zlib.c revision 1.13.2.3 1 /* $NetBSD: zlib.c,v 1.13.2.3 2002/01/08 00:33:56 nathanw Exp $ */
2 /*
3 * This file is derived from various .h and .c files from the zlib-1.0.4
4 * distribution by Jean-loup Gailly and Mark Adler, with some additions
5 * by Paul Mackerras to aid in implementing Deflate compression and
6 * decompression for PPP packets. See zlib.h for conditions of
7 * distribution and use.
8 *
9 * Changes that have been made include:
10 * - added Z_PACKET_FLUSH (see zlib.h for details)
11 * - added inflateIncomp and deflateOutputPending
12 * - allow strm->next_out to be NULL, meaning discard the output
13 *
14 * $Id: zlib.c,v 1.13.2.3 2002/01/08 00:33:56 nathanw Exp $
15 */
16
17 /*
18 * ==FILEVERSION 971210==
19 *
20 * This marker is used by the Linux installation script to determine
21 * whether an up-to-date version of this file is already installed.
22 */
23
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.13.2.3 2002/01/08 00:33:56 nathanw Exp $");
26
27 #define NO_DUMMY_DECL
28 #define NO_ZCFUNCS
29 #define MY_ZCALLOC
30
31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
33 #endif
34
35
36 /* +++ zutil.h */
37 /* zutil.h -- internal interface and configuration of the compression library
38 * Copyright (C) 1995-1996 Jean-loup Gailly.
39 * For conditions of distribution and use, see copyright notice in zlib.h
40 */
41
42 /* WARNING: this file should *not* be used by applications. It is
43 part of the implementation of the compression library and is
44 subject to change. Applications should only use zlib.h.
45 */
46
47 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
48
49 #ifndef _Z_UTIL_H
50 #define _Z_UTIL_H
51
52 #include "zlib.h"
53
54 #if defined(KERNEL) || defined(_KERNEL)
55 /* Assume this is a *BSD or SVR4 kernel */
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/systm.h>
59 # define HAVE_MEMCPY
60 #else
61 #if defined(__KERNEL__)
62 /* Assume this is a Linux kernel */
63 #include <linux/string.h>
64 #define HAVE_MEMCPY
65
66 #else /* not kernel */
67
68 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
69 # include <stddef.h>
70 # include <errno.h>
71 #else
72 extern int errno;
73 #endif
74 #ifdef STDC
75 # include <string.h>
76 # include <stdlib.h>
77 #endif
78 #endif /* __KERNEL__ */
79 #endif /* _KERNEL || KERNEL */
80
81 #ifndef local
82 # define local static
83 #endif
84 /* compile with -Dlocal if your debugger can't find static symbols */
85
86 typedef unsigned char uch;
87 typedef uch FAR uchf;
88 typedef unsigned short ush;
89 typedef ush FAR ushf;
90 typedef unsigned long ulg;
91
92 extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
93 /* (size given to avoid silly warnings with Visual C++) */
94
95 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
96
97 #define ERR_RETURN(strm,err) \
98 return (strm->msg = (char*)ERR_MSG(err), (err))
99 /* To be used only when the state is known to be valid */
100
101 /* common constants */
102
103 #ifndef DEF_WBITS
104 # define DEF_WBITS MAX_WBITS
105 #endif
106 /* default windowBits for decompression. MAX_WBITS is for compression only */
107
108 #if MAX_MEM_LEVEL >= 8
109 # define DEF_MEM_LEVEL 8
110 #else
111 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
112 #endif
113 /* default memLevel */
114
115 #define STORED_BLOCK 0
116 #define STATIC_TREES 1
117 #define DYN_TREES 2
118 /* The three kinds of block type */
119
120 #define MIN_MATCH 3
121 #define MAX_MATCH 258
122 /* The minimum and maximum match lengths */
123
124 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
125
126 /* target dependencies */
127
128 #ifdef MSDOS
129 # define OS_CODE 0x00
130 # ifdef __TURBOC__
131 # include <alloc.h>
132 # else /* MSC or DJGPP */
133 # include <malloc.h>
134 # endif
135 #endif
136
137 #ifdef OS2
138 # define OS_CODE 0x06
139 #endif
140
141 #ifdef WIN32 /* Window 95 & Windows NT */
142 # define OS_CODE 0x0b
143 #endif
144
145 #if defined(VAXC) || defined(VMS)
146 # define OS_CODE 0x02
147 # define FOPEN(name, mode) \
148 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
149 #endif
150
151 #ifdef AMIGA
152 # define OS_CODE 0x01
153 #endif
154
155 #if defined(ATARI) || defined(atarist)
156 # define OS_CODE 0x05
157 #endif
158
159 #ifdef MACOS
160 # define OS_CODE 0x07
161 #endif
162
163 #ifdef __50SERIES /* Prime/PRIMOS */
164 # define OS_CODE 0x0F
165 #endif
166
167 #ifdef TOPS20
168 # define OS_CODE 0x0a
169 #endif
170
171 #if defined(_BEOS_) || defined(RISCOS)
172 # define fdopen(fd,mode) NULL /* No fdopen() */
173 #endif
174
175 /* Common defaults */
176
177 #ifndef OS_CODE
178 # define OS_CODE 0x03 /* assume Unix */
179 #endif
180
181 #ifndef FOPEN
182 # define FOPEN(name, mode) fopen((name), (mode))
183 #endif
184
185 /* functions */
186
187 #ifdef HAVE_STRERROR
188 extern char *strerror OF((int));
189 # define zstrerror(errnum) strerror(errnum)
190 #else
191 # define zstrerror(errnum) ""
192 #endif
193
194 #if defined(pyr)
195 # define NO_MEMCPY
196 #endif
197 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
198 /* Use our own functions for small and medium model with MSC <= 5.0.
199 * You may have to use the same strategy for Borland C (untested).
200 */
201 # define NO_MEMCPY
202 #endif
203 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
204 # define HAVE_MEMCPY
205 #endif
206 #ifdef HAVE_MEMCPY
207 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
208 # define zmemcpy _fmemcpy
209 # define zmemcmp _fmemcmp
210 # define zmemzero(dest, len) _fmemset(dest, 0, len)
211 # else
212 # define zmemcpy memcpy
213 # define zmemcmp memcmp
214 # define zmemzero(dest, len) memset(dest, 0, len)
215 # endif
216 #else
217 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
218 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
219 extern void zmemzero OF((Bytef* dest, uInt len));
220 #endif
221
222 /* Diagnostic functions */
223 #ifdef DEBUG_ZLIB
224 # include <stdio.h>
225 # ifndef verbose
226 # define verbose 0
227 # endif
228 extern void z_error OF((char *m));
229 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
230 # define Trace(x) fprintf x
231 # define Tracev(x) {if (verbose) fprintf x ;}
232 # define Tracevv(x) {if (verbose>1) fprintf x ;}
233 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
234 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
235 #else
236 # define Assert(cond,msg)
237 # define Trace(x)
238 # define Tracev(x)
239 # define Tracevv(x)
240 # define Tracec(c,x)
241 # define Tracecv(c,x)
242 #endif
243
244
245 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
246
247 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
248 void zcfree OF((voidpf opaque, voidpf ptr));
249
250 #define ZALLOC(strm, items, size) \
251 (*((strm)->zalloc))((strm)->opaque, (items), (size))
252 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
253 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
254
255 #endif /* _Z_UTIL_H */
256 /* --- zutil.h */
257
258 /* +++ deflate.h */
259 /* deflate.h -- internal compression state
260 * Copyright (C) 1995-1996 Jean-loup Gailly
261 * For conditions of distribution and use, see copyright notice in zlib.h
262 */
263
264 /* WARNING: this file should *not* be used by applications. It is
265 part of the implementation of the compression library and is
266 subject to change. Applications should only use zlib.h.
267 */
268
269 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
270
271 #ifndef _DEFLATE_H
272 #define _DEFLATE_H
273
274 /* #include "zutil.h" */
275
276 /* ===========================================================================
277 * Internal compression state.
278 */
279
280 #define LENGTH_CODES 29
281 /* number of length codes, not counting the special END_BLOCK code */
282
283 #define LITERALS 256
284 /* number of literal bytes 0..255 */
285
286 #define L_CODES (LITERALS+1+LENGTH_CODES)
287 /* number of Literal or Length codes, including the END_BLOCK code */
288
289 #define D_CODES 30
290 /* number of distance codes */
291
292 #define BL_CODES 19
293 /* number of codes used to transfer the bit lengths */
294
295 #define HEAP_SIZE (2*L_CODES+1)
296 /* maximum heap size */
297
298 #define MAX_BITS 15
299 /* All codes must not exceed MAX_BITS bits */
300
301 #define INIT_STATE 42
302 #define BUSY_STATE 113
303 #define FINISH_STATE 666
304 /* Stream status */
305
306
307 /* Data structure describing a single value and its code string. */
308 typedef struct ct_data_s {
309 union {
310 ush freq; /* frequency count */
311 ush code; /* bit string */
312 } fc;
313 union {
314 ush dad; /* father node in Huffman tree */
315 ush len; /* length of bit string */
316 } dl;
317 } FAR ct_data;
318
319 #define Freq fc.freq
320 #define Code fc.code
321 #define Dad dl.dad
322 #define Len dl.len
323
324 typedef struct static_tree_desc_s static_tree_desc;
325
326 typedef struct tree_desc_s {
327 ct_data *dyn_tree; /* the dynamic tree */
328 int max_code; /* largest code with non zero frequency */
329 static_tree_desc *stat_desc; /* the corresponding static tree */
330 } FAR tree_desc;
331
332 typedef ush Pos;
333 typedef Pos FAR Posf;
334 typedef unsigned IPos;
335
336 /* A Pos is an index in the character window. We use short instead of int to
337 * save space in the various tables. IPos is used only for parameter passing.
338 */
339
340 typedef struct deflate_state {
341 z_streamp strm; /* pointer back to this zlib stream */
342 int status; /* as the name implies */
343 Bytef *pending_buf; /* output still pending */
344 ulg pending_buf_size; /* size of pending_buf */
345 Bytef *pending_out; /* next pending byte to output to the stream */
346 int pending; /* nb of bytes in the pending buffer */
347 int noheader; /* suppress zlib header and adler32 */
348 Byte data_type; /* UNKNOWN, BINARY or ASCII */
349 Byte method; /* STORED (for zip only) or DEFLATED */
350 int last_flush; /* value of flush param for previous deflate call */
351
352 /* used by deflate.c: */
353
354 uInt w_size; /* LZ77 window size (32K by default) */
355 uInt w_bits; /* log2(w_size) (8..16) */
356 uInt w_mask; /* w_size - 1 */
357
358 Bytef *window;
359 /* Sliding window. Input bytes are read into the second half of the window,
360 * and move to the first half later to keep a dictionary of at least wSize
361 * bytes. With this organization, matches are limited to a distance of
362 * wSize-MAX_MATCH bytes, but this ensures that IO is always
363 * performed with a length multiple of the block size. Also, it limits
364 * the window size to 64K, which is quite useful on MSDOS.
365 * To do: use the user input buffer as sliding window.
366 */
367
368 ulg window_size;
369 /* Actual size of window: 2*wSize, except when the user input buffer
370 * is directly used as sliding window.
371 */
372
373 Posf *prev;
374 /* Link to older string with same hash index. To limit the size of this
375 * array to 64K, this link is maintained only for the last 32K strings.
376 * An index in this array is thus a window index modulo 32K.
377 */
378
379 Posf *head; /* Heads of the hash chains or NIL. */
380
381 uInt ins_h; /* hash index of string to be inserted */
382 uInt hash_size; /* number of elements in hash table */
383 uInt hash_bits; /* log2(hash_size) */
384 uInt hash_mask; /* hash_size-1 */
385
386 uInt hash_shift;
387 /* Number of bits by which ins_h must be shifted at each input
388 * step. It must be such that after MIN_MATCH steps, the oldest
389 * byte no longer takes part in the hash key, that is:
390 * hash_shift * MIN_MATCH >= hash_bits
391 */
392
393 long block_start;
394 /* Window position at the beginning of the current output block. Gets
395 * negative when the window is moved backwards.
396 */
397
398 uInt match_length; /* length of best match */
399 IPos prev_match; /* previous match */
400 int match_available; /* set if previous match exists */
401 uInt strstart; /* start of string to insert */
402 uInt match_start; /* start of matching string */
403 uInt lookahead; /* number of valid bytes ahead in window */
404
405 uInt prev_length;
406 /* Length of the best match at previous step. Matches not greater than this
407 * are discarded. This is used in the lazy match evaluation.
408 */
409
410 uInt max_chain_length;
411 /* To speed up deflation, hash chains are never searched beyond this
412 * length. A higher limit improves compression ratio but degrades the
413 * speed.
414 */
415
416 uInt max_lazy_match;
417 /* Attempt to find a better match only when the current match is strictly
418 * smaller than this value. This mechanism is used only for compression
419 * levels >= 4.
420 */
421 # define max_insert_length max_lazy_match
422 /* Insert new strings in the hash table only if the match length is not
423 * greater than this length. This saves time but degrades compression.
424 * max_insert_length is used only for compression levels <= 3.
425 */
426
427 int level; /* compression level (1..9) */
428 int strategy; /* favor or force Huffman coding*/
429
430 uInt good_match;
431 /* Use a faster search when the previous match is longer than this */
432
433 int nice_match; /* Stop searching when current match exceeds this */
434
435 /* used by trees.c: */
436 /* Didn't use ct_data typedef below to supress compiler warning */
437 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
438 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
439 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
440
441 struct tree_desc_s l_desc; /* desc. for literal tree */
442 struct tree_desc_s d_desc; /* desc. for distance tree */
443 struct tree_desc_s bl_desc; /* desc. for bit length tree */
444
445 ush bl_count[MAX_BITS+1];
446 /* number of codes at each bit length for an optimal tree */
447
448 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
449 int heap_len; /* number of elements in the heap */
450 int heap_max; /* element of largest frequency */
451 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
452 * The same heap array is used to build all trees.
453 */
454
455 uch depth[2*L_CODES+1];
456 /* Depth of each subtree used as tie breaker for trees of equal frequency
457 */
458
459 uchf *l_buf; /* buffer for literals or lengths */
460
461 uInt lit_bufsize;
462 /* Size of match buffer for literals/lengths. There are 4 reasons for
463 * limiting lit_bufsize to 64K:
464 * - frequencies can be kept in 16 bit counters
465 * - if compression is not successful for the first block, all input
466 * data is still in the window so we can still emit a stored block even
467 * when input comes from standard input. (This can also be done for
468 * all blocks if lit_bufsize is not greater than 32K.)
469 * - if compression is not successful for a file smaller than 64K, we can
470 * even emit a stored file instead of a stored block (saving 5 bytes).
471 * This is applicable only for zip (not gzip or zlib).
472 * - creating new Huffman trees less frequently may not provide fast
473 * adaptation to changes in the input data statistics. (Take for
474 * example a binary file with poorly compressible code followed by
475 * a highly compressible string table.) Smaller buffer sizes give
476 * fast adaptation but have of course the overhead of transmitting
477 * trees more frequently.
478 * - I can't count above 4
479 */
480
481 uInt last_lit; /* running index in l_buf */
482
483 ushf *d_buf;
484 /* Buffer for distances. To simplify the code, d_buf and l_buf have
485 * the same number of elements. To use different lengths, an extra flag
486 * array would be necessary.
487 */
488
489 ulg opt_len; /* bit length of current block with optimal trees */
490 ulg static_len; /* bit length of current block with static trees */
491 ulg compressed_len; /* total bit length of compressed file */
492 uInt matches; /* number of string matches in current block */
493 int last_eob_len; /* bit length of EOB code for last block */
494
495 #ifdef DEBUG_ZLIB
496 ulg bits_sent; /* bit length of the compressed data */
497 #endif
498
499 ush bi_buf;
500 /* Output buffer. bits are inserted starting at the bottom (least
501 * significant bits).
502 */
503 int bi_valid;
504 /* Number of valid bits in bi_buf. All bits above the last valid bit
505 * are always zero.
506 */
507
508 } FAR deflate_state;
509
510 /* Output a byte on the stream.
511 * IN assertion: there is enough room in pending_buf.
512 */
513 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
514
515
516 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
517 /* Minimum amount of lookahead, except at the end of the input file.
518 * See deflate.c for comments about the MIN_MATCH+1.
519 */
520
521 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
522 /* In order to simplify the code, particularly on 16 bit machines, match
523 * distances are limited to MAX_DIST instead of WSIZE.
524 */
525
526 /* in trees.c */
527 void _tr_init OF((deflate_state *s));
528 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
529 ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
530 int eof));
531 void _tr_align OF((deflate_state *s));
532 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
533 int eof));
534 void _tr_stored_type_only OF((deflate_state *));
535
536 #endif
537 /* --- deflate.h */
538
539 /* +++ deflate.c */
540 /* deflate.c -- compress data using the deflation algorithm
541 * Copyright (C) 1995-1996 Jean-loup Gailly.
542 * For conditions of distribution and use, see copyright notice in zlib.h
543 */
544
545 /*
546 * ALGORITHM
547 *
548 * The "deflation" process depends on being able to identify portions
549 * of the input text which are identical to earlier input (within a
550 * sliding window trailing behind the input currently being processed).
551 *
552 * The most straightforward technique turns out to be the fastest for
553 * most input files: try all possible matches and select the longest.
554 * The key feature of this algorithm is that insertions into the string
555 * dictionary are very simple and thus fast, and deletions are avoided
556 * completely. Insertions are performed at each input character, whereas
557 * string matches are performed only when the previous match ends. So it
558 * is preferable to spend more time in matches to allow very fast string
559 * insertions and avoid deletions. The matching algorithm for small
560 * strings is inspired from that of Rabin & Karp. A brute force approach
561 * is used to find longer strings when a small match has been found.
562 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
563 * (by Leonid Broukhis).
564 * A previous version of this file used a more sophisticated algorithm
565 * (by Fiala and Greene) which is guaranteed to run in linear amortized
566 * time, but has a larger average cost, uses more memory and is patented.
567 * However the F&G algorithm may be faster for some highly redundant
568 * files if the parameter max_chain_length (described below) is too large.
569 *
570 * ACKNOWLEDGEMENTS
571 *
572 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
573 * I found it in 'freeze' written by Leonid Broukhis.
574 * Thanks to many people for bug reports and testing.
575 *
576 * REFERENCES
577 *
578 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
579 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
580 *
581 * A description of the Rabin and Karp algorithm is given in the book
582 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
583 *
584 * Fiala,E.R., and Greene,D.H.
585 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
586 *
587 */
588
589 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
590
591 /* #include "deflate.h" */
592
593 const char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
594 /*
595 If you use the zlib library in a product, an acknowledgment is welcome
596 in the documentation of your product. If for some reason you cannot
597 include such an acknowledgment, I would appreciate that you keep this
598 copyright string in the executable of your product.
599 */
600
601 /* ===========================================================================
602 * Function prototypes.
603 */
604 typedef enum {
605 need_more, /* block not completed, need more input or more output */
606 block_done, /* block flush performed */
607 finish_started, /* finish started, need only more output at next deflate */
608 finish_done /* finish done, accept no more input or output */
609 } block_state;
610
611 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
612 /* Compression function. Returns the block state after the call. */
613
614 local void fill_window OF((deflate_state *s));
615 local block_state deflate_stored OF((deflate_state *s, int flush));
616 local block_state deflate_fast OF((deflate_state *s, int flush));
617 local block_state deflate_slow OF((deflate_state *s, int flush));
618 local void lm_init OF((deflate_state *s));
619 local void putShortMSB OF((deflate_state *s, uInt b));
620 local void flush_pending OF((z_streamp strm));
621 local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
622 #ifdef ASMV
623 void match_init OF((void)); /* asm code initialization */
624 uInt longest_match OF((deflate_state *s, IPos cur_match));
625 #else
626 local uInt longest_match OF((deflate_state *s, IPos cur_match));
627 #endif
628
629 #ifdef DEBUG_ZLIB
630 local void check_match OF((deflate_state *s, IPos start, IPos match,
631 int length));
632 #endif
633
634 /* ===========================================================================
635 * Local data
636 */
637
638 #define NIL 0
639 /* Tail of hash chains */
640
641 #ifndef TOO_FAR
642 # define TOO_FAR 4096
643 #endif
644 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
645
646 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
647 /* Minimum amount of lookahead, except at the end of the input file.
648 * See deflate.c for comments about the MIN_MATCH+1.
649 */
650
651 /* Values for max_lazy_match, good_match and max_chain_length, depending on
652 * the desired pack level (0..9). The values given below have been tuned to
653 * exclude worst case performance for pathological files. Better values may be
654 * found for specific files.
655 */
656 typedef struct config_s {
657 ush good_length; /* reduce lazy search above this match length */
658 ush max_lazy; /* do not perform lazy search above this match length */
659 ush nice_length; /* quit search above this match length */
660 ush max_chain;
661 compress_func func;
662 } config;
663
664 local const config configuration_table[10] = {
665 /* good lazy nice chain */
666 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
667 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
668 /* 2 */ {4, 5, 16, 8, deflate_fast},
669 /* 3 */ {4, 6, 32, 32, deflate_fast},
670
671 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
672 /* 5 */ {8, 16, 32, 32, deflate_slow},
673 /* 6 */ {8, 16, 128, 128, deflate_slow},
674 /* 7 */ {8, 32, 128, 256, deflate_slow},
675 /* 8 */ {32, 128, 258, 1024, deflate_slow},
676 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
677
678 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
679 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
680 * meaning.
681 */
682
683 #define EQUAL 0
684 /* result of memcmp for equal strings */
685
686 #ifndef NO_DUMMY_DECL
687 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
688 #endif
689
690 /* ===========================================================================
691 * Update a hash value with the given input byte
692 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
693 * input characters, so that a running hash key can be computed from the
694 * previous key instead of complete recalculation each time.
695 */
696 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
697
698
699 /* ===========================================================================
700 * Insert string str in the dictionary and set match_head to the previous head
701 * of the hash chain (the most recent string with same hash key). Return
702 * the previous length of the hash chain.
703 * IN assertion: all calls to to INSERT_STRING are made with consecutive
704 * input characters and the first MIN_MATCH bytes of str are valid
705 * (except for the last MIN_MATCH-1 bytes of the input file).
706 */
707 #define INSERT_STRING(s, str, match_head) \
708 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
709 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
710 s->head[s->ins_h] = (Pos)(str))
711
712 /* ===========================================================================
713 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
714 * prev[] will be initialized on the fly.
715 */
716 #define CLEAR_HASH(s) \
717 s->head[s->hash_size-1] = NIL; \
718 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
719
720 /* ========================================================================= */
721 int deflateInit_(strm, level, version, stream_size)
722 z_streamp strm;
723 int level;
724 const char *version;
725 int stream_size;
726 {
727 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
728 Z_DEFAULT_STRATEGY, version, stream_size);
729 /* To do: ignore strm->next_in if we use it as window */
730 }
731
732 /* ========================================================================= */
733 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
734 version, stream_size)
735 z_streamp strm;
736 int level;
737 int method;
738 int windowBits;
739 int memLevel;
740 int strategy;
741 const char *version;
742 int stream_size;
743 {
744 deflate_state *s;
745 int noheader = 0;
746 static char* my_version = ZLIB_VERSION;
747
748 ushf *overlay;
749 /* We overlay pending_buf and d_buf+l_buf. This works since the average
750 * output size for (length,distance) codes is <= 24 bits.
751 */
752
753 if (version == Z_NULL || version[0] != my_version[0] ||
754 stream_size != sizeof(z_stream)) {
755 return Z_VERSION_ERROR;
756 }
757 if (strm == Z_NULL) return Z_STREAM_ERROR;
758
759 strm->msg = Z_NULL;
760 #ifndef NO_ZCFUNCS
761 if (strm->zalloc == Z_NULL) {
762 strm->zalloc = zcalloc;
763 strm->opaque = (voidpf)0;
764 }
765 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
766 #endif
767
768 if (level == Z_DEFAULT_COMPRESSION) level = 6;
769
770 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
771 noheader = 1;
772 windowBits = -windowBits;
773 }
774 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
775 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
776 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
777 return Z_STREAM_ERROR;
778 }
779 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
780 if (s == Z_NULL) return Z_MEM_ERROR;
781 strm->state = (struct internal_state FAR *)s;
782 s->strm = strm;
783
784 s->noheader = noheader;
785 s->w_bits = windowBits;
786 s->w_size = 1 << s->w_bits;
787 s->w_mask = s->w_size - 1;
788
789 s->hash_bits = memLevel + 7;
790 s->hash_size = 1 << s->hash_bits;
791 s->hash_mask = s->hash_size - 1;
792 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
793
794 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
795 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
796 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
797
798 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
799
800 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
801 s->pending_buf = (uchf *) overlay;
802 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
803
804 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
805 s->pending_buf == Z_NULL) {
806 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
807 deflateEnd (strm);
808 return Z_MEM_ERROR;
809 }
810 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
811 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
812
813 s->level = level;
814 s->strategy = strategy;
815 s->method = (Byte)method;
816
817 return deflateReset(strm);
818 }
819
820 /* ========================================================================= */
821 int deflateSetDictionary (strm, dictionary, dictLength)
822 z_streamp strm;
823 const Bytef *dictionary;
824 uInt dictLength;
825 {
826 deflate_state *s;
827 uInt length = dictLength;
828 uInt n;
829 IPos hash_head = 0;
830
831 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
832 return Z_STREAM_ERROR;
833
834 s = (deflate_state *) strm->state;
835 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
836
837 strm->adler = adler32(strm->adler, dictionary, dictLength);
838
839 if (length < MIN_MATCH) return Z_OK;
840 if (length > MAX_DIST(s)) {
841 length = MAX_DIST(s);
842 #ifndef USE_DICT_HEAD
843 dictionary += dictLength - length; /* use the tail of the dictionary */
844 #endif
845 }
846 zmemcpy((charf *)s->window, dictionary, length);
847 s->strstart = length;
848 s->block_start = (long)length;
849
850 /* Insert all strings in the hash table (except for the last two bytes).
851 * s->lookahead stays null, so s->ins_h will be recomputed at the next
852 * call of fill_window.
853 */
854 s->ins_h = s->window[0];
855 UPDATE_HASH(s, s->ins_h, s->window[1]);
856 for (n = 0; n <= length - MIN_MATCH; n++) {
857 INSERT_STRING(s, n, hash_head);
858 }
859 if (hash_head) hash_head = 0; /* to make compiler happy */
860 return Z_OK;
861 }
862
863 /* ========================================================================= */
864 int deflateReset (strm)
865 z_streamp strm;
866 {
867 deflate_state *s;
868
869 if (strm == Z_NULL || strm->state == Z_NULL ||
870 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
871
872 strm->total_in = strm->total_out = 0;
873 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
874 strm->data_type = Z_UNKNOWN;
875
876 s = (deflate_state *)strm->state;
877 s->pending = 0;
878 s->pending_out = s->pending_buf;
879
880 if (s->noheader < 0) {
881 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
882 }
883 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
884 strm->adler = 1;
885 s->last_flush = Z_NO_FLUSH;
886
887 _tr_init(s);
888 lm_init(s);
889
890 return Z_OK;
891 }
892
893 /* ========================================================================= */
894 int deflateParams(strm, level, strategy)
895 z_streamp strm;
896 int level;
897 int strategy;
898 {
899 deflate_state *s;
900 compress_func func;
901 int err = Z_OK;
902
903 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
904 s = (deflate_state *) strm->state;
905
906 if (level == Z_DEFAULT_COMPRESSION) {
907 level = 6;
908 }
909 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
910 return Z_STREAM_ERROR;
911 }
912 func = configuration_table[s->level].func;
913
914 if (func != configuration_table[level].func && strm->total_in != 0) {
915 /* Flush the last buffer: */
916 err = deflate(strm, Z_PARTIAL_FLUSH);
917 }
918 if (s->level != level) {
919 s->level = level;
920 s->max_lazy_match = configuration_table[level].max_lazy;
921 s->good_match = configuration_table[level].good_length;
922 s->nice_match = configuration_table[level].nice_length;
923 s->max_chain_length = configuration_table[level].max_chain;
924 }
925 s->strategy = strategy;
926 return err;
927 }
928
929 /* =========================================================================
930 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
931 * IN assertion: the stream state is correct and there is enough room in
932 * pending_buf.
933 */
934 local void putShortMSB (s, b)
935 deflate_state *s;
936 uInt b;
937 {
938 put_byte(s, (Byte)(b >> 8));
939 put_byte(s, (Byte)(b & 0xff));
940 }
941
942 /* =========================================================================
943 * Flush as much pending output as possible. All deflate() output goes
944 * through this function so some applications may wish to modify it
945 * to avoid allocating a large strm->next_out buffer and copying into it.
946 * (See also read_buf()).
947 */
948 local void flush_pending(strm)
949 z_streamp strm;
950 {
951 deflate_state *s = (deflate_state *) strm->state;
952 unsigned len = s->pending;
953
954 if (len > strm->avail_out) len = strm->avail_out;
955 if (len == 0) return;
956
957 if (strm->next_out != Z_NULL) {
958 zmemcpy(strm->next_out, s->pending_out, len);
959 strm->next_out += len;
960 }
961 s->pending_out += len;
962 strm->total_out += len;
963 strm->avail_out -= len;
964 s->pending -= len;
965 if (s->pending == 0) {
966 s->pending_out = s->pending_buf;
967 }
968 }
969
970 /* ========================================================================= */
971 int deflate (strm, flush)
972 z_streamp strm;
973 int flush;
974 {
975 int old_flush; /* value of flush param for previous deflate call */
976 deflate_state *s;
977
978 if (strm == Z_NULL || strm->state == Z_NULL ||
979 flush > Z_FINISH || flush < 0) {
980 return Z_STREAM_ERROR;
981 }
982 s = (deflate_state *) strm->state;
983
984 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
985 (s->status == FINISH_STATE && flush != Z_FINISH)) {
986 ERR_RETURN(strm, Z_STREAM_ERROR);
987 }
988 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
989
990 s->strm = strm; /* just in case */
991 old_flush = s->last_flush;
992 s->last_flush = flush;
993
994 /* Write the zlib header */
995 if (s->status == INIT_STATE) {
996
997 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
998 uInt level_flags = (s->level-1) >> 1;
999
1000 if (level_flags > 3) level_flags = 3;
1001 header |= (level_flags << 6);
1002 if (s->strstart != 0) header |= PRESET_DICT;
1003 header += 31 - (header % 31);
1004
1005 s->status = BUSY_STATE;
1006 putShortMSB(s, header);
1007
1008 /* Save the adler32 of the preset dictionary: */
1009 if (s->strstart != 0) {
1010 putShortMSB(s, (uInt)(strm->adler >> 16));
1011 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1012 }
1013 strm->adler = 1L;
1014 }
1015
1016 /* Flush as much pending output as possible */
1017 if (s->pending != 0) {
1018 flush_pending(strm);
1019 if (strm->avail_out == 0) {
1020 /* Since avail_out is 0, deflate will be called again with
1021 * more output space, but possibly with both pending and
1022 * avail_in equal to zero. There won't be anything to do,
1023 * but this is not an error situation so make sure we
1024 * return OK instead of BUF_ERROR at next call of deflate:
1025 */
1026 s->last_flush = -1;
1027 return Z_OK;
1028 }
1029
1030 /* Make sure there is something to do and avoid duplicate consecutive
1031 * flushes. For repeated and useless calls with Z_FINISH, we keep
1032 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1033 */
1034 } else if (strm->avail_in == 0 && flush <= old_flush &&
1035 flush != Z_FINISH) {
1036 ERR_RETURN(strm, Z_BUF_ERROR);
1037 }
1038
1039 /* User must not provide more input after the first FINISH: */
1040 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1041 ERR_RETURN(strm, Z_BUF_ERROR);
1042 }
1043
1044 /* Start a new block or continue the current one.
1045 */
1046 if (strm->avail_in != 0 || s->lookahead != 0 ||
1047 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1048 block_state bstate;
1049
1050 bstate = (*(configuration_table[s->level].func))(s, flush);
1051
1052 if (bstate == finish_started || bstate == finish_done) {
1053 s->status = FINISH_STATE;
1054 }
1055 if (bstate == need_more || bstate == finish_started) {
1056 if (strm->avail_out == 0) {
1057 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1058 }
1059 return Z_OK;
1060 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1061 * of deflate should use the same flush parameter to make sure
1062 * that the flush is complete. So we don't have to output an
1063 * empty block here, this will be done at next call. This also
1064 * ensures that for a very small output buffer, we emit at most
1065 * one empty block.
1066 */
1067 }
1068 if (bstate == block_done) {
1069 if (flush == Z_PARTIAL_FLUSH) {
1070 _tr_align(s);
1071 } else if (flush == Z_PACKET_FLUSH) {
1072 /* Output just the 3-bit `stored' block type value,
1073 but not a zero length. */
1074 _tr_stored_type_only(s);
1075 } else { /* FULL_FLUSH or SYNC_FLUSH */
1076 _tr_stored_block(s, (char*)0, 0L, 0);
1077 /* For a full flush, this empty block will be recognized
1078 * as a special marker by inflate_sync().
1079 */
1080 if (flush == Z_FULL_FLUSH) {
1081 CLEAR_HASH(s); /* forget history */
1082 }
1083 }
1084 flush_pending(strm);
1085 if (strm->avail_out == 0) {
1086 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1087 return Z_OK;
1088 }
1089 }
1090 }
1091 Assert(strm->avail_out > 0, "bug2");
1092
1093 if (flush != Z_FINISH) return Z_OK;
1094 if (s->noheader) return Z_STREAM_END;
1095
1096 /* Write the zlib trailer (adler32) */
1097 putShortMSB(s, (uInt)(strm->adler >> 16));
1098 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1099 flush_pending(strm);
1100 /* If avail_out is zero, the application will call deflate again
1101 * to flush the rest.
1102 */
1103 s->noheader = -1; /* write the trailer only once! */
1104 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1105 }
1106
1107 /* ========================================================================= */
1108 int deflateEnd (strm)
1109 z_streamp strm;
1110 {
1111 int status;
1112 deflate_state *s;
1113
1114 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1115 s = (deflate_state *) strm->state;
1116
1117 status = s->status;
1118 if (status != INIT_STATE && status != BUSY_STATE &&
1119 status != FINISH_STATE) {
1120 return Z_STREAM_ERROR;
1121 }
1122
1123 /* Deallocate in reverse order of allocations: */
1124 TRY_FREE(strm, s->pending_buf);
1125 TRY_FREE(strm, s->head);
1126 TRY_FREE(strm, s->prev);
1127 TRY_FREE(strm, s->window);
1128
1129 ZFREE(strm, s);
1130 strm->state = Z_NULL;
1131
1132 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1133 }
1134
1135 /* =========================================================================
1136 * Copy the source state to the destination state.
1137 */
1138 int deflateCopy (dest, source)
1139 z_streamp dest;
1140 z_streamp source;
1141 {
1142 deflate_state *ds;
1143 deflate_state *ss;
1144 ushf *overlay;
1145
1146 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1147 return Z_STREAM_ERROR;
1148 ss = (deflate_state *) source->state;
1149
1150 zmemcpy(dest, source, sizeof(*dest));
1151
1152 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1153 if (ds == Z_NULL) return Z_MEM_ERROR;
1154 dest->state = (struct internal_state FAR *) ds;
1155 zmemcpy(ds, ss, sizeof(*ds));
1156 ds->strm = dest;
1157
1158 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1159 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1160 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1161 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1162 ds->pending_buf = (uchf *) overlay;
1163
1164 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1165 ds->pending_buf == Z_NULL) {
1166 deflateEnd (dest);
1167 return Z_MEM_ERROR;
1168 }
1169 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1170 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1171 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1172 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1173 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1174
1175 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1176 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1177 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1178
1179 ds->l_desc.dyn_tree = ds->dyn_ltree;
1180 ds->d_desc.dyn_tree = ds->dyn_dtree;
1181 ds->bl_desc.dyn_tree = ds->bl_tree;
1182
1183 return Z_OK;
1184 }
1185
1186 /* ===========================================================================
1187 * Return the number of bytes of output which are immediately available
1188 * for output from the decompressor.
1189 */
1190 int deflateOutputPending (strm)
1191 z_streamp strm;
1192 {
1193 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1194
1195 return ((deflate_state *)(strm->state))->pending;
1196 }
1197
1198 /* ===========================================================================
1199 * Read a new buffer from the current input stream, update the adler32
1200 * and total number of bytes read. All deflate() input goes through
1201 * this function so some applications may wish to modify it to avoid
1202 * allocating a large strm->next_in buffer and copying from it.
1203 * (See also flush_pending()).
1204 */
1205 local int read_buf(strm, buf, size)
1206 z_streamp strm;
1207 charf *buf;
1208 unsigned size;
1209 {
1210 unsigned len = strm->avail_in;
1211
1212 if (len > size) len = size;
1213 if (len == 0) return 0;
1214
1215 strm->avail_in -= len;
1216
1217 if (!((deflate_state *)(strm->state))->noheader) {
1218 strm->adler = adler32(strm->adler, strm->next_in, len);
1219 }
1220 zmemcpy(buf, strm->next_in, len);
1221 strm->next_in += len;
1222 strm->total_in += len;
1223
1224 return (int)len;
1225 }
1226
1227 /* ===========================================================================
1228 * Initialize the "longest match" routines for a new zlib stream
1229 */
1230 local void lm_init (s)
1231 deflate_state *s;
1232 {
1233 s->window_size = (ulg)2L*s->w_size;
1234
1235 CLEAR_HASH(s);
1236
1237 /* Set the default configuration parameters:
1238 */
1239 s->max_lazy_match = configuration_table[s->level].max_lazy;
1240 s->good_match = configuration_table[s->level].good_length;
1241 s->nice_match = configuration_table[s->level].nice_length;
1242 s->max_chain_length = configuration_table[s->level].max_chain;
1243
1244 s->strstart = 0;
1245 s->block_start = 0L;
1246 s->lookahead = 0;
1247 s->match_length = s->prev_length = MIN_MATCH-1;
1248 s->match_available = 0;
1249 s->ins_h = 0;
1250 #ifdef ASMV
1251 match_init(); /* initialize the asm code */
1252 #endif
1253 }
1254
1255 /* ===========================================================================
1256 * Set match_start to the longest match starting at the given string and
1257 * return its length. Matches shorter or equal to prev_length are discarded,
1258 * in which case the result is equal to prev_length and match_start is
1259 * garbage.
1260 * IN assertions: cur_match is the head of the hash chain for the current
1261 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1262 * OUT assertion: the match length is not greater than s->lookahead.
1263 */
1264 #ifndef ASMV
1265 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1266 * match.S. The code will be functionally equivalent.
1267 */
1268 local uInt longest_match(s, cur_match)
1269 deflate_state *s;
1270 IPos cur_match; /* current match */
1271 {
1272 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1273 Bytef *scan = s->window + s->strstart; /* current string */
1274 Bytef *match; /* matched string */
1275 int len; /* length of current match */
1276 int best_len = s->prev_length; /* best match length so far */
1277 int nice_match = s->nice_match; /* stop if match long enough */
1278 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1279 s->strstart - (IPos)MAX_DIST(s) : NIL;
1280 /* Stop when cur_match becomes <= limit. To simplify the code,
1281 * we prevent matches with the string of window index 0.
1282 */
1283 Posf *prev = s->prev;
1284 uInt wmask = s->w_mask;
1285
1286 #ifdef UNALIGNED_OK
1287 /* Compare two bytes at a time. Note: this is not always beneficial.
1288 * Try with and without -DUNALIGNED_OK to check.
1289 */
1290 Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1291 ush scan_start = *(ushf*)scan;
1292 ush scan_end = *(ushf*)(scan+best_len-1);
1293 #else
1294 Bytef *strend = s->window + s->strstart + MAX_MATCH;
1295 Byte scan_end1 = scan[best_len-1];
1296 Byte scan_end = scan[best_len];
1297 #endif
1298
1299 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1300 * It is easy to get rid of this optimization if necessary.
1301 */
1302 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1303
1304 /* Do not waste too much time if we already have a good match: */
1305 if (s->prev_length >= s->good_match) {
1306 chain_length >>= 2;
1307 }
1308 /* Do not look for matches beyond the end of the input. This is necessary
1309 * to make deflate deterministic.
1310 */
1311 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1312
1313 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1314
1315 do {
1316 Assert(cur_match < s->strstart, "no future");
1317 match = s->window + cur_match;
1318
1319 /* Skip to next match if the match length cannot increase
1320 * or if the match length is less than 2:
1321 */
1322 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1323 /* This code assumes sizeof(unsigned short) == 2. Do not use
1324 * UNALIGNED_OK if your compiler uses a different size.
1325 */
1326 if (*(ushf*)(match+best_len-1) != scan_end ||
1327 *(ushf*)match != scan_start) continue;
1328
1329 /* It is not necessary to compare scan[2] and match[2] since they are
1330 * always equal when the other bytes match, given that the hash keys
1331 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1332 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1333 * lookahead only every 4th comparison; the 128th check will be made
1334 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1335 * necessary to put more guard bytes at the end of the window, or
1336 * to check more often for insufficient lookahead.
1337 */
1338 Assert(scan[2] == match[2], "scan[2]?");
1339 scan++, match++;
1340 do {
1341 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 scan < strend);
1346 /* The funny "do {}" generates better code on most compilers */
1347
1348 /* Here, scan <= window+strstart+257 */
1349 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1350 if (*scan == *match) scan++;
1351
1352 len = (MAX_MATCH - 1) - (int)(strend-scan);
1353 scan = strend - (MAX_MATCH-1);
1354
1355 #else /* UNALIGNED_OK */
1356
1357 if (match[best_len] != scan_end ||
1358 match[best_len-1] != scan_end1 ||
1359 *match != *scan ||
1360 *++match != scan[1]) continue;
1361
1362 /* The check at best_len-1 can be removed because it will be made
1363 * again later. (This heuristic is not always a win.)
1364 * It is not necessary to compare scan[2] and match[2] since they
1365 * are always equal when the other bytes match, given that
1366 * the hash keys are equal and that HASH_BITS >= 8.
1367 */
1368 scan += 2, match++;
1369 Assert(*scan == *match, "match[2]?");
1370
1371 /* We check for insufficient lookahead only every 8th comparison;
1372 * the 256th check will be made at strstart+258.
1373 */
1374 do {
1375 } while (*++scan == *++match && *++scan == *++match &&
1376 *++scan == *++match && *++scan == *++match &&
1377 *++scan == *++match && *++scan == *++match &&
1378 *++scan == *++match && *++scan == *++match &&
1379 scan < strend);
1380
1381 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1382
1383 len = MAX_MATCH - (int)(strend - scan);
1384 scan = strend - MAX_MATCH;
1385
1386 #endif /* UNALIGNED_OK */
1387
1388 if (len > best_len) {
1389 s->match_start = cur_match;
1390 best_len = len;
1391 if (len >= nice_match) break;
1392 #ifdef UNALIGNED_OK
1393 scan_end = *(ushf*)(scan+best_len-1);
1394 #else
1395 scan_end1 = scan[best_len-1];
1396 scan_end = scan[best_len];
1397 #endif
1398 }
1399 } while ((cur_match = prev[cur_match & wmask]) > limit
1400 && --chain_length != 0);
1401
1402 if ((uInt)best_len <= s->lookahead) return best_len;
1403 return s->lookahead;
1404 }
1405 #endif /* ASMV */
1406
1407 #ifdef DEBUG_ZLIB
1408 /* ===========================================================================
1409 * Check that the match at match_start is indeed a match.
1410 */
1411 local void check_match(s, start, match, length)
1412 deflate_state *s;
1413 IPos start, match;
1414 int length;
1415 {
1416 /* check that the match is indeed a match */
1417 if (zmemcmp((charf *)s->window + match,
1418 (charf *)s->window + start, length) != EQUAL) {
1419 fprintf(stderr, " start %u, match %u, length %d\n",
1420 start, match, length);
1421 do {
1422 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1423 } while (--length != 0);
1424 z_error("invalid match");
1425 }
1426 if (z_verbose > 1) {
1427 fprintf(stderr,"\\[%d,%d]", start-match, length);
1428 do { putc(s->window[start++], stderr); } while (--length != 0);
1429 }
1430 }
1431 #else
1432 # define check_match(s, start, match, length)
1433 #endif
1434
1435 /* ===========================================================================
1436 * Fill the window when the lookahead becomes insufficient.
1437 * Updates strstart and lookahead.
1438 *
1439 * IN assertion: lookahead < MIN_LOOKAHEAD
1440 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1441 * At least one byte has been read, or avail_in == 0; reads are
1442 * performed for at least two bytes (required for the zip translate_eol
1443 * option -- not supported here).
1444 */
1445 local void fill_window(s)
1446 deflate_state *s;
1447 {
1448 unsigned n, m;
1449 Posf *p;
1450 unsigned more; /* Amount of free space at the end of the window. */
1451 uInt wsize = s->w_size;
1452
1453 do {
1454 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1455
1456 /* Deal with !@#$% 64K limit: */
1457 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1458 more = wsize;
1459
1460 } else if (more == (unsigned)(-1)) {
1461 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1462 * and lookahead == 1 (input done one byte at time)
1463 */
1464 more--;
1465
1466 /* If the window is almost full and there is insufficient lookahead,
1467 * move the upper half to the lower one to make room in the upper half.
1468 */
1469 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1470
1471 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1472 (unsigned)wsize);
1473 s->match_start -= wsize;
1474 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1475 s->block_start -= (long) wsize;
1476
1477 /* Slide the hash table (could be avoided with 32 bit values
1478 at the expense of memory usage). We slide even when level == 0
1479 to keep the hash table consistent if we switch back to level > 0
1480 later. (Using level 0 permanently is not an optimal usage of
1481 zlib, so we don't care about this pathological case.)
1482 */
1483 n = s->hash_size;
1484 p = &s->head[n];
1485 do {
1486 m = *--p;
1487 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1488 } while (--n);
1489
1490 n = wsize;
1491 p = &s->prev[n];
1492 do {
1493 m = *--p;
1494 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1495 /* If n is not on any hash chain, prev[n] is garbage but
1496 * its value will never be used.
1497 */
1498 } while (--n);
1499 more += wsize;
1500 }
1501 if (s->strm->avail_in == 0) return;
1502
1503 /* If there was no sliding:
1504 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1505 * more == window_size - lookahead - strstart
1506 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1507 * => more >= window_size - 2*WSIZE + 2
1508 * In the BIG_MEM or MMAP case (not yet supported),
1509 * window_size == input_size + MIN_LOOKAHEAD &&
1510 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1511 * Otherwise, window_size == 2*WSIZE so more >= 2.
1512 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1513 */
1514 Assert(more >= 2, "more < 2");
1515
1516 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1517 more);
1518 s->lookahead += n;
1519
1520 /* Initialize the hash value now that we have some input: */
1521 if (s->lookahead >= MIN_MATCH) {
1522 s->ins_h = s->window[s->strstart];
1523 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1524 #if MIN_MATCH != 3
1525 Call UPDATE_HASH() MIN_MATCH-3 more times
1526 #endif
1527 }
1528 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1529 * but this is not important since only literal bytes will be emitted.
1530 */
1531
1532 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1533 }
1534
1535 /* ===========================================================================
1536 * Flush the current block, with given end-of-file flag.
1537 * IN assertion: strstart is set to the end of the current match.
1538 */
1539 #define FLUSH_BLOCK_ONLY(s, eof) { \
1540 _tr_flush_block(s, (s->block_start >= 0L ? \
1541 (charf *)&s->window[(unsigned)s->block_start] : \
1542 (charf *)Z_NULL), \
1543 (ulg)((long)s->strstart - s->block_start), \
1544 (eof)); \
1545 s->block_start = s->strstart; \
1546 flush_pending(s->strm); \
1547 Tracev((stderr,"[FLUSH]")); \
1548 }
1549
1550 /* Same but force premature exit if necessary. */
1551 #define FLUSH_BLOCK(s, eof) { \
1552 FLUSH_BLOCK_ONLY(s, eof); \
1553 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1554 }
1555
1556 /* ===========================================================================
1557 * Copy without compression as much as possible from the input stream, return
1558 * the current block state.
1559 * This function does not insert new strings in the dictionary since
1560 * uncompressible data is probably not useful. This function is used
1561 * only for the level=0 compression option.
1562 * NOTE: this function should be optimized to avoid extra copying from
1563 * window to pending_buf.
1564 */
1565 local block_state deflate_stored(s, flush)
1566 deflate_state *s;
1567 int flush;
1568 {
1569 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1570 * to pending_buf_size, and each stored block has a 5 byte header:
1571 */
1572 ulg max_block_size = 0xffff;
1573 ulg max_start;
1574
1575 if (max_block_size > s->pending_buf_size - 5) {
1576 max_block_size = s->pending_buf_size - 5;
1577 }
1578
1579 /* Copy as much as possible from input to output: */
1580 for (;;) {
1581 /* Fill the window as much as possible: */
1582 if (s->lookahead <= 1) {
1583
1584 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1585 s->block_start >= (long)s->w_size, "slide too late");
1586
1587 fill_window(s);
1588 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1589
1590 if (s->lookahead == 0) break; /* flush the current block */
1591 }
1592 Assert(s->block_start >= 0L, "block gone");
1593
1594 s->strstart += s->lookahead;
1595 s->lookahead = 0;
1596
1597 /* Emit a stored block if pending_buf will be full: */
1598 max_start = s->block_start + max_block_size;
1599 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1600 /* strstart == 0 is possible when wraparound on 16-bit machine */
1601 s->lookahead = (uInt)(s->strstart - max_start);
1602 s->strstart = (uInt)max_start;
1603 FLUSH_BLOCK(s, 0);
1604 }
1605 /* Flush if we may have to slide, otherwise block_start may become
1606 * negative and the data will be gone:
1607 */
1608 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1609 FLUSH_BLOCK(s, 0);
1610 }
1611 }
1612 FLUSH_BLOCK(s, flush == Z_FINISH);
1613 return flush == Z_FINISH ? finish_done : block_done;
1614 }
1615
1616 /* ===========================================================================
1617 * Compress as much as possible from the input stream, return the current
1618 * block state.
1619 * This function does not perform lazy evaluation of matches and inserts
1620 * new strings in the dictionary only for unmatched strings or for short
1621 * matches. It is used only for the fast compression options.
1622 */
1623 local block_state deflate_fast(s, flush)
1624 deflate_state *s;
1625 int flush;
1626 {
1627 IPos hash_head = NIL; /* head of the hash chain */
1628 int bflush; /* set if current block must be flushed */
1629
1630 for (;;) {
1631 /* Make sure that we always have enough lookahead, except
1632 * at the end of the input file. We need MAX_MATCH bytes
1633 * for the next match, plus MIN_MATCH bytes to insert the
1634 * string following the next match.
1635 */
1636 if (s->lookahead < MIN_LOOKAHEAD) {
1637 fill_window(s);
1638 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1639 return need_more;
1640 }
1641 if (s->lookahead == 0) break; /* flush the current block */
1642 }
1643
1644 /* Insert the string window[strstart .. strstart+2] in the
1645 * dictionary, and set hash_head to the head of the hash chain:
1646 */
1647 if (s->lookahead >= MIN_MATCH) {
1648 INSERT_STRING(s, s->strstart, hash_head);
1649 }
1650
1651 /* Find the longest match, discarding those <= prev_length.
1652 * At this point we have always match_length < MIN_MATCH
1653 */
1654 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1655 /* To simplify the code, we prevent matches with the string
1656 * of window index 0 (in particular we have to avoid a match
1657 * of the string with itself at the start of the input file).
1658 */
1659 if (s->strategy != Z_HUFFMAN_ONLY) {
1660 s->match_length = longest_match (s, hash_head);
1661 }
1662 /* longest_match() sets match_start */
1663 }
1664 if (s->match_length >= MIN_MATCH) {
1665 check_match(s, s->strstart, s->match_start, s->match_length);
1666
1667 bflush = _tr_tally(s, s->strstart - s->match_start,
1668 s->match_length - MIN_MATCH);
1669
1670 s->lookahead -= s->match_length;
1671
1672 /* Insert new strings in the hash table only if the match length
1673 * is not too large. This saves time but degrades compression.
1674 */
1675 if (s->match_length <= s->max_insert_length &&
1676 s->lookahead >= MIN_MATCH) {
1677 s->match_length--; /* string at strstart already in hash table */
1678 do {
1679 s->strstart++;
1680 INSERT_STRING(s, s->strstart, hash_head);
1681 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1682 * always MIN_MATCH bytes ahead.
1683 */
1684 } while (--s->match_length != 0);
1685 s->strstart++;
1686 } else {
1687 s->strstart += s->match_length;
1688 s->match_length = 0;
1689 s->ins_h = s->window[s->strstart];
1690 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1691 #if MIN_MATCH != 3
1692 Call UPDATE_HASH() MIN_MATCH-3 more times
1693 #endif
1694 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1695 * matter since it will be recomputed at next deflate call.
1696 */
1697 }
1698 } else {
1699 /* No match, output a literal byte */
1700 Tracevv((stderr,"%c", s->window[s->strstart]));
1701 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1702 s->lookahead--;
1703 s->strstart++;
1704 }
1705 if (bflush) FLUSH_BLOCK(s, 0);
1706 }
1707 FLUSH_BLOCK(s, flush == Z_FINISH);
1708 return flush == Z_FINISH ? finish_done : block_done;
1709 }
1710
1711 /* ===========================================================================
1712 * Same as above, but achieves better compression. We use a lazy
1713 * evaluation for matches: a match is finally adopted only if there is
1714 * no better match at the next window position.
1715 */
1716 local block_state deflate_slow(s, flush)
1717 deflate_state *s;
1718 int flush;
1719 {
1720 IPos hash_head = NIL; /* head of hash chain */
1721 int bflush; /* set if current block must be flushed */
1722
1723 /* Process the input block. */
1724 for (;;) {
1725 /* Make sure that we always have enough lookahead, except
1726 * at the end of the input file. We need MAX_MATCH bytes
1727 * for the next match, plus MIN_MATCH bytes to insert the
1728 * string following the next match.
1729 */
1730 if (s->lookahead < MIN_LOOKAHEAD) {
1731 fill_window(s);
1732 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1733 return need_more;
1734 }
1735 if (s->lookahead == 0) break; /* flush the current block */
1736 }
1737
1738 /* Insert the string window[strstart .. strstart+2] in the
1739 * dictionary, and set hash_head to the head of the hash chain:
1740 */
1741 if (s->lookahead >= MIN_MATCH) {
1742 INSERT_STRING(s, s->strstart, hash_head);
1743 }
1744
1745 /* Find the longest match, discarding those <= prev_length.
1746 */
1747 s->prev_length = s->match_length, s->prev_match = s->match_start;
1748 s->match_length = MIN_MATCH-1;
1749
1750 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1751 s->strstart - hash_head <= MAX_DIST(s)) {
1752 /* To simplify the code, we prevent matches with the string
1753 * of window index 0 (in particular we have to avoid a match
1754 * of the string with itself at the start of the input file).
1755 */
1756 if (s->strategy != Z_HUFFMAN_ONLY) {
1757 s->match_length = longest_match (s, hash_head);
1758 }
1759 /* longest_match() sets match_start */
1760
1761 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1762 (s->match_length == MIN_MATCH &&
1763 s->strstart - s->match_start > TOO_FAR))) {
1764
1765 /* If prev_match is also MIN_MATCH, match_start is garbage
1766 * but we will ignore the current match anyway.
1767 */
1768 s->match_length = MIN_MATCH-1;
1769 }
1770 }
1771 /* If there was a match at the previous step and the current
1772 * match is not better, output the previous match:
1773 */
1774 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1775 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1776 /* Do not insert strings in hash table beyond this. */
1777
1778 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1779
1780 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1781 s->prev_length - MIN_MATCH);
1782
1783 /* Insert in hash table all strings up to the end of the match.
1784 * strstart-1 and strstart are already inserted. If there is not
1785 * enough lookahead, the last two strings are not inserted in
1786 * the hash table.
1787 */
1788 s->lookahead -= s->prev_length-1;
1789 s->prev_length -= 2;
1790 do {
1791 if (++s->strstart <= max_insert) {
1792 INSERT_STRING(s, s->strstart, hash_head);
1793 }
1794 } while (--s->prev_length != 0);
1795 s->match_available = 0;
1796 s->match_length = MIN_MATCH-1;
1797 s->strstart++;
1798
1799 if (bflush) FLUSH_BLOCK(s, 0);
1800
1801 } else if (s->match_available) {
1802 /* If there was no match at the previous position, output a
1803 * single literal. If there was a match but the current match
1804 * is longer, truncate the previous match to a single literal.
1805 */
1806 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1807 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1808 FLUSH_BLOCK_ONLY(s, 0);
1809 }
1810 s->strstart++;
1811 s->lookahead--;
1812 if (s->strm->avail_out == 0) return need_more;
1813 } else {
1814 /* There is no previous match to compare with, wait for
1815 * the next step to decide.
1816 */
1817 s->match_available = 1;
1818 s->strstart++;
1819 s->lookahead--;
1820 }
1821 }
1822 Assert (flush != Z_NO_FLUSH, "no flush?");
1823 if (s->match_available) {
1824 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1825 _tr_tally (s, 0, s->window[s->strstart-1]);
1826 s->match_available = 0;
1827 }
1828 FLUSH_BLOCK(s, flush == Z_FINISH);
1829 return flush == Z_FINISH ? finish_done : block_done;
1830 }
1831 /* --- deflate.c */
1832
1833 /* +++ trees.c */
1834 /* trees.c -- output deflated data using Huffman coding
1835 * Copyright (C) 1995-1996 Jean-loup Gailly
1836 * For conditions of distribution and use, see copyright notice in zlib.h
1837 */
1838
1839 /*
1840 * ALGORITHM
1841 *
1842 * The "deflation" process uses several Huffman trees. The more
1843 * common source values are represented by shorter bit sequences.
1844 *
1845 * Each code tree is stored in a compressed form which is itself
1846 * a Huffman encoding of the lengths of all the code strings (in
1847 * ascending order by source values). The actual code strings are
1848 * reconstructed from the lengths in the inflate process, as described
1849 * in the deflate specification.
1850 *
1851 * REFERENCES
1852 *
1853 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1854 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1855 *
1856 * Storer, James A.
1857 * Data Compression: Methods and Theory, pp. 49-50.
1858 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1859 *
1860 * Sedgewick, R.
1861 * Algorithms, p290.
1862 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1863 */
1864
1865 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1866
1867 /* #include "deflate.h" */
1868
1869 #ifdef DEBUG_ZLIB
1870 # include <ctype.h>
1871 #endif
1872
1873 /* ===========================================================================
1874 * Constants
1875 */
1876
1877 #define MAX_BL_BITS 7
1878 /* Bit length codes must not exceed MAX_BL_BITS bits */
1879
1880 #define END_BLOCK 256
1881 /* end of block literal code */
1882
1883 #define REP_3_6 16
1884 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1885
1886 #define REPZ_3_10 17
1887 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1888
1889 #define REPZ_11_138 18
1890 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1891
1892 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1893 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1894
1895 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
1896 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1897
1898 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1899 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1900
1901 local const uch bl_order[BL_CODES]
1902 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1903 /* The lengths of the bit length codes are sent in order of decreasing
1904 * probability, to avoid transmitting the lengths for unused bit length codes.
1905 */
1906
1907 #define Buf_size (8 * 2*sizeof(char))
1908 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1909 * more than 16 bits on some systems.)
1910 */
1911
1912 /* ===========================================================================
1913 * Local data. These are initialized only once.
1914 */
1915
1916 local ct_data static_ltree[L_CODES+2];
1917 /* The static literal tree. Since the bit lengths are imposed, there is no
1918 * need for the L_CODES extra codes used during heap construction. However
1919 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1920 * below).
1921 */
1922
1923 local ct_data static_dtree[D_CODES];
1924 /* The static distance tree. (Actually a trivial tree since all codes use
1925 * 5 bits.)
1926 */
1927
1928 local uch dist_code[512];
1929 /* distance codes. The first 256 values correspond to the distances
1930 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1931 * the 15 bit distances.
1932 */
1933
1934 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1935 /* length code for each normalized match length (0 == MIN_MATCH) */
1936
1937 local int base_length[LENGTH_CODES];
1938 /* First normalized length for each code (0 = MIN_MATCH) */
1939
1940 local int base_dist[D_CODES];
1941 /* First normalized distance for each code (0 = distance of 1) */
1942
1943 struct static_tree_desc_s {
1944 ct_data *static_tree; /* static tree or NULL */
1945 const intf *extra_bits; /* extra bits for each code or NULL */
1946 int extra_base; /* base index for extra_bits */
1947 int elems; /* max number of elements in the tree */
1948 int max_length; /* max bit length for the codes */
1949 };
1950
1951 local static_tree_desc static_l_desc =
1952 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1953
1954 local static_tree_desc static_d_desc =
1955 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1956
1957 local static_tree_desc static_bl_desc =
1958 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1959
1960 /* ===========================================================================
1961 * Local (static) routines in this file.
1962 */
1963
1964 local void tr_static_init OF((void));
1965 local void init_block OF((deflate_state *s));
1966 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1967 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1968 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1969 local void build_tree OF((deflate_state *s, tree_desc *desc));
1970 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1971 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1972 local int build_bl_tree OF((deflate_state *s));
1973 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1974 int blcodes));
1975 local void compress_block OF((deflate_state *s, ct_data *ltree,
1976 ct_data *dtree));
1977 local void set_data_type OF((deflate_state *s));
1978 local unsigned bi_reverse OF((unsigned value, int length));
1979 local void bi_windup OF((deflate_state *s));
1980 local void bi_flush OF((deflate_state *s));
1981 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1982 int header));
1983
1984 #ifndef DEBUG_ZLIB
1985 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1986 /* Send a code of the given tree. c and tree must not have side effects */
1987
1988 #else /* DEBUG_ZLIB */
1989 # define send_code(s, c, tree) \
1990 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1991 send_bits(s, tree[c].Code, tree[c].Len); }
1992 #endif
1993
1994 #define d_code(dist) \
1995 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1996 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1997 * must not have side effects. dist_code[256] and dist_code[257] are never
1998 * used.
1999 */
2000
2001 /* ===========================================================================
2002 * Output a short LSB first on the stream.
2003 * IN assertion: there is enough room in pendingBuf.
2004 */
2005 #define put_short(s, w) { \
2006 put_byte(s, (uch)((w) & 0xff)); \
2007 put_byte(s, (uch)((ush)(w) >> 8)); \
2008 }
2009
2010 /* ===========================================================================
2011 * Send a value on a given number of bits.
2012 * IN assertion: length <= 16 and value fits in length bits.
2013 */
2014 #ifdef DEBUG_ZLIB
2015 local void send_bits OF((deflate_state *s, int value, int length));
2016
2017 local void send_bits(s, value, length)
2018 deflate_state *s;
2019 int value; /* value to send */
2020 int length; /* number of bits */
2021 {
2022 Tracevv((stderr," l %2d v %4x ", length, value));
2023 Assert(length > 0 && length <= 15, "invalid length");
2024 s->bits_sent += (ulg)length;
2025
2026 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2027 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2028 * unused bits in value.
2029 */
2030 if (s->bi_valid > (int)Buf_size - length) {
2031 s->bi_buf |= (value << s->bi_valid);
2032 put_short(s, s->bi_buf);
2033 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2034 s->bi_valid += length - Buf_size;
2035 } else {
2036 s->bi_buf |= value << s->bi_valid;
2037 s->bi_valid += length;
2038 }
2039 }
2040 #else /* !DEBUG_ZLIB */
2041
2042 #define send_bits(s, value, length) \
2043 { int len = length;\
2044 if (s->bi_valid > (int)Buf_size - len) {\
2045 int val = value;\
2046 s->bi_buf |= (val << s->bi_valid);\
2047 put_short(s, s->bi_buf);\
2048 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2049 s->bi_valid += len - Buf_size;\
2050 } else {\
2051 s->bi_buf |= (value) << s->bi_valid;\
2052 s->bi_valid += len;\
2053 }\
2054 }
2055 #endif /* DEBUG_ZLIB */
2056
2057 /* ===========================================================================
2058 * Initialize the various 'constant' tables. In a multi-threaded environment,
2059 * this function may be called by two threads concurrently, but this is
2060 * harmless since both invocations do exactly the same thing.
2061 */
2062 local void tr_static_init()
2063 {
2064 static int static_init_done = 0;
2065 int n; /* iterates over tree elements */
2066 int bits; /* bit counter */
2067 int length; /* length value */
2068 int code; /* code value */
2069 int dist; /* distance index */
2070 ush bl_count[MAX_BITS+1];
2071 /* number of codes at each bit length for an optimal tree */
2072
2073 if (static_init_done) return;
2074
2075 /* Initialize the mapping length (0..255) -> length code (0..28) */
2076 length = 0;
2077 for (code = 0; code < LENGTH_CODES-1; code++) {
2078 base_length[code] = length;
2079 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2080 length_code[length++] = (uch)code;
2081 }
2082 }
2083 Assert (length == 256, "tr_static_init: length != 256");
2084 /* Note that the length 255 (match length 258) can be represented
2085 * in two different ways: code 284 + 5 bits or code 285, so we
2086 * overwrite length_code[255] to use the best encoding:
2087 */
2088 length_code[length-1] = (uch)code;
2089
2090 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2091 dist = 0;
2092 for (code = 0 ; code < 16; code++) {
2093 base_dist[code] = dist;
2094 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2095 dist_code[dist++] = (uch)code;
2096 }
2097 }
2098 Assert (dist == 256, "tr_static_init: dist != 256");
2099 dist >>= 7; /* from now on, all distances are divided by 128 */
2100 for ( ; code < D_CODES; code++) {
2101 base_dist[code] = dist << 7;
2102 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2103 dist_code[256 + dist++] = (uch)code;
2104 }
2105 }
2106 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2107
2108 /* Construct the codes of the static literal tree */
2109 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2110 n = 0;
2111 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2112 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2113 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2114 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2115 /* Codes 286 and 287 do not exist, but we must include them in the
2116 * tree construction to get a canonical Huffman tree (longest code
2117 * all ones)
2118 */
2119 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2120
2121 /* The static distance tree is trivial: */
2122 for (n = 0; n < D_CODES; n++) {
2123 static_dtree[n].Len = 5;
2124 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2125 }
2126 static_init_done = 1;
2127 }
2128
2129 /* ===========================================================================
2130 * Initialize the tree data structures for a new zlib stream.
2131 */
2132 void _tr_init(s)
2133 deflate_state *s;
2134 {
2135 tr_static_init();
2136
2137 s->compressed_len = 0L;
2138
2139 s->l_desc.dyn_tree = s->dyn_ltree;
2140 s->l_desc.stat_desc = &static_l_desc;
2141
2142 s->d_desc.dyn_tree = s->dyn_dtree;
2143 s->d_desc.stat_desc = &static_d_desc;
2144
2145 s->bl_desc.dyn_tree = s->bl_tree;
2146 s->bl_desc.stat_desc = &static_bl_desc;
2147
2148 s->bi_buf = 0;
2149 s->bi_valid = 0;
2150 s->last_eob_len = 8; /* enough lookahead for inflate */
2151 #ifdef DEBUG_ZLIB
2152 s->bits_sent = 0L;
2153 #endif
2154
2155 /* Initialize the first block of the first file: */
2156 init_block(s);
2157 }
2158
2159 /* ===========================================================================
2160 * Initialize a new block.
2161 */
2162 local void init_block(s)
2163 deflate_state *s;
2164 {
2165 int n; /* iterates over tree elements */
2166
2167 /* Initialize the trees. */
2168 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2169 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2170 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2171
2172 s->dyn_ltree[END_BLOCK].Freq = 1;
2173 s->opt_len = s->static_len = 0L;
2174 s->last_lit = s->matches = 0;
2175 }
2176
2177 #define SMALLEST 1
2178 /* Index within the heap array of least frequent node in the Huffman tree */
2179
2180
2181 /* ===========================================================================
2182 * Remove the smallest element from the heap and recreate the heap with
2183 * one less element. Updates heap and heap_len.
2184 */
2185 #define pqremove(s, tree, top) \
2186 {\
2187 top = s->heap[SMALLEST]; \
2188 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2189 pqdownheap(s, tree, SMALLEST); \
2190 }
2191
2192 /* ===========================================================================
2193 * Compares to subtrees, using the tree depth as tie breaker when
2194 * the subtrees have equal frequency. This minimizes the worst case length.
2195 */
2196 #define smaller(tree, n, m, depth) \
2197 (tree[n].Freq < tree[m].Freq || \
2198 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2199
2200 /* ===========================================================================
2201 * Restore the heap property by moving down the tree starting at node k,
2202 * exchanging a node with the smallest of its two sons if necessary, stopping
2203 * when the heap property is re-established (each father smaller than its
2204 * two sons).
2205 */
2206 local void pqdownheap(s, tree, k)
2207 deflate_state *s;
2208 ct_data *tree; /* the tree to restore */
2209 int k; /* node to move down */
2210 {
2211 int v = s->heap[k];
2212 int j = k << 1; /* left son of k */
2213 while (j <= s->heap_len) {
2214 /* Set j to the smallest of the two sons: */
2215 if (j < s->heap_len &&
2216 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2217 j++;
2218 }
2219 /* Exit if v is smaller than both sons */
2220 if (smaller(tree, v, s->heap[j], s->depth)) break;
2221
2222 /* Exchange v with the smallest son */
2223 s->heap[k] = s->heap[j]; k = j;
2224
2225 /* And continue down the tree, setting j to the left son of k */
2226 j <<= 1;
2227 }
2228 s->heap[k] = v;
2229 }
2230
2231 /* ===========================================================================
2232 * Compute the optimal bit lengths for a tree and update the total bit length
2233 * for the current block.
2234 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2235 * above are the tree nodes sorted by increasing frequency.
2236 * OUT assertions: the field len is set to the optimal bit length, the
2237 * array bl_count contains the frequencies for each bit length.
2238 * The length opt_len is updated; static_len is also updated if stree is
2239 * not null.
2240 */
2241 local void gen_bitlen(s, desc)
2242 deflate_state *s;
2243 tree_desc *desc; /* the tree descriptor */
2244 {
2245 ct_data *tree = desc->dyn_tree;
2246 int max_code = desc->max_code;
2247 ct_data *stree = desc->stat_desc->static_tree;
2248 const intf *extra = desc->stat_desc->extra_bits;
2249 int base = desc->stat_desc->extra_base;
2250 int max_length = desc->stat_desc->max_length;
2251 int h; /* heap index */
2252 int n, m; /* iterate over the tree elements */
2253 int bits; /* bit length */
2254 int xbits; /* extra bits */
2255 ush f; /* frequency */
2256 int overflow = 0; /* number of elements with bit length too large */
2257
2258 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2259
2260 /* In a first pass, compute the optimal bit lengths (which may
2261 * overflow in the case of the bit length tree).
2262 */
2263 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2264
2265 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2266 n = s->heap[h];
2267 bits = tree[tree[n].Dad].Len + 1;
2268 if (bits > max_length) bits = max_length, overflow++;
2269 tree[n].Len = (ush)bits;
2270 /* We overwrite tree[n].Dad which is no longer needed */
2271
2272 if (n > max_code) continue; /* not a leaf node */
2273
2274 s->bl_count[bits]++;
2275 xbits = 0;
2276 if (n >= base) xbits = extra[n-base];
2277 f = tree[n].Freq;
2278 s->opt_len += (ulg)f * (bits + xbits);
2279 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2280 }
2281 if (overflow == 0) return;
2282
2283 Trace((stderr,"\nbit length overflow\n"));
2284 /* This happens for example on obj2 and pic of the Calgary corpus */
2285
2286 /* Find the first bit length which could increase: */
2287 do {
2288 bits = max_length-1;
2289 while (s->bl_count[bits] == 0) bits--;
2290 s->bl_count[bits]--; /* move one leaf down the tree */
2291 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2292 s->bl_count[max_length]--;
2293 /* The brother of the overflow item also moves one step up,
2294 * but this does not affect bl_count[max_length]
2295 */
2296 overflow -= 2;
2297 } while (overflow > 0);
2298
2299 /* Now recompute all bit lengths, scanning in increasing frequency.
2300 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2301 * lengths instead of fixing only the wrong ones. This idea is taken
2302 * from 'ar' written by Haruhiko Okumura.)
2303 */
2304 for (bits = max_length; bits != 0; bits--) {
2305 n = s->bl_count[bits];
2306 while (n != 0) {
2307 m = s->heap[--h];
2308 if (m > max_code) continue;
2309 if (tree[m].Len != (unsigned) bits) {
2310 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2311 s->opt_len += ((long)bits - (long)tree[m].Len)
2312 *(long)tree[m].Freq;
2313 tree[m].Len = (ush)bits;
2314 }
2315 n--;
2316 }
2317 }
2318 }
2319
2320 /* ===========================================================================
2321 * Generate the codes for a given tree and bit counts (which need not be
2322 * optimal).
2323 * IN assertion: the array bl_count contains the bit length statistics for
2324 * the given tree and the field len is set for all tree elements.
2325 * OUT assertion: the field code is set for all tree elements of non
2326 * zero code length.
2327 */
2328 local void gen_codes (tree, max_code, bl_count)
2329 ct_data *tree; /* the tree to decorate */
2330 int max_code; /* largest code with non zero frequency */
2331 ushf *bl_count; /* number of codes at each bit length */
2332 {
2333 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2334 ush code = 0; /* running code value */
2335 int bits; /* bit index */
2336 int n; /* code index */
2337
2338 /* The distribution counts are first used to generate the code values
2339 * without bit reversal.
2340 */
2341 for (bits = 1; bits <= MAX_BITS; bits++) {
2342 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2343 }
2344 /* Check that the bit counts in bl_count are consistent. The last code
2345 * must be all ones.
2346 */
2347 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2348 "inconsistent bit counts");
2349 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2350
2351 for (n = 0; n <= max_code; n++) {
2352 int len = tree[n].Len;
2353 if (len == 0) continue;
2354 /* Now reverse the bits */
2355 tree[n].Code = bi_reverse(next_code[len]++, len);
2356
2357 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2358 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2359 }
2360 }
2361
2362 /* ===========================================================================
2363 * Construct one Huffman tree and assigns the code bit strings and lengths.
2364 * Update the total bit length for the current block.
2365 * IN assertion: the field freq is set for all tree elements.
2366 * OUT assertions: the fields len and code are set to the optimal bit length
2367 * and corresponding code. The length opt_len is updated; static_len is
2368 * also updated if stree is not null. The field max_code is set.
2369 */
2370 local void build_tree(s, desc)
2371 deflate_state *s;
2372 tree_desc *desc; /* the tree descriptor */
2373 {
2374 ct_data *tree = desc->dyn_tree;
2375 ct_data *stree = desc->stat_desc->static_tree;
2376 int elems = desc->stat_desc->elems;
2377 int n, m; /* iterate over heap elements */
2378 int max_code = -1; /* largest code with non zero frequency */
2379 int node; /* new node being created */
2380
2381 /* Construct the initial heap, with least frequent element in
2382 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2383 * heap[0] is not used.
2384 */
2385 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2386
2387 for (n = 0; n < elems; n++) {
2388 if (tree[n].Freq != 0) {
2389 s->heap[++(s->heap_len)] = max_code = n;
2390 s->depth[n] = 0;
2391 } else {
2392 tree[n].Len = 0;
2393 }
2394 }
2395
2396 /* The pkzip format requires that at least one distance code exists,
2397 * and that at least one bit should be sent even if there is only one
2398 * possible code. So to avoid special checks later on we force at least
2399 * two codes of non zero frequency.
2400 */
2401 while (s->heap_len < 2) {
2402 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2403 tree[node].Freq = 1;
2404 s->depth[node] = 0;
2405 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2406 /* node is 0 or 1 so it does not have extra bits */
2407 }
2408 desc->max_code = max_code;
2409
2410 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2411 * establish sub-heaps of increasing lengths:
2412 */
2413 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2414
2415 /* Construct the Huffman tree by repeatedly combining the least two
2416 * frequent nodes.
2417 */
2418 node = elems; /* next internal node of the tree */
2419 do {
2420 pqremove(s, tree, n); /* n = node of least frequency */
2421 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2422
2423 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2424 s->heap[--(s->heap_max)] = m;
2425
2426 /* Create a new node father of n and m */
2427 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2428 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2429 tree[n].Dad = tree[m].Dad = (ush)node;
2430 #ifdef DUMP_BL_TREE
2431 if (tree == s->bl_tree) {
2432 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2433 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2434 }
2435 #endif
2436 /* and insert the new node in the heap */
2437 s->heap[SMALLEST] = node++;
2438 pqdownheap(s, tree, SMALLEST);
2439
2440 } while (s->heap_len >= 2);
2441
2442 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2443
2444 /* At this point, the fields freq and dad are set. We can now
2445 * generate the bit lengths.
2446 */
2447 gen_bitlen(s, (tree_desc *)desc);
2448
2449 /* The field len is now set, we can generate the bit codes */
2450 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2451 }
2452
2453 /* ===========================================================================
2454 * Scan a literal or distance tree to determine the frequencies of the codes
2455 * in the bit length tree.
2456 */
2457 local void scan_tree (s, tree, max_code)
2458 deflate_state *s;
2459 ct_data *tree; /* the tree to be scanned */
2460 int max_code; /* and its largest code of non zero frequency */
2461 {
2462 int n; /* iterates over all tree elements */
2463 int prevlen = -1; /* last emitted length */
2464 int curlen; /* length of current code */
2465 int nextlen = tree[0].Len; /* length of next code */
2466 int count = 0; /* repeat count of the current code */
2467 int max_count = 7; /* max repeat count */
2468 int min_count = 4; /* min repeat count */
2469
2470 if (nextlen == 0) max_count = 138, min_count = 3;
2471 tree[max_code+1].Len = (ush)0xffff; /* guard */
2472
2473 for (n = 0; n <= max_code; n++) {
2474 curlen = nextlen; nextlen = tree[n+1].Len;
2475 if (++count < max_count && curlen == nextlen) {
2476 continue;
2477 } else if (count < min_count) {
2478 s->bl_tree[curlen].Freq += count;
2479 } else if (curlen != 0) {
2480 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2481 s->bl_tree[REP_3_6].Freq++;
2482 } else if (count <= 10) {
2483 s->bl_tree[REPZ_3_10].Freq++;
2484 } else {
2485 s->bl_tree[REPZ_11_138].Freq++;
2486 }
2487 count = 0; prevlen = curlen;
2488 if (nextlen == 0) {
2489 max_count = 138, min_count = 3;
2490 } else if (curlen == nextlen) {
2491 max_count = 6, min_count = 3;
2492 } else {
2493 max_count = 7, min_count = 4;
2494 }
2495 }
2496 }
2497
2498 /* ===========================================================================
2499 * Send a literal or distance tree in compressed form, using the codes in
2500 * bl_tree.
2501 */
2502 local void send_tree (s, tree, max_code)
2503 deflate_state *s;
2504 ct_data *tree; /* the tree to be scanned */
2505 int max_code; /* and its largest code of non zero frequency */
2506 {
2507 int n; /* iterates over all tree elements */
2508 int prevlen = -1; /* last emitted length */
2509 int curlen; /* length of current code */
2510 int nextlen = tree[0].Len; /* length of next code */
2511 int count = 0; /* repeat count of the current code */
2512 int max_count = 7; /* max repeat count */
2513 int min_count = 4; /* min repeat count */
2514
2515 /* tree[max_code+1].Len = -1; */ /* guard already set */
2516 if (nextlen == 0) max_count = 138, min_count = 3;
2517
2518 for (n = 0; n <= max_code; n++) {
2519 curlen = nextlen; nextlen = tree[n+1].Len;
2520 if (++count < max_count && curlen == nextlen) {
2521 continue;
2522 } else if (count < min_count) {
2523 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2524
2525 } else if (curlen != 0) {
2526 if (curlen != prevlen) {
2527 send_code(s, curlen, s->bl_tree); count--;
2528 }
2529 Assert(count >= 3 && count <= 6, " 3_6?");
2530 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2531
2532 } else if (count <= 10) {
2533 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2534
2535 } else {
2536 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2537 }
2538 count = 0; prevlen = curlen;
2539 if (nextlen == 0) {
2540 max_count = 138, min_count = 3;
2541 } else if (curlen == nextlen) {
2542 max_count = 6, min_count = 3;
2543 } else {
2544 max_count = 7, min_count = 4;
2545 }
2546 }
2547 }
2548
2549 /* ===========================================================================
2550 * Construct the Huffman tree for the bit lengths and return the index in
2551 * bl_order of the last bit length code to send.
2552 */
2553 local int build_bl_tree(s)
2554 deflate_state *s;
2555 {
2556 int max_blindex; /* index of last bit length code of non zero freq */
2557
2558 /* Determine the bit length frequencies for literal and distance trees */
2559 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2560 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2561
2562 /* Build the bit length tree: */
2563 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2564 /* opt_len now includes the length of the tree representations, except
2565 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2566 */
2567
2568 /* Determine the number of bit length codes to send. The pkzip format
2569 * requires that at least 4 bit length codes be sent. (appnote.txt says
2570 * 3 but the actual value used is 4.)
2571 */
2572 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2573 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2574 }
2575 /* Update opt_len to include the bit length tree and counts */
2576 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2577 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2578 s->opt_len, s->static_len));
2579
2580 return max_blindex;
2581 }
2582
2583 /* ===========================================================================
2584 * Send the header for a block using dynamic Huffman trees: the counts, the
2585 * lengths of the bit length codes, the literal tree and the distance tree.
2586 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2587 */
2588 local void send_all_trees(s, lcodes, dcodes, blcodes)
2589 deflate_state *s;
2590 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2591 {
2592 int rank; /* index in bl_order */
2593
2594 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2595 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2596 "too many codes");
2597 Tracev((stderr, "\nbl counts: "));
2598 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2599 send_bits(s, dcodes-1, 5);
2600 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2601 for (rank = 0; rank < blcodes; rank++) {
2602 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2603 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2604 }
2605 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2606
2607 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2608 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2609
2610 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2611 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2612 }
2613
2614 /* ===========================================================================
2615 * Send a stored block
2616 */
2617 void _tr_stored_block(s, buf, stored_len, eof)
2618 deflate_state *s;
2619 charf *buf; /* input block */
2620 ulg stored_len; /* length of input block */
2621 int eof; /* true if this is the last block for a file */
2622 {
2623 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2624 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2625 s->compressed_len += (stored_len + 4) << 3;
2626
2627 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2628 }
2629
2630 /* Send just the `stored block' type code without any length bytes or data.
2631 */
2632 void _tr_stored_type_only(s)
2633 deflate_state *s;
2634 {
2635 send_bits(s, (STORED_BLOCK << 1), 3);
2636 bi_windup(s);
2637 s->compressed_len = (s->compressed_len + 3) & ~7L;
2638 }
2639
2640
2641 /* ===========================================================================
2642 * Send one empty static block to give enough lookahead for inflate.
2643 * This takes 10 bits, of which 7 may remain in the bit buffer.
2644 * The current inflate code requires 9 bits of lookahead. If the
2645 * last two codes for the previous block (real code plus EOB) were coded
2646 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2647 * the last real code. In this case we send two empty static blocks instead
2648 * of one. (There are no problems if the previous block is stored or fixed.)
2649 * To simplify the code, we assume the worst case of last real code encoded
2650 * on one bit only.
2651 */
2652 void _tr_align(s)
2653 deflate_state *s;
2654 {
2655 send_bits(s, STATIC_TREES<<1, 3);
2656 send_code(s, END_BLOCK, static_ltree);
2657 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2658 bi_flush(s);
2659 /* Of the 10 bits for the empty block, we have already sent
2660 * (10 - bi_valid) bits. The lookahead for the last real code (before
2661 * the EOB of the previous block) was thus at least one plus the length
2662 * of the EOB plus what we have just sent of the empty static block.
2663 */
2664 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2665 send_bits(s, STATIC_TREES<<1, 3);
2666 send_code(s, END_BLOCK, static_ltree);
2667 s->compressed_len += 10L;
2668 bi_flush(s);
2669 }
2670 s->last_eob_len = 7;
2671 }
2672
2673 /* ===========================================================================
2674 * Determine the best encoding for the current block: dynamic trees, static
2675 * trees or store, and output the encoded block to the zip file. This function
2676 * returns the total compressed length for the file so far.
2677 */
2678 ulg _tr_flush_block(s, buf, stored_len, eof)
2679 deflate_state *s;
2680 charf *buf; /* input block, or NULL if too old */
2681 ulg stored_len; /* length of input block */
2682 int eof; /* true if this is the last block for a file */
2683 {
2684 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2685 int max_blindex = 0; /* index of last bit length code of non zero freq */
2686
2687 /* Build the Huffman trees unless a stored block is forced */
2688 if (s->level > 0) {
2689
2690 /* Check if the file is ascii or binary */
2691 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2692
2693 /* Construct the literal and distance trees */
2694 build_tree(s, (tree_desc *)(&(s->l_desc)));
2695 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2696 s->static_len));
2697
2698 build_tree(s, (tree_desc *)(&(s->d_desc)));
2699 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2700 s->static_len));
2701 /* At this point, opt_len and static_len are the total bit lengths of
2702 * the compressed block data, excluding the tree representations.
2703 */
2704
2705 /* Build the bit length tree for the above two trees, and get the index
2706 * in bl_order of the last bit length code to send.
2707 */
2708 max_blindex = build_bl_tree(s);
2709
2710 /* Determine the best encoding. Compute first the block length in bytes*/
2711 opt_lenb = (s->opt_len+3+7)>>3;
2712 static_lenb = (s->static_len+3+7)>>3;
2713
2714 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2715 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2716 s->last_lit));
2717
2718 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2719
2720 } else {
2721 Assert(buf != (char*)0, "lost buf");
2722 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2723 }
2724
2725 /* If compression failed and this is the first and last block,
2726 * and if the .zip file can be seeked (to rewrite the local header),
2727 * the whole file is transformed into a stored file:
2728 */
2729 #ifdef STORED_FILE_OK
2730 # ifdef FORCE_STORED_FILE
2731 if (eof && s->compressed_len == 0L) { /* force stored file */
2732 # else
2733 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2734 # endif
2735 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2736 if (buf == (charf*)0) error ("block vanished");
2737
2738 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2739 s->compressed_len = stored_len << 3;
2740 s->method = STORED;
2741 } else
2742 #endif /* STORED_FILE_OK */
2743
2744 #ifdef FORCE_STORED
2745 if (buf != (char*)0) { /* force stored block */
2746 #else
2747 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2748 /* 4: two words for the lengths */
2749 #endif
2750 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2751 * Otherwise we can't have processed more than WSIZE input bytes since
2752 * the last block flush, because compression would have been
2753 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2754 * transform a block into a stored block.
2755 */
2756 _tr_stored_block(s, buf, stored_len, eof);
2757
2758 #ifdef FORCE_STATIC
2759 } else if (static_lenb >= 0) { /* force static trees */
2760 #else
2761 } else if (static_lenb == opt_lenb) {
2762 #endif
2763 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2764 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2765 s->compressed_len += 3 + s->static_len;
2766 } else {
2767 send_bits(s, (DYN_TREES<<1)+eof, 3);
2768 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2769 max_blindex+1);
2770 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2771 s->compressed_len += 3 + s->opt_len;
2772 }
2773 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2774 init_block(s);
2775
2776 if (eof) {
2777 bi_windup(s);
2778 s->compressed_len += 7; /* align on byte boundary */
2779 }
2780 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2781 s->compressed_len-7*eof));
2782
2783 return s->compressed_len >> 3;
2784 }
2785
2786 /* ===========================================================================
2787 * Save the match info and tally the frequency counts. Return true if
2788 * the current block must be flushed.
2789 */
2790 int _tr_tally (s, dist, lc)
2791 deflate_state *s;
2792 unsigned dist; /* distance of matched string */
2793 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2794 {
2795 s->d_buf[s->last_lit] = (ush)dist;
2796 s->l_buf[s->last_lit++] = (uch)lc;
2797 if (dist == 0) {
2798 /* lc is the unmatched char */
2799 s->dyn_ltree[lc].Freq++;
2800 } else {
2801 s->matches++;
2802 /* Here, lc is the match length - MIN_MATCH */
2803 dist--; /* dist = match distance - 1 */
2804 Assert((ush)dist < (ush)MAX_DIST(s) &&
2805 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2806 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2807
2808 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2809 s->dyn_dtree[d_code(dist)].Freq++;
2810 }
2811
2812 /* Try to guess if it is profitable to stop the current block here */
2813 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2814 /* Compute an upper bound for the compressed length */
2815 ulg out_length = (ulg)s->last_lit*8L;
2816 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2817 int dcode;
2818 for (dcode = 0; dcode < D_CODES; dcode++) {
2819 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2820 (5L+extra_dbits[dcode]);
2821 }
2822 out_length >>= 3;
2823 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2824 s->last_lit, in_length, out_length,
2825 100L - out_length*100L/in_length));
2826 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2827 }
2828 return (s->last_lit == s->lit_bufsize-1);
2829 /* We avoid equality with lit_bufsize because of wraparound at 64K
2830 * on 16 bit machines and because stored blocks are restricted to
2831 * 64K-1 bytes.
2832 */
2833 }
2834
2835 /* ===========================================================================
2836 * Send the block data compressed using the given Huffman trees
2837 */
2838 local void compress_block(s, ltree, dtree)
2839 deflate_state *s;
2840 ct_data *ltree; /* literal tree */
2841 ct_data *dtree; /* distance tree */
2842 {
2843 unsigned dist; /* distance of matched string */
2844 int lc; /* match length or unmatched char (if dist == 0) */
2845 unsigned lx = 0; /* running index in l_buf */
2846 unsigned code; /* the code to send */
2847 int extra; /* number of extra bits to send */
2848
2849 if (s->last_lit != 0) do {
2850 dist = s->d_buf[lx];
2851 lc = s->l_buf[lx++];
2852 if (dist == 0) {
2853 send_code(s, lc, ltree); /* send a literal byte */
2854 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2855 } else {
2856 /* Here, lc is the match length - MIN_MATCH */
2857 code = length_code[lc];
2858 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2859 extra = extra_lbits[code];
2860 if (extra != 0) {
2861 lc -= base_length[code];
2862 send_bits(s, lc, extra); /* send the extra length bits */
2863 }
2864 dist--; /* dist is now the match distance - 1 */
2865 code = d_code(dist);
2866 Assert (code < D_CODES, "bad d_code");
2867
2868 send_code(s, code, dtree); /* send the distance code */
2869 extra = extra_dbits[code];
2870 if (extra != 0) {
2871 dist -= base_dist[code];
2872 send_bits(s, dist, extra); /* send the extra distance bits */
2873 }
2874 } /* literal or match pair ? */
2875
2876 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2877 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2878
2879 } while (lx < s->last_lit);
2880
2881 send_code(s, END_BLOCK, ltree);
2882 s->last_eob_len = ltree[END_BLOCK].Len;
2883 }
2884
2885 /* ===========================================================================
2886 * Set the data type to ASCII or BINARY, using a crude approximation:
2887 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2888 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2889 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2890 */
2891 local void set_data_type(s)
2892 deflate_state *s;
2893 {
2894 int n = 0;
2895 unsigned ascii_freq = 0;
2896 unsigned bin_freq = 0;
2897 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2898 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2899 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2900 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2901 }
2902
2903 /* ===========================================================================
2904 * Reverse the first len bits of a code, using straightforward code (a faster
2905 * method would use a table)
2906 * IN assertion: 1 <= len <= 15
2907 */
2908 local unsigned bi_reverse(code, len)
2909 unsigned code; /* the value to invert */
2910 int len; /* its bit length */
2911 {
2912 unsigned res = 0;
2913 do {
2914 res |= code & 1;
2915 code >>= 1, res <<= 1;
2916 } while (--len > 0);
2917 return res >> 1;
2918 }
2919
2920 /* ===========================================================================
2921 * Flush the bit buffer, keeping at most 7 bits in it.
2922 */
2923 local void bi_flush(s)
2924 deflate_state *s;
2925 {
2926 if (s->bi_valid == 16) {
2927 put_short(s, s->bi_buf);
2928 s->bi_buf = 0;
2929 s->bi_valid = 0;
2930 } else if (s->bi_valid >= 8) {
2931 put_byte(s, (Byte)s->bi_buf);
2932 s->bi_buf >>= 8;
2933 s->bi_valid -= 8;
2934 }
2935 }
2936
2937 /* ===========================================================================
2938 * Flush the bit buffer and align the output on a byte boundary
2939 */
2940 local void bi_windup(s)
2941 deflate_state *s;
2942 {
2943 if (s->bi_valid > 8) {
2944 put_short(s, s->bi_buf);
2945 } else if (s->bi_valid > 0) {
2946 put_byte(s, (Byte)s->bi_buf);
2947 }
2948 s->bi_buf = 0;
2949 s->bi_valid = 0;
2950 #ifdef DEBUG_ZLIB
2951 s->bits_sent = (s->bits_sent+7) & ~7;
2952 #endif
2953 }
2954
2955 /* ===========================================================================
2956 * Copy a stored block, storing first the length and its
2957 * one's complement if requested.
2958 */
2959 local void copy_block(s, buf, len, header)
2960 deflate_state *s;
2961 charf *buf; /* the input data */
2962 unsigned len; /* its length */
2963 int header; /* true if block header must be written */
2964 {
2965 bi_windup(s); /* align on byte boundary */
2966 s->last_eob_len = 8; /* enough lookahead for inflate */
2967
2968 if (header) {
2969 put_short(s, (ush)len);
2970 put_short(s, (ush)~len);
2971 #ifdef DEBUG_ZLIB
2972 s->bits_sent += 2*16;
2973 #endif
2974 }
2975 #ifdef DEBUG_ZLIB
2976 s->bits_sent += (ulg)len<<3;
2977 #endif
2978 /* bundle up the put_byte(s, *buf++) calls */
2979 zmemcpy(&s->pending_buf[s->pending], buf, len);
2980 s->pending += len;
2981 }
2982 /* --- trees.c */
2983
2984 /* +++ inflate.c */
2985 /* inflate.c -- zlib interface to inflate modules
2986 * Copyright (C) 1995-1996 Mark Adler
2987 * For conditions of distribution and use, see copyright notice in zlib.h
2988 */
2989
2990 /* #include "zutil.h" */
2991
2992 /* +++ infblock.h */
2993 /* infblock.h -- header to use infblock.c
2994 * Copyright (C) 1995-1996 Mark Adler
2995 * For conditions of distribution and use, see copyright notice in zlib.h
2996 */
2997
2998 /* WARNING: this file should *not* be used by applications. It is
2999 part of the implementation of the compression library and is
3000 subject to change. Applications should only use zlib.h.
3001 */
3002
3003 struct inflate_blocks_state;
3004 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3005
3006 extern inflate_blocks_statef * inflate_blocks_new OF((
3007 z_streamp z,
3008 check_func c, /* check function */
3009 uInt w)); /* window size */
3010
3011 extern int inflate_blocks OF((
3012 inflate_blocks_statef *,
3013 z_streamp ,
3014 int)); /* initial return code */
3015
3016 extern void inflate_blocks_reset OF((
3017 inflate_blocks_statef *,
3018 z_streamp ,
3019 uLongf *)); /* check value on output */
3020
3021 extern int inflate_blocks_free OF((
3022 inflate_blocks_statef *,
3023 z_streamp ,
3024 uLongf *)); /* check value on output */
3025
3026 extern void inflate_set_dictionary OF((
3027 inflate_blocks_statef *s,
3028 const Bytef *d, /* dictionary */
3029 uInt n)); /* dictionary length */
3030
3031 extern int inflate_addhistory OF((
3032 inflate_blocks_statef *,
3033 z_streamp));
3034
3035 extern int inflate_packet_flush OF((
3036 inflate_blocks_statef *));
3037 /* --- infblock.h */
3038
3039 #ifndef NO_DUMMY_DECL
3040 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3041 #endif
3042
3043 /* inflate private state */
3044 struct internal_state {
3045
3046 /* mode */
3047 enum {
3048 METHOD, /* waiting for method byte */
3049 FLAG, /* waiting for flag byte */
3050 DICT4, /* four dictionary check bytes to go */
3051 DICT3, /* three dictionary check bytes to go */
3052 DICT2, /* two dictionary check bytes to go */
3053 DICT1, /* one dictionary check byte to go */
3054 DICT0, /* waiting for inflateSetDictionary */
3055 BLOCKS, /* decompressing blocks */
3056 CHECK4, /* four check bytes to go */
3057 CHECK3, /* three check bytes to go */
3058 CHECK2, /* two check bytes to go */
3059 CHECK1, /* one check byte to go */
3060 DONE, /* finished check, done */
3061 BAD} /* got an error--stay here */
3062 mode; /* current inflate mode */
3063
3064 /* mode dependent information */
3065 union {
3066 uInt method; /* if FLAGS, method byte */
3067 struct {
3068 uLong was; /* computed check value */
3069 uLong need; /* stream check value */
3070 } check; /* if CHECK, check values to compare */
3071 uInt marker; /* if BAD, inflateSync's marker bytes count */
3072 } sub; /* submode */
3073
3074 /* mode independent information */
3075 int nowrap; /* flag for no wrapper */
3076 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3077 inflate_blocks_statef
3078 *blocks; /* current inflate_blocks state */
3079
3080 };
3081
3082
3083 int inflateReset(z)
3084 z_streamp z;
3085 {
3086 uLong c;
3087
3088 if (z == Z_NULL || z->state == Z_NULL)
3089 return Z_STREAM_ERROR;
3090 z->total_in = z->total_out = 0;
3091 z->msg = Z_NULL;
3092 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3093 inflate_blocks_reset(z->state->blocks, z, &c);
3094 Trace((stderr, "inflate: reset\n"));
3095 return Z_OK;
3096 }
3097
3098
3099 int inflateEnd(z)
3100 z_streamp z;
3101 {
3102 uLong c;
3103
3104 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3105 return Z_STREAM_ERROR;
3106 if (z->state->blocks != Z_NULL)
3107 inflate_blocks_free(z->state->blocks, z, &c);
3108 ZFREE(z, z->state);
3109 z->state = Z_NULL;
3110 Trace((stderr, "inflate: end\n"));
3111 return Z_OK;
3112 }
3113
3114
3115 int inflateInit2_(z, w, version, stream_size)
3116 z_streamp z;
3117 int w;
3118 const char *version;
3119 int stream_size;
3120 {
3121 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3122 stream_size != sizeof(z_stream))
3123 return Z_VERSION_ERROR;
3124
3125 /* initialize state */
3126 if (z == Z_NULL)
3127 return Z_STREAM_ERROR;
3128 z->msg = Z_NULL;
3129 #ifndef NO_ZCFUNCS
3130 if (z->zalloc == Z_NULL)
3131 {
3132 z->zalloc = zcalloc;
3133 z->opaque = (voidpf)0;
3134 }
3135 if (z->zfree == Z_NULL) z->zfree = zcfree;
3136 #endif
3137 if ((z->state = (struct internal_state FAR *)
3138 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3139 return Z_MEM_ERROR;
3140 z->state->blocks = Z_NULL;
3141
3142 /* handle undocumented nowrap option (no zlib header or check) */
3143 z->state->nowrap = 0;
3144 if (w < 0)
3145 {
3146 w = - w;
3147 z->state->nowrap = 1;
3148 }
3149
3150 /* set window size */
3151 if (w < 8 || w > 15)
3152 {
3153 inflateEnd(z);
3154 return Z_STREAM_ERROR;
3155 }
3156 z->state->wbits = (uInt)w;
3157
3158 /* create inflate_blocks state */
3159 if ((z->state->blocks =
3160 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3161 == Z_NULL)
3162 {
3163 inflateEnd(z);
3164 return Z_MEM_ERROR;
3165 }
3166 Trace((stderr, "inflate: allocated\n"));
3167
3168 /* reset state */
3169 inflateReset(z);
3170 return Z_OK;
3171 }
3172
3173
3174 int inflateInit_(z, version, stream_size)
3175 z_streamp z;
3176 const char *version;
3177 int stream_size;
3178 {
3179 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3180 }
3181
3182
3183 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3184 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3185
3186 int inflate(z, f)
3187 z_streamp z;
3188 int f;
3189 {
3190 int r;
3191 uInt b;
3192
3193 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3194 return Z_STREAM_ERROR;
3195 r = Z_BUF_ERROR;
3196 while (1) switch (z->state->mode)
3197 {
3198 case METHOD:
3199 NEEDBYTE
3200 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3201 {
3202 z->state->mode = BAD;
3203 z->msg = (char*)"unknown compression method";
3204 z->state->sub.marker = 5; /* can't try inflateSync */
3205 break;
3206 }
3207 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3208 {
3209 z->state->mode = BAD;
3210 z->msg = (char*)"invalid window size";
3211 z->state->sub.marker = 5; /* can't try inflateSync */
3212 break;
3213 }
3214 z->state->mode = FLAG;
3215 case FLAG:
3216 NEEDBYTE
3217 b = NEXTBYTE;
3218 if (((z->state->sub.method << 8) + b) % 31)
3219 {
3220 z->state->mode = BAD;
3221 z->msg = (char*)"incorrect header check";
3222 z->state->sub.marker = 5; /* can't try inflateSync */
3223 break;
3224 }
3225 Trace((stderr, "inflate: zlib header ok\n"));
3226 if (!(b & PRESET_DICT))
3227 {
3228 z->state->mode = BLOCKS;
3229 break;
3230 }
3231 z->state->mode = DICT4;
3232 case DICT4:
3233 NEEDBYTE
3234 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3235 z->state->mode = DICT3;
3236 case DICT3:
3237 NEEDBYTE
3238 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3239 z->state->mode = DICT2;
3240 case DICT2:
3241 NEEDBYTE
3242 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3243 z->state->mode = DICT1;
3244 case DICT1:
3245 NEEDBYTE
3246 z->state->sub.check.need += (uLong)NEXTBYTE;
3247 z->adler = z->state->sub.check.need;
3248 z->state->mode = DICT0;
3249 return Z_NEED_DICT;
3250 case DICT0:
3251 z->state->mode = BAD;
3252 z->msg = (char*)"need dictionary";
3253 z->state->sub.marker = 0; /* can try inflateSync */
3254 return Z_STREAM_ERROR;
3255 case BLOCKS:
3256 r = inflate_blocks(z->state->blocks, z, r);
3257 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3258 r = inflate_packet_flush(z->state->blocks);
3259 if (r == Z_DATA_ERROR)
3260 {
3261 z->state->mode = BAD;
3262 z->state->sub.marker = 0; /* can try inflateSync */
3263 break;
3264 }
3265 if (r != Z_STREAM_END)
3266 return r;
3267 r = Z_OK;
3268 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3269 if (z->state->nowrap)
3270 {
3271 z->state->mode = DONE;
3272 break;
3273 }
3274 z->state->mode = CHECK4;
3275 case CHECK4:
3276 NEEDBYTE
3277 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3278 z->state->mode = CHECK3;
3279 case CHECK3:
3280 NEEDBYTE
3281 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3282 z->state->mode = CHECK2;
3283 case CHECK2:
3284 NEEDBYTE
3285 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3286 z->state->mode = CHECK1;
3287 case CHECK1:
3288 NEEDBYTE
3289 z->state->sub.check.need += (uLong)NEXTBYTE;
3290
3291 if (z->state->sub.check.was != z->state->sub.check.need)
3292 {
3293 z->state->mode = BAD;
3294 z->msg = (char*)"incorrect data check";
3295 z->state->sub.marker = 5; /* can't try inflateSync */
3296 break;
3297 }
3298 Trace((stderr, "inflate: zlib check ok\n"));
3299 z->state->mode = DONE;
3300 case DONE:
3301 return Z_STREAM_END;
3302 case BAD:
3303 return Z_DATA_ERROR;
3304 default:
3305 return Z_STREAM_ERROR;
3306 }
3307
3308 empty:
3309 if (f != Z_PACKET_FLUSH)
3310 return r;
3311 z->state->mode = BAD;
3312 z->msg = (char *)"need more for packet flush";
3313 z->state->sub.marker = 0; /* can try inflateSync */
3314 return Z_DATA_ERROR;
3315 }
3316
3317
3318 int inflateSetDictionary(z, dictionary, dictLength)
3319 z_streamp z;
3320 const Bytef *dictionary;
3321 uInt dictLength;
3322 {
3323 uInt length = dictLength;
3324
3325 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3326 return Z_STREAM_ERROR;
3327
3328 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3329 z->adler = 1L;
3330
3331 if (length >= ((uInt)1<<z->state->wbits))
3332 {
3333 length = (1<<z->state->wbits)-1;
3334 dictionary += dictLength - length;
3335 }
3336 inflate_set_dictionary(z->state->blocks, dictionary, length);
3337 z->state->mode = BLOCKS;
3338 return Z_OK;
3339 }
3340
3341 /*
3342 * This subroutine adds the data at next_in/avail_in to the output history
3343 * without performing any output. The output buffer must be "caught up";
3344 * i.e. no pending output (hence s->read equals s->write), and the state must
3345 * be BLOCKS (i.e. we should be willing to see the start of a series of
3346 * BLOCKS). On exit, the output will also be caught up, and the checksum
3347 * will have been updated if need be.
3348 */
3349
3350 int inflateIncomp(z)
3351 z_stream *z;
3352 {
3353 if (z->state->mode != BLOCKS)
3354 return Z_DATA_ERROR;
3355 return inflate_addhistory(z->state->blocks, z);
3356 }
3357
3358
3359 int inflateSync(z)
3360 z_streamp z;
3361 {
3362 uInt n; /* number of bytes to look at */
3363 Bytef *p; /* pointer to bytes */
3364 uInt m; /* number of marker bytes found in a row */
3365 uLong r, w; /* temporaries to save total_in and total_out */
3366
3367 /* set up */
3368 if (z == Z_NULL || z->state == Z_NULL)
3369 return Z_STREAM_ERROR;
3370 if (z->state->mode != BAD)
3371 {
3372 z->state->mode = BAD;
3373 z->state->sub.marker = 0;
3374 }
3375 if ((n = z->avail_in) == 0)
3376 return Z_BUF_ERROR;
3377 p = z->next_in;
3378 m = z->state->sub.marker;
3379
3380 /* search */
3381 while (n && m < 4)
3382 {
3383 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3384 m++;
3385 else if (*p)
3386 m = 0;
3387 else
3388 m = 4 - m;
3389 p++, n--;
3390 }
3391
3392 /* restore */
3393 z->total_in += p - z->next_in;
3394 z->next_in = p;
3395 z->avail_in = n;
3396 z->state->sub.marker = m;
3397
3398 /* return no joy or set up to restart on a new block */
3399 if (m != 4)
3400 return Z_DATA_ERROR;
3401 r = z->total_in; w = z->total_out;
3402 inflateReset(z);
3403 z->total_in = r; z->total_out = w;
3404 z->state->mode = BLOCKS;
3405 return Z_OK;
3406 }
3407
3408 #undef NEEDBYTE
3409 #undef NEXTBYTE
3410 /* --- inflate.c */
3411
3412 /* +++ infblock.c */
3413 /* infblock.c -- interpret and process block types to last block
3414 * Copyright (C) 1995-1996 Mark Adler
3415 * For conditions of distribution and use, see copyright notice in zlib.h
3416 */
3417
3418 /* #include "zutil.h" */
3419 /* #include "infblock.h" */
3420
3421 /* +++ inftrees.h */
3422 /* inftrees.h -- header to use inftrees.c
3423 * Copyright (C) 1995-1996 Mark Adler
3424 * For conditions of distribution and use, see copyright notice in zlib.h
3425 */
3426
3427 /* WARNING: this file should *not* be used by applications. It is
3428 part of the implementation of the compression library and is
3429 subject to change. Applications should only use zlib.h.
3430 */
3431
3432 /* Huffman code lookup table entry--this entry is four bytes for machines
3433 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3434
3435 typedef struct inflate_huft_s FAR inflate_huft;
3436
3437 struct inflate_huft_s {
3438 union {
3439 struct {
3440 Byte Exop; /* number of extra bits or operation */
3441 Byte Bits; /* number of bits in this code or subcode */
3442 } what;
3443 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3444 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3445 union {
3446 uInt Base; /* literal, length base, or distance base */
3447 inflate_huft *Next; /* pointer to next level of table */
3448 } more;
3449 };
3450
3451 #ifdef DEBUG_ZLIB
3452 extern uInt inflate_hufts;
3453 #endif
3454
3455 extern int inflate_trees_bits OF((
3456 uIntf *, /* 19 code lengths */
3457 uIntf *, /* bits tree desired/actual depth */
3458 inflate_huft * FAR *, /* bits tree result */
3459 z_streamp )); /* for zalloc, zfree functions */
3460
3461 extern int inflate_trees_dynamic OF((
3462 uInt, /* number of literal/length codes */
3463 uInt, /* number of distance codes */
3464 uIntf *, /* that many (total) code lengths */
3465 uIntf *, /* literal desired/actual bit depth */
3466 uIntf *, /* distance desired/actual bit depth */
3467 inflate_huft * FAR *, /* literal/length tree result */
3468 inflate_huft * FAR *, /* distance tree result */
3469 z_streamp )); /* for zalloc, zfree functions */
3470
3471 extern int inflate_trees_fixed OF((
3472 uIntf *, /* literal desired/actual bit depth */
3473 uIntf *, /* distance desired/actual bit depth */
3474 inflate_huft * FAR *, /* literal/length tree result */
3475 inflate_huft * FAR *)); /* distance tree result */
3476
3477 extern int inflate_trees_free OF((
3478 inflate_huft *, /* tables to free */
3479 z_streamp )); /* for zfree function */
3480
3481 /* --- inftrees.h */
3482
3483 /* +++ infcodes.h */
3484 /* infcodes.h -- header to use infcodes.c
3485 * Copyright (C) 1995-1996 Mark Adler
3486 * For conditions of distribution and use, see copyright notice in zlib.h
3487 */
3488
3489 /* WARNING: this file should *not* be used by applications. It is
3490 part of the implementation of the compression library and is
3491 subject to change. Applications should only use zlib.h.
3492 */
3493
3494 struct inflate_codes_state;
3495 typedef struct inflate_codes_state FAR inflate_codes_statef;
3496
3497 extern inflate_codes_statef *inflate_codes_new OF((
3498 uInt, uInt,
3499 inflate_huft *, inflate_huft *,
3500 z_streamp ));
3501
3502 extern int inflate_codes OF((
3503 inflate_blocks_statef *,
3504 z_streamp ,
3505 int));
3506
3507 extern void inflate_codes_free OF((
3508 inflate_codes_statef *,
3509 z_streamp ));
3510
3511 /* --- infcodes.h */
3512
3513 /* +++ infutil.h */
3514 /* infutil.h -- types and macros common to blocks and codes
3515 * Copyright (C) 1995-1996 Mark Adler
3516 * For conditions of distribution and use, see copyright notice in zlib.h
3517 */
3518
3519 /* WARNING: this file should *not* be used by applications. It is
3520 part of the implementation of the compression library and is
3521 subject to change. Applications should only use zlib.h.
3522 */
3523
3524 #ifndef _INFUTIL_H
3525 #define _INFUTIL_H
3526
3527 typedef enum {
3528 TYPE, /* get type bits (3, including end bit) */
3529 LENS, /* get lengths for stored */
3530 STORED, /* processing stored block */
3531 TABLE, /* get table lengths */
3532 BTREE, /* get bit lengths tree for a dynamic block */
3533 DTREE, /* get length, distance trees for a dynamic block */
3534 CODES, /* processing fixed or dynamic block */
3535 DRY, /* output remaining window bytes */
3536 DONEB, /* finished last block, done */
3537 BADB} /* got a data error--stuck here */
3538 inflate_block_mode;
3539
3540 /* inflate blocks semi-private state */
3541 struct inflate_blocks_state {
3542
3543 /* mode */
3544 inflate_block_mode mode; /* current inflate_block mode */
3545
3546 /* mode dependent information */
3547 union {
3548 uInt left; /* if STORED, bytes left to copy */
3549 struct {
3550 uInt table; /* table lengths (14 bits) */
3551 uInt index; /* index into blens (or border) */
3552 uIntf *blens; /* bit lengths of codes */
3553 uInt bb; /* bit length tree depth */
3554 inflate_huft *tb; /* bit length decoding tree */
3555 } trees; /* if DTREE, decoding info for trees */
3556 struct {
3557 inflate_huft *tl;
3558 inflate_huft *td; /* trees to free */
3559 inflate_codes_statef
3560 *codes;
3561 } decode; /* if CODES, current state */
3562 } sub; /* submode */
3563 uInt last; /* true if this block is the last block */
3564
3565 /* mode independent information */
3566 uInt bitk; /* bits in bit buffer */
3567 uLong bitb; /* bit buffer */
3568 Bytef *window; /* sliding window */
3569 Bytef *end; /* one byte after sliding window */
3570 Bytef *read; /* window read pointer */
3571 Bytef *write; /* window write pointer */
3572 check_func checkfn; /* check function */
3573 uLong check; /* check on output */
3574
3575 };
3576
3577
3578 /* defines for inflate input/output */
3579 /* update pointers and return */
3580 #define UPDBITS {s->bitb=b;s->bitk=k;}
3581 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3582 #define UPDOUT {s->write=q;}
3583 #define UPDATE {UPDBITS UPDIN UPDOUT}
3584 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3585 /* get bytes and bits */
3586 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3587 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3588 #define NEXTBYTE (n--,*p++)
3589 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3590 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3591 /* output bytes */
3592 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3593 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3594 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3595 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3596 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3597 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3598 /* load local pointers */
3599 #define LOAD {LOADIN LOADOUT}
3600
3601 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3602 extern const uInt inflate_mask[17];
3603
3604 /* copy as much as possible from the sliding window to the output area */
3605 extern int inflate_flush OF((
3606 inflate_blocks_statef *,
3607 z_streamp ,
3608 int));
3609
3610 #ifndef NO_DUMMY_DECL
3611 struct internal_state {int dummy;}; /* for buggy compilers */
3612 #endif
3613
3614 #endif
3615 /* --- infutil.h */
3616
3617 #ifndef NO_DUMMY_DECL
3618 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3619 #endif
3620
3621 /* Table for deflate from PKZIP's appnote.txt. */
3622 local const uInt border[] = { /* Order of the bit length code lengths */
3623 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3624
3625 /*
3626 Notes beyond the 1.93a appnote.txt:
3627
3628 1. Distance pointers never point before the beginning of the output
3629 stream.
3630 2. Distance pointers can point back across blocks, up to 32k away.
3631 3. There is an implied maximum of 7 bits for the bit length table and
3632 15 bits for the actual data.
3633 4. If only one code exists, then it is encoded using one bit. (Zero
3634 would be more efficient, but perhaps a little confusing.) If two
3635 codes exist, they are coded using one bit each (0 and 1).
3636 5. There is no way of sending zero distance codes--a dummy must be
3637 sent if there are none. (History: a pre 2.0 version of PKZIP would
3638 store blocks with no distance codes, but this was discovered to be
3639 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3640 zero distance codes, which is sent as one code of zero bits in
3641 length.
3642 6. There are up to 286 literal/length codes. Code 256 represents the
3643 end-of-block. Note however that the static length tree defines
3644 288 codes just to fill out the Huffman codes. Codes 286 and 287
3645 cannot be used though, since there is no length base or extra bits
3646 defined for them. Similarily, there are up to 30 distance codes.
3647 However, static trees define 32 codes (all 5 bits) to fill out the
3648 Huffman codes, but the last two had better not show up in the data.
3649 7. Unzip can check dynamic Huffman blocks for complete code sets.
3650 The exception is that a single code would not be complete (see #4).
3651 8. The five bits following the block type is really the number of
3652 literal codes sent minus 257.
3653 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3654 (1+6+6). Therefore, to output three times the length, you output
3655 three codes (1+1+1), whereas to output four times the same length,
3656 you only need two codes (1+3). Hmm.
3657 10. In the tree reconstruction algorithm, Code = Code + Increment
3658 only if BitLength(i) is not zero. (Pretty obvious.)
3659 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3660 12. Note: length code 284 can represent 227-258, but length code 285
3661 really is 258. The last length deserves its own, short code
3662 since it gets used a lot in very redundant files. The length
3663 258 is special since 258 - 3 (the min match length) is 255.
3664 13. The literal/length and distance code bit lengths are read as a
3665 single stream of lengths. It is possible (and advantageous) for
3666 a repeat code (16, 17, or 18) to go across the boundary between
3667 the two sets of lengths.
3668 */
3669
3670
3671 void inflate_blocks_reset(s, z, c)
3672 inflate_blocks_statef *s;
3673 z_streamp z;
3674 uLongf *c;
3675 {
3676 if (s->checkfn != Z_NULL)
3677 *c = s->check;
3678 if (s->mode == BTREE || s->mode == DTREE)
3679 ZFREE(z, s->sub.trees.blens);
3680 if (s->mode == CODES)
3681 {
3682 inflate_codes_free(s->sub.decode.codes, z);
3683 inflate_trees_free(s->sub.decode.td, z);
3684 inflate_trees_free(s->sub.decode.tl, z);
3685 }
3686 s->mode = TYPE;
3687 s->bitk = 0;
3688 s->bitb = 0;
3689 s->read = s->write = s->window;
3690 if (s->checkfn != Z_NULL)
3691 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3692 Trace((stderr, "inflate: blocks reset\n"));
3693 }
3694
3695
3696 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3697 z_streamp z;
3698 check_func c;
3699 uInt w;
3700 {
3701 inflate_blocks_statef *s;
3702
3703 if ((s = (inflate_blocks_statef *)ZALLOC
3704 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3705 return s;
3706 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3707 {
3708 ZFREE(z, s);
3709 return Z_NULL;
3710 }
3711 s->end = s->window + w;
3712 s->checkfn = c;
3713 s->mode = TYPE;
3714 Trace((stderr, "inflate: blocks allocated\n"));
3715 inflate_blocks_reset(s, z, &s->check);
3716 return s;
3717 }
3718
3719
3720 #ifdef DEBUG_ZLIB
3721 extern uInt inflate_hufts;
3722 #endif
3723 int inflate_blocks(s, z, r)
3724 inflate_blocks_statef *s;
3725 z_streamp z;
3726 int r;
3727 {
3728 uInt t; /* temporary storage */
3729 uLong b; /* bit buffer */
3730 uInt k; /* bits in bit buffer */
3731 Bytef *p; /* input data pointer */
3732 uInt n; /* bytes available there */
3733 Bytef *q; /* output window write pointer */
3734 uInt m; /* bytes to end of window or read pointer */
3735
3736 /* copy input/output information to locals (UPDATE macro restores) */
3737 LOAD
3738
3739 /* process input based on current state */
3740 while (1) switch (s->mode)
3741 {
3742 case TYPE:
3743 NEEDBITS(3)
3744 t = (uInt)b & 7;
3745 s->last = t & 1;
3746 switch (t >> 1)
3747 {
3748 case 0: /* stored */
3749 Trace((stderr, "inflate: stored block%s\n",
3750 s->last ? " (last)" : ""));
3751 DUMPBITS(3)
3752 t = k & 7; /* go to byte boundary */
3753 DUMPBITS(t)
3754 s->mode = LENS; /* get length of stored block */
3755 break;
3756 case 1: /* fixed */
3757 Trace((stderr, "inflate: fixed codes block%s\n",
3758 s->last ? " (last)" : ""));
3759 {
3760 uInt bl, bd;
3761 inflate_huft *tl, *td;
3762
3763 inflate_trees_fixed(&bl, &bd, &tl, &td);
3764 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3765 if (s->sub.decode.codes == Z_NULL)
3766 {
3767 r = Z_MEM_ERROR;
3768 LEAVE
3769 }
3770 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3771 s->sub.decode.td = Z_NULL;
3772 }
3773 DUMPBITS(3)
3774 s->mode = CODES;
3775 break;
3776 case 2: /* dynamic */
3777 Trace((stderr, "inflate: dynamic codes block%s\n",
3778 s->last ? " (last)" : ""));
3779 DUMPBITS(3)
3780 s->mode = TABLE;
3781 break;
3782 case 3: /* illegal */
3783 DUMPBITS(3)
3784 s->mode = BADB;
3785 z->msg = (char*)"invalid block type";
3786 r = Z_DATA_ERROR;
3787 LEAVE
3788 }
3789 break;
3790 case LENS:
3791 NEEDBITS(32)
3792 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3793 {
3794 s->mode = BADB;
3795 z->msg = (char*)"invalid stored block lengths";
3796 r = Z_DATA_ERROR;
3797 LEAVE
3798 }
3799 s->sub.left = (uInt)b & 0xffff;
3800 b = k = 0; /* dump bits */
3801 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3802 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3803 break;
3804 case STORED:
3805 if (n == 0)
3806 LEAVE
3807 NEEDOUT
3808 t = s->sub.left;
3809 if (t > n) t = n;
3810 if (t > m) t = m;
3811 zmemcpy(q, p, t);
3812 p += t; n -= t;
3813 q += t; m -= t;
3814 if ((s->sub.left -= t) != 0)
3815 break;
3816 Tracev((stderr, "inflate: stored end, %lu total out\n",
3817 z->total_out + (q >= s->read ? q - s->read :
3818 (s->end - s->read) + (q - s->window))));
3819 s->mode = s->last ? DRY : TYPE;
3820 break;
3821 case TABLE:
3822 NEEDBITS(14)
3823 s->sub.trees.table = t = (uInt)b & 0x3fff;
3824 #ifndef PKZIP_BUG_WORKAROUND
3825 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3826 {
3827 s->mode = BADB;
3828 z->msg = (char*)"too many length or distance symbols";
3829 r = Z_DATA_ERROR;
3830 LEAVE
3831 }
3832 #endif
3833 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3834 if (t < 19)
3835 t = 19;
3836 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3837 {
3838 r = Z_MEM_ERROR;
3839 LEAVE
3840 }
3841 DUMPBITS(14)
3842 s->sub.trees.index = 0;
3843 Tracev((stderr, "inflate: table sizes ok\n"));
3844 s->mode = BTREE;
3845 case BTREE:
3846 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3847 {
3848 NEEDBITS(3)
3849 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3850 DUMPBITS(3)
3851 }
3852 while (s->sub.trees.index < 19)
3853 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3854 s->sub.trees.bb = 7;
3855 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3856 &s->sub.trees.tb, z);
3857 if (t != Z_OK)
3858 {
3859 ZFREE(z, s->sub.trees.blens);
3860 r = t;
3861 if (r == Z_DATA_ERROR)
3862 s->mode = BADB;
3863 LEAVE
3864 }
3865 s->sub.trees.index = 0;
3866 Tracev((stderr, "inflate: bits tree ok\n"));
3867 s->mode = DTREE;
3868 case DTREE:
3869 while (t = s->sub.trees.table,
3870 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3871 {
3872 inflate_huft *h;
3873 uInt i, j, c;
3874
3875 t = s->sub.trees.bb;
3876 NEEDBITS(t)
3877 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3878 t = h->word.what.Bits;
3879 c = h->more.Base;
3880 if (c < 16)
3881 {
3882 DUMPBITS(t)
3883 s->sub.trees.blens[s->sub.trees.index++] = c;
3884 }
3885 else /* c == 16..18 */
3886 {
3887 i = c == 18 ? 7 : c - 14;
3888 j = c == 18 ? 11 : 3;
3889 NEEDBITS(t + i)
3890 DUMPBITS(t)
3891 j += (uInt)b & inflate_mask[i];
3892 DUMPBITS(i)
3893 i = s->sub.trees.index;
3894 t = s->sub.trees.table;
3895 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3896 (c == 16 && i < 1))
3897 {
3898 inflate_trees_free(s->sub.trees.tb, z);
3899 ZFREE(z, s->sub.trees.blens);
3900 s->mode = BADB;
3901 z->msg = (char*)"invalid bit length repeat";
3902 r = Z_DATA_ERROR;
3903 LEAVE
3904 }
3905 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3906 do {
3907 s->sub.trees.blens[i++] = c;
3908 } while (--j);
3909 s->sub.trees.index = i;
3910 }
3911 }
3912 inflate_trees_free(s->sub.trees.tb, z);
3913 s->sub.trees.tb = Z_NULL;
3914 {
3915 uInt bl, bd;
3916 inflate_huft *tl, *td;
3917 inflate_codes_statef *c;
3918
3919 bl = 9; /* must be <= 9 for lookahead assumptions */
3920 bd = 6; /* must be <= 9 for lookahead assumptions */
3921 t = s->sub.trees.table;
3922 #ifdef DEBUG_ZLIB
3923 inflate_hufts = 0;
3924 #endif
3925 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3926 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3927 ZFREE(z, s->sub.trees.blens);
3928 if (t != Z_OK)
3929 {
3930 if (t == (uInt)Z_DATA_ERROR)
3931 s->mode = BADB;
3932 r = t;
3933 LEAVE
3934 }
3935 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3936 inflate_hufts, sizeof(inflate_huft)));
3937 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3938 {
3939 inflate_trees_free(td, z);
3940 inflate_trees_free(tl, z);
3941 r = Z_MEM_ERROR;
3942 LEAVE
3943 }
3944 s->sub.decode.codes = c;
3945 s->sub.decode.tl = tl;
3946 s->sub.decode.td = td;
3947 }
3948 s->mode = CODES;
3949 case CODES:
3950 UPDATE
3951 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3952 return inflate_flush(s, z, r);
3953 r = Z_OK;
3954 inflate_codes_free(s->sub.decode.codes, z);
3955 inflate_trees_free(s->sub.decode.td, z);
3956 inflate_trees_free(s->sub.decode.tl, z);
3957 LOAD
3958 Tracev((stderr, "inflate: codes end, %lu total out\n",
3959 z->total_out + (q >= s->read ? q - s->read :
3960 (s->end - s->read) + (q - s->window))));
3961 if (!s->last)
3962 {
3963 s->mode = TYPE;
3964 break;
3965 }
3966 if (k > 7) /* return unused byte, if any */
3967 {
3968 Assert(k < 16, "inflate_codes grabbed too many bytes")
3969 k -= 8;
3970 n++;
3971 p--; /* can always return one */
3972 }
3973 s->mode = DRY;
3974 case DRY:
3975 FLUSH
3976 if (s->read != s->write)
3977 LEAVE
3978 s->mode = DONEB;
3979 case DONEB:
3980 r = Z_STREAM_END;
3981 LEAVE
3982 case BADB:
3983 r = Z_DATA_ERROR;
3984 LEAVE
3985 default:
3986 r = Z_STREAM_ERROR;
3987 LEAVE
3988 }
3989 }
3990
3991
3992 int inflate_blocks_free(s, z, c)
3993 inflate_blocks_statef *s;
3994 z_streamp z;
3995 uLongf *c;
3996 {
3997 inflate_blocks_reset(s, z, c);
3998 ZFREE(z, s->window);
3999 ZFREE(z, s);
4000 Trace((stderr, "inflate: blocks freed\n"));
4001 return Z_OK;
4002 }
4003
4004
4005 void inflate_set_dictionary(s, d, n)
4006 inflate_blocks_statef *s;
4007 const Bytef *d;
4008 uInt n;
4009 {
4010 zmemcpy((charf *)s->window, d, n);
4011 s->read = s->write = s->window + n;
4012 }
4013
4014 /*
4015 * This subroutine adds the data at next_in/avail_in to the output history
4016 * without performing any output. The output buffer must be "caught up";
4017 * i.e. no pending output (hence s->read equals s->write), and the state must
4018 * be BLOCKS (i.e. we should be willing to see the start of a series of
4019 * BLOCKS). On exit, the output will also be caught up, and the checksum
4020 * will have been updated if need be.
4021 */
4022 int inflate_addhistory(s, z)
4023 inflate_blocks_statef *s;
4024 z_stream *z;
4025 {
4026 uLong b; /* bit buffer */ /* NOT USED HERE */
4027 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4028 uInt t; /* temporary storage */
4029 Bytef *p; /* input data pointer */
4030 uInt n; /* bytes available there */
4031 Bytef *q; /* output window write pointer */
4032 uInt m; /* bytes to end of window or read pointer */
4033
4034 if (s->read != s->write)
4035 return Z_STREAM_ERROR;
4036 if (s->mode != TYPE)
4037 return Z_DATA_ERROR;
4038
4039 /* we're ready to rock */
4040 LOAD
4041 /* while there is input ready, copy to output buffer, moving
4042 * pointers as needed.
4043 */
4044 while (n) {
4045 t = n; /* how many to do */
4046 /* is there room until end of buffer? */
4047 if (t > m) t = m;
4048 /* update check information */
4049 if (s->checkfn != Z_NULL)
4050 s->check = (*s->checkfn)(s->check, q, t);
4051 zmemcpy(q, p, t);
4052 q += t;
4053 p += t;
4054 n -= t;
4055 z->total_out += t;
4056 s->read = q; /* drag read pointer forward */
4057 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4058 if (q == s->end) {
4059 s->read = q = s->window;
4060 m = WAVAIL;
4061 }
4062 }
4063 UPDATE
4064 return Z_OK;
4065 }
4066
4067
4068 /*
4069 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4070 * a `stored' block type value but not the (zero) length bytes.
4071 */
4072 int inflate_packet_flush(s)
4073 inflate_blocks_statef *s;
4074 {
4075 if (s->mode != LENS)
4076 return Z_DATA_ERROR;
4077 s->mode = TYPE;
4078 return Z_OK;
4079 }
4080 /* --- infblock.c */
4081
4082 /* +++ inftrees.c */
4083 /* inftrees.c -- generate Huffman trees for efficient decoding
4084 * Copyright (C) 1995-1996 Mark Adler
4085 * For conditions of distribution and use, see copyright notice in zlib.h
4086 */
4087
4088 /* #include "zutil.h" */
4089 /* #include "inftrees.h" */
4090
4091 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4092 /*
4093 If you use the zlib library in a product, an acknowledgment is welcome
4094 in the documentation of your product. If for some reason you cannot
4095 include such an acknowledgment, I would appreciate that you keep this
4096 copyright string in the executable of your product.
4097 */
4098
4099 #ifndef NO_DUMMY_DECL
4100 struct internal_state {int dummy;}; /* for buggy compilers */
4101 #endif
4102
4103 /* simplify the use of the inflate_huft type with some defines */
4104 #define base more.Base
4105 #define next more.Next
4106 #define exop word.what.Exop
4107 #define bits word.what.Bits
4108
4109
4110 local int huft_build OF((
4111 uIntf *, /* code lengths in bits */
4112 uInt, /* number of codes */
4113 uInt, /* number of "simple" codes */
4114 const uIntf *, /* list of base values for non-simple codes */
4115 const uIntf *, /* list of extra bits for non-simple codes */
4116 inflate_huft * FAR*,/* result: starting table */
4117 uIntf *, /* maximum lookup bits (returns actual) */
4118 z_streamp )); /* for zalloc function */
4119
4120 local voidpf falloc OF((
4121 voidpf, /* opaque pointer (not used) */
4122 uInt, /* number of items */
4123 uInt)); /* size of item */
4124
4125 /* Tables for deflate from PKZIP's appnote.txt. */
4126 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4127 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4128 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4129 /* see note #13 above about 258 */
4130 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4131 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4132 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4133 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4134 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4135 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4136 8193, 12289, 16385, 24577};
4137 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4138 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4139 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4140 12, 12, 13, 13};
4141
4142 /*
4143 Huffman code decoding is performed using a multi-level table lookup.
4144 The fastest way to decode is to simply build a lookup table whose
4145 size is determined by the longest code. However, the time it takes
4146 to build this table can also be a factor if the data being decoded
4147 is not very long. The most common codes are necessarily the
4148 shortest codes, so those codes dominate the decoding time, and hence
4149 the speed. The idea is you can have a shorter table that decodes the
4150 shorter, more probable codes, and then point to subsidiary tables for
4151 the longer codes. The time it costs to decode the longer codes is
4152 then traded against the time it takes to make longer tables.
4153
4154 This results of this trade are in the variables lbits and dbits
4155 below. lbits is the number of bits the first level table for literal/
4156 length codes can decode in one step, and dbits is the same thing for
4157 the distance codes. Subsequent tables are also less than or equal to
4158 those sizes. These values may be adjusted either when all of the
4159 codes are shorter than that, in which case the longest code length in
4160 bits is used, or when the shortest code is *longer* than the requested
4161 table size, in which case the length of the shortest code in bits is
4162 used.
4163
4164 There are two different values for the two tables, since they code a
4165 different number of possibilities each. The literal/length table
4166 codes 286 possible values, or in a flat code, a little over eight
4167 bits. The distance table codes 30 possible values, or a little less
4168 than five bits, flat. The optimum values for speed end up being
4169 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4170 The optimum values may differ though from machine to machine, and
4171 possibly even between compilers. Your mileage may vary.
4172 */
4173
4174
4175 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4176 #define BMAX 15 /* maximum bit length of any code */
4177 #define N_MAX 288 /* maximum number of codes in any set */
4178
4179 #ifdef DEBUG_ZLIB
4180 uInt inflate_hufts;
4181 #endif
4182
4183 local int huft_build(b, n, s, d, e, t, m, zs)
4184 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4185 uInt n; /* number of codes (assumed <= N_MAX) */
4186 uInt s; /* number of simple-valued codes (0..s-1) */
4187 const uIntf *d; /* list of base values for non-simple codes */
4188 const uIntf *e; /* list of extra bits for non-simple codes */
4189 inflate_huft * FAR *t; /* result: starting table */
4190 uIntf *m; /* maximum lookup bits, returns actual */
4191 z_streamp zs; /* for zalloc function */
4192 /* Given a list of code lengths and a maximum table size, make a set of
4193 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4194 if the given code set is incomplete (the tables are still built in this
4195 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4196 lengths), or Z_MEM_ERROR if not enough memory. */
4197 {
4198
4199 uInt a; /* counter for codes of length k */
4200 uInt c[BMAX+1]; /* bit length count table */
4201 uInt f; /* i repeats in table every f entries */
4202 int g; /* maximum code length */
4203 int h; /* table level */
4204 uInt i; /* counter, current code */
4205 uInt j; /* counter */
4206 int k; /* number of bits in current code */
4207 int l; /* bits per table (returned in m) */
4208 uIntf *p; /* pointer into c[], b[], or v[] */
4209 inflate_huft *q; /* points to current table */
4210 struct inflate_huft_s r; /* table entry for structure assignment */
4211 inflate_huft *u[BMAX]; /* table stack */
4212 uInt v[N_MAX]; /* values in order of bit length */
4213 int w; /* bits before this table == (l * h) */
4214 uInt x[BMAX+1]; /* bit offsets, then code stack */
4215 uIntf *xp; /* pointer into x */
4216 int y; /* number of dummy codes added */
4217 uInt z; /* number of entries in current table */
4218
4219
4220 /* Generate counts for each bit length */
4221 p = c;
4222 #define C0 *p++ = 0;
4223 #define C2 C0 C0 C0 C0
4224 #define C4 C2 C2 C2 C2
4225 C4 /* clear c[]--assume BMAX+1 is 16 */
4226 p = b; i = n;
4227 do {
4228 c[*p++]++; /* assume all entries <= BMAX */
4229 } while (--i);
4230 if (c[0] == n) /* null input--all zero length codes */
4231 {
4232 *t = (inflate_huft *)Z_NULL;
4233 *m = 0;
4234 return Z_OK;
4235 }
4236
4237
4238 /* Find minimum and maximum length, bound *m by those */
4239 l = *m;
4240 for (j = 1; j <= BMAX; j++)
4241 if (c[j])
4242 break;
4243 k = j; /* minimum code length */
4244 if ((uInt)l < j)
4245 l = j;
4246 for (i = BMAX; i; i--)
4247 if (c[i])
4248 break;
4249 g = i; /* maximum code length */
4250 if ((uInt)l > i)
4251 l = i;
4252 *m = l;
4253
4254
4255 /* Adjust last length count to fill out codes, if needed */
4256 for (y = 1 << j; j < i; j++, y <<= 1)
4257 if ((y -= c[j]) < 0)
4258 return Z_DATA_ERROR;
4259 if ((y -= c[i]) < 0)
4260 return Z_DATA_ERROR;
4261 c[i] += y;
4262
4263
4264 /* Generate starting offsets into the value table for each length */
4265 x[1] = j = 0;
4266 p = c + 1; xp = x + 2;
4267 while (--i) { /* note that i == g from above */
4268 *xp++ = (j += *p++);
4269 }
4270
4271
4272 /* Make a table of values in order of bit lengths */
4273 p = b; i = 0;
4274 do {
4275 if ((j = *p++) != 0)
4276 v[x[j]++] = i;
4277 } while (++i < n);
4278 n = x[g]; /* set n to length of v */
4279
4280
4281 /* Generate the Huffman codes and for each, make the table entries */
4282 x[0] = i = 0; /* first Huffman code is zero */
4283 p = v; /* grab values in bit order */
4284 h = -1; /* no tables yet--level -1 */
4285 w = -l; /* bits decoded == (l * h) */
4286 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4287 q = (inflate_huft *)Z_NULL; /* ditto */
4288 z = 0; /* ditto */
4289
4290 /* go through the bit lengths (k already is bits in shortest code) */
4291 for (; k <= g; k++)
4292 {
4293 a = c[k];
4294 while (a--)
4295 {
4296 /* here i is the Huffman code of length k bits for value *p */
4297 /* make tables up to required level */
4298 while (k > w + l)
4299 {
4300 h++;
4301 w += l; /* previous table always l bits */
4302
4303 /* compute minimum size table less than or equal to l bits */
4304 z = g - w;
4305 z = z > (uInt)l ? l : z; /* table size upper limit */
4306 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4307 { /* too few codes for k-w bit table */
4308 f -= a + 1; /* deduct codes from patterns left */
4309 xp = c + k;
4310 if (j < z)
4311 while (++j < z) /* try smaller tables up to z bits */
4312 {
4313 if ((f <<= 1) <= *++xp)
4314 break; /* enough codes to use up j bits */
4315 f -= *xp; /* else deduct codes from patterns */
4316 }
4317 }
4318 z = 1 << j; /* table entries for j-bit table */
4319
4320 /* allocate and link in new table */
4321 if ((q = (inflate_huft *)ZALLOC
4322 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4323 {
4324 if (h)
4325 inflate_trees_free(u[0], zs);
4326 return Z_MEM_ERROR; /* not enough memory */
4327 }
4328 #ifdef DEBUG_ZLIB
4329 inflate_hufts += z + 1;
4330 #endif
4331 *t = q + 1; /* link to list for huft_free() */
4332 *(t = &(q->next)) = Z_NULL;
4333 u[h] = ++q; /* table starts after link */
4334
4335 /* connect to last table, if there is one */
4336 if (h)
4337 {
4338 x[h] = i; /* save pattern for backing up */
4339 r.bits = (Byte)l; /* bits to dump before this table */
4340 r.exop = (Byte)j; /* bits in this table */
4341 r.next = q; /* pointer to this table */
4342 j = i >> (w - l); /* (get around Turbo C bug) */
4343 u[h-1][j] = r; /* connect to last table */
4344 }
4345 }
4346
4347 /* set up table entry in r */
4348 r.bits = (Byte)(k - w);
4349 if (p >= v + n)
4350 r.exop = 128 + 64; /* out of values--invalid code */
4351 else if (*p < s)
4352 {
4353 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4354 r.base = *p++; /* simple code is just the value */
4355 }
4356 else
4357 {
4358 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4359 r.base = d[*p++ - s];
4360 }
4361
4362 /* fill code-like entries with r */
4363 f = 1 << (k - w);
4364 for (j = i >> w; j < z; j += f)
4365 q[j] = r;
4366
4367 /* backwards increment the k-bit code i */
4368 for (j = 1 << (k - 1); i & j; j >>= 1)
4369 i ^= j;
4370 i ^= j;
4371
4372 /* backup over finished tables */
4373 while ((i & ((1 << w) - 1)) != x[h])
4374 {
4375 h--; /* don't need to update q */
4376 w -= l;
4377 }
4378 }
4379 }
4380
4381
4382 /* Return Z_BUF_ERROR if we were given an incomplete table */
4383 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4384 }
4385
4386
4387 int inflate_trees_bits(c, bb, tb, z)
4388 uIntf *c; /* 19 code lengths */
4389 uIntf *bb; /* bits tree desired/actual depth */
4390 inflate_huft * FAR *tb; /* bits tree result */
4391 z_streamp z; /* for zfree function */
4392 {
4393 int r;
4394
4395 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4396 if (r == Z_DATA_ERROR)
4397 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4398 else if (r == Z_BUF_ERROR || *bb == 0)
4399 {
4400 inflate_trees_free(*tb, z);
4401 z->msg = (char*)"incomplete dynamic bit lengths tree";
4402 r = Z_DATA_ERROR;
4403 }
4404 return r;
4405 }
4406
4407
4408 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4409 uInt nl; /* number of literal/length codes */
4410 uInt nd; /* number of distance codes */
4411 uIntf *c; /* that many (total) code lengths */
4412 uIntf *bl; /* literal desired/actual bit depth */
4413 uIntf *bd; /* distance desired/actual bit depth */
4414 inflate_huft * FAR *tl; /* literal/length tree result */
4415 inflate_huft * FAR *td; /* distance tree result */
4416 z_streamp z; /* for zfree function */
4417 {
4418 int r;
4419
4420 /* build literal/length tree */
4421 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4422 if (r != Z_OK || *bl == 0)
4423 {
4424 if (r == Z_DATA_ERROR)
4425 z->msg = (char*)"oversubscribed literal/length tree";
4426 else if (r != Z_MEM_ERROR)
4427 {
4428 inflate_trees_free(*tl, z);
4429 z->msg = (char*)"incomplete literal/length tree";
4430 r = Z_DATA_ERROR;
4431 }
4432 return r;
4433 }
4434
4435 /* build distance tree */
4436 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4437 if (r != Z_OK || (*bd == 0 && nl > 257))
4438 {
4439 if (r == Z_DATA_ERROR)
4440 z->msg = (char*)"oversubscribed distance tree";
4441 else if (r == Z_BUF_ERROR) {
4442 #ifdef PKZIP_BUG_WORKAROUND
4443 r = Z_OK;
4444 }
4445 #else
4446 inflate_trees_free(*td, z);
4447 z->msg = (char*)"incomplete distance tree";
4448 r = Z_DATA_ERROR;
4449 }
4450 else if (r != Z_MEM_ERROR)
4451 {
4452 z->msg = (char*)"empty distance tree with lengths";
4453 r = Z_DATA_ERROR;
4454 }
4455 inflate_trees_free(*tl, z);
4456 return r;
4457 #endif
4458 }
4459
4460 /* done */
4461 return Z_OK;
4462 }
4463
4464
4465 /* build fixed tables only once--keep them here */
4466 local int fixed_built = 0;
4467 #define FIXEDH 530 /* number of hufts used by fixed tables */
4468 local inflate_huft fixed_mem[FIXEDH];
4469 local uInt fixed_bl;
4470 local uInt fixed_bd;
4471 local inflate_huft *fixed_tl;
4472 local inflate_huft *fixed_td;
4473
4474
4475 local voidpf falloc(q, n, s)
4476 voidpf q; /* opaque pointer */
4477 uInt n; /* number of items */
4478 uInt s; /* size of item */
4479 {
4480 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4481 "inflate_trees falloc overflow");
4482 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4483 return (voidpf)(fixed_mem + *(intf *)q);
4484 }
4485
4486
4487 int inflate_trees_fixed(bl, bd, tl, td)
4488 uIntf *bl; /* literal desired/actual bit depth */
4489 uIntf *bd; /* distance desired/actual bit depth */
4490 inflate_huft * FAR *tl; /* literal/length tree result */
4491 inflate_huft * FAR *td; /* distance tree result */
4492 {
4493 /* build fixed tables if not already (multiple overlapped executions ok) */
4494 if (!fixed_built)
4495 {
4496 int k; /* temporary variable */
4497 unsigned c[288]; /* length list for huft_build */
4498 z_stream z; /* for falloc function */
4499 int f = FIXEDH; /* number of hufts left in fixed_mem */
4500
4501 /* set up fake z_stream for memory routines */
4502 z.zalloc = falloc;
4503 z.zfree = Z_NULL;
4504 z.opaque = (voidpf)&f;
4505
4506 /* literal table */
4507 for (k = 0; k < 144; k++)
4508 c[k] = 8;
4509 for (; k < 256; k++)
4510 c[k] = 9;
4511 for (; k < 280; k++)
4512 c[k] = 7;
4513 for (; k < 288; k++)
4514 c[k] = 8;
4515 fixed_bl = 7;
4516 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4517
4518 /* distance table */
4519 for (k = 0; k < 30; k++)
4520 c[k] = 5;
4521 fixed_bd = 5;
4522 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4523
4524 /* done */
4525 Assert(f == 0, "invalid build of fixed tables");
4526 fixed_built = 1;
4527 }
4528 *bl = fixed_bl;
4529 *bd = fixed_bd;
4530 *tl = fixed_tl;
4531 *td = fixed_td;
4532 return Z_OK;
4533 }
4534
4535
4536 int inflate_trees_free(t, z)
4537 inflate_huft *t; /* table to free */
4538 z_streamp z; /* for zfree function */
4539 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4540 list of the tables it made, with the links in a dummy first entry of
4541 each table. */
4542 {
4543 inflate_huft *p, *q, *r;
4544
4545 /* Reverse linked list */
4546 p = Z_NULL;
4547 q = t;
4548 while (q != Z_NULL)
4549 {
4550 r = (q - 1)->next;
4551 (q - 1)->next = p;
4552 p = q;
4553 q = r;
4554 }
4555 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4556 while (p != Z_NULL)
4557 {
4558 q = (--p)->next;
4559 ZFREE(z,p);
4560 p = q;
4561 }
4562 return Z_OK;
4563 }
4564 /* --- inftrees.c */
4565
4566 /* +++ infcodes.c */
4567 /* infcodes.c -- process literals and length/distance pairs
4568 * Copyright (C) 1995-1996 Mark Adler
4569 * For conditions of distribution and use, see copyright notice in zlib.h
4570 */
4571
4572 /* #include "zutil.h" */
4573 /* #include "inftrees.h" */
4574 /* #include "infblock.h" */
4575 /* #include "infcodes.h" */
4576 /* #include "infutil.h" */
4577
4578 /* +++ inffast.h */
4579 /* inffast.h -- header to use inffast.c
4580 * Copyright (C) 1995-1996 Mark Adler
4581 * For conditions of distribution and use, see copyright notice in zlib.h
4582 */
4583
4584 /* WARNING: this file should *not* be used by applications. It is
4585 part of the implementation of the compression library and is
4586 subject to change. Applications should only use zlib.h.
4587 */
4588
4589 extern int inflate_fast OF((
4590 uInt,
4591 uInt,
4592 inflate_huft *,
4593 inflate_huft *,
4594 inflate_blocks_statef *,
4595 z_streamp ));
4596 /* --- inffast.h */
4597
4598 /* simplify the use of the inflate_huft type with some defines */
4599 #define base more.Base
4600 #define next more.Next
4601 #define exop word.what.Exop
4602 #define bits word.what.Bits
4603
4604 /* inflate codes private state */
4605 struct inflate_codes_state {
4606
4607 /* mode */
4608 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4609 START, /* x: set up for LEN */
4610 LEN, /* i: get length/literal/eob next */
4611 LENEXT, /* i: getting length extra (have base) */
4612 DIST, /* i: get distance next */
4613 DISTEXT, /* i: getting distance extra */
4614 COPY, /* o: copying bytes in window, waiting for space */
4615 LIT, /* o: got literal, waiting for output space */
4616 WASH, /* o: got eob, possibly still output waiting */
4617 END, /* x: got eob and all data flushed */
4618 BADCODE} /* x: got error */
4619 mode; /* current inflate_codes mode */
4620
4621 /* mode dependent information */
4622 uInt len;
4623 union {
4624 struct {
4625 inflate_huft *tree; /* pointer into tree */
4626 uInt need; /* bits needed */
4627 } code; /* if LEN or DIST, where in tree */
4628 uInt lit; /* if LIT, literal */
4629 struct {
4630 uInt get; /* bits to get for extra */
4631 uInt dist; /* distance back to copy from */
4632 } copy; /* if EXT or COPY, where and how much */
4633 } sub; /* submode */
4634
4635 /* mode independent information */
4636 Byte lbits; /* ltree bits decoded per branch */
4637 Byte dbits; /* dtree bits decoder per branch */
4638 inflate_huft *ltree; /* literal/length/eob tree */
4639 inflate_huft *dtree; /* distance tree */
4640
4641 };
4642
4643
4644 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4645 uInt bl, bd;
4646 inflate_huft *tl;
4647 inflate_huft *td; /* need separate declaration for Borland C++ */
4648 z_streamp z;
4649 {
4650 inflate_codes_statef *c;
4651
4652 if ((c = (inflate_codes_statef *)
4653 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4654 {
4655 c->mode = START;
4656 c->lbits = (Byte)bl;
4657 c->dbits = (Byte)bd;
4658 c->ltree = tl;
4659 c->dtree = td;
4660 Tracev((stderr, "inflate: codes new\n"));
4661 }
4662 return c;
4663 }
4664
4665
4666 int inflate_codes(s, z, r)
4667 inflate_blocks_statef *s;
4668 z_streamp z;
4669 int r;
4670 {
4671 uInt j; /* temporary storage */
4672 inflate_huft *t; /* temporary pointer */
4673 uInt e; /* extra bits or operation */
4674 uLong b; /* bit buffer */
4675 uInt k; /* bits in bit buffer */
4676 Bytef *p; /* input data pointer */
4677 uInt n; /* bytes available there */
4678 Bytef *q; /* output window write pointer */
4679 uInt m; /* bytes to end of window or read pointer */
4680 Bytef *f; /* pointer to copy strings from */
4681 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4682
4683 /* copy input/output information to locals (UPDATE macro restores) */
4684 LOAD
4685
4686 /* process input and output based on current state */
4687 while (1) switch (c->mode)
4688 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4689 case START: /* x: set up for LEN */
4690 #ifndef SLOW
4691 if (m >= 258 && n >= 10)
4692 {
4693 UPDATE
4694 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4695 LOAD
4696 if (r != Z_OK)
4697 {
4698 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4699 break;
4700 }
4701 }
4702 #endif /* !SLOW */
4703 c->sub.code.need = c->lbits;
4704 c->sub.code.tree = c->ltree;
4705 c->mode = LEN;
4706 case LEN: /* i: get length/literal/eob next */
4707 j = c->sub.code.need;
4708 NEEDBITS(j)
4709 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4710 DUMPBITS(t->bits)
4711 e = (uInt)(t->exop);
4712 if (e == 0) /* literal */
4713 {
4714 c->sub.lit = t->base;
4715 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4716 "inflate: literal '%c'\n" :
4717 "inflate: literal 0x%02x\n", t->base));
4718 c->mode = LIT;
4719 break;
4720 }
4721 if (e & 16) /* length */
4722 {
4723 c->sub.copy.get = e & 15;
4724 c->len = t->base;
4725 c->mode = LENEXT;
4726 break;
4727 }
4728 if ((e & 64) == 0) /* next table */
4729 {
4730 c->sub.code.need = e;
4731 c->sub.code.tree = t->next;
4732 break;
4733 }
4734 if (e & 32) /* end of block */
4735 {
4736 Tracevv((stderr, "inflate: end of block\n"));
4737 c->mode = WASH;
4738 break;
4739 }
4740 c->mode = BADCODE; /* invalid code */
4741 z->msg = (char*)"invalid literal/length code";
4742 r = Z_DATA_ERROR;
4743 LEAVE
4744 case LENEXT: /* i: getting length extra (have base) */
4745 j = c->sub.copy.get;
4746 NEEDBITS(j)
4747 c->len += (uInt)b & inflate_mask[j];
4748 DUMPBITS(j)
4749 c->sub.code.need = c->dbits;
4750 c->sub.code.tree = c->dtree;
4751 Tracevv((stderr, "inflate: length %u\n", c->len));
4752 c->mode = DIST;
4753 case DIST: /* i: get distance next */
4754 j = c->sub.code.need;
4755 NEEDBITS(j)
4756 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4757 DUMPBITS(t->bits)
4758 e = (uInt)(t->exop);
4759 if (e & 16) /* distance */
4760 {
4761 c->sub.copy.get = e & 15;
4762 c->sub.copy.dist = t->base;
4763 c->mode = DISTEXT;
4764 break;
4765 }
4766 if ((e & 64) == 0) /* next table */
4767 {
4768 c->sub.code.need = e;
4769 c->sub.code.tree = t->next;
4770 break;
4771 }
4772 c->mode = BADCODE; /* invalid code */
4773 z->msg = (char*)"invalid distance code";
4774 r = Z_DATA_ERROR;
4775 LEAVE
4776 case DISTEXT: /* i: getting distance extra */
4777 j = c->sub.copy.get;
4778 NEEDBITS(j)
4779 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4780 DUMPBITS(j)
4781 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4782 c->mode = COPY;
4783 case COPY: /* o: copying bytes in window, waiting for space */
4784 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4785 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4786 s->end - (c->sub.copy.dist - (q - s->window)) :
4787 q - c->sub.copy.dist;
4788 #else
4789 f = q - c->sub.copy.dist;
4790 if ((uInt)(q - s->window) < c->sub.copy.dist)
4791 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4792 #endif
4793 while (c->len)
4794 {
4795 NEEDOUT
4796 OUTBYTE(*f++)
4797 if (f == s->end)
4798 f = s->window;
4799 c->len--;
4800 }
4801 c->mode = START;
4802 break;
4803 case LIT: /* o: got literal, waiting for output space */
4804 NEEDOUT
4805 OUTBYTE(c->sub.lit)
4806 c->mode = START;
4807 break;
4808 case WASH: /* o: got eob, possibly more output */
4809 FLUSH
4810 if (s->read != s->write)
4811 LEAVE
4812 c->mode = END;
4813 case END:
4814 r = Z_STREAM_END;
4815 LEAVE
4816 case BADCODE: /* x: got error */
4817 r = Z_DATA_ERROR;
4818 LEAVE
4819 default:
4820 r = Z_STREAM_ERROR;
4821 LEAVE
4822 }
4823 }
4824
4825
4826 void inflate_codes_free(c, z)
4827 inflate_codes_statef *c;
4828 z_streamp z;
4829 {
4830 ZFREE(z, c);
4831 Tracev((stderr, "inflate: codes free\n"));
4832 }
4833 /* --- infcodes.c */
4834
4835 /* +++ infutil.c */
4836 /* inflate_util.c -- data and routines common to blocks and codes
4837 * Copyright (C) 1995-1996 Mark Adler
4838 * For conditions of distribution and use, see copyright notice in zlib.h
4839 */
4840
4841 /* #include "zutil.h" */
4842 /* #include "infblock.h" */
4843 /* #include "inftrees.h" */
4844 /* #include "infcodes.h" */
4845 /* #include "infutil.h" */
4846
4847 #ifndef NO_DUMMY_DECL
4848 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4849 #endif
4850
4851 /* And'ing with mask[n] masks the lower n bits */
4852 uInt const inflate_mask[17] = {
4853 0x0000,
4854 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4855 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4856 };
4857
4858
4859 /* copy as much as possible from the sliding window to the output area */
4860 int inflate_flush(s, z, r)
4861 inflate_blocks_statef *s;
4862 z_streamp z;
4863 int r;
4864 {
4865 uInt n;
4866 Bytef *p;
4867 Bytef *q;
4868
4869 /* local copies of source and destination pointers */
4870 p = z->next_out;
4871 q = s->read;
4872
4873 /* compute number of bytes to copy as far as end of window */
4874 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4875 if (n > z->avail_out) n = z->avail_out;
4876 if (n && r == Z_BUF_ERROR) r = Z_OK;
4877
4878 /* update counters */
4879 z->avail_out -= n;
4880 z->total_out += n;
4881
4882 /* update check information */
4883 if (s->checkfn != Z_NULL)
4884 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4885
4886 /* copy as far as end of window */
4887 if (p != Z_NULL) {
4888 zmemcpy(p, q, n);
4889 p += n;
4890 }
4891 q += n;
4892
4893 /* see if more to copy at beginning of window */
4894 if (q == s->end)
4895 {
4896 /* wrap pointers */
4897 q = s->window;
4898 if (s->write == s->end)
4899 s->write = s->window;
4900
4901 /* compute bytes to copy */
4902 n = (uInt)(s->write - q);
4903 if (n > z->avail_out) n = z->avail_out;
4904 if (n && r == Z_BUF_ERROR) r = Z_OK;
4905
4906 /* update counters */
4907 z->avail_out -= n;
4908 z->total_out += n;
4909
4910 /* update check information */
4911 if (s->checkfn != Z_NULL)
4912 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4913
4914 /* copy */
4915 if (p != Z_NULL) {
4916 zmemcpy(p, q, n);
4917 p += n;
4918 }
4919 q += n;
4920 }
4921
4922 /* update pointers */
4923 z->next_out = p;
4924 s->read = q;
4925
4926 /* done */
4927 return r;
4928 }
4929 /* --- infutil.c */
4930
4931 /* +++ inffast.c */
4932 /* inffast.c -- process literals and length/distance pairs fast
4933 * Copyright (C) 1995-1996 Mark Adler
4934 * For conditions of distribution and use, see copyright notice in zlib.h
4935 */
4936
4937 /* #include "zutil.h" */
4938 /* #include "inftrees.h" */
4939 /* #include "infblock.h" */
4940 /* #include "infcodes.h" */
4941 /* #include "infutil.h" */
4942 /* #include "inffast.h" */
4943
4944 #ifndef NO_DUMMY_DECL
4945 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4946 #endif
4947
4948 /* simplify the use of the inflate_huft type with some defines */
4949 #define base more.Base
4950 #define next more.Next
4951 #define exop word.what.Exop
4952 #define bits word.what.Bits
4953
4954 /* macros for bit input with no checking and for returning unused bytes */
4955 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4956 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4957
4958 /* Called with number of bytes left to write in window at least 258
4959 (the maximum string length) and number of input bytes available
4960 at least ten. The ten bytes are six bytes for the longest length/
4961 distance pair plus four bytes for overloading the bit buffer. */
4962
4963 int inflate_fast(bl, bd, tl, td, s, z)
4964 uInt bl, bd;
4965 inflate_huft *tl;
4966 inflate_huft *td; /* need separate declaration for Borland C++ */
4967 inflate_blocks_statef *s;
4968 z_streamp z;
4969 {
4970 inflate_huft *t; /* temporary pointer */
4971 uInt e; /* extra bits or operation */
4972 uLong b; /* bit buffer */
4973 uInt k; /* bits in bit buffer */
4974 Bytef *p; /* input data pointer */
4975 uInt n; /* bytes available there */
4976 Bytef *q; /* output window write pointer */
4977 uInt m; /* bytes to end of window or read pointer */
4978 uInt ml; /* mask for literal/length tree */
4979 uInt md; /* mask for distance tree */
4980 uInt c; /* bytes to copy */
4981 uInt d; /* distance back to copy from */
4982 Bytef *r; /* copy source pointer */
4983
4984 /* load input, output, bit values */
4985 LOAD
4986
4987 /* initialize masks */
4988 ml = inflate_mask[bl];
4989 md = inflate_mask[bd];
4990
4991 /* do until not enough input or output space for fast loop */
4992 do { /* assume called with m >= 258 && n >= 10 */
4993 /* get literal/length code */
4994 GRABBITS(20) /* max bits for literal/length code */
4995 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4996 {
4997 DUMPBITS(t->bits)
4998 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4999 "inflate: * literal '%c'\n" :
5000 "inflate: * literal 0x%02x\n", t->base));
5001 *q++ = (Byte)t->base;
5002 m--;
5003 continue;
5004 }
5005 do {
5006 DUMPBITS(t->bits)
5007 if (e & 16)
5008 {
5009 /* get extra bits for length */
5010 e &= 15;
5011 c = t->base + ((uInt)b & inflate_mask[e]);
5012 DUMPBITS(e)
5013 Tracevv((stderr, "inflate: * length %u\n", c));
5014
5015 /* decode distance base of block to copy */
5016 GRABBITS(15); /* max bits for distance code */
5017 e = (t = td + ((uInt)b & md))->exop;
5018 do {
5019 DUMPBITS(t->bits)
5020 if (e & 16)
5021 {
5022 /* get extra bits to add to distance base */
5023 e &= 15;
5024 GRABBITS(e) /* get extra bits (up to 13) */
5025 d = t->base + ((uInt)b & inflate_mask[e]);
5026 DUMPBITS(e)
5027 Tracevv((stderr, "inflate: * distance %u\n", d));
5028
5029 /* do the copy */
5030 m -= c;
5031 if ((uInt)(q - s->window) >= d) /* offset before dest */
5032 { /* just copy */
5033 r = q - d;
5034 *q++ = *r++; c--; /* minimum count is three, */
5035 *q++ = *r++; c--; /* so unroll loop a little */
5036 }
5037 else /* else offset after destination */
5038 {
5039 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5040 r = s->end - e; /* pointer to offset */
5041 if (c > e) /* if source crosses, */
5042 {
5043 c -= e; /* copy to end of window */
5044 do {
5045 *q++ = *r++;
5046 } while (--e);
5047 r = s->window; /* copy rest from start of window */
5048 }
5049 }
5050 do { /* copy all or what's left */
5051 *q++ = *r++;
5052 } while (--c);
5053 break;
5054 }
5055 else if ((e & 64) == 0)
5056 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5057 else
5058 {
5059 z->msg = (char*)"invalid distance code";
5060 UNGRAB
5061 UPDATE
5062 return Z_DATA_ERROR;
5063 }
5064 } while (1);
5065 break;
5066 }
5067 if ((e & 64) == 0)
5068 {
5069 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5070 {
5071 DUMPBITS(t->bits)
5072 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5073 "inflate: * literal '%c'\n" :
5074 "inflate: * literal 0x%02x\n", t->base));
5075 *q++ = (Byte)t->base;
5076 m--;
5077 break;
5078 }
5079 }
5080 else if (e & 32)
5081 {
5082 Tracevv((stderr, "inflate: * end of block\n"));
5083 UNGRAB
5084 UPDATE
5085 return Z_STREAM_END;
5086 }
5087 else
5088 {
5089 z->msg = (char*)"invalid literal/length code";
5090 UNGRAB
5091 UPDATE
5092 return Z_DATA_ERROR;
5093 }
5094 } while (1);
5095 } while (m >= 258 && n >= 10);
5096
5097 /* not enough input or output--restore pointers and return */
5098 UNGRAB
5099 UPDATE
5100 return Z_OK;
5101 }
5102 /* --- inffast.c */
5103
5104 /* +++ zutil.c */
5105 /* zutil.c -- target dependent utility functions for the compression library
5106 * Copyright (C) 1995-1996 Jean-loup Gailly.
5107 * For conditions of distribution and use, see copyright notice in zlib.h
5108 */
5109
5110 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5111
5112 #ifdef DEBUG_ZLIB
5113 #include <stdio.h>
5114 #endif
5115
5116 /* #include "zutil.h" */
5117
5118 #ifndef NO_DUMMY_DECL
5119 struct internal_state {int dummy;}; /* for buggy compilers */
5120 #endif
5121
5122 #ifndef STDC
5123 extern void exit OF((int));
5124 #endif
5125
5126 const char * const z_errmsg[10] = {
5127 "need dictionary", /* Z_NEED_DICT 2 */
5128 "stream end", /* Z_STREAM_END 1 */
5129 "", /* Z_OK 0 */
5130 "file error", /* Z_ERRNO (-1) */
5131 "stream error", /* Z_STREAM_ERROR (-2) */
5132 "data error", /* Z_DATA_ERROR (-3) */
5133 "insufficient memory", /* Z_MEM_ERROR (-4) */
5134 "buffer error", /* Z_BUF_ERROR (-5) */
5135 "incompatible version",/* Z_VERSION_ERROR (-6) */
5136 ""};
5137
5138
5139 const char *zlibVersion()
5140 {
5141 return ZLIB_VERSION;
5142 }
5143
5144 #ifdef DEBUG_ZLIB
5145 void z_error (m)
5146 char *m;
5147 {
5148 fprintf(stderr, "%s\n", m);
5149 exit(1);
5150 }
5151 #endif
5152
5153 #ifndef HAVE_MEMCPY
5154
5155 void zmemcpy(dest, source, len)
5156 Bytef* dest;
5157 Bytef* source;
5158 uInt len;
5159 {
5160 if (len == 0) return;
5161 do {
5162 *dest++ = *source++; /* ??? to be unrolled */
5163 } while (--len != 0);
5164 }
5165
5166 int zmemcmp(s1, s2, len)
5167 Bytef* s1;
5168 Bytef* s2;
5169 uInt len;
5170 {
5171 uInt j;
5172
5173 for (j = 0; j < len; j++) {
5174 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5175 }
5176 return 0;
5177 }
5178
5179 void zmemzero(dest, len)
5180 Bytef* dest;
5181 uInt len;
5182 {
5183 if (len == 0) return;
5184 do {
5185 *dest++ = 0; /* ??? to be unrolled */
5186 } while (--len != 0);
5187 }
5188 #endif
5189
5190 #ifdef __TURBOC__
5191 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5192 /* Small and medium model in Turbo C are for now limited to near allocation
5193 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5194 */
5195 # define MY_ZCALLOC
5196
5197 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5198 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5199 * must fix the pointer. Warning: the pointer must be put back to its
5200 * original form in order to free it, use zcfree().
5201 */
5202
5203 #define MAX_PTR 10
5204 /* 10*64K = 640K */
5205
5206 local int next_ptr = 0;
5207
5208 typedef struct ptr_table_s {
5209 voidpf org_ptr;
5210 voidpf new_ptr;
5211 } ptr_table;
5212
5213 local ptr_table table[MAX_PTR];
5214 /* This table is used to remember the original form of pointers
5215 * to large buffers (64K). Such pointers are normalized with a zero offset.
5216 * Since MSDOS is not a preemptive multitasking OS, this table is not
5217 * protected from concurrent access. This hack doesn't work anyway on
5218 * a protected system like OS/2. Use Microsoft C instead.
5219 */
5220
5221 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5222 {
5223 voidpf buf = opaque; /* just to make some compilers happy */
5224 ulg bsize = (ulg)items*size;
5225
5226 /* If we allocate less than 65520 bytes, we assume that farmalloc
5227 * will return a usable pointer which doesn't have to be normalized.
5228 */
5229 if (bsize < 65520L) {
5230 buf = farmalloc(bsize);
5231 if (*(ush*)&buf != 0) return buf;
5232 } else {
5233 buf = farmalloc(bsize + 16L);
5234 }
5235 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5236 table[next_ptr].org_ptr = buf;
5237
5238 /* Normalize the pointer to seg:0 */
5239 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5240 *(ush*)&buf = 0;
5241 table[next_ptr++].new_ptr = buf;
5242 return buf;
5243 }
5244
5245 void zcfree (voidpf opaque, voidpf ptr)
5246 {
5247 int n;
5248 if (*(ush*)&ptr != 0) { /* object < 64K */
5249 farfree(ptr);
5250 return;
5251 }
5252 /* Find the original pointer */
5253 for (n = 0; n < next_ptr; n++) {
5254 if (ptr != table[n].new_ptr) continue;
5255
5256 farfree(table[n].org_ptr);
5257 while (++n < next_ptr) {
5258 table[n-1] = table[n];
5259 }
5260 next_ptr--;
5261 return;
5262 }
5263 ptr = opaque; /* just to make some compilers happy */
5264 Assert(0, "zcfree: ptr not found");
5265 }
5266 #endif
5267 #endif /* __TURBOC__ */
5268
5269
5270 #if defined(M_I86) && !defined(__32BIT__)
5271 /* Microsoft C in 16-bit mode */
5272
5273 # define MY_ZCALLOC
5274
5275 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5276 # define _halloc halloc
5277 # define _hfree hfree
5278 #endif
5279
5280 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5281 {
5282 if (opaque) opaque = 0; /* to make compiler happy */
5283 return _halloc((long)items, size);
5284 }
5285
5286 void zcfree (voidpf opaque, voidpf ptr)
5287 {
5288 if (opaque) opaque = 0; /* to make compiler happy */
5289 _hfree(ptr);
5290 }
5291
5292 #endif /* MSC */
5293
5294
5295 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5296
5297 #ifndef STDC
5298 extern voidp calloc OF((uInt items, uInt size));
5299 extern void free OF((voidpf ptr));
5300 #endif
5301
5302 voidpf zcalloc (opaque, items, size)
5303 voidpf opaque;
5304 unsigned items;
5305 unsigned size;
5306 {
5307 if (opaque) items += size - size; /* make compiler happy */
5308 return (voidpf)calloc(items, size);
5309 }
5310
5311 void zcfree (opaque, ptr)
5312 voidpf opaque;
5313 voidpf ptr;
5314 {
5315 free(ptr);
5316 if (opaque) return; /* make compiler happy */
5317 }
5318
5319 #endif /* MY_ZCALLOC */
5320 /* --- zutil.c */
5321
5322 /* +++ adler32.c */
5323 /* adler32.c -- compute the Adler-32 checksum of a data stream
5324 * Copyright (C) 1995-1996 Mark Adler
5325 * For conditions of distribution and use, see copyright notice in zlib.h
5326 */
5327
5328 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5329
5330 /* #include "zlib.h" */
5331
5332 #define BASE 65521L /* largest prime smaller than 65536 */
5333 #define NMAX 5552
5334 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5335
5336 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5337 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5338 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5339 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5340 #define DO16(buf) DO8(buf,0); DO8(buf,8);
5341
5342 /* ========================================================================= */
5343 uLong adler32(adler, buf, len)
5344 uLong adler;
5345 const Bytef *buf;
5346 uInt len;
5347 {
5348 unsigned long s1 = adler & 0xffff;
5349 unsigned long s2 = (adler >> 16) & 0xffff;
5350 int k;
5351
5352 if (buf == Z_NULL) return 1L;
5353
5354 while (len > 0) {
5355 k = len < NMAX ? len : NMAX;
5356 len -= k;
5357 while (k >= 16) {
5358 DO16(buf);
5359 buf += 16;
5360 k -= 16;
5361 }
5362 if (k != 0) do {
5363 s1 += *buf++;
5364 s2 += s1;
5365 } while (--k);
5366 s1 %= BASE;
5367 s2 %= BASE;
5368 }
5369 return (s2 << 16) | s1;
5370 }
5371 /* --- adler32.c */
5372