Home | History | Annotate | Line # | Download | only in net
zlib.c revision 1.10.4.2
      1 /*	$NetBSD: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $	*/
      2 /*
      3  * This file is derived from various .h and .c files from the zlib-1.0.4
      4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
      5  * by Paul Mackerras to aid in implementing Deflate compression and
      6  * decompression for PPP packets.  See zlib.h for conditions of
      7  * distribution and use.
      8  *
      9  * Changes that have been made include:
     10  * - added Z_PACKET_FLUSH (see zlib.h for details)
     11  * - added inflateIncomp and deflateOutputPending
     12  * - allow strm->next_out to be NULL, meaning discard the output
     13  *
     14  * $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $
     15  */
     16 
     17 /*
     18  *  ==FILEVERSION 020312==
     19  *
     20  * This marker is used by the Linux installation script to determine
     21  * whether an up-to-date version of this file is already installed.
     22  */
     23 
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $");
     26 
     27 #define NO_DUMMY_DECL
     28 #define NO_ZCFUNCS
     29 #define MY_ZCALLOC
     30 
     31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
     32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
     33 #endif
     34 
     35 
     36 /* +++ zutil.h */
     37 
     38 /* zutil.h -- internal interface and configuration of the compression library
     39  * Copyright (C) 1995-2002 Jean-loup Gailly.
     40  * For conditions of distribution and use, see copyright notice in zlib.h
     41  */
     42 
     43 /* WARNING: this file should *not* be used by applications. It is
     44    part of the implementation of the compression library and is
     45    subject to change. Applications should only use zlib.h.
     46  */
     47 
     48 /* @(#) $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $ */
     49 
     50 #ifndef _Z_UTIL_H
     51 #define _Z_UTIL_H
     52 
     53 #include "zlib.h"
     54 
     55 #if defined(KERNEL) || defined(_KERNEL)
     56 /* Assume this is a *BSD or SVR4 kernel */
     57 #include <sys/param.h>
     58 #include <sys/time.h>
     59 #include <sys/systm.h>
     60 #  define HAVE_MEMCPY
     61 #else
     62 #if defined(__KERNEL__)
     63 /* Assume this is a Linux kernel */
     64 #include <linux/string.h>
     65 #define HAVE_MEMCPY
     66 
     67 #else /* not kernel */
     68 
     69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
     70 
     71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
     72 #  include <lib/libkern/libkern.h>
     73 
     74 #else
     75 #ifdef STDC
     76 #  include <stddef.h>
     77 #  include <string.h>
     78 #  include <stdlib.h>
     79 #endif
     80 #ifdef NO_ERRNO_H
     81     extern int errno;
     82 #else
     83 #   include <errno.h>
     84 #endif
     85 #endif /* __NetBSD__ && _STANDALONE */
     86 #endif /* __KERNEL__ */
     87 #endif /* _KERNEL || KERNEL */
     88 
     89 
     90 #ifndef local
     91 #  define local static
     92 #endif
     93 /* compile with -Dlocal if your debugger can't find static symbols */
     94 
     95 typedef unsigned char  uch;
     96 typedef uch FAR uchf;
     97 typedef unsigned short ush;
     98 typedef ush FAR ushf;
     99 typedef unsigned long  ulg;
    100 
    101 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
    102 /* (size given to avoid silly warnings with Visual C++) */
    103 
    104 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
    105 
    106 #define ERR_RETURN(strm,err) \
    107   return (strm->msg = (char*)ERR_MSG(err), (err))
    108 /* To be used only when the state is known to be valid */
    109 
    110         /* common constants */
    111 
    112 #ifndef DEF_WBITS
    113 #  define DEF_WBITS MAX_WBITS
    114 #endif
    115 /* default windowBits for decompression. MAX_WBITS is for compression only */
    116 
    117 #if MAX_MEM_LEVEL >= 8
    118 #  define DEF_MEM_LEVEL 8
    119 #else
    120 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
    121 #endif
    122 /* default memLevel */
    123 
    124 #define STORED_BLOCK 0
    125 #define STATIC_TREES 1
    126 #define DYN_TREES    2
    127 /* The three kinds of block type */
    128 
    129 #define MIN_MATCH  3
    130 #define MAX_MATCH  258
    131 /* The minimum and maximum match lengths */
    132 
    133 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
    134 
    135         /* target dependencies */
    136 
    137 #ifdef MSDOS
    138 #  define OS_CODE  0x00
    139 #  if defined(__TURBOC__) || defined(__BORLANDC__)
    140 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
    141        /* Allow compilation with ANSI keywords only enabled */
    142        void _Cdecl farfree( void *block );
    143        void *_Cdecl farmalloc( unsigned long nbytes );
    144 #    else
    145 #     include <alloc.h>
    146 #    endif
    147 #  else /* MSC or DJGPP */
    148 #    include <malloc.h>
    149 #  endif
    150 #endif
    151 
    152 #ifdef OS2
    153 #  define OS_CODE  0x06
    154 #endif
    155 
    156 #ifdef WIN32 /* Window 95 & Windows NT */
    157 #  define OS_CODE  0x0b
    158 #endif
    159 
    160 #if defined(VAXC) || defined(VMS)
    161 #  define OS_CODE  0x02
    162 #  define F_OPEN(name, mode) \
    163      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
    164 #endif
    165 
    166 #ifdef AMIGA
    167 #  define OS_CODE  0x01
    168 #endif
    169 
    170 #if defined(ATARI) || defined(atarist)
    171 #  define OS_CODE  0x05
    172 #endif
    173 
    174 #if defined(MACOS) || defined(TARGET_OS_MAC)
    175 #  define OS_CODE  0x07
    176 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
    177 #    include <unix.h> /* for fdopen */
    178 #  else
    179 #    ifndef fdopen
    180 #      define fdopen(fd,mode) NULL /* No fdopen() */
    181 #    endif
    182 #  endif
    183 #endif
    184 
    185 #ifdef __50SERIES /* Prime/PRIMOS */
    186 #  define OS_CODE  0x0F
    187 #endif
    188 
    189 #ifdef TOPS20
    190 #  define OS_CODE  0x0a
    191 #endif
    192 
    193 #if defined(_BEOS_) || defined(RISCOS)
    194 #  define fdopen(fd,mode) NULL /* No fdopen() */
    195 #endif
    196 
    197 #if (defined(_MSC_VER) && (_MSC_VER > 600))
    198 #  define fdopen(fd,type)  _fdopen(fd,type)
    199 #endif
    200 
    201 
    202         /* Common defaults */
    203 
    204 #ifndef OS_CODE
    205 #  define OS_CODE  0x03  /* assume Unix */
    206 #endif
    207 
    208 #ifndef F_OPEN
    209 #  define F_OPEN(name, mode) fopen((name), (mode))
    210 #endif
    211 
    212          /* functions */
    213 
    214 #ifdef HAVE_STRERROR
    215    extern char *strerror __P((int));
    216 #  define zstrerror(errnum) strerror(errnum)
    217 #else
    218 #  define zstrerror(errnum) ""
    219 #endif
    220 
    221 #if defined(pyr)
    222 #  define NO_MEMCPY
    223 #endif
    224 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
    225  /* Use our own functions for small and medium model with MSC <= 5.0.
    226   * You may have to use the same strategy for Borland C (untested).
    227   * The __SC__ check is for Symantec.
    228   */
    229 #  define NO_MEMCPY
    230 #endif
    231 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
    232 #  define HAVE_MEMCPY
    233 #endif
    234 #ifdef HAVE_MEMCPY
    235 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
    236 #    define zmemcpy _fmemcpy
    237 #    define zmemcmp _fmemcmp
    238 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
    239 #  else
    240 #    define zmemcpy memcpy
    241 #    define zmemcmp memcmp
    242 #    define zmemzero(dest, len) memset(dest, 0, len)
    243 #  endif
    244 #else
    245    extern void zmemcpy  __P((Bytef* dest, const Bytef* source, uInt len));
    246    extern int  zmemcmp  __P((const Bytef* s1, const Bytef* s2, uInt len));
    247    extern void zmemzero __P((Bytef* dest, uInt len));
    248 #endif
    249 
    250 /* Diagnostic functions */
    251 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
    252 #  include <stdio.h>
    253    extern int z_verbose;
    254    extern void z_error    __P((char *m));
    255 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
    256 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
    257 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
    258 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
    259 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
    260 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
    261 #else
    262 #  define Assert(cond,msg)
    263 #  define Trace(x)
    264 #  define Tracev(x)
    265 #  define Tracevv(x)
    266 #  define Tracec(c,x)
    267 #  define Tracecv(c,x)
    268 #endif
    269 
    270 
    271 typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
    272 				       uInt len));
    273 voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
    274 void   zcfree  __P((voidpf opaque, voidpf ptr));
    275 
    276 #define ZALLOC(strm, items, size) \
    277            (*((strm)->zalloc))((strm)->opaque, (items), (size))
    278 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
    279 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
    280 
    281 #endif /* _Z_UTIL_H */
    282 /* --- zutil.h */
    283 
    284 /* +++ deflate.h */
    285 
    286 /* deflate.h -- internal compression state
    287  * Copyright (C) 1995-2002 Jean-loup Gailly
    288  * For conditions of distribution and use, see copyright notice in zlib.h
    289  */
    290 
    291 /* WARNING: this file should *not* be used by applications. It is
    292    part of the implementation of the compression library and is
    293    subject to change. Applications should only use zlib.h.
    294  */
    295 
    296 /* @(#) $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $ */
    297 
    298 #ifndef _DEFLATE_H
    299 #define _DEFLATE_H
    300 
    301 /* #include "zutil.h" */
    302 
    303 /* ===========================================================================
    304  * Internal compression state.
    305  */
    306 
    307 #define LENGTH_CODES 29
    308 /* number of length codes, not counting the special END_BLOCK code */
    309 
    310 #define LITERALS  256
    311 /* number of literal bytes 0..255 */
    312 
    313 #define L_CODES (LITERALS+1+LENGTH_CODES)
    314 /* number of Literal or Length codes, including the END_BLOCK code */
    315 
    316 #define D_CODES   30
    317 /* number of distance codes */
    318 
    319 #define BL_CODES  19
    320 /* number of codes used to transfer the bit lengths */
    321 
    322 #define HEAP_SIZE (2*L_CODES+1)
    323 /* maximum heap size */
    324 
    325 #define MAX_BITS 15
    326 /* All codes must not exceed MAX_BITS bits */
    327 
    328 #define INIT_STATE    42
    329 #define BUSY_STATE   113
    330 #define FINISH_STATE 666
    331 /* Stream status */
    332 
    333 
    334 /* Data structure describing a single value and its code string. */
    335 typedef struct ct_data_s {
    336     union {
    337         ush  freq;       /* frequency count */
    338         ush  code;       /* bit string */
    339     } fc;
    340     union {
    341         ush  dad;        /* father node in Huffman tree */
    342         ush  len;        /* length of bit string */
    343     } dl;
    344 } FAR ct_data;
    345 
    346 #define Freq fc.freq
    347 #define Code fc.code
    348 #define Dad  dl.dad
    349 #define Len  dl.len
    350 
    351 typedef struct static_tree_desc_s  static_tree_desc;
    352 
    353 typedef struct tree_desc_s {
    354     ct_data *dyn_tree;           /* the dynamic tree */
    355     int     max_code;            /* largest code with non zero frequency */
    356     static_tree_desc *stat_desc; /* the corresponding static tree */
    357 } FAR tree_desc;
    358 
    359 typedef ush Pos;
    360 typedef Pos FAR Posf;
    361 typedef unsigned IPos;
    362 
    363 /* A Pos is an index in the character window. We use short instead of int to
    364  * save space in the various tables. IPos is used only for parameter passing.
    365  */
    366 
    367 typedef struct deflate_state {
    368     z_streamp strm;      /* pointer back to this zlib stream */
    369     int   status;        /* as the name implies */
    370     Bytef *pending_buf;  /* output still pending */
    371     ulg   pending_buf_size; /* size of pending_buf */
    372     Bytef *pending_out;  /* next pending byte to output to the stream */
    373     int   pending;       /* nb of bytes in the pending buffer */
    374     int   noheader;      /* suppress zlib header and adler32 */
    375     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
    376     Byte  method;        /* STORED (for zip only) or DEFLATED */
    377     int   last_flush;    /* value of flush param for previous deflate call */
    378 
    379                 /* used by deflate.c: */
    380 
    381     uInt  w_size;        /* LZ77 window size (32K by default) */
    382     uInt  w_bits;        /* log2(w_size)  (8..16) */
    383     uInt  w_mask;        /* w_size - 1 */
    384 
    385     Bytef *window;
    386     /* Sliding window. Input bytes are read into the second half of the window,
    387      * and move to the first half later to keep a dictionary of at least wSize
    388      * bytes. With this organization, matches are limited to a distance of
    389      * wSize-MAX_MATCH bytes, but this ensures that IO is always
    390      * performed with a length multiple of the block size. Also, it limits
    391      * the window size to 64K, which is quite useful on MSDOS.
    392      * To do: use the user input buffer as sliding window.
    393      */
    394 
    395     ulg window_size;
    396     /* Actual size of window: 2*wSize, except when the user input buffer
    397      * is directly used as sliding window.
    398      */
    399 
    400     Posf *prev;
    401     /* Link to older string with same hash index. To limit the size of this
    402      * array to 64K, this link is maintained only for the last 32K strings.
    403      * An index in this array is thus a window index modulo 32K.
    404      */
    405 
    406     Posf *head; /* Heads of the hash chains or NIL. */
    407 
    408     uInt  ins_h;          /* hash index of string to be inserted */
    409     uInt  hash_size;      /* number of elements in hash table */
    410     uInt  hash_bits;      /* log2(hash_size) */
    411     uInt  hash_mask;      /* hash_size-1 */
    412 
    413     uInt  hash_shift;
    414     /* Number of bits by which ins_h must be shifted at each input
    415      * step. It must be such that after MIN_MATCH steps, the oldest
    416      * byte no longer takes part in the hash key, that is:
    417      *   hash_shift * MIN_MATCH >= hash_bits
    418      */
    419 
    420     long block_start;
    421     /* Window position at the beginning of the current output block. Gets
    422      * negative when the window is moved backwards.
    423      */
    424 
    425     uInt match_length;           /* length of best match */
    426     IPos prev_match;             /* previous match */
    427     int match_available;         /* set if previous match exists */
    428     uInt strstart;               /* start of string to insert */
    429     uInt match_start;            /* start of matching string */
    430     uInt lookahead;              /* number of valid bytes ahead in window */
    431 
    432     uInt prev_length;
    433     /* Length of the best match at previous step. Matches not greater than this
    434      * are discarded. This is used in the lazy match evaluation.
    435      */
    436 
    437     uInt max_chain_length;
    438     /* To speed up deflation, hash chains are never searched beyond this
    439      * length.  A higher limit improves compression ratio but degrades the
    440      * speed.
    441      */
    442 
    443     uInt max_lazy_match;
    444     /* Attempt to find a better match only when the current match is strictly
    445      * smaller than this value. This mechanism is used only for compression
    446      * levels >= 4.
    447      */
    448 #   define max_insert_length  max_lazy_match
    449     /* Insert new strings in the hash table only if the match length is not
    450      * greater than this length. This saves time but degrades compression.
    451      * max_insert_length is used only for compression levels <= 3.
    452      */
    453 
    454     int level;    /* compression level (1..9) */
    455     int strategy; /* favor or force Huffman coding*/
    456 
    457     uInt good_match;
    458     /* Use a faster search when the previous match is longer than this */
    459 
    460     int nice_match; /* Stop searching when current match exceeds this */
    461 
    462                 /* used by trees.c: */
    463     /* Didn't use ct_data typedef below to supress compiler warning */
    464     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    465     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    466     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
    467 
    468     struct tree_desc_s l_desc;               /* desc. for literal tree */
    469     struct tree_desc_s d_desc;               /* desc. for distance tree */
    470     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
    471 
    472     ush bl_count[MAX_BITS+1];
    473     /* number of codes at each bit length for an optimal tree */
    474 
    475     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    476     int heap_len;               /* number of elements in the heap */
    477     int heap_max;               /* element of largest frequency */
    478     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
    479      * The same heap array is used to build all trees.
    480      */
    481 
    482     uch depth[2*L_CODES+1];
    483     /* Depth of each subtree used as tie breaker for trees of equal frequency
    484      */
    485 
    486     uchf *l_buf;          /* buffer for literals or lengths */
    487 
    488     uInt  lit_bufsize;
    489     /* Size of match buffer for literals/lengths.  There are 4 reasons for
    490      * limiting lit_bufsize to 64K:
    491      *   - frequencies can be kept in 16 bit counters
    492      *   - if compression is not successful for the first block, all input
    493      *     data is still in the window so we can still emit a stored block even
    494      *     when input comes from standard input.  (This can also be done for
    495      *     all blocks if lit_bufsize is not greater than 32K.)
    496      *   - if compression is not successful for a file smaller than 64K, we can
    497      *     even emit a stored file instead of a stored block (saving 5 bytes).
    498      *     This is applicable only for zip (not gzip or zlib).
    499      *   - creating new Huffman trees less frequently may not provide fast
    500      *     adaptation to changes in the input data statistics. (Take for
    501      *     example a binary file with poorly compressible code followed by
    502      *     a highly compressible string table.) Smaller buffer sizes give
    503      *     fast adaptation but have of course the overhead of transmitting
    504      *     trees more frequently.
    505      *   - I can't count above 4
    506      */
    507 
    508     uInt last_lit;      /* running index in l_buf */
    509 
    510     ushf *d_buf;
    511     /* Buffer for distances. To simplify the code, d_buf and l_buf have
    512      * the same number of elements. To use different lengths, an extra flag
    513      * array would be necessary.
    514      */
    515 
    516     ulg opt_len;        /* bit length of current block with optimal trees */
    517     ulg static_len;     /* bit length of current block with static trees */
    518     uInt matches;       /* number of string matches in current block */
    519     int last_eob_len;   /* bit length of EOB code for last block */
    520 
    521 #ifdef DEBUG_ZLIB
    522     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
    523     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
    524 #endif
    525 
    526     ush bi_buf;
    527     /* Output buffer. bits are inserted starting at the bottom (least
    528      * significant bits).
    529      */
    530     int bi_valid;
    531     /* Number of valid bits in bi_buf.  All bits above the last valid bit
    532      * are always zero.
    533      */
    534 
    535 } FAR deflate_state;
    536 
    537 /* Output a byte on the stream.
    538  * IN assertion: there is enough room in pending_buf.
    539  */
    540 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
    541 
    542 
    543 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    544 /* Minimum amount of lookahead, except at the end of the input file.
    545  * See deflate.c for comments about the MIN_MATCH+1.
    546  */
    547 
    548 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
    549 /* In order to simplify the code, particularly on 16 bit machines, match
    550  * distances are limited to MAX_DIST instead of WSIZE.
    551  */
    552 
    553         /* in trees.c */
    554 void _tr_init         __P((deflate_state *s));
    555 int  _tr_tally        __P((deflate_state *s, unsigned dist, unsigned lc));
    556 void _tr_flush_block  __P((deflate_state *s, charf *buf, ulg stored_len,
    557 			  int eof));
    558 void _tr_align        __P((deflate_state *s));
    559 void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
    560                           int eof));
    561 void _tr_stored_type_only __P((deflate_state *));
    562 
    563 #define d_code(dist) \
    564    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
    565 /* Mapping from a distance to a distance code. dist is the distance - 1 and
    566  * must not have side effects. _dist_code[256] and _dist_code[257] are never
    567  * used.
    568  */
    569 
    570 #ifndef DEBUG_ZLIB
    571 /* Inline versions of _tr_tally for speed: */
    572 
    573 #if defined(GEN_TREES_H) || !defined(STDC)
    574   extern uch _length_code[];
    575   extern uch _dist_code[];
    576 #else
    577   extern const uch _length_code[];
    578   extern const uch _dist_code[];
    579 #endif
    580 
    581 # define _tr_tally_lit(s, c, flush) \
    582   { uch cc = (c); \
    583     s->d_buf[s->last_lit] = 0; \
    584     s->l_buf[s->last_lit++] = cc; \
    585     s->dyn_ltree[cc].Freq++; \
    586     flush = (s->last_lit == s->lit_bufsize-1); \
    587    }
    588 # define _tr_tally_dist(s, distance, length, flush) \
    589   { uch len = (length); \
    590     ush dist = (distance); \
    591     s->d_buf[s->last_lit] = dist; \
    592     s->l_buf[s->last_lit++] = len; \
    593     dist--; \
    594     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
    595     s->dyn_dtree[d_code(dist)].Freq++; \
    596     flush = (s->last_lit == s->lit_bufsize-1); \
    597   }
    598 #else
    599 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
    600 # define _tr_tally_dist(s, distance, length, flush) \
    601               flush = _tr_tally(s, distance, length)
    602 #endif
    603 
    604 #endif
    605 /* --- deflate.h */
    606 
    607 /* +++ deflate.c */
    608 
    609 /* deflate.c -- compress data using the deflation algorithm
    610  * Copyright (C) 1995-2002 Jean-loup Gailly.
    611  * For conditions of distribution and use, see copyright notice in zlib.h
    612  */
    613 
    614 /*
    615  *  ALGORITHM
    616  *
    617  *      The "deflation" process depends on being able to identify portions
    618  *      of the input text which are identical to earlier input (within a
    619  *      sliding window trailing behind the input currently being processed).
    620  *
    621  *      The most straightforward technique turns out to be the fastest for
    622  *      most input files: try all possible matches and select the longest.
    623  *      The key feature of this algorithm is that insertions into the string
    624  *      dictionary are very simple and thus fast, and deletions are avoided
    625  *      completely. Insertions are performed at each input character, whereas
    626  *      string matches are performed only when the previous match ends. So it
    627  *      is preferable to spend more time in matches to allow very fast string
    628  *      insertions and avoid deletions. The matching algorithm for small
    629  *      strings is inspired from that of Rabin & Karp. A brute force approach
    630  *      is used to find longer strings when a small match has been found.
    631  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
    632  *      (by Leonid Broukhis).
    633  *         A previous version of this file used a more sophisticated algorithm
    634  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
    635  *      time, but has a larger average cost, uses more memory and is patented.
    636  *      However the F&G algorithm may be faster for some highly redundant
    637  *      files if the parameter max_chain_length (described below) is too large.
    638  *
    639  *  ACKNOWLEDGEMENTS
    640  *
    641  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
    642  *      I found it in 'freeze' written by Leonid Broukhis.
    643  *      Thanks to many people for bug reports and testing.
    644  *
    645  *  REFERENCES
    646  *
    647  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
    648  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
    649  *
    650  *      A description of the Rabin and Karp algorithm is given in the book
    651  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
    652  *
    653  *      Fiala,E.R., and Greene,D.H.
    654  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
    655  *
    656  */
    657 
    658 /* @(#) $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $ */
    659 
    660 /* #include "deflate.h" */
    661 
    662 const char deflate_copyright[] =
    663    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
    664 /*
    665   If you use the zlib library in a product, an acknowledgment is welcome
    666   in the documentation of your product. If for some reason you cannot
    667   include such an acknowledgment, I would appreciate that you keep this
    668   copyright string in the executable of your product.
    669  */
    670 
    671 /* ===========================================================================
    672  *  Function prototypes.
    673  */
    674 typedef enum {
    675     need_more,      /* block not completed, need more input or more output */
    676     block_done,     /* block flush performed */
    677     finish_started, /* finish started, need only more output at next deflate */
    678     finish_done     /* finish done, accept no more input or output */
    679 } block_state;
    680 
    681 typedef block_state (*compress_func) __P((deflate_state *s, int flush));
    682 /* Compression function. Returns the block state after the call. */
    683 
    684 local void fill_window    __P((deflate_state *s));
    685 local block_state deflate_stored __P((deflate_state *s, int flush));
    686 local block_state deflate_fast   __P((deflate_state *s, int flush));
    687 local block_state deflate_slow   __P((deflate_state *s, int flush));
    688 local void lm_init        __P((deflate_state *s));
    689 local void putShortMSB    __P((deflate_state *s, uInt b));
    690 local void flush_pending  __P((z_streamp strm));
    691 local int read_buf        __P((z_streamp strm, Bytef *buf, unsigned size));
    692 #ifdef ASMV
    693       void match_init __P((void)); /* asm code initialization */
    694       uInt longest_match  __P((deflate_state *s, IPos cur_match));
    695 #else
    696 local uInt longest_match  __P((deflate_state *s, IPos cur_match));
    697 #endif
    698 
    699 #ifdef DEBUG_ZLIB
    700 local  void check_match __P((deflate_state *s, IPos start, IPos match,
    701                             int length));
    702 #endif
    703 
    704 /* ===========================================================================
    705  * Local data
    706  */
    707 
    708 #define NIL 0
    709 /* Tail of hash chains */
    710 
    711 #ifndef TOO_FAR
    712 #  define TOO_FAR 4096
    713 #endif
    714 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
    715 
    716 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    717 /* Minimum amount of lookahead, except at the end of the input file.
    718  * See deflate.c for comments about the MIN_MATCH+1.
    719  */
    720 
    721 /* Values for max_lazy_match, good_match and max_chain_length, depending on
    722  * the desired pack level (0..9). The values given below have been tuned to
    723  * exclude worst case performance for pathological files. Better values may be
    724  * found for specific files.
    725  */
    726 typedef struct config_s {
    727    ush good_length; /* reduce lazy search above this match length */
    728    ush max_lazy;    /* do not perform lazy search above this match length */
    729    ush nice_length; /* quit search above this match length */
    730    ush max_chain;
    731    compress_func func;
    732 } config;
    733 
    734 local const config configuration_table[10] = {
    735 /*      good lazy nice chain */
    736 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    737 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
    738 /* 2 */ {4,    5, 16,    8, deflate_fast},
    739 /* 3 */ {4,    6, 32,   32, deflate_fast},
    740 
    741 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    742 /* 5 */ {8,   16, 32,   32, deflate_slow},
    743 /* 6 */ {8,   16, 128, 128, deflate_slow},
    744 /* 7 */ {8,   32, 128, 256, deflate_slow},
    745 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    746 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
    747 
    748 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    749  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    750  * meaning.
    751  */
    752 
    753 #define EQUAL 0
    754 /* result of memcmp for equal strings */
    755 
    756 #ifndef NO_DUMMY_DECL
    757 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
    758 #endif
    759 
    760 /* ===========================================================================
    761  * Update a hash value with the given input byte
    762  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
    763  *    input characters, so that a running hash key can be computed from the
    764  *    previous key instead of complete recalculation each time.
    765  */
    766 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
    767 
    768 
    769 /* ===========================================================================
    770  * Insert string str in the dictionary and set match_head to the previous head
    771  * of the hash chain (the most recent string with same hash key). Return
    772  * the previous length of the hash chain.
    773  * If this file is compiled with -DFASTEST, the compression level is forced
    774  * to 1, and no hash chains are maintained.
    775  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
    776  *    input characters and the first MIN_MATCH bytes of str are valid
    777  *    (except for the last MIN_MATCH-1 bytes of the input file).
    778  */
    779 #ifdef FASTEST
    780 #define INSERT_STRING(s, str, match_head) \
    781    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    782     match_head = s->head[s->ins_h], \
    783     s->head[s->ins_h] = (Pos)(str))
    784 #else
    785 #define INSERT_STRING(s, str, match_head) \
    786    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    787     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
    788     s->head[s->ins_h] = (Pos)(str))
    789 #endif
    790 
    791 /* ===========================================================================
    792  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    793  * prev[] will be initialized on the fly.
    794  */
    795 #define CLEAR_HASH(s) \
    796     s->head[s->hash_size-1] = NIL; \
    797     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
    798 
    799 /* ========================================================================= */
    800 int ZEXPORT deflateInit_(strm, level, version, stream_size)
    801     z_streamp strm;
    802     int level;
    803     const char *version;
    804     int stream_size;
    805 {
    806     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    807 			 Z_DEFAULT_STRATEGY, version, stream_size);
    808     /* To do: ignore strm->next_in if we use it as window */
    809 }
    810 
    811 /* ========================================================================= */
    812 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
    813 		  version, stream_size)
    814     z_streamp strm;
    815     int  level;
    816     int  method;
    817     int  windowBits;
    818     int  memLevel;
    819     int  strategy;
    820     const char *version;
    821     int stream_size;
    822 {
    823     deflate_state *s;
    824     int noheader = 0;
    825     static const char* my_version = ZLIB_VERSION;
    826 
    827     ushf *overlay;
    828     /* We overlay pending_buf and d_buf+l_buf. This works since the average
    829      * output size for (length,distance) codes is <= 24 bits.
    830      */
    831 
    832     if (version == Z_NULL || version[0] != my_version[0] ||
    833         stream_size != sizeof(z_stream)) {
    834 	return Z_VERSION_ERROR;
    835     }
    836     if (strm == Z_NULL) return Z_STREAM_ERROR;
    837 
    838     strm->msg = Z_NULL;
    839 #ifndef NO_ZCFUNCS
    840     if (strm->zalloc == Z_NULL) {
    841 	strm->zalloc = zcalloc;
    842 	strm->opaque = (voidpf)0;
    843     }
    844     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
    845 #endif
    846 
    847     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    848 #ifdef FASTEST
    849     level = 1;
    850 #endif
    851 
    852     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
    853         noheader = 1;
    854         windowBits = -windowBits;
    855     }
    856     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    857         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
    858 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    859         return Z_STREAM_ERROR;
    860     }
    861     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    862     if (s == Z_NULL) return Z_MEM_ERROR;
    863     strm->state = (struct internal_state FAR *)s;
    864     s->strm = strm;
    865 
    866     s->noheader = noheader;
    867     s->w_bits = windowBits;
    868     s->w_size = 1 << s->w_bits;
    869     s->w_mask = s->w_size - 1;
    870 
    871     s->hash_bits = memLevel + 7;
    872     s->hash_size = 1 << s->hash_bits;
    873     s->hash_mask = s->hash_size - 1;
    874     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
    875 
    876     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    877     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    878     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    879 
    880     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    881 
    882     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
    883     s->pending_buf = (uchf *) overlay;
    884     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
    885 
    886     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    887         s->pending_buf == Z_NULL) {
    888         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
    889         deflateEnd (strm);
    890         return Z_MEM_ERROR;
    891     }
    892     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
    893     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
    894 
    895     s->level = level;
    896     s->strategy = strategy;
    897     s->method = (Byte)method;
    898 
    899     return deflateReset(strm);
    900 }
    901 
    902 /* ========================================================================= */
    903 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
    904     z_streamp strm;
    905     const Bytef *dictionary;
    906     uInt  dictLength;
    907 {
    908     deflate_state *s;
    909     uInt length = dictLength;
    910     uInt n;
    911     IPos hash_head = 0;
    912 
    913     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
    914         return Z_STREAM_ERROR;
    915 
    916     s = (deflate_state *)strm->state;
    917     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
    918 
    919     strm->adler = adler32(strm->adler, dictionary, dictLength);
    920 
    921     if (length < MIN_MATCH) return Z_OK;
    922     if (length > MAX_DIST(s)) {
    923 	length = MAX_DIST(s);
    924 #ifndef USE_DICT_HEAD
    925 	dictionary += dictLength - length; /* use the tail of the dictionary */
    926 #endif
    927     }
    928     zmemcpy(s->window, dictionary, length);
    929     s->strstart = length;
    930     s->block_start = (long)length;
    931 
    932     /* Insert all strings in the hash table (except for the last two bytes).
    933      * s->lookahead stays null, so s->ins_h will be recomputed at the next
    934      * call of fill_window.
    935      */
    936     s->ins_h = s->window[0];
    937     UPDATE_HASH(s, s->ins_h, s->window[1]);
    938     for (n = 0; n <= length - MIN_MATCH; n++) {
    939 	INSERT_STRING(s, n, hash_head);
    940     }
    941     if (hash_head) hash_head = 0;  /* to make compiler happy */
    942     return Z_OK;
    943 }
    944 
    945 /* ========================================================================= */
    946 int ZEXPORT deflateReset (strm)
    947     z_streamp strm;
    948 {
    949     deflate_state *s;
    950 
    951     if (strm == Z_NULL || strm->state == Z_NULL ||
    952         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
    953 
    954     strm->total_in = strm->total_out = 0;
    955     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    956     strm->data_type = Z_UNKNOWN;
    957 
    958     s = (deflate_state *)strm->state;
    959     s->pending = 0;
    960     s->pending_out = s->pending_buf;
    961 
    962     if (s->noheader < 0) {
    963         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
    964     }
    965     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
    966     strm->adler = 1;
    967     s->last_flush = Z_NO_FLUSH;
    968 
    969     _tr_init(s);
    970     lm_init(s);
    971 
    972     return Z_OK;
    973 }
    974 
    975 /* ========================================================================= */
    976 int ZEXPORT deflateParams(strm, level, strategy)
    977     z_streamp strm;
    978     int level;
    979     int strategy;
    980 {
    981     deflate_state *s;
    982     compress_func func;
    983     int err = Z_OK;
    984 
    985     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    986     s = (deflate_state *)strm->state;
    987 
    988     if (level == Z_DEFAULT_COMPRESSION) {
    989 	level = 6;
    990     }
    991     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    992 	return Z_STREAM_ERROR;
    993     }
    994     func = configuration_table[s->level].func;
    995 
    996     if (func != configuration_table[level].func && strm->total_in != 0) {
    997 	/* Flush the last buffer: */
    998 	err = deflate(strm, Z_PARTIAL_FLUSH);
    999     }
   1000     if (s->level != level) {
   1001 	s->level = level;
   1002 	s->max_lazy_match   = configuration_table[level].max_lazy;
   1003 	s->good_match       = configuration_table[level].good_length;
   1004 	s->nice_match       = configuration_table[level].nice_length;
   1005 	s->max_chain_length = configuration_table[level].max_chain;
   1006     }
   1007     s->strategy = strategy;
   1008     return err;
   1009 }
   1010 
   1011 /* =========================================================================
   1012  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
   1013  * IN assertion: the stream state is correct and there is enough room in
   1014  * pending_buf.
   1015  */
   1016 local void putShortMSB (s, b)
   1017     deflate_state *s;
   1018     uInt b;
   1019 {
   1020     put_byte(s, (Byte)(b >> 8));
   1021     put_byte(s, (Byte)(b & 0xff));
   1022 }
   1023 
   1024 /* =========================================================================
   1025  * Flush as much pending output as possible. All deflate() output goes
   1026  * through this function so some applications may wish to modify it
   1027  * to avoid allocating a large strm->next_out buffer and copying into it.
   1028  * (See also read_buf()).
   1029  */
   1030 local void flush_pending(strm)
   1031     z_streamp strm;
   1032 {
   1033     deflate_state *s = (deflate_state *) strm->state;
   1034     unsigned len = s->pending;
   1035 
   1036     if (len > strm->avail_out) len = strm->avail_out;
   1037     if (len == 0) return;
   1038 
   1039     if (strm->next_out != Z_NULL) {
   1040       zmemcpy(strm->next_out, s->pending_out, len);
   1041       strm->next_out  += len;
   1042     }
   1043     s->pending_out  += len;
   1044     strm->total_out += len;
   1045     strm->avail_out  -= len;
   1046     s->pending -= len;
   1047     if (s->pending == 0) {
   1048         s->pending_out = s->pending_buf;
   1049     }
   1050 }
   1051 
   1052 /* ========================================================================= */
   1053 int ZEXPORT deflate (strm, flush)
   1054     z_streamp strm;
   1055     int flush;
   1056 {
   1057     int old_flush; /* value of flush param for previous deflate call */
   1058     deflate_state *s;
   1059 
   1060     if (strm == Z_NULL || strm->state == Z_NULL ||
   1061 	flush > Z_FINISH || flush < 0) {
   1062         return Z_STREAM_ERROR;
   1063     }
   1064     s = (deflate_state *)strm->state;
   1065 
   1066     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
   1067 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
   1068         ERR_RETURN(strm, Z_STREAM_ERROR);
   1069     }
   1070     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
   1071 
   1072     s->strm = strm; /* just in case */
   1073     old_flush = s->last_flush;
   1074     s->last_flush = flush;
   1075 
   1076     /* Write the zlib header */
   1077     if (s->status == INIT_STATE) {
   1078 
   1079         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
   1080         uInt level_flags = (s->level-1) >> 1;
   1081 
   1082         if (level_flags > 3) level_flags = 3;
   1083         header |= (level_flags << 6);
   1084 	if (s->strstart != 0) header |= PRESET_DICT;
   1085         header += 31 - (header % 31);
   1086 
   1087         s->status = BUSY_STATE;
   1088         putShortMSB(s, header);
   1089 
   1090 	/* Save the adler32 of the preset dictionary: */
   1091 	if (s->strstart != 0) {
   1092 	    putShortMSB(s, (uInt)(strm->adler >> 16));
   1093 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1094 	}
   1095 	strm->adler = 1L;
   1096     }
   1097 
   1098     /* Flush as much pending output as possible */
   1099     if (s->pending != 0) {
   1100         flush_pending(strm);
   1101         if (strm->avail_out == 0) {
   1102 	    /* Since avail_out is 0, deflate will be called again with
   1103 	     * more output space, but possibly with both pending and
   1104 	     * avail_in equal to zero. There won't be anything to do,
   1105 	     * but this is not an error situation so make sure we
   1106 	     * return OK instead of BUF_ERROR at next call of deflate:
   1107              */
   1108 	    s->last_flush = -1;
   1109 	    return Z_OK;
   1110 	}
   1111 
   1112     /* Make sure there is something to do and avoid duplicate consecutive
   1113      * flushes. For repeated and useless calls with Z_FINISH, we keep
   1114      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
   1115      */
   1116     } else if (strm->avail_in == 0 && flush <= old_flush &&
   1117 	       flush != Z_FINISH) {
   1118         ERR_RETURN(strm, Z_BUF_ERROR);
   1119     }
   1120 
   1121     /* User must not provide more input after the first FINISH: */
   1122     if (s->status == FINISH_STATE && strm->avail_in != 0) {
   1123         ERR_RETURN(strm, Z_BUF_ERROR);
   1124     }
   1125 
   1126     /* Start a new block or continue the current one.
   1127      */
   1128     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1129         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1130         block_state bstate;
   1131 
   1132 	bstate = (*(configuration_table[s->level].func))(s, flush);
   1133 
   1134         if (bstate == finish_started || bstate == finish_done) {
   1135             s->status = FINISH_STATE;
   1136         }
   1137         if (bstate == need_more || bstate == finish_started) {
   1138 	    if (strm->avail_out == 0) {
   1139 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1140 	    }
   1141 	    return Z_OK;
   1142 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1143 	     * of deflate should use the same flush parameter to make sure
   1144 	     * that the flush is complete. So we don't have to output an
   1145 	     * empty block here, this will be done at next call. This also
   1146 	     * ensures that for a very small output buffer, we emit at most
   1147 	     * one empty block.
   1148 	     */
   1149 	}
   1150         if (bstate == block_done) {
   1151             if (flush == Z_PARTIAL_FLUSH) {
   1152                 _tr_align(s);
   1153 	    } else if (flush == Z_PACKET_FLUSH) {
   1154 		/* Output just the 3-bit `stored' block type value,
   1155 		   but not a zero length. */
   1156 		_tr_stored_type_only(s);
   1157             } else { /* FULL_FLUSH or SYNC_FLUSH */
   1158                 _tr_stored_block(s, (char*)0, 0L, 0);
   1159                 /* For a full flush, this empty block will be recognized
   1160                  * as a special marker by inflate_sync().
   1161                  */
   1162                 if (flush == Z_FULL_FLUSH) {
   1163                     CLEAR_HASH(s);             /* forget history */
   1164                 }
   1165             }
   1166             flush_pending(strm);
   1167 	    if (strm->avail_out == 0) {
   1168 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1169 	      return Z_OK;
   1170 	    }
   1171         }
   1172     }
   1173     Assert(strm->avail_out > 0, "bug2");
   1174 
   1175     if (flush != Z_FINISH) return Z_OK;
   1176     if (s->noheader) return Z_STREAM_END;
   1177 
   1178     /* Write the zlib trailer (adler32) */
   1179     putShortMSB(s, (uInt)(strm->adler >> 16));
   1180     putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1181     flush_pending(strm);
   1182     /* If avail_out is zero, the application will call deflate again
   1183      * to flush the rest.
   1184      */
   1185     s->noheader = -1; /* write the trailer only once! */
   1186     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1187 }
   1188 
   1189 /* ========================================================================= */
   1190 int ZEXPORT deflateEnd (strm)
   1191     z_streamp strm;
   1192 {
   1193     int status;
   1194     deflate_state *s;
   1195 
   1196     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   1197     s = (deflate_state *) strm->state;
   1198 
   1199     status = s->status;
   1200     if (status != INIT_STATE && status != BUSY_STATE &&
   1201 	status != FINISH_STATE) {
   1202       return Z_STREAM_ERROR;
   1203     }
   1204 
   1205     /* Deallocate in reverse order of allocations: */
   1206     TRY_FREE(strm, s->pending_buf);
   1207     TRY_FREE(strm, s->head);
   1208     TRY_FREE(strm, s->prev);
   1209     TRY_FREE(strm, s->window);
   1210 
   1211     ZFREE(strm, s);
   1212     strm->state = Z_NULL;
   1213 
   1214     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1215 }
   1216 
   1217 /* =========================================================================
   1218  * Copy the source state to the destination state.
   1219  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1220  * doesn't have enough memory anyway to duplicate compression states).
   1221  */
   1222 int ZEXPORT deflateCopy (dest, source)
   1223     z_streamp dest;
   1224     z_streamp source;
   1225 {
   1226 #ifdef MAXSEG_64K
   1227     return Z_STREAM_ERROR;
   1228 #else
   1229     deflate_state *ds;
   1230     deflate_state *ss;
   1231     ushf *overlay;
   1232 
   1233 
   1234     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
   1235         return Z_STREAM_ERROR;
   1236     }
   1237 
   1238     ss = (deflate_state *)source->state;
   1239 
   1240     *dest = *source;
   1241 
   1242     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1243     if (ds == Z_NULL) return Z_MEM_ERROR;
   1244     dest->state = (void *) ds;
   1245     *ds = *ss;
   1246     ds->strm = dest;
   1247 
   1248     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1249     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1250     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1251     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
   1252     ds->pending_buf = (uchf *) overlay;
   1253 
   1254     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1255         ds->pending_buf == Z_NULL) {
   1256         deflateEnd (dest);
   1257         return Z_MEM_ERROR;
   1258     }
   1259     /* following zmemcpy do not work for 16-bit MSDOS */
   1260     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1261     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
   1262     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
   1263     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
   1264 
   1265     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1266     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
   1267     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
   1268 
   1269     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1270     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1271     ds->bl_desc.dyn_tree = ds->bl_tree;
   1272 
   1273     return Z_OK;
   1274 #endif
   1275 }
   1276 
   1277 /* ===========================================================================
   1278  * Return the number of bytes of output which are immediately available
   1279  * for output from the decompressor.
   1280  */
   1281 int deflateOutputPending (strm)
   1282     z_streamp strm;
   1283 {
   1284     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
   1285 
   1286     return ((deflate_state *)(strm->state))->pending;
   1287 }
   1288 
   1289 /* ===========================================================================
   1290  * Read a new buffer from the current input stream, update the adler32
   1291  * and total number of bytes read.  All deflate() input goes through
   1292  * this function so some applications may wish to modify it to avoid
   1293  * allocating a large strm->next_in buffer and copying from it.
   1294  * (See also flush_pending()).
   1295  */
   1296 local int read_buf(strm, buf, size)
   1297     z_streamp strm;
   1298     Bytef *buf;
   1299     unsigned size;
   1300 {
   1301     unsigned len = strm->avail_in;
   1302 
   1303     if (len > size) len = size;
   1304     if (len == 0) return 0;
   1305 
   1306     strm->avail_in  -= len;
   1307 
   1308     if (!((deflate_state *)(strm->state))->noheader) {
   1309         strm->adler = adler32(strm->adler, strm->next_in, len);
   1310     }
   1311     zmemcpy(buf, strm->next_in, len);
   1312     strm->next_in  += len;
   1313     strm->total_in += len;
   1314 
   1315     return (int)len;
   1316 }
   1317 
   1318 /* ===========================================================================
   1319  * Initialize the "longest match" routines for a new zlib stream
   1320  */
   1321 local void lm_init (s)
   1322     deflate_state *s;
   1323 {
   1324     s->window_size = (ulg)2L*s->w_size;
   1325 
   1326     CLEAR_HASH(s);
   1327 
   1328     /* Set the default configuration parameters:
   1329      */
   1330     s->max_lazy_match   = configuration_table[s->level].max_lazy;
   1331     s->good_match       = configuration_table[s->level].good_length;
   1332     s->nice_match       = configuration_table[s->level].nice_length;
   1333     s->max_chain_length = configuration_table[s->level].max_chain;
   1334 
   1335     s->strstart = 0;
   1336     s->block_start = 0L;
   1337     s->lookahead = 0;
   1338     s->match_length = s->prev_length = MIN_MATCH-1;
   1339     s->match_available = 0;
   1340     s->ins_h = 0;
   1341 #ifdef ASMV
   1342     match_init(); /* initialize the asm code */
   1343 #endif
   1344 }
   1345 
   1346 /* ===========================================================================
   1347  * Set match_start to the longest match starting at the given string and
   1348  * return its length. Matches shorter or equal to prev_length are discarded,
   1349  * in which case the result is equal to prev_length and match_start is
   1350  * garbage.
   1351  * IN assertions: cur_match is the head of the hash chain for the current
   1352  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1353  * OUT assertion: the match length is not greater than s->lookahead.
   1354  */
   1355 #ifndef ASMV
   1356 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
   1357  * match.S. The code will be functionally equivalent.
   1358  */
   1359 #ifndef FASTEST
   1360 local uInt longest_match(s, cur_match)
   1361     deflate_state *s;
   1362     IPos cur_match;                             /* current match */
   1363 {
   1364     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1365     Bytef *scan = s->window + s->strstart; /* current string */
   1366     Bytef *match;                       /* matched string */
   1367     int len;                           /* length of current match */
   1368     int best_len = s->prev_length;              /* best match length so far */
   1369     int nice_match = s->nice_match;             /* stop if match long enough */
   1370     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1371         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1372     /* Stop when cur_match becomes <= limit. To simplify the code,
   1373      * we prevent matches with the string of window index 0.
   1374      */
   1375     Posf *prev = s->prev;
   1376     uInt wmask = s->w_mask;
   1377 
   1378 #ifdef UNALIGNED_OK
   1379     /* Compare two bytes at a time. Note: this is not always beneficial.
   1380      * Try with and without -DUNALIGNED_OK to check.
   1381      */
   1382     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1383     ush scan_start = *(ushf*)scan;
   1384     ush scan_end   = *(ushf*)(scan+best_len-1);
   1385 #else
   1386     Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1387     Byte scan_end1  = scan[best_len-1];
   1388     Byte scan_end   = scan[best_len];
   1389 #endif
   1390 
   1391     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1392      * It is easy to get rid of this optimization if necessary.
   1393      */
   1394     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1395 
   1396     /* Do not waste too much time if we already have a good match: */
   1397     if (s->prev_length >= s->good_match) {
   1398         chain_length >>= 2;
   1399     }
   1400     /* Do not look for matches beyond the end of the input. This is necessary
   1401      * to make deflate deterministic.
   1402      */
   1403     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
   1404 
   1405     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1406 
   1407     do {
   1408         Assert(cur_match < s->strstart, "no future");
   1409         match = s->window + cur_match;
   1410 
   1411         /* Skip to next match if the match length cannot increase
   1412          * or if the match length is less than 2:
   1413          */
   1414 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1415         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1416          * UNALIGNED_OK if your compiler uses a different size.
   1417          */
   1418         if (*(ushf*)(match+best_len-1) != scan_end ||
   1419             *(ushf*)match != scan_start) continue;
   1420 
   1421         /* It is not necessary to compare scan[2] and match[2] since they are
   1422          * always equal when the other bytes match, given that the hash keys
   1423          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1424          * strstart+3, +5, ... up to strstart+257. We check for insufficient
   1425          * lookahead only every 4th comparison; the 128th check will be made
   1426          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
   1427          * necessary to put more guard bytes at the end of the window, or
   1428          * to check more often for insufficient lookahead.
   1429          */
   1430         Assert(scan[2] == match[2], "scan[2]?");
   1431         scan++, match++;
   1432         do {
   1433         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1434                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1435                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1436                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1437                  scan < strend);
   1438         /* The funny "do {}" generates better code on most compilers */
   1439 
   1440         /* Here, scan <= window+strstart+257 */
   1441         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1442         if (*scan == *match) scan++;
   1443 
   1444         len = (MAX_MATCH - 1) - (int)(strend-scan);
   1445         scan = strend - (MAX_MATCH-1);
   1446 
   1447 #else /* UNALIGNED_OK */
   1448 
   1449         if (match[best_len]   != scan_end  ||
   1450             match[best_len-1] != scan_end1 ||
   1451             *match            != *scan     ||
   1452             *++match          != scan[1])      continue;
   1453 
   1454         /* The check at best_len-1 can be removed because it will be made
   1455          * again later. (This heuristic is not always a win.)
   1456          * It is not necessary to compare scan[2] and match[2] since they
   1457          * are always equal when the other bytes match, given that
   1458          * the hash keys are equal and that HASH_BITS >= 8.
   1459          */
   1460         scan += 2, match++;
   1461         Assert(*scan == *match, "match[2]?");
   1462 
   1463         /* We check for insufficient lookahead only every 8th comparison;
   1464          * the 256th check will be made at strstart+258.
   1465          */
   1466         do {
   1467         } while (*++scan == *++match && *++scan == *++match &&
   1468                  *++scan == *++match && *++scan == *++match &&
   1469                  *++scan == *++match && *++scan == *++match &&
   1470                  *++scan == *++match && *++scan == *++match &&
   1471                  scan < strend);
   1472 
   1473         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1474 
   1475         len = MAX_MATCH - (int)(strend - scan);
   1476         scan = strend - MAX_MATCH;
   1477 
   1478 #endif /* UNALIGNED_OK */
   1479 
   1480         if (len > best_len) {
   1481             s->match_start = cur_match;
   1482             best_len = len;
   1483             if (len >= nice_match) break;
   1484 #ifdef UNALIGNED_OK
   1485             scan_end = *(ushf*)(scan+best_len-1);
   1486 #else
   1487             scan_end1  = scan[best_len-1];
   1488             scan_end   = scan[best_len];
   1489 #endif
   1490         }
   1491     } while ((cur_match = prev[cur_match & wmask]) > limit
   1492              && --chain_length != 0);
   1493 
   1494     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1495     return s->lookahead;
   1496 }
   1497 
   1498 #else /* FASTEST */
   1499 /* ---------------------------------------------------------------------------
   1500  * Optimized version for level == 1 only
   1501  */
   1502 local uInt longest_match(s, cur_match)
   1503     deflate_state *s;
   1504     IPos cur_match;                             /* current match */
   1505 {
   1506     register Bytef *scan = s->window + s->strstart; /* current string */
   1507     register Bytef *match;                       /* matched string */
   1508     register int len;                           /* length of current match */
   1509     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1510 
   1511     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1512      * It is easy to get rid of this optimization if necessary.
   1513      */
   1514     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1515 
   1516     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1517 
   1518     Assert(cur_match < s->strstart, "no future");
   1519 
   1520     match = s->window + cur_match;
   1521 
   1522     /* Return failure if the match length is less than 2:
   1523      */
   1524     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1525 
   1526     /* The check at best_len-1 can be removed because it will be made
   1527      * again later. (This heuristic is not always a win.)
   1528      * It is not necessary to compare scan[2] and match[2] since they
   1529      * are always equal when the other bytes match, given that
   1530      * the hash keys are equal and that HASH_BITS >= 8.
   1531      */
   1532     scan += 2, match += 2;
   1533     Assert(*scan == *match, "match[2]?");
   1534 
   1535     /* We check for insufficient lookahead only every 8th comparison;
   1536      * the 256th check will be made at strstart+258.
   1537      */
   1538     do {
   1539     } while (*++scan == *++match && *++scan == *++match &&
   1540 	     *++scan == *++match && *++scan == *++match &&
   1541 	     *++scan == *++match && *++scan == *++match &&
   1542 	     *++scan == *++match && *++scan == *++match &&
   1543 	     scan < strend);
   1544 
   1545     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1546 
   1547     len = MAX_MATCH - (int)(strend - scan);
   1548 
   1549     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1550 
   1551     s->match_start = cur_match;
   1552     return len <= s->lookahead ? len : s->lookahead;
   1553 }
   1554 #endif /* FASTEST */
   1555 #endif /* ASMV */
   1556 
   1557 #ifdef DEBUG_ZLIB
   1558 /* ===========================================================================
   1559  * Check that the match at match_start is indeed a match.
   1560  */
   1561 local void check_match(s, start, match, length)
   1562     deflate_state *s;
   1563     IPos start, match;
   1564     int length;
   1565 {
   1566     /* check that the match is indeed a match */
   1567     if (zmemcmp(s->window + match,
   1568                 s->window + start, length) != EQUAL) {
   1569         fprintf(stderr, " start %u, match %u, length %d\n",
   1570 		start, match, length);
   1571         do {
   1572 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
   1573 	} while (--length != 0);
   1574         z_error("invalid match");
   1575     }
   1576     if (z_verbose > 1) {
   1577         fprintf(stderr,"\\[%d,%d]", start-match, length);
   1578         do { putc(s->window[start++], stderr); } while (--length != 0);
   1579     }
   1580 }
   1581 #else
   1582 #  define check_match(s, start, match, length)
   1583 #endif
   1584 
   1585 /* ===========================================================================
   1586  * Fill the window when the lookahead becomes insufficient.
   1587  * Updates strstart and lookahead.
   1588  *
   1589  * IN assertion: lookahead < MIN_LOOKAHEAD
   1590  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
   1591  *    At least one byte has been read, or avail_in == 0; reads are
   1592  *    performed for at least two bytes (required for the zip translate_eol
   1593  *    option -- not supported here).
   1594  */
   1595 local void fill_window(s)
   1596     deflate_state *s;
   1597 {
   1598     unsigned n, m;
   1599     Posf *p;
   1600     unsigned more;    /* Amount of free space at the end of the window. */
   1601     uInt wsize = s->w_size;
   1602 
   1603     do {
   1604         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
   1605 
   1606         /* Deal with !@#$% 64K limit: */
   1607         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
   1608             more = wsize;
   1609 
   1610         } else if (more == (unsigned)(-1)) {
   1611             /* Very unlikely, but possible on 16 bit machine if strstart == 0
   1612              * and lookahead == 1 (input done one byte at time)
   1613              */
   1614             more--;
   1615 
   1616         /* If the window is almost full and there is insufficient lookahead,
   1617          * move the upper half to the lower one to make room in the upper half.
   1618          */
   1619         } else if (s->strstart >= wsize+MAX_DIST(s)) {
   1620 
   1621             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
   1622             s->match_start -= wsize;
   1623             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
   1624             s->block_start -= (long) wsize;
   1625 
   1626             /* Slide the hash table (could be avoided with 32 bit values
   1627                at the expense of memory usage). We slide even when level == 0
   1628                to keep the hash table consistent if we switch back to level > 0
   1629                later. (Using level 0 permanently is not an optimal usage of
   1630                zlib, so we don't care about this pathological case.)
   1631              */
   1632 	    n = s->hash_size;
   1633 	    p = &s->head[n];
   1634 	    do {
   1635 		m = *--p;
   1636 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1637 	    } while (--n);
   1638 
   1639 	    n = wsize;
   1640 #ifndef FASTEST
   1641 	    p = &s->prev[n];
   1642 	    do {
   1643 		m = *--p;
   1644 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1645 		/* If n is not on any hash chain, prev[n] is garbage but
   1646 		 * its value will never be used.
   1647 		 */
   1648 	    } while (--n);
   1649 #endif
   1650             more += wsize;
   1651         }
   1652         if (s->strm->avail_in == 0) return;
   1653 
   1654         /* If there was no sliding:
   1655          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
   1656          *    more == window_size - lookahead - strstart
   1657          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
   1658          * => more >= window_size - 2*WSIZE + 2
   1659          * In the BIG_MEM or MMAP case (not yet supported),
   1660          *   window_size == input_size + MIN_LOOKAHEAD  &&
   1661          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
   1662          * Otherwise, window_size == 2*WSIZE so more >= 2.
   1663          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
   1664          */
   1665         Assert(more >= 2, "more < 2");
   1666 
   1667         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
   1668         s->lookahead += n;
   1669 
   1670         /* Initialize the hash value now that we have some input: */
   1671         if (s->lookahead >= MIN_MATCH) {
   1672             s->ins_h = s->window[s->strstart];
   1673             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1674 #if MIN_MATCH != 3
   1675             Call UPDATE_HASH() MIN_MATCH-3 more times
   1676 #endif
   1677         }
   1678         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
   1679          * but this is not important since only literal bytes will be emitted.
   1680          */
   1681 
   1682     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
   1683 }
   1684 
   1685 /* ===========================================================================
   1686  * Flush the current block, with given end-of-file flag.
   1687  * IN assertion: strstart is set to the end of the current match.
   1688  */
   1689 #define FLUSH_BLOCK_ONLY(s, eof) { \
   1690    _tr_flush_block(s, (s->block_start >= 0L ? \
   1691                    (charf *)&s->window[(unsigned)s->block_start] : \
   1692                    (charf *)Z_NULL), \
   1693 		(ulg)((long)s->strstart - s->block_start), \
   1694 		(eof)); \
   1695    s->block_start = s->strstart; \
   1696    flush_pending(s->strm); \
   1697    Tracev((stderr,"[FLUSH]")); \
   1698 }
   1699 
   1700 /* Same but force premature exit if necessary. */
   1701 #define FLUSH_BLOCK(s, eof) { \
   1702    FLUSH_BLOCK_ONLY(s, eof); \
   1703    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
   1704 }
   1705 
   1706 /* ===========================================================================
   1707  * Copy without compression as much as possible from the input stream, return
   1708  * the current block state.
   1709  * This function does not insert new strings in the dictionary since
   1710  * uncompressible data is probably not useful. This function is used
   1711  * only for the level=0 compression option.
   1712  * NOTE: this function should be optimized to avoid extra copying from
   1713  * window to pending_buf.
   1714  */
   1715 local block_state deflate_stored(s, flush)
   1716     deflate_state *s;
   1717     int flush;
   1718 {
   1719     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
   1720      * to pending_buf_size, and each stored block has a 5 byte header:
   1721      */
   1722     ulg max_block_size = 0xffff;
   1723     ulg max_start;
   1724 
   1725     if (max_block_size > s->pending_buf_size - 5) {
   1726         max_block_size = s->pending_buf_size - 5;
   1727     }
   1728 
   1729     /* Copy as much as possible from input to output: */
   1730     for (;;) {
   1731         /* Fill the window as much as possible: */
   1732         if (s->lookahead <= 1) {
   1733 
   1734             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
   1735 		   s->block_start >= (long)s->w_size, "slide too late");
   1736 
   1737             fill_window(s);
   1738             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
   1739 
   1740             if (s->lookahead == 0) break; /* flush the current block */
   1741         }
   1742 	Assert(s->block_start >= 0L, "block gone");
   1743 
   1744 	s->strstart += s->lookahead;
   1745 	s->lookahead = 0;
   1746 
   1747 	/* Emit a stored block if pending_buf will be full: */
   1748  	max_start = s->block_start + max_block_size;
   1749         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
   1750 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
   1751 	    s->lookahead = (uInt)(s->strstart - max_start);
   1752 	    s->strstart = (uInt)max_start;
   1753             FLUSH_BLOCK(s, 0);
   1754 	}
   1755 	/* Flush if we may have to slide, otherwise block_start may become
   1756          * negative and the data will be gone:
   1757          */
   1758         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
   1759             FLUSH_BLOCK(s, 0);
   1760 	}
   1761     }
   1762     FLUSH_BLOCK(s, flush == Z_FINISH);
   1763     return flush == Z_FINISH ? finish_done : block_done;
   1764 }
   1765 
   1766 /* ===========================================================================
   1767  * Compress as much as possible from the input stream, return the current
   1768  * block state.
   1769  * This function does not perform lazy evaluation of matches and inserts
   1770  * new strings in the dictionary only for unmatched strings or for short
   1771  * matches. It is used only for the fast compression options.
   1772  */
   1773 local block_state deflate_fast(s, flush)
   1774     deflate_state *s;
   1775     int flush;
   1776 {
   1777     IPos hash_head = NIL; /* head of the hash chain */
   1778     int bflush;           /* set if current block must be flushed */
   1779 
   1780     for (;;) {
   1781         /* Make sure that we always have enough lookahead, except
   1782          * at the end of the input file. We need MAX_MATCH bytes
   1783          * for the next match, plus MIN_MATCH bytes to insert the
   1784          * string following the next match.
   1785          */
   1786         if (s->lookahead < MIN_LOOKAHEAD) {
   1787             fill_window(s);
   1788             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1789 	        return need_more;
   1790 	    }
   1791             if (s->lookahead == 0) break; /* flush the current block */
   1792         }
   1793 
   1794         /* Insert the string window[strstart .. strstart+2] in the
   1795          * dictionary, and set hash_head to the head of the hash chain:
   1796          */
   1797         if (s->lookahead >= MIN_MATCH) {
   1798             INSERT_STRING(s, s->strstart, hash_head);
   1799         }
   1800 
   1801         /* Find the longest match, discarding those <= prev_length.
   1802          * At this point we have always match_length < MIN_MATCH
   1803          */
   1804         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1805             /* To simplify the code, we prevent matches with the string
   1806              * of window index 0 (in particular we have to avoid a match
   1807              * of the string with itself at the start of the input file).
   1808              */
   1809             if (s->strategy != Z_HUFFMAN_ONLY) {
   1810                 s->match_length = longest_match (s, hash_head);
   1811             }
   1812             /* longest_match() sets match_start */
   1813         }
   1814         if (s->match_length >= MIN_MATCH) {
   1815             check_match(s, s->strstart, s->match_start, s->match_length);
   1816 
   1817             _tr_tally_dist(s, s->strstart - s->match_start,
   1818                            s->match_length - MIN_MATCH, bflush);
   1819 
   1820             s->lookahead -= s->match_length;
   1821 
   1822             /* Insert new strings in the hash table only if the match length
   1823              * is not too large. This saves time but degrades compression.
   1824              */
   1825 #ifndef FASTEST
   1826             if (s->match_length <= s->max_insert_length &&
   1827                 s->lookahead >= MIN_MATCH) {
   1828                 s->match_length--; /* string at strstart already in hash table */
   1829                 do {
   1830                     s->strstart++;
   1831                     INSERT_STRING(s, s->strstart, hash_head);
   1832                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1833                      * always MIN_MATCH bytes ahead.
   1834                      */
   1835                 } while (--s->match_length != 0);
   1836                 s->strstart++;
   1837             } else
   1838 #endif
   1839 	    {
   1840                 s->strstart += s->match_length;
   1841                 s->match_length = 0;
   1842                 s->ins_h = s->window[s->strstart];
   1843                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1844 #if MIN_MATCH != 3
   1845                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1846 #endif
   1847                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1848                  * matter since it will be recomputed at next deflate call.
   1849                  */
   1850             }
   1851         } else {
   1852             /* No match, output a literal byte */
   1853             Tracevv((stderr,"%c", s->window[s->strstart]));
   1854             _tr_tally_lit (s, s->window[s->strstart], bflush);
   1855             s->lookahead--;
   1856             s->strstart++;
   1857         }
   1858         if (bflush) FLUSH_BLOCK(s, 0);
   1859     }
   1860     FLUSH_BLOCK(s, flush == Z_FINISH);
   1861     return flush == Z_FINISH ? finish_done : block_done;
   1862 }
   1863 
   1864 /* ===========================================================================
   1865  * Same as above, but achieves better compression. We use a lazy
   1866  * evaluation for matches: a match is finally adopted only if there is
   1867  * no better match at the next window position.
   1868  */
   1869 local block_state deflate_slow(s, flush)
   1870     deflate_state *s;
   1871     int flush;
   1872 {
   1873     IPos hash_head = NIL;    /* head of hash chain */
   1874     int bflush;              /* set if current block must be flushed */
   1875 
   1876     /* Process the input block. */
   1877     for (;;) {
   1878         /* Make sure that we always have enough lookahead, except
   1879          * at the end of the input file. We need MAX_MATCH bytes
   1880          * for the next match, plus MIN_MATCH bytes to insert the
   1881          * string following the next match.
   1882          */
   1883         if (s->lookahead < MIN_LOOKAHEAD) {
   1884             fill_window(s);
   1885             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1886 	        return need_more;
   1887 	    }
   1888             if (s->lookahead == 0) break; /* flush the current block */
   1889         }
   1890 
   1891         /* Insert the string window[strstart .. strstart+2] in the
   1892          * dictionary, and set hash_head to the head of the hash chain:
   1893          */
   1894         if (s->lookahead >= MIN_MATCH) {
   1895             INSERT_STRING(s, s->strstart, hash_head);
   1896         }
   1897 
   1898         /* Find the longest match, discarding those <= prev_length.
   1899          */
   1900         s->prev_length = s->match_length, s->prev_match = s->match_start;
   1901         s->match_length = MIN_MATCH-1;
   1902 
   1903         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   1904             s->strstart - hash_head <= MAX_DIST(s)) {
   1905             /* To simplify the code, we prevent matches with the string
   1906              * of window index 0 (in particular we have to avoid a match
   1907              * of the string with itself at the start of the input file).
   1908              */
   1909             if (s->strategy != Z_HUFFMAN_ONLY) {
   1910                 s->match_length = longest_match (s, hash_head);
   1911             }
   1912             /* longest_match() sets match_start */
   1913 
   1914             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
   1915                  (s->match_length == MIN_MATCH &&
   1916                   s->strstart - s->match_start > TOO_FAR))) {
   1917 
   1918                 /* If prev_match is also MIN_MATCH, match_start is garbage
   1919                  * but we will ignore the current match anyway.
   1920                  */
   1921                 s->match_length = MIN_MATCH-1;
   1922             }
   1923         }
   1924         /* If there was a match at the previous step and the current
   1925          * match is not better, output the previous match:
   1926          */
   1927         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   1928             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   1929             /* Do not insert strings in hash table beyond this. */
   1930 
   1931             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
   1932 
   1933             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
   1934 			   s->prev_length - MIN_MATCH, bflush);
   1935 
   1936             /* Insert in hash table all strings up to the end of the match.
   1937              * strstart-1 and strstart are already inserted. If there is not
   1938              * enough lookahead, the last two strings are not inserted in
   1939              * the hash table.
   1940              */
   1941             s->lookahead -= s->prev_length-1;
   1942             s->prev_length -= 2;
   1943             do {
   1944                 if (++s->strstart <= max_insert) {
   1945                     INSERT_STRING(s, s->strstart, hash_head);
   1946                 }
   1947             } while (--s->prev_length != 0);
   1948             s->match_available = 0;
   1949             s->match_length = MIN_MATCH-1;
   1950             s->strstart++;
   1951 
   1952             if (bflush) FLUSH_BLOCK(s, 0);
   1953 
   1954         } else if (s->match_available) {
   1955             /* If there was no match at the previous position, output a
   1956              * single literal. If there was a match but the current match
   1957              * is longer, truncate the previous match to a single literal.
   1958              */
   1959             Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1960 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1961 	    if (bflush) {
   1962                 FLUSH_BLOCK_ONLY(s, 0);
   1963             }
   1964             s->strstart++;
   1965             s->lookahead--;
   1966             if (s->strm->avail_out == 0) return need_more;
   1967         } else {
   1968             /* There is no previous match to compare with, wait for
   1969              * the next step to decide.
   1970              */
   1971             s->match_available = 1;
   1972             s->strstart++;
   1973             s->lookahead--;
   1974         }
   1975     }
   1976     Assert (flush != Z_NO_FLUSH, "no flush?");
   1977     if (s->match_available) {
   1978         Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1979         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1980         s->match_available = 0;
   1981     }
   1982     FLUSH_BLOCK(s, flush == Z_FINISH);
   1983     return flush == Z_FINISH ? finish_done : block_done;
   1984 }
   1985 /* --- deflate.c */
   1986 
   1987 /* +++ trees.c */
   1988 
   1989 /* trees.c -- output deflated data using Huffman coding
   1990  * Copyright (C) 1995-2002 Jean-loup Gailly
   1991  * For conditions of distribution and use, see copyright notice in zlib.h
   1992  */
   1993 
   1994 /*
   1995  *  ALGORITHM
   1996  *
   1997  *      The "deflation" process uses several Huffman trees. The more
   1998  *      common source values are represented by shorter bit sequences.
   1999  *
   2000  *      Each code tree is stored in a compressed form which is itself
   2001  * a Huffman encoding of the lengths of all the code strings (in
   2002  * ascending order by source values).  The actual code strings are
   2003  * reconstructed from the lengths in the inflate process, as described
   2004  * in the deflate specification.
   2005  *
   2006  *  REFERENCES
   2007  *
   2008  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   2009  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   2010  *
   2011  *      Storer, James A.
   2012  *          Data Compression:  Methods and Theory, pp. 49-50.
   2013  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   2014  *
   2015  *      Sedgewick, R.
   2016  *          Algorithms, p290.
   2017  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   2018  */
   2019 
   2020 /* @(#) $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $ */
   2021 
   2022 /* #define GEN_TREES_H */
   2023 
   2024 /* #include "deflate.h" */
   2025 
   2026 #ifdef DEBUG_ZLIB
   2027 #  include <ctype.h>
   2028 #endif
   2029 
   2030 /* ===========================================================================
   2031  * Constants
   2032  */
   2033 
   2034 #define MAX_BL_BITS 7
   2035 /* Bit length codes must not exceed MAX_BL_BITS bits */
   2036 
   2037 #define END_BLOCK 256
   2038 /* end of block literal code */
   2039 
   2040 #define REP_3_6      16
   2041 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   2042 
   2043 #define REPZ_3_10    17
   2044 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   2045 
   2046 #define REPZ_11_138  18
   2047 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   2048 
   2049 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   2050    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   2051 
   2052 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   2053    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   2054 
   2055 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   2056    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   2057 
   2058 local const uch bl_order[BL_CODES]
   2059    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   2060 /* The lengths of the bit length codes are sent in order of decreasing
   2061  * probability, to avoid transmitting the lengths for unused bit length codes.
   2062  */
   2063 
   2064 #define Buf_size (8 * 2*sizeof(char))
   2065 /* Number of bits used within bi_buf. (bi_buf might be implemented on
   2066  * more than 16 bits on some systems.)
   2067  */
   2068 
   2069 
   2070 #define MAX(a,b) (a >= b ? a : b)
   2071 /* the arguments must not have side effects */
   2072 
   2073 /* ===========================================================================
   2074  * Local data. These are initialized only once.
   2075  */
   2076 
   2077 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   2078 
   2079 #if defined(GEN_TREES_H) || !defined(STDC)
   2080 /* non ANSI compilers may not accept trees.h */
   2081 
   2082 local ct_data static_ltree[L_CODES+2];
   2083 /* The static literal tree. Since the bit lengths are imposed, there is no
   2084  * need for the L_CODES extra codes used during heap construction. However
   2085  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   2086  * below).
   2087  */
   2088 
   2089 local ct_data static_dtree[D_CODES];
   2090 /* The static distance tree. (Actually a trivial tree since all codes use
   2091  * 5 bits.)
   2092  */
   2093 
   2094 uch _dist_code[DIST_CODE_LEN];
   2095 /* Distance codes. The first 256 values correspond to the distances
   2096  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   2097  * the 15 bit distances.
   2098  */
   2099 
   2100 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   2101 /* length code for each normalized match length (0 == MIN_MATCH) */
   2102 
   2103 local int base_length[LENGTH_CODES];
   2104 /* First normalized length for each code (0 = MIN_MATCH) */
   2105 
   2106 local int base_dist[D_CODES];
   2107 /* First normalized distance for each code (0 = distance of 1) */
   2108 
   2109 #else
   2110 /* +++ trees.h */
   2111 
   2112 /* header created automatically with -DGEN_TREES_H */
   2113 
   2114 local const ct_data static_ltree[L_CODES+2] = {
   2115 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
   2116 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
   2117 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
   2118 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
   2119 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
   2120 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
   2121 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
   2122 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
   2123 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
   2124 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
   2125 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
   2126 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
   2127 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
   2128 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
   2129 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
   2130 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
   2131 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
   2132 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
   2133 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
   2134 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
   2135 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
   2136 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
   2137 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
   2138 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
   2139 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
   2140 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
   2141 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
   2142 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
   2143 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
   2144 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
   2145 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
   2146 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
   2147 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
   2148 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
   2149 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
   2150 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
   2151 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
   2152 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
   2153 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
   2154 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
   2155 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
   2156 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
   2157 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
   2158 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
   2159 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
   2160 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
   2161 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
   2162 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
   2163 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
   2164 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
   2165 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
   2166 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
   2167 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
   2168 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
   2169 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
   2170 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
   2171 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
   2172 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
   2173 };
   2174 
   2175 local const ct_data static_dtree[D_CODES] = {
   2176 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
   2177 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
   2178 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
   2179 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
   2180 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
   2181 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
   2182 };
   2183 
   2184 const uch _dist_code[DIST_CODE_LEN] = {
   2185  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
   2186  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
   2187 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
   2188 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
   2189 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
   2190 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
   2191 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2192 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2193 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2194 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
   2195 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2196 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2197 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
   2198 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
   2199 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2200 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2201 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2202 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
   2203 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2204 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2205 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2206 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2207 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2208 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2209 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2210 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
   2211 };
   2212 
   2213 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
   2214  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
   2215 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
   2216 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
   2217 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
   2218 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
   2219 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
   2220 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2221 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2222 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2223 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
   2224 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2225 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2226 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
   2227 };
   2228 
   2229 local const int base_length[LENGTH_CODES] = {
   2230 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
   2231 64, 80, 96, 112, 128, 160, 192, 224, 0
   2232 };
   2233 
   2234 local const int base_dist[D_CODES] = {
   2235     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
   2236    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
   2237  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
   2238 };
   2239 /* --- trees.h */
   2240 
   2241 #endif /* GEN_TREES_H */
   2242 
   2243 struct static_tree_desc_s {
   2244     const ct_data *static_tree;  /* static tree or NULL */
   2245     const intf *extra_bits;      /* extra bits for each code or NULL */
   2246     int     extra_base;          /* base index for extra_bits */
   2247     int     elems;               /* max number of elements in the tree */
   2248     int     max_length;          /* max bit length for the codes */
   2249 };
   2250 
   2251 local static_tree_desc  static_l_desc =
   2252 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   2253 
   2254 local static_tree_desc  static_d_desc =
   2255 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   2256 
   2257 local static_tree_desc  static_bl_desc =
   2258 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   2259 
   2260 /* ===========================================================================
   2261  * Local (static) routines in this file.
   2262  */
   2263 
   2264 local void tr_static_init __P((void));
   2265 local void init_block     __P((deflate_state *s));
   2266 local void pqdownheap     __P((deflate_state *s, ct_data *tree, int k));
   2267 local void gen_bitlen     __P((deflate_state *s, tree_desc *desc));
   2268 local void gen_codes      __P((ct_data *tree, int max_code, ushf *bl_count));
   2269 local void build_tree     __P((deflate_state *s, tree_desc *desc));
   2270 local void scan_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2271 local void send_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2272 local int  build_bl_tree  __P((deflate_state *s));
   2273 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
   2274                               int blcodes));
   2275 local void compress_block __P((deflate_state *s, ct_data *ltree,
   2276                               ct_data *dtree));
   2277 local void set_data_type  __P((deflate_state *s));
   2278 local unsigned bi_reverse __P((unsigned value, int length));
   2279 local void bi_windup      __P((deflate_state *s));
   2280 local void bi_flush       __P((deflate_state *s));
   2281 local void copy_block     __P((deflate_state *s, charf *buf, unsigned len,
   2282                               int header));
   2283 
   2284 #ifdef GEN_TREES_H
   2285 local void gen_trees_header __P((void));
   2286 #endif
   2287 
   2288 #ifndef DEBUG_ZLIB
   2289 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   2290    /* Send a code of the given tree. c and tree must not have side effects */
   2291 
   2292 #else /* DEBUG_ZLIB */
   2293 #  define send_code(s, c, tree) \
   2294      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   2295        send_bits(s, tree[c].Code, tree[c].Len); }
   2296 #endif
   2297 
   2298 /* ===========================================================================
   2299  * Output a short LSB first on the stream.
   2300  * IN assertion: there is enough room in pendingBuf.
   2301  */
   2302 #define put_short(s, w) { \
   2303     put_byte(s, (uch)((w) & 0xff)); \
   2304     put_byte(s, (uch)((ush)(w) >> 8)); \
   2305 }
   2306 
   2307 /* ===========================================================================
   2308  * Send a value on a given number of bits.
   2309  * IN assertion: length <= 16 and value fits in length bits.
   2310  */
   2311 #ifdef DEBUG_ZLIB
   2312 local void send_bits      __P((deflate_state *s, int value, int length));
   2313 
   2314 local void send_bits(s, value, length)
   2315     deflate_state *s;
   2316     int value;  /* value to send */
   2317     int length; /* number of bits */
   2318 {
   2319     Tracevv((stderr," l %2d v %4x ", length, value));
   2320     Assert(length > 0 && length <= 15, "invalid length");
   2321     s->bits_sent += (ulg)length;
   2322 
   2323     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   2324      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   2325      * unused bits in value.
   2326      */
   2327     if (s->bi_valid > (int)Buf_size - length) {
   2328         s->bi_buf |= (value << s->bi_valid);
   2329         put_short(s, s->bi_buf);
   2330         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   2331         s->bi_valid += length - Buf_size;
   2332     } else {
   2333         s->bi_buf |= value << s->bi_valid;
   2334         s->bi_valid += length;
   2335     }
   2336 }
   2337 #else /* !DEBUG_ZLIB */
   2338 
   2339 #define send_bits(s, value, length) \
   2340 { int len = length;\
   2341   if (s->bi_valid > (int)Buf_size - len) {\
   2342     int val = value;\
   2343     s->bi_buf |= (val << s->bi_valid);\
   2344     put_short(s, s->bi_buf);\
   2345     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   2346     s->bi_valid += len - Buf_size;\
   2347   } else {\
   2348     s->bi_buf |= (value) << s->bi_valid;\
   2349     s->bi_valid += len;\
   2350   }\
   2351 }
   2352 #endif /* DEBUG_ZLIB */
   2353 
   2354 
   2355 /* ===========================================================================
   2356  * Initialize the various 'constant' tables.
   2357  */
   2358 local void tr_static_init()
   2359 {
   2360 #if defined(GEN_TREES_H) || !defined(STDC)
   2361     static int static_init_done = 0;
   2362     int n;        /* iterates over tree elements */
   2363     int bits;     /* bit counter */
   2364     int length;   /* length value */
   2365     int code;     /* code value */
   2366     int dist;     /* distance index */
   2367     ush bl_count[MAX_BITS+1];
   2368     /* number of codes at each bit length for an optimal tree */
   2369 
   2370     if (static_init_done) return;
   2371 
   2372     /* For some embedded targets, global variables are not initialized: */
   2373     static_l_desc.static_tree = static_ltree;
   2374     static_l_desc.extra_bits = extra_lbits;
   2375     static_d_desc.static_tree = static_dtree;
   2376     static_d_desc.extra_bits = extra_dbits;
   2377     static_bl_desc.extra_bits = extra_blbits;
   2378 
   2379     /* Initialize the mapping length (0..255) -> length code (0..28) */
   2380     length = 0;
   2381     for (code = 0; code < LENGTH_CODES-1; code++) {
   2382         base_length[code] = length;
   2383         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   2384             _length_code[length++] = (uch)code;
   2385         }
   2386     }
   2387     Assert (length == 256, "tr_static_init: length != 256");
   2388     /* Note that the length 255 (match length 258) can be represented
   2389      * in two different ways: code 284 + 5 bits or code 285, so we
   2390      * overwrite length_code[255] to use the best encoding:
   2391      */
   2392     _length_code[length-1] = (uch)code;
   2393 
   2394     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   2395     dist = 0;
   2396     for (code = 0 ; code < 16; code++) {
   2397         base_dist[code] = dist;
   2398         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   2399             _dist_code[dist++] = (uch)code;
   2400         }
   2401     }
   2402     Assert (dist == 256, "tr_static_init: dist != 256");
   2403     dist >>= 7; /* from now on, all distances are divided by 128 */
   2404     for ( ; code < D_CODES; code++) {
   2405         base_dist[code] = dist << 7;
   2406         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   2407             _dist_code[256 + dist++] = (uch)code;
   2408         }
   2409     }
   2410     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   2411 
   2412     /* Construct the codes of the static literal tree */
   2413     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   2414     n = 0;
   2415     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   2416     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   2417     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   2418     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   2419     /* Codes 286 and 287 do not exist, but we must include them in the
   2420      * tree construction to get a canonical Huffman tree (longest code
   2421      * all ones)
   2422      */
   2423     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   2424 
   2425     /* The static distance tree is trivial: */
   2426     for (n = 0; n < D_CODES; n++) {
   2427         static_dtree[n].Len = 5;
   2428         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   2429     }
   2430     static_init_done = 1;
   2431 
   2432 #  ifdef GEN_TREES_H
   2433     gen_trees_header();
   2434 #  endif
   2435 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   2436 }
   2437 
   2438 /* ===========================================================================
   2439  * Genererate the file trees.h describing the static trees.
   2440  */
   2441 #ifdef GEN_TREES_H
   2442 #  ifndef DEBUG_ZLIB
   2443 #    include <stdio.h>
   2444 #  endif
   2445 
   2446 #  define SEPARATOR(i, last, width) \
   2447       ((i) == (last)? "\n};\n\n" :    \
   2448        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   2449 
   2450 void gen_trees_header()
   2451 {
   2452     FILE *header = fopen("trees.h", "w");
   2453     int i;
   2454 
   2455     Assert (header != NULL, "Can't open trees.h");
   2456     fprintf(header,
   2457 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   2458 
   2459     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   2460     for (i = 0; i < L_CODES+2; i++) {
   2461 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   2462 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   2463     }
   2464 
   2465     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   2466     for (i = 0; i < D_CODES; i++) {
   2467 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   2468 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   2469     }
   2470 
   2471     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   2472     for (i = 0; i < DIST_CODE_LEN; i++) {
   2473 	fprintf(header, "%2u%s", _dist_code[i],
   2474 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   2475     }
   2476 
   2477     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   2478     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   2479 	fprintf(header, "%2u%s", _length_code[i],
   2480 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   2481     }
   2482 
   2483     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   2484     for (i = 0; i < LENGTH_CODES; i++) {
   2485 	fprintf(header, "%1u%s", base_length[i],
   2486 		SEPARATOR(i, LENGTH_CODES-1, 20));
   2487     }
   2488 
   2489     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   2490     for (i = 0; i < D_CODES; i++) {
   2491 	fprintf(header, "%5u%s", base_dist[i],
   2492 		SEPARATOR(i, D_CODES-1, 10));
   2493     }
   2494 
   2495     fclose(header);
   2496 }
   2497 #endif /* GEN_TREES_H */
   2498 
   2499 /* ===========================================================================
   2500  * Initialize the tree data structures for a new zlib stream.
   2501  */
   2502 void _tr_init(s)
   2503     deflate_state *s;
   2504 {
   2505     tr_static_init();
   2506 
   2507     s->l_desc.dyn_tree = s->dyn_ltree;
   2508     s->l_desc.stat_desc = &static_l_desc;
   2509 
   2510     s->d_desc.dyn_tree = s->dyn_dtree;
   2511     s->d_desc.stat_desc = &static_d_desc;
   2512 
   2513     s->bl_desc.dyn_tree = s->bl_tree;
   2514     s->bl_desc.stat_desc = &static_bl_desc;
   2515 
   2516     s->bi_buf = 0;
   2517     s->bi_valid = 0;
   2518     s->last_eob_len = 8; /* enough lookahead for inflate */
   2519 #ifdef DEBUG_ZLIB
   2520     s->compressed_len = 0L;
   2521     s->bits_sent = 0L;
   2522 #endif
   2523 
   2524     /* Initialize the first block of the first file: */
   2525     init_block(s);
   2526 }
   2527 
   2528 /* ===========================================================================
   2529  * Initialize a new block.
   2530  */
   2531 local void init_block(s)
   2532     deflate_state *s;
   2533 {
   2534     int n; /* iterates over tree elements */
   2535 
   2536     /* Initialize the trees. */
   2537     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   2538     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   2539     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   2540 
   2541     s->dyn_ltree[END_BLOCK].Freq = 1;
   2542     s->opt_len = s->static_len = 0L;
   2543     s->last_lit = s->matches = 0;
   2544 }
   2545 
   2546 #define SMALLEST 1
   2547 /* Index within the heap array of least frequent node in the Huffman tree */
   2548 
   2549 
   2550 /* ===========================================================================
   2551  * Remove the smallest element from the heap and recreate the heap with
   2552  * one less element. Updates heap and heap_len.
   2553  */
   2554 #define pqremove(s, tree, top) \
   2555 {\
   2556     top = s->heap[SMALLEST]; \
   2557     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   2558     pqdownheap(s, tree, SMALLEST); \
   2559 }
   2560 
   2561 /* ===========================================================================
   2562  * Compares to subtrees, using the tree depth as tie breaker when
   2563  * the subtrees have equal frequency. This minimizes the worst case length.
   2564  */
   2565 #define smaller(tree, n, m, depth) \
   2566    (tree[n].Freq < tree[m].Freq || \
   2567    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   2568 
   2569 /* ===========================================================================
   2570  * Restore the heap property by moving down the tree starting at node k,
   2571  * exchanging a node with the smallest of its two sons if necessary, stopping
   2572  * when the heap property is re-established (each father smaller than its
   2573  * two sons).
   2574  */
   2575 local void pqdownheap(s, tree, k)
   2576     deflate_state *s;
   2577     ct_data *tree;  /* the tree to restore */
   2578     int k;               /* node to move down */
   2579 {
   2580     int v = s->heap[k];
   2581     int j = k << 1;  /* left son of k */
   2582     while (j <= s->heap_len) {
   2583         /* Set j to the smallest of the two sons: */
   2584         if (j < s->heap_len &&
   2585             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   2586             j++;
   2587         }
   2588         /* Exit if v is smaller than both sons */
   2589         if (smaller(tree, v, s->heap[j], s->depth)) break;
   2590 
   2591         /* Exchange v with the smallest son */
   2592         s->heap[k] = s->heap[j];  k = j;
   2593 
   2594         /* And continue down the tree, setting j to the left son of k */
   2595         j <<= 1;
   2596     }
   2597     s->heap[k] = v;
   2598 }
   2599 
   2600 /* ===========================================================================
   2601  * Compute the optimal bit lengths for a tree and update the total bit length
   2602  * for the current block.
   2603  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   2604  *    above are the tree nodes sorted by increasing frequency.
   2605  * OUT assertions: the field len is set to the optimal bit length, the
   2606  *     array bl_count contains the frequencies for each bit length.
   2607  *     The length opt_len is updated; static_len is also updated if stree is
   2608  *     not null.
   2609  */
   2610 local void gen_bitlen(s, desc)
   2611     deflate_state *s;
   2612     tree_desc *desc;    /* the tree descriptor */
   2613 {
   2614     ct_data *tree        = desc->dyn_tree;
   2615     int max_code         = desc->max_code;
   2616     const ct_data *stree = desc->stat_desc->static_tree;
   2617     const intf *extra    = desc->stat_desc->extra_bits;
   2618     int base             = desc->stat_desc->extra_base;
   2619     int max_length       = desc->stat_desc->max_length;
   2620     int h;              /* heap index */
   2621     int n, m;           /* iterate over the tree elements */
   2622     int bits;           /* bit length */
   2623     int xbits;          /* extra bits */
   2624     ush f;              /* frequency */
   2625     int overflow = 0;   /* number of elements with bit length too large */
   2626 
   2627     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   2628 
   2629     /* In a first pass, compute the optimal bit lengths (which may
   2630      * overflow in the case of the bit length tree).
   2631      */
   2632     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   2633 
   2634     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   2635         n = s->heap[h];
   2636         bits = tree[tree[n].Dad].Len + 1;
   2637         if (bits > max_length) bits = max_length, overflow++;
   2638         tree[n].Len = (ush)bits;
   2639         /* We overwrite tree[n].Dad which is no longer needed */
   2640 
   2641         if (n > max_code) continue; /* not a leaf node */
   2642 
   2643         s->bl_count[bits]++;
   2644         xbits = 0;
   2645         if (n >= base) xbits = extra[n-base];
   2646         f = tree[n].Freq;
   2647         s->opt_len += (ulg)f * (bits + xbits);
   2648         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   2649     }
   2650     if (overflow == 0) return;
   2651 
   2652     Trace((stderr,"\nbit length overflow\n"));
   2653     /* This happens for example on obj2 and pic of the Calgary corpus */
   2654 
   2655     /* Find the first bit length which could increase: */
   2656     do {
   2657         bits = max_length-1;
   2658         while (s->bl_count[bits] == 0) bits--;
   2659         s->bl_count[bits]--;      /* move one leaf down the tree */
   2660         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   2661         s->bl_count[max_length]--;
   2662         /* The brother of the overflow item also moves one step up,
   2663          * but this does not affect bl_count[max_length]
   2664          */
   2665         overflow -= 2;
   2666     } while (overflow > 0);
   2667 
   2668     /* Now recompute all bit lengths, scanning in increasing frequency.
   2669      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   2670      * lengths instead of fixing only the wrong ones. This idea is taken
   2671      * from 'ar' written by Haruhiko Okumura.)
   2672      */
   2673     for (bits = max_length; bits != 0; bits--) {
   2674         n = s->bl_count[bits];
   2675         while (n != 0) {
   2676             m = s->heap[--h];
   2677             if (m > max_code) continue;
   2678             if (tree[m].Len != (unsigned) bits) {
   2679                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   2680                 s->opt_len += ((long)bits - (long)tree[m].Len)
   2681                               *(long)tree[m].Freq;
   2682                 tree[m].Len = (ush)bits;
   2683             }
   2684             n--;
   2685         }
   2686     }
   2687 }
   2688 
   2689 /* ===========================================================================
   2690  * Generate the codes for a given tree and bit counts (which need not be
   2691  * optimal).
   2692  * IN assertion: the array bl_count contains the bit length statistics for
   2693  * the given tree and the field len is set for all tree elements.
   2694  * OUT assertion: the field code is set for all tree elements of non
   2695  *     zero code length.
   2696  */
   2697 local void gen_codes (tree, max_code, bl_count)
   2698     ct_data *tree;             /* the tree to decorate */
   2699     int max_code;              /* largest code with non zero frequency */
   2700     ushf *bl_count;            /* number of codes at each bit length */
   2701 {
   2702     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   2703     ush code = 0;              /* running code value */
   2704     int bits;                  /* bit index */
   2705     int n;                     /* code index */
   2706 
   2707     /* The distribution counts are first used to generate the code values
   2708      * without bit reversal.
   2709      */
   2710     for (bits = 1; bits <= MAX_BITS; bits++) {
   2711         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   2712     }
   2713     /* Check that the bit counts in bl_count are consistent. The last code
   2714      * must be all ones.
   2715      */
   2716     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   2717             "inconsistent bit counts");
   2718     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   2719 
   2720     for (n = 0;  n <= max_code; n++) {
   2721         int len = tree[n].Len;
   2722         if (len == 0) continue;
   2723         /* Now reverse the bits */
   2724         tree[n].Code = bi_reverse(next_code[len]++, len);
   2725 
   2726         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   2727              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   2728     }
   2729 }
   2730 
   2731 /* ===========================================================================
   2732  * Construct one Huffman tree and assigns the code bit strings and lengths.
   2733  * Update the total bit length for the current block.
   2734  * IN assertion: the field freq is set for all tree elements.
   2735  * OUT assertions: the fields len and code are set to the optimal bit length
   2736  *     and corresponding code. The length opt_len is updated; static_len is
   2737  *     also updated if stree is not null. The field max_code is set.
   2738  */
   2739 local void build_tree(s, desc)
   2740     deflate_state *s;
   2741     tree_desc *desc; /* the tree descriptor */
   2742 {
   2743     ct_data *tree         = desc->dyn_tree;
   2744     const ct_data *stree  = desc->stat_desc->static_tree;
   2745     int elems             = desc->stat_desc->elems;
   2746     int n, m;          /* iterate over heap elements */
   2747     int max_code = -1; /* largest code with non zero frequency */
   2748     int node;          /* new node being created */
   2749 
   2750     /* Construct the initial heap, with least frequent element in
   2751      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   2752      * heap[0] is not used.
   2753      */
   2754     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   2755 
   2756     for (n = 0; n < elems; n++) {
   2757         if (tree[n].Freq != 0) {
   2758             s->heap[++(s->heap_len)] = max_code = n;
   2759             s->depth[n] = 0;
   2760         } else {
   2761             tree[n].Len = 0;
   2762         }
   2763     }
   2764 
   2765     /* The pkzip format requires that at least one distance code exists,
   2766      * and that at least one bit should be sent even if there is only one
   2767      * possible code. So to avoid special checks later on we force at least
   2768      * two codes of non zero frequency.
   2769      */
   2770     while (s->heap_len < 2) {
   2771         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   2772         tree[node].Freq = 1;
   2773         s->depth[node] = 0;
   2774         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   2775         /* node is 0 or 1 so it does not have extra bits */
   2776     }
   2777     desc->max_code = max_code;
   2778 
   2779     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   2780      * establish sub-heaps of increasing lengths:
   2781      */
   2782     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   2783 
   2784     /* Construct the Huffman tree by repeatedly combining the least two
   2785      * frequent nodes.
   2786      */
   2787     node = elems;              /* next internal node of the tree */
   2788     do {
   2789         pqremove(s, tree, n);  /* n = node of least frequency */
   2790         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   2791 
   2792         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   2793         s->heap[--(s->heap_max)] = m;
   2794 
   2795         /* Create a new node father of n and m */
   2796         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   2797         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   2798         tree[n].Dad = tree[m].Dad = (ush)node;
   2799 #ifdef DUMP_BL_TREE
   2800         if (tree == s->bl_tree) {
   2801             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   2802                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   2803         }
   2804 #endif
   2805         /* and insert the new node in the heap */
   2806         s->heap[SMALLEST] = node++;
   2807         pqdownheap(s, tree, SMALLEST);
   2808 
   2809     } while (s->heap_len >= 2);
   2810 
   2811     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   2812 
   2813     /* At this point, the fields freq and dad are set. We can now
   2814      * generate the bit lengths.
   2815      */
   2816     gen_bitlen(s, (tree_desc *)desc);
   2817 
   2818     /* The field len is now set, we can generate the bit codes */
   2819     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   2820 }
   2821 
   2822 /* ===========================================================================
   2823  * Scan a literal or distance tree to determine the frequencies of the codes
   2824  * in the bit length tree.
   2825  */
   2826 local void scan_tree (s, tree, max_code)
   2827     deflate_state *s;
   2828     ct_data *tree;   /* the tree to be scanned */
   2829     int max_code;    /* and its largest code of non zero frequency */
   2830 {
   2831     int n;                     /* iterates over all tree elements */
   2832     int prevlen = -1;          /* last emitted length */
   2833     int curlen;                /* length of current code */
   2834     int nextlen = tree[0].Len; /* length of next code */
   2835     int count = 0;             /* repeat count of the current code */
   2836     int max_count = 7;         /* max repeat count */
   2837     int min_count = 4;         /* min repeat count */
   2838 
   2839     if (nextlen == 0) max_count = 138, min_count = 3;
   2840     tree[max_code+1].Len = (ush)0xffff; /* guard */
   2841 
   2842     for (n = 0; n <= max_code; n++) {
   2843         curlen = nextlen; nextlen = tree[n+1].Len;
   2844         if (++count < max_count && curlen == nextlen) {
   2845             continue;
   2846         } else if (count < min_count) {
   2847             s->bl_tree[curlen].Freq += count;
   2848         } else if (curlen != 0) {
   2849             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   2850             s->bl_tree[REP_3_6].Freq++;
   2851         } else if (count <= 10) {
   2852             s->bl_tree[REPZ_3_10].Freq++;
   2853         } else {
   2854             s->bl_tree[REPZ_11_138].Freq++;
   2855         }
   2856         count = 0; prevlen = curlen;
   2857         if (nextlen == 0) {
   2858             max_count = 138, min_count = 3;
   2859         } else if (curlen == nextlen) {
   2860             max_count = 6, min_count = 3;
   2861         } else {
   2862             max_count = 7, min_count = 4;
   2863         }
   2864     }
   2865 }
   2866 
   2867 /* ===========================================================================
   2868  * Send a literal or distance tree in compressed form, using the codes in
   2869  * bl_tree.
   2870  */
   2871 local void send_tree (s, tree, max_code)
   2872     deflate_state *s;
   2873     ct_data *tree; /* the tree to be scanned */
   2874     int max_code;       /* and its largest code of non zero frequency */
   2875 {
   2876     int n;                     /* iterates over all tree elements */
   2877     int prevlen = -1;          /* last emitted length */
   2878     int curlen;                /* length of current code */
   2879     int nextlen = tree[0].Len; /* length of next code */
   2880     int count = 0;             /* repeat count of the current code */
   2881     int max_count = 7;         /* max repeat count */
   2882     int min_count = 4;         /* min repeat count */
   2883 
   2884     /* tree[max_code+1].Len = -1; */  /* guard already set */
   2885     if (nextlen == 0) max_count = 138, min_count = 3;
   2886 
   2887     for (n = 0; n <= max_code; n++) {
   2888         curlen = nextlen; nextlen = tree[n+1].Len;
   2889         if (++count < max_count && curlen == nextlen) {
   2890             continue;
   2891         } else if (count < min_count) {
   2892             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   2893 
   2894         } else if (curlen != 0) {
   2895             if (curlen != prevlen) {
   2896                 send_code(s, curlen, s->bl_tree); count--;
   2897             }
   2898             Assert(count >= 3 && count <= 6, " 3_6?");
   2899             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   2900 
   2901         } else if (count <= 10) {
   2902             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   2903 
   2904         } else {
   2905             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   2906         }
   2907         count = 0; prevlen = curlen;
   2908         if (nextlen == 0) {
   2909             max_count = 138, min_count = 3;
   2910         } else if (curlen == nextlen) {
   2911             max_count = 6, min_count = 3;
   2912         } else {
   2913             max_count = 7, min_count = 4;
   2914         }
   2915     }
   2916 }
   2917 
   2918 /* ===========================================================================
   2919  * Construct the Huffman tree for the bit lengths and return the index in
   2920  * bl_order of the last bit length code to send.
   2921  */
   2922 local int build_bl_tree(s)
   2923     deflate_state *s;
   2924 {
   2925     int max_blindex;  /* index of last bit length code of non zero freq */
   2926 
   2927     /* Determine the bit length frequencies for literal and distance trees */
   2928     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   2929     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   2930 
   2931     /* Build the bit length tree: */
   2932     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   2933     /* opt_len now includes the length of the tree representations, except
   2934      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   2935      */
   2936 
   2937     /* Determine the number of bit length codes to send. The pkzip format
   2938      * requires that at least 4 bit length codes be sent. (appnote.txt says
   2939      * 3 but the actual value used is 4.)
   2940      */
   2941     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   2942         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   2943     }
   2944     /* Update opt_len to include the bit length tree and counts */
   2945     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   2946     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   2947             s->opt_len, s->static_len));
   2948 
   2949     return max_blindex;
   2950 }
   2951 
   2952 /* ===========================================================================
   2953  * Send the header for a block using dynamic Huffman trees: the counts, the
   2954  * lengths of the bit length codes, the literal tree and the distance tree.
   2955  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   2956  */
   2957 local void send_all_trees(s, lcodes, dcodes, blcodes)
   2958     deflate_state *s;
   2959     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   2960 {
   2961     int rank;                    /* index in bl_order */
   2962 
   2963     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   2964     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   2965             "too many codes");
   2966     Tracev((stderr, "\nbl counts: "));
   2967     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   2968     send_bits(s, dcodes-1,   5);
   2969     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   2970     for (rank = 0; rank < blcodes; rank++) {
   2971         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   2972         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   2973     }
   2974     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   2975 
   2976     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   2977     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   2978 
   2979     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   2980     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   2981 }
   2982 
   2983 /* ===========================================================================
   2984  * Send a stored block
   2985  */
   2986 void _tr_stored_block(s, buf, stored_len, eof)
   2987     deflate_state *s;
   2988     charf *buf;       /* input block */
   2989     ulg stored_len;   /* length of input block */
   2990     int eof;          /* true if this is the last block for a file */
   2991 {
   2992     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   2993 #ifdef DEBUG_ZLIB
   2994     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   2995     s->compressed_len += (stored_len + 4) << 3;
   2996 #endif
   2997     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   2998 }
   2999 
   3000 /* Send just the `stored block' type code without any length bytes or data.
   3001  */
   3002 void _tr_stored_type_only(s)
   3003     deflate_state *s;
   3004 {
   3005     send_bits(s, (STORED_BLOCK << 1), 3);
   3006     bi_windup(s);
   3007 #ifdef DEBUG_ZLIB
   3008     s->compressed_len = (s->compressed_len + 3) & ~7L;
   3009 #endif
   3010 }
   3011 
   3012 /* ===========================================================================
   3013  * Send one empty static block to give enough lookahead for inflate.
   3014  * This takes 10 bits, of which 7 may remain in the bit buffer.
   3015  * The current inflate code requires 9 bits of lookahead. If the
   3016  * last two codes for the previous block (real code plus EOB) were coded
   3017  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   3018  * the last real code. In this case we send two empty static blocks instead
   3019  * of one. (There are no problems if the previous block is stored or fixed.)
   3020  * To simplify the code, we assume the worst case of last real code encoded
   3021  * on one bit only.
   3022  */
   3023 void _tr_align(s)
   3024     deflate_state *s;
   3025 {
   3026     send_bits(s, STATIC_TREES<<1, 3);
   3027     send_code(s, END_BLOCK, static_ltree);
   3028 #ifdef DEBUG_ZLIB
   3029     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   3030 #endif
   3031     bi_flush(s);
   3032     /* Of the 10 bits for the empty block, we have already sent
   3033      * (10 - bi_valid) bits. The lookahead for the last real code (before
   3034      * the EOB of the previous block) was thus at least one plus the length
   3035      * of the EOB plus what we have just sent of the empty static block.
   3036      */
   3037     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   3038         send_bits(s, STATIC_TREES<<1, 3);
   3039         send_code(s, END_BLOCK, static_ltree);
   3040 #ifdef DEBUG_ZLIB
   3041         s->compressed_len += 10L;
   3042 #endif
   3043         bi_flush(s);
   3044     }
   3045     s->last_eob_len = 7;
   3046 }
   3047 
   3048 /* ===========================================================================
   3049  * Determine the best encoding for the current block: dynamic trees, static
   3050  * trees or store, and output the encoded block to the zip file.
   3051  */
   3052 void _tr_flush_block(s, buf, stored_len, eof)
   3053     deflate_state *s;
   3054     charf *buf;       /* input block, or NULL if too old */
   3055     ulg stored_len;   /* length of input block */
   3056     int eof;          /* true if this is the last block for a file */
   3057 {
   3058     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   3059     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   3060 
   3061     /* Build the Huffman trees unless a stored block is forced */
   3062     if (s->level > 0) {
   3063 
   3064 	 /* Check if the file is ascii or binary */
   3065 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   3066 
   3067 	/* Construct the literal and distance trees */
   3068 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   3069 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   3070 		s->static_len));
   3071 
   3072 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   3073 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   3074 		s->static_len));
   3075 	/* At this point, opt_len and static_len are the total bit lengths of
   3076 	 * the compressed block data, excluding the tree representations.
   3077 	 */
   3078 
   3079 	/* Build the bit length tree for the above two trees, and get the index
   3080 	 * in bl_order of the last bit length code to send.
   3081 	 */
   3082 	max_blindex = build_bl_tree(s);
   3083 
   3084 	/* Determine the best encoding. Compute first the block length in bytes*/
   3085 	opt_lenb = (s->opt_len+3+7)>>3;
   3086 	static_lenb = (s->static_len+3+7)>>3;
   3087 
   3088 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   3089 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   3090 		s->last_lit));
   3091 
   3092 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   3093 
   3094     } else {
   3095         Assert(buf != (char*)0, "lost buf");
   3096 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   3097     }
   3098 
   3099 #ifdef FORCE_STORED
   3100     if (buf != (char*)0) { /* force stored block */
   3101 #else
   3102     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   3103                        /* 4: two words for the lengths */
   3104 #endif
   3105         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   3106          * Otherwise we can't have processed more than WSIZE input bytes since
   3107          * the last block flush, because compression would have been
   3108          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   3109          * transform a block into a stored block.
   3110          */
   3111         _tr_stored_block(s, buf, stored_len, eof);
   3112 
   3113 #ifdef FORCE_STATIC
   3114     } else if (static_lenb >= 0) { /* force static trees */
   3115 #else
   3116     } else if (static_lenb == opt_lenb) {
   3117 #endif
   3118         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   3119         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   3120 #ifdef DEBUG_ZLIB
   3121         s->compressed_len += 3 + s->static_len;
   3122 #endif
   3123     } else {
   3124         send_bits(s, (DYN_TREES<<1)+eof, 3);
   3125         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   3126                        max_blindex+1);
   3127         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   3128 #ifdef DEBUG_ZLIB
   3129         s->compressed_len += 3 + s->opt_len;
   3130 #endif
   3131     }
   3132     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   3133     /* The above check is made mod 2^32, for files larger than 512 MB
   3134      * and uLong implemented on 32 bits.
   3135      */
   3136     init_block(s);
   3137 
   3138     if (eof) {
   3139         bi_windup(s);
   3140 #ifdef DEBUG_ZLIB
   3141         s->compressed_len += 7;  /* align on byte boundary */
   3142 #endif
   3143     }
   3144     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   3145            s->compressed_len-7*eof));
   3146 }
   3147 
   3148 /* ===========================================================================
   3149  * Save the match info and tally the frequency counts. Return true if
   3150  * the current block must be flushed.
   3151  */
   3152 int _tr_tally (s, dist, lc)
   3153     deflate_state *s;
   3154     unsigned dist;  /* distance of matched string */
   3155     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   3156 {
   3157     s->d_buf[s->last_lit] = (ush)dist;
   3158     s->l_buf[s->last_lit++] = (uch)lc;
   3159     if (dist == 0) {
   3160         /* lc is the unmatched char */
   3161         s->dyn_ltree[lc].Freq++;
   3162     } else {
   3163         s->matches++;
   3164         /* Here, lc is the match length - MIN_MATCH */
   3165         dist--;             /* dist = match distance - 1 */
   3166         Assert((ush)dist < (ush)MAX_DIST(s) &&
   3167                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   3168                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   3169 
   3170         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   3171         s->dyn_dtree[d_code(dist)].Freq++;
   3172     }
   3173 
   3174 #ifdef TRUNCATE_BLOCK
   3175     /* Try to guess if it is profitable to stop the current block here */
   3176     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   3177         /* Compute an upper bound for the compressed length */
   3178         ulg out_length = (ulg)s->last_lit*8L;
   3179         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   3180         int dcode;
   3181         for (dcode = 0; dcode < D_CODES; dcode++) {
   3182             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   3183                 (5L+extra_dbits[dcode]);
   3184         }
   3185         out_length >>= 3;
   3186         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   3187                s->last_lit, in_length, out_length,
   3188                100L - out_length*100L/in_length));
   3189         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   3190     }
   3191 #endif
   3192     return (s->last_lit == s->lit_bufsize-1);
   3193     /* We avoid equality with lit_bufsize because of wraparound at 64K
   3194      * on 16 bit machines and because stored blocks are restricted to
   3195      * 64K-1 bytes.
   3196      */
   3197 }
   3198 
   3199 /* ===========================================================================
   3200  * Send the block data compressed using the given Huffman trees
   3201  */
   3202 local void compress_block(s, ltree, dtree)
   3203     deflate_state *s;
   3204     ct_data *ltree; /* literal tree */
   3205     ct_data *dtree; /* distance tree */
   3206 {
   3207     unsigned dist;      /* distance of matched string */
   3208     int lc;             /* match length or unmatched char (if dist == 0) */
   3209     unsigned lx = 0;    /* running index in l_buf */
   3210     unsigned code;      /* the code to send */
   3211     int extra;          /* number of extra bits to send */
   3212 
   3213     if (s->last_lit != 0) do {
   3214         dist = s->d_buf[lx];
   3215         lc = s->l_buf[lx++];
   3216         if (dist == 0) {
   3217             send_code(s, lc, ltree); /* send a literal byte */
   3218             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   3219         } else {
   3220             /* Here, lc is the match length - MIN_MATCH */
   3221             code = _length_code[lc];
   3222             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   3223             extra = extra_lbits[code];
   3224             if (extra != 0) {
   3225                 lc -= base_length[code];
   3226                 send_bits(s, lc, extra);       /* send the extra length bits */
   3227             }
   3228             dist--; /* dist is now the match distance - 1 */
   3229             code = d_code(dist);
   3230             Assert (code < D_CODES, "bad d_code");
   3231 
   3232             send_code(s, code, dtree);       /* send the distance code */
   3233             extra = extra_dbits[code];
   3234             if (extra != 0) {
   3235                 dist -= base_dist[code];
   3236                 send_bits(s, dist, extra);   /* send the extra distance bits */
   3237             }
   3238         } /* literal or match pair ? */
   3239 
   3240         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   3241         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
   3242 
   3243     } while (lx < s->last_lit);
   3244 
   3245     send_code(s, END_BLOCK, ltree);
   3246     s->last_eob_len = ltree[END_BLOCK].Len;
   3247 }
   3248 
   3249 /* ===========================================================================
   3250  * Set the data type to ASCII or BINARY, using a crude approximation:
   3251  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
   3252  * IN assertion: the fields freq of dyn_ltree are set and the total of all
   3253  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
   3254  */
   3255 local void set_data_type(s)
   3256     deflate_state *s;
   3257 {
   3258     int n = 0;
   3259     unsigned ascii_freq = 0;
   3260     unsigned bin_freq = 0;
   3261     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
   3262     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
   3263     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
   3264     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
   3265 }
   3266 
   3267 /* ===========================================================================
   3268  * Reverse the first len bits of a code, using straightforward code (a faster
   3269  * method would use a table)
   3270  * IN assertion: 1 <= len <= 15
   3271  */
   3272 local unsigned bi_reverse(code, len)
   3273     unsigned code; /* the value to invert */
   3274     int len;       /* its bit length */
   3275 {
   3276     unsigned res = 0;
   3277     do {
   3278         res |= code & 1;
   3279         code >>= 1, res <<= 1;
   3280     } while (--len > 0);
   3281     return res >> 1;
   3282 }
   3283 
   3284 /* ===========================================================================
   3285  * Flush the bit buffer, keeping at most 7 bits in it.
   3286  */
   3287 local void bi_flush(s)
   3288     deflate_state *s;
   3289 {
   3290     if (s->bi_valid == 16) {
   3291         put_short(s, s->bi_buf);
   3292         s->bi_buf = 0;
   3293         s->bi_valid = 0;
   3294     } else if (s->bi_valid >= 8) {
   3295         put_byte(s, (Byte)s->bi_buf);
   3296         s->bi_buf >>= 8;
   3297         s->bi_valid -= 8;
   3298     }
   3299 }
   3300 
   3301 /* ===========================================================================
   3302  * Flush the bit buffer and align the output on a byte boundary
   3303  */
   3304 local void bi_windup(s)
   3305     deflate_state *s;
   3306 {
   3307     if (s->bi_valid > 8) {
   3308         put_short(s, s->bi_buf);
   3309     } else if (s->bi_valid > 0) {
   3310         put_byte(s, (Byte)s->bi_buf);
   3311     }
   3312     s->bi_buf = 0;
   3313     s->bi_valid = 0;
   3314 #ifdef DEBUG_ZLIB
   3315     s->bits_sent = (s->bits_sent+7) & ~7;
   3316 #endif
   3317 }
   3318 
   3319 /* ===========================================================================
   3320  * Copy a stored block, storing first the length and its
   3321  * one's complement if requested.
   3322  */
   3323 local void copy_block(s, buf, len, header)
   3324     deflate_state *s;
   3325     charf    *buf;    /* the input data */
   3326     unsigned len;     /* its length */
   3327     int      header;  /* true if block header must be written */
   3328 {
   3329     bi_windup(s);        /* align on byte boundary */
   3330     s->last_eob_len = 8; /* enough lookahead for inflate */
   3331 
   3332     if (header) {
   3333         put_short(s, (ush)len);
   3334         put_short(s, (ush)~len);
   3335 #ifdef DEBUG_ZLIB
   3336         s->bits_sent += 2*16;
   3337 #endif
   3338     }
   3339 #ifdef DEBUG_ZLIB
   3340     s->bits_sent += (ulg)len<<3;
   3341 #endif
   3342     /* bundle up the put_byte(s, *buf++) calls */
   3343     zmemcpy(&s->pending_buf[s->pending], buf, len);
   3344     s->pending += len;
   3345 }
   3346 /* --- trees.c */
   3347 
   3348 /* +++ inflate.c */
   3349 
   3350 /* inflate.c -- zlib interface to inflate modules
   3351  * Copyright (C) 1995-2002 Mark Adler
   3352  * For conditions of distribution and use, see copyright notice in zlib.h
   3353  */
   3354 
   3355 /* #include "zutil.h" */
   3356 
   3357 /* +++ infblock.h */
   3358 
   3359 /* infblock.h -- header to use infblock.c
   3360  * Copyright (C) 1995-2002 Mark Adler
   3361  * For conditions of distribution and use, see copyright notice in zlib.h
   3362  */
   3363 
   3364 /* WARNING: this file should *not* be used by applications. It is
   3365    part of the implementation of the compression library and is
   3366    subject to change. Applications should only use zlib.h.
   3367  */
   3368 
   3369 struct inflate_blocks_state;
   3370 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
   3371 
   3372 extern inflate_blocks_statef * inflate_blocks_new __P((
   3373     z_streamp z,
   3374     check_func c,               /* check function */
   3375     uInt w));                   /* window size */
   3376 
   3377 extern int inflate_blocks __P((
   3378     inflate_blocks_statef *,
   3379     z_streamp ,
   3380     int));                      /* initial return code */
   3381 
   3382 extern void inflate_blocks_reset __P((
   3383     inflate_blocks_statef *,
   3384     z_streamp ,
   3385     uLongf *));                  /* check value on output */
   3386 
   3387 extern int inflate_blocks_free __P((
   3388     inflate_blocks_statef *,
   3389     z_streamp));
   3390 
   3391 extern void inflate_set_dictionary __P((
   3392     inflate_blocks_statef *s,
   3393     const Bytef *d,  /* dictionary */
   3394     uInt  n));       /* dictionary length */
   3395 
   3396 extern int inflate_blocks_sync_point __P((
   3397     inflate_blocks_statef *s));
   3398 extern int inflate_addhistory __P((
   3399     inflate_blocks_statef *,
   3400     z_streamp));
   3401 
   3402 extern int inflate_packet_flush __P((
   3403     inflate_blocks_statef *));
   3404 
   3405 /* --- infblock.h */
   3406 
   3407 #ifndef NO_DUMMY_DECL
   3408 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
   3409 #endif
   3410 
   3411 typedef enum {
   3412       METHOD,   /* waiting for method byte */
   3413       FLAG,     /* waiting for flag byte */
   3414       DICT4,    /* four dictionary check bytes to go */
   3415       DICT3,    /* three dictionary check bytes to go */
   3416       DICT2,    /* two dictionary check bytes to go */
   3417       DICT1,    /* one dictionary check byte to go */
   3418       DICT0,    /* waiting for inflateSetDictionary */
   3419       BLOCKS,   /* decompressing blocks */
   3420       CHECK4,   /* four check bytes to go */
   3421       CHECK3,   /* three check bytes to go */
   3422       CHECK2,   /* two check bytes to go */
   3423       CHECK1,   /* one check byte to go */
   3424       DONE,     /* finished check, done */
   3425       BAD}      /* got an error--stay here */
   3426 inflate_mode;
   3427 
   3428 /* inflate private state */
   3429 struct internal_state {
   3430 
   3431   /* mode */
   3432   inflate_mode  mode;   /* current inflate mode */
   3433 
   3434   /* mode dependent information */
   3435   union {
   3436     uInt method;        /* if FLAGS, method byte */
   3437     struct {
   3438       uLong was;                /* computed check value */
   3439       uLong need;               /* stream check value */
   3440     } check;            /* if CHECK, check values to compare */
   3441     uInt marker;        /* if BAD, inflateSync's marker bytes count */
   3442   } sub;        /* submode */
   3443 
   3444   /* mode independent information */
   3445   int  nowrap;          /* flag for no wrapper */
   3446   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
   3447   inflate_blocks_statef
   3448     *blocks;            /* current inflate_blocks state */
   3449 
   3450 };
   3451 
   3452 
   3453 int ZEXPORT inflateReset(z)
   3454 z_streamp z;
   3455 {
   3456   if (z == Z_NULL || z->state == Z_NULL)
   3457     return Z_STREAM_ERROR;
   3458   z->total_in = z->total_out = 0;
   3459   z->msg = Z_NULL;
   3460   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
   3461   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
   3462   Tracev((stderr, "inflate: reset\n"));
   3463   return Z_OK;
   3464 }
   3465 
   3466 
   3467 int ZEXPORT inflateEnd(z)
   3468 z_streamp z;
   3469 {
   3470   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
   3471     return Z_STREAM_ERROR;
   3472   if (z->state->blocks != Z_NULL)
   3473     inflate_blocks_free(z->state->blocks, z);
   3474   ZFREE(z, z->state);
   3475   z->state = Z_NULL;
   3476   Tracev((stderr, "inflate: end\n"));
   3477   return Z_OK;
   3478 }
   3479 
   3480 
   3481 int ZEXPORT inflateInit2_(z, w, version, stream_size)
   3482 z_streamp z;
   3483 int w;
   3484 const char *version;
   3485 int stream_size;
   3486 {
   3487   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
   3488       stream_size != sizeof(z_stream))
   3489       return Z_VERSION_ERROR;
   3490 
   3491   /* initialize state */
   3492   if (z == Z_NULL)
   3493     return Z_STREAM_ERROR;
   3494   z->msg = Z_NULL;
   3495 #ifndef NO_ZCFUNCS
   3496   if (z->zalloc == Z_NULL)
   3497   {
   3498     z->zalloc = zcalloc;
   3499     z->opaque = (voidpf)0;
   3500   }
   3501   if (z->zfree == Z_NULL) z->zfree = zcfree;
   3502 #endif
   3503   if ((z->state = (struct internal_state FAR *)
   3504        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
   3505     return Z_MEM_ERROR;
   3506   z->state->blocks = Z_NULL;
   3507 
   3508   /* handle undocumented nowrap option (no zlib header or check) */
   3509   z->state->nowrap = 0;
   3510   if (w < 0)
   3511   {
   3512     w = - w;
   3513     z->state->nowrap = 1;
   3514   }
   3515 
   3516   /* set window size */
   3517   if (w < 8 || w > 15)
   3518   {
   3519     inflateEnd(z);
   3520     return Z_STREAM_ERROR;
   3521   }
   3522   z->state->wbits = (uInt)w;
   3523 
   3524   /* create inflate_blocks state */
   3525   if ((z->state->blocks =
   3526       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
   3527       == Z_NULL)
   3528   {
   3529     inflateEnd(z);
   3530     return Z_MEM_ERROR;
   3531   }
   3532   Tracev((stderr, "inflate: allocated\n"));
   3533 
   3534   /* reset state */
   3535   inflateReset(z);
   3536   return Z_OK;
   3537 }
   3538 
   3539 
   3540 int ZEXPORT inflateInit_(z, version, stream_size)
   3541 z_streamp z;
   3542 const char *version;
   3543 int stream_size;
   3544 {
   3545   return inflateInit2_(z, DEF_WBITS, version, stream_size);
   3546 }
   3547 
   3548 
   3549 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
   3550 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
   3551 
   3552 int ZEXPORT inflate(z, f)
   3553 z_streamp z;
   3554 int f;
   3555 {
   3556   int r, r2;
   3557   uInt b;
   3558 
   3559   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
   3560     return Z_STREAM_ERROR;
   3561   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
   3562   r = Z_BUF_ERROR;
   3563   while (1) switch (z->state->mode)
   3564   {
   3565     case METHOD:
   3566       NEEDBYTE
   3567       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
   3568       {
   3569         z->state->mode = BAD;
   3570         z->msg = (char*)"unknown compression method";
   3571         z->state->sub.marker = 5;       /* can't try inflateSync */
   3572         break;
   3573       }
   3574       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
   3575       {
   3576         z->state->mode = BAD;
   3577         z->msg = (char*)"invalid window size";
   3578         z->state->sub.marker = 5;       /* can't try inflateSync */
   3579         break;
   3580       }
   3581       z->state->mode = FLAG;
   3582     case FLAG:
   3583       NEEDBYTE
   3584       b = NEXTBYTE;
   3585       if (((z->state->sub.method << 8) + b) % 31)
   3586       {
   3587         z->state->mode = BAD;
   3588         z->msg = (char*)"incorrect header check";
   3589         z->state->sub.marker = 5;       /* can't try inflateSync */
   3590         break;
   3591       }
   3592       Tracev((stderr, "inflate: zlib header ok\n"));
   3593       if (!(b & PRESET_DICT))
   3594       {
   3595         z->state->mode = BLOCKS;
   3596         break;
   3597       }
   3598       z->state->mode = DICT4;
   3599     case DICT4:
   3600       NEEDBYTE
   3601       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3602       z->state->mode = DICT3;
   3603     case DICT3:
   3604       NEEDBYTE
   3605       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3606       z->state->mode = DICT2;
   3607     case DICT2:
   3608       NEEDBYTE
   3609       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3610       z->state->mode = DICT1;
   3611     case DICT1:
   3612       NEEDBYTE
   3613       z->state->sub.check.need += (uLong)NEXTBYTE;
   3614       z->adler = z->state->sub.check.need;
   3615       z->state->mode = DICT0;
   3616       return Z_NEED_DICT;
   3617     case DICT0:
   3618       z->state->mode = BAD;
   3619       z->msg = (char*)"need dictionary";
   3620       z->state->sub.marker = 0;       /* can try inflateSync */
   3621       return Z_STREAM_ERROR;
   3622     case BLOCKS:
   3623       r = inflate_blocks(z->state->blocks, z, r);
   3624       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
   3625          r = inflate_packet_flush(z->state->blocks);
   3626       if (r == Z_DATA_ERROR)
   3627       {
   3628         z->state->mode = BAD;
   3629         z->state->sub.marker = 0;       /* can try inflateSync */
   3630         break;
   3631       }
   3632       if (r == Z_OK)
   3633         r = r2;
   3634       if (r != Z_STREAM_END)
   3635         return r;
   3636       r = r2;
   3637       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
   3638       if (z->state->nowrap)
   3639       {
   3640         z->state->mode = DONE;
   3641         break;
   3642       }
   3643       z->state->mode = CHECK4;
   3644     case CHECK4:
   3645       NEEDBYTE
   3646       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3647       z->state->mode = CHECK3;
   3648     case CHECK3:
   3649       NEEDBYTE
   3650       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3651       z->state->mode = CHECK2;
   3652     case CHECK2:
   3653       NEEDBYTE
   3654       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3655       z->state->mode = CHECK1;
   3656     case CHECK1:
   3657       NEEDBYTE
   3658       z->state->sub.check.need += (uLong)NEXTBYTE;
   3659 
   3660       if (z->state->sub.check.was != z->state->sub.check.need)
   3661       {
   3662         z->state->mode = BAD;
   3663         z->msg = (char*)"incorrect data check";
   3664         z->state->sub.marker = 5;       /* can't try inflateSync */
   3665         break;
   3666       }
   3667       Tracev((stderr, "inflate: zlib check ok\n"));
   3668       z->state->mode = DONE;
   3669     case DONE:
   3670       return Z_STREAM_END;
   3671     case BAD:
   3672       return Z_DATA_ERROR;
   3673     default:
   3674       return Z_STREAM_ERROR;
   3675   }
   3676  empty:
   3677   if (f != Z_PACKET_FLUSH)
   3678     return r;
   3679   z->state->mode = BAD;
   3680   z->msg = (char *)"need more for packet flush";
   3681   z->state->sub.marker = 0;
   3682   return Z_DATA_ERROR;
   3683 }
   3684 
   3685 
   3686 int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
   3687 z_streamp z;
   3688 const Bytef *dictionary;
   3689 uInt  dictLength;
   3690 {
   3691   uInt length = dictLength;
   3692 
   3693   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
   3694     return Z_STREAM_ERROR;
   3695 
   3696   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
   3697   z->adler = 1L;
   3698 
   3699   if (length >= ((uInt)1<<z->state->wbits))
   3700   {
   3701     length = (1<<z->state->wbits)-1;
   3702     dictionary += dictLength - length;
   3703   }
   3704   inflate_set_dictionary(z->state->blocks, dictionary, length);
   3705   z->state->mode = BLOCKS;
   3706   return Z_OK;
   3707 }
   3708 
   3709 /*
   3710  * This subroutine adds the data at next_in/avail_in to the output history
   3711  * without performing any output.  The output buffer must be "caught up";
   3712  * i.e. no pending output (hence s->read equals s->write), and the state must
   3713  * be BLOCKS (i.e. we should be willing to see the start of a series of
   3714  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   3715  * will have been updated if need be.
   3716  */
   3717 
   3718 int inflateIncomp(z)
   3719 z_stream *z;
   3720 {
   3721     if (z->state->mode != BLOCKS)
   3722 	return Z_DATA_ERROR;
   3723     return inflate_addhistory(z->state->blocks, z);
   3724 }
   3725 
   3726 int ZEXPORT inflateSync(z)
   3727 z_streamp z;
   3728 {
   3729   uInt n;       /* number of bytes to look at */
   3730   Bytef *p;     /* pointer to bytes */
   3731   uInt m;       /* number of marker bytes found in a row */
   3732   uLong r, w;   /* temporaries to save total_in and total_out */
   3733 
   3734   /* set up */
   3735   if (z == Z_NULL || z->state == Z_NULL)
   3736     return Z_STREAM_ERROR;
   3737   if (z->state->mode != BAD)
   3738   {
   3739     z->state->mode = BAD;
   3740     z->state->sub.marker = 0;
   3741   }
   3742   if ((n = z->avail_in) == 0)
   3743     return Z_BUF_ERROR;
   3744   p = z->next_in;
   3745   m = z->state->sub.marker;
   3746 
   3747   /* search */
   3748   while (n && m < 4)
   3749   {
   3750     static const Byte mark[4] = {0, 0, 0xff, 0xff};
   3751     if (*p == mark[m])
   3752       m++;
   3753     else if (*p)
   3754       m = 0;
   3755     else
   3756       m = 4 - m;
   3757     p++, n--;
   3758   }
   3759 
   3760   /* restore */
   3761   z->total_in += p - z->next_in;
   3762   z->next_in = p;
   3763   z->avail_in = n;
   3764   z->state->sub.marker = m;
   3765 
   3766   /* return no joy or set up to restart on a new block */
   3767   if (m != 4)
   3768     return Z_DATA_ERROR;
   3769   r = z->total_in;  w = z->total_out;
   3770   inflateReset(z);
   3771   z->total_in = r;  z->total_out = w;
   3772   z->state->mode = BLOCKS;
   3773   return Z_OK;
   3774 }
   3775 
   3776 
   3777 /* Returns true if inflate is currently at the end of a block generated
   3778  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   3779  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
   3780  * but removes the length bytes of the resulting empty stored block. When
   3781  * decompressing, PPP checks that at the end of input packet, inflate is
   3782  * waiting for these length bytes.
   3783  */
   3784 int ZEXPORT inflateSyncPoint(z)
   3785 z_streamp z;
   3786 {
   3787   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
   3788     return Z_STREAM_ERROR;
   3789   return inflate_blocks_sync_point(z->state->blocks);
   3790 }
   3791 #undef NEEDBYTE
   3792 #undef NEXTBYTE
   3793 /* --- inflate.c */
   3794 
   3795 /* +++ infblock.c */
   3796 
   3797 /* infblock.c -- interpret and process block types to last block
   3798  * Copyright (C) 1995-2002 Mark Adler
   3799  * For conditions of distribution and use, see copyright notice in zlib.h
   3800  */
   3801 
   3802 /* #include "zutil.h" */
   3803 /* #include "infblock.h" */
   3804 
   3805 /* +++ inftrees.h */
   3806 
   3807 /* inftrees.h -- header to use inftrees.c
   3808  * Copyright (C) 1995-2002 Mark Adler
   3809  * For conditions of distribution and use, see copyright notice in zlib.h
   3810  */
   3811 
   3812 /* WARNING: this file should *not* be used by applications. It is
   3813    part of the implementation of the compression library and is
   3814    subject to change. Applications should only use zlib.h.
   3815  */
   3816 
   3817 /* Huffman code lookup table entry--this entry is four bytes for machines
   3818    that have 16-bit pointers (e.g. PC's in the small or medium model). */
   3819 
   3820 typedef struct inflate_huft_s FAR inflate_huft;
   3821 
   3822 struct inflate_huft_s {
   3823   union {
   3824     struct {
   3825       Byte Exop;        /* number of extra bits or operation */
   3826       Byte Bits;        /* number of bits in this code or subcode */
   3827     } what;
   3828     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
   3829   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
   3830   uInt base;            /* literal, length base, distance base,
   3831                            or table offset */
   3832 };
   3833 
   3834 /* Maximum size of dynamic tree.  The maximum found in a long but non-
   3835    exhaustive search was 1004 huft structures (850 for length/literals
   3836    and 154 for distances, the latter actually the result of an
   3837    exhaustive search).  The actual maximum is not known, but the
   3838    value below is more than safe. */
   3839 #define MANY 1440
   3840 
   3841 extern int inflate_trees_bits __P((
   3842     uIntf *,                    /* 19 code lengths */
   3843     uIntf *,                    /* bits tree desired/actual depth */
   3844     inflate_huft * FAR *,       /* bits tree result */
   3845     inflate_huft *,             /* space for trees */
   3846     z_streamp));                /* for messages */
   3847 
   3848 extern int inflate_trees_dynamic __P((
   3849     uInt,                       /* number of literal/length codes */
   3850     uInt,                       /* number of distance codes */
   3851     uIntf *,                    /* that many (total) code lengths */
   3852     uIntf *,                    /* literal desired/actual bit depth */
   3853     uIntf *,                    /* distance desired/actual bit depth */
   3854     inflate_huft * FAR *,       /* literal/length tree result */
   3855     inflate_huft * FAR *,       /* distance tree result */
   3856     inflate_huft *,             /* space for trees */
   3857     z_streamp));                /* for messages */
   3858 
   3859 extern int inflate_trees_fixed __P((
   3860     uIntf *,                    /* literal desired/actual bit depth */
   3861     uIntf *,                    /* distance desired/actual bit depth */
   3862     inflate_huft * FAR *,       /* literal/length tree result */
   3863     inflate_huft * FAR *,       /* distance tree result */
   3864     z_streamp));                /* for memory allocation */
   3865 /* --- inftrees.h */
   3866 
   3867 /* +++ infcodes.h */
   3868 
   3869 /* infcodes.h -- header to use infcodes.c
   3870  * Copyright (C) 1995-2002 Mark Adler
   3871  * For conditions of distribution and use, see copyright notice in zlib.h
   3872  */
   3873 
   3874 /* WARNING: this file should *not* be used by applications. It is
   3875    part of the implementation of the compression library and is
   3876    subject to change. Applications should only use zlib.h.
   3877  */
   3878 
   3879 struct inflate_codes_state;
   3880 typedef struct inflate_codes_state FAR inflate_codes_statef;
   3881 
   3882 extern inflate_codes_statef *inflate_codes_new __P((
   3883     uInt, uInt,
   3884     inflate_huft *, inflate_huft *,
   3885     z_streamp ));
   3886 
   3887 extern int inflate_codes __P((
   3888     inflate_blocks_statef *,
   3889     z_streamp ,
   3890     int));
   3891 
   3892 extern void inflate_codes_free __P((
   3893     inflate_codes_statef *,
   3894     z_streamp ));
   3895 
   3896 /* --- infcodes.h */
   3897 
   3898 /* +++ infutil.h */
   3899 
   3900 /* infutil.h -- types and macros common to blocks and codes
   3901  * Copyright (C) 1995-2002 Mark Adler
   3902  * For conditions of distribution and use, see copyright notice in zlib.h
   3903  */
   3904 
   3905 /* WARNING: this file should *not* be used by applications. It is
   3906    part of the implementation of the compression library and is
   3907    subject to change. Applications should only use zlib.h.
   3908  */
   3909 
   3910 #ifndef _INFUTIL_H
   3911 #define _INFUTIL_H
   3912 
   3913 typedef enum {
   3914       TYPE,     /* get type bits (3, including end bit) */
   3915       LENS,     /* get lengths for stored */
   3916       STORED,   /* processing stored block */
   3917       TABLE,    /* get table lengths */
   3918       BTREE,    /* get bit lengths tree for a dynamic block */
   3919       DTREE,    /* get length, distance trees for a dynamic block */
   3920       CODES,    /* processing fixed or dynamic block */
   3921       DRY,      /* output remaining window bytes */
   3922       DONEB,    /* finished last block, done */
   3923       BADB}     /* got a data error--stuck here */
   3924 inflate_block_mode;
   3925 
   3926 /* inflate blocks semi-private state */
   3927 struct inflate_blocks_state {
   3928 
   3929   /* mode */
   3930   inflate_block_mode  mode;     /* current inflate_block mode */
   3931 
   3932   /* mode dependent information */
   3933   union {
   3934     uInt left;          /* if STORED, bytes left to copy */
   3935     struct {
   3936       uInt table;               /* table lengths (14 bits) */
   3937       uInt index;               /* index into blens (or border) */
   3938       uIntf *blens;             /* bit lengths of codes */
   3939       uInt bb;                  /* bit length tree depth */
   3940       inflate_huft *tb;         /* bit length decoding tree */
   3941     } trees;            /* if DTREE, decoding info for trees */
   3942     struct {
   3943       inflate_codes_statef
   3944          *codes;
   3945     } decode;           /* if CODES, current state */
   3946   } sub;                /* submode */
   3947   uInt last;            /* true if this block is the last block */
   3948 
   3949   /* mode independent information */
   3950   uInt bitk;            /* bits in bit buffer */
   3951   uLong bitb;           /* bit buffer */
   3952   inflate_huft *hufts;  /* single malloc for tree space */
   3953   Bytef *window;        /* sliding window */
   3954   Bytef *end;           /* one byte after sliding window */
   3955   Bytef *read;          /* window read pointer */
   3956   Bytef *write;         /* window write pointer */
   3957   check_func checkfn;   /* check function */
   3958   uLong check;          /* check on output */
   3959 
   3960 };
   3961 
   3962 
   3963 /* defines for inflate input/output */
   3964 /*   update pointers and return */
   3965 #define UPDBITS {s->bitb=b;s->bitk=k;}
   3966 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
   3967 #define UPDOUT {s->write=q;}
   3968 #define UPDATE {UPDBITS UPDIN UPDOUT}
   3969 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
   3970 /*   get bytes and bits */
   3971 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
   3972 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
   3973 #define NEXTBYTE (n--,*p++)
   3974 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   3975 #define DUMPBITS(j) {b>>=(j);k-=(j);}
   3976 /*   output bytes */
   3977 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
   3978 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
   3979 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
   3980 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
   3981 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
   3982 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
   3983 /*   load local pointers */
   3984 #define LOAD {LOADIN LOADOUT}
   3985 
   3986 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
   3987 extern uInt inflate_mask[17];
   3988 
   3989 /* copy as much as possible from the sliding window to the output area */
   3990 extern int inflate_flush __P((
   3991     inflate_blocks_statef *,
   3992     z_streamp ,
   3993     int));
   3994 
   3995 #ifndef NO_DUMMY_DECL
   3996 struct internal_state      {int dummy;}; /* for buggy compilers */
   3997 #endif
   3998 
   3999 #endif
   4000 /* --- infutil.h */
   4001 
   4002 #ifndef NO_DUMMY_DECL
   4003 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   4004 #endif
   4005 
   4006 /* simplify the use of the inflate_huft type with some defines */
   4007 #define exop word.what.Exop
   4008 #define bits word.what.Bits
   4009 
   4010 /* Table for deflate from PKZIP's appnote.txt. */
   4011 local const uInt border[] = { /* Order of the bit length code lengths */
   4012         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
   4013 
   4014 /*
   4015    Notes beyond the 1.93a appnote.txt:
   4016 
   4017    1. Distance pointers never point before the beginning of the output
   4018       stream.
   4019    2. Distance pointers can point back across blocks, up to 32k away.
   4020    3. There is an implied maximum of 7 bits for the bit length table and
   4021       15 bits for the actual data.
   4022    4. If only one code exists, then it is encoded using one bit.  (Zero
   4023       would be more efficient, but perhaps a little confusing.)  If two
   4024       codes exist, they are coded using one bit each (0 and 1).
   4025    5. There is no way of sending zero distance codes--a dummy must be
   4026       sent if there are none.  (History: a pre 2.0 version of PKZIP would
   4027       store blocks with no distance codes, but this was discovered to be
   4028       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
   4029       zero distance codes, which is sent as one code of zero bits in
   4030       length.
   4031    6. There are up to 286 literal/length codes.  Code 256 represents the
   4032       end-of-block.  Note however that the static length tree defines
   4033       288 codes just to fill out the Huffman codes.  Codes 286 and 287
   4034       cannot be used though, since there is no length base or extra bits
   4035       defined for them.  Similarily, there are up to 30 distance codes.
   4036       However, static trees define 32 codes (all 5 bits) to fill out the
   4037       Huffman codes, but the last two had better not show up in the data.
   4038    7. Unzip can check dynamic Huffman blocks for complete code sets.
   4039       The exception is that a single code would not be complete (see #4).
   4040    8. The five bits following the block type is really the number of
   4041       literal codes sent minus 257.
   4042    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
   4043       (1+6+6).  Therefore, to output three times the length, you output
   4044       three codes (1+1+1), whereas to output four times the same length,
   4045       you only need two codes (1+3).  Hmm.
   4046   10. In the tree reconstruction algorithm, Code = Code + Increment
   4047       only if BitLength(i) is not zero.  (Pretty obvious.)
   4048   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
   4049   12. Note: length code 284 can represent 227-258, but length code 285
   4050       really is 258.  The last length deserves its own, short code
   4051       since it gets used a lot in very redundant files.  The length
   4052       258 is special since 258 - 3 (the min match length) is 255.
   4053   13. The literal/length and distance code bit lengths are read as a
   4054       single stream of lengths.  It is possible (and advantageous) for
   4055       a repeat code (16, 17, or 18) to go across the boundary between
   4056       the two sets of lengths.
   4057  */
   4058 
   4059 
   4060 void inflate_blocks_reset(s, z, c)
   4061 inflate_blocks_statef *s;
   4062 z_streamp z;
   4063 uLongf *c;
   4064 {
   4065   if (c != Z_NULL)
   4066     *c = s->check;
   4067   if (s->mode == BTREE || s->mode == DTREE)
   4068     ZFREE(z, s->sub.trees.blens);
   4069   if (s->mode == CODES)
   4070     inflate_codes_free(s->sub.decode.codes, z);
   4071   s->mode = TYPE;
   4072   s->bitk = 0;
   4073   s->bitb = 0;
   4074   s->read = s->write = s->window;
   4075   if (s->checkfn != Z_NULL)
   4076     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
   4077   Tracev((stderr, "inflate:   blocks reset\n"));
   4078 }
   4079 
   4080 
   4081 inflate_blocks_statef *inflate_blocks_new(z, c, w)
   4082 z_streamp z;
   4083 check_func c;
   4084 uInt w;
   4085 {
   4086   inflate_blocks_statef *s;
   4087 
   4088   if ((s = (inflate_blocks_statef *)ZALLOC
   4089        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
   4090     return s;
   4091   if ((s->hufts =
   4092        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
   4093   {
   4094     ZFREE(z, s);
   4095     return Z_NULL;
   4096   }
   4097   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
   4098   {
   4099     ZFREE(z, s->hufts);
   4100     ZFREE(z, s);
   4101     return Z_NULL;
   4102   }
   4103   s->end = s->window + w;
   4104   s->checkfn = c;
   4105   s->mode = TYPE;
   4106   Tracev((stderr, "inflate:   blocks allocated\n"));
   4107   inflate_blocks_reset(s, z, Z_NULL);
   4108   return s;
   4109 }
   4110 
   4111 
   4112 int inflate_blocks(s, z, r)
   4113 inflate_blocks_statef *s;
   4114 z_streamp z;
   4115 int r;
   4116 {
   4117   uInt t;               /* temporary storage */
   4118   uLong b;              /* bit buffer */
   4119   uInt k;               /* bits in bit buffer */
   4120   Bytef *p;             /* input data pointer */
   4121   uInt n;               /* bytes available there */
   4122   Bytef *q;             /* output window write pointer */
   4123   uInt m;               /* bytes to end of window or read pointer */
   4124 
   4125   /* copy input/output information to locals (UPDATE macro restores) */
   4126   LOAD
   4127 
   4128   /* process input based on current state */
   4129   while (1) switch (s->mode)
   4130   {
   4131     case TYPE:
   4132       NEEDBITS(3)
   4133       t = (uInt)b & 7;
   4134       s->last = t & 1;
   4135       switch (t >> 1)
   4136       {
   4137         case 0:                         /* stored */
   4138           Tracev((stderr, "inflate:     stored block%s\n",
   4139                  s->last ? " (last)" : ""));
   4140           DUMPBITS(3)
   4141           t = k & 7;                    /* go to byte boundary */
   4142           DUMPBITS(t)
   4143           s->mode = LENS;               /* get length of stored block */
   4144           break;
   4145         case 1:                         /* fixed */
   4146           Tracev((stderr, "inflate:     fixed codes block%s\n",
   4147                  s->last ? " (last)" : ""));
   4148           {
   4149             uInt bl, bd;
   4150             inflate_huft *tl, *td;
   4151 
   4152             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
   4153             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
   4154             if (s->sub.decode.codes == Z_NULL)
   4155             {
   4156               r = Z_MEM_ERROR;
   4157               LEAVE
   4158             }
   4159           }
   4160           DUMPBITS(3)
   4161           s->mode = CODES;
   4162           break;
   4163         case 2:                         /* dynamic */
   4164           Tracev((stderr, "inflate:     dynamic codes block%s\n",
   4165                  s->last ? " (last)" : ""));
   4166           DUMPBITS(3)
   4167           s->mode = TABLE;
   4168           break;
   4169         case 3:                         /* illegal */
   4170           DUMPBITS(3)
   4171           s->mode = BADB;
   4172           z->msg = (char*)"invalid block type";
   4173           r = Z_DATA_ERROR;
   4174           LEAVE
   4175       }
   4176       break;
   4177     case LENS:
   4178       NEEDBITS(32)
   4179       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
   4180       {
   4181         s->mode = BADB;
   4182         z->msg = (char*)"invalid stored block lengths";
   4183         r = Z_DATA_ERROR;
   4184         LEAVE
   4185       }
   4186       s->sub.left = (uInt)b & 0xffff;
   4187       b = k = 0;                      /* dump bits */
   4188       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
   4189       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
   4190       break;
   4191     case STORED:
   4192       if (n == 0)
   4193         LEAVE
   4194       NEEDOUT
   4195       t = s->sub.left;
   4196       if (t > n) t = n;
   4197       if (t > m) t = m;
   4198       zmemcpy(q, p, t);
   4199       p += t;  n -= t;
   4200       q += t;  m -= t;
   4201       if ((s->sub.left -= t) != 0)
   4202         break;
   4203       Tracev((stderr, "inflate:       stored end, %lu total out\n",
   4204               z->total_out + (q >= s->read ? q - s->read :
   4205               (s->end - s->read) + (q - s->window))));
   4206       s->mode = s->last ? DRY : TYPE;
   4207       break;
   4208     case TABLE:
   4209       NEEDBITS(14)
   4210       s->sub.trees.table = t = (uInt)b & 0x3fff;
   4211 #ifndef PKZIP_BUG_WORKAROUND
   4212       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
   4213       {
   4214         s->mode = BADB;
   4215         z->msg = (char*)"too many length or distance symbols";
   4216         r = Z_DATA_ERROR;
   4217         LEAVE
   4218       }
   4219 #endif
   4220       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
   4221       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
   4222       {
   4223         r = Z_MEM_ERROR;
   4224         LEAVE
   4225       }
   4226       DUMPBITS(14)
   4227       s->sub.trees.index = 0;
   4228       Tracev((stderr, "inflate:       table sizes ok\n"));
   4229       s->mode = BTREE;
   4230     case BTREE:
   4231       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
   4232       {
   4233         NEEDBITS(3)
   4234         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
   4235         DUMPBITS(3)
   4236       }
   4237       while (s->sub.trees.index < 19)
   4238         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
   4239       s->sub.trees.bb = 7;
   4240       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
   4241                              &s->sub.trees.tb, s->hufts, z);
   4242       if (t != Z_OK)
   4243       {
   4244         r = t;
   4245         if (r == Z_DATA_ERROR)
   4246         {
   4247           ZFREE(z, s->sub.trees.blens);
   4248           s->mode = BADB;
   4249         }
   4250         LEAVE
   4251       }
   4252       s->sub.trees.index = 0;
   4253       Tracev((stderr, "inflate:       bits tree ok\n"));
   4254       s->mode = DTREE;
   4255     case DTREE:
   4256       while (t = s->sub.trees.table,
   4257              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
   4258       {
   4259         inflate_huft *h;
   4260         uInt i, j, c;
   4261 
   4262         t = s->sub.trees.bb;
   4263         NEEDBITS(t)
   4264         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
   4265         t = h->bits;
   4266         c = h->base;
   4267         if (c < 16)
   4268         {
   4269           DUMPBITS(t)
   4270           s->sub.trees.blens[s->sub.trees.index++] = c;
   4271         }
   4272         else /* c == 16..18 */
   4273         {
   4274           i = c == 18 ? 7 : c - 14;
   4275           j = c == 18 ? 11 : 3;
   4276           NEEDBITS(t + i)
   4277           DUMPBITS(t)
   4278           j += (uInt)b & inflate_mask[i];
   4279           DUMPBITS(i)
   4280           i = s->sub.trees.index;
   4281           t = s->sub.trees.table;
   4282           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
   4283               (c == 16 && i < 1))
   4284           {
   4285             ZFREE(z, s->sub.trees.blens);
   4286             s->mode = BADB;
   4287             z->msg = (char*)"invalid bit length repeat";
   4288             r = Z_DATA_ERROR;
   4289             LEAVE
   4290           }
   4291           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
   4292           do {
   4293             s->sub.trees.blens[i++] = c;
   4294           } while (--j);
   4295           s->sub.trees.index = i;
   4296         }
   4297       }
   4298       s->sub.trees.tb = Z_NULL;
   4299       {
   4300         uInt bl, bd;
   4301         inflate_huft *tl, *td;
   4302         inflate_codes_statef *c;
   4303 
   4304         bl = 9;         /* must be <= 9 for lookahead assumptions */
   4305         bd = 6;         /* must be <= 9 for lookahead assumptions */
   4306         t = s->sub.trees.table;
   4307         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
   4308                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
   4309                                   s->hufts, z);
   4310         if (t != Z_OK)
   4311         {
   4312           if (t == (uInt)Z_DATA_ERROR)
   4313           {
   4314             ZFREE(z, s->sub.trees.blens);
   4315             s->mode = BADB;
   4316           }
   4317           r = t;
   4318           LEAVE
   4319         }
   4320         Tracev((stderr, "inflate:       trees ok\n"));
   4321         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
   4322         {
   4323           r = Z_MEM_ERROR;
   4324           LEAVE
   4325         }
   4326         s->sub.decode.codes = c;
   4327       }
   4328       ZFREE(z, s->sub.trees.blens);
   4329       s->mode = CODES;
   4330     case CODES:
   4331       UPDATE
   4332       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
   4333         return inflate_flush(s, z, r);
   4334       r = Z_OK;
   4335       inflate_codes_free(s->sub.decode.codes, z);
   4336       LOAD
   4337       Tracev((stderr, "inflate:       codes end, %lu total out\n",
   4338               z->total_out + (q >= s->read ? q - s->read :
   4339               (s->end - s->read) + (q - s->window))));
   4340       if (!s->last)
   4341       {
   4342         s->mode = TYPE;
   4343         break;
   4344       }
   4345       s->mode = DRY;
   4346     case DRY:
   4347       FLUSH
   4348       if (s->read != s->write)
   4349         LEAVE
   4350       s->mode = DONEB;
   4351     case DONEB:
   4352       r = Z_STREAM_END;
   4353       LEAVE
   4354     case BADB:
   4355       r = Z_DATA_ERROR;
   4356       LEAVE
   4357     default:
   4358       r = Z_STREAM_ERROR;
   4359       LEAVE
   4360   }
   4361 }
   4362 
   4363 
   4364 int inflate_blocks_free(s, z)
   4365 inflate_blocks_statef *s;
   4366 z_streamp z;
   4367 {
   4368   inflate_blocks_reset(s, z, Z_NULL);
   4369   ZFREE(z, s->window);
   4370   ZFREE(z, s->hufts);
   4371   ZFREE(z, s);
   4372   Tracev((stderr, "inflate:   blocks freed\n"));
   4373   return Z_OK;
   4374 }
   4375 
   4376 
   4377 void inflate_set_dictionary(s, d, n)
   4378 inflate_blocks_statef *s;
   4379 const Bytef *d;
   4380 uInt  n;
   4381 {
   4382   zmemcpy(s->window, d, n);
   4383   s->read = s->write = s->window + n;
   4384 }
   4385 
   4386 /*
   4387  * This subroutine adds the data at next_in/avail_in to the output history
   4388  * without performing any output.  The output buffer must be "caught up";
   4389  * i.e. no pending output (hence s->read equals s->write), and the state must
   4390  * be BLOCKS (i.e. we should be willing to see the start of a series of
   4391  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   4392  * will have been updated if need be.
   4393  */
   4394 int inflate_addhistory(s, z)
   4395 inflate_blocks_statef *s;
   4396 z_stream *z;
   4397 {
   4398     uLong b;              /* bit buffer */  /* NOT USED HERE */
   4399     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
   4400     uInt t;               /* temporary storage */
   4401     Bytef *p;             /* input data pointer */
   4402     uInt n;               /* bytes available there */
   4403     Bytef *q;             /* output window write pointer */
   4404     uInt m;               /* bytes to end of window or read pointer */
   4405 
   4406     if (s->read != s->write)
   4407 	return Z_STREAM_ERROR;
   4408     if (s->mode != TYPE)
   4409 	return Z_DATA_ERROR;
   4410 
   4411     /* we're ready to rock */
   4412     LOAD
   4413     /* while there is input ready, copy to output buffer, moving
   4414      * pointers as needed.
   4415      */
   4416     while (n) {
   4417 	t = n;  /* how many to do */
   4418 	/* is there room until end of buffer? */
   4419 	if (t > m) t = m;
   4420 	/* update check information */
   4421 	if (s->checkfn != Z_NULL)
   4422 	    s->check = (*s->checkfn)(s->check, q, t);
   4423 	zmemcpy(q, p, t);
   4424 	q += t;
   4425 	p += t;
   4426 	n -= t;
   4427 	z->total_out += t;
   4428 	s->read = q;    /* drag read pointer forward */
   4429 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
   4430 	if (q == s->end) {
   4431 	    s->read = q = s->window;
   4432 	    m = WAVAIL;
   4433 	}
   4434     }
   4435     UPDATE
   4436     return Z_OK;
   4437 }
   4438 
   4439 
   4440 /*
   4441  * At the end of a Deflate-compressed PPP packet, we expect to have seen
   4442  * a `stored' block type value but not the (zero) length bytes.
   4443  */
   4444 int inflate_packet_flush(s)
   4445     inflate_blocks_statef *s;
   4446 {
   4447     if (s->mode != LENS)
   4448 	return Z_DATA_ERROR;
   4449     s->mode = TYPE;
   4450     return Z_OK;
   4451 }
   4452 
   4453 /* Returns true if inflate is currently at the end of a block generated
   4454  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
   4455  * IN assertion: s != Z_NULL
   4456  */
   4457 int inflate_blocks_sync_point(s)
   4458 inflate_blocks_statef *s;
   4459 {
   4460   return s->mode == LENS;
   4461 }
   4462 /* --- infblock.c */
   4463 
   4464 
   4465 /* +++ inftrees.c */
   4466 
   4467 /* inftrees.c -- generate Huffman trees for efficient decoding
   4468  * Copyright (C) 1995-2002 Mark Adler
   4469  * For conditions of distribution and use, see copyright notice in zlib.h
   4470  */
   4471 
   4472 /* #include "zutil.h" */
   4473 /* #include "inftrees.h" */
   4474 
   4475 #if !defined(BUILDFIXED) && !defined(STDC)
   4476 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
   4477 #endif
   4478 
   4479 const char inflate_copyright[] =
   4480    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
   4481 /*
   4482   If you use the zlib library in a product, an acknowledgment is welcome
   4483   in the documentation of your product. If for some reason you cannot
   4484   include such an acknowledgment, I would appreciate that you keep this
   4485   copyright string in the executable of your product.
   4486  */
   4487 
   4488 #ifndef NO_DUMMY_DECL
   4489 struct internal_state  {int dummy;}; /* for buggy compilers */
   4490 #endif
   4491 
   4492 /* simplify the use of the inflate_huft type with some defines */
   4493 #define exop word.what.Exop
   4494 #define bits word.what.Bits
   4495 
   4496 
   4497 local int huft_build __P((
   4498     uIntf *,            /* code lengths in bits */
   4499     uInt,               /* number of codes */
   4500     uInt,               /* number of "simple" codes */
   4501     const uIntf *,      /* list of base values for non-simple codes */
   4502     const uIntf *,      /* list of extra bits for non-simple codes */
   4503     inflate_huft * FAR*,/* result: starting table */
   4504     uIntf *,            /* maximum lookup bits (returns actual) */
   4505     inflate_huft *,     /* space for trees */
   4506     uInt *,             /* hufts used in space */
   4507     uIntf * ));         /* space for values */
   4508 
   4509 /* Tables for deflate from PKZIP's appnote.txt. */
   4510 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
   4511         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
   4512         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
   4513         /* see note #13 above about 258 */
   4514 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
   4515         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
   4516         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
   4517 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
   4518         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
   4519         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
   4520         8193, 12289, 16385, 24577};
   4521 local const uInt cpdext[30] = { /* Extra bits for distance codes */
   4522         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
   4523         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
   4524         12, 12, 13, 13};
   4525 
   4526 /*
   4527    Huffman code decoding is performed using a multi-level table lookup.
   4528    The fastest way to decode is to simply build a lookup table whose
   4529    size is determined by the longest code.  However, the time it takes
   4530    to build this table can also be a factor if the data being decoded
   4531    is not very long.  The most common codes are necessarily the
   4532    shortest codes, so those codes dominate the decoding time, and hence
   4533    the speed.  The idea is you can have a shorter table that decodes the
   4534    shorter, more probable codes, and then point to subsidiary tables for
   4535    the longer codes.  The time it costs to decode the longer codes is
   4536    then traded against the time it takes to make longer tables.
   4537 
   4538    This results of this trade are in the variables lbits and dbits
   4539    below.  lbits is the number of bits the first level table for literal/
   4540    length codes can decode in one step, and dbits is the same thing for
   4541    the distance codes.  Subsequent tables are also less than or equal to
   4542    those sizes.  These values may be adjusted either when all of the
   4543    codes are shorter than that, in which case the longest code length in
   4544    bits is used, or when the shortest code is *longer* than the requested
   4545    table size, in which case the length of the shortest code in bits is
   4546    used.
   4547 
   4548    There are two different values for the two tables, since they code a
   4549    different number of possibilities each.  The literal/length table
   4550    codes 286 possible values, or in a flat code, a little over eight
   4551    bits.  The distance table codes 30 possible values, or a little less
   4552    than five bits, flat.  The optimum values for speed end up being
   4553    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   4554    The optimum values may differ though from machine to machine, and
   4555    possibly even between compilers.  Your mileage may vary.
   4556  */
   4557 
   4558 
   4559 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
   4560 #define BMAX 15         /* maximum bit length of any code */
   4561 
   4562 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
   4563 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
   4564 uInt n;                 /* number of codes (assumed <= 288) */
   4565 uInt s;                 /* number of simple-valued codes (0..s-1) */
   4566 const uIntf *d;         /* list of base values for non-simple codes */
   4567 const uIntf *e;         /* list of extra bits for non-simple codes */
   4568 inflate_huft * FAR *t;  /* result: starting table */
   4569 uIntf *m;               /* maximum lookup bits, returns actual */
   4570 inflate_huft *hp;       /* space for trees */
   4571 uInt *hn;               /* hufts used in space */
   4572 uIntf *v;               /* working area: values in order of bit length */
   4573 /* Given a list of code lengths and a maximum table size, make a set of
   4574    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   4575    if the given code set is incomplete (the tables are still built in this
   4576    case), or Z_DATA_ERROR if the input is invalid. */
   4577 {
   4578 
   4579   uInt a;                       /* counter for codes of length k */
   4580   uInt c[BMAX+1];               /* bit length count table */
   4581   uInt f;                       /* i repeats in table every f entries */
   4582   int g;                        /* maximum code length */
   4583   int h;                        /* table level */
   4584   uInt i;                       /* counter, current code */
   4585   uInt j;                       /* counter */
   4586   int k;                        /* number of bits in current code */
   4587   int l;                        /* bits per table (returned in m) */
   4588   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
   4589   uIntf *p;                      /* pointer into c[], b[], or v[] */
   4590   inflate_huft *q;              /* points to current table */
   4591   struct inflate_huft_s r;      /* table entry for structure assignment */
   4592   inflate_huft *u[BMAX];        /* table stack */
   4593   int w;               /* bits before this table == (l * h) */
   4594   uInt x[BMAX+1];               /* bit offsets, then code stack */
   4595   uIntf *xp;                    /* pointer into x */
   4596   int y;                        /* number of dummy codes added */
   4597   uInt z;                       /* number of entries in current table */
   4598 
   4599 
   4600   /* Generate counts for each bit length */
   4601   p = c;
   4602 #define C0 *p++ = 0;
   4603 #define C2 C0 C0 C0 C0
   4604 #define C4 C2 C2 C2 C2
   4605   C4                            /* clear c[]--assume BMAX+1 is 16 */
   4606   p = b;  i = n;
   4607   do {
   4608     c[*p++]++;                  /* assume all entries <= BMAX */
   4609   } while (--i);
   4610   if (c[0] == n)                /* null input--all zero length codes */
   4611   {
   4612     *t = (inflate_huft *)Z_NULL;
   4613     *m = 0;
   4614     return Z_OK;
   4615   }
   4616 
   4617 
   4618   /* Find minimum and maximum length, bound *m by those */
   4619   l = *m;
   4620   for (j = 1; j <= BMAX; j++)
   4621     if (c[j])
   4622       break;
   4623   k = j;                        /* minimum code length */
   4624   if ((uInt)l < j)
   4625     l = j;
   4626   for (i = BMAX; i; i--)
   4627     if (c[i])
   4628       break;
   4629   g = i;                        /* maximum code length */
   4630   if ((uInt)l > i)
   4631     l = i;
   4632   *m = l;
   4633 
   4634 
   4635   /* Adjust last length count to fill out codes, if needed */
   4636   for (y = 1 << j; j < i; j++, y <<= 1)
   4637     if ((y -= c[j]) < 0)
   4638       return Z_DATA_ERROR;
   4639   if ((y -= c[i]) < 0)
   4640     return Z_DATA_ERROR;
   4641   c[i] += y;
   4642 
   4643 
   4644   /* Generate starting offsets into the value table for each length */
   4645   x[1] = j = 0;
   4646   p = c + 1;  xp = x + 2;
   4647   while (--i) {                 /* note that i == g from above */
   4648     *xp++ = (j += *p++);
   4649   }
   4650 
   4651 
   4652   /* Make a table of values in order of bit lengths */
   4653   p = b;  i = 0;
   4654   do {
   4655     if ((j = *p++) != 0)
   4656       v[x[j]++] = i;
   4657   } while (++i < n);
   4658   n = x[g];                     /* set n to length of v */
   4659 
   4660 
   4661   /* Generate the Huffman codes and for each, make the table entries */
   4662   x[0] = i = 0;                 /* first Huffman code is zero */
   4663   p = v;                        /* grab values in bit order */
   4664   h = -1;                       /* no tables yet--level -1 */
   4665   w = -l;                       /* bits decoded == (l * h) */
   4666   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   4667   q = (inflate_huft *)Z_NULL;   /* ditto */
   4668   z = 0;                        /* ditto */
   4669 
   4670   /* go through the bit lengths (k already is bits in shortest code) */
   4671   for (; k <= g; k++)
   4672   {
   4673     a = c[k];
   4674     while (a--)
   4675     {
   4676       /* here i is the Huffman code of length k bits for value *p */
   4677       /* make tables up to required level */
   4678       while (k > w + l)
   4679       {
   4680         h++;
   4681         w += l;                 /* previous table always l bits */
   4682 
   4683         /* compute minimum size table less than or equal to l bits */
   4684         z = g - w;
   4685         z = z > (uInt)l ? l : z;        /* table size upper limit */
   4686         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   4687         {                       /* too few codes for k-w bit table */
   4688           f -= a + 1;           /* deduct codes from patterns left */
   4689           xp = c + k;
   4690           if (j < z)
   4691             while (++j < z)     /* try smaller tables up to z bits */
   4692             {
   4693               if ((f <<= 1) <= *++xp)
   4694                 break;          /* enough codes to use up j bits */
   4695               f -= *xp;         /* else deduct codes from patterns */
   4696             }
   4697         }
   4698         z = 1 << j;             /* table entries for j-bit table */
   4699 
   4700         /* allocate new table */
   4701         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
   4702           return Z_DATA_ERROR;  /* overflow of MANY */
   4703         u[h] = q = hp + *hn;
   4704         *hn += z;
   4705 
   4706         /* connect to last table, if there is one */
   4707         if (h)
   4708         {
   4709           x[h] = i;             /* save pattern for backing up */
   4710           r.bits = (Byte)l;     /* bits to dump before this table */
   4711           r.exop = (Byte)j;     /* bits in this table */
   4712           j = i >> (w - l);
   4713           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
   4714           u[h-1][j] = r;        /* connect to last table */
   4715         }
   4716         else
   4717           *t = q;               /* first table is returned result */
   4718       }
   4719 
   4720       /* set up table entry in r */
   4721       r.bits = (Byte)(k - w);
   4722       if (p >= v + n)
   4723         r.exop = 128 + 64;      /* out of values--invalid code */
   4724       else if (*p < s)
   4725       {
   4726         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
   4727         r.base = *p++;          /* simple code is just the value */
   4728       }
   4729       else
   4730       {
   4731         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
   4732         r.base = d[*p++ - s];
   4733       }
   4734 
   4735       /* fill code-like entries with r */
   4736       f = 1 << (k - w);
   4737       for (j = i >> w; j < z; j += f)
   4738         q[j] = r;
   4739 
   4740       /* backwards increment the k-bit code i */
   4741       for (j = 1 << (k - 1); i & j; j >>= 1)
   4742         i ^= j;
   4743       i ^= j;
   4744 
   4745       /* backup over finished tables */
   4746       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
   4747       while ((i & mask) != x[h])
   4748       {
   4749         h--;                    /* don't need to update q */
   4750         w -= l;
   4751         mask = (1 << w) - 1;
   4752       }
   4753     }
   4754   }
   4755 
   4756 
   4757   /* Return Z_BUF_ERROR if we were given an incomplete table */
   4758   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
   4759 }
   4760 
   4761 
   4762 int inflate_trees_bits(c, bb, tb, hp, z)
   4763 uIntf *c;               /* 19 code lengths */
   4764 uIntf *bb;              /* bits tree desired/actual depth */
   4765 inflate_huft * FAR *tb; /* bits tree result */
   4766 inflate_huft *hp;       /* space for trees */
   4767 z_streamp z;            /* for messages */
   4768 {
   4769   int r;
   4770   uInt hn = 0;          /* hufts used in space */
   4771   uIntf *v;             /* work area for huft_build */
   4772 
   4773   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
   4774     return Z_MEM_ERROR;
   4775   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
   4776                  tb, bb, hp, &hn, v);
   4777   if (r == Z_DATA_ERROR)
   4778     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
   4779   else if (r == Z_BUF_ERROR || *bb == 0)
   4780   {
   4781     z->msg = (char*)"incomplete dynamic bit lengths tree";
   4782     r = Z_DATA_ERROR;
   4783   }
   4784   ZFREE(z, v);
   4785   return r;
   4786 }
   4787 
   4788 
   4789 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
   4790 uInt nl;                /* number of literal/length codes */
   4791 uInt nd;                /* number of distance codes */
   4792 uIntf *c;               /* that many (total) code lengths */
   4793 uIntf *bl;              /* literal desired/actual bit depth */
   4794 uIntf *bd;              /* distance desired/actual bit depth */
   4795 inflate_huft * FAR *tl; /* literal/length tree result */
   4796 inflate_huft * FAR *td; /* distance tree result */
   4797 inflate_huft *hp;       /* space for trees */
   4798 z_streamp z;            /* for messages */
   4799 {
   4800   int r;
   4801   uInt hn = 0;          /* hufts used in space */
   4802   uIntf *v;             /* work area for huft_build */
   4803 
   4804   /* allocate work area */
   4805   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4806     return Z_MEM_ERROR;
   4807 
   4808   /* build literal/length tree */
   4809   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
   4810   if (r != Z_OK || *bl == 0)
   4811   {
   4812     if (r == Z_DATA_ERROR)
   4813       z->msg = (char*)"oversubscribed literal/length tree";
   4814     else if (r != Z_MEM_ERROR)
   4815     {
   4816       z->msg = (char*)"incomplete literal/length tree";
   4817       r = Z_DATA_ERROR;
   4818     }
   4819     ZFREE(z, v);
   4820     return r;
   4821   }
   4822 
   4823   /* build distance tree */
   4824   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
   4825   if (r != Z_OK || (*bd == 0 && nl > 257))
   4826   {
   4827     if (r == Z_DATA_ERROR)
   4828       z->msg = (char*)"oversubscribed distance tree";
   4829     else if (r == Z_BUF_ERROR) {
   4830 #ifdef PKZIP_BUG_WORKAROUND
   4831       r = Z_OK;
   4832     }
   4833 #else
   4834       z->msg = (char*)"incomplete distance tree";
   4835       r = Z_DATA_ERROR;
   4836     }
   4837     else if (r != Z_MEM_ERROR)
   4838     {
   4839       z->msg = (char*)"empty distance tree with lengths";
   4840       r = Z_DATA_ERROR;
   4841     }
   4842     ZFREE(z, v);
   4843     return r;
   4844 #endif
   4845   }
   4846 
   4847   /* done */
   4848   ZFREE(z, v);
   4849   return Z_OK;
   4850 }
   4851 
   4852 
   4853 /* build fixed tables only once--keep them here */
   4854 #ifdef BUILDFIXED
   4855 local int fixed_built = 0;
   4856 #define FIXEDH 544      /* number of hufts used by fixed tables */
   4857 local inflate_huft fixed_mem[FIXEDH];
   4858 local uInt fixed_bl;
   4859 local uInt fixed_bd;
   4860 local inflate_huft *fixed_tl;
   4861 local inflate_huft *fixed_td;
   4862 #else
   4863 
   4864 /* +++ inffixed.h */
   4865 /* inffixed.h -- table for decoding fixed codes
   4866  * Generated automatically by the maketree.c program
   4867  */
   4868 
   4869 /* WARNING: this file should *not* be used by applications. It is
   4870    part of the implementation of the compression library and is
   4871    subject to change. Applications should only use zlib.h.
   4872  */
   4873 
   4874 local uInt fixed_bl = 9;
   4875 local uInt fixed_bd = 5;
   4876 local inflate_huft fixed_tl[] = {
   4877     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4878     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
   4879     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
   4880     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
   4881     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
   4882     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
   4883     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
   4884     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
   4885     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4886     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
   4887     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
   4888     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
   4889     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
   4890     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
   4891     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
   4892     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
   4893     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4894     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
   4895     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
   4896     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
   4897     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
   4898     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
   4899     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
   4900     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
   4901     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4902     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
   4903     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
   4904     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
   4905     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
   4906     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
   4907     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
   4908     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
   4909     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4910     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
   4911     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
   4912     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
   4913     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
   4914     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
   4915     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
   4916     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
   4917     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4918     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
   4919     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
   4920     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
   4921     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
   4922     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
   4923     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
   4924     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
   4925     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4926     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
   4927     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
   4928     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
   4929     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
   4930     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
   4931     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
   4932     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
   4933     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4934     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
   4935     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
   4936     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
   4937     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
   4938     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
   4939     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
   4940     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
   4941     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4942     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
   4943     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
   4944     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
   4945     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
   4946     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
   4947     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
   4948     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
   4949     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4950     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
   4951     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
   4952     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
   4953     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
   4954     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
   4955     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
   4956     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
   4957     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4958     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
   4959     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
   4960     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
   4961     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
   4962     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
   4963     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
   4964     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
   4965     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4966     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
   4967     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
   4968     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
   4969     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
   4970     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
   4971     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
   4972     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
   4973     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4974     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
   4975     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
   4976     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
   4977     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
   4978     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
   4979     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
   4980     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
   4981     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4982     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
   4983     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
   4984     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
   4985     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
   4986     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
   4987     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
   4988     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
   4989     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4990     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
   4991     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
   4992     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
   4993     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
   4994     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
   4995     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
   4996     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
   4997     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4998     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
   4999     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
   5000     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
   5001     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
   5002     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
   5003     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
   5004     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
   5005   };
   5006 local inflate_huft fixed_td[] = {
   5007     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
   5008     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
   5009     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
   5010     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
   5011     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
   5012     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
   5013     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
   5014     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
   5015   };
   5016 /* --- inffixed.h */
   5017 
   5018 #endif
   5019 
   5020 
   5021 int inflate_trees_fixed(bl, bd, tl, td, z)
   5022 uIntf *bl;               /* literal desired/actual bit depth */
   5023 uIntf *bd;               /* distance desired/actual bit depth */
   5024 inflate_huft * FAR *tl;  /* literal/length tree result */
   5025 inflate_huft * FAR *td;  /* distance tree result */
   5026 z_streamp z;             /* for memory allocation */
   5027 {
   5028 #ifdef BUILDFIXED
   5029   /* build fixed tables if not already */
   5030   if (!fixed_built)
   5031   {
   5032     int k;              /* temporary variable */
   5033     uInt f = 0;         /* number of hufts used in fixed_mem */
   5034     uIntf *c;           /* length list for huft_build */
   5035     uIntf *v;           /* work area for huft_build */
   5036 
   5037     /* allocate memory */
   5038     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5039       return Z_MEM_ERROR;
   5040     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5041     {
   5042       ZFREE(z, c);
   5043       return Z_MEM_ERROR;
   5044     }
   5045 
   5046     /* literal table */
   5047     for (k = 0; k < 144; k++)
   5048       c[k] = 8;
   5049     for (; k < 256; k++)
   5050       c[k] = 9;
   5051     for (; k < 280; k++)
   5052       c[k] = 7;
   5053     for (; k < 288; k++)
   5054       c[k] = 8;
   5055     fixed_bl = 9;
   5056     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
   5057                fixed_mem, &f, v);
   5058 
   5059     /* distance table */
   5060     for (k = 0; k < 30; k++)
   5061       c[k] = 5;
   5062     fixed_bd = 5;
   5063     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
   5064                fixed_mem, &f, v);
   5065 
   5066     /* done */
   5067     ZFREE(z, v);
   5068     ZFREE(z, c);
   5069     fixed_built = 1;
   5070   }
   5071 #endif
   5072   *bl = fixed_bl;
   5073   *bd = fixed_bd;
   5074   *tl = fixed_tl;
   5075   *td = fixed_td;
   5076   return Z_OK;
   5077 }
   5078 /* --- inftrees.c */
   5079 
   5080 /* +++ infcodes.c */
   5081 
   5082 /* infcodes.c -- process literals and length/distance pairs
   5083  * Copyright (C) 1995-2002 Mark Adler
   5084  * For conditions of distribution and use, see copyright notice in zlib.h
   5085  */
   5086 
   5087 /* #include "zutil.h" */
   5088 /* #include "inftrees.h" */
   5089 /* #include "infblock.h" */
   5090 /* #include "infcodes.h" */
   5091 /* #include "infutil.h" */
   5092 
   5093 /* +++ inffast.h */
   5094 
   5095 /* inffast.h -- header to use inffast.c
   5096  * Copyright (C) 1995-2002 Mark Adler
   5097  * For conditions of distribution and use, see copyright notice in zlib.h
   5098  */
   5099 
   5100 /* WARNING: this file should *not* be used by applications. It is
   5101    part of the implementation of the compression library and is
   5102    subject to change. Applications should only use zlib.h.
   5103  */
   5104 
   5105 extern int inflate_fast __P((
   5106     uInt,
   5107     uInt,
   5108     inflate_huft *,
   5109     inflate_huft *,
   5110     inflate_blocks_statef *,
   5111     z_streamp ));
   5112 /* --- inffast.h */
   5113 
   5114 /* simplify the use of the inflate_huft type with some defines */
   5115 #define exop word.what.Exop
   5116 #define bits word.what.Bits
   5117 
   5118 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5119       START,    /* x: set up for LEN */
   5120       LEN,      /* i: get length/literal/eob next */
   5121       LENEXT,   /* i: getting length extra (have base) */
   5122       DIST,     /* i: get distance next */
   5123       DISTEXT,  /* i: getting distance extra */
   5124       COPY,     /* o: copying bytes in window, waiting for space */
   5125       LIT,      /* o: got literal, waiting for output space */
   5126       WASH,     /* o: got eob, possibly still output waiting */
   5127       END,      /* x: got eob and all data flushed */
   5128       BADCODE}  /* x: got error */
   5129 inflate_codes_mode;
   5130 
   5131 /* inflate codes private state */
   5132 struct inflate_codes_state {
   5133 
   5134   /* mode */
   5135   inflate_codes_mode mode;      /* current inflate_codes mode */
   5136 
   5137   /* mode dependent information */
   5138   uInt len;
   5139   union {
   5140     struct {
   5141       inflate_huft *tree;       /* pointer into tree */
   5142       uInt need;                /* bits needed */
   5143     } code;             /* if LEN or DIST, where in tree */
   5144     uInt lit;           /* if LIT, literal */
   5145     struct {
   5146       uInt get;                 /* bits to get for extra */
   5147       uInt dist;                /* distance back to copy from */
   5148     } copy;             /* if EXT or COPY, where and how much */
   5149   } sub;                /* submode */
   5150 
   5151   /* mode independent information */
   5152   Byte lbits;           /* ltree bits decoded per branch */
   5153   Byte dbits;           /* dtree bits decoder per branch */
   5154   inflate_huft *ltree;          /* literal/length/eob tree */
   5155   inflate_huft *dtree;          /* distance tree */
   5156 
   5157 };
   5158 
   5159 
   5160 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
   5161 uInt bl, bd;
   5162 inflate_huft *tl;
   5163 inflate_huft *td; /* need separate declaration for Borland C++ */
   5164 z_streamp z;
   5165 {
   5166   inflate_codes_statef *c;
   5167 
   5168   if ((c = (inflate_codes_statef *)
   5169        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
   5170   {
   5171     c->mode = START;
   5172     c->lbits = (Byte)bl;
   5173     c->dbits = (Byte)bd;
   5174     c->ltree = tl;
   5175     c->dtree = td;
   5176     Tracev((stderr, "inflate:       codes new\n"));
   5177   }
   5178   return c;
   5179 }
   5180 
   5181 
   5182 int inflate_codes(s, z, r)
   5183 inflate_blocks_statef *s;
   5184 z_streamp z;
   5185 int r;
   5186 {
   5187   uInt j;               /* temporary storage */
   5188   inflate_huft *t;      /* temporary pointer */
   5189   uInt e;               /* extra bits or operation */
   5190   uLong b;              /* bit buffer */
   5191   uInt k;               /* bits in bit buffer */
   5192   Bytef *p;             /* input data pointer */
   5193   uInt n;               /* bytes available there */
   5194   Bytef *q;             /* output window write pointer */
   5195   uInt m;               /* bytes to end of window or read pointer */
   5196   Bytef *f;             /* pointer to copy strings from */
   5197   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
   5198 
   5199   /* copy input/output information to locals (UPDATE macro restores) */
   5200   LOAD
   5201 
   5202   /* process input and output based on current state */
   5203   while (1) switch (c->mode)
   5204   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5205     case START:         /* x: set up for LEN */
   5206 #ifndef SLOW
   5207       if (m >= 258 && n >= 10)
   5208       {
   5209         UPDATE
   5210         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
   5211         LOAD
   5212         if (r != Z_OK)
   5213         {
   5214           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
   5215           break;
   5216         }
   5217       }
   5218 #endif /* !SLOW */
   5219       c->sub.code.need = c->lbits;
   5220       c->sub.code.tree = c->ltree;
   5221       c->mode = LEN;
   5222     case LEN:           /* i: get length/literal/eob next */
   5223       j = c->sub.code.need;
   5224       NEEDBITS(j)
   5225       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5226       DUMPBITS(t->bits)
   5227       e = (uInt)(t->exop);
   5228       if (e == 0)               /* literal */
   5229       {
   5230         c->sub.lit = t->base;
   5231         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5232                  "inflate:         literal '%c'\n" :
   5233                  "inflate:         literal 0x%02x\n", t->base));
   5234         c->mode = LIT;
   5235         break;
   5236       }
   5237       if (e & 16)               /* length */
   5238       {
   5239         c->sub.copy.get = e & 15;
   5240         c->len = t->base;
   5241         c->mode = LENEXT;
   5242         break;
   5243       }
   5244       if ((e & 64) == 0)        /* next table */
   5245       {
   5246         c->sub.code.need = e;
   5247         c->sub.code.tree = t + t->base;
   5248         break;
   5249       }
   5250       if (e & 32)               /* end of block */
   5251       {
   5252         Tracevv((stderr, "inflate:         end of block\n"));
   5253         c->mode = WASH;
   5254         break;
   5255       }
   5256       c->mode = BADCODE;        /* invalid code */
   5257       z->msg = (char*)"invalid literal/length code";
   5258       r = Z_DATA_ERROR;
   5259       LEAVE
   5260     case LENEXT:        /* i: getting length extra (have base) */
   5261       j = c->sub.copy.get;
   5262       NEEDBITS(j)
   5263       c->len += (uInt)b & inflate_mask[j];
   5264       DUMPBITS(j)
   5265       c->sub.code.need = c->dbits;
   5266       c->sub.code.tree = c->dtree;
   5267       Tracevv((stderr, "inflate:         length %u\n", c->len));
   5268       c->mode = DIST;
   5269     case DIST:          /* i: get distance next */
   5270       j = c->sub.code.need;
   5271       NEEDBITS(j)
   5272       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5273       DUMPBITS(t->bits)
   5274       e = (uInt)(t->exop);
   5275       if (e & 16)               /* distance */
   5276       {
   5277         c->sub.copy.get = e & 15;
   5278         c->sub.copy.dist = t->base;
   5279         c->mode = DISTEXT;
   5280         break;
   5281       }
   5282       if ((e & 64) == 0)        /* next table */
   5283       {
   5284         c->sub.code.need = e;
   5285         c->sub.code.tree = t + t->base;
   5286         break;
   5287       }
   5288       c->mode = BADCODE;        /* invalid code */
   5289       z->msg = (char*)"invalid distance code";
   5290       r = Z_DATA_ERROR;
   5291       LEAVE
   5292     case DISTEXT:       /* i: getting distance extra */
   5293       j = c->sub.copy.get;
   5294       NEEDBITS(j)
   5295       c->sub.copy.dist += (uInt)b & inflate_mask[j];
   5296       DUMPBITS(j)
   5297       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
   5298       c->mode = COPY;
   5299     case COPY:          /* o: copying bytes in window, waiting for space */
   5300       f = q - c->sub.copy.dist;
   5301       while (f < s->window)             /* modulo window size-"while" instead */
   5302         f += s->end - s->window;        /* of "if" handles invalid distances */
   5303       while (c->len)
   5304       {
   5305         NEEDOUT
   5306         OUTBYTE(*f++)
   5307         if (f == s->end)
   5308           f = s->window;
   5309         c->len--;
   5310       }
   5311       c->mode = START;
   5312       break;
   5313     case LIT:           /* o: got literal, waiting for output space */
   5314       NEEDOUT
   5315       OUTBYTE(c->sub.lit)
   5316       c->mode = START;
   5317       break;
   5318     case WASH:          /* o: got eob, possibly more output */
   5319       if (k > 7)        /* return unused byte, if any */
   5320       {
   5321         Assert(k < 16, "inflate_codes grabbed too many bytes")
   5322         k -= 8;
   5323         n++;
   5324         p--;            /* can always return one */
   5325       }
   5326       FLUSH
   5327       if (s->read != s->write)
   5328         LEAVE
   5329       c->mode = END;
   5330     case END:
   5331       r = Z_STREAM_END;
   5332       LEAVE
   5333     case BADCODE:       /* x: got error */
   5334       r = Z_DATA_ERROR;
   5335       LEAVE
   5336     default:
   5337       r = Z_STREAM_ERROR;
   5338       LEAVE
   5339   }
   5340 #ifdef NEED_DUMMY_RETURN
   5341   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
   5342 #endif
   5343 }
   5344 
   5345 
   5346 void inflate_codes_free(c, z)
   5347 inflate_codes_statef *c;
   5348 z_streamp z;
   5349 {
   5350   ZFREE(z, c);
   5351   Tracev((stderr, "inflate:       codes free\n"));
   5352 }
   5353 /* --- infcodes.c */
   5354 
   5355 /* +++ infutil.c */
   5356 
   5357 /* inflate_util.c -- data and routines common to blocks and codes
   5358  * Copyright (C) 1995-2002 Mark Adler
   5359  * For conditions of distribution and use, see copyright notice in zlib.h
   5360  */
   5361 
   5362 /* #include "zutil.h" */
   5363 /* #include "infblock.h" */
   5364 /* #include "inftrees.h" */
   5365 /* #include "infcodes.h" */
   5366 /* #include "infutil.h" */
   5367 
   5368 #ifndef NO_DUMMY_DECL
   5369 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5370 #endif
   5371 
   5372 /* And'ing with mask[n] masks the lower n bits */
   5373 uInt inflate_mask[17] = {
   5374     0x0000,
   5375     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
   5376     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
   5377 };
   5378 
   5379 
   5380 /* copy as much as possible from the sliding window to the output area */
   5381 int inflate_flush(s, z, r)
   5382 inflate_blocks_statef *s;
   5383 z_streamp z;
   5384 int r;
   5385 {
   5386   uInt n;
   5387   Bytef *p;
   5388   Bytef *q;
   5389 
   5390   /* local copies of source and destination pointers */
   5391   p = z->next_out;
   5392   q = s->read;
   5393 
   5394   /* compute number of bytes to copy as far as end of window */
   5395   n = (uInt)((q <= s->write ? s->write : s->end) - q);
   5396   if (n > z->avail_out) n = z->avail_out;
   5397   if (n && r == Z_BUF_ERROR) r = Z_OK;
   5398 
   5399   /* update counters */
   5400   z->avail_out -= n;
   5401   z->total_out += n;
   5402 
   5403   /* update check information */
   5404   if (s->checkfn != Z_NULL)
   5405     z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5406 
   5407   /* copy as far as end of window */
   5408   if (p != Z_NULL) {
   5409     zmemcpy(p, q, n);
   5410     p += n;
   5411   }
   5412   q += n;
   5413 
   5414   /* see if more to copy at beginning of window */
   5415   if (q == s->end)
   5416   {
   5417     /* wrap pointers */
   5418     q = s->window;
   5419     if (s->write == s->end)
   5420       s->write = s->window;
   5421 
   5422     /* compute bytes to copy */
   5423     n = (uInt)(s->write - q);
   5424     if (n > z->avail_out) n = z->avail_out;
   5425     if (n && r == Z_BUF_ERROR) r = Z_OK;
   5426 
   5427     /* update counters */
   5428     z->avail_out -= n;
   5429     z->total_out += n;
   5430 
   5431     /* update check information */
   5432     if (s->checkfn != Z_NULL)
   5433       z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5434 
   5435     /* copy */
   5436     if (p != NULL) {
   5437       zmemcpy(p, q, n);
   5438       p += n;
   5439     }
   5440     q += n;
   5441   }
   5442 
   5443   /* update pointers */
   5444   z->next_out = p;
   5445   s->read = q;
   5446 
   5447   /* done */
   5448   return r;
   5449 }
   5450 /* --- infutil.c */
   5451 
   5452 /* +++ inffast.c */
   5453 
   5454 /* inffast.c -- process literals and length/distance pairs fast
   5455  * Copyright (C) 1995-2002 Mark Adler
   5456  * For conditions of distribution and use, see copyright notice in zlib.h
   5457  */
   5458 
   5459 /* #include "zutil.h" */
   5460 /* #include "inftrees.h" */
   5461 /* #include "infblock.h" */
   5462 /* #include "infcodes.h" */
   5463 /* #include "infutil.h" */
   5464 /* #include "inffast.h" */
   5465 
   5466 #ifndef NO_DUMMY_DECL
   5467 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5468 #endif
   5469 
   5470 /* simplify the use of the inflate_huft type with some defines */
   5471 #define exop word.what.Exop
   5472 #define bits word.what.Bits
   5473 
   5474 /* macros for bit input with no checking and for returning unused bytes */
   5475 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   5476 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
   5477 
   5478 /* Called with number of bytes left to write in window at least 258
   5479    (the maximum string length) and number of input bytes available
   5480    at least ten.  The ten bytes are six bytes for the longest length/
   5481    distance pair plus four bytes for overloading the bit buffer. */
   5482 
   5483 int inflate_fast(bl, bd, tl, td, s, z)
   5484 uInt bl, bd;
   5485 inflate_huft *tl;
   5486 inflate_huft *td; /* need separate declaration for Borland C++ */
   5487 inflate_blocks_statef *s;
   5488 z_streamp z;
   5489 {
   5490   inflate_huft *t;      /* temporary pointer */
   5491   uInt e;               /* extra bits or operation */
   5492   uLong b;              /* bit buffer */
   5493   uInt k;               /* bits in bit buffer */
   5494   Bytef *p;             /* input data pointer */
   5495   uInt n;               /* bytes available there */
   5496   Bytef *q;             /* output window write pointer */
   5497   uInt m;               /* bytes to end of window or read pointer */
   5498   uInt ml;              /* mask for literal/length tree */
   5499   uInt md;              /* mask for distance tree */
   5500   uInt c;               /* bytes to copy */
   5501   uInt d;               /* distance back to copy from */
   5502   Bytef *r;             /* copy source pointer */
   5503 
   5504   /* load input, output, bit values */
   5505   LOAD
   5506 
   5507   /* initialize masks */
   5508   ml = inflate_mask[bl];
   5509   md = inflate_mask[bd];
   5510 
   5511   /* do until not enough input or output space for fast loop */
   5512   do {                          /* assume called with m >= 258 && n >= 10 */
   5513     /* get literal/length code */
   5514     GRABBITS(20)                /* max bits for literal/length code */
   5515     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
   5516     {
   5517       DUMPBITS(t->bits)
   5518       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5519                 "inflate:         * literal '%c'\n" :
   5520                 "inflate:         * literal 0x%02x\n", t->base));
   5521       *q++ = (Byte)t->base;
   5522       m--;
   5523       continue;
   5524     }
   5525     do {
   5526       DUMPBITS(t->bits)
   5527       if (e & 16)
   5528       {
   5529         /* get extra bits for length */
   5530         e &= 15;
   5531         c = t->base + ((uInt)b & inflate_mask[e]);
   5532         DUMPBITS(e)
   5533         Tracevv((stderr, "inflate:         * length %u\n", c));
   5534 
   5535         /* decode distance base of block to copy */
   5536         GRABBITS(15);           /* max bits for distance code */
   5537         e = (t = td + ((uInt)b & md))->exop;
   5538         do {
   5539           DUMPBITS(t->bits)
   5540           if (e & 16)
   5541           {
   5542             /* get extra bits to add to distance base */
   5543             e &= 15;
   5544             GRABBITS(e)         /* get extra bits (up to 13) */
   5545             d = t->base + ((uInt)b & inflate_mask[e]);
   5546             DUMPBITS(e)
   5547             Tracevv((stderr, "inflate:         * distance %u\n", d));
   5548 
   5549             /* do the copy */
   5550             m -= c;
   5551             r = q - d;
   5552             if (r < s->window)                  /* wrap if needed */
   5553             {
   5554               do {
   5555                 r += s->end - s->window;        /* force pointer in window */
   5556               } while (r < s->window);          /* covers invalid distances */
   5557               e = s->end - r;
   5558               if (c > e)
   5559               {
   5560                 c -= e;                         /* wrapped copy */
   5561                 do {
   5562                     *q++ = *r++;
   5563                 } while (--e);
   5564                 r = s->window;
   5565                 do {
   5566                     *q++ = *r++;
   5567                 } while (--c);
   5568               }
   5569               else                              /* normal copy */
   5570               {
   5571                 *q++ = *r++;  c--;
   5572                 *q++ = *r++;  c--;
   5573                 do {
   5574                     *q++ = *r++;
   5575                 } while (--c);
   5576               }
   5577             }
   5578             else                                /* normal copy */
   5579             {
   5580               *q++ = *r++;  c--;
   5581               *q++ = *r++;  c--;
   5582               do {
   5583                 *q++ = *r++;
   5584               } while (--c);
   5585             }
   5586             break;
   5587           }
   5588           else if ((e & 64) == 0)
   5589           {
   5590             t += t->base;
   5591             e = (t += ((uInt)b & inflate_mask[e]))->exop;
   5592           }
   5593           else
   5594           {
   5595             z->msg = (char*)"invalid distance code";
   5596             UNGRAB
   5597             UPDATE
   5598             return Z_DATA_ERROR;
   5599           }
   5600         } while (1);
   5601         break;
   5602       }
   5603       if ((e & 64) == 0)
   5604       {
   5605         t += t->base;
   5606         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
   5607         {
   5608           DUMPBITS(t->bits)
   5609           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5610                     "inflate:         * literal '%c'\n" :
   5611                     "inflate:         * literal 0x%02x\n", t->base));
   5612           *q++ = (Byte)t->base;
   5613           m--;
   5614           break;
   5615         }
   5616       }
   5617       else if (e & 32)
   5618       {
   5619         Tracevv((stderr, "inflate:         * end of block\n"));
   5620         UNGRAB
   5621         UPDATE
   5622         return Z_STREAM_END;
   5623       }
   5624       else
   5625       {
   5626         z->msg = (char*)"invalid literal/length code";
   5627         UNGRAB
   5628         UPDATE
   5629         return Z_DATA_ERROR;
   5630       }
   5631     } while (1);
   5632   } while (m >= 258 && n >= 10);
   5633 
   5634   /* not enough input or output--restore pointers and return */
   5635   UNGRAB
   5636   UPDATE
   5637   return Z_OK;
   5638 }
   5639 /* --- inffast.c */
   5640 
   5641 /* +++ zutil.c */
   5642 
   5643 /* zutil.c -- target dependent utility functions for the compression library
   5644  * Copyright (C) 1995-2002 Jean-loup Gailly.
   5645  * For conditions of distribution and use, see copyright notice in zlib.h
   5646  */
   5647 
   5648 /* @(#) Id */
   5649 
   5650 #ifdef DEBUG_ZLIB
   5651 #include <stdio.h>
   5652 #endif
   5653 
   5654 /* #include "zutil.h" */
   5655 
   5656 #ifndef NO_DUMMY_DECL
   5657 struct internal_state      {int dummy;}; /* for buggy compilers */
   5658 #endif
   5659 
   5660 #ifndef STDC
   5661 extern void exit __P((int));
   5662 #endif
   5663 
   5664 const char *z_errmsg[10] = {
   5665 "need dictionary",     /* Z_NEED_DICT       2  */
   5666 "stream end",          /* Z_STREAM_END      1  */
   5667 "",                    /* Z_OK              0  */
   5668 "file error",          /* Z_ERRNO         (-1) */
   5669 "stream error",        /* Z_STREAM_ERROR  (-2) */
   5670 "data error",          /* Z_DATA_ERROR    (-3) */
   5671 "insufficient memory", /* Z_MEM_ERROR     (-4) */
   5672 "buffer error",        /* Z_BUF_ERROR     (-5) */
   5673 "incompatible version",/* Z_VERSION_ERROR (-6) */
   5674 ""};
   5675 
   5676 
   5677 const char * ZEXPORT zlibVersion()
   5678 {
   5679     return ZLIB_VERSION;
   5680 }
   5681 
   5682 #ifdef DEBUG_ZLIB
   5683 
   5684 #  ifndef verbose
   5685 #    define verbose 0
   5686 #  endif
   5687 int z_verbose = verbose;
   5688 
   5689 void z_error (m)
   5690     char *m;
   5691 {
   5692     fprintf(stderr, "%s\n", m);
   5693     exit(1);
   5694 }
   5695 #endif
   5696 
   5697 /* exported to allow conversion of error code to string for compress() and
   5698  * uncompress()
   5699  */
   5700 const char * ZEXPORT zError(err)
   5701     int err;
   5702 {
   5703     return ERR_MSG(err);
   5704 }
   5705 
   5706 
   5707 #ifndef HAVE_MEMCPY
   5708 
   5709 void zmemcpy(dest, source, len)
   5710     Bytef* dest;
   5711     const Bytef* source;
   5712     uInt  len;
   5713 {
   5714     if (len == 0) return;
   5715     do {
   5716         *dest++ = *source++; /* ??? to be unrolled */
   5717     } while (--len != 0);
   5718 }
   5719 
   5720 int zmemcmp(s1, s2, len)
   5721     const Bytef* s1;
   5722     const Bytef* s2;
   5723     uInt  len;
   5724 {
   5725     uInt j;
   5726 
   5727     for (j = 0; j < len; j++) {
   5728         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
   5729     }
   5730     return 0;
   5731 }
   5732 
   5733 void zmemzero(dest, len)
   5734     Bytef* dest;
   5735     uInt  len;
   5736 {
   5737     if (len == 0) return;
   5738     do {
   5739         *dest++ = 0;  /* ??? to be unrolled */
   5740     } while (--len != 0);
   5741 }
   5742 #endif
   5743 
   5744 #ifdef __TURBOC__
   5745 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
   5746 /* Small and medium model in Turbo C are for now limited to near allocation
   5747  * with reduced MAX_WBITS and MAX_MEM_LEVEL
   5748  */
   5749 #  define MY_ZCALLOC
   5750 
   5751 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
   5752  * and farmalloc(64K) returns a pointer with an offset of 8, so we
   5753  * must fix the pointer. Warning: the pointer must be put back to its
   5754  * original form in order to free it, use zcfree().
   5755  */
   5756 
   5757 #define MAX_PTR 10
   5758 /* 10*64K = 640K */
   5759 
   5760 local int next_ptr = 0;
   5761 
   5762 typedef struct ptr_table_s {
   5763     voidpf org_ptr;
   5764     voidpf new_ptr;
   5765 } ptr_table;
   5766 
   5767 local ptr_table table[MAX_PTR];
   5768 /* This table is used to remember the original form of pointers
   5769  * to large buffers (64K). Such pointers are normalized with a zero offset.
   5770  * Since MSDOS is not a preemptive multitasking OS, this table is not
   5771  * protected from concurrent access. This hack doesn't work anyway on
   5772  * a protected system like OS/2. Use Microsoft C instead.
   5773  */
   5774 
   5775 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5776 {
   5777     voidpf buf = opaque; /* just to make some compilers happy */
   5778     ulg bsize = (ulg)items*size;
   5779 
   5780     /* If we allocate less than 65520 bytes, we assume that farmalloc
   5781      * will return a usable pointer which doesn't have to be normalized.
   5782      */
   5783     if (bsize < 65520L) {
   5784         buf = farmalloc(bsize);
   5785         if (*(ush*)&buf != 0) return buf;
   5786     } else {
   5787         buf = farmalloc(bsize + 16L);
   5788     }
   5789     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
   5790     table[next_ptr].org_ptr = buf;
   5791 
   5792     /* Normalize the pointer to seg:0 */
   5793     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
   5794     *(ush*)&buf = 0;
   5795     table[next_ptr++].new_ptr = buf;
   5796     return buf;
   5797 }
   5798 
   5799 void  zcfree (voidpf opaque, voidpf ptr)
   5800 {
   5801     int n;
   5802     if (*(ush*)&ptr != 0) { /* object < 64K */
   5803         farfree(ptr);
   5804         return;
   5805     }
   5806     /* Find the original pointer */
   5807     for (n = 0; n < next_ptr; n++) {
   5808         if (ptr != table[n].new_ptr) continue;
   5809 
   5810         farfree(table[n].org_ptr);
   5811         while (++n < next_ptr) {
   5812             table[n-1] = table[n];
   5813         }
   5814         next_ptr--;
   5815         return;
   5816     }
   5817     ptr = opaque; /* just to make some compilers happy */
   5818     Assert(0, "zcfree: ptr not found");
   5819 }
   5820 #endif
   5821 #endif /* __TURBOC__ */
   5822 
   5823 
   5824 #if defined(M_I86) && !defined(__32BIT__)
   5825 /* Microsoft C in 16-bit mode */
   5826 
   5827 #  define MY_ZCALLOC
   5828 
   5829 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
   5830 #  define _halloc  halloc
   5831 #  define _hfree   hfree
   5832 #endif
   5833 
   5834 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5835 {
   5836     if (opaque) opaque = 0; /* to make compiler happy */
   5837     return _halloc((long)items, size);
   5838 }
   5839 
   5840 void  zcfree (voidpf opaque, voidpf ptr)
   5841 {
   5842     if (opaque) opaque = 0; /* to make compiler happy */
   5843     _hfree(ptr);
   5844 }
   5845 
   5846 #endif /* MSC */
   5847 
   5848 
   5849 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
   5850 
   5851 #ifndef STDC
   5852 extern voidp  calloc __P((uInt items, uInt size));
   5853 extern void   free   __P((voidpf ptr));
   5854 #endif
   5855 
   5856 voidpf zcalloc (opaque, items, size)
   5857     voidpf opaque;
   5858     unsigned items;
   5859     unsigned size;
   5860 {
   5861     if (opaque) items += size - size; /* make compiler happy */
   5862     return (voidpf)calloc(items, size);
   5863 }
   5864 
   5865 void  zcfree (opaque, ptr)
   5866     voidpf opaque;
   5867     voidpf ptr;
   5868 {
   5869     free(ptr);
   5870     if (opaque) return; /* make compiler happy */
   5871 }
   5872 
   5873 #endif /* MY_ZCALLOC */
   5874 /* --- zutil.c */
   5875 
   5876 /* +++ adler32.c */
   5877 /* adler32.c -- compute the Adler-32 checksum of a data stream
   5878  * Copyright (C) 1995-2002 Mark Adler
   5879  * For conditions of distribution and use, see copyright notice in zlib.h
   5880  */
   5881 
   5882 /* @(#) $Id: zlib.c,v 1.10.4.2 2002/03/21 19:32:37 he Exp $ */
   5883 
   5884 /* #include "zlib.h" */
   5885 
   5886 #define BASE 65521L /* largest prime smaller than 65536 */
   5887 #define NMAX 5552
   5888 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
   5889 
   5890 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
   5891 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
   5892 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
   5893 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
   5894 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
   5895 
   5896 /* ========================================================================= */
   5897 uLong ZEXPORT adler32(adler, buf, len)
   5898     uLong adler;
   5899     const Bytef *buf;
   5900     uInt len;
   5901 {
   5902     unsigned long s1 = adler & 0xffff;
   5903     unsigned long s2 = (adler >> 16) & 0xffff;
   5904     int k;
   5905 
   5906     if (buf == Z_NULL) return 1L;
   5907 
   5908     while (len > 0) {
   5909         k = len < NMAX ? len : NMAX;
   5910         len -= k;
   5911         while (k >= 16) {
   5912             DO16(buf);
   5913 	    buf += 16;
   5914             k -= 16;
   5915         }
   5916         if (k != 0) do {
   5917             s1 += *buf++;
   5918 	    s2 += s1;
   5919         } while (--k);
   5920         s1 %= BASE;
   5921         s2 %= BASE;
   5922     }
   5923     return (s2 << 16) | s1;
   5924 }
   5925 /* --- adler32.c */
   5926 
   5927