Home | History | Annotate | Line # | Download | only in net
zlib.c revision 1.10.4.1
      1 /*	$NetBSD: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $	*/
      2 /*
      3  * This file is derived from various .h and .c files from the zlib-1.0.4
      4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
      5  * by Paul Mackerras to aid in implementing Deflate compression and
      6  * decompression for PPP packets.  See zlib.h for conditions of
      7  * distribution and use.
      8  *
      9  * Changes that have been made include:
     10  * - added Z_PACKET_FLUSH (see zlib.h for details)
     11  * - added inflateIncomp and deflateOutputPending
     12  * - allow strm->next_out to be NULL, meaning discard the output
     13  *
     14  * $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $
     15  */
     16 
     17 /*
     18  *  ==FILEVERSION 020312==
     19  *
     20  * This marker is used by the Linux installation script to determine
     21  * whether an up-to-date version of this file is already installed.
     22  */
     23 
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $");
     26 
     27 #define NO_DUMMY_DECL
     28 #define NO_ZCFUNCS
     29 #define MY_ZCALLOC
     30 
     31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
     32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
     33 #endif
     34 
     35 
     36 /* +++ zutil.h */
     37 
     38 /* zutil.h -- internal interface and configuration of the compression library
     39  * Copyright (C) 1995-2002 Jean-loup Gailly.
     40  * For conditions of distribution and use, see copyright notice in zlib.h
     41  */
     42 
     43 /* WARNING: this file should *not* be used by applications. It is
     44    part of the implementation of the compression library and is
     45    subject to change. Applications should only use zlib.h.
     46  */
     47 
     48 /* @(#) $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $ */
     49 
     50 #ifndef _Z_UTIL_H
     51 #define _Z_UTIL_H
     52 
     53 #include "zlib.h"
     54 
     55 #if defined(KERNEL) || defined(_KERNEL)
     56 /* Assume this is a *BSD or SVR4 kernel */
     57 #include <sys/param.h>
     58 #include <sys/time.h>
     59 #include <sys/systm.h>
     60 #  define HAVE_MEMCPY
     61 #else
     62 #if defined(__KERNEL__)
     63 /* Assume this is a Linux kernel */
     64 #include <linux/string.h>
     65 #define HAVE_MEMCPY
     66 
     67 #else /* not kernel */
     68 
     69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
     70 
     71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
     72 #  include <lib/libkern/libkern.h>
     73 
     74 #else
     75 #ifdef STDC
     76 #  include <stddef.h>
     77 #  include <string.h>
     78 #  include <stdlib.h>
     79 #endif
     80 #ifdef NO_ERRNO_H
     81     extern int errno;
     82 #else
     83 #   include <errno.h>
     84 #endif
     85 #endif /* __NetBSD__ && _STANDALONE */
     86 #endif /* __KERNEL__ */
     87 #endif /* _KERNEL || KERNEL */
     88 
     89 
     90 #ifndef local
     91 #  define local static
     92 #endif
     93 /* compile with -Dlocal if your debugger can't find static symbols */
     94 
     95 typedef unsigned char  uch;
     96 typedef uch FAR uchf;
     97 typedef unsigned short ush;
     98 typedef ush FAR ushf;
     99 typedef unsigned long  ulg;
    100 
    101 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
    102 /* (size given to avoid silly warnings with Visual C++) */
    103 
    104 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
    105 
    106 #define ERR_RETURN(strm,err) \
    107   return (strm->msg = (char*)ERR_MSG(err), (err))
    108 /* To be used only when the state is known to be valid */
    109 
    110         /* common constants */
    111 
    112 #ifndef DEF_WBITS
    113 #  define DEF_WBITS MAX_WBITS
    114 #endif
    115 /* default windowBits for decompression. MAX_WBITS is for compression only */
    116 
    117 #if MAX_MEM_LEVEL >= 8
    118 #  define DEF_MEM_LEVEL 8
    119 #else
    120 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
    121 #endif
    122 /* default memLevel */
    123 
    124 #define STORED_BLOCK 0
    125 #define STATIC_TREES 1
    126 #define DYN_TREES    2
    127 /* The three kinds of block type */
    128 
    129 #define MIN_MATCH  3
    130 #define MAX_MATCH  258
    131 /* The minimum and maximum match lengths */
    132 
    133 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
    134 
    135         /* target dependencies */
    136 
    137 #ifdef MSDOS
    138 #  define OS_CODE  0x00
    139 #  if defined(__TURBOC__) || defined(__BORLANDC__)
    140 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
    141        /* Allow compilation with ANSI keywords only enabled */
    142        void _Cdecl farfree( void *block );
    143        void *_Cdecl farmalloc( unsigned long nbytes );
    144 #    else
    145 #     include <alloc.h>
    146 #    endif
    147 #  else /* MSC or DJGPP */
    148 #    include <malloc.h>
    149 #  endif
    150 #endif
    151 
    152 #ifdef OS2
    153 #  define OS_CODE  0x06
    154 #endif
    155 
    156 #ifdef WIN32 /* Window 95 & Windows NT */
    157 #  define OS_CODE  0x0b
    158 #endif
    159 
    160 #if defined(VAXC) || defined(VMS)
    161 #  define OS_CODE  0x02
    162 #  define F_OPEN(name, mode) \
    163      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
    164 #endif
    165 
    166 #ifdef AMIGA
    167 #  define OS_CODE  0x01
    168 #endif
    169 
    170 #if defined(ATARI) || defined(atarist)
    171 #  define OS_CODE  0x05
    172 #endif
    173 
    174 #if defined(MACOS) || defined(TARGET_OS_MAC)
    175 #  define OS_CODE  0x07
    176 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
    177 #    include <unix.h> /* for fdopen */
    178 #  else
    179 #    ifndef fdopen
    180 #      define fdopen(fd,mode) NULL /* No fdopen() */
    181 #    endif
    182 #  endif
    183 #endif
    184 
    185 #ifdef __50SERIES /* Prime/PRIMOS */
    186 #  define OS_CODE  0x0F
    187 #endif
    188 
    189 #ifdef TOPS20
    190 #  define OS_CODE  0x0a
    191 #endif
    192 
    193 #if defined(_BEOS_) || defined(RISCOS)
    194 #  define fdopen(fd,mode) NULL /* No fdopen() */
    195 #endif
    196 
    197 #if (defined(_MSC_VER) && (_MSC_VER > 600))
    198 #  define fdopen(fd,type)  _fdopen(fd,type)
    199 #endif
    200 
    201 
    202         /* Common defaults */
    203 
    204 #ifndef OS_CODE
    205 #  define OS_CODE  0x03  /* assume Unix */
    206 #endif
    207 
    208 #ifndef F_OPEN
    209 #  define F_OPEN(name, mode) fopen((name), (mode))
    210 #endif
    211 
    212          /* functions */
    213 
    214 #ifdef HAVE_STRERROR
    215    extern char *strerror __P((int));
    216 #  define zstrerror(errnum) strerror(errnum)
    217 #else
    218 #  define zstrerror(errnum) ""
    219 #endif
    220 
    221 #if defined(pyr)
    222 #  define NO_MEMCPY
    223 #endif
    224 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
    225  /* Use our own functions for small and medium model with MSC <= 5.0.
    226   * You may have to use the same strategy for Borland C (untested).
    227   * The __SC__ check is for Symantec.
    228   */
    229 #  define NO_MEMCPY
    230 #endif
    231 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
    232 #  define HAVE_MEMCPY
    233 #endif
    234 #ifdef HAVE_MEMCPY
    235 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
    236 #    define zmemcpy _fmemcpy
    237 #    define zmemcmp _fmemcmp
    238 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
    239 #  else
    240 #    define zmemcpy memcpy
    241 #    define zmemcmp memcmp
    242 #    define zmemzero(dest, len) memset(dest, 0, len)
    243 #  endif
    244 #else
    245    extern void zmemcpy  __P((Bytef* dest, const Bytef* source, uInt len));
    246    extern int  zmemcmp  __P((const Bytef* s1, const Bytef* s2, uInt len));
    247    extern void zmemzero __P((Bytef* dest, uInt len));
    248 #endif
    249 
    250 /* Diagnostic functions */
    251 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
    252 #  include <stdio.h>
    253    extern int z_verbose;
    254    extern void z_error    __P((char *m));
    255 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
    256 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
    257 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
    258 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
    259 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
    260 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
    261 #else
    262 #  define Assert(cond,msg)
    263 #  define Trace(x)
    264 #  define Tracev(x)
    265 #  define Tracevv(x)
    266 #  define Tracec(c,x)
    267 #  define Tracecv(c,x)
    268 #endif
    269 
    270 
    271 typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
    272 				       uInt len));
    273 voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
    274 void   zcfree  __P((voidpf opaque, voidpf ptr));
    275 
    276 #define ZALLOC(strm, items, size) \
    277            (*((strm)->zalloc))((strm)->opaque, (items), (size))
    278 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
    279 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
    280 
    281 #endif /* _Z_UTIL_H */
    282 /* --- zutil.h */
    283 
    284 /* +++ deflate.h */
    285 
    286 /* deflate.h -- internal compression state
    287  * Copyright (C) 1995-2002 Jean-loup Gailly
    288  * For conditions of distribution and use, see copyright notice in zlib.h
    289  */
    290 
    291 /* WARNING: this file should *not* be used by applications. It is
    292    part of the implementation of the compression library and is
    293    subject to change. Applications should only use zlib.h.
    294  */
    295 
    296 /* @(#) $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $ */
    297 
    298 #ifndef _DEFLATE_H
    299 #define _DEFLATE_H
    300 
    301 /* #include "zutil.h" */
    302 
    303 /* ===========================================================================
    304  * Internal compression state.
    305  */
    306 
    307 #define LENGTH_CODES 29
    308 /* number of length codes, not counting the special END_BLOCK code */
    309 
    310 #define LITERALS  256
    311 /* number of literal bytes 0..255 */
    312 
    313 #define L_CODES (LITERALS+1+LENGTH_CODES)
    314 /* number of Literal or Length codes, including the END_BLOCK code */
    315 
    316 #define D_CODES   30
    317 /* number of distance codes */
    318 
    319 #define BL_CODES  19
    320 /* number of codes used to transfer the bit lengths */
    321 
    322 #define HEAP_SIZE (2*L_CODES+1)
    323 /* maximum heap size */
    324 
    325 #define MAX_BITS 15
    326 /* All codes must not exceed MAX_BITS bits */
    327 
    328 #define INIT_STATE    42
    329 #define BUSY_STATE   113
    330 #define FINISH_STATE 666
    331 /* Stream status */
    332 
    333 
    334 /* Data structure describing a single value and its code string. */
    335 typedef struct ct_data_s {
    336     union {
    337         ush  freq;       /* frequency count */
    338         ush  code;       /* bit string */
    339     } fc;
    340     union {
    341         ush  dad;        /* father node in Huffman tree */
    342         ush  len;        /* length of bit string */
    343     } dl;
    344 } FAR ct_data;
    345 
    346 #define Freq fc.freq
    347 #define Code fc.code
    348 #define Dad  dl.dad
    349 #define Len  dl.len
    350 
    351 typedef struct static_tree_desc_s  static_tree_desc;
    352 
    353 typedef struct tree_desc_s {
    354     ct_data *dyn_tree;           /* the dynamic tree */
    355     int     max_code;            /* largest code with non zero frequency */
    356     static_tree_desc *stat_desc; /* the corresponding static tree */
    357 } FAR tree_desc;
    358 
    359 typedef ush Pos;
    360 typedef Pos FAR Posf;
    361 typedef unsigned IPos;
    362 
    363 /* A Pos is an index in the character window. We use short instead of int to
    364  * save space in the various tables. IPos is used only for parameter passing.
    365  */
    366 
    367 typedef struct deflate_state {
    368     z_streamp strm;      /* pointer back to this zlib stream */
    369     int   status;        /* as the name implies */
    370     Bytef *pending_buf;  /* output still pending */
    371     ulg   pending_buf_size; /* size of pending_buf */
    372     Bytef *pending_out;  /* next pending byte to output to the stream */
    373     int   pending;       /* nb of bytes in the pending buffer */
    374     int   noheader;      /* suppress zlib header and adler32 */
    375     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
    376     Byte  method;        /* STORED (for zip only) or DEFLATED */
    377     int   last_flush;    /* value of flush param for previous deflate call */
    378 
    379                 /* used by deflate.c: */
    380 
    381     uInt  w_size;        /* LZ77 window size (32K by default) */
    382     uInt  w_bits;        /* log2(w_size)  (8..16) */
    383     uInt  w_mask;        /* w_size - 1 */
    384 
    385     Bytef *window;
    386     /* Sliding window. Input bytes are read into the second half of the window,
    387      * and move to the first half later to keep a dictionary of at least wSize
    388      * bytes. With this organization, matches are limited to a distance of
    389      * wSize-MAX_MATCH bytes, but this ensures that IO is always
    390      * performed with a length multiple of the block size. Also, it limits
    391      * the window size to 64K, which is quite useful on MSDOS.
    392      * To do: use the user input buffer as sliding window.
    393      */
    394 
    395     ulg window_size;
    396     /* Actual size of window: 2*wSize, except when the user input buffer
    397      * is directly used as sliding window.
    398      */
    399 
    400     Posf *prev;
    401     /* Link to older string with same hash index. To limit the size of this
    402      * array to 64K, this link is maintained only for the last 32K strings.
    403      * An index in this array is thus a window index modulo 32K.
    404      */
    405 
    406     Posf *head; /* Heads of the hash chains or NIL. */
    407 
    408     uInt  ins_h;          /* hash index of string to be inserted */
    409     uInt  hash_size;      /* number of elements in hash table */
    410     uInt  hash_bits;      /* log2(hash_size) */
    411     uInt  hash_mask;      /* hash_size-1 */
    412 
    413     uInt  hash_shift;
    414     /* Number of bits by which ins_h must be shifted at each input
    415      * step. It must be such that after MIN_MATCH steps, the oldest
    416      * byte no longer takes part in the hash key, that is:
    417      *   hash_shift * MIN_MATCH >= hash_bits
    418      */
    419 
    420     long block_start;
    421     /* Window position at the beginning of the current output block. Gets
    422      * negative when the window is moved backwards.
    423      */
    424 
    425     uInt match_length;           /* length of best match */
    426     IPos prev_match;             /* previous match */
    427     int match_available;         /* set if previous match exists */
    428     uInt strstart;               /* start of string to insert */
    429     uInt match_start;            /* start of matching string */
    430     uInt lookahead;              /* number of valid bytes ahead in window */
    431 
    432     uInt prev_length;
    433     /* Length of the best match at previous step. Matches not greater than this
    434      * are discarded. This is used in the lazy match evaluation.
    435      */
    436 
    437     uInt max_chain_length;
    438     /* To speed up deflation, hash chains are never searched beyond this
    439      * length.  A higher limit improves compression ratio but degrades the
    440      * speed.
    441      */
    442 
    443     uInt max_lazy_match;
    444     /* Attempt to find a better match only when the current match is strictly
    445      * smaller than this value. This mechanism is used only for compression
    446      * levels >= 4.
    447      */
    448 #   define max_insert_length  max_lazy_match
    449     /* Insert new strings in the hash table only if the match length is not
    450      * greater than this length. This saves time but degrades compression.
    451      * max_insert_length is used only for compression levels <= 3.
    452      */
    453 
    454     int level;    /* compression level (1..9) */
    455     int strategy; /* favor or force Huffman coding*/
    456 
    457     uInt good_match;
    458     /* Use a faster search when the previous match is longer than this */
    459 
    460     int nice_match; /* Stop searching when current match exceeds this */
    461 
    462                 /* used by trees.c: */
    463     /* Didn't use ct_data typedef below to supress compiler warning */
    464     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    465     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    466     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
    467 
    468     struct tree_desc_s l_desc;               /* desc. for literal tree */
    469     struct tree_desc_s d_desc;               /* desc. for distance tree */
    470     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
    471 
    472     ush bl_count[MAX_BITS+1];
    473     /* number of codes at each bit length for an optimal tree */
    474 
    475     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    476     int heap_len;               /* number of elements in the heap */
    477     int heap_max;               /* element of largest frequency */
    478     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
    479      * The same heap array is used to build all trees.
    480      */
    481 
    482     uch depth[2*L_CODES+1];
    483     /* Depth of each subtree used as tie breaker for trees of equal frequency
    484      */
    485 
    486     uchf *l_buf;          /* buffer for literals or lengths */
    487 
    488     uInt  lit_bufsize;
    489     /* Size of match buffer for literals/lengths.  There are 4 reasons for
    490      * limiting lit_bufsize to 64K:
    491      *   - frequencies can be kept in 16 bit counters
    492      *   - if compression is not successful for the first block, all input
    493      *     data is still in the window so we can still emit a stored block even
    494      *     when input comes from standard input.  (This can also be done for
    495      *     all blocks if lit_bufsize is not greater than 32K.)
    496      *   - if compression is not successful for a file smaller than 64K, we can
    497      *     even emit a stored file instead of a stored block (saving 5 bytes).
    498      *     This is applicable only for zip (not gzip or zlib).
    499      *   - creating new Huffman trees less frequently may not provide fast
    500      *     adaptation to changes in the input data statistics. (Take for
    501      *     example a binary file with poorly compressible code followed by
    502      *     a highly compressible string table.) Smaller buffer sizes give
    503      *     fast adaptation but have of course the overhead of transmitting
    504      *     trees more frequently.
    505      *   - I can't count above 4
    506      */
    507 
    508     uInt last_lit;      /* running index in l_buf */
    509 
    510     ushf *d_buf;
    511     /* Buffer for distances. To simplify the code, d_buf and l_buf have
    512      * the same number of elements. To use different lengths, an extra flag
    513      * array would be necessary.
    514      */
    515 
    516     ulg opt_len;        /* bit length of current block with optimal trees */
    517     ulg static_len;     /* bit length of current block with static trees */
    518     uInt matches;       /* number of string matches in current block */
    519     int last_eob_len;   /* bit length of EOB code for last block */
    520 
    521 #ifdef DEBUG_ZLIB
    522     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
    523     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
    524 #endif
    525 
    526     ush bi_buf;
    527     /* Output buffer. bits are inserted starting at the bottom (least
    528      * significant bits).
    529      */
    530     int bi_valid;
    531     /* Number of valid bits in bi_buf.  All bits above the last valid bit
    532      * are always zero.
    533      */
    534 
    535 } FAR deflate_state;
    536 
    537 /* Output a byte on the stream.
    538  * IN assertion: there is enough room in pending_buf.
    539  */
    540 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
    541 
    542 
    543 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    544 /* Minimum amount of lookahead, except at the end of the input file.
    545  * See deflate.c for comments about the MIN_MATCH+1.
    546  */
    547 
    548 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
    549 /* In order to simplify the code, particularly on 16 bit machines, match
    550  * distances are limited to MAX_DIST instead of WSIZE.
    551  */
    552 
    553         /* in trees.c */
    554 void _tr_init         __P((deflate_state *s));
    555 int  _tr_tally        __P((deflate_state *s, unsigned dist, unsigned lc));
    556 void _tr_flush_block  __P((deflate_state *s, charf *buf, ulg stored_len,
    557 			  int eof));
    558 void _tr_align        __P((deflate_state *s));
    559 void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
    560                           int eof));
    561 void _tr_stored_type_only __P((deflate_state *));
    562 
    563 #define d_code(dist) \
    564    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
    565 /* Mapping from a distance to a distance code. dist is the distance - 1 and
    566  * must not have side effects. _dist_code[256] and _dist_code[257] are never
    567  * used.
    568  */
    569 
    570 #ifndef DEBUG_ZLIB
    571 /* Inline versions of _tr_tally for speed: */
    572 
    573 #if defined(GEN_TREES_H) || !defined(STDC)
    574   extern uch _length_code[];
    575   extern uch _dist_code[];
    576 #else
    577   extern const uch _length_code[];
    578   extern const uch _dist_code[];
    579 #endif
    580 
    581 # define _tr_tally_lit(s, c, flush) \
    582   { uch cc = (c); \
    583     s->d_buf[s->last_lit] = 0; \
    584     s->l_buf[s->last_lit++] = cc; \
    585     s->dyn_ltree[cc].Freq++; \
    586     flush = (s->last_lit == s->lit_bufsize-1); \
    587    }
    588 # define _tr_tally_dist(s, distance, length, flush) \
    589   { uch len = (length); \
    590     ush dist = (distance); \
    591     s->d_buf[s->last_lit] = dist; \
    592     s->l_buf[s->last_lit++] = len; \
    593     dist--; \
    594     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
    595     s->dyn_dtree[d_code(dist)].Freq++; \
    596     flush = (s->last_lit == s->lit_bufsize-1); \
    597   }
    598 #else
    599 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
    600 # define _tr_tally_dist(s, distance, length, flush) \
    601               flush = _tr_tally(s, distance, length)
    602 #endif
    603 
    604 #endif
    605 /* --- deflate.h */
    606 
    607 /* +++ deflate.c */
    608 
    609 /* deflate.c -- compress data using the deflation algorithm
    610  * Copyright (C) 1995-2002 Jean-loup Gailly.
    611  * For conditions of distribution and use, see copyright notice in zlib.h
    612  */
    613 
    614 /*
    615  *  ALGORITHM
    616  *
    617  *      The "deflation" process depends on being able to identify portions
    618  *      of the input text which are identical to earlier input (within a
    619  *      sliding window trailing behind the input currently being processed).
    620  *
    621  *      The most straightforward technique turns out to be the fastest for
    622  *      most input files: try all possible matches and select the longest.
    623  *      The key feature of this algorithm is that insertions into the string
    624  *      dictionary are very simple and thus fast, and deletions are avoided
    625  *      completely. Insertions are performed at each input character, whereas
    626  *      string matches are performed only when the previous match ends. So it
    627  *      is preferable to spend more time in matches to allow very fast string
    628  *      insertions and avoid deletions. The matching algorithm for small
    629  *      strings is inspired from that of Rabin & Karp. A brute force approach
    630  *      is used to find longer strings when a small match has been found.
    631  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
    632  *      (by Leonid Broukhis).
    633  *         A previous version of this file used a more sophisticated algorithm
    634  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
    635  *      time, but has a larger average cost, uses more memory and is patented.
    636  *      However the F&G algorithm may be faster for some highly redundant
    637  *      files if the parameter max_chain_length (described below) is too large.
    638  *
    639  *  ACKNOWLEDGEMENTS
    640  *
    641  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
    642  *      I found it in 'freeze' written by Leonid Broukhis.
    643  *      Thanks to many people for bug reports and testing.
    644  *
    645  *  REFERENCES
    646  *
    647  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
    648  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
    649  *
    650  *      A description of the Rabin and Karp algorithm is given in the book
    651  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
    652  *
    653  *      Fiala,E.R., and Greene,D.H.
    654  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
    655  *
    656  */
    657 
    658 /* @(#) $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $ */
    659 
    660 /* #include "deflate.h" */
    661 
    662 const char deflate_copyright[] =
    663    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
    664 /*
    665   If you use the zlib library in a product, an acknowledgment is welcome
    666   in the documentation of your product. If for some reason you cannot
    667   include such an acknowledgment, I would appreciate that you keep this
    668   copyright string in the executable of your product.
    669  */
    670 
    671 /* ===========================================================================
    672  *  Function prototypes.
    673  */
    674 typedef enum {
    675     need_more,      /* block not completed, need more input or more output */
    676     block_done,     /* block flush performed */
    677     finish_started, /* finish started, need only more output at next deflate */
    678     finish_done     /* finish done, accept no more input or output */
    679 } block_state;
    680 
    681 typedef block_state (*compress_func) __P((deflate_state *s, int flush));
    682 /* Compression function. Returns the block state after the call. */
    683 
    684 local void fill_window    __P((deflate_state *s));
    685 local block_state deflate_stored __P((deflate_state *s, int flush));
    686 local block_state deflate_fast   __P((deflate_state *s, int flush));
    687 local block_state deflate_slow   __P((deflate_state *s, int flush));
    688 local void lm_init        __P((deflate_state *s));
    689 local void putShortMSB    __P((deflate_state *s, uInt b));
    690 local void flush_pending  __P((z_streamp strm));
    691 local int read_buf        __P((z_streamp strm, Bytef *buf, unsigned size));
    692 #ifdef ASMV
    693       void match_init __P((void)); /* asm code initialization */
    694       uInt longest_match  __P((deflate_state *s, IPos cur_match));
    695 #else
    696 local uInt longest_match  __P((deflate_state *s, IPos cur_match));
    697 #endif
    698 
    699 #ifdef DEBUG_ZLIB
    700 local  void check_match __P((deflate_state *s, IPos start, IPos match,
    701                             int length));
    702 #endif
    703 
    704 /* ===========================================================================
    705  * Local data
    706  */
    707 
    708 #define NIL 0
    709 /* Tail of hash chains */
    710 
    711 #ifndef TOO_FAR
    712 #  define TOO_FAR 4096
    713 #endif
    714 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
    715 
    716 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    717 /* Minimum amount of lookahead, except at the end of the input file.
    718  * See deflate.c for comments about the MIN_MATCH+1.
    719  */
    720 
    721 /* Values for max_lazy_match, good_match and max_chain_length, depending on
    722  * the desired pack level (0..9). The values given below have been tuned to
    723  * exclude worst case performance for pathological files. Better values may be
    724  * found for specific files.
    725  */
    726 typedef struct config_s {
    727    ush good_length; /* reduce lazy search above this match length */
    728    ush max_lazy;    /* do not perform lazy search above this match length */
    729    ush nice_length; /* quit search above this match length */
    730    ush max_chain;
    731    compress_func func;
    732 } config;
    733 
    734 local const config configuration_table[10] = {
    735 /*      good lazy nice chain */
    736 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    737 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
    738 /* 2 */ {4,    5, 16,    8, deflate_fast},
    739 /* 3 */ {4,    6, 32,   32, deflate_fast},
    740 
    741 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    742 /* 5 */ {8,   16, 32,   32, deflate_slow},
    743 /* 6 */ {8,   16, 128, 128, deflate_slow},
    744 /* 7 */ {8,   32, 128, 256, deflate_slow},
    745 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    746 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
    747 
    748 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    749  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    750  * meaning.
    751  */
    752 
    753 #define EQUAL 0
    754 /* result of memcmp for equal strings */
    755 
    756 #ifndef NO_DUMMY_DECL
    757 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
    758 #endif
    759 
    760 /* ===========================================================================
    761  * Update a hash value with the given input byte
    762  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
    763  *    input characters, so that a running hash key can be computed from the
    764  *    previous key instead of complete recalculation each time.
    765  */
    766 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
    767 
    768 
    769 /* ===========================================================================
    770  * Insert string str in the dictionary and set match_head to the previous head
    771  * of the hash chain (the most recent string with same hash key). Return
    772  * the previous length of the hash chain.
    773  * If this file is compiled with -DFASTEST, the compression level is forced
    774  * to 1, and no hash chains are maintained.
    775  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
    776  *    input characters and the first MIN_MATCH bytes of str are valid
    777  *    (except for the last MIN_MATCH-1 bytes of the input file).
    778  */
    779 #ifdef FASTEST
    780 #define INSERT_STRING(s, str, match_head) \
    781    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    782     match_head = s->head[s->ins_h], \
    783     s->head[s->ins_h] = (Pos)(str))
    784 #else
    785 #define INSERT_STRING(s, str, match_head) \
    786    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    787     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
    788     s->head[s->ins_h] = (Pos)(str))
    789 #endif
    790 
    791 /* ===========================================================================
    792  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    793  * prev[] will be initialized on the fly.
    794  */
    795 #define CLEAR_HASH(s) \
    796     s->head[s->hash_size-1] = NIL; \
    797     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
    798 
    799 /* ========================================================================= */
    800 int ZEXPORT deflateInit_(strm, level, version, stream_size)
    801     z_streamp strm;
    802     int level;
    803     const char *version;
    804     int stream_size;
    805 {
    806     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    807 			 Z_DEFAULT_STRATEGY, version, stream_size);
    808     /* To do: ignore strm->next_in if we use it as window */
    809 }
    810 
    811 /* ========================================================================= */
    812 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
    813 		  version, stream_size)
    814     z_streamp strm;
    815     int  level;
    816     int  method;
    817     int  windowBits;
    818     int  memLevel;
    819     int  strategy;
    820     const char *version;
    821     int stream_size;
    822 {
    823     deflate_state *s;
    824     int noheader = 0;
    825     static const char* my_version = ZLIB_VERSION;
    826 
    827     ushf *overlay;
    828     /* We overlay pending_buf and d_buf+l_buf. This works since the average
    829      * output size for (length,distance) codes is <= 24 bits.
    830      */
    831 
    832     if (version == Z_NULL || version[0] != my_version[0] ||
    833         stream_size != sizeof(z_stream)) {
    834 	return Z_VERSION_ERROR;
    835     }
    836     if (strm == Z_NULL) return Z_STREAM_ERROR;
    837 
    838     strm->msg = Z_NULL;
    839 #ifndef NO_ZCFUNCS
    840     if (strm->zalloc == Z_NULL) {
    841 	strm->zalloc = zcalloc;
    842 	strm->opaque = (voidpf)0;
    843     }
    844     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
    845 #endif
    846 
    847     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    848 #ifdef FASTEST
    849     level = 1;
    850 #endif
    851 
    852     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
    853         noheader = 1;
    854         windowBits = -windowBits;
    855     }
    856     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    857         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
    858 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    859         return Z_STREAM_ERROR;
    860     }
    861     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    862     if (s == Z_NULL) return Z_MEM_ERROR;
    863     strm->state = (struct internal_state FAR *)s;
    864     s->strm = strm;
    865 
    866     s->noheader = noheader;
    867     s->w_bits = windowBits;
    868     s->w_size = 1 << s->w_bits;
    869     s->w_mask = s->w_size - 1;
    870 
    871     s->hash_bits = memLevel + 7;
    872     s->hash_size = 1 << s->hash_bits;
    873     s->hash_mask = s->hash_size - 1;
    874     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
    875 
    876     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    877     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    878     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    879 
    880     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    881 
    882     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
    883     s->pending_buf = (uchf *) overlay;
    884     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
    885 
    886     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    887         s->pending_buf == Z_NULL) {
    888         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
    889         deflateEnd (strm);
    890         return Z_MEM_ERROR;
    891     }
    892     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
    893     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
    894 
    895     s->level = level;
    896     s->strategy = strategy;
    897     s->method = (Byte)method;
    898 
    899     return deflateReset(strm);
    900 }
    901 
    902 /* ========================================================================= */
    903 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
    904     z_streamp strm;
    905     const Bytef *dictionary;
    906     uInt  dictLength;
    907 {
    908     deflate_state *s;
    909     uInt length = dictLength;
    910     uInt n;
    911     IPos hash_head = 0;
    912 
    913     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
    914         return Z_STREAM_ERROR;
    915 
    916     s = (deflate_state *)strm->state;
    917     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
    918 
    919     strm->adler = adler32(strm->adler, dictionary, dictLength);
    920 
    921     if (length < MIN_MATCH) return Z_OK;
    922     if (length > MAX_DIST(s)) {
    923 	length = MAX_DIST(s);
    924 #ifndef USE_DICT_HEAD
    925 	dictionary += dictLength - length; /* use the tail of the dictionary */
    926 #endif
    927     }
    928     zmemcpy(s->window, dictionary, length);
    929     s->strstart = length;
    930     s->block_start = (long)length;
    931 
    932     /* Insert all strings in the hash table (except for the last two bytes).
    933      * s->lookahead stays null, so s->ins_h will be recomputed at the next
    934      * call of fill_window.
    935      */
    936     s->ins_h = s->window[0];
    937     UPDATE_HASH(s, s->ins_h, s->window[1]);
    938     for (n = 0; n <= length - MIN_MATCH; n++) {
    939 	INSERT_STRING(s, n, hash_head);
    940     }
    941     if (hash_head) hash_head = 0;  /* to make compiler happy */
    942     return Z_OK;
    943 }
    944 
    945 /* ========================================================================= */
    946 int ZEXPORT deflateReset (strm)
    947     z_streamp strm;
    948 {
    949     deflate_state *s;
    950 
    951     if (strm == Z_NULL || strm->state == Z_NULL ||
    952         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
    953 
    954     strm->total_in = strm->total_out = 0;
    955     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    956     strm->data_type = Z_UNKNOWN;
    957 
    958     s = (deflate_state *)strm->state;
    959     s->pending = 0;
    960     s->pending_out = s->pending_buf;
    961 
    962     if (s->noheader < 0) {
    963         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
    964     }
    965     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
    966     strm->adler = 1;
    967     s->last_flush = Z_NO_FLUSH;
    968 
    969     _tr_init(s);
    970     lm_init(s);
    971 
    972     return Z_OK;
    973 }
    974 
    975 /* ========================================================================= */
    976 int ZEXPORT deflateParams(strm, level, strategy)
    977     z_streamp strm;
    978     int level;
    979     int strategy;
    980 {
    981     deflate_state *s;
    982     compress_func func;
    983     int err = Z_OK;
    984 
    985     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    986     s = (deflate_state *)strm->state;
    987 
    988     if (level == Z_DEFAULT_COMPRESSION) {
    989 	level = 6;
    990     }
    991     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    992 	return Z_STREAM_ERROR;
    993     }
    994     func = configuration_table[s->level].func;
    995 
    996     if (func != configuration_table[level].func && strm->total_in != 0) {
    997 	/* Flush the last buffer: */
    998 	err = deflate(strm, Z_PARTIAL_FLUSH);
    999     }
   1000     if (s->level != level) {
   1001 	s->level = level;
   1002 	s->max_lazy_match   = configuration_table[level].max_lazy;
   1003 	s->good_match       = configuration_table[level].good_length;
   1004 	s->nice_match       = configuration_table[level].nice_length;
   1005 	s->max_chain_length = configuration_table[level].max_chain;
   1006     }
   1007     s->strategy = strategy;
   1008     return err;
   1009 }
   1010 
   1011 /* =========================================================================
   1012  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
   1013  * IN assertion: the stream state is correct and there is enough room in
   1014  * pending_buf.
   1015  */
   1016 local void putShortMSB (s, b)
   1017     deflate_state *s;
   1018     uInt b;
   1019 {
   1020     put_byte(s, (Byte)(b >> 8));
   1021     put_byte(s, (Byte)(b & 0xff));
   1022 }
   1023 
   1024 /* =========================================================================
   1025  * Flush as much pending output as possible. All deflate() output goes
   1026  * through this function so some applications may wish to modify it
   1027  * to avoid allocating a large strm->next_out buffer and copying into it.
   1028  * (See also read_buf()).
   1029  */
   1030 local void flush_pending(strm)
   1031     z_streamp strm;
   1032 {
   1033     deflate_state *s = (deflate_state *) strm->state;
   1034     unsigned len = s->pending;
   1035 
   1036     if (len > strm->avail_out) len = strm->avail_out;
   1037     if (len == 0) return;
   1038 
   1039     if (strm->next_out != Z_NULL) {
   1040       zmemcpy(strm->next_out, s->pending_out, len);
   1041       strm->next_out  += len;
   1042     }
   1043     s->pending_out  += len;
   1044     strm->total_out += len;
   1045     strm->avail_out  -= len;
   1046     s->pending -= len;
   1047     if (s->pending == 0) {
   1048         s->pending_out = s->pending_buf;
   1049     }
   1050 }
   1051 
   1052 /* ========================================================================= */
   1053 int ZEXPORT deflate (strm, flush)
   1054     z_streamp strm;
   1055     int flush;
   1056 {
   1057     int old_flush; /* value of flush param for previous deflate call */
   1058     deflate_state *s;
   1059 
   1060     if (strm == Z_NULL || strm->state == Z_NULL ||
   1061 	flush > Z_FINISH || flush < 0) {
   1062         return Z_STREAM_ERROR;
   1063     }
   1064     s = (deflate_state *)strm->state;
   1065 
   1066     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
   1067 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
   1068         ERR_RETURN(strm, Z_STREAM_ERROR);
   1069     }
   1070     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
   1071 
   1072     s->strm = strm; /* just in case */
   1073     old_flush = s->last_flush;
   1074     s->last_flush = flush;
   1075 
   1076     /* Write the zlib header */
   1077     if (s->status == INIT_STATE) {
   1078 
   1079         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
   1080         uInt level_flags = (s->level-1) >> 1;
   1081 
   1082         if (level_flags > 3) level_flags = 3;
   1083         header |= (level_flags << 6);
   1084 	if (s->strstart != 0) header |= PRESET_DICT;
   1085         header += 31 - (header % 31);
   1086 
   1087         s->status = BUSY_STATE;
   1088         putShortMSB(s, header);
   1089 
   1090 	/* Save the adler32 of the preset dictionary: */
   1091 	if (s->strstart != 0) {
   1092 	    putShortMSB(s, (uInt)(strm->adler >> 16));
   1093 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1094 	}
   1095 	strm->adler = 1L;
   1096     }
   1097 
   1098     /* Flush as much pending output as possible */
   1099     if (s->pending != 0) {
   1100         flush_pending(strm);
   1101         if (strm->avail_out == 0) {
   1102 	    /* Since avail_out is 0, deflate will be called again with
   1103 	     * more output space, but possibly with both pending and
   1104 	     * avail_in equal to zero. There won't be anything to do,
   1105 	     * but this is not an error situation so make sure we
   1106 	     * return OK instead of BUF_ERROR at next call of deflate:
   1107              */
   1108 	    s->last_flush = -1;
   1109 	    return Z_OK;
   1110 	}
   1111 
   1112     /* Make sure there is something to do and avoid duplicate consecutive
   1113      * flushes. For repeated and useless calls with Z_FINISH, we keep
   1114      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
   1115      */
   1116     } else if (strm->avail_in == 0 && flush <= old_flush &&
   1117 	       flush != Z_FINISH) {
   1118         ERR_RETURN(strm, Z_BUF_ERROR);
   1119     }
   1120 
   1121     /* User must not provide more input after the first FINISH: */
   1122     if (s->status == FINISH_STATE && strm->avail_in != 0) {
   1123         ERR_RETURN(strm, Z_BUF_ERROR);
   1124     }
   1125 
   1126     /* Start a new block or continue the current one.
   1127      */
   1128     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1129         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1130         block_state bstate;
   1131 
   1132 	bstate = (*(configuration_table[s->level].func))(s, flush);
   1133 
   1134         if (bstate == finish_started || bstate == finish_done) {
   1135             s->status = FINISH_STATE;
   1136         }
   1137         if (bstate == need_more || bstate == finish_started) {
   1138 	    if (strm->avail_out == 0) {
   1139 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1140 	    }
   1141 	    return Z_OK;
   1142 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1143 	     * of deflate should use the same flush parameter to make sure
   1144 	     * that the flush is complete. So we don't have to output an
   1145 	     * empty block here, this will be done at next call. This also
   1146 	     * ensures that for a very small output buffer, we emit at most
   1147 	     * one empty block.
   1148 	     */
   1149 	}
   1150         if (bstate == block_done) {
   1151             if (flush == Z_PARTIAL_FLUSH) {
   1152                 _tr_align(s);
   1153 	    } else if (flush == Z_PACKET_FLUSH) {
   1154 		/* Output just the 3-bit `stored' block type value,
   1155 		   but not a zero length. */
   1156 		_tr_stored_type_only(s);
   1157             } else { /* FULL_FLUSH or SYNC_FLUSH */
   1158                 _tr_stored_block(s, (char*)0, 0L, 0);
   1159                 /* For a full flush, this empty block will be recognized
   1160                  * as a special marker by inflate_sync().
   1161                  */
   1162                 if (flush == Z_FULL_FLUSH) {
   1163                     CLEAR_HASH(s);             /* forget history */
   1164                 }
   1165             }
   1166             flush_pending(strm);
   1167 	    if (strm->avail_out == 0) {
   1168 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1169 	      return Z_OK;
   1170 	    }
   1171         }
   1172     }
   1173     Assert(strm->avail_out > 0, "bug2");
   1174 
   1175     if (flush != Z_FINISH) return Z_OK;
   1176     if (s->noheader) return Z_STREAM_END;
   1177 
   1178     /* Write the zlib trailer (adler32) */
   1179     putShortMSB(s, (uInt)(strm->adler >> 16));
   1180     putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1181     flush_pending(strm);
   1182     /* If avail_out is zero, the application will call deflate again
   1183      * to flush the rest.
   1184      */
   1185     s->noheader = -1; /* write the trailer only once! */
   1186     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1187 }
   1188 
   1189 /* ========================================================================= */
   1190 int ZEXPORT deflateEnd (strm)
   1191     z_streamp strm;
   1192 {
   1193     int status;
   1194     deflate_state *s;
   1195 
   1196     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   1197     s = (deflate_state *) strm->state;
   1198 
   1199     status = s->status;
   1200     if (status != INIT_STATE && status != BUSY_STATE &&
   1201 	status != FINISH_STATE) {
   1202       return Z_STREAM_ERROR;
   1203     }
   1204 
   1205     /* Deallocate in reverse order of allocations: */
   1206     TRY_FREE(strm, s->pending_buf);
   1207     TRY_FREE(strm, s->head);
   1208     TRY_FREE(strm, s->prev);
   1209     TRY_FREE(strm, s->window);
   1210 
   1211     ZFREE(strm, s);
   1212     strm->state = Z_NULL;
   1213 
   1214     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1215 }
   1216 
   1217 /* =========================================================================
   1218  * Copy the source state to the destination state.
   1219  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1220  * doesn't have enough memory anyway to duplicate compression states).
   1221  */
   1222 int ZEXPORT deflateCopy (dest, source)
   1223     z_streamp dest;
   1224     z_streamp source;
   1225 {
   1226 #ifdef MAXSEG_64K
   1227     return Z_STREAM_ERROR;
   1228 #else
   1229     deflate_state *ds;
   1230     deflate_state *ss;
   1231     ushf *overlay;
   1232 
   1233 
   1234     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
   1235         return Z_STREAM_ERROR;
   1236     }
   1237 
   1238     ss = (deflate_state *)source->state;
   1239 
   1240     *dest = *source;
   1241 
   1242     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1243     if (ds == Z_NULL) return Z_MEM_ERROR;
   1244     dest->state = (void *) ds;
   1245     *ds = *ss;
   1246     ds->strm = dest;
   1247 
   1248     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1249     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1250     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1251     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
   1252     ds->pending_buf = (uchf *) overlay;
   1253 
   1254     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1255         ds->pending_buf == Z_NULL) {
   1256         deflateEnd (dest);
   1257         return Z_MEM_ERROR;
   1258     }
   1259     /* following zmemcpy do not work for 16-bit MSDOS */
   1260     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1261     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
   1262     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
   1263     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
   1264 
   1265     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1266     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
   1267     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
   1268 
   1269     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1270     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1271     ds->bl_desc.dyn_tree = ds->bl_tree;
   1272 
   1273     return Z_OK;
   1274 #endif
   1275 }
   1276 
   1277 /* ===========================================================================
   1278  * Return the number of bytes of output which are immediately available
   1279  * for output from the decompressor.
   1280  */
   1281 int deflateOutputPending (strm)
   1282     z_streamp strm;
   1283 {
   1284     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
   1285 
   1286     return ((deflate_state *)(strm->state))->pending;
   1287 }
   1288 
   1289 /* ===========================================================================
   1290  * Read a new buffer from the current input stream, update the adler32
   1291  * and total number of bytes read.  All deflate() input goes through
   1292  * this function so some applications may wish to modify it to avoid
   1293  * allocating a large strm->next_in buffer and copying from it.
   1294  * (See also flush_pending()).
   1295  */
   1296 local int read_buf(strm, buf, size)
   1297     z_streamp strm;
   1298     Bytef *buf;
   1299     unsigned size;
   1300 {
   1301     unsigned len = strm->avail_in;
   1302 
   1303     if (len > size) len = size;
   1304     if (len == 0) return 0;
   1305 
   1306     strm->avail_in  -= len;
   1307 
   1308     if (!((deflate_state *)(strm->state))->noheader) {
   1309         strm->adler = adler32(strm->adler, strm->next_in, len);
   1310     }
   1311     zmemcpy(buf, strm->next_in, len);
   1312     strm->next_in  += len;
   1313     strm->total_in += len;
   1314 
   1315     return (int)len;
   1316 }
   1317 
   1318 /* ===========================================================================
   1319  * Initialize the "longest match" routines for a new zlib stream
   1320  */
   1321 local void lm_init (s)
   1322     deflate_state *s;
   1323 {
   1324     s->window_size = (ulg)2L*s->w_size;
   1325 
   1326     CLEAR_HASH(s);
   1327 
   1328     /* Set the default configuration parameters:
   1329      */
   1330     s->max_lazy_match   = configuration_table[s->level].max_lazy;
   1331     s->good_match       = configuration_table[s->level].good_length;
   1332     s->nice_match       = configuration_table[s->level].nice_length;
   1333     s->max_chain_length = configuration_table[s->level].max_chain;
   1334 
   1335     s->strstart = 0;
   1336     s->block_start = 0L;
   1337     s->lookahead = 0;
   1338     s->match_length = s->prev_length = MIN_MATCH-1;
   1339     s->match_available = 0;
   1340     s->ins_h = 0;
   1341 #ifdef ASMV
   1342     match_init(); /* initialize the asm code */
   1343 #endif
   1344 }
   1345 
   1346 /* ===========================================================================
   1347  * Set match_start to the longest match starting at the given string and
   1348  * return its length. Matches shorter or equal to prev_length are discarded,
   1349  * in which case the result is equal to prev_length and match_start is
   1350  * garbage.
   1351  * IN assertions: cur_match is the head of the hash chain for the current
   1352  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1353  * OUT assertion: the match length is not greater than s->lookahead.
   1354  */
   1355 #ifndef ASMV
   1356 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
   1357  * match.S. The code will be functionally equivalent.
   1358  */
   1359 #ifndef FASTEST
   1360 local uInt longest_match(s, cur_match)
   1361     deflate_state *s;
   1362     IPos cur_match;                             /* current match */
   1363 {
   1364     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1365     Bytef *scan = s->window + s->strstart; /* current string */
   1366     Bytef *match;                       /* matched string */
   1367     int len;                           /* length of current match */
   1368     int best_len = s->prev_length;              /* best match length so far */
   1369     int nice_match = s->nice_match;             /* stop if match long enough */
   1370     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1371         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1372     /* Stop when cur_match becomes <= limit. To simplify the code,
   1373      * we prevent matches with the string of window index 0.
   1374      */
   1375     Posf *prev = s->prev;
   1376     uInt wmask = s->w_mask;
   1377 
   1378 #ifdef UNALIGNED_OK
   1379     /* Compare two bytes at a time. Note: this is not always beneficial.
   1380      * Try with and without -DUNALIGNED_OK to check.
   1381      */
   1382     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1383     ush scan_start = *(ushf*)scan;
   1384     ush scan_end   = *(ushf*)(scan+best_len-1);
   1385 #else
   1386     Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1387     Byte scan_end1  = scan[best_len-1];
   1388     Byte scan_end   = scan[best_len];
   1389 #endif
   1390 
   1391     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1392      * It is easy to get rid of this optimization if necessary.
   1393      */
   1394     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1395 
   1396     /* Do not waste too much time if we already have a good match: */
   1397     if (s->prev_length >= s->good_match) {
   1398         chain_length >>= 2;
   1399     }
   1400     /* Do not look for matches beyond the end of the input. This is necessary
   1401      * to make deflate deterministic.
   1402      */
   1403     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
   1404 
   1405     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1406 
   1407     do {
   1408         Assert(cur_match < s->strstart, "no future");
   1409         match = s->window + cur_match;
   1410 
   1411         /* Skip to next match if the match length cannot increase
   1412          * or if the match length is less than 2:
   1413          */
   1414 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1415         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1416          * UNALIGNED_OK if your compiler uses a different size.
   1417          */
   1418         if (*(ushf*)(match+best_len-1) != scan_end ||
   1419             *(ushf*)match != scan_start) continue;
   1420 
   1421         /* It is not necessary to compare scan[2] and match[2] since they are
   1422          * always equal when the other bytes match, given that the hash keys
   1423          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1424          * strstart+3, +5, ... up to strstart+257. We check for insufficient
   1425          * lookahead only every 4th comparison; the 128th check will be made
   1426          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
   1427          * necessary to put more guard bytes at the end of the window, or
   1428          * to check more often for insufficient lookahead.
   1429          */
   1430         Assert(scan[2] == match[2], "scan[2]?");
   1431         scan++, match++;
   1432         do {
   1433         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1434                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1435                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1436                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1437                  scan < strend);
   1438         /* The funny "do {}" generates better code on most compilers */
   1439 
   1440         /* Here, scan <= window+strstart+257 */
   1441         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1442         if (*scan == *match) scan++;
   1443 
   1444         len = (MAX_MATCH - 1) - (int)(strend-scan);
   1445         scan = strend - (MAX_MATCH-1);
   1446 
   1447 #else /* UNALIGNED_OK */
   1448 
   1449         if (match[best_len]   != scan_end  ||
   1450             match[best_len-1] != scan_end1 ||
   1451             *match            != *scan     ||
   1452             *++match          != scan[1])      continue;
   1453 
   1454         /* The check at best_len-1 can be removed because it will be made
   1455          * again later. (This heuristic is not always a win.)
   1456          * It is not necessary to compare scan[2] and match[2] since they
   1457          * are always equal when the other bytes match, given that
   1458          * the hash keys are equal and that HASH_BITS >= 8.
   1459          */
   1460         scan += 2, match++;
   1461         Assert(*scan == *match, "match[2]?");
   1462 
   1463         /* We check for insufficient lookahead only every 8th comparison;
   1464          * the 256th check will be made at strstart+258.
   1465          */
   1466         do {
   1467         } while (*++scan == *++match && *++scan == *++match &&
   1468                  *++scan == *++match && *++scan == *++match &&
   1469                  *++scan == *++match && *++scan == *++match &&
   1470                  *++scan == *++match && *++scan == *++match &&
   1471                  scan < strend);
   1472 
   1473         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1474 
   1475         len = MAX_MATCH - (int)(strend - scan);
   1476         scan = strend - MAX_MATCH;
   1477 
   1478 #endif /* UNALIGNED_OK */
   1479 
   1480         if (len > best_len) {
   1481             s->match_start = cur_match;
   1482             best_len = len;
   1483             if (len >= nice_match) break;
   1484 #ifdef UNALIGNED_OK
   1485             scan_end = *(ushf*)(scan+best_len-1);
   1486 #else
   1487             scan_end1  = scan[best_len-1];
   1488             scan_end   = scan[best_len];
   1489 #endif
   1490         }
   1491     } while ((cur_match = prev[cur_match & wmask]) > limit
   1492              && --chain_length != 0);
   1493 
   1494     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1495     return s->lookahead;
   1496 }
   1497 
   1498 #else /* FASTEST */
   1499 /* ---------------------------------------------------------------------------
   1500  * Optimized version for level == 1 only
   1501  */
   1502 local uInt longest_match(s, cur_match)
   1503     deflate_state *s;
   1504     IPos cur_match;                             /* current match */
   1505 {
   1506     register Bytef *scan = s->window + s->strstart; /* current string */
   1507     register Bytef *match;                       /* matched string */
   1508     register int len;                           /* length of current match */
   1509     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1510 
   1511     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1512      * It is easy to get rid of this optimization if necessary.
   1513      */
   1514     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1515 
   1516     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1517 
   1518     Assert(cur_match < s->strstart, "no future");
   1519 
   1520     match = s->window + cur_match;
   1521 
   1522     /* Return failure if the match length is less than 2:
   1523      */
   1524     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1525 
   1526     /* The check at best_len-1 can be removed because it will be made
   1527      * again later. (This heuristic is not always a win.)
   1528      * It is not necessary to compare scan[2] and match[2] since they
   1529      * are always equal when the other bytes match, given that
   1530      * the hash keys are equal and that HASH_BITS >= 8.
   1531      */
   1532     scan += 2, match += 2;
   1533     Assert(*scan == *match, "match[2]?");
   1534 
   1535     /* We check for insufficient lookahead only every 8th comparison;
   1536      * the 256th check will be made at strstart+258.
   1537      */
   1538     do {
   1539     } while (*++scan == *++match && *++scan == *++match &&
   1540 	     *++scan == *++match && *++scan == *++match &&
   1541 	     *++scan == *++match && *++scan == *++match &&
   1542 	     *++scan == *++match && *++scan == *++match &&
   1543 	     scan < strend);
   1544 
   1545     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1546 
   1547     len = MAX_MATCH - (int)(strend - scan);
   1548 
   1549     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1550 
   1551     s->match_start = cur_match;
   1552     return len <= s->lookahead ? len : s->lookahead;
   1553 }
   1554 #endif /* FASTEST */
   1555 #endif /* ASMV */
   1556 
   1557 #ifdef DEBUG_ZLIB
   1558 /* ===========================================================================
   1559  * Check that the match at match_start is indeed a match.
   1560  */
   1561 local void check_match(s, start, match, length)
   1562     deflate_state *s;
   1563     IPos start, match;
   1564     int length;
   1565 {
   1566     /* check that the match is indeed a match */
   1567     if (zmemcmp(s->window + match,
   1568                 s->window + start, length) != EQUAL) {
   1569         fprintf(stderr, " start %u, match %u, length %d\n",
   1570 		start, match, length);
   1571         do {
   1572 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
   1573 	} while (--length != 0);
   1574         z_error("invalid match");
   1575     }
   1576     if (z_verbose > 1) {
   1577         fprintf(stderr,"\\[%d,%d]", start-match, length);
   1578         do { putc(s->window[start++], stderr); } while (--length != 0);
   1579     }
   1580 }
   1581 #else
   1582 #  define check_match(s, start, match, length)
   1583 #endif
   1584 
   1585 /* ===========================================================================
   1586  * Fill the window when the lookahead becomes insufficient.
   1587  * Updates strstart and lookahead.
   1588  *
   1589  * IN assertion: lookahead < MIN_LOOKAHEAD
   1590  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
   1591  *    At least one byte has been read, or avail_in == 0; reads are
   1592  *    performed for at least two bytes (required for the zip translate_eol
   1593  *    option -- not supported here).
   1594  */
   1595 local void fill_window(s)
   1596     deflate_state *s;
   1597 {
   1598     unsigned n, m;
   1599     Posf *p;
   1600     unsigned more;    /* Amount of free space at the end of the window. */
   1601     uInt wsize = s->w_size;
   1602 
   1603     do {
   1604         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
   1605 
   1606         /* Deal with !@#$% 64K limit: */
   1607         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
   1608             more = wsize;
   1609 
   1610         } else if (more == (unsigned)(-1)) {
   1611             /* Very unlikely, but possible on 16 bit machine if strstart == 0
   1612              * and lookahead == 1 (input done one byte at time)
   1613              */
   1614             more--;
   1615 
   1616         /* If the window is almost full and there is insufficient lookahead,
   1617          * move the upper half to the lower one to make room in the upper half.
   1618          */
   1619         } else if (s->strstart >= wsize+MAX_DIST(s)) {
   1620 
   1621             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
   1622             s->match_start -= wsize;
   1623             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
   1624             s->block_start -= (long) wsize;
   1625 
   1626             /* Slide the hash table (could be avoided with 32 bit values
   1627                at the expense of memory usage). We slide even when level == 0
   1628                to keep the hash table consistent if we switch back to level > 0
   1629                later. (Using level 0 permanently is not an optimal usage of
   1630                zlib, so we don't care about this pathological case.)
   1631              */
   1632 	    n = s->hash_size;
   1633 	    p = &s->head[n];
   1634 	    do {
   1635 		m = *--p;
   1636 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1637 	    } while (--n);
   1638 
   1639 	    n = wsize;
   1640 #ifndef FASTEST
   1641 	    p = &s->prev[n];
   1642 	    do {
   1643 		m = *--p;
   1644 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1645 		/* If n is not on any hash chain, prev[n] is garbage but
   1646 		 * its value will never be used.
   1647 		 */
   1648 	    } while (--n);
   1649 #endif
   1650             more += wsize;
   1651         }
   1652         if (s->strm->avail_in == 0) return;
   1653 
   1654         /* If there was no sliding:
   1655          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
   1656          *    more == window_size - lookahead - strstart
   1657          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
   1658          * => more >= window_size - 2*WSIZE + 2
   1659          * In the BIG_MEM or MMAP case (not yet supported),
   1660          *   window_size == input_size + MIN_LOOKAHEAD  &&
   1661          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
   1662          * Otherwise, window_size == 2*WSIZE so more >= 2.
   1663          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
   1664          */
   1665         Assert(more >= 2, "more < 2");
   1666 
   1667         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
   1668         s->lookahead += n;
   1669 
   1670         /* Initialize the hash value now that we have some input: */
   1671         if (s->lookahead >= MIN_MATCH) {
   1672             s->ins_h = s->window[s->strstart];
   1673             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1674 #if MIN_MATCH != 3
   1675             Call UPDATE_HASH() MIN_MATCH-3 more times
   1676 #endif
   1677         }
   1678         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
   1679          * but this is not important since only literal bytes will be emitted.
   1680          */
   1681 
   1682     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
   1683 }
   1684 
   1685 /* ===========================================================================
   1686  * Flush the current block, with given end-of-file flag.
   1687  * IN assertion: strstart is set to the end of the current match.
   1688  */
   1689 #define FLUSH_BLOCK_ONLY(s, eof) { \
   1690    _tr_flush_block(s, (s->block_start >= 0L ? \
   1691                    (charf *)&s->window[(unsigned)s->block_start] : \
   1692                    (charf *)Z_NULL), \
   1693 		(ulg)((long)s->strstart - s->block_start), \
   1694 		(eof)); \
   1695    s->block_start = s->strstart; \
   1696    flush_pending(s->strm); \
   1697    Tracev((stderr,"[FLUSH]")); \
   1698 }
   1699 
   1700 /* Same but force premature exit if necessary. */
   1701 #define FLUSH_BLOCK(s, eof) { \
   1702    FLUSH_BLOCK_ONLY(s, eof); \
   1703    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
   1704 }
   1705 
   1706 /* ===========================================================================
   1707  * Copy without compression as much as possible from the input stream, return
   1708  * the current block state.
   1709  * This function does not insert new strings in the dictionary since
   1710  * uncompressible data is probably not useful. This function is used
   1711  * only for the level=0 compression option.
   1712  * NOTE: this function should be optimized to avoid extra copying from
   1713  * window to pending_buf.
   1714  */
   1715 local block_state deflate_stored(s, flush)
   1716     deflate_state *s;
   1717     int flush;
   1718 {
   1719     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
   1720      * to pending_buf_size, and each stored block has a 5 byte header:
   1721      */
   1722     ulg max_block_size = 0xffff;
   1723     ulg max_start;
   1724 
   1725     if (max_block_size > s->pending_buf_size - 5) {
   1726         max_block_size = s->pending_buf_size - 5;
   1727     }
   1728 
   1729     /* Copy as much as possible from input to output: */
   1730     for (;;) {
   1731         /* Fill the window as much as possible: */
   1732         if (s->lookahead <= 1) {
   1733 
   1734             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
   1735 		   s->block_start >= (long)s->w_size, "slide too late");
   1736 
   1737             fill_window(s);
   1738             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
   1739 
   1740             if (s->lookahead == 0) break; /* flush the current block */
   1741         }
   1742 	Assert(s->block_start >= 0L, "block gone");
   1743 
   1744 	s->strstart += s->lookahead;
   1745 	s->lookahead = 0;
   1746 
   1747 	/* Emit a stored block if pending_buf will be full: */
   1748  	max_start = s->block_start + max_block_size;
   1749         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
   1750 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
   1751 	    s->lookahead = (uInt)(s->strstart - max_start);
   1752 	    s->strstart = (uInt)max_start;
   1753             FLUSH_BLOCK(s, 0);
   1754 	}
   1755 	/* Flush if we may have to slide, otherwise block_start may become
   1756          * negative and the data will be gone:
   1757          */
   1758         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
   1759             FLUSH_BLOCK(s, 0);
   1760 	}
   1761     }
   1762     FLUSH_BLOCK(s, flush == Z_FINISH);
   1763     return flush == Z_FINISH ? finish_done : block_done;
   1764 }
   1765 
   1766 /* ===========================================================================
   1767  * Compress as much as possible from the input stream, return the current
   1768  * block state.
   1769  * This function does not perform lazy evaluation of matches and inserts
   1770  * new strings in the dictionary only for unmatched strings or for short
   1771  * matches. It is used only for the fast compression options.
   1772  */
   1773 local block_state deflate_fast(s, flush)
   1774     deflate_state *s;
   1775     int flush;
   1776 {
   1777     IPos hash_head = NIL; /* head of the hash chain */
   1778     int bflush;           /* set if current block must be flushed */
   1779 
   1780     for (;;) {
   1781         /* Make sure that we always have enough lookahead, except
   1782          * at the end of the input file. We need MAX_MATCH bytes
   1783          * for the next match, plus MIN_MATCH bytes to insert the
   1784          * string following the next match.
   1785          */
   1786         if (s->lookahead < MIN_LOOKAHEAD) {
   1787             fill_window(s);
   1788             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1789 	        return need_more;
   1790 	    }
   1791             if (s->lookahead == 0) break; /* flush the current block */
   1792         }
   1793 
   1794         /* Insert the string window[strstart .. strstart+2] in the
   1795          * dictionary, and set hash_head to the head of the hash chain:
   1796          */
   1797         if (s->lookahead >= MIN_MATCH) {
   1798             INSERT_STRING(s, s->strstart, hash_head);
   1799         }
   1800 
   1801         /* Find the longest match, discarding those <= prev_length.
   1802          * At this point we have always match_length < MIN_MATCH
   1803          */
   1804         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1805             /* To simplify the code, we prevent matches with the string
   1806              * of window index 0 (in particular we have to avoid a match
   1807              * of the string with itself at the start of the input file).
   1808              */
   1809             if (s->strategy != Z_HUFFMAN_ONLY) {
   1810                 s->match_length = longest_match (s, hash_head);
   1811             }
   1812             /* longest_match() sets match_start */
   1813         }
   1814         if (s->match_length >= MIN_MATCH) {
   1815             check_match(s, s->strstart, s->match_start, s->match_length);
   1816 
   1817             _tr_tally_dist(s, s->strstart - s->match_start,
   1818                            s->match_length - MIN_MATCH, bflush);
   1819 
   1820             s->lookahead -= s->match_length;
   1821 
   1822             /* Insert new strings in the hash table only if the match length
   1823              * is not too large. This saves time but degrades compression.
   1824              */
   1825 #ifndef FASTEST
   1826             if (s->match_length <= s->max_insert_length &&
   1827                 s->lookahead >= MIN_MATCH) {
   1828                 s->match_length--; /* string at strstart already in hash table */
   1829                 do {
   1830                     s->strstart++;
   1831                     INSERT_STRING(s, s->strstart, hash_head);
   1832                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1833                      * always MIN_MATCH bytes ahead.
   1834                      */
   1835                 } while (--s->match_length != 0);
   1836                 s->strstart++;
   1837             } else
   1838 #endif
   1839 	    {
   1840                 s->strstart += s->match_length;
   1841                 s->match_length = 0;
   1842                 s->ins_h = s->window[s->strstart];
   1843                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1844 #if MIN_MATCH != 3
   1845                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1846 #endif
   1847                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1848                  * matter since it will be recomputed at next deflate call.
   1849                  */
   1850             }
   1851         } else {
   1852             /* No match, output a literal byte */
   1853             Tracevv((stderr,"%c", s->window[s->strstart]));
   1854             _tr_tally_lit (s, s->window[s->strstart], bflush);
   1855             s->lookahead--;
   1856             s->strstart++;
   1857         }
   1858         if (bflush) FLUSH_BLOCK(s, 0);
   1859     }
   1860     FLUSH_BLOCK(s, flush == Z_FINISH);
   1861     return flush == Z_FINISH ? finish_done : block_done;
   1862 }
   1863 
   1864 /* ===========================================================================
   1865  * Same as above, but achieves better compression. We use a lazy
   1866  * evaluation for matches: a match is finally adopted only if there is
   1867  * no better match at the next window position.
   1868  */
   1869 local block_state deflate_slow(s, flush)
   1870     deflate_state *s;
   1871     int flush;
   1872 {
   1873     IPos hash_head = NIL;    /* head of hash chain */
   1874     int bflush;              /* set if current block must be flushed */
   1875 
   1876     /* Process the input block. */
   1877     for (;;) {
   1878         /* Make sure that we always have enough lookahead, except
   1879          * at the end of the input file. We need MAX_MATCH bytes
   1880          * for the next match, plus MIN_MATCH bytes to insert the
   1881          * string following the next match.
   1882          */
   1883         if (s->lookahead < MIN_LOOKAHEAD) {
   1884             fill_window(s);
   1885             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1886 	        return need_more;
   1887 	    }
   1888             if (s->lookahead == 0) break; /* flush the current block */
   1889         }
   1890 
   1891         /* Insert the string window[strstart .. strstart+2] in the
   1892          * dictionary, and set hash_head to the head of the hash chain:
   1893          */
   1894         if (s->lookahead >= MIN_MATCH) {
   1895             INSERT_STRING(s, s->strstart, hash_head);
   1896         }
   1897 
   1898         /* Find the longest match, discarding those <= prev_length.
   1899          */
   1900         s->prev_length = s->match_length, s->prev_match = s->match_start;
   1901         s->match_length = MIN_MATCH-1;
   1902 
   1903         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   1904             s->strstart - hash_head <= MAX_DIST(s)) {
   1905             /* To simplify the code, we prevent matches with the string
   1906              * of window index 0 (in particular we have to avoid a match
   1907              * of the string with itself at the start of the input file).
   1908              */
   1909             if (s->strategy != Z_HUFFMAN_ONLY) {
   1910                 s->match_length = longest_match (s, hash_head);
   1911             }
   1912             /* longest_match() sets match_start */
   1913 
   1914             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
   1915                  (s->match_length == MIN_MATCH &&
   1916                   s->strstart - s->match_start > TOO_FAR))) {
   1917 
   1918                 /* If prev_match is also MIN_MATCH, match_start is garbage
   1919                  * but we will ignore the current match anyway.
   1920                  */
   1921                 s->match_length = MIN_MATCH-1;
   1922             }
   1923         }
   1924         /* If there was a match at the previous step and the current
   1925          * match is not better, output the previous match:
   1926          */
   1927         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   1928             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   1929             /* Do not insert strings in hash table beyond this. */
   1930 
   1931             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
   1932 
   1933             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
   1934 			   s->prev_length - MIN_MATCH, bflush);
   1935 
   1936             /* Insert in hash table all strings up to the end of the match.
   1937              * strstart-1 and strstart are already inserted. If there is not
   1938              * enough lookahead, the last two strings are not inserted in
   1939              * the hash table.
   1940              */
   1941             s->lookahead -= s->prev_length-1;
   1942             s->prev_length -= 2;
   1943             do {
   1944                 if (++s->strstart <= max_insert) {
   1945                     INSERT_STRING(s, s->strstart, hash_head);
   1946                 }
   1947             } while (--s->prev_length != 0);
   1948             s->match_available = 0;
   1949             s->match_length = MIN_MATCH-1;
   1950             s->strstart++;
   1951 
   1952             if (bflush) FLUSH_BLOCK(s, 0);
   1953 
   1954         } else if (s->match_available) {
   1955             /* If there was no match at the previous position, output a
   1956              * single literal. If there was a match but the current match
   1957              * is longer, truncate the previous match to a single literal.
   1958              */
   1959             Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1960 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1961 	    if (bflush) {
   1962                 FLUSH_BLOCK_ONLY(s, 0);
   1963             }
   1964             s->strstart++;
   1965             s->lookahead--;
   1966             if (s->strm->avail_out == 0) return need_more;
   1967         } else {
   1968             /* There is no previous match to compare with, wait for
   1969              * the next step to decide.
   1970              */
   1971             s->match_available = 1;
   1972             s->strstart++;
   1973             s->lookahead--;
   1974         }
   1975     }
   1976     Assert (flush != Z_NO_FLUSH, "no flush?");
   1977     if (s->match_available) {
   1978         Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1979         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1980         s->match_available = 0;
   1981     }
   1982     FLUSH_BLOCK(s, flush == Z_FINISH);
   1983     return flush == Z_FINISH ? finish_done : block_done;
   1984 }
   1985 /* --- deflate.c */
   1986 
   1987 /* +++ trees.c */
   1988 
   1989 /* trees.c -- output deflated data using Huffman coding
   1990  * Copyright (C) 1995-2002 Jean-loup Gailly
   1991  * For conditions of distribution and use, see copyright notice in zlib.h
   1992  */
   1993 
   1994 /*
   1995  *  ALGORITHM
   1996  *
   1997  *      The "deflation" process uses several Huffman trees. The more
   1998  *      common source values are represented by shorter bit sequences.
   1999  *
   2000  *      Each code tree is stored in a compressed form which is itself
   2001  * a Huffman encoding of the lengths of all the code strings (in
   2002  * ascending order by source values).  The actual code strings are
   2003  * reconstructed from the lengths in the inflate process, as described
   2004  * in the deflate specification.
   2005  *
   2006  *  REFERENCES
   2007  *
   2008  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   2009  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   2010  *
   2011  *      Storer, James A.
   2012  *          Data Compression:  Methods and Theory, pp. 49-50.
   2013  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   2014  *
   2015  *      Sedgewick, R.
   2016  *          Algorithms, p290.
   2017  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   2018  */
   2019 
   2020 /* @(#) $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $ */
   2021 
   2022 /* #define GEN_TREES_H */
   2023 
   2024 /* #include "deflate.h" */
   2025 
   2026 #ifdef DEBUG_ZLIB
   2027 #  include <ctype.h>
   2028 #endif
   2029 
   2030 /* ===========================================================================
   2031  * Constants
   2032  */
   2033 
   2034 #define MAX_BL_BITS 7
   2035 /* Bit length codes must not exceed MAX_BL_BITS bits */
   2036 
   2037 #define END_BLOCK 256
   2038 /* end of block literal code */
   2039 
   2040 #define REP_3_6      16
   2041 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   2042 
   2043 #define REPZ_3_10    17
   2044 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   2045 
   2046 #define REPZ_11_138  18
   2047 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   2048 
   2049 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   2050    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   2051 
   2052 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   2053    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   2054 
   2055 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   2056    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   2057 
   2058 local const uch bl_order[BL_CODES]
   2059    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   2060 /* The lengths of the bit length codes are sent in order of decreasing
   2061  * probability, to avoid transmitting the lengths for unused bit length codes.
   2062  */
   2063 
   2064 #define Buf_size (8 * 2*sizeof(char))
   2065 /* Number of bits used within bi_buf. (bi_buf might be implemented on
   2066  * more than 16 bits on some systems.)
   2067  */
   2068 
   2069 /* ===========================================================================
   2070  * Local data. These are initialized only once.
   2071  */
   2072 
   2073 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   2074 
   2075 #if defined(GEN_TREES_H) || !defined(STDC)
   2076 /* non ANSI compilers may not accept trees.h */
   2077 
   2078 local ct_data static_ltree[L_CODES+2];
   2079 /* The static literal tree. Since the bit lengths are imposed, there is no
   2080  * need for the L_CODES extra codes used during heap construction. However
   2081  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   2082  * below).
   2083  */
   2084 
   2085 local ct_data static_dtree[D_CODES];
   2086 /* The static distance tree. (Actually a trivial tree since all codes use
   2087  * 5 bits.)
   2088  */
   2089 
   2090 uch _dist_code[DIST_CODE_LEN];
   2091 /* Distance codes. The first 256 values correspond to the distances
   2092  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   2093  * the 15 bit distances.
   2094  */
   2095 
   2096 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   2097 /* length code for each normalized match length (0 == MIN_MATCH) */
   2098 
   2099 local int base_length[LENGTH_CODES];
   2100 /* First normalized length for each code (0 = MIN_MATCH) */
   2101 
   2102 local int base_dist[D_CODES];
   2103 /* First normalized distance for each code (0 = distance of 1) */
   2104 
   2105 #else
   2106 /* +++ trees.h */
   2107 
   2108 /* header created automatically with -DGEN_TREES_H */
   2109 
   2110 local const ct_data static_ltree[L_CODES+2] = {
   2111 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
   2112 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
   2113 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
   2114 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
   2115 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
   2116 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
   2117 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
   2118 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
   2119 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
   2120 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
   2121 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
   2122 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
   2123 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
   2124 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
   2125 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
   2126 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
   2127 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
   2128 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
   2129 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
   2130 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
   2131 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
   2132 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
   2133 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
   2134 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
   2135 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
   2136 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
   2137 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
   2138 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
   2139 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
   2140 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
   2141 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
   2142 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
   2143 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
   2144 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
   2145 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
   2146 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
   2147 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
   2148 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
   2149 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
   2150 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
   2151 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
   2152 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
   2153 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
   2154 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
   2155 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
   2156 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
   2157 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
   2158 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
   2159 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
   2160 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
   2161 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
   2162 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
   2163 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
   2164 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
   2165 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
   2166 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
   2167 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
   2168 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
   2169 };
   2170 
   2171 local const ct_data static_dtree[D_CODES] = {
   2172 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
   2173 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
   2174 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
   2175 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
   2176 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
   2177 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
   2178 };
   2179 
   2180 const uch _dist_code[DIST_CODE_LEN] = {
   2181  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
   2182  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
   2183 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
   2184 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
   2185 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
   2186 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
   2187 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2188 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2189 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2190 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
   2191 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2192 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2193 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
   2194 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
   2195 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2196 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2197 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2198 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
   2199 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2200 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2201 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2202 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2203 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2204 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2205 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2206 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
   2207 };
   2208 
   2209 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
   2210  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
   2211 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
   2212 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
   2213 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
   2214 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
   2215 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
   2216 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2217 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2218 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2219 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
   2220 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2221 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2222 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
   2223 };
   2224 
   2225 local const int base_length[LENGTH_CODES] = {
   2226 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
   2227 64, 80, 96, 112, 128, 160, 192, 224, 0
   2228 };
   2229 
   2230 local const int base_dist[D_CODES] = {
   2231     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
   2232    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
   2233  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
   2234 };
   2235 /* --- trees.h */
   2236 
   2237 #endif /* GEN_TREES_H */
   2238 
   2239 struct static_tree_desc_s {
   2240     const ct_data *static_tree;  /* static tree or NULL */
   2241     const intf *extra_bits;      /* extra bits for each code or NULL */
   2242     int     extra_base;          /* base index for extra_bits */
   2243     int     elems;               /* max number of elements in the tree */
   2244     int     max_length;          /* max bit length for the codes */
   2245 };
   2246 
   2247 local static_tree_desc  static_l_desc =
   2248 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   2249 
   2250 local static_tree_desc  static_d_desc =
   2251 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   2252 
   2253 local static_tree_desc  static_bl_desc =
   2254 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   2255 
   2256 /* ===========================================================================
   2257  * Local (static) routines in this file.
   2258  */
   2259 
   2260 local void tr_static_init __P((void));
   2261 local void init_block     __P((deflate_state *s));
   2262 local void pqdownheap     __P((deflate_state *s, ct_data *tree, int k));
   2263 local void gen_bitlen     __P((deflate_state *s, tree_desc *desc));
   2264 local void gen_codes      __P((ct_data *tree, int max_code, ushf *bl_count));
   2265 local void build_tree     __P((deflate_state *s, tree_desc *desc));
   2266 local void scan_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2267 local void send_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2268 local int  build_bl_tree  __P((deflate_state *s));
   2269 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
   2270                               int blcodes));
   2271 local void compress_block __P((deflate_state *s, ct_data *ltree,
   2272                               ct_data *dtree));
   2273 local void set_data_type  __P((deflate_state *s));
   2274 local unsigned bi_reverse __P((unsigned value, int length));
   2275 local void bi_windup      __P((deflate_state *s));
   2276 local void bi_flush       __P((deflate_state *s));
   2277 local void copy_block     __P((deflate_state *s, charf *buf, unsigned len,
   2278                               int header));
   2279 
   2280 #ifdef GEN_TREES_H
   2281 local void gen_trees_header __P((void));
   2282 #endif
   2283 
   2284 #ifndef DEBUG_ZLIB
   2285 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   2286    /* Send a code of the given tree. c and tree must not have side effects */
   2287 
   2288 #else /* DEBUG_ZLIB */
   2289 #  define send_code(s, c, tree) \
   2290      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   2291        send_bits(s, tree[c].Code, tree[c].Len); }
   2292 #endif
   2293 
   2294 /* ===========================================================================
   2295  * Output a short LSB first on the stream.
   2296  * IN assertion: there is enough room in pendingBuf.
   2297  */
   2298 #define put_short(s, w) { \
   2299     put_byte(s, (uch)((w) & 0xff)); \
   2300     put_byte(s, (uch)((ush)(w) >> 8)); \
   2301 }
   2302 
   2303 /* ===========================================================================
   2304  * Send a value on a given number of bits.
   2305  * IN assertion: length <= 16 and value fits in length bits.
   2306  */
   2307 #ifdef DEBUG_ZLIB
   2308 local void send_bits      __P((deflate_state *s, int value, int length));
   2309 
   2310 local void send_bits(s, value, length)
   2311     deflate_state *s;
   2312     int value;  /* value to send */
   2313     int length; /* number of bits */
   2314 {
   2315     Tracevv((stderr," l %2d v %4x ", length, value));
   2316     Assert(length > 0 && length <= 15, "invalid length");
   2317     s->bits_sent += (ulg)length;
   2318 
   2319     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   2320      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   2321      * unused bits in value.
   2322      */
   2323     if (s->bi_valid > (int)Buf_size - length) {
   2324         s->bi_buf |= (value << s->bi_valid);
   2325         put_short(s, s->bi_buf);
   2326         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   2327         s->bi_valid += length - Buf_size;
   2328     } else {
   2329         s->bi_buf |= value << s->bi_valid;
   2330         s->bi_valid += length;
   2331     }
   2332 }
   2333 #else /* !DEBUG_ZLIB */
   2334 
   2335 #define send_bits(s, value, length) \
   2336 { int len = length;\
   2337   if (s->bi_valid > (int)Buf_size - len) {\
   2338     int val = value;\
   2339     s->bi_buf |= (val << s->bi_valid);\
   2340     put_short(s, s->bi_buf);\
   2341     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   2342     s->bi_valid += len - Buf_size;\
   2343   } else {\
   2344     s->bi_buf |= (value) << s->bi_valid;\
   2345     s->bi_valid += len;\
   2346   }\
   2347 }
   2348 #endif /* DEBUG_ZLIB */
   2349 
   2350 
   2351 /* ===========================================================================
   2352  * Initialize the various 'constant' tables.
   2353  */
   2354 local void tr_static_init()
   2355 {
   2356 #if defined(GEN_TREES_H) || !defined(STDC)
   2357     static int static_init_done = 0;
   2358     int n;        /* iterates over tree elements */
   2359     int bits;     /* bit counter */
   2360     int length;   /* length value */
   2361     int code;     /* code value */
   2362     int dist;     /* distance index */
   2363     ush bl_count[MAX_BITS+1];
   2364     /* number of codes at each bit length for an optimal tree */
   2365 
   2366     if (static_init_done) return;
   2367 
   2368     /* For some embedded targets, global variables are not initialized: */
   2369     static_l_desc.static_tree = static_ltree;
   2370     static_l_desc.extra_bits = extra_lbits;
   2371     static_d_desc.static_tree = static_dtree;
   2372     static_d_desc.extra_bits = extra_dbits;
   2373     static_bl_desc.extra_bits = extra_blbits;
   2374 
   2375     /* Initialize the mapping length (0..255) -> length code (0..28) */
   2376     length = 0;
   2377     for (code = 0; code < LENGTH_CODES-1; code++) {
   2378         base_length[code] = length;
   2379         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   2380             _length_code[length++] = (uch)code;
   2381         }
   2382     }
   2383     Assert (length == 256, "tr_static_init: length != 256");
   2384     /* Note that the length 255 (match length 258) can be represented
   2385      * in two different ways: code 284 + 5 bits or code 285, so we
   2386      * overwrite length_code[255] to use the best encoding:
   2387      */
   2388     _length_code[length-1] = (uch)code;
   2389 
   2390     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   2391     dist = 0;
   2392     for (code = 0 ; code < 16; code++) {
   2393         base_dist[code] = dist;
   2394         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   2395             _dist_code[dist++] = (uch)code;
   2396         }
   2397     }
   2398     Assert (dist == 256, "tr_static_init: dist != 256");
   2399     dist >>= 7; /* from now on, all distances are divided by 128 */
   2400     for ( ; code < D_CODES; code++) {
   2401         base_dist[code] = dist << 7;
   2402         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   2403             _dist_code[256 + dist++] = (uch)code;
   2404         }
   2405     }
   2406     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   2407 
   2408     /* Construct the codes of the static literal tree */
   2409     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   2410     n = 0;
   2411     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   2412     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   2413     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   2414     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   2415     /* Codes 286 and 287 do not exist, but we must include them in the
   2416      * tree construction to get a canonical Huffman tree (longest code
   2417      * all ones)
   2418      */
   2419     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   2420 
   2421     /* The static distance tree is trivial: */
   2422     for (n = 0; n < D_CODES; n++) {
   2423         static_dtree[n].Len = 5;
   2424         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   2425     }
   2426     static_init_done = 1;
   2427 
   2428 #  ifdef GEN_TREES_H
   2429     gen_trees_header();
   2430 #  endif
   2431 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   2432 }
   2433 
   2434 /* ===========================================================================
   2435  * Genererate the file trees.h describing the static trees.
   2436  */
   2437 #ifdef GEN_TREES_H
   2438 #  ifndef DEBUG_ZLIB
   2439 #    include <stdio.h>
   2440 #  endif
   2441 
   2442 #  define SEPARATOR(i, last, width) \
   2443       ((i) == (last)? "\n};\n\n" :    \
   2444        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   2445 
   2446 void gen_trees_header()
   2447 {
   2448     FILE *header = fopen("trees.h", "w");
   2449     int i;
   2450 
   2451     Assert (header != NULL, "Can't open trees.h");
   2452     fprintf(header,
   2453 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   2454 
   2455     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   2456     for (i = 0; i < L_CODES+2; i++) {
   2457 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   2458 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   2459     }
   2460 
   2461     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   2462     for (i = 0; i < D_CODES; i++) {
   2463 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   2464 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   2465     }
   2466 
   2467     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   2468     for (i = 0; i < DIST_CODE_LEN; i++) {
   2469 	fprintf(header, "%2u%s", _dist_code[i],
   2470 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   2471     }
   2472 
   2473     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   2474     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   2475 	fprintf(header, "%2u%s", _length_code[i],
   2476 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   2477     }
   2478 
   2479     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   2480     for (i = 0; i < LENGTH_CODES; i++) {
   2481 	fprintf(header, "%1u%s", base_length[i],
   2482 		SEPARATOR(i, LENGTH_CODES-1, 20));
   2483     }
   2484 
   2485     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   2486     for (i = 0; i < D_CODES; i++) {
   2487 	fprintf(header, "%5u%s", base_dist[i],
   2488 		SEPARATOR(i, D_CODES-1, 10));
   2489     }
   2490 
   2491     fclose(header);
   2492 }
   2493 #endif /* GEN_TREES_H */
   2494 
   2495 /* ===========================================================================
   2496  * Initialize the tree data structures for a new zlib stream.
   2497  */
   2498 void _tr_init(s)
   2499     deflate_state *s;
   2500 {
   2501     tr_static_init();
   2502 
   2503     s->l_desc.dyn_tree = s->dyn_ltree;
   2504     s->l_desc.stat_desc = &static_l_desc;
   2505 
   2506     s->d_desc.dyn_tree = s->dyn_dtree;
   2507     s->d_desc.stat_desc = &static_d_desc;
   2508 
   2509     s->bl_desc.dyn_tree = s->bl_tree;
   2510     s->bl_desc.stat_desc = &static_bl_desc;
   2511 
   2512     s->bi_buf = 0;
   2513     s->bi_valid = 0;
   2514     s->last_eob_len = 8; /* enough lookahead for inflate */
   2515 #ifdef DEBUG_ZLIB
   2516     s->compressed_len = 0L;
   2517     s->bits_sent = 0L;
   2518 #endif
   2519 
   2520     /* Initialize the first block of the first file: */
   2521     init_block(s);
   2522 }
   2523 
   2524 /* ===========================================================================
   2525  * Initialize a new block.
   2526  */
   2527 local void init_block(s)
   2528     deflate_state *s;
   2529 {
   2530     int n; /* iterates over tree elements */
   2531 
   2532     /* Initialize the trees. */
   2533     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   2534     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   2535     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   2536 
   2537     s->dyn_ltree[END_BLOCK].Freq = 1;
   2538     s->opt_len = s->static_len = 0L;
   2539     s->last_lit = s->matches = 0;
   2540 }
   2541 
   2542 #define SMALLEST 1
   2543 /* Index within the heap array of least frequent node in the Huffman tree */
   2544 
   2545 
   2546 /* ===========================================================================
   2547  * Remove the smallest element from the heap and recreate the heap with
   2548  * one less element. Updates heap and heap_len.
   2549  */
   2550 #define pqremove(s, tree, top) \
   2551 {\
   2552     top = s->heap[SMALLEST]; \
   2553     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   2554     pqdownheap(s, tree, SMALLEST); \
   2555 }
   2556 
   2557 /* ===========================================================================
   2558  * Compares to subtrees, using the tree depth as tie breaker when
   2559  * the subtrees have equal frequency. This minimizes the worst case length.
   2560  */
   2561 #define smaller(tree, n, m, depth) \
   2562    (tree[n].Freq < tree[m].Freq || \
   2563    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   2564 
   2565 /* ===========================================================================
   2566  * Restore the heap property by moving down the tree starting at node k,
   2567  * exchanging a node with the smallest of its two sons if necessary, stopping
   2568  * when the heap property is re-established (each father smaller than its
   2569  * two sons).
   2570  */
   2571 local void pqdownheap(s, tree, k)
   2572     deflate_state *s;
   2573     ct_data *tree;  /* the tree to restore */
   2574     int k;               /* node to move down */
   2575 {
   2576     int v = s->heap[k];
   2577     int j = k << 1;  /* left son of k */
   2578     while (j <= s->heap_len) {
   2579         /* Set j to the smallest of the two sons: */
   2580         if (j < s->heap_len &&
   2581             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   2582             j++;
   2583         }
   2584         /* Exit if v is smaller than both sons */
   2585         if (smaller(tree, v, s->heap[j], s->depth)) break;
   2586 
   2587         /* Exchange v with the smallest son */
   2588         s->heap[k] = s->heap[j];  k = j;
   2589 
   2590         /* And continue down the tree, setting j to the left son of k */
   2591         j <<= 1;
   2592     }
   2593     s->heap[k] = v;
   2594 }
   2595 
   2596 /* ===========================================================================
   2597  * Compute the optimal bit lengths for a tree and update the total bit length
   2598  * for the current block.
   2599  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   2600  *    above are the tree nodes sorted by increasing frequency.
   2601  * OUT assertions: the field len is set to the optimal bit length, the
   2602  *     array bl_count contains the frequencies for each bit length.
   2603  *     The length opt_len is updated; static_len is also updated if stree is
   2604  *     not null.
   2605  */
   2606 local void gen_bitlen(s, desc)
   2607     deflate_state *s;
   2608     tree_desc *desc;    /* the tree descriptor */
   2609 {
   2610     ct_data *tree        = desc->dyn_tree;
   2611     int max_code         = desc->max_code;
   2612     const ct_data *stree = desc->stat_desc->static_tree;
   2613     const intf *extra    = desc->stat_desc->extra_bits;
   2614     int base             = desc->stat_desc->extra_base;
   2615     int max_length       = desc->stat_desc->max_length;
   2616     int h;              /* heap index */
   2617     int n, m;           /* iterate over the tree elements */
   2618     int bits;           /* bit length */
   2619     int xbits;          /* extra bits */
   2620     ush f;              /* frequency */
   2621     int overflow = 0;   /* number of elements with bit length too large */
   2622 
   2623     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   2624 
   2625     /* In a first pass, compute the optimal bit lengths (which may
   2626      * overflow in the case of the bit length tree).
   2627      */
   2628     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   2629 
   2630     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   2631         n = s->heap[h];
   2632         bits = tree[tree[n].Dad].Len + 1;
   2633         if (bits > max_length) bits = max_length, overflow++;
   2634         tree[n].Len = (ush)bits;
   2635         /* We overwrite tree[n].Dad which is no longer needed */
   2636 
   2637         if (n > max_code) continue; /* not a leaf node */
   2638 
   2639         s->bl_count[bits]++;
   2640         xbits = 0;
   2641         if (n >= base) xbits = extra[n-base];
   2642         f = tree[n].Freq;
   2643         s->opt_len += (ulg)f * (bits + xbits);
   2644         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   2645     }
   2646     if (overflow == 0) return;
   2647 
   2648     Trace((stderr,"\nbit length overflow\n"));
   2649     /* This happens for example on obj2 and pic of the Calgary corpus */
   2650 
   2651     /* Find the first bit length which could increase: */
   2652     do {
   2653         bits = max_length-1;
   2654         while (s->bl_count[bits] == 0) bits--;
   2655         s->bl_count[bits]--;      /* move one leaf down the tree */
   2656         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   2657         s->bl_count[max_length]--;
   2658         /* The brother of the overflow item also moves one step up,
   2659          * but this does not affect bl_count[max_length]
   2660          */
   2661         overflow -= 2;
   2662     } while (overflow > 0);
   2663 
   2664     /* Now recompute all bit lengths, scanning in increasing frequency.
   2665      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   2666      * lengths instead of fixing only the wrong ones. This idea is taken
   2667      * from 'ar' written by Haruhiko Okumura.)
   2668      */
   2669     for (bits = max_length; bits != 0; bits--) {
   2670         n = s->bl_count[bits];
   2671         while (n != 0) {
   2672             m = s->heap[--h];
   2673             if (m > max_code) continue;
   2674             if (tree[m].Len != (unsigned) bits) {
   2675                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   2676                 s->opt_len += ((long)bits - (long)tree[m].Len)
   2677                               *(long)tree[m].Freq;
   2678                 tree[m].Len = (ush)bits;
   2679             }
   2680             n--;
   2681         }
   2682     }
   2683 }
   2684 
   2685 /* ===========================================================================
   2686  * Generate the codes for a given tree and bit counts (which need not be
   2687  * optimal).
   2688  * IN assertion: the array bl_count contains the bit length statistics for
   2689  * the given tree and the field len is set for all tree elements.
   2690  * OUT assertion: the field code is set for all tree elements of non
   2691  *     zero code length.
   2692  */
   2693 local void gen_codes (tree, max_code, bl_count)
   2694     ct_data *tree;             /* the tree to decorate */
   2695     int max_code;              /* largest code with non zero frequency */
   2696     ushf *bl_count;            /* number of codes at each bit length */
   2697 {
   2698     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   2699     ush code = 0;              /* running code value */
   2700     int bits;                  /* bit index */
   2701     int n;                     /* code index */
   2702 
   2703     /* The distribution counts are first used to generate the code values
   2704      * without bit reversal.
   2705      */
   2706     for (bits = 1; bits <= MAX_BITS; bits++) {
   2707         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   2708     }
   2709     /* Check that the bit counts in bl_count are consistent. The last code
   2710      * must be all ones.
   2711      */
   2712     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   2713             "inconsistent bit counts");
   2714     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   2715 
   2716     for (n = 0;  n <= max_code; n++) {
   2717         int len = tree[n].Len;
   2718         if (len == 0) continue;
   2719         /* Now reverse the bits */
   2720         tree[n].Code = bi_reverse(next_code[len]++, len);
   2721 
   2722         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   2723              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   2724     }
   2725 }
   2726 
   2727 /* ===========================================================================
   2728  * Construct one Huffman tree and assigns the code bit strings and lengths.
   2729  * Update the total bit length for the current block.
   2730  * IN assertion: the field freq is set for all tree elements.
   2731  * OUT assertions: the fields len and code are set to the optimal bit length
   2732  *     and corresponding code. The length opt_len is updated; static_len is
   2733  *     also updated if stree is not null. The field max_code is set.
   2734  */
   2735 local void build_tree(s, desc)
   2736     deflate_state *s;
   2737     tree_desc *desc; /* the tree descriptor */
   2738 {
   2739     ct_data *tree         = desc->dyn_tree;
   2740     const ct_data *stree  = desc->stat_desc->static_tree;
   2741     int elems             = desc->stat_desc->elems;
   2742     int n, m;          /* iterate over heap elements */
   2743     int max_code = -1; /* largest code with non zero frequency */
   2744     int node;          /* new node being created */
   2745 
   2746     /* Construct the initial heap, with least frequent element in
   2747      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   2748      * heap[0] is not used.
   2749      */
   2750     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   2751 
   2752     for (n = 0; n < elems; n++) {
   2753         if (tree[n].Freq != 0) {
   2754             s->heap[++(s->heap_len)] = max_code = n;
   2755             s->depth[n] = 0;
   2756         } else {
   2757             tree[n].Len = 0;
   2758         }
   2759     }
   2760 
   2761     /* The pkzip format requires that at least one distance code exists,
   2762      * and that at least one bit should be sent even if there is only one
   2763      * possible code. So to avoid special checks later on we force at least
   2764      * two codes of non zero frequency.
   2765      */
   2766     while (s->heap_len < 2) {
   2767         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   2768         tree[node].Freq = 1;
   2769         s->depth[node] = 0;
   2770         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   2771         /* node is 0 or 1 so it does not have extra bits */
   2772     }
   2773     desc->max_code = max_code;
   2774 
   2775     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   2776      * establish sub-heaps of increasing lengths:
   2777      */
   2778     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   2779 
   2780     /* Construct the Huffman tree by repeatedly combining the least two
   2781      * frequent nodes.
   2782      */
   2783     node = elems;              /* next internal node of the tree */
   2784     do {
   2785         pqremove(s, tree, n);  /* n = node of least frequency */
   2786         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   2787 
   2788         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   2789         s->heap[--(s->heap_max)] = m;
   2790 
   2791         /* Create a new node father of n and m */
   2792         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   2793         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   2794         tree[n].Dad = tree[m].Dad = (ush)node;
   2795 #ifdef DUMP_BL_TREE
   2796         if (tree == s->bl_tree) {
   2797             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   2798                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   2799         }
   2800 #endif
   2801         /* and insert the new node in the heap */
   2802         s->heap[SMALLEST] = node++;
   2803         pqdownheap(s, tree, SMALLEST);
   2804 
   2805     } while (s->heap_len >= 2);
   2806 
   2807     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   2808 
   2809     /* At this point, the fields freq and dad are set. We can now
   2810      * generate the bit lengths.
   2811      */
   2812     gen_bitlen(s, (tree_desc *)desc);
   2813 
   2814     /* The field len is now set, we can generate the bit codes */
   2815     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   2816 }
   2817 
   2818 /* ===========================================================================
   2819  * Scan a literal or distance tree to determine the frequencies of the codes
   2820  * in the bit length tree.
   2821  */
   2822 local void scan_tree (s, tree, max_code)
   2823     deflate_state *s;
   2824     ct_data *tree;   /* the tree to be scanned */
   2825     int max_code;    /* and its largest code of non zero frequency */
   2826 {
   2827     int n;                     /* iterates over all tree elements */
   2828     int prevlen = -1;          /* last emitted length */
   2829     int curlen;                /* length of current code */
   2830     int nextlen = tree[0].Len; /* length of next code */
   2831     int count = 0;             /* repeat count of the current code */
   2832     int max_count = 7;         /* max repeat count */
   2833     int min_count = 4;         /* min repeat count */
   2834 
   2835     if (nextlen == 0) max_count = 138, min_count = 3;
   2836     tree[max_code+1].Len = (ush)0xffff; /* guard */
   2837 
   2838     for (n = 0; n <= max_code; n++) {
   2839         curlen = nextlen; nextlen = tree[n+1].Len;
   2840         if (++count < max_count && curlen == nextlen) {
   2841             continue;
   2842         } else if (count < min_count) {
   2843             s->bl_tree[curlen].Freq += count;
   2844         } else if (curlen != 0) {
   2845             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   2846             s->bl_tree[REP_3_6].Freq++;
   2847         } else if (count <= 10) {
   2848             s->bl_tree[REPZ_3_10].Freq++;
   2849         } else {
   2850             s->bl_tree[REPZ_11_138].Freq++;
   2851         }
   2852         count = 0; prevlen = curlen;
   2853         if (nextlen == 0) {
   2854             max_count = 138, min_count = 3;
   2855         } else if (curlen == nextlen) {
   2856             max_count = 6, min_count = 3;
   2857         } else {
   2858             max_count = 7, min_count = 4;
   2859         }
   2860     }
   2861 }
   2862 
   2863 /* ===========================================================================
   2864  * Send a literal or distance tree in compressed form, using the codes in
   2865  * bl_tree.
   2866  */
   2867 local void send_tree (s, tree, max_code)
   2868     deflate_state *s;
   2869     ct_data *tree; /* the tree to be scanned */
   2870     int max_code;       /* and its largest code of non zero frequency */
   2871 {
   2872     int n;                     /* iterates over all tree elements */
   2873     int prevlen = -1;          /* last emitted length */
   2874     int curlen;                /* length of current code */
   2875     int nextlen = tree[0].Len; /* length of next code */
   2876     int count = 0;             /* repeat count of the current code */
   2877     int max_count = 7;         /* max repeat count */
   2878     int min_count = 4;         /* min repeat count */
   2879 
   2880     /* tree[max_code+1].Len = -1; */  /* guard already set */
   2881     if (nextlen == 0) max_count = 138, min_count = 3;
   2882 
   2883     for (n = 0; n <= max_code; n++) {
   2884         curlen = nextlen; nextlen = tree[n+1].Len;
   2885         if (++count < max_count && curlen == nextlen) {
   2886             continue;
   2887         } else if (count < min_count) {
   2888             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   2889 
   2890         } else if (curlen != 0) {
   2891             if (curlen != prevlen) {
   2892                 send_code(s, curlen, s->bl_tree); count--;
   2893             }
   2894             Assert(count >= 3 && count <= 6, " 3_6?");
   2895             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   2896 
   2897         } else if (count <= 10) {
   2898             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   2899 
   2900         } else {
   2901             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   2902         }
   2903         count = 0; prevlen = curlen;
   2904         if (nextlen == 0) {
   2905             max_count = 138, min_count = 3;
   2906         } else if (curlen == nextlen) {
   2907             max_count = 6, min_count = 3;
   2908         } else {
   2909             max_count = 7, min_count = 4;
   2910         }
   2911     }
   2912 }
   2913 
   2914 /* ===========================================================================
   2915  * Construct the Huffman tree for the bit lengths and return the index in
   2916  * bl_order of the last bit length code to send.
   2917  */
   2918 local int build_bl_tree(s)
   2919     deflate_state *s;
   2920 {
   2921     int max_blindex;  /* index of last bit length code of non zero freq */
   2922 
   2923     /* Determine the bit length frequencies for literal and distance trees */
   2924     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   2925     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   2926 
   2927     /* Build the bit length tree: */
   2928     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   2929     /* opt_len now includes the length of the tree representations, except
   2930      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   2931      */
   2932 
   2933     /* Determine the number of bit length codes to send. The pkzip format
   2934      * requires that at least 4 bit length codes be sent. (appnote.txt says
   2935      * 3 but the actual value used is 4.)
   2936      */
   2937     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   2938         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   2939     }
   2940     /* Update opt_len to include the bit length tree and counts */
   2941     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   2942     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   2943             s->opt_len, s->static_len));
   2944 
   2945     return max_blindex;
   2946 }
   2947 
   2948 /* ===========================================================================
   2949  * Send the header for a block using dynamic Huffman trees: the counts, the
   2950  * lengths of the bit length codes, the literal tree and the distance tree.
   2951  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   2952  */
   2953 local void send_all_trees(s, lcodes, dcodes, blcodes)
   2954     deflate_state *s;
   2955     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   2956 {
   2957     int rank;                    /* index in bl_order */
   2958 
   2959     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   2960     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   2961             "too many codes");
   2962     Tracev((stderr, "\nbl counts: "));
   2963     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   2964     send_bits(s, dcodes-1,   5);
   2965     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   2966     for (rank = 0; rank < blcodes; rank++) {
   2967         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   2968         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   2969     }
   2970     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   2971 
   2972     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   2973     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   2974 
   2975     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   2976     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   2977 }
   2978 
   2979 /* ===========================================================================
   2980  * Send a stored block
   2981  */
   2982 void _tr_stored_block(s, buf, stored_len, eof)
   2983     deflate_state *s;
   2984     charf *buf;       /* input block */
   2985     ulg stored_len;   /* length of input block */
   2986     int eof;          /* true if this is the last block for a file */
   2987 {
   2988     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   2989 #ifdef DEBUG_ZLIB
   2990     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   2991     s->compressed_len += (stored_len + 4) << 3;
   2992 #endif
   2993     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   2994 }
   2995 
   2996 /* Send just the `stored block' type code without any length bytes or data.
   2997  */
   2998 void _tr_stored_type_only(s)
   2999     deflate_state *s;
   3000 {
   3001     send_bits(s, (STORED_BLOCK << 1), 3);
   3002     bi_windup(s);
   3003 #ifdef DEBUG_ZLIB
   3004     s->compressed_len = (s->compressed_len + 3) & ~7L;
   3005 #endif
   3006 }
   3007 
   3008 /* ===========================================================================
   3009  * Send one empty static block to give enough lookahead for inflate.
   3010  * This takes 10 bits, of which 7 may remain in the bit buffer.
   3011  * The current inflate code requires 9 bits of lookahead. If the
   3012  * last two codes for the previous block (real code plus EOB) were coded
   3013  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   3014  * the last real code. In this case we send two empty static blocks instead
   3015  * of one. (There are no problems if the previous block is stored or fixed.)
   3016  * To simplify the code, we assume the worst case of last real code encoded
   3017  * on one bit only.
   3018  */
   3019 void _tr_align(s)
   3020     deflate_state *s;
   3021 {
   3022     send_bits(s, STATIC_TREES<<1, 3);
   3023     send_code(s, END_BLOCK, static_ltree);
   3024 #ifdef DEBUG_ZLIB
   3025     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   3026 #endif
   3027     bi_flush(s);
   3028     /* Of the 10 bits for the empty block, we have already sent
   3029      * (10 - bi_valid) bits. The lookahead for the last real code (before
   3030      * the EOB of the previous block) was thus at least one plus the length
   3031      * of the EOB plus what we have just sent of the empty static block.
   3032      */
   3033     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   3034         send_bits(s, STATIC_TREES<<1, 3);
   3035         send_code(s, END_BLOCK, static_ltree);
   3036 #ifdef DEBUG_ZLIB
   3037         s->compressed_len += 10L;
   3038 #endif
   3039         bi_flush(s);
   3040     }
   3041     s->last_eob_len = 7;
   3042 }
   3043 
   3044 /* ===========================================================================
   3045  * Determine the best encoding for the current block: dynamic trees, static
   3046  * trees or store, and output the encoded block to the zip file.
   3047  */
   3048 void _tr_flush_block(s, buf, stored_len, eof)
   3049     deflate_state *s;
   3050     charf *buf;       /* input block, or NULL if too old */
   3051     ulg stored_len;   /* length of input block */
   3052     int eof;          /* true if this is the last block for a file */
   3053 {
   3054     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   3055     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   3056 
   3057     /* Build the Huffman trees unless a stored block is forced */
   3058     if (s->level > 0) {
   3059 
   3060 	 /* Check if the file is ascii or binary */
   3061 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   3062 
   3063 	/* Construct the literal and distance trees */
   3064 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   3065 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   3066 		s->static_len));
   3067 
   3068 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   3069 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   3070 		s->static_len));
   3071 	/* At this point, opt_len and static_len are the total bit lengths of
   3072 	 * the compressed block data, excluding the tree representations.
   3073 	 */
   3074 
   3075 	/* Build the bit length tree for the above two trees, and get the index
   3076 	 * in bl_order of the last bit length code to send.
   3077 	 */
   3078 	max_blindex = build_bl_tree(s);
   3079 
   3080 	/* Determine the best encoding. Compute first the block length in bytes*/
   3081 	opt_lenb = (s->opt_len+3+7)>>3;
   3082 	static_lenb = (s->static_len+3+7)>>3;
   3083 
   3084 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   3085 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   3086 		s->last_lit));
   3087 
   3088 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   3089 
   3090     } else {
   3091         Assert(buf != (char*)0, "lost buf");
   3092 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   3093     }
   3094 
   3095 #ifdef FORCE_STORED
   3096     if (buf != (char*)0) { /* force stored block */
   3097 #else
   3098     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   3099                        /* 4: two words for the lengths */
   3100 #endif
   3101         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   3102          * Otherwise we can't have processed more than WSIZE input bytes since
   3103          * the last block flush, because compression would have been
   3104          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   3105          * transform a block into a stored block.
   3106          */
   3107         _tr_stored_block(s, buf, stored_len, eof);
   3108 
   3109 #ifdef FORCE_STATIC
   3110     } else if (static_lenb >= 0) { /* force static trees */
   3111 #else
   3112     } else if (static_lenb == opt_lenb) {
   3113 #endif
   3114         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   3115         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   3116 #ifdef DEBUG_ZLIB
   3117         s->compressed_len += 3 + s->static_len;
   3118 #endif
   3119     } else {
   3120         send_bits(s, (DYN_TREES<<1)+eof, 3);
   3121         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   3122                        max_blindex+1);
   3123         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   3124 #ifdef DEBUG_ZLIB
   3125         s->compressed_len += 3 + s->opt_len;
   3126 #endif
   3127     }
   3128     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   3129     /* The above check is made mod 2^32, for files larger than 512 MB
   3130      * and uLong implemented on 32 bits.
   3131      */
   3132     init_block(s);
   3133 
   3134     if (eof) {
   3135         bi_windup(s);
   3136 #ifdef DEBUG_ZLIB
   3137         s->compressed_len += 7;  /* align on byte boundary */
   3138 #endif
   3139     }
   3140     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   3141            s->compressed_len-7*eof));
   3142 }
   3143 
   3144 /* ===========================================================================
   3145  * Save the match info and tally the frequency counts. Return true if
   3146  * the current block must be flushed.
   3147  */
   3148 int _tr_tally (s, dist, lc)
   3149     deflate_state *s;
   3150     unsigned dist;  /* distance of matched string */
   3151     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   3152 {
   3153     s->d_buf[s->last_lit] = (ush)dist;
   3154     s->l_buf[s->last_lit++] = (uch)lc;
   3155     if (dist == 0) {
   3156         /* lc is the unmatched char */
   3157         s->dyn_ltree[lc].Freq++;
   3158     } else {
   3159         s->matches++;
   3160         /* Here, lc is the match length - MIN_MATCH */
   3161         dist--;             /* dist = match distance - 1 */
   3162         Assert((ush)dist < (ush)MAX_DIST(s) &&
   3163                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   3164                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   3165 
   3166         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   3167         s->dyn_dtree[d_code(dist)].Freq++;
   3168     }
   3169 
   3170 #ifdef TRUNCATE_BLOCK
   3171     /* Try to guess if it is profitable to stop the current block here */
   3172     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   3173         /* Compute an upper bound for the compressed length */
   3174         ulg out_length = (ulg)s->last_lit*8L;
   3175         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   3176         int dcode;
   3177         for (dcode = 0; dcode < D_CODES; dcode++) {
   3178             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   3179                 (5L+extra_dbits[dcode]);
   3180         }
   3181         out_length >>= 3;
   3182         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   3183                s->last_lit, in_length, out_length,
   3184                100L - out_length*100L/in_length));
   3185         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   3186     }
   3187 #endif
   3188     return (s->last_lit == s->lit_bufsize-1);
   3189     /* We avoid equality with lit_bufsize because of wraparound at 64K
   3190      * on 16 bit machines and because stored blocks are restricted to
   3191      * 64K-1 bytes.
   3192      */
   3193 }
   3194 
   3195 /* ===========================================================================
   3196  * Send the block data compressed using the given Huffman trees
   3197  */
   3198 local void compress_block(s, ltree, dtree)
   3199     deflate_state *s;
   3200     ct_data *ltree; /* literal tree */
   3201     ct_data *dtree; /* distance tree */
   3202 {
   3203     unsigned dist;      /* distance of matched string */
   3204     int lc;             /* match length or unmatched char (if dist == 0) */
   3205     unsigned lx = 0;    /* running index in l_buf */
   3206     unsigned code;      /* the code to send */
   3207     int extra;          /* number of extra bits to send */
   3208 
   3209     if (s->last_lit != 0) do {
   3210         dist = s->d_buf[lx];
   3211         lc = s->l_buf[lx++];
   3212         if (dist == 0) {
   3213             send_code(s, lc, ltree); /* send a literal byte */
   3214             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   3215         } else {
   3216             /* Here, lc is the match length - MIN_MATCH */
   3217             code = _length_code[lc];
   3218             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   3219             extra = extra_lbits[code];
   3220             if (extra != 0) {
   3221                 lc -= base_length[code];
   3222                 send_bits(s, lc, extra);       /* send the extra length bits */
   3223             }
   3224             dist--; /* dist is now the match distance - 1 */
   3225             code = d_code(dist);
   3226             Assert (code < D_CODES, "bad d_code");
   3227 
   3228             send_code(s, code, dtree);       /* send the distance code */
   3229             extra = extra_dbits[code];
   3230             if (extra != 0) {
   3231                 dist -= base_dist[code];
   3232                 send_bits(s, dist, extra);   /* send the extra distance bits */
   3233             }
   3234         } /* literal or match pair ? */
   3235 
   3236         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   3237         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
   3238 
   3239     } while (lx < s->last_lit);
   3240 
   3241     send_code(s, END_BLOCK, ltree);
   3242     s->last_eob_len = ltree[END_BLOCK].Len;
   3243 }
   3244 
   3245 /* ===========================================================================
   3246  * Set the data type to ASCII or BINARY, using a crude approximation:
   3247  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
   3248  * IN assertion: the fields freq of dyn_ltree are set and the total of all
   3249  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
   3250  */
   3251 local void set_data_type(s)
   3252     deflate_state *s;
   3253 {
   3254     int n = 0;
   3255     unsigned ascii_freq = 0;
   3256     unsigned bin_freq = 0;
   3257     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
   3258     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
   3259     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
   3260     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
   3261 }
   3262 
   3263 /* ===========================================================================
   3264  * Reverse the first len bits of a code, using straightforward code (a faster
   3265  * method would use a table)
   3266  * IN assertion: 1 <= len <= 15
   3267  */
   3268 local unsigned bi_reverse(code, len)
   3269     unsigned code; /* the value to invert */
   3270     int len;       /* its bit length */
   3271 {
   3272     unsigned res = 0;
   3273     do {
   3274         res |= code & 1;
   3275         code >>= 1, res <<= 1;
   3276     } while (--len > 0);
   3277     return res >> 1;
   3278 }
   3279 
   3280 /* ===========================================================================
   3281  * Flush the bit buffer, keeping at most 7 bits in it.
   3282  */
   3283 local void bi_flush(s)
   3284     deflate_state *s;
   3285 {
   3286     if (s->bi_valid == 16) {
   3287         put_short(s, s->bi_buf);
   3288         s->bi_buf = 0;
   3289         s->bi_valid = 0;
   3290     } else if (s->bi_valid >= 8) {
   3291         put_byte(s, (Byte)s->bi_buf);
   3292         s->bi_buf >>= 8;
   3293         s->bi_valid -= 8;
   3294     }
   3295 }
   3296 
   3297 /* ===========================================================================
   3298  * Flush the bit buffer and align the output on a byte boundary
   3299  */
   3300 local void bi_windup(s)
   3301     deflate_state *s;
   3302 {
   3303     if (s->bi_valid > 8) {
   3304         put_short(s, s->bi_buf);
   3305     } else if (s->bi_valid > 0) {
   3306         put_byte(s, (Byte)s->bi_buf);
   3307     }
   3308     s->bi_buf = 0;
   3309     s->bi_valid = 0;
   3310 #ifdef DEBUG_ZLIB
   3311     s->bits_sent = (s->bits_sent+7) & ~7;
   3312 #endif
   3313 }
   3314 
   3315 /* ===========================================================================
   3316  * Copy a stored block, storing first the length and its
   3317  * one's complement if requested.
   3318  */
   3319 local void copy_block(s, buf, len, header)
   3320     deflate_state *s;
   3321     charf    *buf;    /* the input data */
   3322     unsigned len;     /* its length */
   3323     int      header;  /* true if block header must be written */
   3324 {
   3325     bi_windup(s);        /* align on byte boundary */
   3326     s->last_eob_len = 8; /* enough lookahead for inflate */
   3327 
   3328     if (header) {
   3329         put_short(s, (ush)len);
   3330         put_short(s, (ush)~len);
   3331 #ifdef DEBUG_ZLIB
   3332         s->bits_sent += 2*16;
   3333 #endif
   3334     }
   3335 #ifdef DEBUG_ZLIB
   3336     s->bits_sent += (ulg)len<<3;
   3337 #endif
   3338     /* bundle up the put_byte(s, *buf++) calls */
   3339     zmemcpy(&s->pending_buf[s->pending], buf, len);
   3340     s->pending += len;
   3341 }
   3342 /* --- trees.c */
   3343 
   3344 /* +++ inflate.c */
   3345 
   3346 /* inflate.c -- zlib interface to inflate modules
   3347  * Copyright (C) 1995-2002 Mark Adler
   3348  * For conditions of distribution and use, see copyright notice in zlib.h
   3349  */
   3350 
   3351 /* #include "zutil.h" */
   3352 
   3353 /* +++ infblock.h */
   3354 
   3355 /* infblock.h -- header to use infblock.c
   3356  * Copyright (C) 1995-2002 Mark Adler
   3357  * For conditions of distribution and use, see copyright notice in zlib.h
   3358  */
   3359 
   3360 /* WARNING: this file should *not* be used by applications. It is
   3361    part of the implementation of the compression library and is
   3362    subject to change. Applications should only use zlib.h.
   3363  */
   3364 
   3365 struct inflate_blocks_state;
   3366 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
   3367 
   3368 extern inflate_blocks_statef * inflate_blocks_new __P((
   3369     z_streamp z,
   3370     check_func c,               /* check function */
   3371     uInt w));                   /* window size */
   3372 
   3373 extern int inflate_blocks __P((
   3374     inflate_blocks_statef *,
   3375     z_streamp ,
   3376     int));                      /* initial return code */
   3377 
   3378 extern void inflate_blocks_reset __P((
   3379     inflate_blocks_statef *,
   3380     z_streamp ,
   3381     uLongf *));                  /* check value on output */
   3382 
   3383 extern int inflate_blocks_free __P((
   3384     inflate_blocks_statef *,
   3385     z_streamp));
   3386 
   3387 extern void inflate_set_dictionary __P((
   3388     inflate_blocks_statef *s,
   3389     const Bytef *d,  /* dictionary */
   3390     uInt  n));       /* dictionary length */
   3391 
   3392 extern int inflate_blocks_sync_point __P((
   3393     inflate_blocks_statef *s));
   3394 extern int inflate_addhistory __P((
   3395     inflate_blocks_statef *,
   3396     z_streamp));
   3397 
   3398 extern int inflate_packet_flush __P((
   3399     inflate_blocks_statef *));
   3400 
   3401 /* --- infblock.h */
   3402 
   3403 #ifndef NO_DUMMY_DECL
   3404 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
   3405 #endif
   3406 
   3407 typedef enum {
   3408       METHOD,   /* waiting for method byte */
   3409       FLAG,     /* waiting for flag byte */
   3410       DICT4,    /* four dictionary check bytes to go */
   3411       DICT3,    /* three dictionary check bytes to go */
   3412       DICT2,    /* two dictionary check bytes to go */
   3413       DICT1,    /* one dictionary check byte to go */
   3414       DICT0,    /* waiting for inflateSetDictionary */
   3415       BLOCKS,   /* decompressing blocks */
   3416       CHECK4,   /* four check bytes to go */
   3417       CHECK3,   /* three check bytes to go */
   3418       CHECK2,   /* two check bytes to go */
   3419       CHECK1,   /* one check byte to go */
   3420       DONE,     /* finished check, done */
   3421       BAD}      /* got an error--stay here */
   3422 inflate_mode;
   3423 
   3424 /* inflate private state */
   3425 struct internal_state {
   3426 
   3427   /* mode */
   3428   inflate_mode  mode;   /* current inflate mode */
   3429 
   3430   /* mode dependent information */
   3431   union {
   3432     uInt method;        /* if FLAGS, method byte */
   3433     struct {
   3434       uLong was;                /* computed check value */
   3435       uLong need;               /* stream check value */
   3436     } check;            /* if CHECK, check values to compare */
   3437     uInt marker;        /* if BAD, inflateSync's marker bytes count */
   3438   } sub;        /* submode */
   3439 
   3440   /* mode independent information */
   3441   int  nowrap;          /* flag for no wrapper */
   3442   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
   3443   inflate_blocks_statef
   3444     *blocks;            /* current inflate_blocks state */
   3445 
   3446 };
   3447 
   3448 
   3449 int ZEXPORT inflateReset(z)
   3450 z_streamp z;
   3451 {
   3452   if (z == Z_NULL || z->state == Z_NULL)
   3453     return Z_STREAM_ERROR;
   3454   z->total_in = z->total_out = 0;
   3455   z->msg = Z_NULL;
   3456   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
   3457   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
   3458   Tracev((stderr, "inflate: reset\n"));
   3459   return Z_OK;
   3460 }
   3461 
   3462 
   3463 int ZEXPORT inflateEnd(z)
   3464 z_streamp z;
   3465 {
   3466   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
   3467     return Z_STREAM_ERROR;
   3468   if (z->state->blocks != Z_NULL)
   3469     inflate_blocks_free(z->state->blocks, z);
   3470   ZFREE(z, z->state);
   3471   z->state = Z_NULL;
   3472   Tracev((stderr, "inflate: end\n"));
   3473   return Z_OK;
   3474 }
   3475 
   3476 
   3477 int ZEXPORT inflateInit2_(z, w, version, stream_size)
   3478 z_streamp z;
   3479 int w;
   3480 const char *version;
   3481 int stream_size;
   3482 {
   3483   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
   3484       stream_size != sizeof(z_stream))
   3485       return Z_VERSION_ERROR;
   3486 
   3487   /* initialize state */
   3488   if (z == Z_NULL)
   3489     return Z_STREAM_ERROR;
   3490   z->msg = Z_NULL;
   3491 #ifndef NO_ZCFUNCS
   3492   if (z->zalloc == Z_NULL)
   3493   {
   3494     z->zalloc = zcalloc;
   3495     z->opaque = (voidpf)0;
   3496   }
   3497   if (z->zfree == Z_NULL) z->zfree = zcfree;
   3498 #endif
   3499   if ((z->state = (struct internal_state FAR *)
   3500        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
   3501     return Z_MEM_ERROR;
   3502   z->state->blocks = Z_NULL;
   3503 
   3504   /* handle undocumented nowrap option (no zlib header or check) */
   3505   z->state->nowrap = 0;
   3506   if (w < 0)
   3507   {
   3508     w = - w;
   3509     z->state->nowrap = 1;
   3510   }
   3511 
   3512   /* set window size */
   3513   if (w < 8 || w > 15)
   3514   {
   3515     inflateEnd(z);
   3516     return Z_STREAM_ERROR;
   3517   }
   3518   z->state->wbits = (uInt)w;
   3519 
   3520   /* create inflate_blocks state */
   3521   if ((z->state->blocks =
   3522       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
   3523       == Z_NULL)
   3524   {
   3525     inflateEnd(z);
   3526     return Z_MEM_ERROR;
   3527   }
   3528   Tracev((stderr, "inflate: allocated\n"));
   3529 
   3530   /* reset state */
   3531   inflateReset(z);
   3532   return Z_OK;
   3533 }
   3534 
   3535 
   3536 int ZEXPORT inflateInit_(z, version, stream_size)
   3537 z_streamp z;
   3538 const char *version;
   3539 int stream_size;
   3540 {
   3541   return inflateInit2_(z, DEF_WBITS, version, stream_size);
   3542 }
   3543 
   3544 
   3545 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
   3546 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
   3547 
   3548 int ZEXPORT inflate(z, f)
   3549 z_streamp z;
   3550 int f;
   3551 {
   3552   int r, r2;
   3553   uInt b;
   3554 
   3555   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
   3556     return Z_STREAM_ERROR;
   3557   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
   3558   r = Z_BUF_ERROR;
   3559   while (1) switch (z->state->mode)
   3560   {
   3561     case METHOD:
   3562       NEEDBYTE
   3563       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
   3564       {
   3565         z->state->mode = BAD;
   3566         z->msg = (char*)"unknown compression method";
   3567         z->state->sub.marker = 5;       /* can't try inflateSync */
   3568         break;
   3569       }
   3570       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
   3571       {
   3572         z->state->mode = BAD;
   3573         z->msg = (char*)"invalid window size";
   3574         z->state->sub.marker = 5;       /* can't try inflateSync */
   3575         break;
   3576       }
   3577       z->state->mode = FLAG;
   3578     case FLAG:
   3579       NEEDBYTE
   3580       b = NEXTBYTE;
   3581       if (((z->state->sub.method << 8) + b) % 31)
   3582       {
   3583         z->state->mode = BAD;
   3584         z->msg = (char*)"incorrect header check";
   3585         z->state->sub.marker = 5;       /* can't try inflateSync */
   3586         break;
   3587       }
   3588       Tracev((stderr, "inflate: zlib header ok\n"));
   3589       if (!(b & PRESET_DICT))
   3590       {
   3591         z->state->mode = BLOCKS;
   3592         break;
   3593       }
   3594       z->state->mode = DICT4;
   3595     case DICT4:
   3596       NEEDBYTE
   3597       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3598       z->state->mode = DICT3;
   3599     case DICT3:
   3600       NEEDBYTE
   3601       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3602       z->state->mode = DICT2;
   3603     case DICT2:
   3604       NEEDBYTE
   3605       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3606       z->state->mode = DICT1;
   3607     case DICT1:
   3608       NEEDBYTE
   3609       z->state->sub.check.need += (uLong)NEXTBYTE;
   3610       z->adler = z->state->sub.check.need;
   3611       z->state->mode = DICT0;
   3612       return Z_NEED_DICT;
   3613     case DICT0:
   3614       z->state->mode = BAD;
   3615       z->msg = (char*)"need dictionary";
   3616       z->state->sub.marker = 0;       /* can try inflateSync */
   3617       return Z_STREAM_ERROR;
   3618     case BLOCKS:
   3619       r = inflate_blocks(z->state->blocks, z, r);
   3620       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
   3621          r = inflate_packet_flush(z->state->blocks);
   3622       if (r == Z_DATA_ERROR)
   3623       {
   3624         z->state->mode = BAD;
   3625         z->state->sub.marker = 0;       /* can try inflateSync */
   3626         break;
   3627       }
   3628       if (r == Z_OK)
   3629         r = r2;
   3630       if (r != Z_STREAM_END)
   3631         return r;
   3632       r = r2;
   3633       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
   3634       if (z->state->nowrap)
   3635       {
   3636         z->state->mode = DONE;
   3637         break;
   3638       }
   3639       z->state->mode = CHECK4;
   3640     case CHECK4:
   3641       NEEDBYTE
   3642       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3643       z->state->mode = CHECK3;
   3644     case CHECK3:
   3645       NEEDBYTE
   3646       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3647       z->state->mode = CHECK2;
   3648     case CHECK2:
   3649       NEEDBYTE
   3650       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3651       z->state->mode = CHECK1;
   3652     case CHECK1:
   3653       NEEDBYTE
   3654       z->state->sub.check.need += (uLong)NEXTBYTE;
   3655 
   3656       if (z->state->sub.check.was != z->state->sub.check.need)
   3657       {
   3658         z->state->mode = BAD;
   3659         z->msg = (char*)"incorrect data check";
   3660         z->state->sub.marker = 5;       /* can't try inflateSync */
   3661         break;
   3662       }
   3663       Tracev((stderr, "inflate: zlib check ok\n"));
   3664       z->state->mode = DONE;
   3665     case DONE:
   3666       return Z_STREAM_END;
   3667     case BAD:
   3668       return Z_DATA_ERROR;
   3669     default:
   3670       return Z_STREAM_ERROR;
   3671   }
   3672  empty:
   3673   if (f != Z_PACKET_FLUSH)
   3674     return r;
   3675   z->state->mode = BAD;
   3676   z->msg = (char *)"need more for packet flush";
   3677   z->state->sub.marker = 0;
   3678   return Z_DATA_ERROR;
   3679 }
   3680 
   3681 
   3682 int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
   3683 z_streamp z;
   3684 const Bytef *dictionary;
   3685 uInt  dictLength;
   3686 {
   3687   uInt length = dictLength;
   3688 
   3689   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
   3690     return Z_STREAM_ERROR;
   3691 
   3692   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
   3693   z->adler = 1L;
   3694 
   3695   if (length >= ((uInt)1<<z->state->wbits))
   3696   {
   3697     length = (1<<z->state->wbits)-1;
   3698     dictionary += dictLength - length;
   3699   }
   3700   inflate_set_dictionary(z->state->blocks, dictionary, length);
   3701   z->state->mode = BLOCKS;
   3702   return Z_OK;
   3703 }
   3704 
   3705 /*
   3706  * This subroutine adds the data at next_in/avail_in to the output history
   3707  * without performing any output.  The output buffer must be "caught up";
   3708  * i.e. no pending output (hence s->read equals s->write), and the state must
   3709  * be BLOCKS (i.e. we should be willing to see the start of a series of
   3710  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   3711  * will have been updated if need be.
   3712  */
   3713 
   3714 int inflateIncomp(z)
   3715 z_stream *z;
   3716 {
   3717     if (z->state->mode != BLOCKS)
   3718 	return Z_DATA_ERROR;
   3719     return inflate_addhistory(z->state->blocks, z);
   3720 }
   3721 
   3722 int ZEXPORT inflateSync(z)
   3723 z_streamp z;
   3724 {
   3725   uInt n;       /* number of bytes to look at */
   3726   Bytef *p;     /* pointer to bytes */
   3727   uInt m;       /* number of marker bytes found in a row */
   3728   uLong r, w;   /* temporaries to save total_in and total_out */
   3729 
   3730   /* set up */
   3731   if (z == Z_NULL || z->state == Z_NULL)
   3732     return Z_STREAM_ERROR;
   3733   if (z->state->mode != BAD)
   3734   {
   3735     z->state->mode = BAD;
   3736     z->state->sub.marker = 0;
   3737   }
   3738   if ((n = z->avail_in) == 0)
   3739     return Z_BUF_ERROR;
   3740   p = z->next_in;
   3741   m = z->state->sub.marker;
   3742 
   3743   /* search */
   3744   while (n && m < 4)
   3745   {
   3746     static const Byte mark[4] = {0, 0, 0xff, 0xff};
   3747     if (*p == mark[m])
   3748       m++;
   3749     else if (*p)
   3750       m = 0;
   3751     else
   3752       m = 4 - m;
   3753     p++, n--;
   3754   }
   3755 
   3756   /* restore */
   3757   z->total_in += p - z->next_in;
   3758   z->next_in = p;
   3759   z->avail_in = n;
   3760   z->state->sub.marker = m;
   3761 
   3762   /* return no joy or set up to restart on a new block */
   3763   if (m != 4)
   3764     return Z_DATA_ERROR;
   3765   r = z->total_in;  w = z->total_out;
   3766   inflateReset(z);
   3767   z->total_in = r;  z->total_out = w;
   3768   z->state->mode = BLOCKS;
   3769   return Z_OK;
   3770 }
   3771 
   3772 
   3773 /* Returns true if inflate is currently at the end of a block generated
   3774  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   3775  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
   3776  * but removes the length bytes of the resulting empty stored block. When
   3777  * decompressing, PPP checks that at the end of input packet, inflate is
   3778  * waiting for these length bytes.
   3779  */
   3780 int ZEXPORT inflateSyncPoint(z)
   3781 z_streamp z;
   3782 {
   3783   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
   3784     return Z_STREAM_ERROR;
   3785   return inflate_blocks_sync_point(z->state->blocks);
   3786 }
   3787 #undef NEEDBYTE
   3788 #undef NEXTBYTE
   3789 /* --- inflate.c */
   3790 
   3791 /* +++ infblock.c */
   3792 
   3793 /* infblock.c -- interpret and process block types to last block
   3794  * Copyright (C) 1995-2002 Mark Adler
   3795  * For conditions of distribution and use, see copyright notice in zlib.h
   3796  */
   3797 
   3798 /* #include "zutil.h" */
   3799 /* #include "infblock.h" */
   3800 
   3801 /* +++ inftrees.h */
   3802 
   3803 /* inftrees.h -- header to use inftrees.c
   3804  * Copyright (C) 1995-2002 Mark Adler
   3805  * For conditions of distribution and use, see copyright notice in zlib.h
   3806  */
   3807 
   3808 /* WARNING: this file should *not* be used by applications. It is
   3809    part of the implementation of the compression library and is
   3810    subject to change. Applications should only use zlib.h.
   3811  */
   3812 
   3813 /* Huffman code lookup table entry--this entry is four bytes for machines
   3814    that have 16-bit pointers (e.g. PC's in the small or medium model). */
   3815 
   3816 typedef struct inflate_huft_s FAR inflate_huft;
   3817 
   3818 struct inflate_huft_s {
   3819   union {
   3820     struct {
   3821       Byte Exop;        /* number of extra bits or operation */
   3822       Byte Bits;        /* number of bits in this code or subcode */
   3823     } what;
   3824     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
   3825   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
   3826   uInt base;            /* literal, length base, distance base,
   3827                            or table offset */
   3828 };
   3829 
   3830 /* Maximum size of dynamic tree.  The maximum found in a long but non-
   3831    exhaustive search was 1004 huft structures (850 for length/literals
   3832    and 154 for distances, the latter actually the result of an
   3833    exhaustive search).  The actual maximum is not known, but the
   3834    value below is more than safe. */
   3835 #define MANY 1440
   3836 
   3837 extern int inflate_trees_bits __P((
   3838     uIntf *,                    /* 19 code lengths */
   3839     uIntf *,                    /* bits tree desired/actual depth */
   3840     inflate_huft * FAR *,       /* bits tree result */
   3841     inflate_huft *,             /* space for trees */
   3842     z_streamp));                /* for messages */
   3843 
   3844 extern int inflate_trees_dynamic __P((
   3845     uInt,                       /* number of literal/length codes */
   3846     uInt,                       /* number of distance codes */
   3847     uIntf *,                    /* that many (total) code lengths */
   3848     uIntf *,                    /* literal desired/actual bit depth */
   3849     uIntf *,                    /* distance desired/actual bit depth */
   3850     inflate_huft * FAR *,       /* literal/length tree result */
   3851     inflate_huft * FAR *,       /* distance tree result */
   3852     inflate_huft *,             /* space for trees */
   3853     z_streamp));                /* for messages */
   3854 
   3855 extern int inflate_trees_fixed __P((
   3856     uIntf *,                    /* literal desired/actual bit depth */
   3857     uIntf *,                    /* distance desired/actual bit depth */
   3858     inflate_huft * FAR *,       /* literal/length tree result */
   3859     inflate_huft * FAR *,       /* distance tree result */
   3860     z_streamp));                /* for memory allocation */
   3861 /* --- inftrees.h */
   3862 
   3863 /* +++ infcodes.h */
   3864 
   3865 /* infcodes.h -- header to use infcodes.c
   3866  * Copyright (C) 1995-2002 Mark Adler
   3867  * For conditions of distribution and use, see copyright notice in zlib.h
   3868  */
   3869 
   3870 /* WARNING: this file should *not* be used by applications. It is
   3871    part of the implementation of the compression library and is
   3872    subject to change. Applications should only use zlib.h.
   3873  */
   3874 
   3875 struct inflate_codes_state;
   3876 typedef struct inflate_codes_state FAR inflate_codes_statef;
   3877 
   3878 extern inflate_codes_statef *inflate_codes_new __P((
   3879     uInt, uInt,
   3880     inflate_huft *, inflate_huft *,
   3881     z_streamp ));
   3882 
   3883 extern int inflate_codes __P((
   3884     inflate_blocks_statef *,
   3885     z_streamp ,
   3886     int));
   3887 
   3888 extern void inflate_codes_free __P((
   3889     inflate_codes_statef *,
   3890     z_streamp ));
   3891 
   3892 /* --- infcodes.h */
   3893 
   3894 /* +++ infutil.h */
   3895 
   3896 /* infutil.h -- types and macros common to blocks and codes
   3897  * Copyright (C) 1995-2002 Mark Adler
   3898  * For conditions of distribution and use, see copyright notice in zlib.h
   3899  */
   3900 
   3901 /* WARNING: this file should *not* be used by applications. It is
   3902    part of the implementation of the compression library and is
   3903    subject to change. Applications should only use zlib.h.
   3904  */
   3905 
   3906 #ifndef _INFUTIL_H
   3907 #define _INFUTIL_H
   3908 
   3909 typedef enum {
   3910       TYPE,     /* get type bits (3, including end bit) */
   3911       LENS,     /* get lengths for stored */
   3912       STORED,   /* processing stored block */
   3913       TABLE,    /* get table lengths */
   3914       BTREE,    /* get bit lengths tree for a dynamic block */
   3915       DTREE,    /* get length, distance trees for a dynamic block */
   3916       CODES,    /* processing fixed or dynamic block */
   3917       DRY,      /* output remaining window bytes */
   3918       DONEB,    /* finished last block, done */
   3919       BADB}     /* got a data error--stuck here */
   3920 inflate_block_mode;
   3921 
   3922 /* inflate blocks semi-private state */
   3923 struct inflate_blocks_state {
   3924 
   3925   /* mode */
   3926   inflate_block_mode  mode;     /* current inflate_block mode */
   3927 
   3928   /* mode dependent information */
   3929   union {
   3930     uInt left;          /* if STORED, bytes left to copy */
   3931     struct {
   3932       uInt table;               /* table lengths (14 bits) */
   3933       uInt index;               /* index into blens (or border) */
   3934       uIntf *blens;             /* bit lengths of codes */
   3935       uInt bb;                  /* bit length tree depth */
   3936       inflate_huft *tb;         /* bit length decoding tree */
   3937     } trees;            /* if DTREE, decoding info for trees */
   3938     struct {
   3939       inflate_codes_statef
   3940          *codes;
   3941     } decode;           /* if CODES, current state */
   3942   } sub;                /* submode */
   3943   uInt last;            /* true if this block is the last block */
   3944 
   3945   /* mode independent information */
   3946   uInt bitk;            /* bits in bit buffer */
   3947   uLong bitb;           /* bit buffer */
   3948   inflate_huft *hufts;  /* single malloc for tree space */
   3949   Bytef *window;        /* sliding window */
   3950   Bytef *end;           /* one byte after sliding window */
   3951   Bytef *read;          /* window read pointer */
   3952   Bytef *write;         /* window write pointer */
   3953   check_func checkfn;   /* check function */
   3954   uLong check;          /* check on output */
   3955 
   3956 };
   3957 
   3958 
   3959 /* defines for inflate input/output */
   3960 /*   update pointers and return */
   3961 #define UPDBITS {s->bitb=b;s->bitk=k;}
   3962 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
   3963 #define UPDOUT {s->write=q;}
   3964 #define UPDATE {UPDBITS UPDIN UPDOUT}
   3965 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
   3966 /*   get bytes and bits */
   3967 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
   3968 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
   3969 #define NEXTBYTE (n--,*p++)
   3970 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   3971 #define DUMPBITS(j) {b>>=(j);k-=(j);}
   3972 /*   output bytes */
   3973 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
   3974 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
   3975 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
   3976 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
   3977 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
   3978 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
   3979 /*   load local pointers */
   3980 #define LOAD {LOADIN LOADOUT}
   3981 
   3982 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
   3983 extern uInt inflate_mask[17];
   3984 
   3985 /* copy as much as possible from the sliding window to the output area */
   3986 extern int inflate_flush __P((
   3987     inflate_blocks_statef *,
   3988     z_streamp ,
   3989     int));
   3990 
   3991 #ifndef NO_DUMMY_DECL
   3992 struct internal_state      {int dummy;}; /* for buggy compilers */
   3993 #endif
   3994 
   3995 #endif
   3996 /* --- infutil.h */
   3997 
   3998 #ifndef NO_DUMMY_DECL
   3999 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   4000 #endif
   4001 
   4002 /* simplify the use of the inflate_huft type with some defines */
   4003 #define exop word.what.Exop
   4004 #define bits word.what.Bits
   4005 
   4006 /* Table for deflate from PKZIP's appnote.txt. */
   4007 local const uInt border[] = { /* Order of the bit length code lengths */
   4008         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
   4009 
   4010 /*
   4011    Notes beyond the 1.93a appnote.txt:
   4012 
   4013    1. Distance pointers never point before the beginning of the output
   4014       stream.
   4015    2. Distance pointers can point back across blocks, up to 32k away.
   4016    3. There is an implied maximum of 7 bits for the bit length table and
   4017       15 bits for the actual data.
   4018    4. If only one code exists, then it is encoded using one bit.  (Zero
   4019       would be more efficient, but perhaps a little confusing.)  If two
   4020       codes exist, they are coded using one bit each (0 and 1).
   4021    5. There is no way of sending zero distance codes--a dummy must be
   4022       sent if there are none.  (History: a pre 2.0 version of PKZIP would
   4023       store blocks with no distance codes, but this was discovered to be
   4024       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
   4025       zero distance codes, which is sent as one code of zero bits in
   4026       length.
   4027    6. There are up to 286 literal/length codes.  Code 256 represents the
   4028       end-of-block.  Note however that the static length tree defines
   4029       288 codes just to fill out the Huffman codes.  Codes 286 and 287
   4030       cannot be used though, since there is no length base or extra bits
   4031       defined for them.  Similarily, there are up to 30 distance codes.
   4032       However, static trees define 32 codes (all 5 bits) to fill out the
   4033       Huffman codes, but the last two had better not show up in the data.
   4034    7. Unzip can check dynamic Huffman blocks for complete code sets.
   4035       The exception is that a single code would not be complete (see #4).
   4036    8. The five bits following the block type is really the number of
   4037       literal codes sent minus 257.
   4038    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
   4039       (1+6+6).  Therefore, to output three times the length, you output
   4040       three codes (1+1+1), whereas to output four times the same length,
   4041       you only need two codes (1+3).  Hmm.
   4042   10. In the tree reconstruction algorithm, Code = Code + Increment
   4043       only if BitLength(i) is not zero.  (Pretty obvious.)
   4044   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
   4045   12. Note: length code 284 can represent 227-258, but length code 285
   4046       really is 258.  The last length deserves its own, short code
   4047       since it gets used a lot in very redundant files.  The length
   4048       258 is special since 258 - 3 (the min match length) is 255.
   4049   13. The literal/length and distance code bit lengths are read as a
   4050       single stream of lengths.  It is possible (and advantageous) for
   4051       a repeat code (16, 17, or 18) to go across the boundary between
   4052       the two sets of lengths.
   4053  */
   4054 
   4055 
   4056 void inflate_blocks_reset(s, z, c)
   4057 inflate_blocks_statef *s;
   4058 z_streamp z;
   4059 uLongf *c;
   4060 {
   4061   if (c != Z_NULL)
   4062     *c = s->check;
   4063   if (s->mode == BTREE || s->mode == DTREE)
   4064     ZFREE(z, s->sub.trees.blens);
   4065   if (s->mode == CODES)
   4066     inflate_codes_free(s->sub.decode.codes, z);
   4067   s->mode = TYPE;
   4068   s->bitk = 0;
   4069   s->bitb = 0;
   4070   s->read = s->write = s->window;
   4071   if (s->checkfn != Z_NULL)
   4072     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
   4073   Tracev((stderr, "inflate:   blocks reset\n"));
   4074 }
   4075 
   4076 
   4077 inflate_blocks_statef *inflate_blocks_new(z, c, w)
   4078 z_streamp z;
   4079 check_func c;
   4080 uInt w;
   4081 {
   4082   inflate_blocks_statef *s;
   4083 
   4084   if ((s = (inflate_blocks_statef *)ZALLOC
   4085        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
   4086     return s;
   4087   if ((s->hufts =
   4088        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
   4089   {
   4090     ZFREE(z, s);
   4091     return Z_NULL;
   4092   }
   4093   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
   4094   {
   4095     ZFREE(z, s->hufts);
   4096     ZFREE(z, s);
   4097     return Z_NULL;
   4098   }
   4099   s->end = s->window + w;
   4100   s->checkfn = c;
   4101   s->mode = TYPE;
   4102   Tracev((stderr, "inflate:   blocks allocated\n"));
   4103   inflate_blocks_reset(s, z, Z_NULL);
   4104   return s;
   4105 }
   4106 
   4107 
   4108 int inflate_blocks(s, z, r)
   4109 inflate_blocks_statef *s;
   4110 z_streamp z;
   4111 int r;
   4112 {
   4113   uInt t;               /* temporary storage */
   4114   uLong b;              /* bit buffer */
   4115   uInt k;               /* bits in bit buffer */
   4116   Bytef *p;             /* input data pointer */
   4117   uInt n;               /* bytes available there */
   4118   Bytef *q;             /* output window write pointer */
   4119   uInt m;               /* bytes to end of window or read pointer */
   4120 
   4121   /* copy input/output information to locals (UPDATE macro restores) */
   4122   LOAD
   4123 
   4124   /* process input based on current state */
   4125   while (1) switch (s->mode)
   4126   {
   4127     case TYPE:
   4128       NEEDBITS(3)
   4129       t = (uInt)b & 7;
   4130       s->last = t & 1;
   4131       switch (t >> 1)
   4132       {
   4133         case 0:                         /* stored */
   4134           Tracev((stderr, "inflate:     stored block%s\n",
   4135                  s->last ? " (last)" : ""));
   4136           DUMPBITS(3)
   4137           t = k & 7;                    /* go to byte boundary */
   4138           DUMPBITS(t)
   4139           s->mode = LENS;               /* get length of stored block */
   4140           break;
   4141         case 1:                         /* fixed */
   4142           Tracev((stderr, "inflate:     fixed codes block%s\n",
   4143                  s->last ? " (last)" : ""));
   4144           {
   4145             uInt bl, bd;
   4146             inflate_huft *tl, *td;
   4147 
   4148             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
   4149             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
   4150             if (s->sub.decode.codes == Z_NULL)
   4151             {
   4152               r = Z_MEM_ERROR;
   4153               LEAVE
   4154             }
   4155           }
   4156           DUMPBITS(3)
   4157           s->mode = CODES;
   4158           break;
   4159         case 2:                         /* dynamic */
   4160           Tracev((stderr, "inflate:     dynamic codes block%s\n",
   4161                  s->last ? " (last)" : ""));
   4162           DUMPBITS(3)
   4163           s->mode = TABLE;
   4164           break;
   4165         case 3:                         /* illegal */
   4166           DUMPBITS(3)
   4167           s->mode = BADB;
   4168           z->msg = (char*)"invalid block type";
   4169           r = Z_DATA_ERROR;
   4170           LEAVE
   4171       }
   4172       break;
   4173     case LENS:
   4174       NEEDBITS(32)
   4175       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
   4176       {
   4177         s->mode = BADB;
   4178         z->msg = (char*)"invalid stored block lengths";
   4179         r = Z_DATA_ERROR;
   4180         LEAVE
   4181       }
   4182       s->sub.left = (uInt)b & 0xffff;
   4183       b = k = 0;                      /* dump bits */
   4184       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
   4185       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
   4186       break;
   4187     case STORED:
   4188       if (n == 0)
   4189         LEAVE
   4190       NEEDOUT
   4191       t = s->sub.left;
   4192       if (t > n) t = n;
   4193       if (t > m) t = m;
   4194       zmemcpy(q, p, t);
   4195       p += t;  n -= t;
   4196       q += t;  m -= t;
   4197       if ((s->sub.left -= t) != 0)
   4198         break;
   4199       Tracev((stderr, "inflate:       stored end, %lu total out\n",
   4200               z->total_out + (q >= s->read ? q - s->read :
   4201               (s->end - s->read) + (q - s->window))));
   4202       s->mode = s->last ? DRY : TYPE;
   4203       break;
   4204     case TABLE:
   4205       NEEDBITS(14)
   4206       s->sub.trees.table = t = (uInt)b & 0x3fff;
   4207 #ifndef PKZIP_BUG_WORKAROUND
   4208       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
   4209       {
   4210         s->mode = BADB;
   4211         z->msg = (char*)"too many length or distance symbols";
   4212         r = Z_DATA_ERROR;
   4213         LEAVE
   4214       }
   4215 #endif
   4216       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
   4217       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
   4218       {
   4219         r = Z_MEM_ERROR;
   4220         LEAVE
   4221       }
   4222       DUMPBITS(14)
   4223       s->sub.trees.index = 0;
   4224       Tracev((stderr, "inflate:       table sizes ok\n"));
   4225       s->mode = BTREE;
   4226     case BTREE:
   4227       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
   4228       {
   4229         NEEDBITS(3)
   4230         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
   4231         DUMPBITS(3)
   4232       }
   4233       while (s->sub.trees.index < 19)
   4234         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
   4235       s->sub.trees.bb = 7;
   4236       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
   4237                              &s->sub.trees.tb, s->hufts, z);
   4238       if (t != Z_OK)
   4239       {
   4240         r = t;
   4241         if (r == Z_DATA_ERROR)
   4242         {
   4243           ZFREE(z, s->sub.trees.blens);
   4244           s->mode = BADB;
   4245         }
   4246         LEAVE
   4247       }
   4248       s->sub.trees.index = 0;
   4249       Tracev((stderr, "inflate:       bits tree ok\n"));
   4250       s->mode = DTREE;
   4251     case DTREE:
   4252       while (t = s->sub.trees.table,
   4253              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
   4254       {
   4255         inflate_huft *h;
   4256         uInt i, j, c;
   4257 
   4258         t = s->sub.trees.bb;
   4259         NEEDBITS(t)
   4260         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
   4261         t = h->bits;
   4262         c = h->base;
   4263         if (c < 16)
   4264         {
   4265           DUMPBITS(t)
   4266           s->sub.trees.blens[s->sub.trees.index++] = c;
   4267         }
   4268         else /* c == 16..18 */
   4269         {
   4270           i = c == 18 ? 7 : c - 14;
   4271           j = c == 18 ? 11 : 3;
   4272           NEEDBITS(t + i)
   4273           DUMPBITS(t)
   4274           j += (uInt)b & inflate_mask[i];
   4275           DUMPBITS(i)
   4276           i = s->sub.trees.index;
   4277           t = s->sub.trees.table;
   4278           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
   4279               (c == 16 && i < 1))
   4280           {
   4281             ZFREE(z, s->sub.trees.blens);
   4282             s->mode = BADB;
   4283             z->msg = (char*)"invalid bit length repeat";
   4284             r = Z_DATA_ERROR;
   4285             LEAVE
   4286           }
   4287           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
   4288           do {
   4289             s->sub.trees.blens[i++] = c;
   4290           } while (--j);
   4291           s->sub.trees.index = i;
   4292         }
   4293       }
   4294       s->sub.trees.tb = Z_NULL;
   4295       {
   4296         uInt bl, bd;
   4297         inflate_huft *tl, *td;
   4298         inflate_codes_statef *c;
   4299 
   4300         bl = 9;         /* must be <= 9 for lookahead assumptions */
   4301         bd = 6;         /* must be <= 9 for lookahead assumptions */
   4302         t = s->sub.trees.table;
   4303         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
   4304                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
   4305                                   s->hufts, z);
   4306         if (t != Z_OK)
   4307         {
   4308           if (t == (uInt)Z_DATA_ERROR)
   4309           {
   4310             ZFREE(z, s->sub.trees.blens);
   4311             s->mode = BADB;
   4312           }
   4313           r = t;
   4314           LEAVE
   4315         }
   4316         Tracev((stderr, "inflate:       trees ok\n"));
   4317         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
   4318         {
   4319           r = Z_MEM_ERROR;
   4320           LEAVE
   4321         }
   4322         s->sub.decode.codes = c;
   4323       }
   4324       ZFREE(z, s->sub.trees.blens);
   4325       s->mode = CODES;
   4326     case CODES:
   4327       UPDATE
   4328       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
   4329         return inflate_flush(s, z, r);
   4330       r = Z_OK;
   4331       inflate_codes_free(s->sub.decode.codes, z);
   4332       LOAD
   4333       Tracev((stderr, "inflate:       codes end, %lu total out\n",
   4334               z->total_out + (q >= s->read ? q - s->read :
   4335               (s->end - s->read) + (q - s->window))));
   4336       if (!s->last)
   4337       {
   4338         s->mode = TYPE;
   4339         break;
   4340       }
   4341       s->mode = DRY;
   4342     case DRY:
   4343       FLUSH
   4344       if (s->read != s->write)
   4345         LEAVE
   4346       s->mode = DONEB;
   4347     case DONEB:
   4348       r = Z_STREAM_END;
   4349       LEAVE
   4350     case BADB:
   4351       r = Z_DATA_ERROR;
   4352       LEAVE
   4353     default:
   4354       r = Z_STREAM_ERROR;
   4355       LEAVE
   4356   }
   4357 }
   4358 
   4359 
   4360 int inflate_blocks_free(s, z)
   4361 inflate_blocks_statef *s;
   4362 z_streamp z;
   4363 {
   4364   inflate_blocks_reset(s, z, Z_NULL);
   4365   ZFREE(z, s->window);
   4366   ZFREE(z, s->hufts);
   4367   ZFREE(z, s);
   4368   Tracev((stderr, "inflate:   blocks freed\n"));
   4369   return Z_OK;
   4370 }
   4371 
   4372 
   4373 void inflate_set_dictionary(s, d, n)
   4374 inflate_blocks_statef *s;
   4375 const Bytef *d;
   4376 uInt  n;
   4377 {
   4378   zmemcpy(s->window, d, n);
   4379   s->read = s->write = s->window + n;
   4380 }
   4381 
   4382 /*
   4383  * This subroutine adds the data at next_in/avail_in to the output history
   4384  * without performing any output.  The output buffer must be "caught up";
   4385  * i.e. no pending output (hence s->read equals s->write), and the state must
   4386  * be BLOCKS (i.e. we should be willing to see the start of a series of
   4387  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   4388  * will have been updated if need be.
   4389  */
   4390 int inflate_addhistory(s, z)
   4391 inflate_blocks_statef *s;
   4392 z_stream *z;
   4393 {
   4394     uLong b;              /* bit buffer */  /* NOT USED HERE */
   4395     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
   4396     uInt t;               /* temporary storage */
   4397     Bytef *p;             /* input data pointer */
   4398     uInt n;               /* bytes available there */
   4399     Bytef *q;             /* output window write pointer */
   4400     uInt m;               /* bytes to end of window or read pointer */
   4401 
   4402     if (s->read != s->write)
   4403 	return Z_STREAM_ERROR;
   4404     if (s->mode != TYPE)
   4405 	return Z_DATA_ERROR;
   4406 
   4407     /* we're ready to rock */
   4408     LOAD
   4409     /* while there is input ready, copy to output buffer, moving
   4410      * pointers as needed.
   4411      */
   4412     while (n) {
   4413 	t = n;  /* how many to do */
   4414 	/* is there room until end of buffer? */
   4415 	if (t > m) t = m;
   4416 	/* update check information */
   4417 	if (s->checkfn != Z_NULL)
   4418 	    s->check = (*s->checkfn)(s->check, q, t);
   4419 	zmemcpy(q, p, t);
   4420 	q += t;
   4421 	p += t;
   4422 	n -= t;
   4423 	z->total_out += t;
   4424 	s->read = q;    /* drag read pointer forward */
   4425 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
   4426 	if (q == s->end) {
   4427 	    s->read = q = s->window;
   4428 	    m = WAVAIL;
   4429 	}
   4430     }
   4431     UPDATE
   4432     return Z_OK;
   4433 }
   4434 
   4435 
   4436 /*
   4437  * At the end of a Deflate-compressed PPP packet, we expect to have seen
   4438  * a `stored' block type value but not the (zero) length bytes.
   4439  */
   4440 int inflate_packet_flush(s)
   4441     inflate_blocks_statef *s;
   4442 {
   4443     if (s->mode != LENS)
   4444 	return Z_DATA_ERROR;
   4445     s->mode = TYPE;
   4446     return Z_OK;
   4447 }
   4448 
   4449 /* Returns true if inflate is currently at the end of a block generated
   4450  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
   4451  * IN assertion: s != Z_NULL
   4452  */
   4453 int inflate_blocks_sync_point(s)
   4454 inflate_blocks_statef *s;
   4455 {
   4456   return s->mode == LENS;
   4457 }
   4458 /* --- infblock.c */
   4459 
   4460 
   4461 /* +++ inftrees.c */
   4462 
   4463 /* inftrees.c -- generate Huffman trees for efficient decoding
   4464  * Copyright (C) 1995-2002 Mark Adler
   4465  * For conditions of distribution and use, see copyright notice in zlib.h
   4466  */
   4467 
   4468 /* #include "zutil.h" */
   4469 /* #include "inftrees.h" */
   4470 
   4471 #if !defined(BUILDFIXED) && !defined(STDC)
   4472 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
   4473 #endif
   4474 
   4475 const char inflate_copyright[] =
   4476    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
   4477 /*
   4478   If you use the zlib library in a product, an acknowledgment is welcome
   4479   in the documentation of your product. If for some reason you cannot
   4480   include such an acknowledgment, I would appreciate that you keep this
   4481   copyright string in the executable of your product.
   4482  */
   4483 
   4484 #ifndef NO_DUMMY_DECL
   4485 struct internal_state  {int dummy;}; /* for buggy compilers */
   4486 #endif
   4487 
   4488 /* simplify the use of the inflate_huft type with some defines */
   4489 #define exop word.what.Exop
   4490 #define bits word.what.Bits
   4491 
   4492 
   4493 local int huft_build __P((
   4494     uIntf *,            /* code lengths in bits */
   4495     uInt,               /* number of codes */
   4496     uInt,               /* number of "simple" codes */
   4497     const uIntf *,      /* list of base values for non-simple codes */
   4498     const uIntf *,      /* list of extra bits for non-simple codes */
   4499     inflate_huft * FAR*,/* result: starting table */
   4500     uIntf *,            /* maximum lookup bits (returns actual) */
   4501     inflate_huft *,     /* space for trees */
   4502     uInt *,             /* hufts used in space */
   4503     uIntf * ));         /* space for values */
   4504 
   4505 /* Tables for deflate from PKZIP's appnote.txt. */
   4506 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
   4507         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
   4508         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
   4509         /* see note #13 above about 258 */
   4510 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
   4511         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
   4512         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
   4513 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
   4514         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
   4515         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
   4516         8193, 12289, 16385, 24577};
   4517 local const uInt cpdext[30] = { /* Extra bits for distance codes */
   4518         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
   4519         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
   4520         12, 12, 13, 13};
   4521 
   4522 /*
   4523    Huffman code decoding is performed using a multi-level table lookup.
   4524    The fastest way to decode is to simply build a lookup table whose
   4525    size is determined by the longest code.  However, the time it takes
   4526    to build this table can also be a factor if the data being decoded
   4527    is not very long.  The most common codes are necessarily the
   4528    shortest codes, so those codes dominate the decoding time, and hence
   4529    the speed.  The idea is you can have a shorter table that decodes the
   4530    shorter, more probable codes, and then point to subsidiary tables for
   4531    the longer codes.  The time it costs to decode the longer codes is
   4532    then traded against the time it takes to make longer tables.
   4533 
   4534    This results of this trade are in the variables lbits and dbits
   4535    below.  lbits is the number of bits the first level table for literal/
   4536    length codes can decode in one step, and dbits is the same thing for
   4537    the distance codes.  Subsequent tables are also less than or equal to
   4538    those sizes.  These values may be adjusted either when all of the
   4539    codes are shorter than that, in which case the longest code length in
   4540    bits is used, or when the shortest code is *longer* than the requested
   4541    table size, in which case the length of the shortest code in bits is
   4542    used.
   4543 
   4544    There are two different values for the two tables, since they code a
   4545    different number of possibilities each.  The literal/length table
   4546    codes 286 possible values, or in a flat code, a little over eight
   4547    bits.  The distance table codes 30 possible values, or a little less
   4548    than five bits, flat.  The optimum values for speed end up being
   4549    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   4550    The optimum values may differ though from machine to machine, and
   4551    possibly even between compilers.  Your mileage may vary.
   4552  */
   4553 
   4554 
   4555 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
   4556 #define BMAX 15         /* maximum bit length of any code */
   4557 
   4558 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
   4559 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
   4560 uInt n;                 /* number of codes (assumed <= 288) */
   4561 uInt s;                 /* number of simple-valued codes (0..s-1) */
   4562 const uIntf *d;         /* list of base values for non-simple codes */
   4563 const uIntf *e;         /* list of extra bits for non-simple codes */
   4564 inflate_huft * FAR *t;  /* result: starting table */
   4565 uIntf *m;               /* maximum lookup bits, returns actual */
   4566 inflate_huft *hp;       /* space for trees */
   4567 uInt *hn;               /* hufts used in space */
   4568 uIntf *v;               /* working area: values in order of bit length */
   4569 /* Given a list of code lengths and a maximum table size, make a set of
   4570    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   4571    if the given code set is incomplete (the tables are still built in this
   4572    case), or Z_DATA_ERROR if the input is invalid. */
   4573 {
   4574 
   4575   uInt a;                       /* counter for codes of length k */
   4576   uInt c[BMAX+1];               /* bit length count table */
   4577   uInt f;                       /* i repeats in table every f entries */
   4578   int g;                        /* maximum code length */
   4579   int h;                        /* table level */
   4580   uInt i;                       /* counter, current code */
   4581   uInt j;                       /* counter */
   4582   int k;                        /* number of bits in current code */
   4583   int l;                        /* bits per table (returned in m) */
   4584   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
   4585   uIntf *p;                      /* pointer into c[], b[], or v[] */
   4586   inflate_huft *q;              /* points to current table */
   4587   struct inflate_huft_s r;      /* table entry for structure assignment */
   4588   inflate_huft *u[BMAX];        /* table stack */
   4589   int w;               /* bits before this table == (l * h) */
   4590   uInt x[BMAX+1];               /* bit offsets, then code stack */
   4591   uIntf *xp;                    /* pointer into x */
   4592   int y;                        /* number of dummy codes added */
   4593   uInt z;                       /* number of entries in current table */
   4594 
   4595 
   4596   /* Generate counts for each bit length */
   4597   p = c;
   4598 #define C0 *p++ = 0;
   4599 #define C2 C0 C0 C0 C0
   4600 #define C4 C2 C2 C2 C2
   4601   C4                            /* clear c[]--assume BMAX+1 is 16 */
   4602   p = b;  i = n;
   4603   do {
   4604     c[*p++]++;                  /* assume all entries <= BMAX */
   4605   } while (--i);
   4606   if (c[0] == n)                /* null input--all zero length codes */
   4607   {
   4608     *t = (inflate_huft *)Z_NULL;
   4609     *m = 0;
   4610     return Z_OK;
   4611   }
   4612 
   4613 
   4614   /* Find minimum and maximum length, bound *m by those */
   4615   l = *m;
   4616   for (j = 1; j <= BMAX; j++)
   4617     if (c[j])
   4618       break;
   4619   k = j;                        /* minimum code length */
   4620   if ((uInt)l < j)
   4621     l = j;
   4622   for (i = BMAX; i; i--)
   4623     if (c[i])
   4624       break;
   4625   g = i;                        /* maximum code length */
   4626   if ((uInt)l > i)
   4627     l = i;
   4628   *m = l;
   4629 
   4630 
   4631   /* Adjust last length count to fill out codes, if needed */
   4632   for (y = 1 << j; j < i; j++, y <<= 1)
   4633     if ((y -= c[j]) < 0)
   4634       return Z_DATA_ERROR;
   4635   if ((y -= c[i]) < 0)
   4636     return Z_DATA_ERROR;
   4637   c[i] += y;
   4638 
   4639 
   4640   /* Generate starting offsets into the value table for each length */
   4641   x[1] = j = 0;
   4642   p = c + 1;  xp = x + 2;
   4643   while (--i) {                 /* note that i == g from above */
   4644     *xp++ = (j += *p++);
   4645   }
   4646 
   4647 
   4648   /* Make a table of values in order of bit lengths */
   4649   p = b;  i = 0;
   4650   do {
   4651     if ((j = *p++) != 0)
   4652       v[x[j]++] = i;
   4653   } while (++i < n);
   4654   n = x[g];                     /* set n to length of v */
   4655 
   4656 
   4657   /* Generate the Huffman codes and for each, make the table entries */
   4658   x[0] = i = 0;                 /* first Huffman code is zero */
   4659   p = v;                        /* grab values in bit order */
   4660   h = -1;                       /* no tables yet--level -1 */
   4661   w = -l;                       /* bits decoded == (l * h) */
   4662   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   4663   q = (inflate_huft *)Z_NULL;   /* ditto */
   4664   z = 0;                        /* ditto */
   4665 
   4666   /* go through the bit lengths (k already is bits in shortest code) */
   4667   for (; k <= g; k++)
   4668   {
   4669     a = c[k];
   4670     while (a--)
   4671     {
   4672       /* here i is the Huffman code of length k bits for value *p */
   4673       /* make tables up to required level */
   4674       while (k > w + l)
   4675       {
   4676         h++;
   4677         w += l;                 /* previous table always l bits */
   4678 
   4679         /* compute minimum size table less than or equal to l bits */
   4680         z = g - w;
   4681         z = z > (uInt)l ? l : z;        /* table size upper limit */
   4682         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   4683         {                       /* too few codes for k-w bit table */
   4684           f -= a + 1;           /* deduct codes from patterns left */
   4685           xp = c + k;
   4686           if (j < z)
   4687             while (++j < z)     /* try smaller tables up to z bits */
   4688             {
   4689               if ((f <<= 1) <= *++xp)
   4690                 break;          /* enough codes to use up j bits */
   4691               f -= *xp;         /* else deduct codes from patterns */
   4692             }
   4693         }
   4694         z = 1 << j;             /* table entries for j-bit table */
   4695 
   4696         /* allocate new table */
   4697         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
   4698           return Z_DATA_ERROR;  /* overflow of MANY */
   4699         u[h] = q = hp + *hn;
   4700         *hn += z;
   4701 
   4702         /* connect to last table, if there is one */
   4703         if (h)
   4704         {
   4705           x[h] = i;             /* save pattern for backing up */
   4706           r.bits = (Byte)l;     /* bits to dump before this table */
   4707           r.exop = (Byte)j;     /* bits in this table */
   4708           j = i >> (w - l);
   4709           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
   4710           u[h-1][j] = r;        /* connect to last table */
   4711         }
   4712         else
   4713           *t = q;               /* first table is returned result */
   4714       }
   4715 
   4716       /* set up table entry in r */
   4717       r.bits = (Byte)(k - w);
   4718       if (p >= v + n)
   4719         r.exop = 128 + 64;      /* out of values--invalid code */
   4720       else if (*p < s)
   4721       {
   4722         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
   4723         r.base = *p++;          /* simple code is just the value */
   4724       }
   4725       else
   4726       {
   4727         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
   4728         r.base = d[*p++ - s];
   4729       }
   4730 
   4731       /* fill code-like entries with r */
   4732       f = 1 << (k - w);
   4733       for (j = i >> w; j < z; j += f)
   4734         q[j] = r;
   4735 
   4736       /* backwards increment the k-bit code i */
   4737       for (j = 1 << (k - 1); i & j; j >>= 1)
   4738         i ^= j;
   4739       i ^= j;
   4740 
   4741       /* backup over finished tables */
   4742       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
   4743       while ((i & mask) != x[h])
   4744       {
   4745         h--;                    /* don't need to update q */
   4746         w -= l;
   4747         mask = (1 << w) - 1;
   4748       }
   4749     }
   4750   }
   4751 
   4752 
   4753   /* Return Z_BUF_ERROR if we were given an incomplete table */
   4754   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
   4755 }
   4756 
   4757 
   4758 int inflate_trees_bits(c, bb, tb, hp, z)
   4759 uIntf *c;               /* 19 code lengths */
   4760 uIntf *bb;              /* bits tree desired/actual depth */
   4761 inflate_huft * FAR *tb; /* bits tree result */
   4762 inflate_huft *hp;       /* space for trees */
   4763 z_streamp z;            /* for messages */
   4764 {
   4765   int r;
   4766   uInt hn = 0;          /* hufts used in space */
   4767   uIntf *v;             /* work area for huft_build */
   4768 
   4769   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
   4770     return Z_MEM_ERROR;
   4771   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
   4772                  tb, bb, hp, &hn, v);
   4773   if (r == Z_DATA_ERROR)
   4774     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
   4775   else if (r == Z_BUF_ERROR || *bb == 0)
   4776   {
   4777     z->msg = (char*)"incomplete dynamic bit lengths tree";
   4778     r = Z_DATA_ERROR;
   4779   }
   4780   ZFREE(z, v);
   4781   return r;
   4782 }
   4783 
   4784 
   4785 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
   4786 uInt nl;                /* number of literal/length codes */
   4787 uInt nd;                /* number of distance codes */
   4788 uIntf *c;               /* that many (total) code lengths */
   4789 uIntf *bl;              /* literal desired/actual bit depth */
   4790 uIntf *bd;              /* distance desired/actual bit depth */
   4791 inflate_huft * FAR *tl; /* literal/length tree result */
   4792 inflate_huft * FAR *td; /* distance tree result */
   4793 inflate_huft *hp;       /* space for trees */
   4794 z_streamp z;            /* for messages */
   4795 {
   4796   int r;
   4797   uInt hn = 0;          /* hufts used in space */
   4798   uIntf *v;             /* work area for huft_build */
   4799 
   4800   /* allocate work area */
   4801   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4802     return Z_MEM_ERROR;
   4803 
   4804   /* build literal/length tree */
   4805   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
   4806   if (r != Z_OK || *bl == 0)
   4807   {
   4808     if (r == Z_DATA_ERROR)
   4809       z->msg = (char*)"oversubscribed literal/length tree";
   4810     else if (r != Z_MEM_ERROR)
   4811     {
   4812       z->msg = (char*)"incomplete literal/length tree";
   4813       r = Z_DATA_ERROR;
   4814     }
   4815     ZFREE(z, v);
   4816     return r;
   4817   }
   4818 
   4819   /* build distance tree */
   4820   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
   4821   if (r != Z_OK || (*bd == 0 && nl > 257))
   4822   {
   4823     if (r == Z_DATA_ERROR)
   4824       z->msg = (char*)"oversubscribed distance tree";
   4825     else if (r == Z_BUF_ERROR) {
   4826 #ifdef PKZIP_BUG_WORKAROUND
   4827       r = Z_OK;
   4828     }
   4829 #else
   4830       z->msg = (char*)"incomplete distance tree";
   4831       r = Z_DATA_ERROR;
   4832     }
   4833     else if (r != Z_MEM_ERROR)
   4834     {
   4835       z->msg = (char*)"empty distance tree with lengths";
   4836       r = Z_DATA_ERROR;
   4837     }
   4838     ZFREE(z, v);
   4839     return r;
   4840 #endif
   4841   }
   4842 
   4843   /* done */
   4844   ZFREE(z, v);
   4845   return Z_OK;
   4846 }
   4847 
   4848 
   4849 /* build fixed tables only once--keep them here */
   4850 #ifdef BUILDFIXED
   4851 local int fixed_built = 0;
   4852 #define FIXEDH 544      /* number of hufts used by fixed tables */
   4853 local inflate_huft fixed_mem[FIXEDH];
   4854 local uInt fixed_bl;
   4855 local uInt fixed_bd;
   4856 local inflate_huft *fixed_tl;
   4857 local inflate_huft *fixed_td;
   4858 #else
   4859 
   4860 /* +++ inffixed.h */
   4861 /* inffixed.h -- table for decoding fixed codes
   4862  * Generated automatically by the maketree.c program
   4863  */
   4864 
   4865 /* WARNING: this file should *not* be used by applications. It is
   4866    part of the implementation of the compression library and is
   4867    subject to change. Applications should only use zlib.h.
   4868  */
   4869 
   4870 local uInt fixed_bl = 9;
   4871 local uInt fixed_bd = 5;
   4872 local inflate_huft fixed_tl[] = {
   4873     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4874     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
   4875     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
   4876     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
   4877     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
   4878     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
   4879     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
   4880     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
   4881     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4882     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
   4883     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
   4884     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
   4885     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
   4886     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
   4887     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
   4888     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
   4889     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4890     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
   4891     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
   4892     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
   4893     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
   4894     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
   4895     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
   4896     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
   4897     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4898     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
   4899     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
   4900     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
   4901     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
   4902     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
   4903     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
   4904     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
   4905     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4906     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
   4907     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
   4908     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
   4909     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
   4910     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
   4911     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
   4912     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
   4913     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4914     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
   4915     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
   4916     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
   4917     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
   4918     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
   4919     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
   4920     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
   4921     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4922     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
   4923     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
   4924     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
   4925     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
   4926     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
   4927     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
   4928     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
   4929     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4930     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
   4931     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
   4932     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
   4933     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
   4934     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
   4935     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
   4936     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
   4937     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4938     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
   4939     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
   4940     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
   4941     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
   4942     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
   4943     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
   4944     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
   4945     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4946     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
   4947     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
   4948     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
   4949     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
   4950     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
   4951     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
   4952     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
   4953     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4954     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
   4955     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
   4956     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
   4957     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
   4958     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
   4959     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
   4960     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
   4961     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4962     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
   4963     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
   4964     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
   4965     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
   4966     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
   4967     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
   4968     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
   4969     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4970     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
   4971     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
   4972     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
   4973     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
   4974     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
   4975     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
   4976     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
   4977     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4978     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
   4979     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
   4980     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
   4981     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
   4982     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
   4983     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
   4984     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
   4985     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4986     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
   4987     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
   4988     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
   4989     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
   4990     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
   4991     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
   4992     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
   4993     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4994     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
   4995     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
   4996     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
   4997     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
   4998     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
   4999     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
   5000     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
   5001   };
   5002 local inflate_huft fixed_td[] = {
   5003     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
   5004     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
   5005     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
   5006     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
   5007     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
   5008     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
   5009     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
   5010     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
   5011   };
   5012 /* --- inffixed.h */
   5013 
   5014 #endif
   5015 
   5016 
   5017 int inflate_trees_fixed(bl, bd, tl, td, z)
   5018 uIntf *bl;               /* literal desired/actual bit depth */
   5019 uIntf *bd;               /* distance desired/actual bit depth */
   5020 inflate_huft * FAR *tl;  /* literal/length tree result */
   5021 inflate_huft * FAR *td;  /* distance tree result */
   5022 z_streamp z;             /* for memory allocation */
   5023 {
   5024 #ifdef BUILDFIXED
   5025   /* build fixed tables if not already */
   5026   if (!fixed_built)
   5027   {
   5028     int k;              /* temporary variable */
   5029     uInt f = 0;         /* number of hufts used in fixed_mem */
   5030     uIntf *c;           /* length list for huft_build */
   5031     uIntf *v;           /* work area for huft_build */
   5032 
   5033     /* allocate memory */
   5034     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5035       return Z_MEM_ERROR;
   5036     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5037     {
   5038       ZFREE(z, c);
   5039       return Z_MEM_ERROR;
   5040     }
   5041 
   5042     /* literal table */
   5043     for (k = 0; k < 144; k++)
   5044       c[k] = 8;
   5045     for (; k < 256; k++)
   5046       c[k] = 9;
   5047     for (; k < 280; k++)
   5048       c[k] = 7;
   5049     for (; k < 288; k++)
   5050       c[k] = 8;
   5051     fixed_bl = 9;
   5052     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
   5053                fixed_mem, &f, v);
   5054 
   5055     /* distance table */
   5056     for (k = 0; k < 30; k++)
   5057       c[k] = 5;
   5058     fixed_bd = 5;
   5059     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
   5060                fixed_mem, &f, v);
   5061 
   5062     /* done */
   5063     ZFREE(z, v);
   5064     ZFREE(z, c);
   5065     fixed_built = 1;
   5066   }
   5067 #endif
   5068   *bl = fixed_bl;
   5069   *bd = fixed_bd;
   5070   *tl = fixed_tl;
   5071   *td = fixed_td;
   5072   return Z_OK;
   5073 }
   5074 /* --- inftrees.c */
   5075 
   5076 /* +++ infcodes.c */
   5077 
   5078 /* infcodes.c -- process literals and length/distance pairs
   5079  * Copyright (C) 1995-2002 Mark Adler
   5080  * For conditions of distribution and use, see copyright notice in zlib.h
   5081  */
   5082 
   5083 /* #include "zutil.h" */
   5084 /* #include "inftrees.h" */
   5085 /* #include "infblock.h" */
   5086 /* #include "infcodes.h" */
   5087 /* #include "infutil.h" */
   5088 
   5089 /* +++ inffast.h */
   5090 
   5091 /* inffast.h -- header to use inffast.c
   5092  * Copyright (C) 1995-2002 Mark Adler
   5093  * For conditions of distribution and use, see copyright notice in zlib.h
   5094  */
   5095 
   5096 /* WARNING: this file should *not* be used by applications. It is
   5097    part of the implementation of the compression library and is
   5098    subject to change. Applications should only use zlib.h.
   5099  */
   5100 
   5101 extern int inflate_fast __P((
   5102     uInt,
   5103     uInt,
   5104     inflate_huft *,
   5105     inflate_huft *,
   5106     inflate_blocks_statef *,
   5107     z_streamp ));
   5108 /* --- inffast.h */
   5109 
   5110 /* simplify the use of the inflate_huft type with some defines */
   5111 #define exop word.what.Exop
   5112 #define bits word.what.Bits
   5113 
   5114 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5115       START,    /* x: set up for LEN */
   5116       LEN,      /* i: get length/literal/eob next */
   5117       LENEXT,   /* i: getting length extra (have base) */
   5118       DIST,     /* i: get distance next */
   5119       DISTEXT,  /* i: getting distance extra */
   5120       COPY,     /* o: copying bytes in window, waiting for space */
   5121       LIT,      /* o: got literal, waiting for output space */
   5122       WASH,     /* o: got eob, possibly still output waiting */
   5123       END,      /* x: got eob and all data flushed */
   5124       BADCODE}  /* x: got error */
   5125 inflate_codes_mode;
   5126 
   5127 /* inflate codes private state */
   5128 struct inflate_codes_state {
   5129 
   5130   /* mode */
   5131   inflate_codes_mode mode;      /* current inflate_codes mode */
   5132 
   5133   /* mode dependent information */
   5134   uInt len;
   5135   union {
   5136     struct {
   5137       inflate_huft *tree;       /* pointer into tree */
   5138       uInt need;                /* bits needed */
   5139     } code;             /* if LEN or DIST, where in tree */
   5140     uInt lit;           /* if LIT, literal */
   5141     struct {
   5142       uInt get;                 /* bits to get for extra */
   5143       uInt dist;                /* distance back to copy from */
   5144     } copy;             /* if EXT or COPY, where and how much */
   5145   } sub;                /* submode */
   5146 
   5147   /* mode independent information */
   5148   Byte lbits;           /* ltree bits decoded per branch */
   5149   Byte dbits;           /* dtree bits decoder per branch */
   5150   inflate_huft *ltree;          /* literal/length/eob tree */
   5151   inflate_huft *dtree;          /* distance tree */
   5152 
   5153 };
   5154 
   5155 
   5156 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
   5157 uInt bl, bd;
   5158 inflate_huft *tl;
   5159 inflate_huft *td; /* need separate declaration for Borland C++ */
   5160 z_streamp z;
   5161 {
   5162   inflate_codes_statef *c;
   5163 
   5164   if ((c = (inflate_codes_statef *)
   5165        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
   5166   {
   5167     c->mode = START;
   5168     c->lbits = (Byte)bl;
   5169     c->dbits = (Byte)bd;
   5170     c->ltree = tl;
   5171     c->dtree = td;
   5172     Tracev((stderr, "inflate:       codes new\n"));
   5173   }
   5174   return c;
   5175 }
   5176 
   5177 
   5178 int inflate_codes(s, z, r)
   5179 inflate_blocks_statef *s;
   5180 z_streamp z;
   5181 int r;
   5182 {
   5183   uInt j;               /* temporary storage */
   5184   inflate_huft *t;      /* temporary pointer */
   5185   uInt e;               /* extra bits or operation */
   5186   uLong b;              /* bit buffer */
   5187   uInt k;               /* bits in bit buffer */
   5188   Bytef *p;             /* input data pointer */
   5189   uInt n;               /* bytes available there */
   5190   Bytef *q;             /* output window write pointer */
   5191   uInt m;               /* bytes to end of window or read pointer */
   5192   Bytef *f;             /* pointer to copy strings from */
   5193   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
   5194 
   5195   /* copy input/output information to locals (UPDATE macro restores) */
   5196   LOAD
   5197 
   5198   /* process input and output based on current state */
   5199   while (1) switch (c->mode)
   5200   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5201     case START:         /* x: set up for LEN */
   5202 #ifndef SLOW
   5203       if (m >= 258 && n >= 10)
   5204       {
   5205         UPDATE
   5206         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
   5207         LOAD
   5208         if (r != Z_OK)
   5209         {
   5210           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
   5211           break;
   5212         }
   5213       }
   5214 #endif /* !SLOW */
   5215       c->sub.code.need = c->lbits;
   5216       c->sub.code.tree = c->ltree;
   5217       c->mode = LEN;
   5218     case LEN:           /* i: get length/literal/eob next */
   5219       j = c->sub.code.need;
   5220       NEEDBITS(j)
   5221       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5222       DUMPBITS(t->bits)
   5223       e = (uInt)(t->exop);
   5224       if (e == 0)               /* literal */
   5225       {
   5226         c->sub.lit = t->base;
   5227         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5228                  "inflate:         literal '%c'\n" :
   5229                  "inflate:         literal 0x%02x\n", t->base));
   5230         c->mode = LIT;
   5231         break;
   5232       }
   5233       if (e & 16)               /* length */
   5234       {
   5235         c->sub.copy.get = e & 15;
   5236         c->len = t->base;
   5237         c->mode = LENEXT;
   5238         break;
   5239       }
   5240       if ((e & 64) == 0)        /* next table */
   5241       {
   5242         c->sub.code.need = e;
   5243         c->sub.code.tree = t + t->base;
   5244         break;
   5245       }
   5246       if (e & 32)               /* end of block */
   5247       {
   5248         Tracevv((stderr, "inflate:         end of block\n"));
   5249         c->mode = WASH;
   5250         break;
   5251       }
   5252       c->mode = BADCODE;        /* invalid code */
   5253       z->msg = (char*)"invalid literal/length code";
   5254       r = Z_DATA_ERROR;
   5255       LEAVE
   5256     case LENEXT:        /* i: getting length extra (have base) */
   5257       j = c->sub.copy.get;
   5258       NEEDBITS(j)
   5259       c->len += (uInt)b & inflate_mask[j];
   5260       DUMPBITS(j)
   5261       c->sub.code.need = c->dbits;
   5262       c->sub.code.tree = c->dtree;
   5263       Tracevv((stderr, "inflate:         length %u\n", c->len));
   5264       c->mode = DIST;
   5265     case DIST:          /* i: get distance next */
   5266       j = c->sub.code.need;
   5267       NEEDBITS(j)
   5268       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5269       DUMPBITS(t->bits)
   5270       e = (uInt)(t->exop);
   5271       if (e & 16)               /* distance */
   5272       {
   5273         c->sub.copy.get = e & 15;
   5274         c->sub.copy.dist = t->base;
   5275         c->mode = DISTEXT;
   5276         break;
   5277       }
   5278       if ((e & 64) == 0)        /* next table */
   5279       {
   5280         c->sub.code.need = e;
   5281         c->sub.code.tree = t + t->base;
   5282         break;
   5283       }
   5284       c->mode = BADCODE;        /* invalid code */
   5285       z->msg = (char*)"invalid distance code";
   5286       r = Z_DATA_ERROR;
   5287       LEAVE
   5288     case DISTEXT:       /* i: getting distance extra */
   5289       j = c->sub.copy.get;
   5290       NEEDBITS(j)
   5291       c->sub.copy.dist += (uInt)b & inflate_mask[j];
   5292       DUMPBITS(j)
   5293       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
   5294       c->mode = COPY;
   5295     case COPY:          /* o: copying bytes in window, waiting for space */
   5296       f = q - c->sub.copy.dist;
   5297       while (f < s->window)             /* modulo window size-"while" instead */
   5298         f += s->end - s->window;        /* of "if" handles invalid distances */
   5299       while (c->len)
   5300       {
   5301         NEEDOUT
   5302         OUTBYTE(*f++)
   5303         if (f == s->end)
   5304           f = s->window;
   5305         c->len--;
   5306       }
   5307       c->mode = START;
   5308       break;
   5309     case LIT:           /* o: got literal, waiting for output space */
   5310       NEEDOUT
   5311       OUTBYTE(c->sub.lit)
   5312       c->mode = START;
   5313       break;
   5314     case WASH:          /* o: got eob, possibly more output */
   5315       if (k > 7)        /* return unused byte, if any */
   5316       {
   5317         Assert(k < 16, "inflate_codes grabbed too many bytes")
   5318         k -= 8;
   5319         n++;
   5320         p--;            /* can always return one */
   5321       }
   5322       FLUSH
   5323       if (s->read != s->write)
   5324         LEAVE
   5325       c->mode = END;
   5326     case END:
   5327       r = Z_STREAM_END;
   5328       LEAVE
   5329     case BADCODE:       /* x: got error */
   5330       r = Z_DATA_ERROR;
   5331       LEAVE
   5332     default:
   5333       r = Z_STREAM_ERROR;
   5334       LEAVE
   5335   }
   5336 #ifdef NEED_DUMMY_RETURN
   5337   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
   5338 #endif
   5339 }
   5340 
   5341 
   5342 void inflate_codes_free(c, z)
   5343 inflate_codes_statef *c;
   5344 z_streamp z;
   5345 {
   5346   ZFREE(z, c);
   5347   Tracev((stderr, "inflate:       codes free\n"));
   5348 }
   5349 /* --- infcodes.c */
   5350 
   5351 /* +++ infutil.c */
   5352 
   5353 /* inflate_util.c -- data and routines common to blocks and codes
   5354  * Copyright (C) 1995-2002 Mark Adler
   5355  * For conditions of distribution and use, see copyright notice in zlib.h
   5356  */
   5357 
   5358 /* #include "zutil.h" */
   5359 /* #include "infblock.h" */
   5360 /* #include "inftrees.h" */
   5361 /* #include "infcodes.h" */
   5362 /* #include "infutil.h" */
   5363 
   5364 #ifndef NO_DUMMY_DECL
   5365 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5366 #endif
   5367 
   5368 /* And'ing with mask[n] masks the lower n bits */
   5369 uInt inflate_mask[17] = {
   5370     0x0000,
   5371     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
   5372     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
   5373 };
   5374 
   5375 
   5376 /* copy as much as possible from the sliding window to the output area */
   5377 int inflate_flush(s, z, r)
   5378 inflate_blocks_statef *s;
   5379 z_streamp z;
   5380 int r;
   5381 {
   5382   uInt n;
   5383   Bytef *p;
   5384   Bytef *q;
   5385 
   5386   /* local copies of source and destination pointers */
   5387   p = z->next_out;
   5388   q = s->read;
   5389 
   5390   /* compute number of bytes to copy as far as end of window */
   5391   n = (uInt)((q <= s->write ? s->write : s->end) - q);
   5392   if (n > z->avail_out) n = z->avail_out;
   5393   if (n && r == Z_BUF_ERROR) r = Z_OK;
   5394 
   5395   /* update counters */
   5396   z->avail_out -= n;
   5397   z->total_out += n;
   5398 
   5399   /* update check information */
   5400   if (s->checkfn != Z_NULL)
   5401     z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5402 
   5403   /* copy as far as end of window */
   5404   if (p != Z_NULL) {
   5405     zmemcpy(p, q, n);
   5406     p += n;
   5407   }
   5408   q += n;
   5409 
   5410   /* see if more to copy at beginning of window */
   5411   if (q == s->end)
   5412   {
   5413     /* wrap pointers */
   5414     q = s->window;
   5415     if (s->write == s->end)
   5416       s->write = s->window;
   5417 
   5418     /* compute bytes to copy */
   5419     n = (uInt)(s->write - q);
   5420     if (n > z->avail_out) n = z->avail_out;
   5421     if (n && r == Z_BUF_ERROR) r = Z_OK;
   5422 
   5423     /* update counters */
   5424     z->avail_out -= n;
   5425     z->total_out += n;
   5426 
   5427     /* update check information */
   5428     if (s->checkfn != Z_NULL)
   5429       z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5430 
   5431     /* copy */
   5432     if (p != NULL) {
   5433       zmemcpy(p, q, n);
   5434       p += n;
   5435     }
   5436     q += n;
   5437   }
   5438 
   5439   /* update pointers */
   5440   z->next_out = p;
   5441   s->read = q;
   5442 
   5443   /* done */
   5444   return r;
   5445 }
   5446 /* --- infutil.c */
   5447 
   5448 /* +++ inffast.c */
   5449 
   5450 /* inffast.c -- process literals and length/distance pairs fast
   5451  * Copyright (C) 1995-2002 Mark Adler
   5452  * For conditions of distribution and use, see copyright notice in zlib.h
   5453  */
   5454 
   5455 /* #include "zutil.h" */
   5456 /* #include "inftrees.h" */
   5457 /* #include "infblock.h" */
   5458 /* #include "infcodes.h" */
   5459 /* #include "infutil.h" */
   5460 /* #include "inffast.h" */
   5461 
   5462 #ifndef NO_DUMMY_DECL
   5463 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5464 #endif
   5465 
   5466 /* simplify the use of the inflate_huft type with some defines */
   5467 #define exop word.what.Exop
   5468 #define bits word.what.Bits
   5469 
   5470 /* macros for bit input with no checking and for returning unused bytes */
   5471 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   5472 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
   5473 
   5474 /* Called with number of bytes left to write in window at least 258
   5475    (the maximum string length) and number of input bytes available
   5476    at least ten.  The ten bytes are six bytes for the longest length/
   5477    distance pair plus four bytes for overloading the bit buffer. */
   5478 
   5479 int inflate_fast(bl, bd, tl, td, s, z)
   5480 uInt bl, bd;
   5481 inflate_huft *tl;
   5482 inflate_huft *td; /* need separate declaration for Borland C++ */
   5483 inflate_blocks_statef *s;
   5484 z_streamp z;
   5485 {
   5486   inflate_huft *t;      /* temporary pointer */
   5487   uInt e;               /* extra bits or operation */
   5488   uLong b;              /* bit buffer */
   5489   uInt k;               /* bits in bit buffer */
   5490   Bytef *p;             /* input data pointer */
   5491   uInt n;               /* bytes available there */
   5492   Bytef *q;             /* output window write pointer */
   5493   uInt m;               /* bytes to end of window or read pointer */
   5494   uInt ml;              /* mask for literal/length tree */
   5495   uInt md;              /* mask for distance tree */
   5496   uInt c;               /* bytes to copy */
   5497   uInt d;               /* distance back to copy from */
   5498   Bytef *r;             /* copy source pointer */
   5499 
   5500   /* load input, output, bit values */
   5501   LOAD
   5502 
   5503   /* initialize masks */
   5504   ml = inflate_mask[bl];
   5505   md = inflate_mask[bd];
   5506 
   5507   /* do until not enough input or output space for fast loop */
   5508   do {                          /* assume called with m >= 258 && n >= 10 */
   5509     /* get literal/length code */
   5510     GRABBITS(20)                /* max bits for literal/length code */
   5511     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
   5512     {
   5513       DUMPBITS(t->bits)
   5514       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5515                 "inflate:         * literal '%c'\n" :
   5516                 "inflate:         * literal 0x%02x\n", t->base));
   5517       *q++ = (Byte)t->base;
   5518       m--;
   5519       continue;
   5520     }
   5521     do {
   5522       DUMPBITS(t->bits)
   5523       if (e & 16)
   5524       {
   5525         /* get extra bits for length */
   5526         e &= 15;
   5527         c = t->base + ((uInt)b & inflate_mask[e]);
   5528         DUMPBITS(e)
   5529         Tracevv((stderr, "inflate:         * length %u\n", c));
   5530 
   5531         /* decode distance base of block to copy */
   5532         GRABBITS(15);           /* max bits for distance code */
   5533         e = (t = td + ((uInt)b & md))->exop;
   5534         do {
   5535           DUMPBITS(t->bits)
   5536           if (e & 16)
   5537           {
   5538             /* get extra bits to add to distance base */
   5539             e &= 15;
   5540             GRABBITS(e)         /* get extra bits (up to 13) */
   5541             d = t->base + ((uInt)b & inflate_mask[e]);
   5542             DUMPBITS(e)
   5543             Tracevv((stderr, "inflate:         * distance %u\n", d));
   5544 
   5545             /* do the copy */
   5546             m -= c;
   5547             r = q - d;
   5548             if (r < s->window)                  /* wrap if needed */
   5549             {
   5550               do {
   5551                 r += s->end - s->window;        /* force pointer in window */
   5552               } while (r < s->window);          /* covers invalid distances */
   5553               e = s->end - r;
   5554               if (c > e)
   5555               {
   5556                 c -= e;                         /* wrapped copy */
   5557                 do {
   5558                     *q++ = *r++;
   5559                 } while (--e);
   5560                 r = s->window;
   5561                 do {
   5562                     *q++ = *r++;
   5563                 } while (--c);
   5564               }
   5565               else                              /* normal copy */
   5566               {
   5567                 *q++ = *r++;  c--;
   5568                 *q++ = *r++;  c--;
   5569                 do {
   5570                     *q++ = *r++;
   5571                 } while (--c);
   5572               }
   5573             }
   5574             else                                /* normal copy */
   5575             {
   5576               *q++ = *r++;  c--;
   5577               *q++ = *r++;  c--;
   5578               do {
   5579                 *q++ = *r++;
   5580               } while (--c);
   5581             }
   5582             break;
   5583           }
   5584           else if ((e & 64) == 0)
   5585           {
   5586             t += t->base;
   5587             e = (t += ((uInt)b & inflate_mask[e]))->exop;
   5588           }
   5589           else
   5590           {
   5591             z->msg = (char*)"invalid distance code";
   5592             UNGRAB
   5593             UPDATE
   5594             return Z_DATA_ERROR;
   5595           }
   5596         } while (1);
   5597         break;
   5598       }
   5599       if ((e & 64) == 0)
   5600       {
   5601         t += t->base;
   5602         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
   5603         {
   5604           DUMPBITS(t->bits)
   5605           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5606                     "inflate:         * literal '%c'\n" :
   5607                     "inflate:         * literal 0x%02x\n", t->base));
   5608           *q++ = (Byte)t->base;
   5609           m--;
   5610           break;
   5611         }
   5612       }
   5613       else if (e & 32)
   5614       {
   5615         Tracevv((stderr, "inflate:         * end of block\n"));
   5616         UNGRAB
   5617         UPDATE
   5618         return Z_STREAM_END;
   5619       }
   5620       else
   5621       {
   5622         z->msg = (char*)"invalid literal/length code";
   5623         UNGRAB
   5624         UPDATE
   5625         return Z_DATA_ERROR;
   5626       }
   5627     } while (1);
   5628   } while (m >= 258 && n >= 10);
   5629 
   5630   /* not enough input or output--restore pointers and return */
   5631   UNGRAB
   5632   UPDATE
   5633   return Z_OK;
   5634 }
   5635 /* --- inffast.c */
   5636 
   5637 /* +++ zutil.c */
   5638 
   5639 /* zutil.c -- target dependent utility functions for the compression library
   5640  * Copyright (C) 1995-2002 Jean-loup Gailly.
   5641  * For conditions of distribution and use, see copyright notice in zlib.h
   5642  */
   5643 
   5644 /* @(#) Id */
   5645 
   5646 #ifdef DEBUG_ZLIB
   5647 #include <stdio.h>
   5648 #endif
   5649 
   5650 /* #include "zutil.h" */
   5651 
   5652 #ifndef NO_DUMMY_DECL
   5653 struct internal_state      {int dummy;}; /* for buggy compilers */
   5654 #endif
   5655 
   5656 #ifndef STDC
   5657 extern void exit __P((int));
   5658 #endif
   5659 
   5660 const char *z_errmsg[10] = {
   5661 "need dictionary",     /* Z_NEED_DICT       2  */
   5662 "stream end",          /* Z_STREAM_END      1  */
   5663 "",                    /* Z_OK              0  */
   5664 "file error",          /* Z_ERRNO         (-1) */
   5665 "stream error",        /* Z_STREAM_ERROR  (-2) */
   5666 "data error",          /* Z_DATA_ERROR    (-3) */
   5667 "insufficient memory", /* Z_MEM_ERROR     (-4) */
   5668 "buffer error",        /* Z_BUF_ERROR     (-5) */
   5669 "incompatible version",/* Z_VERSION_ERROR (-6) */
   5670 ""};
   5671 
   5672 
   5673 const char * ZEXPORT zlibVersion()
   5674 {
   5675     return ZLIB_VERSION;
   5676 }
   5677 
   5678 #ifdef DEBUG_ZLIB
   5679 
   5680 #  ifndef verbose
   5681 #    define verbose 0
   5682 #  endif
   5683 int z_verbose = verbose;
   5684 
   5685 void z_error (m)
   5686     char *m;
   5687 {
   5688     fprintf(stderr, "%s\n", m);
   5689     exit(1);
   5690 }
   5691 #endif
   5692 
   5693 /* exported to allow conversion of error code to string for compress() and
   5694  * uncompress()
   5695  */
   5696 const char * ZEXPORT zError(err)
   5697     int err;
   5698 {
   5699     return ERR_MSG(err);
   5700 }
   5701 
   5702 
   5703 #ifndef HAVE_MEMCPY
   5704 
   5705 void zmemcpy(dest, source, len)
   5706     Bytef* dest;
   5707     const Bytef* source;
   5708     uInt  len;
   5709 {
   5710     if (len == 0) return;
   5711     do {
   5712         *dest++ = *source++; /* ??? to be unrolled */
   5713     } while (--len != 0);
   5714 }
   5715 
   5716 int zmemcmp(s1, s2, len)
   5717     const Bytef* s1;
   5718     const Bytef* s2;
   5719     uInt  len;
   5720 {
   5721     uInt j;
   5722 
   5723     for (j = 0; j < len; j++) {
   5724         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
   5725     }
   5726     return 0;
   5727 }
   5728 
   5729 void zmemzero(dest, len)
   5730     Bytef* dest;
   5731     uInt  len;
   5732 {
   5733     if (len == 0) return;
   5734     do {
   5735         *dest++ = 0;  /* ??? to be unrolled */
   5736     } while (--len != 0);
   5737 }
   5738 #endif
   5739 
   5740 #ifdef __TURBOC__
   5741 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
   5742 /* Small and medium model in Turbo C are for now limited to near allocation
   5743  * with reduced MAX_WBITS and MAX_MEM_LEVEL
   5744  */
   5745 #  define MY_ZCALLOC
   5746 
   5747 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
   5748  * and farmalloc(64K) returns a pointer with an offset of 8, so we
   5749  * must fix the pointer. Warning: the pointer must be put back to its
   5750  * original form in order to free it, use zcfree().
   5751  */
   5752 
   5753 #define MAX_PTR 10
   5754 /* 10*64K = 640K */
   5755 
   5756 local int next_ptr = 0;
   5757 
   5758 typedef struct ptr_table_s {
   5759     voidpf org_ptr;
   5760     voidpf new_ptr;
   5761 } ptr_table;
   5762 
   5763 local ptr_table table[MAX_PTR];
   5764 /* This table is used to remember the original form of pointers
   5765  * to large buffers (64K). Such pointers are normalized with a zero offset.
   5766  * Since MSDOS is not a preemptive multitasking OS, this table is not
   5767  * protected from concurrent access. This hack doesn't work anyway on
   5768  * a protected system like OS/2. Use Microsoft C instead.
   5769  */
   5770 
   5771 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5772 {
   5773     voidpf buf = opaque; /* just to make some compilers happy */
   5774     ulg bsize = (ulg)items*size;
   5775 
   5776     /* If we allocate less than 65520 bytes, we assume that farmalloc
   5777      * will return a usable pointer which doesn't have to be normalized.
   5778      */
   5779     if (bsize < 65520L) {
   5780         buf = farmalloc(bsize);
   5781         if (*(ush*)&buf != 0) return buf;
   5782     } else {
   5783         buf = farmalloc(bsize + 16L);
   5784     }
   5785     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
   5786     table[next_ptr].org_ptr = buf;
   5787 
   5788     /* Normalize the pointer to seg:0 */
   5789     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
   5790     *(ush*)&buf = 0;
   5791     table[next_ptr++].new_ptr = buf;
   5792     return buf;
   5793 }
   5794 
   5795 void  zcfree (voidpf opaque, voidpf ptr)
   5796 {
   5797     int n;
   5798     if (*(ush*)&ptr != 0) { /* object < 64K */
   5799         farfree(ptr);
   5800         return;
   5801     }
   5802     /* Find the original pointer */
   5803     for (n = 0; n < next_ptr; n++) {
   5804         if (ptr != table[n].new_ptr) continue;
   5805 
   5806         farfree(table[n].org_ptr);
   5807         while (++n < next_ptr) {
   5808             table[n-1] = table[n];
   5809         }
   5810         next_ptr--;
   5811         return;
   5812     }
   5813     ptr = opaque; /* just to make some compilers happy */
   5814     Assert(0, "zcfree: ptr not found");
   5815 }
   5816 #endif
   5817 #endif /* __TURBOC__ */
   5818 
   5819 
   5820 #if defined(M_I86) && !defined(__32BIT__)
   5821 /* Microsoft C in 16-bit mode */
   5822 
   5823 #  define MY_ZCALLOC
   5824 
   5825 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
   5826 #  define _halloc  halloc
   5827 #  define _hfree   hfree
   5828 #endif
   5829 
   5830 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5831 {
   5832     if (opaque) opaque = 0; /* to make compiler happy */
   5833     return _halloc((long)items, size);
   5834 }
   5835 
   5836 void  zcfree (voidpf opaque, voidpf ptr)
   5837 {
   5838     if (opaque) opaque = 0; /* to make compiler happy */
   5839     _hfree(ptr);
   5840 }
   5841 
   5842 #endif /* MSC */
   5843 
   5844 
   5845 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
   5846 
   5847 #ifndef STDC
   5848 extern voidp  calloc __P((uInt items, uInt size));
   5849 extern void   free   __P((voidpf ptr));
   5850 #endif
   5851 
   5852 voidpf zcalloc (opaque, items, size)
   5853     voidpf opaque;
   5854     unsigned items;
   5855     unsigned size;
   5856 {
   5857     if (opaque) items += size - size; /* make compiler happy */
   5858     return (voidpf)calloc(items, size);
   5859 }
   5860 
   5861 void  zcfree (opaque, ptr)
   5862     voidpf opaque;
   5863     voidpf ptr;
   5864 {
   5865     free(ptr);
   5866     if (opaque) return; /* make compiler happy */
   5867 }
   5868 
   5869 #endif /* MY_ZCALLOC */
   5870 /* --- zutil.c */
   5871 
   5872 /* +++ adler32.c */
   5873 /* adler32.c -- compute the Adler-32 checksum of a data stream
   5874  * Copyright (C) 1995-2002 Mark Adler
   5875  * For conditions of distribution and use, see copyright notice in zlib.h
   5876  */
   5877 
   5878 /* @(#) $Id: zlib.c,v 1.10.4.1 2002/03/20 23:18:36 he Exp $ */
   5879 
   5880 /* #include "zlib.h" */
   5881 
   5882 #define BASE 65521L /* largest prime smaller than 65536 */
   5883 #define NMAX 5552
   5884 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
   5885 
   5886 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
   5887 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
   5888 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
   5889 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
   5890 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
   5891 
   5892 /* ========================================================================= */
   5893 uLong ZEXPORT adler32(adler, buf, len)
   5894     uLong adler;
   5895     const Bytef *buf;
   5896     uInt len;
   5897 {
   5898     unsigned long s1 = adler & 0xffff;
   5899     unsigned long s2 = (adler >> 16) & 0xffff;
   5900     int k;
   5901 
   5902     if (buf == Z_NULL) return 1L;
   5903 
   5904     while (len > 0) {
   5905         k = len < NMAX ? len : NMAX;
   5906         len -= k;
   5907         while (k >= 16) {
   5908             DO16(buf);
   5909 	    buf += 16;
   5910             k -= 16;
   5911         }
   5912         if (k != 0) do {
   5913             s1 += *buf++;
   5914 	    s2 += s1;
   5915         } while (--k);
   5916         s1 %= BASE;
   5917         s2 %= BASE;
   5918     }
   5919     return (s2 << 16) | s1;
   5920 }
   5921 /* --- adler32.c */
   5922 
   5923