zlib.c revision 1.14 1 /* $NetBSD: zlib.c,v 1.14 2001/10/14 00:39:09 simonb Exp $ */
2 /*
3 * This file is derived from various .h and .c files from the zlib-1.0.4
4 * distribution by Jean-loup Gailly and Mark Adler, with some additions
5 * by Paul Mackerras to aid in implementing Deflate compression and
6 * decompression for PPP packets. See zlib.h for conditions of
7 * distribution and use.
8 *
9 * Changes that have been made include:
10 * - added Z_PACKET_FLUSH (see zlib.h for details)
11 * - added inflateIncomp and deflateOutputPending
12 * - allow strm->next_out to be NULL, meaning discard the output
13 *
14 * $Id: zlib.c,v 1.14 2001/10/14 00:39:09 simonb Exp $
15 */
16
17 /*
18 * ==FILEVERSION 971210==
19 *
20 * This marker is used by the Linux installation script to determine
21 * whether an up-to-date version of this file is already installed.
22 */
23
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
27
28 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
29 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
30 #endif
31
32
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35 * Copyright (C) 1995-1996 Jean-loup Gailly.
36 * For conditions of distribution and use, see copyright notice in zlib.h
37 */
38
39 /* WARNING: this file should *not* be used by applications. It is
40 part of the implementation of the compression library and is
41 subject to change. Applications should only use zlib.h.
42 */
43
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
48
49 #include "zlib.h"
50
51 #if defined(KERNEL) || defined(_KERNEL)
52 /* Assume this is a *BSD or SVR4 kernel */
53 #include <sys/param.h>
54 #include <sys/time.h>
55 #include <sys/systm.h>
56 # define HAVE_MEMCPY
57 # define memcpy(d, s, n) bcopy((s), (d), (n))
58 # define memset(d, v, n) bzero((d), (n))
59 # define memcmp bcmp
60
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66
67 #else /* not kernel */
68
69 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70 # include <stddef.h>
71 # include <errno.h>
72 #else
73 extern int errno;
74 #endif
75 #ifdef STDC
76 # include <string.h>
77 # include <stdlib.h>
78 #endif
79 #endif /* __KERNEL__ */
80 #endif /* _KERNEL || KERNEL */
81
82 #ifndef local
83 # define local static
84 #endif
85 /* compile with -Dlocal if your debugger can't find static symbols */
86
87 typedef unsigned char uch;
88 typedef uch FAR uchf;
89 typedef unsigned short ush;
90 typedef ush FAR ushf;
91 typedef unsigned long ulg;
92
93 extern const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
94 /* (size given to avoid silly warnings with Visual C++) */
95
96 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97
98 #define ERR_RETURN(strm,err) \
99 return (strm->msg = (char*)ERR_MSG(err), (err))
100 /* To be used only when the state is known to be valid */
101
102 /* common constants */
103
104 #ifndef DEF_WBITS
105 # define DEF_WBITS MAX_WBITS
106 #endif
107 /* default windowBits for decompression. MAX_WBITS is for compression only */
108
109 #if MAX_MEM_LEVEL >= 8
110 # define DEF_MEM_LEVEL 8
111 #else
112 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
113 #endif
114 /* default memLevel */
115
116 #define STORED_BLOCK 0
117 #define STATIC_TREES 1
118 #define DYN_TREES 2
119 /* The three kinds of block type */
120
121 #define MIN_MATCH 3
122 #define MAX_MATCH 258
123 /* The minimum and maximum match lengths */
124
125 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126
127 /* target dependencies */
128
129 #ifdef MSDOS
130 # define OS_CODE 0x00
131 # ifdef __TURBOC__
132 # include <alloc.h>
133 # else /* MSC or DJGPP */
134 # include <malloc.h>
135 # endif
136 #endif
137
138 #ifdef OS2
139 # define OS_CODE 0x06
140 #endif
141
142 #ifdef WIN32 /* Window 95 & Windows NT */
143 # define OS_CODE 0x0b
144 #endif
145
146 #if defined(VAXC) || defined(VMS)
147 # define OS_CODE 0x02
148 # define FOPEN(name, mode) \
149 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150 #endif
151
152 #ifdef AMIGA
153 # define OS_CODE 0x01
154 #endif
155
156 #if defined(ATARI) || defined(atarist)
157 # define OS_CODE 0x05
158 #endif
159
160 #ifdef MACOS
161 # define OS_CODE 0x07
162 #endif
163
164 #ifdef __50SERIES /* Prime/PRIMOS */
165 # define OS_CODE 0x0F
166 #endif
167
168 #ifdef TOPS20
169 # define OS_CODE 0x0a
170 #endif
171
172 #if defined(_BEOS_) || defined(RISCOS)
173 # define fdopen(fd,mode) NULL /* No fdopen() */
174 #endif
175
176 /* Common defaults */
177
178 #ifndef OS_CODE
179 # define OS_CODE 0x03 /* assume Unix */
180 #endif
181
182 #ifndef FOPEN
183 # define FOPEN(name, mode) fopen((name), (mode))
184 #endif
185
186 /* functions */
187
188 #ifdef HAVE_STRERROR
189 extern char *strerror OF((int));
190 # define zstrerror(errnum) strerror(errnum)
191 #else
192 # define zstrerror(errnum) ""
193 #endif
194
195 #if defined(pyr)
196 # define NO_MEMCPY
197 #endif
198 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199 /* Use our own functions for small and medium model with MSC <= 5.0.
200 * You may have to use the same strategy for Borland C (untested).
201 */
202 # define NO_MEMCPY
203 #endif
204 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205 # define HAVE_MEMCPY
206 #endif
207 #ifdef HAVE_MEMCPY
208 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209 # define zmemcpy _fmemcpy
210 # define zmemcmp _fmemcmp
211 # define zmemzero(dest, len) _fmemset(dest, 0, len)
212 # else
213 # define zmemcpy memcpy
214 # define zmemcmp memcmp
215 # define zmemzero(dest, len) memset(dest, 0, len)
216 # endif
217 #else
218 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
219 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
220 extern void zmemzero OF((Bytef* dest, uInt len));
221 #endif
222
223 /* Diagnostic functions */
224 #ifdef DEBUG_ZLIB
225 # include <stdio.h>
226 # ifndef verbose
227 # define verbose 0
228 # endif
229 extern void z_error OF((char *m));
230 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231 # define Trace(x) fprintf x
232 # define Tracev(x) {if (verbose) fprintf x ;}
233 # define Tracevv(x) {if (verbose>1) fprintf x ;}
234 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236 #else
237 # define Assert(cond,msg)
238 # define Trace(x)
239 # define Tracev(x)
240 # define Tracevv(x)
241 # define Tracec(c,x)
242 # define Tracecv(c,x)
243 #endif
244
245
246 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247
248 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249 void zcfree OF((voidpf opaque, voidpf ptr));
250
251 #define ZALLOC(strm, items, size) \
252 (*((strm)->zalloc))((strm)->opaque, (items), (size))
253 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255
256 #endif /* _Z_UTIL_H */
257 /* --- zutil.h */
258
259 /* +++ deflate.h */
260 /* deflate.h -- internal compression state
261 * Copyright (C) 1995-1996 Jean-loup Gailly
262 * For conditions of distribution and use, see copyright notice in zlib.h
263 */
264
265 /* WARNING: this file should *not* be used by applications. It is
266 part of the implementation of the compression library and is
267 subject to change. Applications should only use zlib.h.
268 */
269
270 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271
272 #ifndef _DEFLATE_H
273 #define _DEFLATE_H
274
275 /* #include "zutil.h" */
276
277 /* ===========================================================================
278 * Internal compression state.
279 */
280
281 #define LENGTH_CODES 29
282 /* number of length codes, not counting the special END_BLOCK code */
283
284 #define LITERALS 256
285 /* number of literal bytes 0..255 */
286
287 #define L_CODES (LITERALS+1+LENGTH_CODES)
288 /* number of Literal or Length codes, including the END_BLOCK code */
289
290 #define D_CODES 30
291 /* number of distance codes */
292
293 #define BL_CODES 19
294 /* number of codes used to transfer the bit lengths */
295
296 #define HEAP_SIZE (2*L_CODES+1)
297 /* maximum heap size */
298
299 #define MAX_BITS 15
300 /* All codes must not exceed MAX_BITS bits */
301
302 #define INIT_STATE 42
303 #define BUSY_STATE 113
304 #define FINISH_STATE 666
305 /* Stream status */
306
307
308 /* Data structure describing a single value and its code string. */
309 typedef struct ct_data_s {
310 union {
311 ush freq; /* frequency count */
312 ush code; /* bit string */
313 } fc;
314 union {
315 ush dad; /* father node in Huffman tree */
316 ush len; /* length of bit string */
317 } dl;
318 } FAR ct_data;
319
320 #define Freq fc.freq
321 #define Code fc.code
322 #define Dad dl.dad
323 #define Len dl.len
324
325 typedef struct static_tree_desc_s static_tree_desc;
326
327 typedef struct tree_desc_s {
328 ct_data *dyn_tree; /* the dynamic tree */
329 int max_code; /* largest code with non zero frequency */
330 static_tree_desc *stat_desc; /* the corresponding static tree */
331 } FAR tree_desc;
332
333 typedef ush Pos;
334 typedef Pos FAR Posf;
335 typedef unsigned IPos;
336
337 /* A Pos is an index in the character window. We use short instead of int to
338 * save space in the various tables. IPos is used only for parameter passing.
339 */
340
341 typedef struct deflate_state {
342 z_streamp strm; /* pointer back to this zlib stream */
343 int status; /* as the name implies */
344 Bytef *pending_buf; /* output still pending */
345 ulg pending_buf_size; /* size of pending_buf */
346 Bytef *pending_out; /* next pending byte to output to the stream */
347 int pending; /* nb of bytes in the pending buffer */
348 int noheader; /* suppress zlib header and adler32 */
349 Byte data_type; /* UNKNOWN, BINARY or ASCII */
350 Byte method; /* STORED (for zip only) or DEFLATED */
351 int last_flush; /* value of flush param for previous deflate call */
352
353 /* used by deflate.c: */
354
355 uInt w_size; /* LZ77 window size (32K by default) */
356 uInt w_bits; /* log2(w_size) (8..16) */
357 uInt w_mask; /* w_size - 1 */
358
359 Bytef *window;
360 /* Sliding window. Input bytes are read into the second half of the window,
361 * and move to the first half later to keep a dictionary of at least wSize
362 * bytes. With this organization, matches are limited to a distance of
363 * wSize-MAX_MATCH bytes, but this ensures that IO is always
364 * performed with a length multiple of the block size. Also, it limits
365 * the window size to 64K, which is quite useful on MSDOS.
366 * To do: use the user input buffer as sliding window.
367 */
368
369 ulg window_size;
370 /* Actual size of window: 2*wSize, except when the user input buffer
371 * is directly used as sliding window.
372 */
373
374 Posf *prev;
375 /* Link to older string with same hash index. To limit the size of this
376 * array to 64K, this link is maintained only for the last 32K strings.
377 * An index in this array is thus a window index modulo 32K.
378 */
379
380 Posf *head; /* Heads of the hash chains or NIL. */
381
382 uInt ins_h; /* hash index of string to be inserted */
383 uInt hash_size; /* number of elements in hash table */
384 uInt hash_bits; /* log2(hash_size) */
385 uInt hash_mask; /* hash_size-1 */
386
387 uInt hash_shift;
388 /* Number of bits by which ins_h must be shifted at each input
389 * step. It must be such that after MIN_MATCH steps, the oldest
390 * byte no longer takes part in the hash key, that is:
391 * hash_shift * MIN_MATCH >= hash_bits
392 */
393
394 long block_start;
395 /* Window position at the beginning of the current output block. Gets
396 * negative when the window is moved backwards.
397 */
398
399 uInt match_length; /* length of best match */
400 IPos prev_match; /* previous match */
401 int match_available; /* set if previous match exists */
402 uInt strstart; /* start of string to insert */
403 uInt match_start; /* start of matching string */
404 uInt lookahead; /* number of valid bytes ahead in window */
405
406 uInt prev_length;
407 /* Length of the best match at previous step. Matches not greater than this
408 * are discarded. This is used in the lazy match evaluation.
409 */
410
411 uInt max_chain_length;
412 /* To speed up deflation, hash chains are never searched beyond this
413 * length. A higher limit improves compression ratio but degrades the
414 * speed.
415 */
416
417 uInt max_lazy_match;
418 /* Attempt to find a better match only when the current match is strictly
419 * smaller than this value. This mechanism is used only for compression
420 * levels >= 4.
421 */
422 # define max_insert_length max_lazy_match
423 /* Insert new strings in the hash table only if the match length is not
424 * greater than this length. This saves time but degrades compression.
425 * max_insert_length is used only for compression levels <= 3.
426 */
427
428 int level; /* compression level (1..9) */
429 int strategy; /* favor or force Huffman coding*/
430
431 uInt good_match;
432 /* Use a faster search when the previous match is longer than this */
433
434 int nice_match; /* Stop searching when current match exceeds this */
435
436 /* used by trees.c: */
437 /* Didn't use ct_data typedef below to supress compiler warning */
438 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
439 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
441
442 struct tree_desc_s l_desc; /* desc. for literal tree */
443 struct tree_desc_s d_desc; /* desc. for distance tree */
444 struct tree_desc_s bl_desc; /* desc. for bit length tree */
445
446 ush bl_count[MAX_BITS+1];
447 /* number of codes at each bit length for an optimal tree */
448
449 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
450 int heap_len; /* number of elements in the heap */
451 int heap_max; /* element of largest frequency */
452 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453 * The same heap array is used to build all trees.
454 */
455
456 uch depth[2*L_CODES+1];
457 /* Depth of each subtree used as tie breaker for trees of equal frequency
458 */
459
460 uchf *l_buf; /* buffer for literals or lengths */
461
462 uInt lit_bufsize;
463 /* Size of match buffer for literals/lengths. There are 4 reasons for
464 * limiting lit_bufsize to 64K:
465 * - frequencies can be kept in 16 bit counters
466 * - if compression is not successful for the first block, all input
467 * data is still in the window so we can still emit a stored block even
468 * when input comes from standard input. (This can also be done for
469 * all blocks if lit_bufsize is not greater than 32K.)
470 * - if compression is not successful for a file smaller than 64K, we can
471 * even emit a stored file instead of a stored block (saving 5 bytes).
472 * This is applicable only for zip (not gzip or zlib).
473 * - creating new Huffman trees less frequently may not provide fast
474 * adaptation to changes in the input data statistics. (Take for
475 * example a binary file with poorly compressible code followed by
476 * a highly compressible string table.) Smaller buffer sizes give
477 * fast adaptation but have of course the overhead of transmitting
478 * trees more frequently.
479 * - I can't count above 4
480 */
481
482 uInt last_lit; /* running index in l_buf */
483
484 ushf *d_buf;
485 /* Buffer for distances. To simplify the code, d_buf and l_buf have
486 * the same number of elements. To use different lengths, an extra flag
487 * array would be necessary.
488 */
489
490 ulg opt_len; /* bit length of current block with optimal trees */
491 ulg static_len; /* bit length of current block with static trees */
492 ulg compressed_len; /* total bit length of compressed file */
493 uInt matches; /* number of string matches in current block */
494 int last_eob_len; /* bit length of EOB code for last block */
495
496 #ifdef DEBUG_ZLIB
497 ulg bits_sent; /* bit length of the compressed data */
498 #endif
499
500 ush bi_buf;
501 /* Output buffer. bits are inserted starting at the bottom (least
502 * significant bits).
503 */
504 int bi_valid;
505 /* Number of valid bits in bi_buf. All bits above the last valid bit
506 * are always zero.
507 */
508
509 } FAR deflate_state;
510
511 /* Output a byte on the stream.
512 * IN assertion: there is enough room in pending_buf.
513 */
514 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515
516
517 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518 /* Minimum amount of lookahead, except at the end of the input file.
519 * See deflate.c for comments about the MIN_MATCH+1.
520 */
521
522 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
523 /* In order to simplify the code, particularly on 16 bit machines, match
524 * distances are limited to MAX_DIST instead of WSIZE.
525 */
526
527 /* in trees.c */
528 void _tr_init OF((deflate_state *s));
529 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
530 ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
531 int eof));
532 void _tr_align OF((deflate_state *s));
533 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534 int eof));
535 void _tr_stored_type_only OF((deflate_state *));
536
537 #endif
538 /* --- deflate.h */
539
540 /* +++ deflate.c */
541 /* deflate.c -- compress data using the deflation algorithm
542 * Copyright (C) 1995-1996 Jean-loup Gailly.
543 * For conditions of distribution and use, see copyright notice in zlib.h
544 */
545
546 /*
547 * ALGORITHM
548 *
549 * The "deflation" process depends on being able to identify portions
550 * of the input text which are identical to earlier input (within a
551 * sliding window trailing behind the input currently being processed).
552 *
553 * The most straightforward technique turns out to be the fastest for
554 * most input files: try all possible matches and select the longest.
555 * The key feature of this algorithm is that insertions into the string
556 * dictionary are very simple and thus fast, and deletions are avoided
557 * completely. Insertions are performed at each input character, whereas
558 * string matches are performed only when the previous match ends. So it
559 * is preferable to spend more time in matches to allow very fast string
560 * insertions and avoid deletions. The matching algorithm for small
561 * strings is inspired from that of Rabin & Karp. A brute force approach
562 * is used to find longer strings when a small match has been found.
563 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564 * (by Leonid Broukhis).
565 * A previous version of this file used a more sophisticated algorithm
566 * (by Fiala and Greene) which is guaranteed to run in linear amortized
567 * time, but has a larger average cost, uses more memory and is patented.
568 * However the F&G algorithm may be faster for some highly redundant
569 * files if the parameter max_chain_length (described below) is too large.
570 *
571 * ACKNOWLEDGEMENTS
572 *
573 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574 * I found it in 'freeze' written by Leonid Broukhis.
575 * Thanks to many people for bug reports and testing.
576 *
577 * REFERENCES
578 *
579 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
581 *
582 * A description of the Rabin and Karp algorithm is given in the book
583 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584 *
585 * Fiala,E.R., and Greene,D.H.
586 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587 *
588 */
589
590 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591
592 /* #include "deflate.h" */
593
594 const char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595 /*
596 If you use the zlib library in a product, an acknowledgment is welcome
597 in the documentation of your product. If for some reason you cannot
598 include such an acknowledgment, I would appreciate that you keep this
599 copyright string in the executable of your product.
600 */
601
602 /* ===========================================================================
603 * Function prototypes.
604 */
605 typedef enum {
606 need_more, /* block not completed, need more input or more output */
607 block_done, /* block flush performed */
608 finish_started, /* finish started, need only more output at next deflate */
609 finish_done /* finish done, accept no more input or output */
610 } block_state;
611
612 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613 /* Compression function. Returns the block state after the call. */
614
615 local void fill_window OF((deflate_state *s));
616 local block_state deflate_stored OF((deflate_state *s, int flush));
617 local block_state deflate_fast OF((deflate_state *s, int flush));
618 local block_state deflate_slow OF((deflate_state *s, int flush));
619 local void lm_init OF((deflate_state *s));
620 local void putShortMSB OF((deflate_state *s, uInt b));
621 local void flush_pending OF((z_streamp strm));
622 local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
623 #ifdef ASMV
624 void match_init OF((void)); /* asm code initialization */
625 uInt longest_match OF((deflate_state *s, IPos cur_match));
626 #else
627 local uInt longest_match OF((deflate_state *s, IPos cur_match));
628 #endif
629
630 #ifdef DEBUG_ZLIB
631 local void check_match OF((deflate_state *s, IPos start, IPos match,
632 int length));
633 #endif
634
635 /* ===========================================================================
636 * Local data
637 */
638
639 #define NIL 0
640 /* Tail of hash chains */
641
642 #ifndef TOO_FAR
643 # define TOO_FAR 4096
644 #endif
645 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646
647 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648 /* Minimum amount of lookahead, except at the end of the input file.
649 * See deflate.c for comments about the MIN_MATCH+1.
650 */
651
652 /* Values for max_lazy_match, good_match and max_chain_length, depending on
653 * the desired pack level (0..9). The values given below have been tuned to
654 * exclude worst case performance for pathological files. Better values may be
655 * found for specific files.
656 */
657 typedef struct config_s {
658 ush good_length; /* reduce lazy search above this match length */
659 ush max_lazy; /* do not perform lazy search above this match length */
660 ush nice_length; /* quit search above this match length */
661 ush max_chain;
662 compress_func func;
663 } config;
664
665 local const config configuration_table[10] = {
666 /* good lazy nice chain */
667 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
668 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
669 /* 2 */ {4, 5, 16, 8, deflate_fast},
670 /* 3 */ {4, 6, 32, 32, deflate_fast},
671
672 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
673 /* 5 */ {8, 16, 32, 32, deflate_slow},
674 /* 6 */ {8, 16, 128, 128, deflate_slow},
675 /* 7 */ {8, 32, 128, 256, deflate_slow},
676 /* 8 */ {32, 128, 258, 1024, deflate_slow},
677 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678
679 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681 * meaning.
682 */
683
684 #define EQUAL 0
685 /* result of memcmp for equal strings */
686
687 #ifndef NO_DUMMY_DECL
688 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689 #endif
690
691 /* ===========================================================================
692 * Update a hash value with the given input byte
693 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
694 * input characters, so that a running hash key can be computed from the
695 * previous key instead of complete recalculation each time.
696 */
697 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698
699
700 /* ===========================================================================
701 * Insert string str in the dictionary and set match_head to the previous head
702 * of the hash chain (the most recent string with same hash key). Return
703 * the previous length of the hash chain.
704 * IN assertion: all calls to to INSERT_STRING are made with consecutive
705 * input characters and the first MIN_MATCH bytes of str are valid
706 * (except for the last MIN_MATCH-1 bytes of the input file).
707 */
708 #define INSERT_STRING(s, str, match_head) \
709 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711 s->head[s->ins_h] = (Pos)(str))
712
713 /* ===========================================================================
714 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715 * prev[] will be initialized on the fly.
716 */
717 #define CLEAR_HASH(s) \
718 s->head[s->hash_size-1] = NIL; \
719 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720
721 /* ========================================================================= */
722 int deflateInit_(strm, level, version, stream_size)
723 z_streamp strm;
724 int level;
725 const char *version;
726 int stream_size;
727 {
728 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729 Z_DEFAULT_STRATEGY, version, stream_size);
730 /* To do: ignore strm->next_in if we use it as window */
731 }
732
733 /* ========================================================================= */
734 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735 version, stream_size)
736 z_streamp strm;
737 int level;
738 int method;
739 int windowBits;
740 int memLevel;
741 int strategy;
742 const char *version;
743 int stream_size;
744 {
745 deflate_state *s;
746 int noheader = 0;
747 static char* my_version = ZLIB_VERSION;
748
749 ushf *overlay;
750 /* We overlay pending_buf and d_buf+l_buf. This works since the average
751 * output size for (length,distance) codes is <= 24 bits.
752 */
753
754 if (version == Z_NULL || version[0] != my_version[0] ||
755 stream_size != sizeof(z_stream)) {
756 return Z_VERSION_ERROR;
757 }
758 if (strm == Z_NULL) return Z_STREAM_ERROR;
759
760 strm->msg = Z_NULL;
761 #ifndef NO_ZCFUNCS
762 if (strm->zalloc == Z_NULL) {
763 strm->zalloc = zcalloc;
764 strm->opaque = (voidpf)0;
765 }
766 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767 #endif
768
769 if (level == Z_DEFAULT_COMPRESSION) level = 6;
770
771 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772 noheader = 1;
773 windowBits = -windowBits;
774 }
775 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778 return Z_STREAM_ERROR;
779 }
780 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781 if (s == Z_NULL) return Z_MEM_ERROR;
782 strm->state = (struct internal_state FAR *)s;
783 s->strm = strm;
784
785 s->noheader = noheader;
786 s->w_bits = windowBits;
787 s->w_size = 1 << s->w_bits;
788 s->w_mask = s->w_size - 1;
789
790 s->hash_bits = memLevel + 7;
791 s->hash_size = 1 << s->hash_bits;
792 s->hash_mask = s->hash_size - 1;
793 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794
795 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
797 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
798
799 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800
801 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802 s->pending_buf = (uchf *) overlay;
803 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804
805 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806 s->pending_buf == Z_NULL) {
807 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808 deflateEnd (strm);
809 return Z_MEM_ERROR;
810 }
811 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813
814 s->level = level;
815 s->strategy = strategy;
816 s->method = (Byte)method;
817
818 return deflateReset(strm);
819 }
820
821 /* ========================================================================= */
822 int deflateSetDictionary (strm, dictionary, dictLength)
823 z_streamp strm;
824 const Bytef *dictionary;
825 uInt dictLength;
826 {
827 deflate_state *s;
828 uInt length = dictLength;
829 uInt n;
830 IPos hash_head = 0;
831
832 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833 return Z_STREAM_ERROR;
834
835 s = (deflate_state *) strm->state;
836 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837
838 strm->adler = adler32(strm->adler, dictionary, dictLength);
839
840 if (length < MIN_MATCH) return Z_OK;
841 if (length > MAX_DIST(s)) {
842 length = MAX_DIST(s);
843 #ifndef USE_DICT_HEAD
844 dictionary += dictLength - length; /* use the tail of the dictionary */
845 #endif
846 }
847 zmemcpy((charf *)s->window, dictionary, length);
848 s->strstart = length;
849 s->block_start = (long)length;
850
851 /* Insert all strings in the hash table (except for the last two bytes).
852 * s->lookahead stays null, so s->ins_h will be recomputed at the next
853 * call of fill_window.
854 */
855 s->ins_h = s->window[0];
856 UPDATE_HASH(s, s->ins_h, s->window[1]);
857 for (n = 0; n <= length - MIN_MATCH; n++) {
858 INSERT_STRING(s, n, hash_head);
859 }
860 if (hash_head) hash_head = 0; /* to make compiler happy */
861 return Z_OK;
862 }
863
864 /* ========================================================================= */
865 int deflateReset (strm)
866 z_streamp strm;
867 {
868 deflate_state *s;
869
870 if (strm == Z_NULL || strm->state == Z_NULL ||
871 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872
873 strm->total_in = strm->total_out = 0;
874 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875 strm->data_type = Z_UNKNOWN;
876
877 s = (deflate_state *)strm->state;
878 s->pending = 0;
879 s->pending_out = s->pending_buf;
880
881 if (s->noheader < 0) {
882 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883 }
884 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885 strm->adler = 1;
886 s->last_flush = Z_NO_FLUSH;
887
888 _tr_init(s);
889 lm_init(s);
890
891 return Z_OK;
892 }
893
894 /* ========================================================================= */
895 int deflateParams(strm, level, strategy)
896 z_streamp strm;
897 int level;
898 int strategy;
899 {
900 deflate_state *s;
901 compress_func func;
902 int err = Z_OK;
903
904 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905 s = (deflate_state *) strm->state;
906
907 if (level == Z_DEFAULT_COMPRESSION) {
908 level = 6;
909 }
910 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911 return Z_STREAM_ERROR;
912 }
913 func = configuration_table[s->level].func;
914
915 if (func != configuration_table[level].func && strm->total_in != 0) {
916 /* Flush the last buffer: */
917 err = deflate(strm, Z_PARTIAL_FLUSH);
918 }
919 if (s->level != level) {
920 s->level = level;
921 s->max_lazy_match = configuration_table[level].max_lazy;
922 s->good_match = configuration_table[level].good_length;
923 s->nice_match = configuration_table[level].nice_length;
924 s->max_chain_length = configuration_table[level].max_chain;
925 }
926 s->strategy = strategy;
927 return err;
928 }
929
930 /* =========================================================================
931 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932 * IN assertion: the stream state is correct and there is enough room in
933 * pending_buf.
934 */
935 local void putShortMSB (s, b)
936 deflate_state *s;
937 uInt b;
938 {
939 put_byte(s, (Byte)(b >> 8));
940 put_byte(s, (Byte)(b & 0xff));
941 }
942
943 /* =========================================================================
944 * Flush as much pending output as possible. All deflate() output goes
945 * through this function so some applications may wish to modify it
946 * to avoid allocating a large strm->next_out buffer and copying into it.
947 * (See also read_buf()).
948 */
949 local void flush_pending(strm)
950 z_streamp strm;
951 {
952 deflate_state *s = (deflate_state *) strm->state;
953 unsigned len = s->pending;
954
955 if (len > strm->avail_out) len = strm->avail_out;
956 if (len == 0) return;
957
958 if (strm->next_out != Z_NULL) {
959 zmemcpy(strm->next_out, s->pending_out, len);
960 strm->next_out += len;
961 }
962 s->pending_out += len;
963 strm->total_out += len;
964 strm->avail_out -= len;
965 s->pending -= len;
966 if (s->pending == 0) {
967 s->pending_out = s->pending_buf;
968 }
969 }
970
971 /* ========================================================================= */
972 int deflate (strm, flush)
973 z_streamp strm;
974 int flush;
975 {
976 int old_flush; /* value of flush param for previous deflate call */
977 deflate_state *s;
978
979 if (strm == Z_NULL || strm->state == Z_NULL ||
980 flush > Z_FINISH || flush < 0) {
981 return Z_STREAM_ERROR;
982 }
983 s = (deflate_state *) strm->state;
984
985 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986 (s->status == FINISH_STATE && flush != Z_FINISH)) {
987 ERR_RETURN(strm, Z_STREAM_ERROR);
988 }
989 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990
991 s->strm = strm; /* just in case */
992 old_flush = s->last_flush;
993 s->last_flush = flush;
994
995 /* Write the zlib header */
996 if (s->status == INIT_STATE) {
997
998 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999 uInt level_flags = (s->level-1) >> 1;
1000
1001 if (level_flags > 3) level_flags = 3;
1002 header |= (level_flags << 6);
1003 if (s->strstart != 0) header |= PRESET_DICT;
1004 header += 31 - (header % 31);
1005
1006 s->status = BUSY_STATE;
1007 putShortMSB(s, header);
1008
1009 /* Save the adler32 of the preset dictionary: */
1010 if (s->strstart != 0) {
1011 putShortMSB(s, (uInt)(strm->adler >> 16));
1012 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013 }
1014 strm->adler = 1L;
1015 }
1016
1017 /* Flush as much pending output as possible */
1018 if (s->pending != 0) {
1019 flush_pending(strm);
1020 if (strm->avail_out == 0) {
1021 /* Since avail_out is 0, deflate will be called again with
1022 * more output space, but possibly with both pending and
1023 * avail_in equal to zero. There won't be anything to do,
1024 * but this is not an error situation so make sure we
1025 * return OK instead of BUF_ERROR at next call of deflate:
1026 */
1027 s->last_flush = -1;
1028 return Z_OK;
1029 }
1030
1031 /* Make sure there is something to do and avoid duplicate consecutive
1032 * flushes. For repeated and useless calls with Z_FINISH, we keep
1033 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034 */
1035 } else if (strm->avail_in == 0 && flush <= old_flush &&
1036 flush != Z_FINISH) {
1037 ERR_RETURN(strm, Z_BUF_ERROR);
1038 }
1039
1040 /* User must not provide more input after the first FINISH: */
1041 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042 ERR_RETURN(strm, Z_BUF_ERROR);
1043 }
1044
1045 /* Start a new block or continue the current one.
1046 */
1047 if (strm->avail_in != 0 || s->lookahead != 0 ||
1048 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049 block_state bstate;
1050
1051 bstate = (*(configuration_table[s->level].func))(s, flush);
1052
1053 if (bstate == finish_started || bstate == finish_done) {
1054 s->status = FINISH_STATE;
1055 }
1056 if (bstate == need_more || bstate == finish_started) {
1057 if (strm->avail_out == 0) {
1058 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059 }
1060 return Z_OK;
1061 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062 * of deflate should use the same flush parameter to make sure
1063 * that the flush is complete. So we don't have to output an
1064 * empty block here, this will be done at next call. This also
1065 * ensures that for a very small output buffer, we emit at most
1066 * one empty block.
1067 */
1068 }
1069 if (bstate == block_done) {
1070 if (flush == Z_PARTIAL_FLUSH) {
1071 _tr_align(s);
1072 } else if (flush == Z_PACKET_FLUSH) {
1073 /* Output just the 3-bit `stored' block type value,
1074 but not a zero length. */
1075 _tr_stored_type_only(s);
1076 } else { /* FULL_FLUSH or SYNC_FLUSH */
1077 _tr_stored_block(s, (char*)0, 0L, 0);
1078 /* For a full flush, this empty block will be recognized
1079 * as a special marker by inflate_sync().
1080 */
1081 if (flush == Z_FULL_FLUSH) {
1082 CLEAR_HASH(s); /* forget history */
1083 }
1084 }
1085 flush_pending(strm);
1086 if (strm->avail_out == 0) {
1087 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088 return Z_OK;
1089 }
1090 }
1091 }
1092 Assert(strm->avail_out > 0, "bug2");
1093
1094 if (flush != Z_FINISH) return Z_OK;
1095 if (s->noheader) return Z_STREAM_END;
1096
1097 /* Write the zlib trailer (adler32) */
1098 putShortMSB(s, (uInt)(strm->adler >> 16));
1099 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100 flush_pending(strm);
1101 /* If avail_out is zero, the application will call deflate again
1102 * to flush the rest.
1103 */
1104 s->noheader = -1; /* write the trailer only once! */
1105 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106 }
1107
1108 /* ========================================================================= */
1109 int deflateEnd (strm)
1110 z_streamp strm;
1111 {
1112 int status;
1113 deflate_state *s;
1114
1115 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116 s = (deflate_state *) strm->state;
1117
1118 status = s->status;
1119 if (status != INIT_STATE && status != BUSY_STATE &&
1120 status != FINISH_STATE) {
1121 return Z_STREAM_ERROR;
1122 }
1123
1124 /* Deallocate in reverse order of allocations: */
1125 TRY_FREE(strm, s->pending_buf);
1126 TRY_FREE(strm, s->head);
1127 TRY_FREE(strm, s->prev);
1128 TRY_FREE(strm, s->window);
1129
1130 ZFREE(strm, s);
1131 strm->state = Z_NULL;
1132
1133 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134 }
1135
1136 /* =========================================================================
1137 * Copy the source state to the destination state.
1138 */
1139 int deflateCopy (dest, source)
1140 z_streamp dest;
1141 z_streamp source;
1142 {
1143 deflate_state *ds;
1144 deflate_state *ss;
1145 ushf *overlay;
1146
1147 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148 return Z_STREAM_ERROR;
1149 ss = (deflate_state *) source->state;
1150
1151 zmemcpy(dest, source, sizeof(*dest));
1152
1153 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154 if (ds == Z_NULL) return Z_MEM_ERROR;
1155 dest->state = (struct internal_state FAR *) ds;
1156 zmemcpy(ds, ss, sizeof(*ds));
1157 ds->strm = dest;
1158
1159 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1161 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163 ds->pending_buf = (uchf *) overlay;
1164
1165 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166 ds->pending_buf == Z_NULL) {
1167 deflateEnd (dest);
1168 return Z_MEM_ERROR;
1169 }
1170 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175
1176 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179
1180 ds->l_desc.dyn_tree = ds->dyn_ltree;
1181 ds->d_desc.dyn_tree = ds->dyn_dtree;
1182 ds->bl_desc.dyn_tree = ds->bl_tree;
1183
1184 return Z_OK;
1185 }
1186
1187 /* ===========================================================================
1188 * Return the number of bytes of output which are immediately available
1189 * for output from the decompressor.
1190 */
1191 int deflateOutputPending (strm)
1192 z_streamp strm;
1193 {
1194 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195
1196 return ((deflate_state *)(strm->state))->pending;
1197 }
1198
1199 /* ===========================================================================
1200 * Read a new buffer from the current input stream, update the adler32
1201 * and total number of bytes read. All deflate() input goes through
1202 * this function so some applications may wish to modify it to avoid
1203 * allocating a large strm->next_in buffer and copying from it.
1204 * (See also flush_pending()).
1205 */
1206 local int read_buf(strm, buf, size)
1207 z_streamp strm;
1208 charf *buf;
1209 unsigned size;
1210 {
1211 unsigned len = strm->avail_in;
1212
1213 if (len > size) len = size;
1214 if (len == 0) return 0;
1215
1216 strm->avail_in -= len;
1217
1218 if (!((deflate_state *)(strm->state))->noheader) {
1219 strm->adler = adler32(strm->adler, strm->next_in, len);
1220 }
1221 zmemcpy(buf, strm->next_in, len);
1222 strm->next_in += len;
1223 strm->total_in += len;
1224
1225 return (int)len;
1226 }
1227
1228 /* ===========================================================================
1229 * Initialize the "longest match" routines for a new zlib stream
1230 */
1231 local void lm_init (s)
1232 deflate_state *s;
1233 {
1234 s->window_size = (ulg)2L*s->w_size;
1235
1236 CLEAR_HASH(s);
1237
1238 /* Set the default configuration parameters:
1239 */
1240 s->max_lazy_match = configuration_table[s->level].max_lazy;
1241 s->good_match = configuration_table[s->level].good_length;
1242 s->nice_match = configuration_table[s->level].nice_length;
1243 s->max_chain_length = configuration_table[s->level].max_chain;
1244
1245 s->strstart = 0;
1246 s->block_start = 0L;
1247 s->lookahead = 0;
1248 s->match_length = s->prev_length = MIN_MATCH-1;
1249 s->match_available = 0;
1250 s->ins_h = 0;
1251 #ifdef ASMV
1252 match_init(); /* initialize the asm code */
1253 #endif
1254 }
1255
1256 /* ===========================================================================
1257 * Set match_start to the longest match starting at the given string and
1258 * return its length. Matches shorter or equal to prev_length are discarded,
1259 * in which case the result is equal to prev_length and match_start is
1260 * garbage.
1261 * IN assertions: cur_match is the head of the hash chain for the current
1262 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263 * OUT assertion: the match length is not greater than s->lookahead.
1264 */
1265 #ifndef ASMV
1266 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267 * match.S. The code will be functionally equivalent.
1268 */
1269 local uInt longest_match(s, cur_match)
1270 deflate_state *s;
1271 IPos cur_match; /* current match */
1272 {
1273 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274 Bytef *scan = s->window + s->strstart; /* current string */
1275 Bytef *match; /* matched string */
1276 int len; /* length of current match */
1277 int best_len = s->prev_length; /* best match length so far */
1278 int nice_match = s->nice_match; /* stop if match long enough */
1279 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280 s->strstart - (IPos)MAX_DIST(s) : NIL;
1281 /* Stop when cur_match becomes <= limit. To simplify the code,
1282 * we prevent matches with the string of window index 0.
1283 */
1284 Posf *prev = s->prev;
1285 uInt wmask = s->w_mask;
1286
1287 #ifdef UNALIGNED_OK
1288 /* Compare two bytes at a time. Note: this is not always beneficial.
1289 * Try with and without -DUNALIGNED_OK to check.
1290 */
1291 Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292 ush scan_start = *(ushf*)scan;
1293 ush scan_end = *(ushf*)(scan+best_len-1);
1294 #else
1295 Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296 Byte scan_end1 = scan[best_len-1];
1297 Byte scan_end = scan[best_len];
1298 #endif
1299
1300 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301 * It is easy to get rid of this optimization if necessary.
1302 */
1303 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304
1305 /* Do not waste too much time if we already have a good match: */
1306 if (s->prev_length >= s->good_match) {
1307 chain_length >>= 2;
1308 }
1309 /* Do not look for matches beyond the end of the input. This is necessary
1310 * to make deflate deterministic.
1311 */
1312 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313
1314 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315
1316 do {
1317 Assert(cur_match < s->strstart, "no future");
1318 match = s->window + cur_match;
1319
1320 /* Skip to next match if the match length cannot increase
1321 * or if the match length is less than 2:
1322 */
1323 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324 /* This code assumes sizeof(unsigned short) == 2. Do not use
1325 * UNALIGNED_OK if your compiler uses a different size.
1326 */
1327 if (*(ushf*)(match+best_len-1) != scan_end ||
1328 *(ushf*)match != scan_start) continue;
1329
1330 /* It is not necessary to compare scan[2] and match[2] since they are
1331 * always equal when the other bytes match, given that the hash keys
1332 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334 * lookahead only every 4th comparison; the 128th check will be made
1335 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336 * necessary to put more guard bytes at the end of the window, or
1337 * to check more often for insufficient lookahead.
1338 */
1339 Assert(scan[2] == match[2], "scan[2]?");
1340 scan++, match++;
1341 do {
1342 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346 scan < strend);
1347 /* The funny "do {}" generates better code on most compilers */
1348
1349 /* Here, scan <= window+strstart+257 */
1350 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351 if (*scan == *match) scan++;
1352
1353 len = (MAX_MATCH - 1) - (int)(strend-scan);
1354 scan = strend - (MAX_MATCH-1);
1355
1356 #else /* UNALIGNED_OK */
1357
1358 if (match[best_len] != scan_end ||
1359 match[best_len-1] != scan_end1 ||
1360 *match != *scan ||
1361 *++match != scan[1]) continue;
1362
1363 /* The check at best_len-1 can be removed because it will be made
1364 * again later. (This heuristic is not always a win.)
1365 * It is not necessary to compare scan[2] and match[2] since they
1366 * are always equal when the other bytes match, given that
1367 * the hash keys are equal and that HASH_BITS >= 8.
1368 */
1369 scan += 2, match++;
1370 Assert(*scan == *match, "match[2]?");
1371
1372 /* We check for insufficient lookahead only every 8th comparison;
1373 * the 256th check will be made at strstart+258.
1374 */
1375 do {
1376 } while (*++scan == *++match && *++scan == *++match &&
1377 *++scan == *++match && *++scan == *++match &&
1378 *++scan == *++match && *++scan == *++match &&
1379 *++scan == *++match && *++scan == *++match &&
1380 scan < strend);
1381
1382 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383
1384 len = MAX_MATCH - (int)(strend - scan);
1385 scan = strend - MAX_MATCH;
1386
1387 #endif /* UNALIGNED_OK */
1388
1389 if (len > best_len) {
1390 s->match_start = cur_match;
1391 best_len = len;
1392 if (len >= nice_match) break;
1393 #ifdef UNALIGNED_OK
1394 scan_end = *(ushf*)(scan+best_len-1);
1395 #else
1396 scan_end1 = scan[best_len-1];
1397 scan_end = scan[best_len];
1398 #endif
1399 }
1400 } while ((cur_match = prev[cur_match & wmask]) > limit
1401 && --chain_length != 0);
1402
1403 if ((uInt)best_len <= s->lookahead) return best_len;
1404 return s->lookahead;
1405 }
1406 #endif /* ASMV */
1407
1408 #ifdef DEBUG_ZLIB
1409 /* ===========================================================================
1410 * Check that the match at match_start is indeed a match.
1411 */
1412 local void check_match(s, start, match, length)
1413 deflate_state *s;
1414 IPos start, match;
1415 int length;
1416 {
1417 /* check that the match is indeed a match */
1418 if (zmemcmp((charf *)s->window + match,
1419 (charf *)s->window + start, length) != EQUAL) {
1420 fprintf(stderr, " start %u, match %u, length %d\n",
1421 start, match, length);
1422 do {
1423 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424 } while (--length != 0);
1425 z_error("invalid match");
1426 }
1427 if (z_verbose > 1) {
1428 fprintf(stderr,"\\[%d,%d]", start-match, length);
1429 do { putc(s->window[start++], stderr); } while (--length != 0);
1430 }
1431 }
1432 #else
1433 # define check_match(s, start, match, length)
1434 #endif
1435
1436 /* ===========================================================================
1437 * Fill the window when the lookahead becomes insufficient.
1438 * Updates strstart and lookahead.
1439 *
1440 * IN assertion: lookahead < MIN_LOOKAHEAD
1441 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442 * At least one byte has been read, or avail_in == 0; reads are
1443 * performed for at least two bytes (required for the zip translate_eol
1444 * option -- not supported here).
1445 */
1446 local void fill_window(s)
1447 deflate_state *s;
1448 {
1449 unsigned n, m;
1450 Posf *p;
1451 unsigned more; /* Amount of free space at the end of the window. */
1452 uInt wsize = s->w_size;
1453
1454 do {
1455 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456
1457 /* Deal with !@#$% 64K limit: */
1458 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459 more = wsize;
1460
1461 } else if (more == (unsigned)(-1)) {
1462 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463 * and lookahead == 1 (input done one byte at time)
1464 */
1465 more--;
1466
1467 /* If the window is almost full and there is insufficient lookahead,
1468 * move the upper half to the lower one to make room in the upper half.
1469 */
1470 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471
1472 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473 (unsigned)wsize);
1474 s->match_start -= wsize;
1475 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1476 s->block_start -= (long) wsize;
1477
1478 /* Slide the hash table (could be avoided with 32 bit values
1479 at the expense of memory usage). We slide even when level == 0
1480 to keep the hash table consistent if we switch back to level > 0
1481 later. (Using level 0 permanently is not an optimal usage of
1482 zlib, so we don't care about this pathological case.)
1483 */
1484 n = s->hash_size;
1485 p = &s->head[n];
1486 do {
1487 m = *--p;
1488 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489 } while (--n);
1490
1491 n = wsize;
1492 p = &s->prev[n];
1493 do {
1494 m = *--p;
1495 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496 /* If n is not on any hash chain, prev[n] is garbage but
1497 * its value will never be used.
1498 */
1499 } while (--n);
1500 more += wsize;
1501 }
1502 if (s->strm->avail_in == 0) return;
1503
1504 /* If there was no sliding:
1505 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506 * more == window_size - lookahead - strstart
1507 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508 * => more >= window_size - 2*WSIZE + 2
1509 * In the BIG_MEM or MMAP case (not yet supported),
1510 * window_size == input_size + MIN_LOOKAHEAD &&
1511 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512 * Otherwise, window_size == 2*WSIZE so more >= 2.
1513 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514 */
1515 Assert(more >= 2, "more < 2");
1516
1517 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518 more);
1519 s->lookahead += n;
1520
1521 /* Initialize the hash value now that we have some input: */
1522 if (s->lookahead >= MIN_MATCH) {
1523 s->ins_h = s->window[s->strstart];
1524 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525 #if MIN_MATCH != 3
1526 Call UPDATE_HASH() MIN_MATCH-3 more times
1527 #endif
1528 }
1529 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530 * but this is not important since only literal bytes will be emitted.
1531 */
1532
1533 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534 }
1535
1536 /* ===========================================================================
1537 * Flush the current block, with given end-of-file flag.
1538 * IN assertion: strstart is set to the end of the current match.
1539 */
1540 #define FLUSH_BLOCK_ONLY(s, eof) { \
1541 _tr_flush_block(s, (s->block_start >= 0L ? \
1542 (charf *)&s->window[(unsigned)s->block_start] : \
1543 (charf *)Z_NULL), \
1544 (ulg)((long)s->strstart - s->block_start), \
1545 (eof)); \
1546 s->block_start = s->strstart; \
1547 flush_pending(s->strm); \
1548 Tracev((stderr,"[FLUSH]")); \
1549 }
1550
1551 /* Same but force premature exit if necessary. */
1552 #define FLUSH_BLOCK(s, eof) { \
1553 FLUSH_BLOCK_ONLY(s, eof); \
1554 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555 }
1556
1557 /* ===========================================================================
1558 * Copy without compression as much as possible from the input stream, return
1559 * the current block state.
1560 * This function does not insert new strings in the dictionary since
1561 * uncompressible data is probably not useful. This function is used
1562 * only for the level=0 compression option.
1563 * NOTE: this function should be optimized to avoid extra copying from
1564 * window to pending_buf.
1565 */
1566 local block_state deflate_stored(s, flush)
1567 deflate_state *s;
1568 int flush;
1569 {
1570 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571 * to pending_buf_size, and each stored block has a 5 byte header:
1572 */
1573 ulg max_block_size = 0xffff;
1574 ulg max_start;
1575
1576 if (max_block_size > s->pending_buf_size - 5) {
1577 max_block_size = s->pending_buf_size - 5;
1578 }
1579
1580 /* Copy as much as possible from input to output: */
1581 for (;;) {
1582 /* Fill the window as much as possible: */
1583 if (s->lookahead <= 1) {
1584
1585 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586 s->block_start >= (long)s->w_size, "slide too late");
1587
1588 fill_window(s);
1589 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590
1591 if (s->lookahead == 0) break; /* flush the current block */
1592 }
1593 Assert(s->block_start >= 0L, "block gone");
1594
1595 s->strstart += s->lookahead;
1596 s->lookahead = 0;
1597
1598 /* Emit a stored block if pending_buf will be full: */
1599 max_start = s->block_start + max_block_size;
1600 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601 /* strstart == 0 is possible when wraparound on 16-bit machine */
1602 s->lookahead = (uInt)(s->strstart - max_start);
1603 s->strstart = (uInt)max_start;
1604 FLUSH_BLOCK(s, 0);
1605 }
1606 /* Flush if we may have to slide, otherwise block_start may become
1607 * negative and the data will be gone:
1608 */
1609 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610 FLUSH_BLOCK(s, 0);
1611 }
1612 }
1613 FLUSH_BLOCK(s, flush == Z_FINISH);
1614 return flush == Z_FINISH ? finish_done : block_done;
1615 }
1616
1617 /* ===========================================================================
1618 * Compress as much as possible from the input stream, return the current
1619 * block state.
1620 * This function does not perform lazy evaluation of matches and inserts
1621 * new strings in the dictionary only for unmatched strings or for short
1622 * matches. It is used only for the fast compression options.
1623 */
1624 local block_state deflate_fast(s, flush)
1625 deflate_state *s;
1626 int flush;
1627 {
1628 IPos hash_head = NIL; /* head of the hash chain */
1629 int bflush; /* set if current block must be flushed */
1630
1631 for (;;) {
1632 /* Make sure that we always have enough lookahead, except
1633 * at the end of the input file. We need MAX_MATCH bytes
1634 * for the next match, plus MIN_MATCH bytes to insert the
1635 * string following the next match.
1636 */
1637 if (s->lookahead < MIN_LOOKAHEAD) {
1638 fill_window(s);
1639 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640 return need_more;
1641 }
1642 if (s->lookahead == 0) break; /* flush the current block */
1643 }
1644
1645 /* Insert the string window[strstart .. strstart+2] in the
1646 * dictionary, and set hash_head to the head of the hash chain:
1647 */
1648 if (s->lookahead >= MIN_MATCH) {
1649 INSERT_STRING(s, s->strstart, hash_head);
1650 }
1651
1652 /* Find the longest match, discarding those <= prev_length.
1653 * At this point we have always match_length < MIN_MATCH
1654 */
1655 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656 /* To simplify the code, we prevent matches with the string
1657 * of window index 0 (in particular we have to avoid a match
1658 * of the string with itself at the start of the input file).
1659 */
1660 if (s->strategy != Z_HUFFMAN_ONLY) {
1661 s->match_length = longest_match (s, hash_head);
1662 }
1663 /* longest_match() sets match_start */
1664 }
1665 if (s->match_length >= MIN_MATCH) {
1666 check_match(s, s->strstart, s->match_start, s->match_length);
1667
1668 bflush = _tr_tally(s, s->strstart - s->match_start,
1669 s->match_length - MIN_MATCH);
1670
1671 s->lookahead -= s->match_length;
1672
1673 /* Insert new strings in the hash table only if the match length
1674 * is not too large. This saves time but degrades compression.
1675 */
1676 if (s->match_length <= s->max_insert_length &&
1677 s->lookahead >= MIN_MATCH) {
1678 s->match_length--; /* string at strstart already in hash table */
1679 do {
1680 s->strstart++;
1681 INSERT_STRING(s, s->strstart, hash_head);
1682 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683 * always MIN_MATCH bytes ahead.
1684 */
1685 } while (--s->match_length != 0);
1686 s->strstart++;
1687 } else {
1688 s->strstart += s->match_length;
1689 s->match_length = 0;
1690 s->ins_h = s->window[s->strstart];
1691 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692 #if MIN_MATCH != 3
1693 Call UPDATE_HASH() MIN_MATCH-3 more times
1694 #endif
1695 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696 * matter since it will be recomputed at next deflate call.
1697 */
1698 }
1699 } else {
1700 /* No match, output a literal byte */
1701 Tracevv((stderr,"%c", s->window[s->strstart]));
1702 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703 s->lookahead--;
1704 s->strstart++;
1705 }
1706 if (bflush) FLUSH_BLOCK(s, 0);
1707 }
1708 FLUSH_BLOCK(s, flush == Z_FINISH);
1709 return flush == Z_FINISH ? finish_done : block_done;
1710 }
1711
1712 /* ===========================================================================
1713 * Same as above, but achieves better compression. We use a lazy
1714 * evaluation for matches: a match is finally adopted only if there is
1715 * no better match at the next window position.
1716 */
1717 local block_state deflate_slow(s, flush)
1718 deflate_state *s;
1719 int flush;
1720 {
1721 IPos hash_head = NIL; /* head of hash chain */
1722 int bflush; /* set if current block must be flushed */
1723
1724 /* Process the input block. */
1725 for (;;) {
1726 /* Make sure that we always have enough lookahead, except
1727 * at the end of the input file. We need MAX_MATCH bytes
1728 * for the next match, plus MIN_MATCH bytes to insert the
1729 * string following the next match.
1730 */
1731 if (s->lookahead < MIN_LOOKAHEAD) {
1732 fill_window(s);
1733 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734 return need_more;
1735 }
1736 if (s->lookahead == 0) break; /* flush the current block */
1737 }
1738
1739 /* Insert the string window[strstart .. strstart+2] in the
1740 * dictionary, and set hash_head to the head of the hash chain:
1741 */
1742 if (s->lookahead >= MIN_MATCH) {
1743 INSERT_STRING(s, s->strstart, hash_head);
1744 }
1745
1746 /* Find the longest match, discarding those <= prev_length.
1747 */
1748 s->prev_length = s->match_length, s->prev_match = s->match_start;
1749 s->match_length = MIN_MATCH-1;
1750
1751 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752 s->strstart - hash_head <= MAX_DIST(s)) {
1753 /* To simplify the code, we prevent matches with the string
1754 * of window index 0 (in particular we have to avoid a match
1755 * of the string with itself at the start of the input file).
1756 */
1757 if (s->strategy != Z_HUFFMAN_ONLY) {
1758 s->match_length = longest_match (s, hash_head);
1759 }
1760 /* longest_match() sets match_start */
1761
1762 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763 (s->match_length == MIN_MATCH &&
1764 s->strstart - s->match_start > TOO_FAR))) {
1765
1766 /* If prev_match is also MIN_MATCH, match_start is garbage
1767 * but we will ignore the current match anyway.
1768 */
1769 s->match_length = MIN_MATCH-1;
1770 }
1771 }
1772 /* If there was a match at the previous step and the current
1773 * match is not better, output the previous match:
1774 */
1775 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777 /* Do not insert strings in hash table beyond this. */
1778
1779 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780
1781 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782 s->prev_length - MIN_MATCH);
1783
1784 /* Insert in hash table all strings up to the end of the match.
1785 * strstart-1 and strstart are already inserted. If there is not
1786 * enough lookahead, the last two strings are not inserted in
1787 * the hash table.
1788 */
1789 s->lookahead -= s->prev_length-1;
1790 s->prev_length -= 2;
1791 do {
1792 if (++s->strstart <= max_insert) {
1793 INSERT_STRING(s, s->strstart, hash_head);
1794 }
1795 } while (--s->prev_length != 0);
1796 s->match_available = 0;
1797 s->match_length = MIN_MATCH-1;
1798 s->strstart++;
1799
1800 if (bflush) FLUSH_BLOCK(s, 0);
1801
1802 } else if (s->match_available) {
1803 /* If there was no match at the previous position, output a
1804 * single literal. If there was a match but the current match
1805 * is longer, truncate the previous match to a single literal.
1806 */
1807 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809 FLUSH_BLOCK_ONLY(s, 0);
1810 }
1811 s->strstart++;
1812 s->lookahead--;
1813 if (s->strm->avail_out == 0) return need_more;
1814 } else {
1815 /* There is no previous match to compare with, wait for
1816 * the next step to decide.
1817 */
1818 s->match_available = 1;
1819 s->strstart++;
1820 s->lookahead--;
1821 }
1822 }
1823 Assert (flush != Z_NO_FLUSH, "no flush?");
1824 if (s->match_available) {
1825 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826 _tr_tally (s, 0, s->window[s->strstart-1]);
1827 s->match_available = 0;
1828 }
1829 FLUSH_BLOCK(s, flush == Z_FINISH);
1830 return flush == Z_FINISH ? finish_done : block_done;
1831 }
1832 /* --- deflate.c */
1833
1834 /* +++ trees.c */
1835 /* trees.c -- output deflated data using Huffman coding
1836 * Copyright (C) 1995-1996 Jean-loup Gailly
1837 * For conditions of distribution and use, see copyright notice in zlib.h
1838 */
1839
1840 /*
1841 * ALGORITHM
1842 *
1843 * The "deflation" process uses several Huffman trees. The more
1844 * common source values are represented by shorter bit sequences.
1845 *
1846 * Each code tree is stored in a compressed form which is itself
1847 * a Huffman encoding of the lengths of all the code strings (in
1848 * ascending order by source values). The actual code strings are
1849 * reconstructed from the lengths in the inflate process, as described
1850 * in the deflate specification.
1851 *
1852 * REFERENCES
1853 *
1854 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856 *
1857 * Storer, James A.
1858 * Data Compression: Methods and Theory, pp. 49-50.
1859 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1860 *
1861 * Sedgewick, R.
1862 * Algorithms, p290.
1863 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864 */
1865
1866 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867
1868 /* #include "deflate.h" */
1869
1870 #ifdef DEBUG_ZLIB
1871 # include <ctype.h>
1872 #endif
1873
1874 /* ===========================================================================
1875 * Constants
1876 */
1877
1878 #define MAX_BL_BITS 7
1879 /* Bit length codes must not exceed MAX_BL_BITS bits */
1880
1881 #define END_BLOCK 256
1882 /* end of block literal code */
1883
1884 #define REP_3_6 16
1885 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886
1887 #define REPZ_3_10 17
1888 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1889
1890 #define REPZ_11_138 18
1891 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1892
1893 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895
1896 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
1897 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898
1899 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901
1902 local const uch bl_order[BL_CODES]
1903 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904 /* The lengths of the bit length codes are sent in order of decreasing
1905 * probability, to avoid transmitting the lengths for unused bit length codes.
1906 */
1907
1908 #define Buf_size (8 * 2*sizeof(char))
1909 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1910 * more than 16 bits on some systems.)
1911 */
1912
1913 /* ===========================================================================
1914 * Local data. These are initialized only once.
1915 */
1916
1917 local ct_data static_ltree[L_CODES+2];
1918 /* The static literal tree. Since the bit lengths are imposed, there is no
1919 * need for the L_CODES extra codes used during heap construction. However
1920 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921 * below).
1922 */
1923
1924 local ct_data static_dtree[D_CODES];
1925 /* The static distance tree. (Actually a trivial tree since all codes use
1926 * 5 bits.)
1927 */
1928
1929 local uch dist_code[512];
1930 /* distance codes. The first 256 values correspond to the distances
1931 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932 * the 15 bit distances.
1933 */
1934
1935 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936 /* length code for each normalized match length (0 == MIN_MATCH) */
1937
1938 local int base_length[LENGTH_CODES];
1939 /* First normalized length for each code (0 = MIN_MATCH) */
1940
1941 local int base_dist[D_CODES];
1942 /* First normalized distance for each code (0 = distance of 1) */
1943
1944 struct static_tree_desc_s {
1945 ct_data *static_tree; /* static tree or NULL */
1946 const intf *extra_bits; /* extra bits for each code or NULL */
1947 int extra_base; /* base index for extra_bits */
1948 int elems; /* max number of elements in the tree */
1949 int max_length; /* max bit length for the codes */
1950 };
1951
1952 local static_tree_desc static_l_desc =
1953 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954
1955 local static_tree_desc static_d_desc =
1956 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1957
1958 local static_tree_desc static_bl_desc =
1959 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1960
1961 /* ===========================================================================
1962 * Local (static) routines in this file.
1963 */
1964
1965 local void tr_static_init OF((void));
1966 local void init_block OF((deflate_state *s));
1967 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1968 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1969 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1970 local void build_tree OF((deflate_state *s, tree_desc *desc));
1971 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1972 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1973 local int build_bl_tree OF((deflate_state *s));
1974 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975 int blcodes));
1976 local void compress_block OF((deflate_state *s, ct_data *ltree,
1977 ct_data *dtree));
1978 local void set_data_type OF((deflate_state *s));
1979 local unsigned bi_reverse OF((unsigned value, int length));
1980 local void bi_windup OF((deflate_state *s));
1981 local void bi_flush OF((deflate_state *s));
1982 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1983 int header));
1984
1985 #ifndef DEBUG_ZLIB
1986 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987 /* Send a code of the given tree. c and tree must not have side effects */
1988
1989 #else /* DEBUG_ZLIB */
1990 # define send_code(s, c, tree) \
1991 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992 send_bits(s, tree[c].Code, tree[c].Len); }
1993 #endif
1994
1995 #define d_code(dist) \
1996 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1998 * must not have side effects. dist_code[256] and dist_code[257] are never
1999 * used.
2000 */
2001
2002 /* ===========================================================================
2003 * Output a short LSB first on the stream.
2004 * IN assertion: there is enough room in pendingBuf.
2005 */
2006 #define put_short(s, w) { \
2007 put_byte(s, (uch)((w) & 0xff)); \
2008 put_byte(s, (uch)((ush)(w) >> 8)); \
2009 }
2010
2011 /* ===========================================================================
2012 * Send a value on a given number of bits.
2013 * IN assertion: length <= 16 and value fits in length bits.
2014 */
2015 #ifdef DEBUG_ZLIB
2016 local void send_bits OF((deflate_state *s, int value, int length));
2017
2018 local void send_bits(s, value, length)
2019 deflate_state *s;
2020 int value; /* value to send */
2021 int length; /* number of bits */
2022 {
2023 Tracevv((stderr," l %2d v %4x ", length, value));
2024 Assert(length > 0 && length <= 15, "invalid length");
2025 s->bits_sent += (ulg)length;
2026
2027 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029 * unused bits in value.
2030 */
2031 if (s->bi_valid > (int)Buf_size - length) {
2032 s->bi_buf |= (value << s->bi_valid);
2033 put_short(s, s->bi_buf);
2034 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035 s->bi_valid += length - Buf_size;
2036 } else {
2037 s->bi_buf |= value << s->bi_valid;
2038 s->bi_valid += length;
2039 }
2040 }
2041 #else /* !DEBUG_ZLIB */
2042
2043 #define send_bits(s, value, length) \
2044 { int len = length;\
2045 if (s->bi_valid > (int)Buf_size - len) {\
2046 int val = value;\
2047 s->bi_buf |= (val << s->bi_valid);\
2048 put_short(s, s->bi_buf);\
2049 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050 s->bi_valid += len - Buf_size;\
2051 } else {\
2052 s->bi_buf |= (value) << s->bi_valid;\
2053 s->bi_valid += len;\
2054 }\
2055 }
2056 #endif /* DEBUG_ZLIB */
2057
2058 /* ===========================================================================
2059 * Initialize the various 'constant' tables. In a multi-threaded environment,
2060 * this function may be called by two threads concurrently, but this is
2061 * harmless since both invocations do exactly the same thing.
2062 */
2063 local void tr_static_init()
2064 {
2065 static int static_init_done = 0;
2066 int n; /* iterates over tree elements */
2067 int bits; /* bit counter */
2068 int length; /* length value */
2069 int code; /* code value */
2070 int dist; /* distance index */
2071 ush bl_count[MAX_BITS+1];
2072 /* number of codes at each bit length for an optimal tree */
2073
2074 if (static_init_done) return;
2075
2076 /* Initialize the mapping length (0..255) -> length code (0..28) */
2077 length = 0;
2078 for (code = 0; code < LENGTH_CODES-1; code++) {
2079 base_length[code] = length;
2080 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2081 length_code[length++] = (uch)code;
2082 }
2083 }
2084 Assert (length == 256, "tr_static_init: length != 256");
2085 /* Note that the length 255 (match length 258) can be represented
2086 * in two different ways: code 284 + 5 bits or code 285, so we
2087 * overwrite length_code[255] to use the best encoding:
2088 */
2089 length_code[length-1] = (uch)code;
2090
2091 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2092 dist = 0;
2093 for (code = 0 ; code < 16; code++) {
2094 base_dist[code] = dist;
2095 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2096 dist_code[dist++] = (uch)code;
2097 }
2098 }
2099 Assert (dist == 256, "tr_static_init: dist != 256");
2100 dist >>= 7; /* from now on, all distances are divided by 128 */
2101 for ( ; code < D_CODES; code++) {
2102 base_dist[code] = dist << 7;
2103 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2104 dist_code[256 + dist++] = (uch)code;
2105 }
2106 }
2107 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2108
2109 /* Construct the codes of the static literal tree */
2110 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2111 n = 0;
2112 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2113 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2114 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2115 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2116 /* Codes 286 and 287 do not exist, but we must include them in the
2117 * tree construction to get a canonical Huffman tree (longest code
2118 * all ones)
2119 */
2120 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2121
2122 /* The static distance tree is trivial: */
2123 for (n = 0; n < D_CODES; n++) {
2124 static_dtree[n].Len = 5;
2125 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2126 }
2127 static_init_done = 1;
2128 }
2129
2130 /* ===========================================================================
2131 * Initialize the tree data structures for a new zlib stream.
2132 */
2133 void _tr_init(s)
2134 deflate_state *s;
2135 {
2136 tr_static_init();
2137
2138 s->compressed_len = 0L;
2139
2140 s->l_desc.dyn_tree = s->dyn_ltree;
2141 s->l_desc.stat_desc = &static_l_desc;
2142
2143 s->d_desc.dyn_tree = s->dyn_dtree;
2144 s->d_desc.stat_desc = &static_d_desc;
2145
2146 s->bl_desc.dyn_tree = s->bl_tree;
2147 s->bl_desc.stat_desc = &static_bl_desc;
2148
2149 s->bi_buf = 0;
2150 s->bi_valid = 0;
2151 s->last_eob_len = 8; /* enough lookahead for inflate */
2152 #ifdef DEBUG_ZLIB
2153 s->bits_sent = 0L;
2154 #endif
2155
2156 /* Initialize the first block of the first file: */
2157 init_block(s);
2158 }
2159
2160 /* ===========================================================================
2161 * Initialize a new block.
2162 */
2163 local void init_block(s)
2164 deflate_state *s;
2165 {
2166 int n; /* iterates over tree elements */
2167
2168 /* Initialize the trees. */
2169 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2170 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2171 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2172
2173 s->dyn_ltree[END_BLOCK].Freq = 1;
2174 s->opt_len = s->static_len = 0L;
2175 s->last_lit = s->matches = 0;
2176 }
2177
2178 #define SMALLEST 1
2179 /* Index within the heap array of least frequent node in the Huffman tree */
2180
2181
2182 /* ===========================================================================
2183 * Remove the smallest element from the heap and recreate the heap with
2184 * one less element. Updates heap and heap_len.
2185 */
2186 #define pqremove(s, tree, top) \
2187 {\
2188 top = s->heap[SMALLEST]; \
2189 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2190 pqdownheap(s, tree, SMALLEST); \
2191 }
2192
2193 /* ===========================================================================
2194 * Compares to subtrees, using the tree depth as tie breaker when
2195 * the subtrees have equal frequency. This minimizes the worst case length.
2196 */
2197 #define smaller(tree, n, m, depth) \
2198 (tree[n].Freq < tree[m].Freq || \
2199 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2200
2201 /* ===========================================================================
2202 * Restore the heap property by moving down the tree starting at node k,
2203 * exchanging a node with the smallest of its two sons if necessary, stopping
2204 * when the heap property is re-established (each father smaller than its
2205 * two sons).
2206 */
2207 local void pqdownheap(s, tree, k)
2208 deflate_state *s;
2209 ct_data *tree; /* the tree to restore */
2210 int k; /* node to move down */
2211 {
2212 int v = s->heap[k];
2213 int j = k << 1; /* left son of k */
2214 while (j <= s->heap_len) {
2215 /* Set j to the smallest of the two sons: */
2216 if (j < s->heap_len &&
2217 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2218 j++;
2219 }
2220 /* Exit if v is smaller than both sons */
2221 if (smaller(tree, v, s->heap[j], s->depth)) break;
2222
2223 /* Exchange v with the smallest son */
2224 s->heap[k] = s->heap[j]; k = j;
2225
2226 /* And continue down the tree, setting j to the left son of k */
2227 j <<= 1;
2228 }
2229 s->heap[k] = v;
2230 }
2231
2232 /* ===========================================================================
2233 * Compute the optimal bit lengths for a tree and update the total bit length
2234 * for the current block.
2235 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2236 * above are the tree nodes sorted by increasing frequency.
2237 * OUT assertions: the field len is set to the optimal bit length, the
2238 * array bl_count contains the frequencies for each bit length.
2239 * The length opt_len is updated; static_len is also updated if stree is
2240 * not null.
2241 */
2242 local void gen_bitlen(s, desc)
2243 deflate_state *s;
2244 tree_desc *desc; /* the tree descriptor */
2245 {
2246 ct_data *tree = desc->dyn_tree;
2247 int max_code = desc->max_code;
2248 ct_data *stree = desc->stat_desc->static_tree;
2249 const intf *extra = desc->stat_desc->extra_bits;
2250 int base = desc->stat_desc->extra_base;
2251 int max_length = desc->stat_desc->max_length;
2252 int h; /* heap index */
2253 int n, m; /* iterate over the tree elements */
2254 int bits; /* bit length */
2255 int xbits; /* extra bits */
2256 ush f; /* frequency */
2257 int overflow = 0; /* number of elements with bit length too large */
2258
2259 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2260
2261 /* In a first pass, compute the optimal bit lengths (which may
2262 * overflow in the case of the bit length tree).
2263 */
2264 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2265
2266 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2267 n = s->heap[h];
2268 bits = tree[tree[n].Dad].Len + 1;
2269 if (bits > max_length) bits = max_length, overflow++;
2270 tree[n].Len = (ush)bits;
2271 /* We overwrite tree[n].Dad which is no longer needed */
2272
2273 if (n > max_code) continue; /* not a leaf node */
2274
2275 s->bl_count[bits]++;
2276 xbits = 0;
2277 if (n >= base) xbits = extra[n-base];
2278 f = tree[n].Freq;
2279 s->opt_len += (ulg)f * (bits + xbits);
2280 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2281 }
2282 if (overflow == 0) return;
2283
2284 Trace((stderr,"\nbit length overflow\n"));
2285 /* This happens for example on obj2 and pic of the Calgary corpus */
2286
2287 /* Find the first bit length which could increase: */
2288 do {
2289 bits = max_length-1;
2290 while (s->bl_count[bits] == 0) bits--;
2291 s->bl_count[bits]--; /* move one leaf down the tree */
2292 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2293 s->bl_count[max_length]--;
2294 /* The brother of the overflow item also moves one step up,
2295 * but this does not affect bl_count[max_length]
2296 */
2297 overflow -= 2;
2298 } while (overflow > 0);
2299
2300 /* Now recompute all bit lengths, scanning in increasing frequency.
2301 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2302 * lengths instead of fixing only the wrong ones. This idea is taken
2303 * from 'ar' written by Haruhiko Okumura.)
2304 */
2305 for (bits = max_length; bits != 0; bits--) {
2306 n = s->bl_count[bits];
2307 while (n != 0) {
2308 m = s->heap[--h];
2309 if (m > max_code) continue;
2310 if (tree[m].Len != (unsigned) bits) {
2311 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2312 s->opt_len += ((long)bits - (long)tree[m].Len)
2313 *(long)tree[m].Freq;
2314 tree[m].Len = (ush)bits;
2315 }
2316 n--;
2317 }
2318 }
2319 }
2320
2321 /* ===========================================================================
2322 * Generate the codes for a given tree and bit counts (which need not be
2323 * optimal).
2324 * IN assertion: the array bl_count contains the bit length statistics for
2325 * the given tree and the field len is set for all tree elements.
2326 * OUT assertion: the field code is set for all tree elements of non
2327 * zero code length.
2328 */
2329 local void gen_codes (tree, max_code, bl_count)
2330 ct_data *tree; /* the tree to decorate */
2331 int max_code; /* largest code with non zero frequency */
2332 ushf *bl_count; /* number of codes at each bit length */
2333 {
2334 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2335 ush code = 0; /* running code value */
2336 int bits; /* bit index */
2337 int n; /* code index */
2338
2339 /* The distribution counts are first used to generate the code values
2340 * without bit reversal.
2341 */
2342 for (bits = 1; bits <= MAX_BITS; bits++) {
2343 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2344 }
2345 /* Check that the bit counts in bl_count are consistent. The last code
2346 * must be all ones.
2347 */
2348 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2349 "inconsistent bit counts");
2350 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2351
2352 for (n = 0; n <= max_code; n++) {
2353 int len = tree[n].Len;
2354 if (len == 0) continue;
2355 /* Now reverse the bits */
2356 tree[n].Code = bi_reverse(next_code[len]++, len);
2357
2358 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2359 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2360 }
2361 }
2362
2363 /* ===========================================================================
2364 * Construct one Huffman tree and assigns the code bit strings and lengths.
2365 * Update the total bit length for the current block.
2366 * IN assertion: the field freq is set for all tree elements.
2367 * OUT assertions: the fields len and code are set to the optimal bit length
2368 * and corresponding code. The length opt_len is updated; static_len is
2369 * also updated if stree is not null. The field max_code is set.
2370 */
2371 local void build_tree(s, desc)
2372 deflate_state *s;
2373 tree_desc *desc; /* the tree descriptor */
2374 {
2375 ct_data *tree = desc->dyn_tree;
2376 ct_data *stree = desc->stat_desc->static_tree;
2377 int elems = desc->stat_desc->elems;
2378 int n, m; /* iterate over heap elements */
2379 int max_code = -1; /* largest code with non zero frequency */
2380 int node; /* new node being created */
2381
2382 /* Construct the initial heap, with least frequent element in
2383 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2384 * heap[0] is not used.
2385 */
2386 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2387
2388 for (n = 0; n < elems; n++) {
2389 if (tree[n].Freq != 0) {
2390 s->heap[++(s->heap_len)] = max_code = n;
2391 s->depth[n] = 0;
2392 } else {
2393 tree[n].Len = 0;
2394 }
2395 }
2396
2397 /* The pkzip format requires that at least one distance code exists,
2398 * and that at least one bit should be sent even if there is only one
2399 * possible code. So to avoid special checks later on we force at least
2400 * two codes of non zero frequency.
2401 */
2402 while (s->heap_len < 2) {
2403 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2404 tree[node].Freq = 1;
2405 s->depth[node] = 0;
2406 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2407 /* node is 0 or 1 so it does not have extra bits */
2408 }
2409 desc->max_code = max_code;
2410
2411 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2412 * establish sub-heaps of increasing lengths:
2413 */
2414 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2415
2416 /* Construct the Huffman tree by repeatedly combining the least two
2417 * frequent nodes.
2418 */
2419 node = elems; /* next internal node of the tree */
2420 do {
2421 pqremove(s, tree, n); /* n = node of least frequency */
2422 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2423
2424 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2425 s->heap[--(s->heap_max)] = m;
2426
2427 /* Create a new node father of n and m */
2428 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2429 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2430 tree[n].Dad = tree[m].Dad = (ush)node;
2431 #ifdef DUMP_BL_TREE
2432 if (tree == s->bl_tree) {
2433 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2434 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2435 }
2436 #endif
2437 /* and insert the new node in the heap */
2438 s->heap[SMALLEST] = node++;
2439 pqdownheap(s, tree, SMALLEST);
2440
2441 } while (s->heap_len >= 2);
2442
2443 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2444
2445 /* At this point, the fields freq and dad are set. We can now
2446 * generate the bit lengths.
2447 */
2448 gen_bitlen(s, (tree_desc *)desc);
2449
2450 /* The field len is now set, we can generate the bit codes */
2451 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2452 }
2453
2454 /* ===========================================================================
2455 * Scan a literal or distance tree to determine the frequencies of the codes
2456 * in the bit length tree.
2457 */
2458 local void scan_tree (s, tree, max_code)
2459 deflate_state *s;
2460 ct_data *tree; /* the tree to be scanned */
2461 int max_code; /* and its largest code of non zero frequency */
2462 {
2463 int n; /* iterates over all tree elements */
2464 int prevlen = -1; /* last emitted length */
2465 int curlen; /* length of current code */
2466 int nextlen = tree[0].Len; /* length of next code */
2467 int count = 0; /* repeat count of the current code */
2468 int max_count = 7; /* max repeat count */
2469 int min_count = 4; /* min repeat count */
2470
2471 if (nextlen == 0) max_count = 138, min_count = 3;
2472 tree[max_code+1].Len = (ush)0xffff; /* guard */
2473
2474 for (n = 0; n <= max_code; n++) {
2475 curlen = nextlen; nextlen = tree[n+1].Len;
2476 if (++count < max_count && curlen == nextlen) {
2477 continue;
2478 } else if (count < min_count) {
2479 s->bl_tree[curlen].Freq += count;
2480 } else if (curlen != 0) {
2481 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2482 s->bl_tree[REP_3_6].Freq++;
2483 } else if (count <= 10) {
2484 s->bl_tree[REPZ_3_10].Freq++;
2485 } else {
2486 s->bl_tree[REPZ_11_138].Freq++;
2487 }
2488 count = 0; prevlen = curlen;
2489 if (nextlen == 0) {
2490 max_count = 138, min_count = 3;
2491 } else if (curlen == nextlen) {
2492 max_count = 6, min_count = 3;
2493 } else {
2494 max_count = 7, min_count = 4;
2495 }
2496 }
2497 }
2498
2499 /* ===========================================================================
2500 * Send a literal or distance tree in compressed form, using the codes in
2501 * bl_tree.
2502 */
2503 local void send_tree (s, tree, max_code)
2504 deflate_state *s;
2505 ct_data *tree; /* the tree to be scanned */
2506 int max_code; /* and its largest code of non zero frequency */
2507 {
2508 int n; /* iterates over all tree elements */
2509 int prevlen = -1; /* last emitted length */
2510 int curlen; /* length of current code */
2511 int nextlen = tree[0].Len; /* length of next code */
2512 int count = 0; /* repeat count of the current code */
2513 int max_count = 7; /* max repeat count */
2514 int min_count = 4; /* min repeat count */
2515
2516 /* tree[max_code+1].Len = -1; */ /* guard already set */
2517 if (nextlen == 0) max_count = 138, min_count = 3;
2518
2519 for (n = 0; n <= max_code; n++) {
2520 curlen = nextlen; nextlen = tree[n+1].Len;
2521 if (++count < max_count && curlen == nextlen) {
2522 continue;
2523 } else if (count < min_count) {
2524 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2525
2526 } else if (curlen != 0) {
2527 if (curlen != prevlen) {
2528 send_code(s, curlen, s->bl_tree); count--;
2529 }
2530 Assert(count >= 3 && count <= 6, " 3_6?");
2531 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2532
2533 } else if (count <= 10) {
2534 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2535
2536 } else {
2537 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2538 }
2539 count = 0; prevlen = curlen;
2540 if (nextlen == 0) {
2541 max_count = 138, min_count = 3;
2542 } else if (curlen == nextlen) {
2543 max_count = 6, min_count = 3;
2544 } else {
2545 max_count = 7, min_count = 4;
2546 }
2547 }
2548 }
2549
2550 /* ===========================================================================
2551 * Construct the Huffman tree for the bit lengths and return the index in
2552 * bl_order of the last bit length code to send.
2553 */
2554 local int build_bl_tree(s)
2555 deflate_state *s;
2556 {
2557 int max_blindex; /* index of last bit length code of non zero freq */
2558
2559 /* Determine the bit length frequencies for literal and distance trees */
2560 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2561 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2562
2563 /* Build the bit length tree: */
2564 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2565 /* opt_len now includes the length of the tree representations, except
2566 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2567 */
2568
2569 /* Determine the number of bit length codes to send. The pkzip format
2570 * requires that at least 4 bit length codes be sent. (appnote.txt says
2571 * 3 but the actual value used is 4.)
2572 */
2573 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2574 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2575 }
2576 /* Update opt_len to include the bit length tree and counts */
2577 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2578 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2579 s->opt_len, s->static_len));
2580
2581 return max_blindex;
2582 }
2583
2584 /* ===========================================================================
2585 * Send the header for a block using dynamic Huffman trees: the counts, the
2586 * lengths of the bit length codes, the literal tree and the distance tree.
2587 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2588 */
2589 local void send_all_trees(s, lcodes, dcodes, blcodes)
2590 deflate_state *s;
2591 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2592 {
2593 int rank; /* index in bl_order */
2594
2595 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2596 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2597 "too many codes");
2598 Tracev((stderr, "\nbl counts: "));
2599 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2600 send_bits(s, dcodes-1, 5);
2601 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2602 for (rank = 0; rank < blcodes; rank++) {
2603 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2604 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2605 }
2606 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2607
2608 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2609 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2610
2611 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2612 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2613 }
2614
2615 /* ===========================================================================
2616 * Send a stored block
2617 */
2618 void _tr_stored_block(s, buf, stored_len, eof)
2619 deflate_state *s;
2620 charf *buf; /* input block */
2621 ulg stored_len; /* length of input block */
2622 int eof; /* true if this is the last block for a file */
2623 {
2624 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2625 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2626 s->compressed_len += (stored_len + 4) << 3;
2627
2628 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2629 }
2630
2631 /* Send just the `stored block' type code without any length bytes or data.
2632 */
2633 void _tr_stored_type_only(s)
2634 deflate_state *s;
2635 {
2636 send_bits(s, (STORED_BLOCK << 1), 3);
2637 bi_windup(s);
2638 s->compressed_len = (s->compressed_len + 3) & ~7L;
2639 }
2640
2641
2642 /* ===========================================================================
2643 * Send one empty static block to give enough lookahead for inflate.
2644 * This takes 10 bits, of which 7 may remain in the bit buffer.
2645 * The current inflate code requires 9 bits of lookahead. If the
2646 * last two codes for the previous block (real code plus EOB) were coded
2647 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2648 * the last real code. In this case we send two empty static blocks instead
2649 * of one. (There are no problems if the previous block is stored or fixed.)
2650 * To simplify the code, we assume the worst case of last real code encoded
2651 * on one bit only.
2652 */
2653 void _tr_align(s)
2654 deflate_state *s;
2655 {
2656 send_bits(s, STATIC_TREES<<1, 3);
2657 send_code(s, END_BLOCK, static_ltree);
2658 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2659 bi_flush(s);
2660 /* Of the 10 bits for the empty block, we have already sent
2661 * (10 - bi_valid) bits. The lookahead for the last real code (before
2662 * the EOB of the previous block) was thus at least one plus the length
2663 * of the EOB plus what we have just sent of the empty static block.
2664 */
2665 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2666 send_bits(s, STATIC_TREES<<1, 3);
2667 send_code(s, END_BLOCK, static_ltree);
2668 s->compressed_len += 10L;
2669 bi_flush(s);
2670 }
2671 s->last_eob_len = 7;
2672 }
2673
2674 /* ===========================================================================
2675 * Determine the best encoding for the current block: dynamic trees, static
2676 * trees or store, and output the encoded block to the zip file. This function
2677 * returns the total compressed length for the file so far.
2678 */
2679 ulg _tr_flush_block(s, buf, stored_len, eof)
2680 deflate_state *s;
2681 charf *buf; /* input block, or NULL if too old */
2682 ulg stored_len; /* length of input block */
2683 int eof; /* true if this is the last block for a file */
2684 {
2685 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2686 int max_blindex = 0; /* index of last bit length code of non zero freq */
2687
2688 /* Build the Huffman trees unless a stored block is forced */
2689 if (s->level > 0) {
2690
2691 /* Check if the file is ascii or binary */
2692 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2693
2694 /* Construct the literal and distance trees */
2695 build_tree(s, (tree_desc *)(&(s->l_desc)));
2696 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2697 s->static_len));
2698
2699 build_tree(s, (tree_desc *)(&(s->d_desc)));
2700 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2701 s->static_len));
2702 /* At this point, opt_len and static_len are the total bit lengths of
2703 * the compressed block data, excluding the tree representations.
2704 */
2705
2706 /* Build the bit length tree for the above two trees, and get the index
2707 * in bl_order of the last bit length code to send.
2708 */
2709 max_blindex = build_bl_tree(s);
2710
2711 /* Determine the best encoding. Compute first the block length in bytes*/
2712 opt_lenb = (s->opt_len+3+7)>>3;
2713 static_lenb = (s->static_len+3+7)>>3;
2714
2715 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2716 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2717 s->last_lit));
2718
2719 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2720
2721 } else {
2722 Assert(buf != (char*)0, "lost buf");
2723 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2724 }
2725
2726 /* If compression failed and this is the first and last block,
2727 * and if the .zip file can be seeked (to rewrite the local header),
2728 * the whole file is transformed into a stored file:
2729 */
2730 #ifdef STORED_FILE_OK
2731 # ifdef FORCE_STORED_FILE
2732 if (eof && s->compressed_len == 0L) { /* force stored file */
2733 # else
2734 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2735 # endif
2736 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2737 if (buf == (charf*)0) error ("block vanished");
2738
2739 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2740 s->compressed_len = stored_len << 3;
2741 s->method = STORED;
2742 } else
2743 #endif /* STORED_FILE_OK */
2744
2745 #ifdef FORCE_STORED
2746 if (buf != (char*)0) { /* force stored block */
2747 #else
2748 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2749 /* 4: two words for the lengths */
2750 #endif
2751 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2752 * Otherwise we can't have processed more than WSIZE input bytes since
2753 * the last block flush, because compression would have been
2754 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2755 * transform a block into a stored block.
2756 */
2757 _tr_stored_block(s, buf, stored_len, eof);
2758
2759 #ifdef FORCE_STATIC
2760 } else if (static_lenb >= 0) { /* force static trees */
2761 #else
2762 } else if (static_lenb == opt_lenb) {
2763 #endif
2764 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2765 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2766 s->compressed_len += 3 + s->static_len;
2767 } else {
2768 send_bits(s, (DYN_TREES<<1)+eof, 3);
2769 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2770 max_blindex+1);
2771 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2772 s->compressed_len += 3 + s->opt_len;
2773 }
2774 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2775 init_block(s);
2776
2777 if (eof) {
2778 bi_windup(s);
2779 s->compressed_len += 7; /* align on byte boundary */
2780 }
2781 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2782 s->compressed_len-7*eof));
2783
2784 return s->compressed_len >> 3;
2785 }
2786
2787 /* ===========================================================================
2788 * Save the match info and tally the frequency counts. Return true if
2789 * the current block must be flushed.
2790 */
2791 int _tr_tally (s, dist, lc)
2792 deflate_state *s;
2793 unsigned dist; /* distance of matched string */
2794 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2795 {
2796 s->d_buf[s->last_lit] = (ush)dist;
2797 s->l_buf[s->last_lit++] = (uch)lc;
2798 if (dist == 0) {
2799 /* lc is the unmatched char */
2800 s->dyn_ltree[lc].Freq++;
2801 } else {
2802 s->matches++;
2803 /* Here, lc is the match length - MIN_MATCH */
2804 dist--; /* dist = match distance - 1 */
2805 Assert((ush)dist < (ush)MAX_DIST(s) &&
2806 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2807 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2808
2809 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2810 s->dyn_dtree[d_code(dist)].Freq++;
2811 }
2812
2813 /* Try to guess if it is profitable to stop the current block here */
2814 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2815 /* Compute an upper bound for the compressed length */
2816 ulg out_length = (ulg)s->last_lit*8L;
2817 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2818 int dcode;
2819 for (dcode = 0; dcode < D_CODES; dcode++) {
2820 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2821 (5L+extra_dbits[dcode]);
2822 }
2823 out_length >>= 3;
2824 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2825 s->last_lit, in_length, out_length,
2826 100L - out_length*100L/in_length));
2827 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2828 }
2829 return (s->last_lit == s->lit_bufsize-1);
2830 /* We avoid equality with lit_bufsize because of wraparound at 64K
2831 * on 16 bit machines and because stored blocks are restricted to
2832 * 64K-1 bytes.
2833 */
2834 }
2835
2836 /* ===========================================================================
2837 * Send the block data compressed using the given Huffman trees
2838 */
2839 local void compress_block(s, ltree, dtree)
2840 deflate_state *s;
2841 ct_data *ltree; /* literal tree */
2842 ct_data *dtree; /* distance tree */
2843 {
2844 unsigned dist; /* distance of matched string */
2845 int lc; /* match length or unmatched char (if dist == 0) */
2846 unsigned lx = 0; /* running index in l_buf */
2847 unsigned code; /* the code to send */
2848 int extra; /* number of extra bits to send */
2849
2850 if (s->last_lit != 0) do {
2851 dist = s->d_buf[lx];
2852 lc = s->l_buf[lx++];
2853 if (dist == 0) {
2854 send_code(s, lc, ltree); /* send a literal byte */
2855 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2856 } else {
2857 /* Here, lc is the match length - MIN_MATCH */
2858 code = length_code[lc];
2859 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2860 extra = extra_lbits[code];
2861 if (extra != 0) {
2862 lc -= base_length[code];
2863 send_bits(s, lc, extra); /* send the extra length bits */
2864 }
2865 dist--; /* dist is now the match distance - 1 */
2866 code = d_code(dist);
2867 Assert (code < D_CODES, "bad d_code");
2868
2869 send_code(s, code, dtree); /* send the distance code */
2870 extra = extra_dbits[code];
2871 if (extra != 0) {
2872 dist -= base_dist[code];
2873 send_bits(s, dist, extra); /* send the extra distance bits */
2874 }
2875 } /* literal or match pair ? */
2876
2877 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2878 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2879
2880 } while (lx < s->last_lit);
2881
2882 send_code(s, END_BLOCK, ltree);
2883 s->last_eob_len = ltree[END_BLOCK].Len;
2884 }
2885
2886 /* ===========================================================================
2887 * Set the data type to ASCII or BINARY, using a crude approximation:
2888 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2889 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2890 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2891 */
2892 local void set_data_type(s)
2893 deflate_state *s;
2894 {
2895 int n = 0;
2896 unsigned ascii_freq = 0;
2897 unsigned bin_freq = 0;
2898 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2899 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2900 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2901 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2902 }
2903
2904 /* ===========================================================================
2905 * Reverse the first len bits of a code, using straightforward code (a faster
2906 * method would use a table)
2907 * IN assertion: 1 <= len <= 15
2908 */
2909 local unsigned bi_reverse(code, len)
2910 unsigned code; /* the value to invert */
2911 int len; /* its bit length */
2912 {
2913 unsigned res = 0;
2914 do {
2915 res |= code & 1;
2916 code >>= 1, res <<= 1;
2917 } while (--len > 0);
2918 return res >> 1;
2919 }
2920
2921 /* ===========================================================================
2922 * Flush the bit buffer, keeping at most 7 bits in it.
2923 */
2924 local void bi_flush(s)
2925 deflate_state *s;
2926 {
2927 if (s->bi_valid == 16) {
2928 put_short(s, s->bi_buf);
2929 s->bi_buf = 0;
2930 s->bi_valid = 0;
2931 } else if (s->bi_valid >= 8) {
2932 put_byte(s, (Byte)s->bi_buf);
2933 s->bi_buf >>= 8;
2934 s->bi_valid -= 8;
2935 }
2936 }
2937
2938 /* ===========================================================================
2939 * Flush the bit buffer and align the output on a byte boundary
2940 */
2941 local void bi_windup(s)
2942 deflate_state *s;
2943 {
2944 if (s->bi_valid > 8) {
2945 put_short(s, s->bi_buf);
2946 } else if (s->bi_valid > 0) {
2947 put_byte(s, (Byte)s->bi_buf);
2948 }
2949 s->bi_buf = 0;
2950 s->bi_valid = 0;
2951 #ifdef DEBUG_ZLIB
2952 s->bits_sent = (s->bits_sent+7) & ~7;
2953 #endif
2954 }
2955
2956 /* ===========================================================================
2957 * Copy a stored block, storing first the length and its
2958 * one's complement if requested.
2959 */
2960 local void copy_block(s, buf, len, header)
2961 deflate_state *s;
2962 charf *buf; /* the input data */
2963 unsigned len; /* its length */
2964 int header; /* true if block header must be written */
2965 {
2966 bi_windup(s); /* align on byte boundary */
2967 s->last_eob_len = 8; /* enough lookahead for inflate */
2968
2969 if (header) {
2970 put_short(s, (ush)len);
2971 put_short(s, (ush)~len);
2972 #ifdef DEBUG_ZLIB
2973 s->bits_sent += 2*16;
2974 #endif
2975 }
2976 #ifdef DEBUG_ZLIB
2977 s->bits_sent += (ulg)len<<3;
2978 #endif
2979 /* bundle up the put_byte(s, *buf++) calls */
2980 zmemcpy(&s->pending_buf[s->pending], buf, len);
2981 s->pending += len;
2982 }
2983 /* --- trees.c */
2984
2985 /* +++ inflate.c */
2986 /* inflate.c -- zlib interface to inflate modules
2987 * Copyright (C) 1995-1996 Mark Adler
2988 * For conditions of distribution and use, see copyright notice in zlib.h
2989 */
2990
2991 /* #include "zutil.h" */
2992
2993 /* +++ infblock.h */
2994 /* infblock.h -- header to use infblock.c
2995 * Copyright (C) 1995-1996 Mark Adler
2996 * For conditions of distribution and use, see copyright notice in zlib.h
2997 */
2998
2999 /* WARNING: this file should *not* be used by applications. It is
3000 part of the implementation of the compression library and is
3001 subject to change. Applications should only use zlib.h.
3002 */
3003
3004 struct inflate_blocks_state;
3005 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3006
3007 extern inflate_blocks_statef * inflate_blocks_new OF((
3008 z_streamp z,
3009 check_func c, /* check function */
3010 uInt w)); /* window size */
3011
3012 extern int inflate_blocks OF((
3013 inflate_blocks_statef *,
3014 z_streamp ,
3015 int)); /* initial return code */
3016
3017 extern void inflate_blocks_reset OF((
3018 inflate_blocks_statef *,
3019 z_streamp ,
3020 uLongf *)); /* check value on output */
3021
3022 extern int inflate_blocks_free OF((
3023 inflate_blocks_statef *,
3024 z_streamp ,
3025 uLongf *)); /* check value on output */
3026
3027 extern void inflate_set_dictionary OF((
3028 inflate_blocks_statef *s,
3029 const Bytef *d, /* dictionary */
3030 uInt n)); /* dictionary length */
3031
3032 extern int inflate_addhistory OF((
3033 inflate_blocks_statef *,
3034 z_streamp));
3035
3036 extern int inflate_packet_flush OF((
3037 inflate_blocks_statef *));
3038 /* --- infblock.h */
3039
3040 #ifndef NO_DUMMY_DECL
3041 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3042 #endif
3043
3044 /* inflate private state */
3045 struct internal_state {
3046
3047 /* mode */
3048 enum {
3049 METHOD, /* waiting for method byte */
3050 FLAG, /* waiting for flag byte */
3051 DICT4, /* four dictionary check bytes to go */
3052 DICT3, /* three dictionary check bytes to go */
3053 DICT2, /* two dictionary check bytes to go */
3054 DICT1, /* one dictionary check byte to go */
3055 DICT0, /* waiting for inflateSetDictionary */
3056 BLOCKS, /* decompressing blocks */
3057 CHECK4, /* four check bytes to go */
3058 CHECK3, /* three check bytes to go */
3059 CHECK2, /* two check bytes to go */
3060 CHECK1, /* one check byte to go */
3061 DONE, /* finished check, done */
3062 BAD} /* got an error--stay here */
3063 mode; /* current inflate mode */
3064
3065 /* mode dependent information */
3066 union {
3067 uInt method; /* if FLAGS, method byte */
3068 struct {
3069 uLong was; /* computed check value */
3070 uLong need; /* stream check value */
3071 } check; /* if CHECK, check values to compare */
3072 uInt marker; /* if BAD, inflateSync's marker bytes count */
3073 } sub; /* submode */
3074
3075 /* mode independent information */
3076 int nowrap; /* flag for no wrapper */
3077 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3078 inflate_blocks_statef
3079 *blocks; /* current inflate_blocks state */
3080
3081 };
3082
3083
3084 int inflateReset(z)
3085 z_streamp z;
3086 {
3087 uLong c;
3088
3089 if (z == Z_NULL || z->state == Z_NULL)
3090 return Z_STREAM_ERROR;
3091 z->total_in = z->total_out = 0;
3092 z->msg = Z_NULL;
3093 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3094 inflate_blocks_reset(z->state->blocks, z, &c);
3095 Trace((stderr, "inflate: reset\n"));
3096 return Z_OK;
3097 }
3098
3099
3100 int inflateEnd(z)
3101 z_streamp z;
3102 {
3103 uLong c;
3104
3105 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3106 return Z_STREAM_ERROR;
3107 if (z->state->blocks != Z_NULL)
3108 inflate_blocks_free(z->state->blocks, z, &c);
3109 ZFREE(z, z->state);
3110 z->state = Z_NULL;
3111 Trace((stderr, "inflate: end\n"));
3112 return Z_OK;
3113 }
3114
3115
3116 int inflateInit2_(z, w, version, stream_size)
3117 z_streamp z;
3118 int w;
3119 const char *version;
3120 int stream_size;
3121 {
3122 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3123 stream_size != sizeof(z_stream))
3124 return Z_VERSION_ERROR;
3125
3126 /* initialize state */
3127 if (z == Z_NULL)
3128 return Z_STREAM_ERROR;
3129 z->msg = Z_NULL;
3130 #ifndef NO_ZCFUNCS
3131 if (z->zalloc == Z_NULL)
3132 {
3133 z->zalloc = zcalloc;
3134 z->opaque = (voidpf)0;
3135 }
3136 if (z->zfree == Z_NULL) z->zfree = zcfree;
3137 #endif
3138 if ((z->state = (struct internal_state FAR *)
3139 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3140 return Z_MEM_ERROR;
3141 z->state->blocks = Z_NULL;
3142
3143 /* handle undocumented nowrap option (no zlib header or check) */
3144 z->state->nowrap = 0;
3145 if (w < 0)
3146 {
3147 w = - w;
3148 z->state->nowrap = 1;
3149 }
3150
3151 /* set window size */
3152 if (w < 8 || w > 15)
3153 {
3154 inflateEnd(z);
3155 return Z_STREAM_ERROR;
3156 }
3157 z->state->wbits = (uInt)w;
3158
3159 /* create inflate_blocks state */
3160 if ((z->state->blocks =
3161 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3162 == Z_NULL)
3163 {
3164 inflateEnd(z);
3165 return Z_MEM_ERROR;
3166 }
3167 Trace((stderr, "inflate: allocated\n"));
3168
3169 /* reset state */
3170 inflateReset(z);
3171 return Z_OK;
3172 }
3173
3174
3175 int inflateInit_(z, version, stream_size)
3176 z_streamp z;
3177 const char *version;
3178 int stream_size;
3179 {
3180 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3181 }
3182
3183
3184 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3185 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3186
3187 int inflate(z, f)
3188 z_streamp z;
3189 int f;
3190 {
3191 int r;
3192 uInt b;
3193
3194 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3195 return Z_STREAM_ERROR;
3196 r = Z_BUF_ERROR;
3197 while (1) switch (z->state->mode)
3198 {
3199 case METHOD:
3200 NEEDBYTE
3201 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3202 {
3203 z->state->mode = BAD;
3204 z->msg = (char*)"unknown compression method";
3205 z->state->sub.marker = 5; /* can't try inflateSync */
3206 break;
3207 }
3208 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3209 {
3210 z->state->mode = BAD;
3211 z->msg = (char*)"invalid window size";
3212 z->state->sub.marker = 5; /* can't try inflateSync */
3213 break;
3214 }
3215 z->state->mode = FLAG;
3216 case FLAG:
3217 NEEDBYTE
3218 b = NEXTBYTE;
3219 if (((z->state->sub.method << 8) + b) % 31)
3220 {
3221 z->state->mode = BAD;
3222 z->msg = (char*)"incorrect header check";
3223 z->state->sub.marker = 5; /* can't try inflateSync */
3224 break;
3225 }
3226 Trace((stderr, "inflate: zlib header ok\n"));
3227 if (!(b & PRESET_DICT))
3228 {
3229 z->state->mode = BLOCKS;
3230 break;
3231 }
3232 z->state->mode = DICT4;
3233 case DICT4:
3234 NEEDBYTE
3235 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3236 z->state->mode = DICT3;
3237 case DICT3:
3238 NEEDBYTE
3239 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3240 z->state->mode = DICT2;
3241 case DICT2:
3242 NEEDBYTE
3243 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3244 z->state->mode = DICT1;
3245 case DICT1:
3246 NEEDBYTE
3247 z->state->sub.check.need += (uLong)NEXTBYTE;
3248 z->adler = z->state->sub.check.need;
3249 z->state->mode = DICT0;
3250 return Z_NEED_DICT;
3251 case DICT0:
3252 z->state->mode = BAD;
3253 z->msg = (char*)"need dictionary";
3254 z->state->sub.marker = 0; /* can try inflateSync */
3255 return Z_STREAM_ERROR;
3256 case BLOCKS:
3257 r = inflate_blocks(z->state->blocks, z, r);
3258 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3259 r = inflate_packet_flush(z->state->blocks);
3260 if (r == Z_DATA_ERROR)
3261 {
3262 z->state->mode = BAD;
3263 z->state->sub.marker = 0; /* can try inflateSync */
3264 break;
3265 }
3266 if (r != Z_STREAM_END)
3267 return r;
3268 r = Z_OK;
3269 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3270 if (z->state->nowrap)
3271 {
3272 z->state->mode = DONE;
3273 break;
3274 }
3275 z->state->mode = CHECK4;
3276 case CHECK4:
3277 NEEDBYTE
3278 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3279 z->state->mode = CHECK3;
3280 case CHECK3:
3281 NEEDBYTE
3282 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3283 z->state->mode = CHECK2;
3284 case CHECK2:
3285 NEEDBYTE
3286 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3287 z->state->mode = CHECK1;
3288 case CHECK1:
3289 NEEDBYTE
3290 z->state->sub.check.need += (uLong)NEXTBYTE;
3291
3292 if (z->state->sub.check.was != z->state->sub.check.need)
3293 {
3294 z->state->mode = BAD;
3295 z->msg = (char*)"incorrect data check";
3296 z->state->sub.marker = 5; /* can't try inflateSync */
3297 break;
3298 }
3299 Trace((stderr, "inflate: zlib check ok\n"));
3300 z->state->mode = DONE;
3301 case DONE:
3302 return Z_STREAM_END;
3303 case BAD:
3304 return Z_DATA_ERROR;
3305 default:
3306 return Z_STREAM_ERROR;
3307 }
3308
3309 empty:
3310 if (f != Z_PACKET_FLUSH)
3311 return r;
3312 z->state->mode = BAD;
3313 z->msg = (char *)"need more for packet flush";
3314 z->state->sub.marker = 0; /* can try inflateSync */
3315 return Z_DATA_ERROR;
3316 }
3317
3318
3319 int inflateSetDictionary(z, dictionary, dictLength)
3320 z_streamp z;
3321 const Bytef *dictionary;
3322 uInt dictLength;
3323 {
3324 uInt length = dictLength;
3325
3326 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3327 return Z_STREAM_ERROR;
3328
3329 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3330 z->adler = 1L;
3331
3332 if (length >= ((uInt)1<<z->state->wbits))
3333 {
3334 length = (1<<z->state->wbits)-1;
3335 dictionary += dictLength - length;
3336 }
3337 inflate_set_dictionary(z->state->blocks, dictionary, length);
3338 z->state->mode = BLOCKS;
3339 return Z_OK;
3340 }
3341
3342 /*
3343 * This subroutine adds the data at next_in/avail_in to the output history
3344 * without performing any output. The output buffer must be "caught up";
3345 * i.e. no pending output (hence s->read equals s->write), and the state must
3346 * be BLOCKS (i.e. we should be willing to see the start of a series of
3347 * BLOCKS). On exit, the output will also be caught up, and the checksum
3348 * will have been updated if need be.
3349 */
3350
3351 int inflateIncomp(z)
3352 z_stream *z;
3353 {
3354 if (z->state->mode != BLOCKS)
3355 return Z_DATA_ERROR;
3356 return inflate_addhistory(z->state->blocks, z);
3357 }
3358
3359
3360 int inflateSync(z)
3361 z_streamp z;
3362 {
3363 uInt n; /* number of bytes to look at */
3364 Bytef *p; /* pointer to bytes */
3365 uInt m; /* number of marker bytes found in a row */
3366 uLong r, w; /* temporaries to save total_in and total_out */
3367
3368 /* set up */
3369 if (z == Z_NULL || z->state == Z_NULL)
3370 return Z_STREAM_ERROR;
3371 if (z->state->mode != BAD)
3372 {
3373 z->state->mode = BAD;
3374 z->state->sub.marker = 0;
3375 }
3376 if ((n = z->avail_in) == 0)
3377 return Z_BUF_ERROR;
3378 p = z->next_in;
3379 m = z->state->sub.marker;
3380
3381 /* search */
3382 while (n && m < 4)
3383 {
3384 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3385 m++;
3386 else if (*p)
3387 m = 0;
3388 else
3389 m = 4 - m;
3390 p++, n--;
3391 }
3392
3393 /* restore */
3394 z->total_in += p - z->next_in;
3395 z->next_in = p;
3396 z->avail_in = n;
3397 z->state->sub.marker = m;
3398
3399 /* return no joy or set up to restart on a new block */
3400 if (m != 4)
3401 return Z_DATA_ERROR;
3402 r = z->total_in; w = z->total_out;
3403 inflateReset(z);
3404 z->total_in = r; z->total_out = w;
3405 z->state->mode = BLOCKS;
3406 return Z_OK;
3407 }
3408
3409 #undef NEEDBYTE
3410 #undef NEXTBYTE
3411 /* --- inflate.c */
3412
3413 /* +++ infblock.c */
3414 /* infblock.c -- interpret and process block types to last block
3415 * Copyright (C) 1995-1996 Mark Adler
3416 * For conditions of distribution and use, see copyright notice in zlib.h
3417 */
3418
3419 /* #include "zutil.h" */
3420 /* #include "infblock.h" */
3421
3422 /* +++ inftrees.h */
3423 /* inftrees.h -- header to use inftrees.c
3424 * Copyright (C) 1995-1996 Mark Adler
3425 * For conditions of distribution and use, see copyright notice in zlib.h
3426 */
3427
3428 /* WARNING: this file should *not* be used by applications. It is
3429 part of the implementation of the compression library and is
3430 subject to change. Applications should only use zlib.h.
3431 */
3432
3433 /* Huffman code lookup table entry--this entry is four bytes for machines
3434 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3435
3436 typedef struct inflate_huft_s FAR inflate_huft;
3437
3438 struct inflate_huft_s {
3439 union {
3440 struct {
3441 Byte Exop; /* number of extra bits or operation */
3442 Byte Bits; /* number of bits in this code or subcode */
3443 } what;
3444 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3445 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3446 union {
3447 uInt Base; /* literal, length base, or distance base */
3448 inflate_huft *Next; /* pointer to next level of table */
3449 } more;
3450 };
3451
3452 #ifdef DEBUG_ZLIB
3453 extern uInt inflate_hufts;
3454 #endif
3455
3456 extern int inflate_trees_bits OF((
3457 uIntf *, /* 19 code lengths */
3458 uIntf *, /* bits tree desired/actual depth */
3459 inflate_huft * FAR *, /* bits tree result */
3460 z_streamp )); /* for zalloc, zfree functions */
3461
3462 extern int inflate_trees_dynamic OF((
3463 uInt, /* number of literal/length codes */
3464 uInt, /* number of distance codes */
3465 uIntf *, /* that many (total) code lengths */
3466 uIntf *, /* literal desired/actual bit depth */
3467 uIntf *, /* distance desired/actual bit depth */
3468 inflate_huft * FAR *, /* literal/length tree result */
3469 inflate_huft * FAR *, /* distance tree result */
3470 z_streamp )); /* for zalloc, zfree functions */
3471
3472 extern int inflate_trees_fixed OF((
3473 uIntf *, /* literal desired/actual bit depth */
3474 uIntf *, /* distance desired/actual bit depth */
3475 inflate_huft * FAR *, /* literal/length tree result */
3476 inflate_huft * FAR *)); /* distance tree result */
3477
3478 extern int inflate_trees_free OF((
3479 inflate_huft *, /* tables to free */
3480 z_streamp )); /* for zfree function */
3481
3482 /* --- inftrees.h */
3483
3484 /* +++ infcodes.h */
3485 /* infcodes.h -- header to use infcodes.c
3486 * Copyright (C) 1995-1996 Mark Adler
3487 * For conditions of distribution and use, see copyright notice in zlib.h
3488 */
3489
3490 /* WARNING: this file should *not* be used by applications. It is
3491 part of the implementation of the compression library and is
3492 subject to change. Applications should only use zlib.h.
3493 */
3494
3495 struct inflate_codes_state;
3496 typedef struct inflate_codes_state FAR inflate_codes_statef;
3497
3498 extern inflate_codes_statef *inflate_codes_new OF((
3499 uInt, uInt,
3500 inflate_huft *, inflate_huft *,
3501 z_streamp ));
3502
3503 extern int inflate_codes OF((
3504 inflate_blocks_statef *,
3505 z_streamp ,
3506 int));
3507
3508 extern void inflate_codes_free OF((
3509 inflate_codes_statef *,
3510 z_streamp ));
3511
3512 /* --- infcodes.h */
3513
3514 /* +++ infutil.h */
3515 /* infutil.h -- types and macros common to blocks and codes
3516 * Copyright (C) 1995-1996 Mark Adler
3517 * For conditions of distribution and use, see copyright notice in zlib.h
3518 */
3519
3520 /* WARNING: this file should *not* be used by applications. It is
3521 part of the implementation of the compression library and is
3522 subject to change. Applications should only use zlib.h.
3523 */
3524
3525 #ifndef _INFUTIL_H
3526 #define _INFUTIL_H
3527
3528 typedef enum {
3529 TYPE, /* get type bits (3, including end bit) */
3530 LENS, /* get lengths for stored */
3531 STORED, /* processing stored block */
3532 TABLE, /* get table lengths */
3533 BTREE, /* get bit lengths tree for a dynamic block */
3534 DTREE, /* get length, distance trees for a dynamic block */
3535 CODES, /* processing fixed or dynamic block */
3536 DRY, /* output remaining window bytes */
3537 DONEB, /* finished last block, done */
3538 BADB} /* got a data error--stuck here */
3539 inflate_block_mode;
3540
3541 /* inflate blocks semi-private state */
3542 struct inflate_blocks_state {
3543
3544 /* mode */
3545 inflate_block_mode mode; /* current inflate_block mode */
3546
3547 /* mode dependent information */
3548 union {
3549 uInt left; /* if STORED, bytes left to copy */
3550 struct {
3551 uInt table; /* table lengths (14 bits) */
3552 uInt index; /* index into blens (or border) */
3553 uIntf *blens; /* bit lengths of codes */
3554 uInt bb; /* bit length tree depth */
3555 inflate_huft *tb; /* bit length decoding tree */
3556 } trees; /* if DTREE, decoding info for trees */
3557 struct {
3558 inflate_huft *tl;
3559 inflate_huft *td; /* trees to free */
3560 inflate_codes_statef
3561 *codes;
3562 } decode; /* if CODES, current state */
3563 } sub; /* submode */
3564 uInt last; /* true if this block is the last block */
3565
3566 /* mode independent information */
3567 uInt bitk; /* bits in bit buffer */
3568 uLong bitb; /* bit buffer */
3569 Bytef *window; /* sliding window */
3570 Bytef *end; /* one byte after sliding window */
3571 Bytef *read; /* window read pointer */
3572 Bytef *write; /* window write pointer */
3573 check_func checkfn; /* check function */
3574 uLong check; /* check on output */
3575
3576 };
3577
3578
3579 /* defines for inflate input/output */
3580 /* update pointers and return */
3581 #define UPDBITS {s->bitb=b;s->bitk=k;}
3582 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3583 #define UPDOUT {s->write=q;}
3584 #define UPDATE {UPDBITS UPDIN UPDOUT}
3585 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3586 /* get bytes and bits */
3587 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3588 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3589 #define NEXTBYTE (n--,*p++)
3590 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3591 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3592 /* output bytes */
3593 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3594 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3595 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3596 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3597 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3598 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3599 /* load local pointers */
3600 #define LOAD {LOADIN LOADOUT}
3601
3602 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3603 extern const uInt inflate_mask[17];
3604
3605 /* copy as much as possible from the sliding window to the output area */
3606 extern int inflate_flush OF((
3607 inflate_blocks_statef *,
3608 z_streamp ,
3609 int));
3610
3611 #ifndef NO_DUMMY_DECL
3612 struct internal_state {int dummy;}; /* for buggy compilers */
3613 #endif
3614
3615 #endif
3616 /* --- infutil.h */
3617
3618 #ifndef NO_DUMMY_DECL
3619 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3620 #endif
3621
3622 /* Table for deflate from PKZIP's appnote.txt. */
3623 local const uInt border[] = { /* Order of the bit length code lengths */
3624 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3625
3626 /*
3627 Notes beyond the 1.93a appnote.txt:
3628
3629 1. Distance pointers never point before the beginning of the output
3630 stream.
3631 2. Distance pointers can point back across blocks, up to 32k away.
3632 3. There is an implied maximum of 7 bits for the bit length table and
3633 15 bits for the actual data.
3634 4. If only one code exists, then it is encoded using one bit. (Zero
3635 would be more efficient, but perhaps a little confusing.) If two
3636 codes exist, they are coded using one bit each (0 and 1).
3637 5. There is no way of sending zero distance codes--a dummy must be
3638 sent if there are none. (History: a pre 2.0 version of PKZIP would
3639 store blocks with no distance codes, but this was discovered to be
3640 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3641 zero distance codes, which is sent as one code of zero bits in
3642 length.
3643 6. There are up to 286 literal/length codes. Code 256 represents the
3644 end-of-block. Note however that the static length tree defines
3645 288 codes just to fill out the Huffman codes. Codes 286 and 287
3646 cannot be used though, since there is no length base or extra bits
3647 defined for them. Similarily, there are up to 30 distance codes.
3648 However, static trees define 32 codes (all 5 bits) to fill out the
3649 Huffman codes, but the last two had better not show up in the data.
3650 7. Unzip can check dynamic Huffman blocks for complete code sets.
3651 The exception is that a single code would not be complete (see #4).
3652 8. The five bits following the block type is really the number of
3653 literal codes sent minus 257.
3654 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3655 (1+6+6). Therefore, to output three times the length, you output
3656 three codes (1+1+1), whereas to output four times the same length,
3657 you only need two codes (1+3). Hmm.
3658 10. In the tree reconstruction algorithm, Code = Code + Increment
3659 only if BitLength(i) is not zero. (Pretty obvious.)
3660 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3661 12. Note: length code 284 can represent 227-258, but length code 285
3662 really is 258. The last length deserves its own, short code
3663 since it gets used a lot in very redundant files. The length
3664 258 is special since 258 - 3 (the min match length) is 255.
3665 13. The literal/length and distance code bit lengths are read as a
3666 single stream of lengths. It is possible (and advantageous) for
3667 a repeat code (16, 17, or 18) to go across the boundary between
3668 the two sets of lengths.
3669 */
3670
3671
3672 void inflate_blocks_reset(s, z, c)
3673 inflate_blocks_statef *s;
3674 z_streamp z;
3675 uLongf *c;
3676 {
3677 if (s->checkfn != Z_NULL)
3678 *c = s->check;
3679 if (s->mode == BTREE || s->mode == DTREE)
3680 ZFREE(z, s->sub.trees.blens);
3681 if (s->mode == CODES)
3682 {
3683 inflate_codes_free(s->sub.decode.codes, z);
3684 inflate_trees_free(s->sub.decode.td, z);
3685 inflate_trees_free(s->sub.decode.tl, z);
3686 }
3687 s->mode = TYPE;
3688 s->bitk = 0;
3689 s->bitb = 0;
3690 s->read = s->write = s->window;
3691 if (s->checkfn != Z_NULL)
3692 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3693 Trace((stderr, "inflate: blocks reset\n"));
3694 }
3695
3696
3697 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3698 z_streamp z;
3699 check_func c;
3700 uInt w;
3701 {
3702 inflate_blocks_statef *s;
3703
3704 if ((s = (inflate_blocks_statef *)ZALLOC
3705 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3706 return s;
3707 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3708 {
3709 ZFREE(z, s);
3710 return Z_NULL;
3711 }
3712 s->end = s->window + w;
3713 s->checkfn = c;
3714 s->mode = TYPE;
3715 Trace((stderr, "inflate: blocks allocated\n"));
3716 inflate_blocks_reset(s, z, &s->check);
3717 return s;
3718 }
3719
3720
3721 #ifdef DEBUG_ZLIB
3722 extern uInt inflate_hufts;
3723 #endif
3724 int inflate_blocks(s, z, r)
3725 inflate_blocks_statef *s;
3726 z_streamp z;
3727 int r;
3728 {
3729 uInt t; /* temporary storage */
3730 uLong b; /* bit buffer */
3731 uInt k; /* bits in bit buffer */
3732 Bytef *p; /* input data pointer */
3733 uInt n; /* bytes available there */
3734 Bytef *q; /* output window write pointer */
3735 uInt m; /* bytes to end of window or read pointer */
3736
3737 /* copy input/output information to locals (UPDATE macro restores) */
3738 LOAD
3739
3740 /* process input based on current state */
3741 while (1) switch (s->mode)
3742 {
3743 case TYPE:
3744 NEEDBITS(3)
3745 t = (uInt)b & 7;
3746 s->last = t & 1;
3747 switch (t >> 1)
3748 {
3749 case 0: /* stored */
3750 Trace((stderr, "inflate: stored block%s\n",
3751 s->last ? " (last)" : ""));
3752 DUMPBITS(3)
3753 t = k & 7; /* go to byte boundary */
3754 DUMPBITS(t)
3755 s->mode = LENS; /* get length of stored block */
3756 break;
3757 case 1: /* fixed */
3758 Trace((stderr, "inflate: fixed codes block%s\n",
3759 s->last ? " (last)" : ""));
3760 {
3761 uInt bl, bd;
3762 inflate_huft *tl, *td;
3763
3764 inflate_trees_fixed(&bl, &bd, &tl, &td);
3765 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3766 if (s->sub.decode.codes == Z_NULL)
3767 {
3768 r = Z_MEM_ERROR;
3769 LEAVE
3770 }
3771 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3772 s->sub.decode.td = Z_NULL;
3773 }
3774 DUMPBITS(3)
3775 s->mode = CODES;
3776 break;
3777 case 2: /* dynamic */
3778 Trace((stderr, "inflate: dynamic codes block%s\n",
3779 s->last ? " (last)" : ""));
3780 DUMPBITS(3)
3781 s->mode = TABLE;
3782 break;
3783 case 3: /* illegal */
3784 DUMPBITS(3)
3785 s->mode = BADB;
3786 z->msg = (char*)"invalid block type";
3787 r = Z_DATA_ERROR;
3788 LEAVE
3789 }
3790 break;
3791 case LENS:
3792 NEEDBITS(32)
3793 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3794 {
3795 s->mode = BADB;
3796 z->msg = (char*)"invalid stored block lengths";
3797 r = Z_DATA_ERROR;
3798 LEAVE
3799 }
3800 s->sub.left = (uInt)b & 0xffff;
3801 b = k = 0; /* dump bits */
3802 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3803 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3804 break;
3805 case STORED:
3806 if (n == 0)
3807 LEAVE
3808 NEEDOUT
3809 t = s->sub.left;
3810 if (t > n) t = n;
3811 if (t > m) t = m;
3812 zmemcpy(q, p, t);
3813 p += t; n -= t;
3814 q += t; m -= t;
3815 if ((s->sub.left -= t) != 0)
3816 break;
3817 Tracev((stderr, "inflate: stored end, %lu total out\n",
3818 z->total_out + (q >= s->read ? q - s->read :
3819 (s->end - s->read) + (q - s->window))));
3820 s->mode = s->last ? DRY : TYPE;
3821 break;
3822 case TABLE:
3823 NEEDBITS(14)
3824 s->sub.trees.table = t = (uInt)b & 0x3fff;
3825 #ifndef PKZIP_BUG_WORKAROUND
3826 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3827 {
3828 s->mode = BADB;
3829 z->msg = (char*)"too many length or distance symbols";
3830 r = Z_DATA_ERROR;
3831 LEAVE
3832 }
3833 #endif
3834 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3835 if (t < 19)
3836 t = 19;
3837 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3838 {
3839 r = Z_MEM_ERROR;
3840 LEAVE
3841 }
3842 DUMPBITS(14)
3843 s->sub.trees.index = 0;
3844 Tracev((stderr, "inflate: table sizes ok\n"));
3845 s->mode = BTREE;
3846 case BTREE:
3847 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3848 {
3849 NEEDBITS(3)
3850 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3851 DUMPBITS(3)
3852 }
3853 while (s->sub.trees.index < 19)
3854 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3855 s->sub.trees.bb = 7;
3856 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3857 &s->sub.trees.tb, z);
3858 if (t != Z_OK)
3859 {
3860 ZFREE(z, s->sub.trees.blens);
3861 r = t;
3862 if (r == Z_DATA_ERROR)
3863 s->mode = BADB;
3864 LEAVE
3865 }
3866 s->sub.trees.index = 0;
3867 Tracev((stderr, "inflate: bits tree ok\n"));
3868 s->mode = DTREE;
3869 case DTREE:
3870 while (t = s->sub.trees.table,
3871 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3872 {
3873 inflate_huft *h;
3874 uInt i, j, c;
3875
3876 t = s->sub.trees.bb;
3877 NEEDBITS(t)
3878 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3879 t = h->word.what.Bits;
3880 c = h->more.Base;
3881 if (c < 16)
3882 {
3883 DUMPBITS(t)
3884 s->sub.trees.blens[s->sub.trees.index++] = c;
3885 }
3886 else /* c == 16..18 */
3887 {
3888 i = c == 18 ? 7 : c - 14;
3889 j = c == 18 ? 11 : 3;
3890 NEEDBITS(t + i)
3891 DUMPBITS(t)
3892 j += (uInt)b & inflate_mask[i];
3893 DUMPBITS(i)
3894 i = s->sub.trees.index;
3895 t = s->sub.trees.table;
3896 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3897 (c == 16 && i < 1))
3898 {
3899 inflate_trees_free(s->sub.trees.tb, z);
3900 ZFREE(z, s->sub.trees.blens);
3901 s->mode = BADB;
3902 z->msg = (char*)"invalid bit length repeat";
3903 r = Z_DATA_ERROR;
3904 LEAVE
3905 }
3906 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3907 do {
3908 s->sub.trees.blens[i++] = c;
3909 } while (--j);
3910 s->sub.trees.index = i;
3911 }
3912 }
3913 inflate_trees_free(s->sub.trees.tb, z);
3914 s->sub.trees.tb = Z_NULL;
3915 {
3916 uInt bl, bd;
3917 inflate_huft *tl, *td;
3918 inflate_codes_statef *c;
3919
3920 bl = 9; /* must be <= 9 for lookahead assumptions */
3921 bd = 6; /* must be <= 9 for lookahead assumptions */
3922 t = s->sub.trees.table;
3923 #ifdef DEBUG_ZLIB
3924 inflate_hufts = 0;
3925 #endif
3926 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3927 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3928 ZFREE(z, s->sub.trees.blens);
3929 if (t != Z_OK)
3930 {
3931 if (t == (uInt)Z_DATA_ERROR)
3932 s->mode = BADB;
3933 r = t;
3934 LEAVE
3935 }
3936 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3937 inflate_hufts, sizeof(inflate_huft)));
3938 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3939 {
3940 inflate_trees_free(td, z);
3941 inflate_trees_free(tl, z);
3942 r = Z_MEM_ERROR;
3943 LEAVE
3944 }
3945 s->sub.decode.codes = c;
3946 s->sub.decode.tl = tl;
3947 s->sub.decode.td = td;
3948 }
3949 s->mode = CODES;
3950 case CODES:
3951 UPDATE
3952 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3953 return inflate_flush(s, z, r);
3954 r = Z_OK;
3955 inflate_codes_free(s->sub.decode.codes, z);
3956 inflate_trees_free(s->sub.decode.td, z);
3957 inflate_trees_free(s->sub.decode.tl, z);
3958 LOAD
3959 Tracev((stderr, "inflate: codes end, %lu total out\n",
3960 z->total_out + (q >= s->read ? q - s->read :
3961 (s->end - s->read) + (q - s->window))));
3962 if (!s->last)
3963 {
3964 s->mode = TYPE;
3965 break;
3966 }
3967 if (k > 7) /* return unused byte, if any */
3968 {
3969 Assert(k < 16, "inflate_codes grabbed too many bytes")
3970 k -= 8;
3971 n++;
3972 p--; /* can always return one */
3973 }
3974 s->mode = DRY;
3975 case DRY:
3976 FLUSH
3977 if (s->read != s->write)
3978 LEAVE
3979 s->mode = DONEB;
3980 case DONEB:
3981 r = Z_STREAM_END;
3982 LEAVE
3983 case BADB:
3984 r = Z_DATA_ERROR;
3985 LEAVE
3986 default:
3987 r = Z_STREAM_ERROR;
3988 LEAVE
3989 }
3990 }
3991
3992
3993 int inflate_blocks_free(s, z, c)
3994 inflate_blocks_statef *s;
3995 z_streamp z;
3996 uLongf *c;
3997 {
3998 inflate_blocks_reset(s, z, c);
3999 ZFREE(z, s->window);
4000 ZFREE(z, s);
4001 Trace((stderr, "inflate: blocks freed\n"));
4002 return Z_OK;
4003 }
4004
4005
4006 void inflate_set_dictionary(s, d, n)
4007 inflate_blocks_statef *s;
4008 const Bytef *d;
4009 uInt n;
4010 {
4011 zmemcpy((charf *)s->window, d, n);
4012 s->read = s->write = s->window + n;
4013 }
4014
4015 /*
4016 * This subroutine adds the data at next_in/avail_in to the output history
4017 * without performing any output. The output buffer must be "caught up";
4018 * i.e. no pending output (hence s->read equals s->write), and the state must
4019 * be BLOCKS (i.e. we should be willing to see the start of a series of
4020 * BLOCKS). On exit, the output will also be caught up, and the checksum
4021 * will have been updated if need be.
4022 */
4023 int inflate_addhistory(s, z)
4024 inflate_blocks_statef *s;
4025 z_stream *z;
4026 {
4027 uLong b; /* bit buffer */ /* NOT USED HERE */
4028 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4029 uInt t; /* temporary storage */
4030 Bytef *p; /* input data pointer */
4031 uInt n; /* bytes available there */
4032 Bytef *q; /* output window write pointer */
4033 uInt m; /* bytes to end of window or read pointer */
4034
4035 if (s->read != s->write)
4036 return Z_STREAM_ERROR;
4037 if (s->mode != TYPE)
4038 return Z_DATA_ERROR;
4039
4040 /* we're ready to rock */
4041 LOAD
4042 /* while there is input ready, copy to output buffer, moving
4043 * pointers as needed.
4044 */
4045 while (n) {
4046 t = n; /* how many to do */
4047 /* is there room until end of buffer? */
4048 if (t > m) t = m;
4049 /* update check information */
4050 if (s->checkfn != Z_NULL)
4051 s->check = (*s->checkfn)(s->check, q, t);
4052 zmemcpy(q, p, t);
4053 q += t;
4054 p += t;
4055 n -= t;
4056 z->total_out += t;
4057 s->read = q; /* drag read pointer forward */
4058 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4059 if (q == s->end) {
4060 s->read = q = s->window;
4061 m = WAVAIL;
4062 }
4063 }
4064 UPDATE
4065 return Z_OK;
4066 }
4067
4068
4069 /*
4070 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4071 * a `stored' block type value but not the (zero) length bytes.
4072 */
4073 int inflate_packet_flush(s)
4074 inflate_blocks_statef *s;
4075 {
4076 if (s->mode != LENS)
4077 return Z_DATA_ERROR;
4078 s->mode = TYPE;
4079 return Z_OK;
4080 }
4081 /* --- infblock.c */
4082
4083 /* +++ inftrees.c */
4084 /* inftrees.c -- generate Huffman trees for efficient decoding
4085 * Copyright (C) 1995-1996 Mark Adler
4086 * For conditions of distribution and use, see copyright notice in zlib.h
4087 */
4088
4089 /* #include "zutil.h" */
4090 /* #include "inftrees.h" */
4091
4092 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4093 /*
4094 If you use the zlib library in a product, an acknowledgment is welcome
4095 in the documentation of your product. If for some reason you cannot
4096 include such an acknowledgment, I would appreciate that you keep this
4097 copyright string in the executable of your product.
4098 */
4099
4100 #ifndef NO_DUMMY_DECL
4101 struct internal_state {int dummy;}; /* for buggy compilers */
4102 #endif
4103
4104 /* simplify the use of the inflate_huft type with some defines */
4105 #define base more.Base
4106 #define next more.Next
4107 #define exop word.what.Exop
4108 #define bits word.what.Bits
4109
4110
4111 local int huft_build OF((
4112 uIntf *, /* code lengths in bits */
4113 uInt, /* number of codes */
4114 uInt, /* number of "simple" codes */
4115 const uIntf *, /* list of base values for non-simple codes */
4116 const uIntf *, /* list of extra bits for non-simple codes */
4117 inflate_huft * FAR*,/* result: starting table */
4118 uIntf *, /* maximum lookup bits (returns actual) */
4119 z_streamp )); /* for zalloc function */
4120
4121 local voidpf falloc OF((
4122 voidpf, /* opaque pointer (not used) */
4123 uInt, /* number of items */
4124 uInt)); /* size of item */
4125
4126 /* Tables for deflate from PKZIP's appnote.txt. */
4127 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4128 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4129 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4130 /* see note #13 above about 258 */
4131 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4132 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4133 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4134 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4135 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4136 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4137 8193, 12289, 16385, 24577};
4138 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4139 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4140 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4141 12, 12, 13, 13};
4142
4143 /*
4144 Huffman code decoding is performed using a multi-level table lookup.
4145 The fastest way to decode is to simply build a lookup table whose
4146 size is determined by the longest code. However, the time it takes
4147 to build this table can also be a factor if the data being decoded
4148 is not very long. The most common codes are necessarily the
4149 shortest codes, so those codes dominate the decoding time, and hence
4150 the speed. The idea is you can have a shorter table that decodes the
4151 shorter, more probable codes, and then point to subsidiary tables for
4152 the longer codes. The time it costs to decode the longer codes is
4153 then traded against the time it takes to make longer tables.
4154
4155 This results of this trade are in the variables lbits and dbits
4156 below. lbits is the number of bits the first level table for literal/
4157 length codes can decode in one step, and dbits is the same thing for
4158 the distance codes. Subsequent tables are also less than or equal to
4159 those sizes. These values may be adjusted either when all of the
4160 codes are shorter than that, in which case the longest code length in
4161 bits is used, or when the shortest code is *longer* than the requested
4162 table size, in which case the length of the shortest code in bits is
4163 used.
4164
4165 There are two different values for the two tables, since they code a
4166 different number of possibilities each. The literal/length table
4167 codes 286 possible values, or in a flat code, a little over eight
4168 bits. The distance table codes 30 possible values, or a little less
4169 than five bits, flat. The optimum values for speed end up being
4170 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4171 The optimum values may differ though from machine to machine, and
4172 possibly even between compilers. Your mileage may vary.
4173 */
4174
4175
4176 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4177 #define BMAX 15 /* maximum bit length of any code */
4178 #define N_MAX 288 /* maximum number of codes in any set */
4179
4180 #ifdef DEBUG_ZLIB
4181 uInt inflate_hufts;
4182 #endif
4183
4184 local int huft_build(b, n, s, d, e, t, m, zs)
4185 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
4186 uInt n; /* number of codes (assumed <= N_MAX) */
4187 uInt s; /* number of simple-valued codes (0..s-1) */
4188 const uIntf *d; /* list of base values for non-simple codes */
4189 const uIntf *e; /* list of extra bits for non-simple codes */
4190 inflate_huft * FAR *t; /* result: starting table */
4191 uIntf *m; /* maximum lookup bits, returns actual */
4192 z_streamp zs; /* for zalloc function */
4193 /* Given a list of code lengths and a maximum table size, make a set of
4194 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4195 if the given code set is incomplete (the tables are still built in this
4196 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4197 lengths), or Z_MEM_ERROR if not enough memory. */
4198 {
4199
4200 uInt a; /* counter for codes of length k */
4201 uInt c[BMAX+1]; /* bit length count table */
4202 uInt f; /* i repeats in table every f entries */
4203 int g; /* maximum code length */
4204 int h; /* table level */
4205 uInt i; /* counter, current code */
4206 uInt j; /* counter */
4207 int k; /* number of bits in current code */
4208 int l; /* bits per table (returned in m) */
4209 uIntf *p; /* pointer into c[], b[], or v[] */
4210 inflate_huft *q; /* points to current table */
4211 struct inflate_huft_s r; /* table entry for structure assignment */
4212 inflate_huft *u[BMAX]; /* table stack */
4213 uInt v[N_MAX]; /* values in order of bit length */
4214 int w; /* bits before this table == (l * h) */
4215 uInt x[BMAX+1]; /* bit offsets, then code stack */
4216 uIntf *xp; /* pointer into x */
4217 int y; /* number of dummy codes added */
4218 uInt z; /* number of entries in current table */
4219
4220
4221 /* Generate counts for each bit length */
4222 p = c;
4223 #define C0 *p++ = 0;
4224 #define C2 C0 C0 C0 C0
4225 #define C4 C2 C2 C2 C2
4226 C4 /* clear c[]--assume BMAX+1 is 16 */
4227 p = b; i = n;
4228 do {
4229 c[*p++]++; /* assume all entries <= BMAX */
4230 } while (--i);
4231 if (c[0] == n) /* null input--all zero length codes */
4232 {
4233 *t = (inflate_huft *)Z_NULL;
4234 *m = 0;
4235 return Z_OK;
4236 }
4237
4238
4239 /* Find minimum and maximum length, bound *m by those */
4240 l = *m;
4241 for (j = 1; j <= BMAX; j++)
4242 if (c[j])
4243 break;
4244 k = j; /* minimum code length */
4245 if ((uInt)l < j)
4246 l = j;
4247 for (i = BMAX; i; i--)
4248 if (c[i])
4249 break;
4250 g = i; /* maximum code length */
4251 if ((uInt)l > i)
4252 l = i;
4253 *m = l;
4254
4255
4256 /* Adjust last length count to fill out codes, if needed */
4257 for (y = 1 << j; j < i; j++, y <<= 1)
4258 if ((y -= c[j]) < 0)
4259 return Z_DATA_ERROR;
4260 if ((y -= c[i]) < 0)
4261 return Z_DATA_ERROR;
4262 c[i] += y;
4263
4264
4265 /* Generate starting offsets into the value table for each length */
4266 x[1] = j = 0;
4267 p = c + 1; xp = x + 2;
4268 while (--i) { /* note that i == g from above */
4269 *xp++ = (j += *p++);
4270 }
4271
4272
4273 /* Make a table of values in order of bit lengths */
4274 p = b; i = 0;
4275 do {
4276 if ((j = *p++) != 0)
4277 v[x[j]++] = i;
4278 } while (++i < n);
4279 n = x[g]; /* set n to length of v */
4280
4281
4282 /* Generate the Huffman codes and for each, make the table entries */
4283 x[0] = i = 0; /* first Huffman code is zero */
4284 p = v; /* grab values in bit order */
4285 h = -1; /* no tables yet--level -1 */
4286 w = -l; /* bits decoded == (l * h) */
4287 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4288 q = (inflate_huft *)Z_NULL; /* ditto */
4289 z = 0; /* ditto */
4290
4291 /* go through the bit lengths (k already is bits in shortest code) */
4292 for (; k <= g; k++)
4293 {
4294 a = c[k];
4295 while (a--)
4296 {
4297 /* here i is the Huffman code of length k bits for value *p */
4298 /* make tables up to required level */
4299 while (k > w + l)
4300 {
4301 h++;
4302 w += l; /* previous table always l bits */
4303
4304 /* compute minimum size table less than or equal to l bits */
4305 z = g - w;
4306 z = z > (uInt)l ? l : z; /* table size upper limit */
4307 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4308 { /* too few codes for k-w bit table */
4309 f -= a + 1; /* deduct codes from patterns left */
4310 xp = c + k;
4311 if (j < z)
4312 while (++j < z) /* try smaller tables up to z bits */
4313 {
4314 if ((f <<= 1) <= *++xp)
4315 break; /* enough codes to use up j bits */
4316 f -= *xp; /* else deduct codes from patterns */
4317 }
4318 }
4319 z = 1 << j; /* table entries for j-bit table */
4320
4321 /* allocate and link in new table */
4322 if ((q = (inflate_huft *)ZALLOC
4323 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4324 {
4325 if (h)
4326 inflate_trees_free(u[0], zs);
4327 return Z_MEM_ERROR; /* not enough memory */
4328 }
4329 #ifdef DEBUG_ZLIB
4330 inflate_hufts += z + 1;
4331 #endif
4332 *t = q + 1; /* link to list for huft_free() */
4333 *(t = &(q->next)) = Z_NULL;
4334 u[h] = ++q; /* table starts after link */
4335
4336 /* connect to last table, if there is one */
4337 if (h)
4338 {
4339 x[h] = i; /* save pattern for backing up */
4340 r.bits = (Byte)l; /* bits to dump before this table */
4341 r.exop = (Byte)j; /* bits in this table */
4342 r.next = q; /* pointer to this table */
4343 j = i >> (w - l); /* (get around Turbo C bug) */
4344 u[h-1][j] = r; /* connect to last table */
4345 }
4346 }
4347
4348 /* set up table entry in r */
4349 r.bits = (Byte)(k - w);
4350 if (p >= v + n)
4351 r.exop = 128 + 64; /* out of values--invalid code */
4352 else if (*p < s)
4353 {
4354 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4355 r.base = *p++; /* simple code is just the value */
4356 }
4357 else
4358 {
4359 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4360 r.base = d[*p++ - s];
4361 }
4362
4363 /* fill code-like entries with r */
4364 f = 1 << (k - w);
4365 for (j = i >> w; j < z; j += f)
4366 q[j] = r;
4367
4368 /* backwards increment the k-bit code i */
4369 for (j = 1 << (k - 1); i & j; j >>= 1)
4370 i ^= j;
4371 i ^= j;
4372
4373 /* backup over finished tables */
4374 while ((i & ((1 << w) - 1)) != x[h])
4375 {
4376 h--; /* don't need to update q */
4377 w -= l;
4378 }
4379 }
4380 }
4381
4382
4383 /* Return Z_BUF_ERROR if we were given an incomplete table */
4384 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4385 }
4386
4387
4388 int inflate_trees_bits(c, bb, tb, z)
4389 uIntf *c; /* 19 code lengths */
4390 uIntf *bb; /* bits tree desired/actual depth */
4391 inflate_huft * FAR *tb; /* bits tree result */
4392 z_streamp z; /* for zfree function */
4393 {
4394 int r;
4395
4396 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4397 if (r == Z_DATA_ERROR)
4398 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4399 else if (r == Z_BUF_ERROR || *bb == 0)
4400 {
4401 inflate_trees_free(*tb, z);
4402 z->msg = (char*)"incomplete dynamic bit lengths tree";
4403 r = Z_DATA_ERROR;
4404 }
4405 return r;
4406 }
4407
4408
4409 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4410 uInt nl; /* number of literal/length codes */
4411 uInt nd; /* number of distance codes */
4412 uIntf *c; /* that many (total) code lengths */
4413 uIntf *bl; /* literal desired/actual bit depth */
4414 uIntf *bd; /* distance desired/actual bit depth */
4415 inflate_huft * FAR *tl; /* literal/length tree result */
4416 inflate_huft * FAR *td; /* distance tree result */
4417 z_streamp z; /* for zfree function */
4418 {
4419 int r;
4420
4421 /* build literal/length tree */
4422 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4423 if (r != Z_OK || *bl == 0)
4424 {
4425 if (r == Z_DATA_ERROR)
4426 z->msg = (char*)"oversubscribed literal/length tree";
4427 else if (r != Z_MEM_ERROR)
4428 {
4429 inflate_trees_free(*tl, z);
4430 z->msg = (char*)"incomplete literal/length tree";
4431 r = Z_DATA_ERROR;
4432 }
4433 return r;
4434 }
4435
4436 /* build distance tree */
4437 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4438 if (r != Z_OK || (*bd == 0 && nl > 257))
4439 {
4440 if (r == Z_DATA_ERROR)
4441 z->msg = (char*)"oversubscribed distance tree";
4442 else if (r == Z_BUF_ERROR) {
4443 #ifdef PKZIP_BUG_WORKAROUND
4444 r = Z_OK;
4445 }
4446 #else
4447 inflate_trees_free(*td, z);
4448 z->msg = (char*)"incomplete distance tree";
4449 r = Z_DATA_ERROR;
4450 }
4451 else if (r != Z_MEM_ERROR)
4452 {
4453 z->msg = (char*)"empty distance tree with lengths";
4454 r = Z_DATA_ERROR;
4455 }
4456 inflate_trees_free(*tl, z);
4457 return r;
4458 #endif
4459 }
4460
4461 /* done */
4462 return Z_OK;
4463 }
4464
4465
4466 /* build fixed tables only once--keep them here */
4467 local int fixed_built = 0;
4468 #define FIXEDH 530 /* number of hufts used by fixed tables */
4469 local inflate_huft fixed_mem[FIXEDH];
4470 local uInt fixed_bl;
4471 local uInt fixed_bd;
4472 local inflate_huft *fixed_tl;
4473 local inflate_huft *fixed_td;
4474
4475
4476 local voidpf falloc(q, n, s)
4477 voidpf q; /* opaque pointer */
4478 uInt n; /* number of items */
4479 uInt s; /* size of item */
4480 {
4481 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4482 "inflate_trees falloc overflow");
4483 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4484 return (voidpf)(fixed_mem + *(intf *)q);
4485 }
4486
4487
4488 int inflate_trees_fixed(bl, bd, tl, td)
4489 uIntf *bl; /* literal desired/actual bit depth */
4490 uIntf *bd; /* distance desired/actual bit depth */
4491 inflate_huft * FAR *tl; /* literal/length tree result */
4492 inflate_huft * FAR *td; /* distance tree result */
4493 {
4494 /* build fixed tables if not already (multiple overlapped executions ok) */
4495 if (!fixed_built)
4496 {
4497 int k; /* temporary variable */
4498 unsigned c[288]; /* length list for huft_build */
4499 z_stream z; /* for falloc function */
4500 int f = FIXEDH; /* number of hufts left in fixed_mem */
4501
4502 /* set up fake z_stream for memory routines */
4503 z.zalloc = falloc;
4504 z.zfree = Z_NULL;
4505 z.opaque = (voidpf)&f;
4506
4507 /* literal table */
4508 for (k = 0; k < 144; k++)
4509 c[k] = 8;
4510 for (; k < 256; k++)
4511 c[k] = 9;
4512 for (; k < 280; k++)
4513 c[k] = 7;
4514 for (; k < 288; k++)
4515 c[k] = 8;
4516 fixed_bl = 7;
4517 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4518
4519 /* distance table */
4520 for (k = 0; k < 30; k++)
4521 c[k] = 5;
4522 fixed_bd = 5;
4523 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4524
4525 /* done */
4526 Assert(f == 0, "invalid build of fixed tables");
4527 fixed_built = 1;
4528 }
4529 *bl = fixed_bl;
4530 *bd = fixed_bd;
4531 *tl = fixed_tl;
4532 *td = fixed_td;
4533 return Z_OK;
4534 }
4535
4536
4537 int inflate_trees_free(t, z)
4538 inflate_huft *t; /* table to free */
4539 z_streamp z; /* for zfree function */
4540 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4541 list of the tables it made, with the links in a dummy first entry of
4542 each table. */
4543 {
4544 inflate_huft *p, *q, *r;
4545
4546 /* Reverse linked list */
4547 p = Z_NULL;
4548 q = t;
4549 while (q != Z_NULL)
4550 {
4551 r = (q - 1)->next;
4552 (q - 1)->next = p;
4553 p = q;
4554 q = r;
4555 }
4556 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4557 while (p != Z_NULL)
4558 {
4559 q = (--p)->next;
4560 ZFREE(z,p);
4561 p = q;
4562 }
4563 return Z_OK;
4564 }
4565 /* --- inftrees.c */
4566
4567 /* +++ infcodes.c */
4568 /* infcodes.c -- process literals and length/distance pairs
4569 * Copyright (C) 1995-1996 Mark Adler
4570 * For conditions of distribution and use, see copyright notice in zlib.h
4571 */
4572
4573 /* #include "zutil.h" */
4574 /* #include "inftrees.h" */
4575 /* #include "infblock.h" */
4576 /* #include "infcodes.h" */
4577 /* #include "infutil.h" */
4578
4579 /* +++ inffast.h */
4580 /* inffast.h -- header to use inffast.c
4581 * Copyright (C) 1995-1996 Mark Adler
4582 * For conditions of distribution and use, see copyright notice in zlib.h
4583 */
4584
4585 /* WARNING: this file should *not* be used by applications. It is
4586 part of the implementation of the compression library and is
4587 subject to change. Applications should only use zlib.h.
4588 */
4589
4590 extern int inflate_fast OF((
4591 uInt,
4592 uInt,
4593 inflate_huft *,
4594 inflate_huft *,
4595 inflate_blocks_statef *,
4596 z_streamp ));
4597 /* --- inffast.h */
4598
4599 /* simplify the use of the inflate_huft type with some defines */
4600 #define base more.Base
4601 #define next more.Next
4602 #define exop word.what.Exop
4603 #define bits word.what.Bits
4604
4605 /* inflate codes private state */
4606 struct inflate_codes_state {
4607
4608 /* mode */
4609 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4610 START, /* x: set up for LEN */
4611 LEN, /* i: get length/literal/eob next */
4612 LENEXT, /* i: getting length extra (have base) */
4613 DIST, /* i: get distance next */
4614 DISTEXT, /* i: getting distance extra */
4615 COPY, /* o: copying bytes in window, waiting for space */
4616 LIT, /* o: got literal, waiting for output space */
4617 WASH, /* o: got eob, possibly still output waiting */
4618 END, /* x: got eob and all data flushed */
4619 BADCODE} /* x: got error */
4620 mode; /* current inflate_codes mode */
4621
4622 /* mode dependent information */
4623 uInt len;
4624 union {
4625 struct {
4626 inflate_huft *tree; /* pointer into tree */
4627 uInt need; /* bits needed */
4628 } code; /* if LEN or DIST, where in tree */
4629 uInt lit; /* if LIT, literal */
4630 struct {
4631 uInt get; /* bits to get for extra */
4632 uInt dist; /* distance back to copy from */
4633 } copy; /* if EXT or COPY, where and how much */
4634 } sub; /* submode */
4635
4636 /* mode independent information */
4637 Byte lbits; /* ltree bits decoded per branch */
4638 Byte dbits; /* dtree bits decoder per branch */
4639 inflate_huft *ltree; /* literal/length/eob tree */
4640 inflate_huft *dtree; /* distance tree */
4641
4642 };
4643
4644
4645 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4646 uInt bl, bd;
4647 inflate_huft *tl;
4648 inflate_huft *td; /* need separate declaration for Borland C++ */
4649 z_streamp z;
4650 {
4651 inflate_codes_statef *c;
4652
4653 if ((c = (inflate_codes_statef *)
4654 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4655 {
4656 c->mode = START;
4657 c->lbits = (Byte)bl;
4658 c->dbits = (Byte)bd;
4659 c->ltree = tl;
4660 c->dtree = td;
4661 Tracev((stderr, "inflate: codes new\n"));
4662 }
4663 return c;
4664 }
4665
4666
4667 int inflate_codes(s, z, r)
4668 inflate_blocks_statef *s;
4669 z_streamp z;
4670 int r;
4671 {
4672 uInt j; /* temporary storage */
4673 inflate_huft *t; /* temporary pointer */
4674 uInt e; /* extra bits or operation */
4675 uLong b; /* bit buffer */
4676 uInt k; /* bits in bit buffer */
4677 Bytef *p; /* input data pointer */
4678 uInt n; /* bytes available there */
4679 Bytef *q; /* output window write pointer */
4680 uInt m; /* bytes to end of window or read pointer */
4681 Bytef *f; /* pointer to copy strings from */
4682 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4683
4684 /* copy input/output information to locals (UPDATE macro restores) */
4685 LOAD
4686
4687 /* process input and output based on current state */
4688 while (1) switch (c->mode)
4689 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4690 case START: /* x: set up for LEN */
4691 #ifndef SLOW
4692 if (m >= 258 && n >= 10)
4693 {
4694 UPDATE
4695 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4696 LOAD
4697 if (r != Z_OK)
4698 {
4699 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4700 break;
4701 }
4702 }
4703 #endif /* !SLOW */
4704 c->sub.code.need = c->lbits;
4705 c->sub.code.tree = c->ltree;
4706 c->mode = LEN;
4707 case LEN: /* i: get length/literal/eob next */
4708 j = c->sub.code.need;
4709 NEEDBITS(j)
4710 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4711 DUMPBITS(t->bits)
4712 e = (uInt)(t->exop);
4713 if (e == 0) /* literal */
4714 {
4715 c->sub.lit = t->base;
4716 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4717 "inflate: literal '%c'\n" :
4718 "inflate: literal 0x%02x\n", t->base));
4719 c->mode = LIT;
4720 break;
4721 }
4722 if (e & 16) /* length */
4723 {
4724 c->sub.copy.get = e & 15;
4725 c->len = t->base;
4726 c->mode = LENEXT;
4727 break;
4728 }
4729 if ((e & 64) == 0) /* next table */
4730 {
4731 c->sub.code.need = e;
4732 c->sub.code.tree = t->next;
4733 break;
4734 }
4735 if (e & 32) /* end of block */
4736 {
4737 Tracevv((stderr, "inflate: end of block\n"));
4738 c->mode = WASH;
4739 break;
4740 }
4741 c->mode = BADCODE; /* invalid code */
4742 z->msg = (char*)"invalid literal/length code";
4743 r = Z_DATA_ERROR;
4744 LEAVE
4745 case LENEXT: /* i: getting length extra (have base) */
4746 j = c->sub.copy.get;
4747 NEEDBITS(j)
4748 c->len += (uInt)b & inflate_mask[j];
4749 DUMPBITS(j)
4750 c->sub.code.need = c->dbits;
4751 c->sub.code.tree = c->dtree;
4752 Tracevv((stderr, "inflate: length %u\n", c->len));
4753 c->mode = DIST;
4754 case DIST: /* i: get distance next */
4755 j = c->sub.code.need;
4756 NEEDBITS(j)
4757 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4758 DUMPBITS(t->bits)
4759 e = (uInt)(t->exop);
4760 if (e & 16) /* distance */
4761 {
4762 c->sub.copy.get = e & 15;
4763 c->sub.copy.dist = t->base;
4764 c->mode = DISTEXT;
4765 break;
4766 }
4767 if ((e & 64) == 0) /* next table */
4768 {
4769 c->sub.code.need = e;
4770 c->sub.code.tree = t->next;
4771 break;
4772 }
4773 c->mode = BADCODE; /* invalid code */
4774 z->msg = (char*)"invalid distance code";
4775 r = Z_DATA_ERROR;
4776 LEAVE
4777 case DISTEXT: /* i: getting distance extra */
4778 j = c->sub.copy.get;
4779 NEEDBITS(j)
4780 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4781 DUMPBITS(j)
4782 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4783 c->mode = COPY;
4784 case COPY: /* o: copying bytes in window, waiting for space */
4785 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4786 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4787 s->end - (c->sub.copy.dist - (q - s->window)) :
4788 q - c->sub.copy.dist;
4789 #else
4790 f = q - c->sub.copy.dist;
4791 if ((uInt)(q - s->window) < c->sub.copy.dist)
4792 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4793 #endif
4794 while (c->len)
4795 {
4796 NEEDOUT
4797 OUTBYTE(*f++)
4798 if (f == s->end)
4799 f = s->window;
4800 c->len--;
4801 }
4802 c->mode = START;
4803 break;
4804 case LIT: /* o: got literal, waiting for output space */
4805 NEEDOUT
4806 OUTBYTE(c->sub.lit)
4807 c->mode = START;
4808 break;
4809 case WASH: /* o: got eob, possibly more output */
4810 FLUSH
4811 if (s->read != s->write)
4812 LEAVE
4813 c->mode = END;
4814 case END:
4815 r = Z_STREAM_END;
4816 LEAVE
4817 case BADCODE: /* x: got error */
4818 r = Z_DATA_ERROR;
4819 LEAVE
4820 default:
4821 r = Z_STREAM_ERROR;
4822 LEAVE
4823 }
4824 }
4825
4826
4827 void inflate_codes_free(c, z)
4828 inflate_codes_statef *c;
4829 z_streamp z;
4830 {
4831 ZFREE(z, c);
4832 Tracev((stderr, "inflate: codes free\n"));
4833 }
4834 /* --- infcodes.c */
4835
4836 /* +++ infutil.c */
4837 /* inflate_util.c -- data and routines common to blocks and codes
4838 * Copyright (C) 1995-1996 Mark Adler
4839 * For conditions of distribution and use, see copyright notice in zlib.h
4840 */
4841
4842 /* #include "zutil.h" */
4843 /* #include "infblock.h" */
4844 /* #include "inftrees.h" */
4845 /* #include "infcodes.h" */
4846 /* #include "infutil.h" */
4847
4848 #ifndef NO_DUMMY_DECL
4849 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4850 #endif
4851
4852 /* And'ing with mask[n] masks the lower n bits */
4853 uInt const inflate_mask[17] = {
4854 0x0000,
4855 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4856 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4857 };
4858
4859
4860 /* copy as much as possible from the sliding window to the output area */
4861 int inflate_flush(s, z, r)
4862 inflate_blocks_statef *s;
4863 z_streamp z;
4864 int r;
4865 {
4866 uInt n;
4867 Bytef *p;
4868 Bytef *q;
4869
4870 /* local copies of source and destination pointers */
4871 p = z->next_out;
4872 q = s->read;
4873
4874 /* compute number of bytes to copy as far as end of window */
4875 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4876 if (n > z->avail_out) n = z->avail_out;
4877 if (n && r == Z_BUF_ERROR) r = Z_OK;
4878
4879 /* update counters */
4880 z->avail_out -= n;
4881 z->total_out += n;
4882
4883 /* update check information */
4884 if (s->checkfn != Z_NULL)
4885 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4886
4887 /* copy as far as end of window */
4888 if (p != Z_NULL) {
4889 zmemcpy(p, q, n);
4890 p += n;
4891 }
4892 q += n;
4893
4894 /* see if more to copy at beginning of window */
4895 if (q == s->end)
4896 {
4897 /* wrap pointers */
4898 q = s->window;
4899 if (s->write == s->end)
4900 s->write = s->window;
4901
4902 /* compute bytes to copy */
4903 n = (uInt)(s->write - q);
4904 if (n > z->avail_out) n = z->avail_out;
4905 if (n && r == Z_BUF_ERROR) r = Z_OK;
4906
4907 /* update counters */
4908 z->avail_out -= n;
4909 z->total_out += n;
4910
4911 /* update check information */
4912 if (s->checkfn != Z_NULL)
4913 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4914
4915 /* copy */
4916 if (p != Z_NULL) {
4917 zmemcpy(p, q, n);
4918 p += n;
4919 }
4920 q += n;
4921 }
4922
4923 /* update pointers */
4924 z->next_out = p;
4925 s->read = q;
4926
4927 /* done */
4928 return r;
4929 }
4930 /* --- infutil.c */
4931
4932 /* +++ inffast.c */
4933 /* inffast.c -- process literals and length/distance pairs fast
4934 * Copyright (C) 1995-1996 Mark Adler
4935 * For conditions of distribution and use, see copyright notice in zlib.h
4936 */
4937
4938 /* #include "zutil.h" */
4939 /* #include "inftrees.h" */
4940 /* #include "infblock.h" */
4941 /* #include "infcodes.h" */
4942 /* #include "infutil.h" */
4943 /* #include "inffast.h" */
4944
4945 #ifndef NO_DUMMY_DECL
4946 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4947 #endif
4948
4949 /* simplify the use of the inflate_huft type with some defines */
4950 #define base more.Base
4951 #define next more.Next
4952 #define exop word.what.Exop
4953 #define bits word.what.Bits
4954
4955 /* macros for bit input with no checking and for returning unused bytes */
4956 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4957 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4958
4959 /* Called with number of bytes left to write in window at least 258
4960 (the maximum string length) and number of input bytes available
4961 at least ten. The ten bytes are six bytes for the longest length/
4962 distance pair plus four bytes for overloading the bit buffer. */
4963
4964 int inflate_fast(bl, bd, tl, td, s, z)
4965 uInt bl, bd;
4966 inflate_huft *tl;
4967 inflate_huft *td; /* need separate declaration for Borland C++ */
4968 inflate_blocks_statef *s;
4969 z_streamp z;
4970 {
4971 inflate_huft *t; /* temporary pointer */
4972 uInt e; /* extra bits or operation */
4973 uLong b; /* bit buffer */
4974 uInt k; /* bits in bit buffer */
4975 Bytef *p; /* input data pointer */
4976 uInt n; /* bytes available there */
4977 Bytef *q; /* output window write pointer */
4978 uInt m; /* bytes to end of window or read pointer */
4979 uInt ml; /* mask for literal/length tree */
4980 uInt md; /* mask for distance tree */
4981 uInt c; /* bytes to copy */
4982 uInt d; /* distance back to copy from */
4983 Bytef *r; /* copy source pointer */
4984
4985 /* load input, output, bit values */
4986 LOAD
4987
4988 /* initialize masks */
4989 ml = inflate_mask[bl];
4990 md = inflate_mask[bd];
4991
4992 /* do until not enough input or output space for fast loop */
4993 do { /* assume called with m >= 258 && n >= 10 */
4994 /* get literal/length code */
4995 GRABBITS(20) /* max bits for literal/length code */
4996 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4997 {
4998 DUMPBITS(t->bits)
4999 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5000 "inflate: * literal '%c'\n" :
5001 "inflate: * literal 0x%02x\n", t->base));
5002 *q++ = (Byte)t->base;
5003 m--;
5004 continue;
5005 }
5006 do {
5007 DUMPBITS(t->bits)
5008 if (e & 16)
5009 {
5010 /* get extra bits for length */
5011 e &= 15;
5012 c = t->base + ((uInt)b & inflate_mask[e]);
5013 DUMPBITS(e)
5014 Tracevv((stderr, "inflate: * length %u\n", c));
5015
5016 /* decode distance base of block to copy */
5017 GRABBITS(15); /* max bits for distance code */
5018 e = (t = td + ((uInt)b & md))->exop;
5019 do {
5020 DUMPBITS(t->bits)
5021 if (e & 16)
5022 {
5023 /* get extra bits to add to distance base */
5024 e &= 15;
5025 GRABBITS(e) /* get extra bits (up to 13) */
5026 d = t->base + ((uInt)b & inflate_mask[e]);
5027 DUMPBITS(e)
5028 Tracevv((stderr, "inflate: * distance %u\n", d));
5029
5030 /* do the copy */
5031 m -= c;
5032 if ((uInt)(q - s->window) >= d) /* offset before dest */
5033 { /* just copy */
5034 r = q - d;
5035 *q++ = *r++; c--; /* minimum count is three, */
5036 *q++ = *r++; c--; /* so unroll loop a little */
5037 }
5038 else /* else offset after destination */
5039 {
5040 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5041 r = s->end - e; /* pointer to offset */
5042 if (c > e) /* if source crosses, */
5043 {
5044 c -= e; /* copy to end of window */
5045 do {
5046 *q++ = *r++;
5047 } while (--e);
5048 r = s->window; /* copy rest from start of window */
5049 }
5050 }
5051 do { /* copy all or what's left */
5052 *q++ = *r++;
5053 } while (--c);
5054 break;
5055 }
5056 else if ((e & 64) == 0)
5057 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5058 else
5059 {
5060 z->msg = (char*)"invalid distance code";
5061 UNGRAB
5062 UPDATE
5063 return Z_DATA_ERROR;
5064 }
5065 } while (1);
5066 break;
5067 }
5068 if ((e & 64) == 0)
5069 {
5070 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5071 {
5072 DUMPBITS(t->bits)
5073 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5074 "inflate: * literal '%c'\n" :
5075 "inflate: * literal 0x%02x\n", t->base));
5076 *q++ = (Byte)t->base;
5077 m--;
5078 break;
5079 }
5080 }
5081 else if (e & 32)
5082 {
5083 Tracevv((stderr, "inflate: * end of block\n"));
5084 UNGRAB
5085 UPDATE
5086 return Z_STREAM_END;
5087 }
5088 else
5089 {
5090 z->msg = (char*)"invalid literal/length code";
5091 UNGRAB
5092 UPDATE
5093 return Z_DATA_ERROR;
5094 }
5095 } while (1);
5096 } while (m >= 258 && n >= 10);
5097
5098 /* not enough input or output--restore pointers and return */
5099 UNGRAB
5100 UPDATE
5101 return Z_OK;
5102 }
5103 /* --- inffast.c */
5104
5105 /* +++ zutil.c */
5106 /* zutil.c -- target dependent utility functions for the compression library
5107 * Copyright (C) 1995-1996 Jean-loup Gailly.
5108 * For conditions of distribution and use, see copyright notice in zlib.h
5109 */
5110
5111 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5112
5113 #ifdef DEBUG_ZLIB
5114 #include <stdio.h>
5115 #endif
5116
5117 /* #include "zutil.h" */
5118
5119 #ifndef NO_DUMMY_DECL
5120 struct internal_state {int dummy;}; /* for buggy compilers */
5121 #endif
5122
5123 #ifndef STDC
5124 extern void exit OF((int));
5125 #endif
5126
5127 const char * const z_errmsg[10] = {
5128 "need dictionary", /* Z_NEED_DICT 2 */
5129 "stream end", /* Z_STREAM_END 1 */
5130 "", /* Z_OK 0 */
5131 "file error", /* Z_ERRNO (-1) */
5132 "stream error", /* Z_STREAM_ERROR (-2) */
5133 "data error", /* Z_DATA_ERROR (-3) */
5134 "insufficient memory", /* Z_MEM_ERROR (-4) */
5135 "buffer error", /* Z_BUF_ERROR (-5) */
5136 "incompatible version",/* Z_VERSION_ERROR (-6) */
5137 ""};
5138
5139
5140 const char *zlibVersion()
5141 {
5142 return ZLIB_VERSION;
5143 }
5144
5145 #ifdef DEBUG_ZLIB
5146 void z_error (m)
5147 char *m;
5148 {
5149 fprintf(stderr, "%s\n", m);
5150 exit(1);
5151 }
5152 #endif
5153
5154 #ifndef HAVE_MEMCPY
5155
5156 void zmemcpy(dest, source, len)
5157 Bytef* dest;
5158 Bytef* source;
5159 uInt len;
5160 {
5161 if (len == 0) return;
5162 do {
5163 *dest++ = *source++; /* ??? to be unrolled */
5164 } while (--len != 0);
5165 }
5166
5167 int zmemcmp(s1, s2, len)
5168 Bytef* s1;
5169 Bytef* s2;
5170 uInt len;
5171 {
5172 uInt j;
5173
5174 for (j = 0; j < len; j++) {
5175 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5176 }
5177 return 0;
5178 }
5179
5180 void zmemzero(dest, len)
5181 Bytef* dest;
5182 uInt len;
5183 {
5184 if (len == 0) return;
5185 do {
5186 *dest++ = 0; /* ??? to be unrolled */
5187 } while (--len != 0);
5188 }
5189 #endif
5190
5191 #ifdef __TURBOC__
5192 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5193 /* Small and medium model in Turbo C are for now limited to near allocation
5194 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5195 */
5196 # define MY_ZCALLOC
5197
5198 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5199 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5200 * must fix the pointer. Warning: the pointer must be put back to its
5201 * original form in order to free it, use zcfree().
5202 */
5203
5204 #define MAX_PTR 10
5205 /* 10*64K = 640K */
5206
5207 local int next_ptr = 0;
5208
5209 typedef struct ptr_table_s {
5210 voidpf org_ptr;
5211 voidpf new_ptr;
5212 } ptr_table;
5213
5214 local ptr_table table[MAX_PTR];
5215 /* This table is used to remember the original form of pointers
5216 * to large buffers (64K). Such pointers are normalized with a zero offset.
5217 * Since MSDOS is not a preemptive multitasking OS, this table is not
5218 * protected from concurrent access. This hack doesn't work anyway on
5219 * a protected system like OS/2. Use Microsoft C instead.
5220 */
5221
5222 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5223 {
5224 voidpf buf = opaque; /* just to make some compilers happy */
5225 ulg bsize = (ulg)items*size;
5226
5227 /* If we allocate less than 65520 bytes, we assume that farmalloc
5228 * will return a usable pointer which doesn't have to be normalized.
5229 */
5230 if (bsize < 65520L) {
5231 buf = farmalloc(bsize);
5232 if (*(ush*)&buf != 0) return buf;
5233 } else {
5234 buf = farmalloc(bsize + 16L);
5235 }
5236 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5237 table[next_ptr].org_ptr = buf;
5238
5239 /* Normalize the pointer to seg:0 */
5240 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5241 *(ush*)&buf = 0;
5242 table[next_ptr++].new_ptr = buf;
5243 return buf;
5244 }
5245
5246 void zcfree (voidpf opaque, voidpf ptr)
5247 {
5248 int n;
5249 if (*(ush*)&ptr != 0) { /* object < 64K */
5250 farfree(ptr);
5251 return;
5252 }
5253 /* Find the original pointer */
5254 for (n = 0; n < next_ptr; n++) {
5255 if (ptr != table[n].new_ptr) continue;
5256
5257 farfree(table[n].org_ptr);
5258 while (++n < next_ptr) {
5259 table[n-1] = table[n];
5260 }
5261 next_ptr--;
5262 return;
5263 }
5264 ptr = opaque; /* just to make some compilers happy */
5265 Assert(0, "zcfree: ptr not found");
5266 }
5267 #endif
5268 #endif /* __TURBOC__ */
5269
5270
5271 #if defined(M_I86) && !defined(__32BIT__)
5272 /* Microsoft C in 16-bit mode */
5273
5274 # define MY_ZCALLOC
5275
5276 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5277 # define _halloc halloc
5278 # define _hfree hfree
5279 #endif
5280
5281 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5282 {
5283 if (opaque) opaque = 0; /* to make compiler happy */
5284 return _halloc((long)items, size);
5285 }
5286
5287 void zcfree (voidpf opaque, voidpf ptr)
5288 {
5289 if (opaque) opaque = 0; /* to make compiler happy */
5290 _hfree(ptr);
5291 }
5292
5293 #endif /* MSC */
5294
5295
5296 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5297
5298 #ifndef STDC
5299 extern voidp calloc OF((uInt items, uInt size));
5300 extern void free OF((voidpf ptr));
5301 #endif
5302
5303 voidpf zcalloc (opaque, items, size)
5304 voidpf opaque;
5305 unsigned items;
5306 unsigned size;
5307 {
5308 if (opaque) items += size - size; /* make compiler happy */
5309 return (voidpf)calloc(items, size);
5310 }
5311
5312 void zcfree (opaque, ptr)
5313 voidpf opaque;
5314 voidpf ptr;
5315 {
5316 free(ptr);
5317 if (opaque) return; /* make compiler happy */
5318 }
5319
5320 #endif /* MY_ZCALLOC */
5321 /* --- zutil.c */
5322
5323 /* +++ adler32.c */
5324 /* adler32.c -- compute the Adler-32 checksum of a data stream
5325 * Copyright (C) 1995-1996 Mark Adler
5326 * For conditions of distribution and use, see copyright notice in zlib.h
5327 */
5328
5329 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5330
5331 /* #include "zlib.h" */
5332
5333 #define BASE 65521L /* largest prime smaller than 65536 */
5334 #define NMAX 5552
5335 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5336
5337 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5338 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5339 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5340 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5341 #define DO16(buf) DO8(buf,0); DO8(buf,8);
5342
5343 /* ========================================================================= */
5344 uLong adler32(adler, buf, len)
5345 uLong adler;
5346 const Bytef *buf;
5347 uInt len;
5348 {
5349 unsigned long s1 = adler & 0xffff;
5350 unsigned long s2 = (adler >> 16) & 0xffff;
5351 int k;
5352
5353 if (buf == Z_NULL) return 1L;
5354
5355 while (len > 0) {
5356 k = len < NMAX ? len : NMAX;
5357 len -= k;
5358 while (k >= 16) {
5359 DO16(buf);
5360 buf += 16;
5361 k -= 16;
5362 }
5363 if (k != 0) do {
5364 s1 += *buf++;
5365 s2 += s1;
5366 } while (--k);
5367 s1 %= BASE;
5368 s2 %= BASE;
5369 }
5370 return (s2 << 16) | s1;
5371 }
5372 /* --- adler32.c */
5373