
3091 1.1 paulus uLong c;
3092 1.1 paulus
3093 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3094 1.1 paulus return Z_STREAM_ERROR;
3095 1.1 paulus z->total_in = z->total_out = 0;
3096 1.1 paulus z->msg = Z_NULL;
3097 1.1 paulus z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3098 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &c);
3099 1.1 paulus Trace((stderr, "inflate: reset\n"));
3100 1.1 paulus return Z_OK;
3101 1.1 paulus }
3102 1.1 paulus
3103 1.1 paulus
3104 1.1 paulus int inflateEnd(z)
3105 1.7 christos z_streamp z;
3106 1.1 paulus {
3107 1.1 paulus uLong c;
3108 1.1 paulus
3109 1.1 paulus if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3110 1.1 paulus return Z_STREAM_ERROR;
3111 1.1 paulus if (z->state->blocks != Z_NULL)
3112 1.1 paulus inflate_blocks_free(z->state->blocks, z, &c);
3113 1.7 christos ZFREE(z, z->state);
3114 1.1 paulus z->state = Z_NULL;
3115 1.1 paulus Trace((stderr, "inflate: end\n"));
3116 1.1 paulus return Z_OK;
3117 1.1 paulus }
3118 1.1 paulus
3119 1.1 paulus
3120 1.7 christos int inflateInit2_(z, w, version, stream_size)
3121 1.7 christos z_streamp z;
3122 1.1 paulus int w;
3123 1.7 christos const char *version;
3124 1.7 christos int stream_size;
3125 1.1 paulus {
3126 1.7 christos if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3127 1.7 christos stream_size != sizeof(z_stream))
3128 1.7 christos return Z_VERSION_ERROR;
3129 1.7 christos
3130 1.1 paulus /* initialize state */
3131 1.1 paulus if (z == Z_NULL)
3132 1.1 paulus return Z_STREAM_ERROR;
3133 1.7 christos z->msg = Z_NULL;
3134 1.7 christos #ifndef NO_ZCFUNCS
3135 1.7 christos if (z->zalloc == Z_NULL)
3136 1.7 christos {
3137 1.7 christos z->zalloc = zcalloc;
3138 1.7 christos z->opaque = (voidpf)0;
3139 1.7 christos }
3140 1.7 christos if (z->zfree == Z_NULL) z->zfree = zcfree;
3141 1.7 christos #endif
3142 1.1 paulus if ((z->state = (struct internal_state FAR *)
3143 1.7 christos ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3144 1.1 paulus return Z_MEM_ERROR;
3145 1.1 paulus z->state->blocks = Z_NULL;
3146 1.1 paulus
3147 1.1 paulus /* handle undocumented nowrap option (no zlib header or check) */
3148 1.1 paulus z->state->nowrap = 0;
3149 1.1 paulus if (w < 0)
3150 1.1 paulus {
3151 1.1 paulus w = - w;
3152 1.1 paulus z->state->nowrap = 1;
3153 1.1 paulus }
3154 1.1 paulus
3155 1.1 paulus /* set window size */
3156 1.1 paulus if (w < 8 || w > 15)
3157 1.1 paulus {
3158 1.1 paulus inflateEnd(z);
3159 1.1 paulus return Z_STREAM_ERROR;
3160 1.1 paulus }
3161 1.1 paulus z->state->wbits = (uInt)w;
3162 1.1 paulus
3163 1.1 paulus /* create inflate_blocks state */
3164 1.1 paulus if ((z->state->blocks =
3165 1.7 christos inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3166 1.1 paulus == Z_NULL)
3167 1.1 paulus {
3168 1.1 paulus inflateEnd(z);
3169 1.1 paulus return Z_MEM_ERROR;
3170 1.1 paulus }
3171 1.1 paulus Trace((stderr, "inflate: allocated\n"));
3172 1.1 paulus
3173 1.1 paulus /* reset state */
3174 1.1 paulus inflateReset(z);
3175 1.1 paulus return Z_OK;
3176 1.1 paulus }
3177 1.1 paulus
3178 1.1 paulus
3179 1.7 christos int inflateInit_(z, version, stream_size)
3180 1.7 christos z_streamp z;
3181 1.7 christos const char *version;
3182 1.7 christos int stream_size;
3183 1.1 paulus {
3184 1.7 christos return inflateInit2_(z, DEF_WBITS, version, stream_size);
3185 1.1 paulus }
3186 1.1 paulus
3187 1.1 paulus
3188 1.1 paulus #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3189 1.1 paulus #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3190 1.1 paulus
3191 1.1 paulus int inflate(z, f)
3192 1.7 christos z_streamp z;
3193 1.1 paulus int f;
3194 1.1 paulus {
3195 1.1 paulus int r;
3196 1.1 paulus uInt b;
3197 1.1 paulus
3198 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3199 1.1 paulus return Z_STREAM_ERROR;
3200 1.1 paulus r = Z_BUF_ERROR;
3201 1.1 paulus while (1) switch (z->state->mode)
3202 1.1 paulus {
3203 1.1 paulus case METHOD:
3204 1.1 paulus NEEDBYTE
3205 1.7 christos if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3206 1.1 paulus {
3207 1.1 paulus z->state->mode = BAD;
3208 1.7 christos z->msg = (char*)"unknown compression method";
3209 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3210 1.1 paulus break;
3211 1.1 paulus }
3212 1.1 paulus if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3213 1.1 paulus {
3214 1.1 paulus z->state->mode = BAD;
3215 1.7 christos z->msg = (char*)"invalid window size";
3216 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3217 1.1 paulus break;
3218 1.1 paulus }
3219 1.1 paulus z->state->mode = FLAG;
3220 1.1 paulus case FLAG:
3221 1.1 paulus NEEDBYTE
3222 1.7 christos b = NEXTBYTE;
3223 1.7 christos if (((z->state->sub.method << 8) + b) % 31)
3224 1.1 paulus {
3225 1.1 paulus z->state->mode = BAD;
3226 1.7 christos z->msg = (char*)"incorrect header check";
3227 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3228 1.1 paulus break;
3229 1.1 paulus }
3230 1.7 christos Trace((stderr, "inflate: zlib header ok\n"));
3231 1.7 christos if (!(b & PRESET_DICT))
3232 1.1 paulus {
3233 1.7 christos z->state->mode = BLOCKS;
3234 1.7 christos break;
3235 1.1 paulus }
3236 1.7 christos z->state->mode = DICT4;
3237 1.7 christos case DICT4:
3238 1.7 christos NEEDBYTE
3239 1.7 christos z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3240 1.7 christos z->state->mode = DICT3;
3241 1.7 christos case DICT3:
3242 1.7 christos NEEDBYTE
3243 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3244 1.7 christos z->state->mode = DICT2;
3245 1.7 christos case DICT2:
3246 1.7 christos NEEDBYTE
3247 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3248 1.7 christos z->state->mode = DICT1;
3249 1.7 christos case DICT1:
3250 1.7 christos NEEDBYTE
3251 1.7 christos z->state->sub.check.need += (uLong)NEXTBYTE;
3252 1.7 christos z->adler = z->state->sub.check.need;
3253 1.7 christos z->state->mode = DICT0;
3254 1.7 christos return Z_NEED_DICT;
3255 1.7 christos case DICT0:
3256 1.7 christos z->state->mode = BAD;
3257 1.7 christos z->msg = (char*)"need dictionary";
3258 1.7 christos z->state->sub.marker = 0; /* can try inflateSync */
3259 1.7 christos return Z_STREAM_ERROR;
3260 1.1 paulus case BLOCKS:
3261 1.1 paulus r = inflate_blocks(z->state->blocks, z, r);
3262 1.1 paulus if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3263 1.1 paulus r = inflate_packet_flush(z->state->blocks);
3264 1.1 paulus if (r == Z_DATA_ERROR)
3265 1.1 paulus {
3266 1.1 paulus z->state->mode = BAD;
3267 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3268 1.1 paulus break;
3269 1.1 paulus }
3270 1.1 paulus if (r != Z_STREAM_END)
3271 1.1 paulus return r;
3272 1.1 paulus r = Z_OK;
3273 1.1 paulus inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3274 1.1 paulus if (z->state->nowrap)
3275 1.1 paulus {
3276 1.1 paulus z->state->mode = DONE;
3277 1.1 paulus break;
3278 1.1 paulus }
3279 1.1 paulus z->state->mode = CHECK4;
3280 1.1 paulus case CHECK4:
3281 1.1 paulus NEEDBYTE
3282 1.1 paulus z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3283 1.1 paulus z->state->mode = CHECK3;
3284 1.1 paulus case CHECK3:
3285 1.1 paulus NEEDBYTE
3286 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3287 1.1 paulus z->state->mode = CHECK2;
3288 1.1 paulus case CHECK2:
3289 1.1 paulus NEEDBYTE
3290 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3291 1.1 paulus z->state->mode = CHECK1;
3292 1.1 paulus case CHECK1:
3293 1.1 paulus NEEDBYTE
3294 1.1 paulus z->state->sub.check.need += (uLong)NEXTBYTE;
3295 1.1 paulus
3296 1.1 paulus if (z->state->sub.check.was != z->state->sub.check.need)
3297 1.1 paulus {
3298 1.1 paulus z->state->mode = BAD;
3299 1.7 christos z->msg = (char*)"incorrect data check";
3300 1.1 paulus z->state->sub.marker = 5; /* can't try inflateSync */
3301 1.1 paulus break;
3302 1.1 paulus }
3303 1.1 paulus Trace((stderr, "inflate: zlib check ok\n"));
3304 1.1 paulus z->state->mode = DONE;
3305 1.1 paulus case DONE:
3306 1.1 paulus return Z_STREAM_END;
3307 1.1 paulus case BAD:
3308 1.1 paulus return Z_DATA_ERROR;
3309 1.1 paulus default:
3310 1.1 paulus return Z_STREAM_ERROR;
3311 1.1 paulus }
3312 1.1 paulus
3313 1.1 paulus empty:
3314 1.1 paulus if (f != Z_PACKET_FLUSH)
3315 1.1 paulus return r;
3316 1.1 paulus z->state->mode = BAD;
3317 1.7 christos z->msg = (char *)"need more for packet flush";
3318 1.1 paulus z->state->sub.marker = 0; /* can try inflateSync */
3319 1.1 paulus return Z_DATA_ERROR;
3320 1.1 paulus }
3321 1.1 paulus
3322 1.7 christos
3323 1.7 christos int inflateSetDictionary(z, dictionary, dictLength)
3324 1.7 christos z_streamp z;
3325 1.7 christos const Bytef *dictionary;
3326 1.7 christos uInt dictLength;
3327 1.7 christos {
3328 1.7 christos uInt length = dictLength;
3329 1.7 christos
3330 1.7 christos if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3331 1.7 christos return Z_STREAM_ERROR;
3332 1.7 christos
3333 1.7 christos if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3334 1.7 christos z->adler = 1L;
3335 1.7 christos
3336 1.7 christos if (length >= ((uInt)1<<z->state->wbits))
3337 1.7 christos {
3338 1.7 christos length = (1<<z->state->wbits)-1;
3339 1.7 christos dictionary += dictLength - length;
3340 1.7 christos }
3341 1.7 christos inflate_set_dictionary(z->state->blocks, dictionary, length);
3342 1.7 christos z->state->mode = BLOCKS;
3343 1.7 christos return Z_OK;
3344 1.7 christos }
3345 1.7 christos
3346 1.1 paulus /*
3347 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
3348 1.1 paulus * without performing any output. The output buffer must be "caught up";
3349 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
3350 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
3351 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
3352 1.1 paulus * will have been updated if need be.
3353 1.1 paulus */
3354 1.1 paulus
3355 1.1 paulus int inflateIncomp(z)
3356 1.1 paulus z_stream *z;
3357 1.1 paulus {
3358 1.1 paulus if (z->state->mode != BLOCKS)
3359 1.1 paulus return Z_DATA_ERROR;
3360 1.1 paulus return inflate_addhistory(z->state->blocks, z);
3361 1.1 paulus }
3362 1.1 paulus
3363 1.1 paulus
3364 1.1 paulus int inflateSync(z)
3365 1.7 christos z_streamp z;
3366 1.1 paulus {
3367 1.1 paulus uInt n; /* number of bytes to look at */
3368 1.1 paulus Bytef *p; /* pointer to bytes */
3369 1.1 paulus uInt m; /* number of marker bytes found in a row */
3370 1.1 paulus uLong r, w; /* temporaries to save total_in and total_out */
3371 1.1 paulus
3372 1.1 paulus /* set up */
3373 1.1 paulus if (z == Z_NULL || z->state == Z_NULL)
3374 1.1 paulus return Z_STREAM_ERROR;
3375 1.1 paulus if (z->state->mode != BAD)
3376 1.1 paulus {
3377 1.1 paulus z->state->mode = BAD;
3378 1.1 paulus z->state->sub.marker = 0;
3379 1.1 paulus }
3380 1.1 paulus if ((n = z->avail_in) == 0)
3381 1.1 paulus return Z_BUF_ERROR;
3382 1.1 paulus p = z->next_in;
3383 1.1 paulus m = z->state->sub.marker;
3384 1.1 paulus
3385 1.1 paulus /* search */
3386 1.1 paulus while (n && m < 4)
3387 1.1 paulus {
3388 1.1 paulus if (*p == (Byte)(m < 2 ? 0 : 0xff))
3389 1.1 paulus m++;
3390 1.1 paulus else if (*p)
3391 1.1 paulus m = 0;
3392 1.1 paulus else
3393 1.1 paulus m = 4 - m;
3394 1.1 paulus p++, n--;
3395 1.1 paulus }
3396 1.1 paulus
3397 1.1 paulus /* restore */
3398 1.1 paulus z->total_in += p - z->next_in;
3399 1.1 paulus z->next_in = p;
3400 1.1 paulus z->avail_in = n;
3401 1.1 paulus z->state->sub.marker = m;
3402 1.1 paulus
3403 1.1 paulus /* return no joy or set up to restart on a new block */
3404 1.1 paulus if (m != 4)
3405 1.1 paulus return Z_DATA_ERROR;
3406 1.1 paulus r = z->total_in; w = z->total_out;
3407 1.1 paulus inflateReset(z);
3408 1.1 paulus z->total_in = r; z->total_out = w;
3409 1.1 paulus z->state->mode = BLOCKS;
3410 1.1 paulus return Z_OK;
3411 1.1 paulus }
3412 1.1 paulus
3413 1.1 paulus #undef NEEDBYTE
3414 1.1 paulus #undef NEXTBYTE
3415 1.7 christos /* --- inflate.c */
3416 1.7 christos
3417 1.7 christos /* +++ infblock.c */
3418 1.7 christos /* infblock.c -- interpret and process block types to last block
3419 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3420 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3421 1.7 christos */
3422 1.7 christos
3423 1.7 christos /* #include "zutil.h" */
3424 1.7 christos /* #include "infblock.h" */
3425 1.7 christos
3426 1.7 christos /* +++ inftrees.h */
3427 1.7 christos /* inftrees.h -- header to use inftrees.c
3428 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3429 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3430 1.7 christos */
3431 1.7 christos
3432 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3433 1.7 christos part of the implementation of the compression library and is
3434 1.7 christos subject to change. Applications should only use zlib.h.
3435 1.7 christos */
3436 1.7 christos
3437 1.7 christos /* Huffman code lookup table entry--this entry is four bytes for machines
3438 1.7 christos that have 16-bit pointers (e.g. PC's in the small or medium model). */
3439 1.7 christos
3440 1.7 christos typedef struct inflate_huft_s FAR inflate_huft;
3441 1.7 christos
3442 1.7 christos struct inflate_huft_s {
3443 1.7 christos union {
3444 1.7 christos struct {
3445 1.7 christos Byte Exop; /* number of extra bits or operation */
3446 1.7 christos Byte Bits; /* number of bits in this code or subcode */
3447 1.7 christos } what;
3448 1.7 christos Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3449 1.7 christos } word; /* 16-bit, 8 bytes for 32-bit machines) */
3450 1.7 christos union {
3451 1.7 christos uInt Base; /* literal, length base, or distance base */
3452 1.7 christos inflate_huft *Next; /* pointer to next level of table */
3453 1.7 christos } more;
3454 1.7 christos };
3455 1.7 christos
3456 1.7 christos #ifdef DEBUG_ZLIB
3457 1.7 christos extern uInt inflate_hufts;
3458 1.7 christos #endif
3459 1.7 christos
3460 1.7 christos extern int inflate_trees_bits OF((
3461 1.7 christos uIntf *, /* 19 code lengths */
3462 1.7 christos uIntf *, /* bits tree desired/actual depth */
3463 1.7 christos inflate_huft * FAR *, /* bits tree result */
3464 1.7 christos z_streamp )); /* for zalloc, zfree functions */
3465 1.7 christos
3466 1.7 christos extern int inflate_trees_dynamic OF((
3467 1.7 christos uInt, /* number of literal/length codes */
3468 1.7 christos uInt, /* number of distance codes */
3469 1.7 christos uIntf *, /* that many (total) code lengths */
3470 1.7 christos uIntf *, /* literal desired/actual bit depth */
3471 1.7 christos uIntf *, /* distance desired/actual bit depth */
3472 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3473 1.7 christos inflate_huft * FAR *, /* distance tree result */
3474 1.7 christos z_streamp )); /* for zalloc, zfree functions */
3475 1.7 christos
3476 1.7 christos extern int inflate_trees_fixed OF((
3477 1.7 christos uIntf *, /* literal desired/actual bit depth */
3478 1.7 christos uIntf *, /* distance desired/actual bit depth */
3479 1.7 christos inflate_huft * FAR *, /* literal/length tree result */
3480 1.7 christos inflate_huft * FAR *)); /* distance tree result */
3481 1.7 christos
3482 1.7 christos extern int inflate_trees_free OF((
3483 1.7 christos inflate_huft *, /* tables to free */
3484 1.7 christos z_streamp )); /* for zfree function */
3485 1.7 christos
3486 1.7 christos /* --- inftrees.h */
3487 1.7 christos
3488 1.7 christos /* +++ infcodes.h */
3489 1.7 christos /* infcodes.h -- header to use infcodes.c
3490 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3491 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
3492 1.7 christos */
3493 1.7 christos
3494 1.7 christos /* WARNING: this file should *not* be used by applications. It is
3495 1.7 christos part of the implementation of the compression library and is
3496 1.7 christos subject to change. Applications should only use zlib.h.
3497 1.7 christos */
3498 1.7 christos
3499 1.7 christos struct inflate_codes_state;
3500 1.7 christos typedef struct inflate_codes_state FAR inflate_codes_statef;
3501 1.7 christos
3502 1.7 christos extern inflate_codes_statef *inflate_codes_new OF((
3503 1.7 christos uInt, uInt,
3504 1.7 christos inflate_huft *, inflate_huft *,
3505 1.7 christos z_streamp ));
3506 1.7 christos
3507 1.7 christos extern int inflate_codes OF((
3508 1.7 christos inflate_blocks_statef *,
3509 1.7 christos z_streamp ,
3510 1.7 christos int));
3511 1.7 christos
3512 1.7 christos extern void inflate_codes_free OF((
3513 1.7 christos inflate_codes_statef *,
3514 1.7 christos z_streamp ));
3515 1.1 paulus
3516 1.7 christos /* --- infcodes.h */
3517 1.7 christos
3518 1.7 christos /* +++ infutil.h */
3519 1.1 paulus /* infutil.h -- types and macros common to blocks and codes
3520 1.7 christos * Copyright (C) 1995-1996 Mark Adler
3521 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
3522 1.1 paulus */
3523 1.1 paulus
3524 1.1 paulus /* WARNING: this file should *not* be used by applications. It is
3525 1.1 paulus part of the implementation of the compression library and is
3526 1.1 paulus subject to change. Applications should only use zlib.h.
3527 1.1 paulus */
3528 1.1 paulus
3529 1.7 christos #ifndef _INFUTIL_H
3530 1.7 christos #define _INFUTIL_H
3531 1.1 paulus
3532 1.7 christos typedef enum {
3533 1.1 paulus TYPE, /* get type bits (3, including end bit) */
3534 1.1 paulus LENS, /* get lengths for stored */
3535 1.1 paulus STORED, /* processing stored block */
3536 1.1 paulus TABLE, /* get table lengths */
3537 1.1 paulus BTREE, /* get bit lengths tree for a dynamic block */
3538 1.1 paulus DTREE, /* get length, distance trees for a dynamic block */
3539 1.1 paulus CODES, /* processing fixed or dynamic block */
3540 1.1 paulus DRY, /* output remaining window bytes */
3541 1.7 christos DONEB, /* finished last block, done */
3542 1.7 christos BADB} /* got a data error--stuck here */
3543 1.7 christos inflate_block_mode;
3544 1.7 christos
3545 1.7 christos /* inflate blocks semi-private state */
3546 1.7 christos struct inflate_blocks_state {
3547 1.7 christos
3548 1.7 christos /* mode */
3549 1.7 christos inflate_block_mode mode; /* current inflate_block mode */
3550 1.1 paulus
3551 1.1 paulus /* mode dependent information */
3552 1.1 paulus union {
3553 1.1 paulus uInt left; /* if STORED, bytes left to copy */
3554 1.1 paulus struct {
3555 1.1 paulus uInt table; /* table lengths (14 bits) */
3556 1.1 paulus uInt index; /* index into blens (or border) */
3557 1.1 paulus uIntf *blens; /* bit lengths of codes */
3558 1.1 paulus uInt bb; /* bit length tree depth */
3559 1.1 paulus inflate_huft *tb; /* bit length decoding tree */
3560 1.1 paulus } trees; /* if DTREE, decoding info for trees */
3561 1.1 paulus struct {
3562 1.7 christos inflate_huft *tl;
3563 1.7 christos inflate_huft *td; /* trees to free */
3564 1.1 paulus inflate_codes_statef
3565 1.1 paulus *codes;
3566 1.1 paulus } decode; /* if CODES, current state */
3567 1.1 paulus } sub; /* submode */
3568 1.1 paulus uInt last; /* true if this block is the last block */
3569 1.1 paulus
3570 1.1 paulus /* mode independent information */
3571 1.1 paulus uInt bitk; /* bits in bit buffer */
3572 1.1 paulus uLong bitb; /* bit buffer */
3573 1.1 paulus Bytef *window; /* sliding window */
3574 1.1 paulus Bytef *end; /* one byte after sliding window */
3575 1.1 paulus Bytef *read; /* window read pointer */
3576 1.1 paulus Bytef *write; /* window write pointer */
3577 1.1 paulus check_func checkfn; /* check function */
3578 1.1 paulus uLong check; /* check on output */
3579 1.1 paulus
3580 1.1 paulus };
3581 1.1 paulus
3582 1.1 paulus
3583 1.1 paulus /* defines for inflate input/output */
3584 1.1 paulus /* update pointers and return */
3585 1.1 paulus #define UPDBITS {s->bitb=b;s->bitk=k;}
3586 1.1 paulus #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3587 1.1 paulus #define UPDOUT {s->write=q;}
3588 1.1 paulus #define UPDATE {UPDBITS UPDIN UPDOUT}
3589 1.1 paulus #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3590 1.1 paulus /* get bytes and bits */
3591 1.1 paulus #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3592 1.1 paulus #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3593 1.1 paulus #define NEXTBYTE (n--,*p++)
3594 1.1 paulus #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3595 1.1 paulus #define DUMPBITS(j) {b>>=(j);k-=(j);}
3596 1.1 paulus /* output bytes */
3597 1.7 christos #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3598 1.7 christos #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3599 1.7 christos #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3600 1.1 paulus #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3601 1.7 christos #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3602 1.1 paulus #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3603 1.1 paulus /* load local pointers */
3604 1.1 paulus #define LOAD {LOADIN LOADOUT}
3605 1.1 paulus
3606 1.7 christos /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3607 1.7 christos extern uInt inflate_mask[17];
3608 1.1 paulus
3609 1.1 paulus /* copy as much as possible from the sliding window to the output area */
3610 1.7 christos extern int inflate_flush OF((
3611 1.1 paulus inflate_blocks_statef *,
3612 1.7 christos z_streamp ,
3613 1.1 paulus int));
3614 1.1 paulus
3615 1.7 christos #ifndef NO_DUMMY_DECL
3616 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
3617 1.7 christos #endif
3618 1.1 paulus
3619 1.7 christos #endif
3620 1.7 christos /* --- infutil.h */
3621 1.1 paulus
3622 1.7 christos #ifndef NO_DUMMY_DECL
3623 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3624 1.7 christos #endif
3625 1.1 paulus
3626 1.1 paulus /* Table for deflate from PKZIP's appnote.txt. */
3627 1.7 christos local const uInt border[] = { /* Order of the bit length code lengths */
3628 1.1 paulus 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3629 1.1 paulus
3630 1.1 paulus /*
3631 1.1 paulus Notes beyond the 1.93a appnote.txt:
3632 1.1 paulus
3633 1.1 paulus 1. Distance pointers never point before the beginning of the output
3634 1.1 paulus stream.
3635 1.1 paulus 2. Distance pointers can point back across blocks, up to 32k away.
3636 1.1 paulus 3. There is an implied maximum of 7 bits for the bit length table and
3637 1.1 paulus 15 bits for the actual data.
3638 1.1 paulus 4. If only one code exists, then it is encoded using one bit. (Zero
3639 1.1 paulus would be more efficient, but perhaps a little confusing.) If two
3640 1.1 paulus codes exist, they are coded using one bit each (0 and 1).
3641 1.1 paulus 5. There is no way of sending zero distance codes--a dummy must be
3642 1.1 paulus sent if there are none. (History: a pre 2.0 version of PKZIP would
3643 1.1 paulus store blocks with no distance codes, but this was discovered to be
3644 1.1 paulus too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3645 1.1 paulus zero distance codes, which is sent as one code of zero bits in
3646 1.1 paulus length.
3647 1.1 paulus 6. There are up to 286 literal/length codes. Code 256 represents the
3648 1.1 paulus end-of-block. Note however that the static length tree defines
3649 1.1 paulus 288 codes just to fill out the Huffman codes. Codes 286 and 287
3650 1.1 paulus cannot be used though, since there is no length base or extra bits
3651 1.1 paulus defined for them. Similarily, there are up to 30 distance codes.
3652 1.1 paulus However, static trees define 32 codes (all 5 bits) to fill out the
3653 1.1 paulus Huffman codes, but the last two had better not show up in the data.
3654 1.1 paulus 7. Unzip can check dynamic Huffman blocks for complete code sets.
3655 1.1 paulus The exception is that a single code would not be complete (see #4).
3656 1.1 paulus 8. The five bits following the block type is really the number of
3657 1.1 paulus literal codes sent minus 257.
3658 1.1 paulus 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3659 1.1 paulus (1+6+6). Therefore, to output three times the length, you output
3660 1.1 paulus three codes (1+1+1), whereas to output four times the same length,
3661 1.1 paulus you only need two codes (1+3). Hmm.
3662 1.1 paulus 10. In the tree reconstruction algorithm, Code = Code + Increment
3663 1.1 paulus only if BitLength(i) is not zero. (Pretty obvious.)
3664 1.1 paulus 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3665 1.1 paulus 12. Note: length code 284 can represent 227-258, but length code 285
3666 1.1 paulus really is 258. The last length deserves its own, short code
3667 1.1 paulus since it gets used a lot in very redundant files. The length
3668 1.1 paulus 258 is special since 258 - 3 (the min match length) is 255.
3669 1.1 paulus 13. The literal/length and distance code bit lengths are read as a
3670 1.1 paulus single stream of lengths. It is possible (and advantageous) for
3671 1.1 paulus a repeat code (16, 17, or 18) to go across the boundary between
3672 1.1 paulus the two sets of lengths.
3673 1.1 paulus */
3674 1.1 paulus
3675 1.1 paulus
3676 1.7 christos void inflate_blocks_reset(s, z, c)
3677 1.1 paulus inflate_blocks_statef *s;
3678 1.7 christos z_streamp z;
3679 1.1 paulus uLongf *c;
3680 1.1 paulus {
3681 1.1 paulus if (s->checkfn != Z_NULL)
3682 1.1 paulus *c = s->check;
3683 1.1 paulus if (s->mode == BTREE || s->mode == DTREE)
3684 1.7 christos ZFREE(z, s->sub.trees.blens);
3685 1.1 paulus if (s->mode == CODES)
3686 1.1 paulus {
3687 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3688 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3689 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3690 1.1 paulus }
3691 1.1 paulus s->mode = TYPE;
3692 1.1 paulus s->bitk = 0;
3693 1.1 paulus s->bitb = 0;
3694 1.1 paulus s->read = s->write = s->window;
3695 1.1 paulus if (s->checkfn != Z_NULL)
3696 1.7 christos z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3697 1.1 paulus Trace((stderr, "inflate: blocks reset\n"));
3698 1.1 paulus }
3699 1.1 paulus
3700 1.1 paulus
3701 1.7 christos inflate_blocks_statef *inflate_blocks_new(z, c, w)
3702 1.7 christos z_streamp z;
3703 1.1 paulus check_func c;
3704 1.1 paulus uInt w;
3705 1.1 paulus {
3706 1.1 paulus inflate_blocks_statef *s;
3707 1.1 paulus
3708 1.7 christos if ((s = (inflate_blocks_statef *)ZALLOC
3709 1.1 paulus (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3710 1.1 paulus return s;
3711 1.7 christos if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3712 1.1 paulus {
3713 1.7 christos ZFREE(z, s);
3714 1.1 paulus return Z_NULL;
3715 1.1 paulus }
3716 1.1 paulus s->end = s->window + w;
3717 1.1 paulus s->checkfn = c;
3718 1.1 paulus s->mode = TYPE;
3719 1.1 paulus Trace((stderr, "inflate: blocks allocated\n"));
3720 1.1 paulus inflate_blocks_reset(s, z, &s->check);
3721 1.1 paulus return s;
3722 1.1 paulus }
3723 1.1 paulus
3724 1.1 paulus
3725 1.7 christos #ifdef DEBUG_ZLIB
3726 1.7 christos extern uInt inflate_hufts;
3727 1.7 christos #endif
3728 1.7 christos int inflate_blocks(s, z, r)
3729 1.1 paulus inflate_blocks_statef *s;
3730 1.7 christos z_streamp z;
3731 1.1 paulus int r;
3732 1.1 paulus {
3733 1.1 paulus uInt t; /* temporary storage */
3734 1.1 paulus uLong b; /* bit buffer */
3735 1.1 paulus uInt k; /* bits in bit buffer */
3736 1.1 paulus Bytef *p; /* input data pointer */
3737 1.1 paulus uInt n; /* bytes available there */
3738 1.1 paulus Bytef *q; /* output window write pointer */
3739 1.1 paulus uInt m; /* bytes to end of window or read pointer */
3740 1.1 paulus
3741 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
3742 1.1 paulus LOAD
3743 1.1 paulus
3744 1.1 paulus /* process input based on current state */
3745 1.1 paulus while (1) switch (s->mode)
3746 1.1 paulus {
3747 1.1 paulus case TYPE:
3748 1.1 paulus NEEDBITS(3)
3749 1.1 paulus t = (uInt)b & 7;
3750 1.1 paulus s->last = t & 1;
3751 1.1 paulus switch (t >> 1)
3752 1.1 paulus {
3753 1.1 paulus case 0: /* stored */
3754 1.1 paulus Trace((stderr, "inflate: stored block%s\n",
3755 1.1 paulus s->last ? " (last)" : ""));
3756 1.1 paulus DUMPBITS(3)
3757 1.1 paulus t = k & 7; /* go to byte boundary */
3758 1.1 paulus DUMPBITS(t)
3759 1.1 paulus s->mode = LENS; /* get length of stored block */
3760 1.1 paulus break;
3761 1.1 paulus case 1: /* fixed */
3762 1.1 paulus Trace((stderr, "inflate: fixed codes block%s\n",
3763 1.1 paulus s->last ? " (last)" : ""));
3764 1.1 paulus {
3765 1.1 paulus uInt bl, bd;
3766 1.1 paulus inflate_huft *tl, *td;
3767 1.1 paulus
3768 1.1 paulus inflate_trees_fixed(&bl, &bd, &tl, &td);
3769 1.1 paulus s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3770 1.1 paulus if (s->sub.decode.codes == Z_NULL)
3771 1.1 paulus {
3772 1.1 paulus r = Z_MEM_ERROR;
3773 1.1 paulus LEAVE
3774 1.1 paulus }
3775 1.1 paulus s->sub.decode.tl = Z_NULL; /* don't try to free these */
3776 1.1 paulus s->sub.decode.td = Z_NULL;
3777 1.1 paulus }
3778 1.1 paulus DUMPBITS(3)
3779 1.1 paulus s->mode = CODES;
3780 1.1 paulus break;
3781 1.1 paulus case 2: /* dynamic */
3782 1.1 paulus Trace((stderr, "inflate: dynamic codes block%s\n",
3783 1.1 paulus s->last ? " (last)" : ""));
3784 1.1 paulus DUMPBITS(3)
3785 1.1 paulus s->mode = TABLE;
3786 1.1 paulus break;
3787 1.1 paulus case 3: /* illegal */
3788 1.1 paulus DUMPBITS(3)
3789 1.1 paulus s->mode = BADB;
3790 1.7 christos z->msg = (char*)"invalid block type";
3791 1.1 paulus r = Z_DATA_ERROR;
3792 1.1 paulus LEAVE
3793 1.1 paulus }
3794 1.1 paulus break;
3795 1.1 paulus case LENS:
3796 1.1 paulus NEEDBITS(32)
3797 1.7 christos if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3798 1.1 paulus {
3799 1.1 paulus s->mode = BADB;
3800 1.7 christos z->msg = (char*)"invalid stored block lengths";
3801 1.1 paulus r = Z_DATA_ERROR;
3802 1.1 paulus LEAVE
3803 1.1 paulus }
3804 1.1 paulus s->sub.left = (uInt)b & 0xffff;
3805 1.1 paulus b = k = 0; /* dump bits */
3806 1.1 paulus Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3807 1.7 christos s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3808 1.1 paulus break;
3809 1.1 paulus case STORED:
3810 1.1 paulus if (n == 0)
3811 1.1 paulus LEAVE
3812 1.1 paulus NEEDOUT
3813 1.1 paulus t = s->sub.left;
3814 1.1 paulus if (t > n) t = n;
3815 1.1 paulus if (t > m) t = m;
3816 1.1 paulus zmemcpy(q, p, t);
3817 1.1 paulus p += t; n -= t;
3818 1.1 paulus q += t; m -= t;
3819 1.1 paulus if ((s->sub.left -= t) != 0)
3820 1.1 paulus break;
3821 1.1 paulus Tracev((stderr, "inflate: stored end, %lu total out\n",
3822 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3823 1.1 paulus (s->end - s->read) + (q - s->window))));
3824 1.1 paulus s->mode = s->last ? DRY : TYPE;
3825 1.1 paulus break;
3826 1.1 paulus case TABLE:
3827 1.1 paulus NEEDBITS(14)
3828 1.1 paulus s->sub.trees.table = t = (uInt)b & 0x3fff;
3829 1.1 paulus #ifndef PKZIP_BUG_WORKAROUND
3830 1.1 paulus if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3831 1.1 paulus {
3832 1.1 paulus s->mode = BADB;
3833 1.7 christos z->msg = (char*)"too many length or distance symbols";
3834 1.1 paulus r = Z_DATA_ERROR;
3835 1.1 paulus LEAVE
3836 1.1 paulus }
3837 1.1 paulus #endif
3838 1.1 paulus t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3839 1.1 paulus if (t < 19)
3840 1.1 paulus t = 19;
3841 1.1 paulus if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3842 1.1 paulus {
3843 1.1 paulus r = Z_MEM_ERROR;
3844 1.1 paulus LEAVE
3845 1.1 paulus }
3846 1.1 paulus DUMPBITS(14)
3847 1.1 paulus s->sub.trees.index = 0;
3848 1.1 paulus Tracev((stderr, "inflate: table sizes ok\n"));
3849 1.1 paulus s->mode = BTREE;
3850 1.1 paulus case BTREE:
3851 1.1 paulus while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3852 1.1 paulus {
3853 1.1 paulus NEEDBITS(3)
3854 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3855 1.1 paulus DUMPBITS(3)
3856 1.1 paulus }
3857 1.1 paulus while (s->sub.trees.index < 19)
3858 1.1 paulus s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3859 1.1 paulus s->sub.trees.bb = 7;
3860 1.1 paulus t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3861 1.1 paulus &s->sub.trees.tb, z);
3862 1.1 paulus if (t != Z_OK)
3863 1.1 paulus {
3864 1.7 christos ZFREE(z, s->sub.trees.blens);
3865 1.1 paulus r = t;
3866 1.1 paulus if (r == Z_DATA_ERROR)
3867 1.1 paulus s->mode = BADB;
3868 1.1 paulus LEAVE
3869 1.1 paulus }
3870 1.1 paulus s->sub.trees.index = 0;
3871 1.1 paulus Tracev((stderr, "inflate: bits tree ok\n"));
3872 1.1 paulus s->mode = DTREE;
3873 1.1 paulus case DTREE:
3874 1.1 paulus while (t = s->sub.trees.table,
3875 1.1 paulus s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3876 1.1 paulus {
3877 1.1 paulus inflate_huft *h;
3878 1.1 paulus uInt i, j, c;
3879 1.1 paulus
3880 1.1 paulus t = s->sub.trees.bb;
3881 1.1 paulus NEEDBITS(t)
3882 1.1 paulus h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3883 1.1 paulus t = h->word.what.Bits;
3884 1.1 paulus c = h->more.Base;
3885 1.1 paulus if (c < 16)
3886 1.1 paulus {
3887 1.1 paulus DUMPBITS(t)
3888 1.1 paulus s->sub.trees.blens[s->sub.trees.index++] = c;
3889 1.1 paulus }
3890 1.1 paulus else /* c == 16..18 */
3891 1.1 paulus {
3892 1.1 paulus i = c == 18 ? 7 : c - 14;
3893 1.1 paulus j = c == 18 ? 11 : 3;
3894 1.1 paulus NEEDBITS(t + i)
3895 1.1 paulus DUMPBITS(t)
3896 1.1 paulus j += (uInt)b & inflate_mask[i];
3897 1.1 paulus DUMPBITS(i)
3898 1.1 paulus i = s->sub.trees.index;
3899 1.1 paulus t = s->sub.trees.table;
3900 1.1 paulus if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3901 1.1 paulus (c == 16 && i < 1))
3902 1.1 paulus {
3903 1.7 christos inflate_trees_free(s->sub.trees.tb, z);
3904 1.7 christos ZFREE(z, s->sub.trees.blens);
3905 1.1 paulus s->mode = BADB;
3906 1.7 christos z->msg = (char*)"invalid bit length repeat";
3907 1.1 paulus r = Z_DATA_ERROR;
3908 1.1 paulus LEAVE
3909 1.1 paulus }
3910 1.1 paulus c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3911 1.1 paulus do {
3912 1.1 paulus s->sub.trees.blens[i++] = c;
3913 1.1 paulus } while (--j);
3914 1.1 paulus s->sub.trees.index = i;
3915 1.1 paulus }
3916 1.1 paulus }
3917 1.1 paulus inflate_trees_free(s->sub.trees.tb, z);
3918 1.1 paulus s->sub.trees.tb = Z_NULL;
3919 1.1 paulus {
3920 1.1 paulus uInt bl, bd;
3921 1.1 paulus inflate_huft *tl, *td;
3922 1.1 paulus inflate_codes_statef *c;
3923 1.1 paulus
3924 1.1 paulus bl = 9; /* must be <= 9 for lookahead assumptions */
3925 1.1 paulus bd = 6; /* must be <= 9 for lookahead assumptions */
3926 1.1 paulus t = s->sub.trees.table;
3927 1.7 christos #ifdef DEBUG_ZLIB
3928 1.7 christos inflate_hufts = 0;
3929 1.7 christos #endif
3930 1.1 paulus t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3931 1.1 paulus s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3932 1.7 christos ZFREE(z, s->sub.trees.blens);
3933 1.1 paulus if (t != Z_OK)
3934 1.1 paulus {
3935 1.1 paulus if (t == (uInt)Z_DATA_ERROR)
3936 1.1 paulus s->mode = BADB;
3937 1.1 paulus r = t;
3938 1.1 paulus LEAVE
3939 1.1 paulus }
3940 1.7 christos Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3941 1.7 christos inflate_hufts, sizeof(inflate_huft)));
3942 1.1 paulus if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3943 1.1 paulus {
3944 1.1 paulus inflate_trees_free(td, z);
3945 1.1 paulus inflate_trees_free(tl, z);
3946 1.1 paulus r = Z_MEM_ERROR;
3947 1.1 paulus LEAVE
3948 1.1 paulus }
3949 1.1 paulus s->sub.decode.codes = c;
3950 1.1 paulus s->sub.decode.tl = tl;
3951 1.1 paulus s->sub.decode.td = td;
3952 1.1 paulus }
3953 1.1 paulus s->mode = CODES;
3954 1.1 paulus case CODES:
3955 1.1 paulus UPDATE
3956 1.1 paulus if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3957 1.1 paulus return inflate_flush(s, z, r);
3958 1.1 paulus r = Z_OK;
3959 1.1 paulus inflate_codes_free(s->sub.decode.codes, z);
3960 1.1 paulus inflate_trees_free(s->sub.decode.td, z);
3961 1.1 paulus inflate_trees_free(s->sub.decode.tl, z);
3962 1.1 paulus LOAD
3963 1.1 paulus Tracev((stderr, "inflate: codes end, %lu total out\n",
3964 1.1 paulus z->total_out + (q >= s->read ? q - s->read :
3965 1.1 paulus (s->end - s->read) + (q - s->window))));
3966 1.1 paulus if (!s->last)
3967 1.1 paulus {
3968 1.1 paulus s->mode = TYPE;
3969 1.1 paulus break;
3970 1.1 paulus }
3971 1.1 paulus if (k > 7) /* return unused byte, if any */
3972 1.1 paulus {
3973 1.1 paulus Assert(k < 16, "inflate_codes grabbed too many bytes")
3974 1.1 paulus k -= 8;
3975 1.1 paulus n++;
3976 1.1 paulus p--; /* can always return one */
3977 1.1 paulus }
3978 1.1 paulus s->mode = DRY;
3979 1.1 paulus case DRY:
3980 1.1 paulus FLUSH
3981 1.1 paulus if (s->read != s->write)
3982 1.1 paulus LEAVE
3983 1.1 paulus s->mode = DONEB;
3984 1.1 paulus case DONEB:
3985 1.1 paulus r = Z_STREAM_END;
3986 1.1 paulus LEAVE
3987 1.1 paulus case BADB:
3988 1.1 paulus r = Z_DATA_ERROR;
3989 1.1 paulus LEAVE
3990 1.1 paulus default:
3991 1.1 paulus r = Z_STREAM_ERROR;
3992 1.1 paulus LEAVE
3993 1.1 paulus }
3994 1.1 paulus }
3995 1.1 paulus
3996 1.1 paulus
3997 1.7 christos int inflate_blocks_free(s, z, c)
3998 1.1 paulus inflate_blocks_statef *s;
3999 1.7 christos z_streamp z;
4000 1.1 paulus uLongf *c;
4001 1.1 paulus {
4002 1.1 paulus inflate_blocks_reset(s, z, c);
4003 1.7 christos ZFREE(z, s->window);
4004 1.7 christos ZFREE(z, s);
4005 1.1 paulus Trace((stderr, "inflate: blocks freed\n"));
4006 1.1 paulus return Z_OK;
4007 1.1 paulus }
4008 1.1 paulus
4009 1.7 christos
4010 1.7 christos void inflate_set_dictionary(s, d, n)
4011 1.7 christos inflate_blocks_statef *s;
4012 1.7 christos const Bytef *d;
4013 1.7 christos uInt n;
4014 1.7 christos {
4015 1.7 christos zmemcpy((charf *)s->window, d, n);
4016 1.7 christos s->read = s->write = s->window + n;
4017 1.7 christos }
4018 1.7 christos
4019 1.1 paulus /*
4020 1.1 paulus * This subroutine adds the data at next_in/avail_in to the output history
4021 1.1 paulus * without performing any output. The output buffer must be "caught up";
4022 1.1 paulus * i.e. no pending output (hence s->read equals s->write), and the state must
4023 1.1 paulus * be BLOCKS (i.e. we should be willing to see the start of a series of
4024 1.1 paulus * BLOCKS). On exit, the output will also be caught up, and the checksum
4025 1.1 paulus * will have been updated if need be.
4026 1.1 paulus */
4027 1.7 christos int inflate_addhistory(s, z)
4028 1.1 paulus inflate_blocks_statef *s;
4029 1.1 paulus z_stream *z;
4030 1.1 paulus {
4031 1.1 paulus uLong b; /* bit buffer */ /* NOT USED HERE */
4032 1.1 paulus uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4033 1.1 paulus uInt t; /* temporary storage */
4034 1.1 paulus Bytef *p; /* input data pointer */
4035 1.1 paulus uInt n; /* bytes available there */
4036 1.1 paulus Bytef *q; /* output window write pointer */
4037 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4038 1.1 paulus
4039 1.1 paulus if (s->read != s->write)
4040 1.1 paulus return Z_STREAM_ERROR;
4041 1.1 paulus if (s->mode != TYPE)
4042 1.1 paulus return Z_DATA_ERROR;
4043 1.1 paulus
4044 1.1 paulus /* we're ready to rock */
4045 1.1 paulus LOAD
4046 1.1 paulus /* while there is input ready, copy to output buffer, moving
4047 1.1 paulus * pointers as needed.
4048 1.1 paulus */
4049 1.1 paulus while (n) {
4050 1.1 paulus t = n; /* how many to do */
4051 1.1 paulus /* is there room until end of buffer? */
4052 1.1 paulus if (t > m) t = m;
4053 1.1 paulus /* update check information */
4054 1.1 paulus if (s->checkfn != Z_NULL)
4055 1.1 paulus s->check = (*s->checkfn)(s->check, q, t);
4056 1.1 paulus zmemcpy(q, p, t);
4057 1.1 paulus q += t;
4058 1.1 paulus p += t;
4059 1.1 paulus n -= t;
4060 1.1 paulus z->total_out += t;
4061 1.1 paulus s->read = q; /* drag read pointer forward */
4062 1.7 christos /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4063 1.1 paulus if (q == s->end) {
4064 1.1 paulus s->read = q = s->window;
4065 1.1 paulus m = WAVAIL;
4066 1.1 paulus }
4067 1.1 paulus }
4068 1.1 paulus UPDATE
4069 1.1 paulus return Z_OK;
4070 1.1 paulus }
4071 1.1 paulus
4072 1.1 paulus
4073 1.1 paulus /*
4074 1.1 paulus * At the end of a Deflate-compressed PPP packet, we expect to have seen
4075 1.1 paulus * a `stored' block type value but not the (zero) length bytes.
4076 1.1 paulus */
4077 1.7 christos int inflate_packet_flush(s)
4078 1.1 paulus inflate_blocks_statef *s;
4079 1.1 paulus {
4080 1.1 paulus if (s->mode != LENS)
4081 1.1 paulus return Z_DATA_ERROR;
4082 1.1 paulus s->mode = TYPE;
4083 1.1 paulus return Z_OK;
4084 1.1 paulus }
4085 1.7 christos /* --- infblock.c */
4086 1.1 paulus
4087 1.7 christos /* +++ inftrees.c */
4088 1.1 paulus /* inftrees.c -- generate Huffman trees for efficient decoding
4089 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4090 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4091 1.1 paulus */
4092 1.1 paulus
4093 1.7 christos /* #include "zutil.h" */
4094 1.7 christos /* #include "inftrees.h" */
4095 1.7 christos
4096 1.7 christos char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4097 1.7 christos /*
4098 1.7 christos If you use the zlib library in a product, an acknowledgment is welcome
4099 1.7 christos in the documentation of your product. If for some reason you cannot
4100 1.7 christos include such an acknowledgment, I would appreciate that you keep this
4101 1.7 christos copyright string in the executable of your product.
4102 1.7 christos */
4103 1.7 christos
4104 1.7 christos #ifndef NO_DUMMY_DECL
4105 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
4106 1.7 christos #endif
4107 1.7 christos
4108 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4109 1.1 paulus #define base more.Base
4110 1.1 paulus #define next more.Next
4111 1.1 paulus #define exop word.what.Exop
4112 1.1 paulus #define bits word.what.Bits
4113 1.1 paulus
4114 1.1 paulus
4115 1.1 paulus local int huft_build OF((
4116 1.1 paulus uIntf *, /* code lengths in bits */
4117 1.1 paulus uInt, /* number of codes */
4118 1.1 paulus uInt, /* number of "simple" codes */
4119 1.7 christos const uIntf *, /* list of base values for non-simple codes */
4120 1.7 christos const uIntf *, /* list of extra bits for non-simple codes */
4121 1.1 paulus inflate_huft * FAR*,/* result: starting table */
4122 1.1 paulus uIntf *, /* maximum lookup bits (returns actual) */
4123 1.7 christos z_streamp )); /* for zalloc function */
4124 1.1 paulus
4125 1.1 paulus local voidpf falloc OF((
4126 1.1 paulus voidpf, /* opaque pointer (not used) */
4127 1.1 paulus uInt, /* number of items */
4128 1.1 paulus uInt)); /* size of item */
4129 1.1 paulus
4130 1.1 paulus /* Tables for deflate from PKZIP's appnote.txt. */
4131 1.7 christos local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4132 1.1 paulus 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4133 1.1 paulus 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4134 1.7 christos /* see note #13 above about 258 */
4135 1.7 christos local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4136 1.1 paulus 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4137 1.7 christos 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4138 1.7 christos local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4139 1.1 paulus 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4140 1.1 paulus 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4141 1.1 paulus 8193, 12289, 16385, 24577};
4142 1.7 christos local const uInt cpdext[30] = { /* Extra bits for distance codes */
4143 1.1 paulus 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4144 1.1 paulus 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4145 1.1 paulus 12, 12, 13, 13};
4146 1.1 paulus
4147 1.1 paulus /*
4148 1.1 paulus Huffman code decoding is performed using a multi-level table lookup.
4149 1.1 paulus The fastest way to decode is to simply build a lookup table whose
4150 1.1 paulus size is determined by the longest code. However, the time it takes
4151 1.1 paulus to build this table can also be a factor if the data being decoded
4152 1.1 paulus is not very long. The most common codes are necessarily the
4153 1.1 paulus shortest codes, so those codes dominate the decoding time, and hence
4154 1.1 paulus the speed. The idea is you can have a shorter table that decodes the
4155 1.1 paulus shorter, more probable codes, and then point to subsidiary tables for
4156 1.1 paulus the longer codes. The time it costs to decode the longer codes is
4157 1.1 paulus then traded against the time it takes to make longer tables.
4158 1.1 paulus
4159 1.1 paulus This results of this trade are in the variables lbits and dbits
4160 1.1 paulus below. lbits is the number of bits the first level table for literal/
4161 1.1 paulus length codes can decode in one step, and dbits is the same thing for
4162 1.1 paulus the distance codes. Subsequent tables are also less than or equal to
4163 1.1 paulus those sizes. These values may be adjusted either when all of the
4164 1.1 paulus codes are shorter than that, in which case the longest code length in
4165 1.1 paulus bits is used, or when the shortest code is *longer* than the requested
4166 1.1 paulus table size, in which case the length of the shortest code in bits is
4167 1.1 paulus used.
4168 1.1 paulus
4169 1.1 paulus There are two different values for the two tables, since they code a
4170 1.1 paulus different number of possibilities each. The literal/length table
4171 1.1 paulus codes 286 possible values, or in a flat code, a little over eight
4172 1.1 paulus bits. The distance table codes 30 possible values, or a little less
4173 1.1 paulus than five bits, flat. The optimum values for speed end up being
4174 1.1 paulus about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4175 1.1 paulus The optimum values may differ though from machine to machine, and
4176 1.1 paulus possibly even between compilers. Your mileage may vary.
4177 1.1 paulus */
4178 1.1 paulus
4179 1.1 paulus
4180 1.1 paulus /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4181 1.1 paulus #define BMAX 15 /* maximum bit length of any code */
4182 1.1 paulus #define N_MAX 288 /* maximum number of codes in any set */
4183 1.1 paulus
4184 1.1 paulus #ifdef DEBUG_ZLIB
4185 1.1 paulus uInt inflate_hufts;
4186 1.1 paulus #endif
4187 1.1 paulus
4188 1.1 paulus local int huft_build(b, n, s, d, e, t, m, zs)
4189 1.1 paulus uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4190 1.1 paulus uInt n; /* number of codes (assumed <= N_MAX) */
4191 1.1 paulus uInt s; /* number of simple-valued codes (0..s-1) */
4192 1.7 christos const uIntf *d; /* list of base values for non-simple codes */
4193 1.7 christos const uIntf *e; /* list of extra bits for non-simple codes */
4194 1.1 paulus inflate_huft * FAR *t; /* result: starting table */
4195 1.1 paulus uIntf *m; /* maximum lookup bits, returns actual */
4196 1.7 christos z_streamp zs; /* for zalloc function */
4197 1.1 paulus /* Given a list of code lengths and a maximum table size, make a set of
4198 1.1 paulus tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4199 1.1 paulus if the given code set is incomplete (the tables are still built in this
4200 1.7 christos case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4201 1.7 christos lengths), or Z_MEM_ERROR if not enough memory. */
4202 1.1 paulus {
4203 1.1 paulus
4204 1.1 paulus uInt a; /* counter for codes of length k */
4205 1.1 paulus uInt c[BMAX+1]; /* bit length count table */
4206 1.1 paulus uInt f; /* i repeats in table every f entries */
4207 1.1 paulus int g; /* maximum code length */
4208 1.1 paulus int h; /* table level */
4209 1.1 paulus register uInt i; /* counter, current code */
4210 1.1 paulus register uInt j; /* counter */
4211 1.1 paulus register int k; /* number of bits in current code */
4212 1.1 paulus int l; /* bits per table (returned in m) */
4213 1.1 paulus register uIntf *p; /* pointer into c[], b[], or v[] */
4214 1.1 paulus inflate_huft *q; /* points to current table */
4215 1.1 paulus struct inflate_huft_s r; /* table entry for structure assignment */
4216 1.1 paulus inflate_huft *u[BMAX]; /* table stack */
4217 1.1 paulus uInt v[N_MAX]; /* values in order of bit length */
4218 1.1 paulus register int w; /* bits before this table == (l * h) */
4219 1.1 paulus uInt x[BMAX+1]; /* bit offsets, then code stack */
4220 1.1 paulus uIntf *xp; /* pointer into x */
4221 1.1 paulus int y; /* number of dummy codes added */
4222 1.1 paulus uInt z; /* number of entries in current table */
4223 1.1 paulus
4224 1.1 paulus
4225 1.1 paulus /* Generate counts for each bit length */
4226 1.1 paulus p = c;
4227 1.1 paulus #define C0 *p++ = 0;
4228 1.1 paulus #define C2 C0 C0 C0 C0
4229 1.1 paulus #define C4 C2 C2 C2 C2
4230 1.1 paulus C4 /* clear c[]--assume BMAX+1 is 16 */
4231 1.1 paulus p = b; i = n;
4232 1.1 paulus do {
4233 1.1 paulus c[*p++]++; /* assume all entries <= BMAX */
4234 1.1 paulus } while (--i);
4235 1.1 paulus if (c[0] == n) /* null input--all zero length codes */
4236 1.1 paulus {
4237 1.1 paulus *t = (inflate_huft *)Z_NULL;
4238 1.1 paulus *m = 0;
4239 1.1 paulus return Z_OK;
4240 1.1 paulus }
4241 1.1 paulus
4242 1.1 paulus
4243 1.1 paulus /* Find minimum and maximum length, bound *m by those */
4244 1.1 paulus l = *m;
4245 1.1 paulus for (j = 1; j <= BMAX; j++)
4246 1.1 paulus if (c[j])
4247 1.1 paulus break;
4248 1.1 paulus k = j; /* minimum code length */
4249 1.1 paulus if ((uInt)l < j)
4250 1.1 paulus l = j;
4251 1.1 paulus for (i = BMAX; i; i--)
4252 1.1 paulus if (c[i])
4253 1.1 paulus break;
4254 1.1 paulus g = i; /* maximum code length */
4255 1.1 paulus if ((uInt)l > i)
4256 1.1 paulus l = i;
4257 1.1 paulus *m = l;
4258 1.1 paulus
4259 1.1 paulus
4260 1.1 paulus /* Adjust last length count to fill out codes, if needed */
4261 1.1 paulus for (y = 1 << j; j < i; j++, y <<= 1)
4262 1.1 paulus if ((y -= c[j]) < 0)
4263 1.1 paulus return Z_DATA_ERROR;
4264 1.1 paulus if ((y -= c[i]) < 0)
4265 1.1 paulus return Z_DATA_ERROR;
4266 1.1 paulus c[i] += y;
4267 1.1 paulus
4268 1.1 paulus
4269 1.1 paulus /* Generate starting offsets into the value table for each length */
4270 1.1 paulus x[1] = j = 0;
4271 1.1 paulus p = c + 1; xp = x + 2;
4272 1.1 paulus while (--i) { /* note that i == g from above */
4273 1.1 paulus *xp++ = (j += *p++);
4274 1.1 paulus }
4275 1.1 paulus
4276 1.1 paulus
4277 1.1 paulus /* Make a table of values in order of bit lengths */
4278 1.1 paulus p = b; i = 0;
4279 1.1 paulus do {
4280 1.1 paulus if ((j = *p++) != 0)
4281 1.1 paulus v[x[j]++] = i;
4282 1.1 paulus } while (++i < n);
4283 1.7 christos n = x[g]; /* set n to length of v */
4284 1.1 paulus
4285 1.1 paulus
4286 1.1 paulus /* Generate the Huffman codes and for each, make the table entries */
4287 1.1 paulus x[0] = i = 0; /* first Huffman code is zero */
4288 1.1 paulus p = v; /* grab values in bit order */
4289 1.1 paulus h = -1; /* no tables yet--level -1 */
4290 1.1 paulus w = -l; /* bits decoded == (l * h) */
4291 1.1 paulus u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4292 1.1 paulus q = (inflate_huft *)Z_NULL; /* ditto */
4293 1.1 paulus z = 0; /* ditto */
4294 1.1 paulus
4295 1.1 paulus /* go through the bit lengths (k already is bits in shortest code) */
4296 1.1 paulus for (; k <= g; k++)
4297 1.1 paulus {
4298 1.1 paulus a = c[k];
4299 1.1 paulus while (a--)
4300 1.1 paulus {
4301 1.1 paulus /* here i is the Huffman code of length k bits for value *p */
4302 1.1 paulus /* make tables up to required level */
4303 1.1 paulus while (k > w + l)
4304 1.1 paulus {
4305 1.1 paulus h++;
4306 1.1 paulus w += l; /* previous table always l bits */
4307 1.1 paulus
4308 1.1 paulus /* compute minimum size table less than or equal to l bits */
4309 1.7 christos z = g - w;
4310 1.7 christos z = z > (uInt)l ? l : z; /* table size upper limit */
4311 1.1 paulus if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4312 1.1 paulus { /* too few codes for k-w bit table */
4313 1.1 paulus f -= a + 1; /* deduct codes from patterns left */
4314 1.1 paulus xp = c + k;
4315 1.1 paulus if (j < z)
4316 1.1 paulus while (++j < z) /* try smaller tables up to z bits */
4317 1.1 paulus {
4318 1.1 paulus if ((f <<= 1) <= *++xp)
4319 1.1 paulus break; /* enough codes to use up j bits */
4320 1.1 paulus f -= *xp; /* else deduct codes from patterns */
4321 1.1 paulus }
4322 1.1 paulus }
4323 1.1 paulus z = 1 << j; /* table entries for j-bit table */
4324 1.1 paulus
4325 1.1 paulus /* allocate and link in new table */
4326 1.1 paulus if ((q = (inflate_huft *)ZALLOC
4327 1.1 paulus (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4328 1.1 paulus {
4329 1.1 paulus if (h)
4330 1.1 paulus inflate_trees_free(u[0], zs);
4331 1.1 paulus return Z_MEM_ERROR; /* not enough memory */
4332 1.1 paulus }
4333 1.1 paulus #ifdef DEBUG_ZLIB
4334 1.1 paulus inflate_hufts += z + 1;
4335 1.1 paulus #endif
4336 1.1 paulus *t = q + 1; /* link to list for huft_free() */
4337 1.1 paulus *(t = &(q->next)) = Z_NULL;
4338 1.1 paulus u[h] = ++q; /* table starts after link */
4339 1.1 paulus
4340 1.1 paulus /* connect to last table, if there is one */
4341 1.1 paulus if (h)
4342 1.1 paulus {
4343 1.1 paulus x[h] = i; /* save pattern for backing up */
4344 1.1 paulus r.bits = (Byte)l; /* bits to dump before this table */
4345 1.1 paulus r.exop = (Byte)j; /* bits in this table */
4346 1.1 paulus r.next = q; /* pointer to this table */
4347 1.1 paulus j = i >> (w - l); /* (get around Turbo C bug) */
4348 1.1 paulus u[h-1][j] = r; /* connect to last table */
4349 1.1 paulus }
4350 1.1 paulus }
4351 1.1 paulus
4352 1.1 paulus /* set up table entry in r */
4353 1.1 paulus r.bits = (Byte)(k - w);
4354 1.1 paulus if (p >= v + n)
4355 1.1 paulus r.exop = 128 + 64; /* out of values--invalid code */
4356 1.1 paulus else if (*p < s)
4357 1.1 paulus {
4358 1.1 paulus r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4359 1.1 paulus r.base = *p++; /* simple code is just the value */
4360 1.1 paulus }
4361 1.1 paulus else
4362 1.1 paulus {
4363 1.7 christos r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4364 1.1 paulus r.base = d[*p++ - s];
4365 1.1 paulus }
4366 1.1 paulus
4367 1.1 paulus /* fill code-like entries with r */
4368 1.1 paulus f = 1 << (k - w);
4369 1.1 paulus for (j = i >> w; j < z; j += f)
4370 1.1 paulus q[j] = r;
4371 1.1 paulus
4372 1.1 paulus /* backwards increment the k-bit code i */
4373 1.1 paulus for (j = 1 << (k - 1); i & j; j >>= 1)
4374 1.1 paulus i ^= j;
4375 1.1 paulus i ^= j;
4376 1.1 paulus
4377 1.1 paulus /* backup over finished tables */
4378 1.1 paulus while ((i & ((1 << w) - 1)) != x[h])
4379 1.1 paulus {
4380 1.1 paulus h--; /* don't need to update q */
4381 1.1 paulus w -= l;
4382 1.1 paulus }
4383 1.1 paulus }
4384 1.1 paulus }
4385 1.1 paulus
4386 1.1 paulus
4387 1.1 paulus /* Return Z_BUF_ERROR if we were given an incomplete table */
4388 1.1 paulus return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4389 1.1 paulus }
4390 1.1 paulus
4391 1.1 paulus
4392 1.7 christos int inflate_trees_bits(c, bb, tb, z)
4393 1.1 paulus uIntf *c; /* 19 code lengths */
4394 1.1 paulus uIntf *bb; /* bits tree desired/actual depth */
4395 1.1 paulus inflate_huft * FAR *tb; /* bits tree result */
4396 1.7 christos z_streamp z; /* for zfree function */
4397 1.1 paulus {
4398 1.1 paulus int r;
4399 1.1 paulus
4400 1.1 paulus r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4401 1.1 paulus if (r == Z_DATA_ERROR)
4402 1.7 christos z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4403 1.7 christos else if (r == Z_BUF_ERROR || *bb == 0)
4404 1.1 paulus {
4405 1.1 paulus inflate_trees_free(*tb, z);
4406 1.7 christos z->msg = (char*)"incomplete dynamic bit lengths tree";
4407 1.1 paulus r = Z_DATA_ERROR;
4408 1.1 paulus }
4409 1.1 paulus return r;
4410 1.1 paulus }
4411 1.1 paulus
4412 1.1 paulus
4413 1.7 christos int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4414 1.1 paulus uInt nl; /* number of literal/length codes */
4415 1.1 paulus uInt nd; /* number of distance codes */
4416 1.1 paulus uIntf *c; /* that many (total) code lengths */
4417 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4418 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4419 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4420 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4421 1.7 christos z_streamp z; /* for zfree function */
4422 1.1 paulus {
4423 1.1 paulus int r;
4424 1.1 paulus
4425 1.1 paulus /* build literal/length tree */
4426 1.7 christos r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4427 1.7 christos if (r != Z_OK || *bl == 0)
4428 1.1 paulus {
4429 1.1 paulus if (r == Z_DATA_ERROR)
4430 1.7 christos z->msg = (char*)"oversubscribed literal/length tree";
4431 1.7 christos else if (r != Z_MEM_ERROR)
4432 1.1 paulus {
4433 1.1 paulus inflate_trees_free(*tl, z);
4434 1.7 christos z->msg = (char*)"incomplete literal/length tree";
4435 1.1 paulus r = Z_DATA_ERROR;
4436 1.1 paulus }
4437 1.1 paulus return r;
4438 1.1 paulus }
4439 1.1 paulus
4440 1.1 paulus /* build distance tree */
4441 1.7 christos r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4442 1.7 christos if (r != Z_OK || (*bd == 0 && nl > 257))
4443 1.1 paulus {
4444 1.1 paulus if (r == Z_DATA_ERROR)
4445 1.7 christos z->msg = (char*)"oversubscribed distance tree";
4446 1.1 paulus else if (r == Z_BUF_ERROR) {
4447 1.1 paulus #ifdef PKZIP_BUG_WORKAROUND
4448 1.1 paulus r = Z_OK;
4449 1.1 paulus }
4450 1.1 paulus #else
4451 1.1 paulus inflate_trees_free(*td, z);
4452 1.7 christos z->msg = (char*)"incomplete distance tree";
4453 1.7 christos r = Z_DATA_ERROR;
4454 1.7 christos }
4455 1.7 christos else if (r != Z_MEM_ERROR)
4456 1.7 christos {
4457 1.7 christos z->msg = (char*)"empty distance tree with lengths";
4458 1.1 paulus r = Z_DATA_ERROR;
4459 1.1 paulus }
4460 1.1 paulus inflate_trees_free(*tl, z);
4461 1.1 paulus return r;
4462 1.1 paulus #endif
4463 1.1 paulus }
4464 1.1 paulus
4465 1.1 paulus /* done */
4466 1.1 paulus return Z_OK;
4467 1.1 paulus }
4468 1.1 paulus
4469 1.1 paulus
4470 1.1 paulus /* build fixed tables only once--keep them here */
4471 1.1 paulus local int fixed_built = 0;
4472 1.1 paulus #define FIXEDH 530 /* number of hufts used by fixed tables */
4473 1.1 paulus local inflate_huft fixed_mem[FIXEDH];
4474 1.1 paulus local uInt fixed_bl;
4475 1.1 paulus local uInt fixed_bd;
4476 1.1 paulus local inflate_huft *fixed_tl;
4477 1.1 paulus local inflate_huft *fixed_td;
4478 1.1 paulus
4479 1.1 paulus
4480 1.1 paulus local voidpf falloc(q, n, s)
4481 1.7 christos voidpf q; /* opaque pointer */
4482 1.1 paulus uInt n; /* number of items */
4483 1.1 paulus uInt s; /* size of item */
4484 1.1 paulus {
4485 1.7 christos Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4486 1.1 paulus "inflate_trees falloc overflow");
4487 1.7 christos *(intf *)q -= n+s-s; /* s-s to avoid warning */
4488 1.7 christos return (voidpf)(fixed_mem + *(intf *)q);
4489 1.1 paulus }
4490 1.1 paulus
4491 1.1 paulus
4492 1.7 christos int inflate_trees_fixed(bl, bd, tl, td)
4493 1.1 paulus uIntf *bl; /* literal desired/actual bit depth */
4494 1.1 paulus uIntf *bd; /* distance desired/actual bit depth */
4495 1.1 paulus inflate_huft * FAR *tl; /* literal/length tree result */
4496 1.1 paulus inflate_huft * FAR *td; /* distance tree result */
4497 1.1 paulus {
4498 1.7 christos /* build fixed tables if not already (multiple overlapped executions ok) */
4499 1.1 paulus if (!fixed_built)
4500 1.1 paulus {
4501 1.1 paulus int k; /* temporary variable */
4502 1.1 paulus unsigned c[288]; /* length list for huft_build */
4503 1.1 paulus z_stream z; /* for falloc function */
4504 1.7 christos int f = FIXEDH; /* number of hufts left in fixed_mem */
4505 1.1 paulus
4506 1.1 paulus /* set up fake z_stream for memory routines */
4507 1.1 paulus z.zalloc = falloc;
4508 1.7 christos z.zfree = Z_NULL;
4509 1.7 christos z.opaque = (voidpf)&f;
4510 1.1 paulus
4511 1.1 paulus /* literal table */
4512 1.1 paulus for (k = 0; k < 144; k++)
4513 1.1 paulus c[k] = 8;
4514 1.1 paulus for (; k < 256; k++)
4515 1.1 paulus c[k] = 9;
4516 1.1 paulus for (; k < 280; k++)
4517 1.1 paulus c[k] = 7;
4518 1.1 paulus for (; k < 288; k++)
4519 1.1 paulus c[k] = 8;
4520 1.1 paulus fixed_bl = 7;
4521 1.1 paulus huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4522 1.1 paulus
4523 1.1 paulus /* distance table */
4524 1.1 paulus for (k = 0; k < 30; k++)
4525 1.1 paulus c[k] = 5;
4526 1.1 paulus fixed_bd = 5;
4527 1.1 paulus huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4528 1.1 paulus
4529 1.1 paulus /* done */
4530 1.7 christos Assert(f == 0, "invalid build of fixed tables");
4531 1.1 paulus fixed_built = 1;
4532 1.1 paulus }
4533 1.1 paulus *bl = fixed_bl;
4534 1.1 paulus *bd = fixed_bd;
4535 1.1 paulus *tl = fixed_tl;
4536 1.1 paulus *td = fixed_td;
4537 1.1 paulus return Z_OK;
4538 1.1 paulus }
4539 1.1 paulus
4540 1.1 paulus
4541 1.7 christos int inflate_trees_free(t, z)
4542 1.1 paulus inflate_huft *t; /* table to free */
4543 1.7 christos z_streamp z; /* for zfree function */
4544 1.1 paulus /* Free the malloc'ed tables built by huft_build(), which makes a linked
4545 1.1 paulus list of the tables it made, with the links in a dummy first entry of
4546 1.1 paulus each table. */
4547 1.1 paulus {
4548 1.7 christos register inflate_huft *p, *q, *r;
4549 1.1 paulus
4550 1.7 christos /* Reverse linked list */
4551 1.7 christos p = Z_NULL;
4552 1.7 christos q = t;
4553 1.7 christos while (q != Z_NULL)
4554 1.7 christos {
4555 1.7 christos r = (q - 1)->next;
4556 1.7 christos (q - 1)->next = p;
4557 1.7 christos p = q;
4558 1.7 christos q = r;
4559 1.7 christos }
4560 1.1 paulus /* Go through linked list, freeing from the malloced (t[-1]) address. */
4561 1.1 paulus while (p != Z_NULL)
4562 1.1 paulus {
4563 1.1 paulus q = (--p)->next;
4564 1.7 christos ZFREE(z,p);
4565 1.1 paulus p = q;
4566 1.1 paulus }
4567 1.1 paulus return Z_OK;
4568 1.1 paulus }
4569 1.7 christos /* --- inftrees.c */
4570 1.1 paulus
4571 1.7 christos /* +++ infcodes.c */
4572 1.1 paulus /* infcodes.c -- process literals and length/distance pairs
4573 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4574 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4575 1.1 paulus */
4576 1.1 paulus
4577 1.7 christos /* #include "zutil.h" */
4578 1.7 christos /* #include "inftrees.h" */
4579 1.7 christos /* #include "infblock.h" */
4580 1.7 christos /* #include "infcodes.h" */
4581 1.7 christos /* #include "infutil.h" */
4582 1.7 christos
4583 1.7 christos /* +++ inffast.h */
4584 1.7 christos /* inffast.h -- header to use inffast.c
4585 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4586 1.7 christos * For conditions of distribution and use, see copyright notice in zlib.h
4587 1.7 christos */
4588 1.7 christos
4589 1.7 christos /* WARNING: this file should *not* be used by applications. It is
4590 1.7 christos part of the implementation of the compression library and is
4591 1.7 christos subject to change. Applications should only use zlib.h.
4592 1.7 christos */
4593 1.7 christos
4594 1.7 christos extern int inflate_fast OF((
4595 1.7 christos uInt,
4596 1.7 christos uInt,
4597 1.7 christos inflate_huft *,
4598 1.7 christos inflate_huft *,
4599 1.7 christos inflate_blocks_statef *,
4600 1.7 christos z_streamp ));
4601 1.7 christos /* --- inffast.h */
4602 1.7 christos
4603 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4604 1.1 paulus #define base more.Base
4605 1.1 paulus #define next more.Next
4606 1.1 paulus #define exop word.what.Exop
4607 1.1 paulus #define bits word.what.Bits
4608 1.1 paulus
4609 1.1 paulus /* inflate codes private state */
4610 1.1 paulus struct inflate_codes_state {
4611 1.1 paulus
4612 1.1 paulus /* mode */
4613 1.1 paulus enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4614 1.1 paulus START, /* x: set up for LEN */
4615 1.1 paulus LEN, /* i: get length/literal/eob next */
4616 1.1 paulus LENEXT, /* i: getting length extra (have base) */
4617 1.1 paulus DIST, /* i: get distance next */
4618 1.1 paulus DISTEXT, /* i: getting distance extra */
4619 1.1 paulus COPY, /* o: copying bytes in window, waiting for space */
4620 1.1 paulus LIT, /* o: got literal, waiting for output space */
4621 1.1 paulus WASH, /* o: got eob, possibly still output waiting */
4622 1.1 paulus END, /* x: got eob and all data flushed */
4623 1.1 paulus BADCODE} /* x: got error */
4624 1.1 paulus mode; /* current inflate_codes mode */
4625 1.1 paulus
4626 1.1 paulus /* mode dependent information */
4627 1.1 paulus uInt len;
4628 1.1 paulus union {
4629 1.1 paulus struct {
4630 1.1 paulus inflate_huft *tree; /* pointer into tree */
4631 1.1 paulus uInt need; /* bits needed */
4632 1.1 paulus } code; /* if LEN or DIST, where in tree */
4633 1.1 paulus uInt lit; /* if LIT, literal */
4634 1.1 paulus struct {
4635 1.1 paulus uInt get; /* bits to get for extra */
4636 1.1 paulus uInt dist; /* distance back to copy from */
4637 1.1 paulus } copy; /* if EXT or COPY, where and how much */
4638 1.1 paulus } sub; /* submode */
4639 1.1 paulus
4640 1.1 paulus /* mode independent information */
4641 1.1 paulus Byte lbits; /* ltree bits decoded per branch */
4642 1.1 paulus Byte dbits; /* dtree bits decoder per branch */
4643 1.1 paulus inflate_huft *ltree; /* literal/length/eob tree */
4644 1.1 paulus inflate_huft *dtree; /* distance tree */
4645 1.1 paulus
4646 1.1 paulus };
4647 1.1 paulus
4648 1.1 paulus
4649 1.7 christos inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4650 1.1 paulus uInt bl, bd;
4651 1.7 christos inflate_huft *tl;
4652 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
4653 1.7 christos z_streamp z;
4654 1.1 paulus {
4655 1.1 paulus inflate_codes_statef *c;
4656 1.1 paulus
4657 1.1 paulus if ((c = (inflate_codes_statef *)
4658 1.1 paulus ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4659 1.1 paulus {
4660 1.1 paulus c->mode = START;
4661 1.1 paulus c->lbits = (Byte)bl;
4662 1.1 paulus c->dbits = (Byte)bd;
4663 1.1 paulus c->ltree = tl;
4664 1.1 paulus c->dtree = td;
4665 1.1 paulus Tracev((stderr, "inflate: codes new\n"));
4666 1.1 paulus }
4667 1.1 paulus return c;
4668 1.1 paulus }
4669 1.1 paulus
4670 1.1 paulus
4671 1.7 christos int inflate_codes(s, z, r)
4672 1.1 paulus inflate_blocks_statef *s;
4673 1.7 christos z_streamp z;
4674 1.1 paulus int r;
4675 1.1 paulus {
4676 1.1 paulus uInt j; /* temporary storage */
4677 1.1 paulus inflate_huft *t; /* temporary pointer */
4678 1.1 paulus uInt e; /* extra bits or operation */
4679 1.1 paulus uLong b; /* bit buffer */
4680 1.1 paulus uInt k; /* bits in bit buffer */
4681 1.1 paulus Bytef *p; /* input data pointer */
4682 1.1 paulus uInt n; /* bytes available there */
4683 1.1 paulus Bytef *q; /* output window write pointer */
4684 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4685 1.1 paulus Bytef *f; /* pointer to copy strings from */
4686 1.1 paulus inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4687 1.1 paulus
4688 1.1 paulus /* copy input/output information to locals (UPDATE macro restores) */
4689 1.1 paulus LOAD
4690 1.1 paulus
4691 1.1 paulus /* process input and output based on current state */
4692 1.1 paulus while (1) switch (c->mode)
4693 1.1 paulus { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4694 1.1 paulus case START: /* x: set up for LEN */
4695 1.1 paulus #ifndef SLOW
4696 1.1 paulus if (m >= 258 && n >= 10)
4697 1.1 paulus {
4698 1.1 paulus UPDATE
4699 1.1 paulus r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4700 1.1 paulus LOAD
4701 1.1 paulus if (r != Z_OK)
4702 1.1 paulus {
4703 1.1 paulus c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4704 1.1 paulus break;
4705 1.1 paulus }
4706 1.1 paulus }
4707 1.1 paulus #endif /* !SLOW */
4708 1.1 paulus c->sub.code.need = c->lbits;
4709 1.1 paulus c->sub.code.tree = c->ltree;
4710 1.1 paulus c->mode = LEN;
4711 1.1 paulus case LEN: /* i: get length/literal/eob next */
4712 1.1 paulus j = c->sub.code.need;
4713 1.1 paulus NEEDBITS(j)
4714 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4715 1.1 paulus DUMPBITS(t->bits)
4716 1.1 paulus e = (uInt)(t->exop);
4717 1.1 paulus if (e == 0) /* literal */
4718 1.1 paulus {
4719 1.1 paulus c->sub.lit = t->base;
4720 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4721 1.1 paulus "inflate: literal '%c'\n" :
4722 1.1 paulus "inflate: literal 0x%02x\n", t->base));
4723 1.1 paulus c->mode = LIT;
4724 1.1 paulus break;
4725 1.1 paulus }
4726 1.1 paulus if (e & 16) /* length */
4727 1.1 paulus {
4728 1.1 paulus c->sub.copy.get = e & 15;
4729 1.1 paulus c->len = t->base;
4730 1.1 paulus c->mode = LENEXT;
4731 1.1 paulus break;
4732 1.1 paulus }
4733 1.1 paulus if ((e & 64) == 0) /* next table */
4734 1.1 paulus {
4735 1.1 paulus c->sub.code.need = e;
4736 1.1 paulus c->sub.code.tree = t->next;
4737 1.1 paulus break;
4738 1.1 paulus }
4739 1.1 paulus if (e & 32) /* end of block */
4740 1.1 paulus {
4741 1.1 paulus Tracevv((stderr, "inflate: end of block\n"));
4742 1.1 paulus c->mode = WASH;
4743 1.1 paulus break;
4744 1.1 paulus }
4745 1.1 paulus c->mode = BADCODE; /* invalid code */
4746 1.7 christos z->msg = (char*)"invalid literal/length code";
4747 1.1 paulus r = Z_DATA_ERROR;
4748 1.1 paulus LEAVE
4749 1.1 paulus case LENEXT: /* i: getting length extra (have base) */
4750 1.1 paulus j = c->sub.copy.get;
4751 1.1 paulus NEEDBITS(j)
4752 1.1 paulus c->len += (uInt)b & inflate_mask[j];
4753 1.1 paulus DUMPBITS(j)
4754 1.1 paulus c->sub.code.need = c->dbits;
4755 1.1 paulus c->sub.code.tree = c->dtree;
4756 1.1 paulus Tracevv((stderr, "inflate: length %u\n", c->len));
4757 1.1 paulus c->mode = DIST;
4758 1.1 paulus case DIST: /* i: get distance next */
4759 1.1 paulus j = c->sub.code.need;
4760 1.1 paulus NEEDBITS(j)
4761 1.1 paulus t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4762 1.1 paulus DUMPBITS(t->bits)
4763 1.1 paulus e = (uInt)(t->exop);
4764 1.1 paulus if (e & 16) /* distance */
4765 1.1 paulus {
4766 1.1 paulus c->sub.copy.get = e & 15;
4767 1.1 paulus c->sub.copy.dist = t->base;
4768 1.1 paulus c->mode = DISTEXT;
4769 1.1 paulus break;
4770 1.1 paulus }
4771 1.1 paulus if ((e & 64) == 0) /* next table */
4772 1.1 paulus {
4773 1.1 paulus c->sub.code.need = e;
4774 1.1 paulus c->sub.code.tree = t->next;
4775 1.1 paulus break;
4776 1.1 paulus }
4777 1.1 paulus c->mode = BADCODE; /* invalid code */
4778 1.7 christos z->msg = (char*)"invalid distance code";
4779 1.1 paulus r = Z_DATA_ERROR;
4780 1.1 paulus LEAVE
4781 1.1 paulus case DISTEXT: /* i: getting distance extra */
4782 1.1 paulus j = c->sub.copy.get;
4783 1.1 paulus NEEDBITS(j)
4784 1.1 paulus c->sub.copy.dist += (uInt)b & inflate_mask[j];
4785 1.1 paulus DUMPBITS(j)
4786 1.1 paulus Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4787 1.1 paulus c->mode = COPY;
4788 1.1 paulus case COPY: /* o: copying bytes in window, waiting for space */
4789 1.1 paulus #ifndef __TURBOC__ /* Turbo C bug for following expression */
4790 1.1 paulus f = (uInt)(q - s->window) < c->sub.copy.dist ?
4791 1.1 paulus s->end - (c->sub.copy.dist - (q - s->window)) :
4792 1.1 paulus q - c->sub.copy.dist;
4793 1.1 paulus #else
4794 1.1 paulus f = q - c->sub.copy.dist;
4795 1.1 paulus if ((uInt)(q - s->window) < c->sub.copy.dist)
4796 1.7 christos f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4797 1.1 paulus #endif
4798 1.1 paulus while (c->len)
4799 1.1 paulus {
4800 1.1 paulus NEEDOUT
4801 1.1 paulus OUTBYTE(*f++)
4802 1.1 paulus if (f == s->end)
4803 1.1 paulus f = s->window;
4804 1.1 paulus c->len--;
4805 1.1 paulus }
4806 1.1 paulus c->mode = START;
4807 1.1 paulus break;
4808 1.1 paulus case LIT: /* o: got literal, waiting for output space */
4809 1.1 paulus NEEDOUT
4810 1.1 paulus OUTBYTE(c->sub.lit)
4811 1.1 paulus c->mode = START;
4812 1.1 paulus break;
4813 1.1 paulus case WASH: /* o: got eob, possibly more output */
4814 1.1 paulus FLUSH
4815 1.1 paulus if (s->read != s->write)
4816 1.1 paulus LEAVE
4817 1.1 paulus c->mode = END;
4818 1.1 paulus case END:
4819 1.1 paulus r = Z_STREAM_END;
4820 1.1 paulus LEAVE
4821 1.1 paulus case BADCODE: /* x: got error */
4822 1.1 paulus r = Z_DATA_ERROR;
4823 1.1 paulus LEAVE
4824 1.1 paulus default:
4825 1.1 paulus r = Z_STREAM_ERROR;
4826 1.1 paulus LEAVE
4827 1.1 paulus }
4828 1.1 paulus }
4829 1.1 paulus
4830 1.1 paulus
4831 1.7 christos void inflate_codes_free(c, z)
4832 1.1 paulus inflate_codes_statef *c;
4833 1.7 christos z_streamp z;
4834 1.1 paulus {
4835 1.7 christos ZFREE(z, c);
4836 1.1 paulus Tracev((stderr, "inflate: codes free\n"));
4837 1.1 paulus }
4838 1.7 christos /* --- infcodes.c */
4839 1.1 paulus
4840 1.7 christos /* +++ infutil.c */
4841 1.1 paulus /* inflate_util.c -- data and routines common to blocks and codes
4842 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4843 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4844 1.1 paulus */
4845 1.1 paulus
4846 1.7 christos /* #include "zutil.h" */
4847 1.7 christos /* #include "infblock.h" */
4848 1.7 christos /* #include "inftrees.h" */
4849 1.7 christos /* #include "infcodes.h" */
4850 1.7 christos /* #include "infutil.h" */
4851 1.7 christos
4852 1.7 christos #ifndef NO_DUMMY_DECL
4853 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4854 1.7 christos #endif
4855 1.7 christos
4856 1.7 christos /* And'ing with mask[n] masks the lower n bits */
4857 1.7 christos uInt inflate_mask[17] = {
4858 1.7 christos 0x0000,
4859 1.7 christos 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4860 1.7 christos 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4861 1.7 christos };
4862 1.7 christos
4863 1.7 christos
4864 1.1 paulus /* copy as much as possible from the sliding window to the output area */
4865 1.7 christos int inflate_flush(s, z, r)
4866 1.1 paulus inflate_blocks_statef *s;
4867 1.7 christos z_streamp z;
4868 1.1 paulus int r;
4869 1.1 paulus {
4870 1.1 paulus uInt n;
4871 1.7 christos Bytef *p;
4872 1.7 christos Bytef *q;
4873 1.1 paulus
4874 1.1 paulus /* local copies of source and destination pointers */
4875 1.1 paulus p = z->next_out;
4876 1.1 paulus q = s->read;
4877 1.1 paulus
4878 1.1 paulus /* compute number of bytes to copy as far as end of window */
4879 1.1 paulus n = (uInt)((q <= s->write ? s->write : s->end) - q);
4880 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4881 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4882 1.1 paulus
4883 1.1 paulus /* update counters */
4884 1.1 paulus z->avail_out -= n;
4885 1.1 paulus z->total_out += n;
4886 1.1 paulus
4887 1.1 paulus /* update check information */
4888 1.1 paulus if (s->checkfn != Z_NULL)
4889 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
4890 1.1 paulus
4891 1.1 paulus /* copy as far as end of window */
4892 1.7 christos if (p != Z_NULL) {
4893 1.1 paulus zmemcpy(p, q, n);
4894 1.1 paulus p += n;
4895 1.1 paulus }
4896 1.1 paulus q += n;
4897 1.1 paulus
4898 1.1 paulus /* see if more to copy at beginning of window */
4899 1.1 paulus if (q == s->end)
4900 1.1 paulus {
4901 1.1 paulus /* wrap pointers */
4902 1.1 paulus q = s->window;
4903 1.1 paulus if (s->write == s->end)
4904 1.1 paulus s->write = s->window;
4905 1.1 paulus
4906 1.1 paulus /* compute bytes to copy */
4907 1.1 paulus n = (uInt)(s->write - q);
4908 1.1 paulus if (n > z->avail_out) n = z->avail_out;
4909 1.1 paulus if (n && r == Z_BUF_ERROR) r = Z_OK;
4910 1.1 paulus
4911 1.1 paulus /* update counters */
4912 1.1 paulus z->avail_out -= n;
4913 1.1 paulus z->total_out += n;
4914 1.1 paulus
4915 1.1 paulus /* update check information */
4916 1.1 paulus if (s->checkfn != Z_NULL)
4917 1.7 christos z->adler = s->check = (*s->checkfn)(s->check, q, n);
4918 1.1 paulus
4919 1.1 paulus /* copy */
4920 1.7 christos if (p != Z_NULL) {
4921 1.1 paulus zmemcpy(p, q, n);
4922 1.1 paulus p += n;
4923 1.1 paulus }
4924 1.1 paulus q += n;
4925 1.1 paulus }
4926 1.1 paulus
4927 1.1 paulus /* update pointers */
4928 1.1 paulus z->next_out = p;
4929 1.1 paulus s->read = q;
4930 1.1 paulus
4931 1.1 paulus /* done */
4932 1.1 paulus return r;
4933 1.1 paulus }
4934 1.7 christos /* --- infutil.c */
4935 1.1 paulus
4936 1.7 christos /* +++ inffast.c */
4937 1.1 paulus /* inffast.c -- process literals and length/distance pairs fast
4938 1.7 christos * Copyright (C) 1995-1996 Mark Adler
4939 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
4940 1.1 paulus */
4941 1.1 paulus
4942 1.7 christos /* #include "zutil.h" */
4943 1.7 christos /* #include "inftrees.h" */
4944 1.7 christos /* #include "infblock.h" */
4945 1.7 christos /* #include "infcodes.h" */
4946 1.7 christos /* #include "infutil.h" */
4947 1.7 christos /* #include "inffast.h" */
4948 1.7 christos
4949 1.7 christos #ifndef NO_DUMMY_DECL
4950 1.7 christos struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4951 1.7 christos #endif
4952 1.7 christos
4953 1.1 paulus /* simplify the use of the inflate_huft type with some defines */
4954 1.1 paulus #define base more.Base
4955 1.1 paulus #define next more.Next
4956 1.1 paulus #define exop word.what.Exop
4957 1.1 paulus #define bits word.what.Bits
4958 1.1 paulus
4959 1.1 paulus /* macros for bit input with no checking and for returning unused bytes */
4960 1.1 paulus #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4961 1.1 paulus #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4962 1.1 paulus
4963 1.1 paulus /* Called with number of bytes left to write in window at least 258
4964 1.1 paulus (the maximum string length) and number of input bytes available
4965 1.1 paulus at least ten. The ten bytes are six bytes for the longest length/
4966 1.1 paulus distance pair plus four bytes for overloading the bit buffer. */
4967 1.1 paulus
4968 1.7 christos int inflate_fast(bl, bd, tl, td, s, z)
4969 1.1 paulus uInt bl, bd;
4970 1.7 christos inflate_huft *tl;
4971 1.7 christos inflate_huft *td; /* need separate declaration for Borland C++ */
4972 1.1 paulus inflate_blocks_statef *s;
4973 1.7 christos z_streamp z;
4974 1.1 paulus {
4975 1.1 paulus inflate_huft *t; /* temporary pointer */
4976 1.1 paulus uInt e; /* extra bits or operation */
4977 1.1 paulus uLong b; /* bit buffer */
4978 1.1 paulus uInt k; /* bits in bit buffer */
4979 1.1 paulus Bytef *p; /* input data pointer */
4980 1.1 paulus uInt n; /* bytes available there */
4981 1.1 paulus Bytef *q; /* output window write pointer */
4982 1.1 paulus uInt m; /* bytes to end of window or read pointer */
4983 1.1 paulus uInt ml; /* mask for literal/length tree */
4984 1.1 paulus uInt md; /* mask for distance tree */
4985 1.1 paulus uInt c; /* bytes to copy */
4986 1.1 paulus uInt d; /* distance back to copy from */
4987 1.1 paulus Bytef *r; /* copy source pointer */
4988 1.1 paulus
4989 1.1 paulus /* load input, output, bit values */
4990 1.1 paulus LOAD
4991 1.1 paulus
4992 1.1 paulus /* initialize masks */
4993 1.1 paulus ml = inflate_mask[bl];
4994 1.1 paulus md = inflate_mask[bd];
4995 1.1 paulus
4996 1.1 paulus /* do until not enough input or output space for fast loop */
4997 1.1 paulus do { /* assume called with m >= 258 && n >= 10 */
4998 1.1 paulus /* get literal/length code */
4999 1.1 paulus GRABBITS(20) /* max bits for literal/length code */
5000 1.1 paulus if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5001 1.1 paulus {
5002 1.1 paulus DUMPBITS(t->bits)
5003 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5004 1.1 paulus "inflate: * literal '%c'\n" :
5005 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5006 1.1 paulus *q++ = (Byte)t->base;
5007 1.1 paulus m--;
5008 1.1 paulus continue;
5009 1.1 paulus }
5010 1.1 paulus do {
5011 1.1 paulus DUMPBITS(t->bits)
5012 1.1 paulus if (e & 16)
5013 1.1 paulus {
5014 1.1 paulus /* get extra bits for length */
5015 1.1 paulus e &= 15;
5016 1.1 paulus c = t->base + ((uInt)b & inflate_mask[e]);
5017 1.1 paulus DUMPBITS(e)
5018 1.1 paulus Tracevv((stderr, "inflate: * length %u\n", c));
5019 1.1 paulus
5020 1.1 paulus /* decode distance base of block to copy */
5021 1.1 paulus GRABBITS(15); /* max bits for distance code */
5022 1.1 paulus e = (t = td + ((uInt)b & md))->exop;
5023 1.1 paulus do {
5024 1.1 paulus DUMPBITS(t->bits)
5025 1.1 paulus if (e & 16)
5026 1.1 paulus {
5027 1.1 paulus /* get extra bits to add to distance base */
5028 1.1 paulus e &= 15;
5029 1.1 paulus GRABBITS(e) /* get extra bits (up to 13) */
5030 1.1 paulus d = t->base + ((uInt)b & inflate_mask[e]);
5031 1.1 paulus DUMPBITS(e)
5032 1.1 paulus Tracevv((stderr, "inflate: * distance %u\n", d));
5033 1.1 paulus
5034 1.1 paulus /* do the copy */
5035 1.1 paulus m -= c;
5036 1.1 paulus if ((uInt)(q - s->window) >= d) /* offset before dest */
5037 1.1 paulus { /* just copy */
5038 1.1 paulus r = q - d;
5039 1.1 paulus *q++ = *r++; c--; /* minimum count is three, */
5040 1.1 paulus *q++ = *r++; c--; /* so unroll loop a little */
5041 1.1 paulus }
5042 1.1 paulus else /* else offset after destination */
5043 1.1 paulus {
5044 1.7 christos e = d - (uInt)(q - s->window); /* bytes from offset to end */
5045 1.1 paulus r = s->end - e; /* pointer to offset */
5046 1.1 paulus if (c > e) /* if source crosses, */
5047 1.1 paulus {
5048 1.1 paulus c -= e; /* copy to end of window */
5049 1.1 paulus do {
5050 1.1 paulus *q++ = *r++;
5051 1.1 paulus } while (--e);
5052 1.1 paulus r = s->window; /* copy rest from start of window */
5053 1.1 paulus }
5054 1.1 paulus }
5055 1.1 paulus do { /* copy all or what's left */
5056 1.1 paulus *q++ = *r++;
5057 1.1 paulus } while (--c);
5058 1.1 paulus break;
5059 1.1 paulus }
5060 1.1 paulus else if ((e & 64) == 0)
5061 1.1 paulus e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5062 1.1 paulus else
5063 1.1 paulus {
5064 1.7 christos z->msg = (char*)"invalid distance code";
5065 1.1 paulus UNGRAB
5066 1.1 paulus UPDATE
5067 1.1 paulus return Z_DATA_ERROR;
5068 1.1 paulus }
5069 1.1 paulus } while (1);
5070 1.1 paulus break;
5071 1.1 paulus }
5072 1.1 paulus if ((e & 64) == 0)
5073 1.1 paulus {
5074 1.1 paulus if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5075 1.1 paulus {
5076 1.1 paulus DUMPBITS(t->bits)
5077 1.1 paulus Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5078 1.1 paulus "inflate: * literal '%c'\n" :
5079 1.1 paulus "inflate: * literal 0x%02x\n", t->base));
5080 1.1 paulus *q++ = (Byte)t->base;
5081 1.1 paulus m--;
5082 1.1 paulus break;
5083 1.1 paulus }
5084 1.1 paulus }
5085 1.1 paulus else if (e & 32)
5086 1.1 paulus {
5087 1.1 paulus Tracevv((stderr, "inflate: * end of block\n"));
5088 1.1 paulus UNGRAB
5089 1.1 paulus UPDATE
5090 1.1 paulus return Z_STREAM_END;
5091 1.1 paulus }
5092 1.1 paulus else
5093 1.1 paulus {
5094 1.7 christos z->msg = (char*)"invalid literal/length code";
5095 1.1 paulus UNGRAB
5096 1.1 paulus UPDATE
5097 1.1 paulus return Z_DATA_ERROR;
5098 1.1 paulus }
5099 1.1 paulus } while (1);
5100 1.1 paulus } while (m >= 258 && n >= 10);
5101 1.1 paulus
5102 1.1 paulus /* not enough input or output--restore pointers and return */
5103 1.1 paulus UNGRAB
5104 1.1 paulus UPDATE
5105 1.1 paulus return Z_OK;
5106 1.1 paulus }
5107 1.7 christos /* --- inffast.c */
5108 1.1 paulus
5109 1.7 christos /* +++ zutil.c */
5110 1.1 paulus /* zutil.c -- target dependent utility functions for the compression library
5111 1.7 christos * Copyright (C) 1995-1996 Jean-loup Gailly.
5112 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
5113 1.1 paulus */
5114 1.1 paulus
5115 1.7 christos /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5116 1.7 christos
5117 1.7 christos #ifdef DEBUG_ZLIB
5118 1.7 christos #include <stdio.h>
5119 1.7 christos #endif
5120 1.7 christos
5121 1.7 christos /* #include "zutil.h" */
5122 1.1 paulus
5123 1.7 christos #ifndef NO_DUMMY_DECL
5124 1.7 christos struct internal_state {int dummy;}; /* for buggy compilers */
5125 1.7 christos #endif
5126 1.7 christos
5127 1.7 christos #ifndef STDC
5128 1.7 christos extern void exit OF((int));
5129 1.7 christos #endif
5130 1.1 paulus
5131 1.7 christos const char *z_errmsg[10] = {
5132 1.7 christos "need dictionary", /* Z_NEED_DICT 2 */
5133 1.7 christos "stream end", /* Z_STREAM_END 1 */
5134 1.7 christos "", /* Z_OK 0 */
5135 1.7 christos "file error", /* Z_ERRNO (-1) */
5136 1.7 christos "stream error", /* Z_STREAM_ERROR (-2) */
5137 1.7 christos "data error", /* Z_DATA_ERROR (-3) */
5138 1.7 christos "insufficient memory", /* Z_MEM_ERROR (-4) */
5139 1.7 christos "buffer error", /* Z_BUF_ERROR (-5) */
5140 1.7 christos "incompatible version",/* Z_VERSION_ERROR (-6) */
5141 1.1 paulus ""};
5142 1.1 paulus
5143 1.1 paulus
5144 1.7 christos const char *zlibVersion()
5145 1.7 christos {
5146 1.7 christos return ZLIB_VERSION;
5147 1.7 christos }
5148 1.7 christos
5149 1.7 christos #ifdef DEBUG_ZLIB
5150 1.7 christos void z_error (m)
5151 1.7 christos char *m;
5152 1.7 christos {
5153 1.7 christos fprintf(stderr, "%s\n", m);
5154 1.7 christos exit(1);
5155 1.7 christos }
5156 1.7 christos #endif
5157 1.7 christos
5158 1.7 christos #ifndef HAVE_MEMCPY
5159 1.7 christos
5160 1.7 christos void zmemcpy(dest, source, len)
5161 1.7 christos Bytef* dest;
5162 1.7 christos Bytef* source;
5163 1.7 christos uInt len;
5164 1.7 christos {
5165 1.7 christos if (len == 0) return;
5166 1.7 christos do {
5167 1.7 christos *dest++ = *source++; /* ??? to be unrolled */
5168 1.7 christos } while (--len != 0);
5169 1.7 christos }
5170 1.7 christos
5171 1.7 christos int zmemcmp(s1, s2, len)
5172 1.7 christos Bytef* s1;
5173 1.7 christos Bytef* s2;
5174 1.7 christos uInt len;
5175 1.7 christos {
5176 1.7 christos uInt j;
5177 1.7 christos
5178 1.7 christos for (j = 0; j < len; j++) {
5179 1.7 christos if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5180 1.7 christos }
5181 1.7 christos return 0;
5182 1.7 christos }
5183 1.7 christos
5184 1.7 christos void zmemzero(dest, len)
5185 1.7 christos Bytef* dest;
5186 1.7 christos uInt len;
5187 1.7 christos {
5188 1.7 christos if (len == 0) return;
5189 1.7 christos do {
5190 1.7 christos *dest++ = 0; /* ??? to be unrolled */
5191 1.7 christos } while (--len != 0);
5192 1.7 christos }
5193 1.7 christos #endif
5194 1.7 christos
5195 1.7 christos #ifdef __TURBOC__
5196 1.7 christos #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5197 1.7 christos /* Small and medium model in Turbo C are for now limited to near allocation
5198 1.7 christos * with reduced MAX_WBITS and MAX_MEM_LEVEL
5199 1.7 christos */
5200 1.7 christos # define MY_ZCALLOC
5201 1.7 christos
5202 1.7 christos /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5203 1.7 christos * and farmalloc(64K) returns a pointer with an offset of 8, so we
5204 1.7 christos * must fix the pointer. Warning: the pointer must be put back to its
5205 1.7 christos * original form in order to free it, use zcfree().
5206 1.7 christos */
5207 1.7 christos
5208 1.7 christos #define MAX_PTR 10
5209 1.7 christos /* 10*64K = 640K */
5210 1.7 christos
5211 1.7 christos local int next_ptr = 0;
5212 1.7 christos
5213 1.7 christos typedef struct ptr_table_s {
5214 1.7 christos voidpf org_ptr;
5215 1.7 christos voidpf new_ptr;
5216 1.7 christos } ptr_table;
5217 1.7 christos
5218 1.7 christos local ptr_table table[MAX_PTR];
5219 1.7 christos /* This table is used to remember the original form of pointers
5220 1.7 christos * to large buffers (64K). Such pointers are normalized with a zero offset.
5221 1.7 christos * Since MSDOS is not a preemptive multitasking OS, this table is not
5222 1.7 christos * protected from concurrent access. This hack doesn't work anyway on
5223 1.7 christos * a protected system like OS/2. Use Microsoft C instead.
5224 1.7 christos */
5225 1.7 christos
5226 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5227 1.7 christos {
5228 1.7 christos voidpf buf = opaque; /* just to make some compilers happy */
5229 1.7 christos ulg bsize = (ulg)items*size;
5230 1.7 christos
5231 1.7 christos /* If we allocate less than 65520 bytes, we assume that farmalloc
5232 1.7 christos * will return a usable pointer which doesn't have to be normalized.
5233 1.7 christos */
5234 1.7 christos if (bsize < 65520L) {
5235 1.7 christos buf = farmalloc(bsize);
5236 1.7 christos if (*(ush*)&buf != 0) return buf;
5237 1.7 christos } else {
5238 1.7 christos buf = farmalloc(bsize + 16L);
5239 1.7 christos }
5240 1.7 christos if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5241 1.7 christos table[next_ptr].org_ptr = buf;
5242 1.7 christos
5243 1.7 christos /* Normalize the pointer to seg:0 */
5244 1.7 christos *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5245 1.7 christos *(ush*)&buf = 0;
5246 1.7 christos table[next_ptr++].new_ptr = buf;
5247 1.7 christos return buf;
5248 1.7 christos }
5249 1.7 christos
5250 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5251 1.7 christos {
5252 1.7 christos int n;
5253 1.7 christos if (*(ush*)&ptr != 0) { /* object < 64K */
5254 1.7 christos farfree(ptr);
5255 1.7 christos return;
5256 1.7 christos }
5257 1.7 christos /* Find the original pointer */
5258 1.7 christos for (n = 0; n < next_ptr; n++) {
5259 1.7 christos if (ptr != table[n].new_ptr) continue;
5260 1.7 christos
5261 1.7 christos farfree(table[n].org_ptr);
5262 1.7 christos while (++n < next_ptr) {
5263 1.7 christos table[n-1] = table[n];
5264 1.7 christos }
5265 1.7 christos next_ptr--;
5266 1.7 christos return;
5267 1.7 christos }
5268 1.7 christos ptr = opaque; /* just to make some compilers happy */
5269 1.7 christos Assert(0, "zcfree: ptr not found");
5270 1.7 christos }
5271 1.7 christos #endif
5272 1.7 christos #endif /* __TURBOC__ */
5273 1.7 christos
5274 1.7 christos
5275 1.7 christos #if defined(M_I86) && !defined(__32BIT__)
5276 1.7 christos /* Microsoft C in 16-bit mode */
5277 1.7 christos
5278 1.7 christos # define MY_ZCALLOC
5279 1.7 christos
5280 1.7 christos #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5281 1.7 christos # define _halloc halloc
5282 1.7 christos # define _hfree hfree
5283 1.7 christos #endif
5284 1.7 christos
5285 1.7 christos voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5286 1.7 christos {
5287 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5288 1.7 christos return _halloc((long)items, size);
5289 1.7 christos }
5290 1.7 christos
5291 1.7 christos void zcfree (voidpf opaque, voidpf ptr)
5292 1.7 christos {
5293 1.7 christos if (opaque) opaque = 0; /* to make compiler happy */
5294 1.7 christos _hfree(ptr);
5295 1.7 christos }
5296 1.7 christos
5297 1.7 christos #endif /* MSC */
5298 1.7 christos
5299 1.7 christos
5300 1.7 christos #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5301 1.7 christos
5302 1.7 christos #ifndef STDC
5303 1.7 christos extern voidp calloc OF((uInt items, uInt size));
5304 1.7 christos extern void free OF((voidpf ptr));
5305 1.7 christos #endif
5306 1.7 christos
5307 1.7 christos voidpf zcalloc (opaque, items, size)
5308 1.7 christos voidpf opaque;
5309 1.7 christos unsigned items;
5310 1.7 christos unsigned size;
5311 1.7 christos {
5312 1.7 christos if (opaque) items += size - size; /* make compiler happy */
5313 1.7 christos return (voidpf)calloc(items, size);
5314 1.7 christos }
5315 1.7 christos
5316 1.7 christos void zcfree (opaque, ptr)
5317 1.7 christos voidpf opaque;
5318 1.7 christos voidpf ptr;
5319 1.7 christos {
5320 1.7 christos free(ptr);
5321 1.7 christos if (opaque) return; /* make compiler happy */
5322 1.7 christos }
5323 1.7 christos
5324 1.7 christos #endif /* MY_ZCALLOC */
5325 1.7 christos /* --- zutil.c */
5326 1.7 christos
5327 1.7 christos /* +++ adler32.c */
5328 1.1 paulus /* adler32.c -- compute the Adler-32 checksum of a data stream
5329 1.7 christos * Copyright (C) 1995-1996 Mark Adler
5330 1.1 paulus * For conditions of distribution and use, see copyright notice in zlib.h
5331 1.1 paulus */
5332 1.1 paulus
5333 1.7 christos /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5334 1.7 christos
5335 1.7 christos /* #include "zlib.h" */
5336 1.1 paulus
5337 1.1 paulus #define BASE 65521L /* largest prime smaller than 65536 */
5338 1.1 paulus #define NMAX 5552
5339 1.1 paulus /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5340 1.1 paulus
5341 1.7 christos #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5342 1.7 christos #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5343 1.7 christos #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5344 1.7 christos #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5345 1.7 christos #define DO16(buf) DO8(buf,0); DO8(buf,8);
5346 1.1 paulus
5347 1.1 paulus /* ========================================================================= */
5348 1.1 paulus uLong adler32(adler, buf, len)
5349 1.1 paulus uLong adler;
5350 1.7 christos const Bytef *buf;
5351 1.1 paulus uInt len;
5352 1.1 paulus {
5353 1.1 paulus unsigned long s1 = adler & 0xffff;
5354 1.1 paulus unsigned long s2 = (adler >> 16) & 0xffff;
5355 1.1 paulus int k;
5356 1.1 paulus
5357 1.1 paulus if (buf == Z_NULL) return 1L;
5358 1.1 paulus
5359 1.1 paulus while (len > 0) {
5360 1.1 paulus k = len < NMAX ? len : NMAX;
5361 1.1 paulus len -= k;
5362 1.1 paulus while (k >= 16) {
5363 1.1 paulus DO16(buf);
5364 1.7 christos buf += 16;
5365 1.1 paulus k -= 16;
5366 1.1 paulus }
5367 1.1 paulus if (k != 0) do {
5368 1.7 christos s1 += *buf++;
5369 1.7 christos s2 += s1;
5370 1.1 paulus } while (--k);
5371 1.1 paulus s1 %= BASE;
5372 1.1 paulus s2 %= BASE;
5373 1.1 paulus }
5374 1.1 paulus return (s2 << 16) | s1;
5375 1.1 paulus }
5376 1.7 christos /* --- adler32.c */
5377