Home | History | Annotate | Line # | Download | only in net
zlib.c revision 1.19
      1 /*	$NetBSD: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $	*/
      2 /*
      3  * This file is derived from various .h and .c files from the zlib-1.0.4
      4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
      5  * by Paul Mackerras to aid in implementing Deflate compression and
      6  * decompression for PPP packets.  See zlib.h for conditions of
      7  * distribution and use.
      8  *
      9  * Changes that have been made include:
     10  * - added Z_PACKET_FLUSH (see zlib.h for details)
     11  * - added inflateIncomp and deflateOutputPending
     12  * - allow strm->next_out to be NULL, meaning discard the output
     13  *
     14  * $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $
     15  */
     16 
     17 /*
     18  *  ==FILEVERSION 020312==
     19  *
     20  * This marker is used by the Linux installation script to determine
     21  * whether an up-to-date version of this file is already installed.
     22  */
     23 
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $");
     26 
     27 #define NO_DUMMY_DECL
     28 #define NO_ZCFUNCS
     29 #define MY_ZCALLOC
     30 
     31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
     32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
     33 #endif
     34 
     35 
     36 /* +++ zutil.h */
     37 
     38 /* zutil.h -- internal interface and configuration of the compression library
     39  * Copyright (C) 1995-2002 Jean-loup Gailly.
     40  * For conditions of distribution and use, see copyright notice in zlib.h
     41  */
     42 
     43 /* WARNING: this file should *not* be used by applications. It is
     44    part of the implementation of the compression library and is
     45    subject to change. Applications should only use zlib.h.
     46  */
     47 
     48 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
     49 
     50 #ifndef _Z_UTIL_H
     51 #define _Z_UTIL_H
     52 
     53 #include "zlib.h"
     54 
     55 #if defined(KERNEL) || defined(_KERNEL)
     56 /* Assume this is a *BSD or SVR4 kernel */
     57 #include <sys/param.h>
     58 #include <sys/time.h>
     59 #include <sys/systm.h>
     60 #  define HAVE_MEMCPY
     61 #else
     62 #if defined(__KERNEL__)
     63 /* Assume this is a Linux kernel */
     64 #include <linux/string.h>
     65 #define HAVE_MEMCPY
     66 
     67 #else /* not kernel */
     68 
     69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
     70 
     71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
     72 #  include <lib/libkern/libkern.h>
     73 
     74 #else
     75 #ifdef STDC
     76 #  include <stddef.h>
     77 #  include <string.h>
     78 #  include <stdlib.h>
     79 #endif
     80 #ifdef NO_ERRNO_H
     81     extern int errno;
     82 #else
     83 #   include <errno.h>
     84 #endif
     85 #endif /* __NetBSD__ && _STANDALONE */
     86 #endif /* __KERNEL__ */
     87 #endif /* _KERNEL || KERNEL */
     88 
     89 
     90 #ifndef local
     91 #  define local static
     92 #endif
     93 /* compile with -Dlocal if your debugger can't find static symbols */
     94 
     95 typedef unsigned char  uch;
     96 typedef uch FAR uchf;
     97 typedef unsigned short ush;
     98 typedef ush FAR ushf;
     99 typedef unsigned long  ulg;
    100 
    101 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
    102 /* (size given to avoid silly warnings with Visual C++) */
    103 
    104 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
    105 
    106 #define ERR_RETURN(strm,err) \
    107   return (strm->msg = (char*)ERR_MSG(err), (err))
    108 /* To be used only when the state is known to be valid */
    109 
    110         /* common constants */
    111 
    112 #ifndef DEF_WBITS
    113 #  define DEF_WBITS MAX_WBITS
    114 #endif
    115 /* default windowBits for decompression. MAX_WBITS is for compression only */
    116 
    117 #if MAX_MEM_LEVEL >= 8
    118 #  define DEF_MEM_LEVEL 8
    119 #else
    120 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
    121 #endif
    122 /* default memLevel */
    123 
    124 #define STORED_BLOCK 0
    125 #define STATIC_TREES 1
    126 #define DYN_TREES    2
    127 /* The three kinds of block type */
    128 
    129 #define MIN_MATCH  3
    130 #define MAX_MATCH  258
    131 /* The minimum and maximum match lengths */
    132 
    133 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
    134 
    135         /* target dependencies */
    136 
    137 #ifdef MSDOS
    138 #  define OS_CODE  0x00
    139 #  if defined(__TURBOC__) || defined(__BORLANDC__)
    140 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
    141        /* Allow compilation with ANSI keywords only enabled */
    142        void _Cdecl farfree( void *block );
    143        void *_Cdecl farmalloc( unsigned long nbytes );
    144 #    else
    145 #     include <alloc.h>
    146 #    endif
    147 #  else /* MSC or DJGPP */
    148 #    include <malloc.h>
    149 #  endif
    150 #endif
    151 
    152 #ifdef OS2
    153 #  define OS_CODE  0x06
    154 #endif
    155 
    156 #ifdef WIN32 /* Window 95 & Windows NT */
    157 #  define OS_CODE  0x0b
    158 #endif
    159 
    160 #if defined(VAXC) || defined(VMS)
    161 #  define OS_CODE  0x02
    162 #  define F_OPEN(name, mode) \
    163      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
    164 #endif
    165 
    166 #ifdef AMIGA
    167 #  define OS_CODE  0x01
    168 #endif
    169 
    170 #if defined(ATARI) || defined(atarist)
    171 #  define OS_CODE  0x05
    172 #endif
    173 
    174 #if defined(MACOS) || defined(TARGET_OS_MAC)
    175 #  define OS_CODE  0x07
    176 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
    177 #    include <unix.h> /* for fdopen */
    178 #  else
    179 #    ifndef fdopen
    180 #      define fdopen(fd,mode) NULL /* No fdopen() */
    181 #    endif
    182 #  endif
    183 #endif
    184 
    185 #ifdef __50SERIES /* Prime/PRIMOS */
    186 #  define OS_CODE  0x0F
    187 #endif
    188 
    189 #ifdef TOPS20
    190 #  define OS_CODE  0x0a
    191 #endif
    192 
    193 #if defined(_BEOS_) || defined(RISCOS)
    194 #  define fdopen(fd,mode) NULL /* No fdopen() */
    195 #endif
    196 
    197 #if (defined(_MSC_VER) && (_MSC_VER > 600))
    198 #  define fdopen(fd,type)  _fdopen(fd,type)
    199 #endif
    200 
    201 
    202         /* Common defaults */
    203 
    204 #ifndef OS_CODE
    205 #  define OS_CODE  0x03  /* assume Unix */
    206 #endif
    207 
    208 #ifndef F_OPEN
    209 #  define F_OPEN(name, mode) fopen((name), (mode))
    210 #endif
    211 
    212          /* functions */
    213 
    214 #ifdef HAVE_STRERROR
    215    extern char *strerror __P((int));
    216 #  define zstrerror(errnum) strerror(errnum)
    217 #else
    218 #  define zstrerror(errnum) ""
    219 #endif
    220 
    221 #if defined(pyr)
    222 #  define NO_MEMCPY
    223 #endif
    224 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
    225  /* Use our own functions for small and medium model with MSC <= 5.0.
    226   * You may have to use the same strategy for Borland C (untested).
    227   * The __SC__ check is for Symantec.
    228   */
    229 #  define NO_MEMCPY
    230 #endif
    231 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
    232 #  define HAVE_MEMCPY
    233 #endif
    234 #ifdef HAVE_MEMCPY
    235 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
    236 #    define zmemcpy _fmemcpy
    237 #    define zmemcmp _fmemcmp
    238 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
    239 #  else
    240 #    define zmemcpy memcpy
    241 #    define zmemcmp memcmp
    242 #    define zmemzero(dest, len) memset(dest, 0, len)
    243 #  endif
    244 #else
    245    extern void zmemcpy  __P((Bytef* dest, const Bytef* source, uInt len));
    246    extern int  zmemcmp  __P((const Bytef* s1, const Bytef* s2, uInt len));
    247    extern void zmemzero __P((Bytef* dest, uInt len));
    248 #endif
    249 
    250 /* Diagnostic functions */
    251 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
    252 #  include <stdio.h>
    253    extern int z_verbose;
    254    extern void z_error    __P((char *m));
    255 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
    256 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
    257 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
    258 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
    259 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
    260 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
    261 #else
    262 #  define Assert(cond,msg)
    263 #  define Trace(x)
    264 #  define Tracev(x)
    265 #  define Tracevv(x)
    266 #  define Tracec(c,x)
    267 #  define Tracecv(c,x)
    268 #endif
    269 
    270 
    271 typedef uLong (ZEXPORT *check_func) __P((uLong check, const Bytef *buf,
    272 				       uInt len));
    273 voidpf zcalloc __P((voidpf opaque, unsigned items, unsigned size));
    274 void   zcfree  __P((voidpf opaque, voidpf ptr));
    275 
    276 #define ZALLOC(strm, items, size) \
    277            (*((strm)->zalloc))((strm)->opaque, (items), (size))
    278 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
    279 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
    280 
    281 #endif /* _Z_UTIL_H */
    282 /* --- zutil.h */
    283 
    284 /* +++ deflate.h */
    285 
    286 /* deflate.h -- internal compression state
    287  * Copyright (C) 1995-2002 Jean-loup Gailly
    288  * For conditions of distribution and use, see copyright notice in zlib.h
    289  */
    290 
    291 /* WARNING: this file should *not* be used by applications. It is
    292    part of the implementation of the compression library and is
    293    subject to change. Applications should only use zlib.h.
    294  */
    295 
    296 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
    297 
    298 #ifndef _DEFLATE_H
    299 #define _DEFLATE_H
    300 
    301 /* #include "zutil.h" */
    302 
    303 /* ===========================================================================
    304  * Internal compression state.
    305  */
    306 
    307 #define LENGTH_CODES 29
    308 /* number of length codes, not counting the special END_BLOCK code */
    309 
    310 #define LITERALS  256
    311 /* number of literal bytes 0..255 */
    312 
    313 #define L_CODES (LITERALS+1+LENGTH_CODES)
    314 /* number of Literal or Length codes, including the END_BLOCK code */
    315 
    316 #define D_CODES   30
    317 /* number of distance codes */
    318 
    319 #define BL_CODES  19
    320 /* number of codes used to transfer the bit lengths */
    321 
    322 #define HEAP_SIZE (2*L_CODES+1)
    323 /* maximum heap size */
    324 
    325 #define MAX_BITS 15
    326 /* All codes must not exceed MAX_BITS bits */
    327 
    328 #define INIT_STATE    42
    329 #define BUSY_STATE   113
    330 #define FINISH_STATE 666
    331 /* Stream status */
    332 
    333 
    334 /* Data structure describing a single value and its code string. */
    335 typedef struct ct_data_s {
    336     union {
    337         ush  freq;       /* frequency count */
    338         ush  code;       /* bit string */
    339     } fc;
    340     union {
    341         ush  dad;        /* father node in Huffman tree */
    342         ush  len;        /* length of bit string */
    343     } dl;
    344 } FAR ct_data;
    345 
    346 #define Freq fc.freq
    347 #define Code fc.code
    348 #define Dad  dl.dad
    349 #define Len  dl.len
    350 
    351 typedef struct static_tree_desc_s  static_tree_desc;
    352 
    353 typedef struct tree_desc_s {
    354     ct_data *dyn_tree;           /* the dynamic tree */
    355     int     max_code;            /* largest code with non zero frequency */
    356     static_tree_desc *stat_desc; /* the corresponding static tree */
    357 } FAR tree_desc;
    358 
    359 typedef ush Pos;
    360 typedef Pos FAR Posf;
    361 typedef unsigned IPos;
    362 
    363 /* A Pos is an index in the character window. We use short instead of int to
    364  * save space in the various tables. IPos is used only for parameter passing.
    365  */
    366 
    367 typedef struct deflate_state {
    368     z_streamp strm;      /* pointer back to this zlib stream */
    369     int   status;        /* as the name implies */
    370     Bytef *pending_buf;  /* output still pending */
    371     ulg   pending_buf_size; /* size of pending_buf */
    372     Bytef *pending_out;  /* next pending byte to output to the stream */
    373     int   pending;       /* nb of bytes in the pending buffer */
    374     int   noheader;      /* suppress zlib header and adler32 */
    375     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
    376     Byte  method;        /* STORED (for zip only) or DEFLATED */
    377     int   last_flush;    /* value of flush param for previous deflate call */
    378 
    379                 /* used by deflate.c: */
    380 
    381     uInt  w_size;        /* LZ77 window size (32K by default) */
    382     uInt  w_bits;        /* log2(w_size)  (8..16) */
    383     uInt  w_mask;        /* w_size - 1 */
    384 
    385     Bytef *window;
    386     /* Sliding window. Input bytes are read into the second half of the window,
    387      * and move to the first half later to keep a dictionary of at least wSize
    388      * bytes. With this organization, matches are limited to a distance of
    389      * wSize-MAX_MATCH bytes, but this ensures that IO is always
    390      * performed with a length multiple of the block size. Also, it limits
    391      * the window size to 64K, which is quite useful on MSDOS.
    392      * To do: use the user input buffer as sliding window.
    393      */
    394 
    395     ulg window_size;
    396     /* Actual size of window: 2*wSize, except when the user input buffer
    397      * is directly used as sliding window.
    398      */
    399 
    400     Posf *prev;
    401     /* Link to older string with same hash index. To limit the size of this
    402      * array to 64K, this link is maintained only for the last 32K strings.
    403      * An index in this array is thus a window index modulo 32K.
    404      */
    405 
    406     Posf *head; /* Heads of the hash chains or NIL. */
    407 
    408     uInt  ins_h;          /* hash index of string to be inserted */
    409     uInt  hash_size;      /* number of elements in hash table */
    410     uInt  hash_bits;      /* log2(hash_size) */
    411     uInt  hash_mask;      /* hash_size-1 */
    412 
    413     uInt  hash_shift;
    414     /* Number of bits by which ins_h must be shifted at each input
    415      * step. It must be such that after MIN_MATCH steps, the oldest
    416      * byte no longer takes part in the hash key, that is:
    417      *   hash_shift * MIN_MATCH >= hash_bits
    418      */
    419 
    420     long block_start;
    421     /* Window position at the beginning of the current output block. Gets
    422      * negative when the window is moved backwards.
    423      */
    424 
    425     uInt match_length;           /* length of best match */
    426     IPos prev_match;             /* previous match */
    427     int match_available;         /* set if previous match exists */
    428     uInt strstart;               /* start of string to insert */
    429     uInt match_start;            /* start of matching string */
    430     uInt lookahead;              /* number of valid bytes ahead in window */
    431 
    432     uInt prev_length;
    433     /* Length of the best match at previous step. Matches not greater than this
    434      * are discarded. This is used in the lazy match evaluation.
    435      */
    436 
    437     uInt max_chain_length;
    438     /* To speed up deflation, hash chains are never searched beyond this
    439      * length.  A higher limit improves compression ratio but degrades the
    440      * speed.
    441      */
    442 
    443     uInt max_lazy_match;
    444     /* Attempt to find a better match only when the current match is strictly
    445      * smaller than this value. This mechanism is used only for compression
    446      * levels >= 4.
    447      */
    448 #   define max_insert_length  max_lazy_match
    449     /* Insert new strings in the hash table only if the match length is not
    450      * greater than this length. This saves time but degrades compression.
    451      * max_insert_length is used only for compression levels <= 3.
    452      */
    453 
    454     int level;    /* compression level (1..9) */
    455     int strategy; /* favor or force Huffman coding*/
    456 
    457     uInt good_match;
    458     /* Use a faster search when the previous match is longer than this */
    459 
    460     int nice_match; /* Stop searching when current match exceeds this */
    461 
    462                 /* used by trees.c: */
    463     /* Didn't use ct_data typedef below to supress compiler warning */
    464     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    465     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    466     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
    467 
    468     struct tree_desc_s l_desc;               /* desc. for literal tree */
    469     struct tree_desc_s d_desc;               /* desc. for distance tree */
    470     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
    471 
    472     ush bl_count[MAX_BITS+1];
    473     /* number of codes at each bit length for an optimal tree */
    474 
    475     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    476     int heap_len;               /* number of elements in the heap */
    477     int heap_max;               /* element of largest frequency */
    478     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
    479      * The same heap array is used to build all trees.
    480      */
    481 
    482     uch depth[2*L_CODES+1];
    483     /* Depth of each subtree used as tie breaker for trees of equal frequency
    484      */
    485 
    486     uchf *l_buf;          /* buffer for literals or lengths */
    487 
    488     uInt  lit_bufsize;
    489     /* Size of match buffer for literals/lengths.  There are 4 reasons for
    490      * limiting lit_bufsize to 64K:
    491      *   - frequencies can be kept in 16 bit counters
    492      *   - if compression is not successful for the first block, all input
    493      *     data is still in the window so we can still emit a stored block even
    494      *     when input comes from standard input.  (This can also be done for
    495      *     all blocks if lit_bufsize is not greater than 32K.)
    496      *   - if compression is not successful for a file smaller than 64K, we can
    497      *     even emit a stored file instead of a stored block (saving 5 bytes).
    498      *     This is applicable only for zip (not gzip or zlib).
    499      *   - creating new Huffman trees less frequently may not provide fast
    500      *     adaptation to changes in the input data statistics. (Take for
    501      *     example a binary file with poorly compressible code followed by
    502      *     a highly compressible string table.) Smaller buffer sizes give
    503      *     fast adaptation but have of course the overhead of transmitting
    504      *     trees more frequently.
    505      *   - I can't count above 4
    506      */
    507 
    508     uInt last_lit;      /* running index in l_buf */
    509 
    510     ushf *d_buf;
    511     /* Buffer for distances. To simplify the code, d_buf and l_buf have
    512      * the same number of elements. To use different lengths, an extra flag
    513      * array would be necessary.
    514      */
    515 
    516     ulg opt_len;        /* bit length of current block with optimal trees */
    517     ulg static_len;     /* bit length of current block with static trees */
    518     uInt matches;       /* number of string matches in current block */
    519     int last_eob_len;   /* bit length of EOB code for last block */
    520 
    521 #ifdef DEBUG_ZLIB
    522     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
    523     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
    524 #endif
    525 
    526     ush bi_buf;
    527     /* Output buffer. bits are inserted starting at the bottom (least
    528      * significant bits).
    529      */
    530     int bi_valid;
    531     /* Number of valid bits in bi_buf.  All bits above the last valid bit
    532      * are always zero.
    533      */
    534 
    535 } FAR deflate_state;
    536 
    537 /* Output a byte on the stream.
    538  * IN assertion: there is enough room in pending_buf.
    539  */
    540 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
    541 
    542 
    543 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    544 /* Minimum amount of lookahead, except at the end of the input file.
    545  * See deflate.c for comments about the MIN_MATCH+1.
    546  */
    547 
    548 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
    549 /* In order to simplify the code, particularly on 16 bit machines, match
    550  * distances are limited to MAX_DIST instead of WSIZE.
    551  */
    552 
    553         /* in trees.c */
    554 void _tr_init         __P((deflate_state *s));
    555 int  _tr_tally        __P((deflate_state *s, unsigned dist, unsigned lc));
    556 void _tr_flush_block  __P((deflate_state *s, charf *buf, ulg stored_len,
    557 			  int eof));
    558 void _tr_align        __P((deflate_state *s));
    559 void _tr_stored_block __P((deflate_state *s, charf *buf, ulg stored_len,
    560                           int eof));
    561 void _tr_stored_type_only __P((deflate_state *));
    562 
    563 #define d_code(dist) \
    564    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
    565 /* Mapping from a distance to a distance code. dist is the distance - 1 and
    566  * must not have side effects. _dist_code[256] and _dist_code[257] are never
    567  * used.
    568  */
    569 
    570 #ifndef DEBUG_ZLIB
    571 /* Inline versions of _tr_tally for speed: */
    572 
    573 #if defined(GEN_TREES_H) || !defined(STDC)
    574   extern uch _length_code[];
    575   extern uch _dist_code[];
    576 #else
    577   extern const uch _length_code[];
    578   extern const uch _dist_code[];
    579 #endif
    580 
    581 # define _tr_tally_lit(s, c, flush) \
    582   { uch cc = (c); \
    583     s->d_buf[s->last_lit] = 0; \
    584     s->l_buf[s->last_lit++] = cc; \
    585     s->dyn_ltree[cc].Freq++; \
    586     flush = (s->last_lit == s->lit_bufsize-1); \
    587    }
    588 # define _tr_tally_dist(s, distance, length, flush) \
    589   { uch len = (length); \
    590     ush dist = (distance); \
    591     s->d_buf[s->last_lit] = dist; \
    592     s->l_buf[s->last_lit++] = len; \
    593     dist--; \
    594     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
    595     s->dyn_dtree[d_code(dist)].Freq++; \
    596     flush = (s->last_lit == s->lit_bufsize-1); \
    597   }
    598 #else
    599 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
    600 # define _tr_tally_dist(s, distance, length, flush) \
    601               flush = _tr_tally(s, distance, length)
    602 #endif
    603 
    604 #endif
    605 /* --- deflate.h */
    606 
    607 /* +++ deflate.c */
    608 
    609 /* deflate.c -- compress data using the deflation algorithm
    610  * Copyright (C) 1995-2002 Jean-loup Gailly.
    611  * For conditions of distribution and use, see copyright notice in zlib.h
    612  */
    613 
    614 /*
    615  *  ALGORITHM
    616  *
    617  *      The "deflation" process depends on being able to identify portions
    618  *      of the input text which are identical to earlier input (within a
    619  *      sliding window trailing behind the input currently being processed).
    620  *
    621  *      The most straightforward technique turns out to be the fastest for
    622  *      most input files: try all possible matches and select the longest.
    623  *      The key feature of this algorithm is that insertions into the string
    624  *      dictionary are very simple and thus fast, and deletions are avoided
    625  *      completely. Insertions are performed at each input character, whereas
    626  *      string matches are performed only when the previous match ends. So it
    627  *      is preferable to spend more time in matches to allow very fast string
    628  *      insertions and avoid deletions. The matching algorithm for small
    629  *      strings is inspired from that of Rabin & Karp. A brute force approach
    630  *      is used to find longer strings when a small match has been found.
    631  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
    632  *      (by Leonid Broukhis).
    633  *         A previous version of this file used a more sophisticated algorithm
    634  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
    635  *      time, but has a larger average cost, uses more memory and is patented.
    636  *      However the F&G algorithm may be faster for some highly redundant
    637  *      files if the parameter max_chain_length (described below) is too large.
    638  *
    639  *  ACKNOWLEDGEMENTS
    640  *
    641  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
    642  *      I found it in 'freeze' written by Leonid Broukhis.
    643  *      Thanks to many people for bug reports and testing.
    644  *
    645  *  REFERENCES
    646  *
    647  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
    648  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
    649  *
    650  *      A description of the Rabin and Karp algorithm is given in the book
    651  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
    652  *
    653  *      Fiala,E.R., and Greene,D.H.
    654  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
    655  *
    656  */
    657 
    658 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
    659 
    660 /* #include "deflate.h" */
    661 
    662 const char deflate_copyright[] =
    663    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
    664 /*
    665   If you use the zlib library in a product, an acknowledgment is welcome
    666   in the documentation of your product. If for some reason you cannot
    667   include such an acknowledgment, I would appreciate that you keep this
    668   copyright string in the executable of your product.
    669  */
    670 
    671 /* ===========================================================================
    672  *  Function prototypes.
    673  */
    674 typedef enum {
    675     need_more,      /* block not completed, need more input or more output */
    676     block_done,     /* block flush performed */
    677     finish_started, /* finish started, need only more output at next deflate */
    678     finish_done     /* finish done, accept no more input or output */
    679 } block_state;
    680 
    681 typedef block_state (*compress_func) __P((deflate_state *s, int flush));
    682 /* Compression function. Returns the block state after the call. */
    683 
    684 local void fill_window    __P((deflate_state *s));
    685 local block_state deflate_stored __P((deflate_state *s, int flush));
    686 local block_state deflate_fast   __P((deflate_state *s, int flush));
    687 local block_state deflate_slow   __P((deflate_state *s, int flush));
    688 local void lm_init        __P((deflate_state *s));
    689 local void putShortMSB    __P((deflate_state *s, uInt b));
    690 local void flush_pending  __P((z_streamp strm));
    691 local int read_buf        __P((z_streamp strm, Bytef *buf, unsigned size));
    692 #ifdef ASMV
    693       void match_init __P((void)); /* asm code initialization */
    694       uInt longest_match  __P((deflate_state *s, IPos cur_match));
    695 #else
    696 local uInt longest_match  __P((deflate_state *s, IPos cur_match));
    697 #endif
    698 
    699 #ifdef DEBUG_ZLIB
    700 local  void check_match __P((deflate_state *s, IPos start, IPos match,
    701                             int length));
    702 #endif
    703 
    704 /* ===========================================================================
    705  * Local data
    706  */
    707 
    708 #define NIL 0
    709 /* Tail of hash chains */
    710 
    711 #ifndef TOO_FAR
    712 #  define TOO_FAR 4096
    713 #endif
    714 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
    715 
    716 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    717 /* Minimum amount of lookahead, except at the end of the input file.
    718  * See deflate.c for comments about the MIN_MATCH+1.
    719  */
    720 
    721 /* Values for max_lazy_match, good_match and max_chain_length, depending on
    722  * the desired pack level (0..9). The values given below have been tuned to
    723  * exclude worst case performance for pathological files. Better values may be
    724  * found for specific files.
    725  */
    726 typedef struct config_s {
    727    ush good_length; /* reduce lazy search above this match length */
    728    ush max_lazy;    /* do not perform lazy search above this match length */
    729    ush nice_length; /* quit search above this match length */
    730    ush max_chain;
    731    compress_func func;
    732 } config;
    733 
    734 local const config configuration_table[10] = {
    735 /*      good lazy nice chain */
    736 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    737 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
    738 /* 2 */ {4,    5, 16,    8, deflate_fast},
    739 /* 3 */ {4,    6, 32,   32, deflate_fast},
    740 
    741 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    742 /* 5 */ {8,   16, 32,   32, deflate_slow},
    743 /* 6 */ {8,   16, 128, 128, deflate_slow},
    744 /* 7 */ {8,   32, 128, 256, deflate_slow},
    745 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    746 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
    747 
    748 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    749  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    750  * meaning.
    751  */
    752 
    753 #define EQUAL 0
    754 /* result of memcmp for equal strings */
    755 
    756 #ifndef NO_DUMMY_DECL
    757 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
    758 #endif
    759 
    760 /* ===========================================================================
    761  * Update a hash value with the given input byte
    762  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
    763  *    input characters, so that a running hash key can be computed from the
    764  *    previous key instead of complete recalculation each time.
    765  */
    766 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
    767 
    768 
    769 /* ===========================================================================
    770  * Insert string str in the dictionary and set match_head to the previous head
    771  * of the hash chain (the most recent string with same hash key). Return
    772  * the previous length of the hash chain.
    773  * If this file is compiled with -DFASTEST, the compression level is forced
    774  * to 1, and no hash chains are maintained.
    775  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
    776  *    input characters and the first MIN_MATCH bytes of str are valid
    777  *    (except for the last MIN_MATCH-1 bytes of the input file).
    778  */
    779 #ifdef FASTEST
    780 #define INSERT_STRING(s, str, match_head) \
    781    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    782     match_head = s->head[s->ins_h], \
    783     s->head[s->ins_h] = (Pos)(str))
    784 #else
    785 #define INSERT_STRING(s, str, match_head) \
    786    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    787     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
    788     s->head[s->ins_h] = (Pos)(str))
    789 #endif
    790 
    791 /* ===========================================================================
    792  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    793  * prev[] will be initialized on the fly.
    794  */
    795 #define CLEAR_HASH(s) \
    796     s->head[s->hash_size-1] = NIL; \
    797     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
    798 
    799 /* ========================================================================= */
    800 #if 0
    801 int ZEXPORT deflateInit_(strm, level, version, stream_size)
    802     z_streamp strm;
    803     int level;
    804     const char *version;
    805     int stream_size;
    806 {
    807     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    808 			 Z_DEFAULT_STRATEGY, version, stream_size);
    809     /* To do: ignore strm->next_in if we use it as window */
    810 }
    811 #endif
    812 
    813 /* ========================================================================= */
    814 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
    815 		  version, stream_size)
    816     z_streamp strm;
    817     int  level;
    818     int  method;
    819     int  windowBits;
    820     int  memLevel;
    821     int  strategy;
    822     const char *version;
    823     int stream_size;
    824 {
    825     deflate_state *s;
    826     int noheader = 0;
    827     static const char* my_version = ZLIB_VERSION;
    828 
    829     ushf *overlay;
    830     /* We overlay pending_buf and d_buf+l_buf. This works since the average
    831      * output size for (length,distance) codes is <= 24 bits.
    832      */
    833 
    834     if (version == Z_NULL || version[0] != my_version[0] ||
    835         stream_size != sizeof(z_stream)) {
    836 	return Z_VERSION_ERROR;
    837     }
    838     if (strm == Z_NULL) return Z_STREAM_ERROR;
    839 
    840     strm->msg = Z_NULL;
    841 #ifndef NO_ZCFUNCS
    842     if (strm->zalloc == Z_NULL) {
    843 	strm->zalloc = zcalloc;
    844 	strm->opaque = (voidpf)0;
    845     }
    846     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
    847 #endif
    848 
    849     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    850 #ifdef FASTEST
    851     level = 1;
    852 #endif
    853 
    854     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
    855         noheader = 1;
    856         windowBits = -windowBits;
    857     }
    858     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    859         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
    860 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    861         return Z_STREAM_ERROR;
    862     }
    863     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    864     if (s == Z_NULL) return Z_MEM_ERROR;
    865     strm->state = (struct internal_state FAR *)s;
    866     s->strm = strm;
    867 
    868     s->noheader = noheader;
    869     s->w_bits = windowBits;
    870     s->w_size = 1 << s->w_bits;
    871     s->w_mask = s->w_size - 1;
    872 
    873     s->hash_bits = memLevel + 7;
    874     s->hash_size = 1 << s->hash_bits;
    875     s->hash_mask = s->hash_size - 1;
    876     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
    877 
    878     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    879     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    880     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    881 
    882     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    883 
    884     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
    885     s->pending_buf = (uchf *) overlay;
    886     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
    887 
    888     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    889         s->pending_buf == Z_NULL) {
    890         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
    891 	s->status = INIT_STATE;
    892         deflateEnd (strm);
    893         return Z_MEM_ERROR;
    894     }
    895     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
    896     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
    897 
    898     s->level = level;
    899     s->strategy = strategy;
    900     s->method = (Byte)method;
    901 
    902     return deflateReset(strm);
    903 }
    904 
    905 /* ========================================================================= */
    906 #if 0
    907 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
    908     z_streamp strm;
    909     const Bytef *dictionary;
    910     uInt  dictLength;
    911 {
    912     deflate_state *s;
    913     uInt length = dictLength;
    914     uInt n;
    915     IPos hash_head = 0;
    916 
    917     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
    918         return Z_STREAM_ERROR;
    919 
    920     s = (deflate_state *)strm->state;
    921     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
    922 
    923     strm->adler = adler32(strm->adler, dictionary, dictLength);
    924 
    925     if (length < MIN_MATCH) return Z_OK;
    926     if (length > MAX_DIST(s)) {
    927 	length = MAX_DIST(s);
    928 #ifndef USE_DICT_HEAD
    929 	dictionary += dictLength - length; /* use the tail of the dictionary */
    930 #endif
    931     }
    932     zmemcpy(s->window, dictionary, length);
    933     s->strstart = length;
    934     s->block_start = (long)length;
    935 
    936     /* Insert all strings in the hash table (except for the last two bytes).
    937      * s->lookahead stays null, so s->ins_h will be recomputed at the next
    938      * call of fill_window.
    939      */
    940     s->ins_h = s->window[0];
    941     UPDATE_HASH(s, s->ins_h, s->window[1]);
    942     for (n = 0; n <= length - MIN_MATCH; n++) {
    943 	INSERT_STRING(s, n, hash_head);
    944     }
    945     if (hash_head) hash_head = 0;  /* to make compiler happy */
    946     return Z_OK;
    947 }
    948 #endif
    949 
    950 /* ========================================================================= */
    951 int ZEXPORT deflateReset (strm)
    952     z_streamp strm;
    953 {
    954     deflate_state *s;
    955 
    956     if (strm == Z_NULL || strm->state == Z_NULL ||
    957         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
    958 
    959     strm->total_in = strm->total_out = 0;
    960     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    961     strm->data_type = Z_UNKNOWN;
    962 
    963     s = (deflate_state *)strm->state;
    964     s->pending = 0;
    965     s->pending_out = s->pending_buf;
    966 
    967     if (s->noheader < 0) {
    968         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
    969     }
    970     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
    971     strm->adler = 1;
    972     s->last_flush = Z_NO_FLUSH;
    973 
    974     _tr_init(s);
    975     lm_init(s);
    976 
    977     return Z_OK;
    978 }
    979 
    980 /* ========================================================================= */
    981 #if 0
    982 int ZEXPORT deflateParams(strm, level, strategy)
    983     z_streamp strm;
    984     int level;
    985     int strategy;
    986 {
    987     deflate_state *s;
    988     compress_func func;
    989     int err = Z_OK;
    990 
    991     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    992     s = (deflate_state *)strm->state;
    993 
    994     if (level == Z_DEFAULT_COMPRESSION) {
    995 	level = 6;
    996     }
    997     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    998 	return Z_STREAM_ERROR;
    999     }
   1000     func = configuration_table[s->level].func;
   1001 
   1002     if (func != configuration_table[level].func && strm->total_in != 0) {
   1003 	/* Flush the last buffer: */
   1004 	err = deflate(strm, Z_PARTIAL_FLUSH);
   1005     }
   1006     if (s->level != level) {
   1007 	s->level = level;
   1008 	s->max_lazy_match   = configuration_table[level].max_lazy;
   1009 	s->good_match       = configuration_table[level].good_length;
   1010 	s->nice_match       = configuration_table[level].nice_length;
   1011 	s->max_chain_length = configuration_table[level].max_chain;
   1012     }
   1013     s->strategy = strategy;
   1014     return err;
   1015 }
   1016 #endif
   1017 
   1018 /* =========================================================================
   1019  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
   1020  * IN assertion: the stream state is correct and there is enough room in
   1021  * pending_buf.
   1022  */
   1023 local void putShortMSB (s, b)
   1024     deflate_state *s;
   1025     uInt b;
   1026 {
   1027     put_byte(s, (Byte)(b >> 8));
   1028     put_byte(s, (Byte)(b & 0xff));
   1029 }
   1030 
   1031 /* =========================================================================
   1032  * Flush as much pending output as possible. All deflate() output goes
   1033  * through this function so some applications may wish to modify it
   1034  * to avoid allocating a large strm->next_out buffer and copying into it.
   1035  * (See also read_buf()).
   1036  */
   1037 local void flush_pending(strm)
   1038     z_streamp strm;
   1039 {
   1040     deflate_state *s = (deflate_state *) strm->state;
   1041     unsigned len = s->pending;
   1042 
   1043     if (len > strm->avail_out) len = strm->avail_out;
   1044     if (len == 0) return;
   1045 
   1046     if (strm->next_out != Z_NULL) {
   1047       zmemcpy(strm->next_out, s->pending_out, len);
   1048       strm->next_out  += len;
   1049     }
   1050     s->pending_out  += len;
   1051     strm->total_out += len;
   1052     strm->avail_out  -= len;
   1053     s->pending -= len;
   1054     if (s->pending == 0) {
   1055         s->pending_out = s->pending_buf;
   1056     }
   1057 }
   1058 
   1059 /* ========================================================================= */
   1060 int ZEXPORT deflate (strm, flush)
   1061     z_streamp strm;
   1062     int flush;
   1063 {
   1064     int old_flush; /* value of flush param for previous deflate call */
   1065     deflate_state *s;
   1066 
   1067     if (strm == Z_NULL || strm->state == Z_NULL ||
   1068 	flush > Z_FINISH || flush < 0) {
   1069         return Z_STREAM_ERROR;
   1070     }
   1071     s = (deflate_state *)strm->state;
   1072 
   1073     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
   1074 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
   1075         ERR_RETURN(strm, Z_STREAM_ERROR);
   1076     }
   1077     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
   1078 
   1079     s->strm = strm; /* just in case */
   1080     old_flush = s->last_flush;
   1081     s->last_flush = flush;
   1082 
   1083     /* Write the zlib header */
   1084     if (s->status == INIT_STATE) {
   1085 
   1086         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
   1087         uInt level_flags = (s->level-1) >> 1;
   1088 
   1089         if (level_flags > 3) level_flags = 3;
   1090         header |= (level_flags << 6);
   1091 	if (s->strstart != 0) header |= PRESET_DICT;
   1092         header += 31 - (header % 31);
   1093 
   1094         s->status = BUSY_STATE;
   1095         putShortMSB(s, header);
   1096 
   1097 	/* Save the adler32 of the preset dictionary: */
   1098 	if (s->strstart != 0) {
   1099 	    putShortMSB(s, (uInt)(strm->adler >> 16));
   1100 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1101 	}
   1102 	strm->adler = 1L;
   1103     }
   1104 
   1105     /* Flush as much pending output as possible */
   1106     if (s->pending != 0) {
   1107         flush_pending(strm);
   1108         if (strm->avail_out == 0) {
   1109 	    /* Since avail_out is 0, deflate will be called again with
   1110 	     * more output space, but possibly with both pending and
   1111 	     * avail_in equal to zero. There won't be anything to do,
   1112 	     * but this is not an error situation so make sure we
   1113 	     * return OK instead of BUF_ERROR at next call of deflate:
   1114              */
   1115 	    s->last_flush = -1;
   1116 	    return Z_OK;
   1117 	}
   1118 
   1119     /* Make sure there is something to do and avoid duplicate consecutive
   1120      * flushes. For repeated and useless calls with Z_FINISH, we keep
   1121      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
   1122      */
   1123     } else if (strm->avail_in == 0 && flush <= old_flush &&
   1124 	       flush != Z_FINISH) {
   1125         ERR_RETURN(strm, Z_BUF_ERROR);
   1126     }
   1127 
   1128     /* User must not provide more input after the first FINISH: */
   1129     if (s->status == FINISH_STATE && strm->avail_in != 0) {
   1130         ERR_RETURN(strm, Z_BUF_ERROR);
   1131     }
   1132 
   1133     /* Start a new block or continue the current one.
   1134      */
   1135     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1136         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1137         block_state bstate;
   1138 
   1139 	bstate = (*(configuration_table[s->level].func))(s, flush);
   1140 
   1141         if (bstate == finish_started || bstate == finish_done) {
   1142             s->status = FINISH_STATE;
   1143         }
   1144         if (bstate == need_more || bstate == finish_started) {
   1145 	    if (strm->avail_out == 0) {
   1146 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1147 	    }
   1148 	    return Z_OK;
   1149 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1150 	     * of deflate should use the same flush parameter to make sure
   1151 	     * that the flush is complete. So we don't have to output an
   1152 	     * empty block here, this will be done at next call. This also
   1153 	     * ensures that for a very small output buffer, we emit at most
   1154 	     * one empty block.
   1155 	     */
   1156 	}
   1157         if (bstate == block_done) {
   1158             if (flush == Z_PARTIAL_FLUSH) {
   1159                 _tr_align(s);
   1160 	    } else if (flush == Z_PACKET_FLUSH) {
   1161 		/* Output just the 3-bit `stored' block type value,
   1162 		   but not a zero length. */
   1163 		_tr_stored_type_only(s);
   1164             } else { /* FULL_FLUSH or SYNC_FLUSH */
   1165                 _tr_stored_block(s, (char*)0, 0L, 0);
   1166                 /* For a full flush, this empty block will be recognized
   1167                  * as a special marker by inflate_sync().
   1168                  */
   1169                 if (flush == Z_FULL_FLUSH) {
   1170                     CLEAR_HASH(s);             /* forget history */
   1171                 }
   1172             }
   1173             flush_pending(strm);
   1174 	    if (strm->avail_out == 0) {
   1175 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1176 	      return Z_OK;
   1177 	    }
   1178         }
   1179     }
   1180     Assert(strm->avail_out > 0, "bug2");
   1181 
   1182     if (flush != Z_FINISH) return Z_OK;
   1183     if (s->noheader) return Z_STREAM_END;
   1184 
   1185     /* Write the zlib trailer (adler32) */
   1186     putShortMSB(s, (uInt)(strm->adler >> 16));
   1187     putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1188     flush_pending(strm);
   1189     /* If avail_out is zero, the application will call deflate again
   1190      * to flush the rest.
   1191      */
   1192     s->noheader = -1; /* write the trailer only once! */
   1193     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1194 }
   1195 
   1196 /* ========================================================================= */
   1197 int ZEXPORT deflateEnd (strm)
   1198     z_streamp strm;
   1199 {
   1200     int status;
   1201     deflate_state *s;
   1202 
   1203     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   1204     s = (deflate_state *) strm->state;
   1205 
   1206     status = s->status;
   1207     if (status != INIT_STATE && status != BUSY_STATE &&
   1208 	status != FINISH_STATE) {
   1209       return Z_STREAM_ERROR;
   1210     }
   1211 
   1212     /* Deallocate in reverse order of allocations: */
   1213     TRY_FREE(strm, s->pending_buf);
   1214     TRY_FREE(strm, s->head);
   1215     TRY_FREE(strm, s->prev);
   1216     TRY_FREE(strm, s->window);
   1217 
   1218     ZFREE(strm, s);
   1219     strm->state = Z_NULL;
   1220 
   1221     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1222 }
   1223 
   1224 /* =========================================================================
   1225  * Copy the source state to the destination state.
   1226  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1227  * doesn't have enough memory anyway to duplicate compression states).
   1228  */
   1229 #if 0
   1230 int ZEXPORT deflateCopy (dest, source)
   1231     z_streamp dest;
   1232     z_streamp source;
   1233 {
   1234 #ifdef MAXSEG_64K
   1235     return Z_STREAM_ERROR;
   1236 #else
   1237     deflate_state *ds;
   1238     deflate_state *ss;
   1239     ushf *overlay;
   1240 
   1241 
   1242     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
   1243         return Z_STREAM_ERROR;
   1244     }
   1245 
   1246     ss = (deflate_state *)source->state;
   1247 
   1248     *dest = *source;
   1249 
   1250     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1251     if (ds == Z_NULL) return Z_MEM_ERROR;
   1252     dest->state = (void *) ds;
   1253     *ds = *ss;
   1254     ds->strm = dest;
   1255 
   1256     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1257     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1258     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1259     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
   1260     ds->pending_buf = (uchf *) overlay;
   1261 
   1262     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1263         ds->pending_buf == Z_NULL) {
   1264 	ds->status = INIT_STATE;
   1265         deflateEnd (dest);
   1266         return Z_MEM_ERROR;
   1267     }
   1268     /* following zmemcpy do not work for 16-bit MSDOS */
   1269     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1270     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
   1271     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
   1272     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
   1273 
   1274     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1275     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
   1276     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
   1277 
   1278     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1279     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1280     ds->bl_desc.dyn_tree = ds->bl_tree;
   1281 
   1282     return Z_OK;
   1283 #endif
   1284 }
   1285 #endif
   1286 
   1287 /* ===========================================================================
   1288  * Return the number of bytes of output which are immediately available
   1289  * for output from the decompressor.
   1290  */
   1291 #if 0
   1292 int deflateOutputPending (strm)
   1293     z_streamp strm;
   1294 {
   1295     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
   1296 
   1297     return ((deflate_state *)(strm->state))->pending;
   1298 }
   1299 #endif
   1300 
   1301 /* ===========================================================================
   1302  * Read a new buffer from the current input stream, update the adler32
   1303  * and total number of bytes read.  All deflate() input goes through
   1304  * this function so some applications may wish to modify it to avoid
   1305  * allocating a large strm->next_in buffer and copying from it.
   1306  * (See also flush_pending()).
   1307  */
   1308 local int read_buf(strm, buf, size)
   1309     z_streamp strm;
   1310     Bytef *buf;
   1311     unsigned size;
   1312 {
   1313     unsigned len = strm->avail_in;
   1314 
   1315     if (len > size) len = size;
   1316     if (len == 0) return 0;
   1317 
   1318     strm->avail_in  -= len;
   1319 
   1320     if (!((deflate_state *)(strm->state))->noheader) {
   1321         strm->adler = adler32(strm->adler, strm->next_in, len);
   1322     }
   1323     zmemcpy(buf, strm->next_in, len);
   1324     strm->next_in  += len;
   1325     strm->total_in += len;
   1326 
   1327     return (int)len;
   1328 }
   1329 
   1330 /* ===========================================================================
   1331  * Initialize the "longest match" routines for a new zlib stream
   1332  */
   1333 local void lm_init (s)
   1334     deflate_state *s;
   1335 {
   1336     s->window_size = (ulg)2L*s->w_size;
   1337 
   1338     CLEAR_HASH(s);
   1339 
   1340     /* Set the default configuration parameters:
   1341      */
   1342     s->max_lazy_match   = configuration_table[s->level].max_lazy;
   1343     s->good_match       = configuration_table[s->level].good_length;
   1344     s->nice_match       = configuration_table[s->level].nice_length;
   1345     s->max_chain_length = configuration_table[s->level].max_chain;
   1346 
   1347     s->strstart = 0;
   1348     s->block_start = 0L;
   1349     s->lookahead = 0;
   1350     s->match_length = s->prev_length = MIN_MATCH-1;
   1351     s->match_available = 0;
   1352     s->ins_h = 0;
   1353 #ifdef ASMV
   1354     match_init(); /* initialize the asm code */
   1355 #endif
   1356 }
   1357 
   1358 /* ===========================================================================
   1359  * Set match_start to the longest match starting at the given string and
   1360  * return its length. Matches shorter or equal to prev_length are discarded,
   1361  * in which case the result is equal to prev_length and match_start is
   1362  * garbage.
   1363  * IN assertions: cur_match is the head of the hash chain for the current
   1364  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1365  * OUT assertion: the match length is not greater than s->lookahead.
   1366  */
   1367 #ifndef ASMV
   1368 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
   1369  * match.S. The code will be functionally equivalent.
   1370  */
   1371 #ifndef FASTEST
   1372 local uInt longest_match(s, cur_match)
   1373     deflate_state *s;
   1374     IPos cur_match;                             /* current match */
   1375 {
   1376     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1377     Bytef *scan = s->window + s->strstart; /* current string */
   1378     Bytef *match;                       /* matched string */
   1379     int len;                           /* length of current match */
   1380     int best_len = s->prev_length;              /* best match length so far */
   1381     int nice_match = s->nice_match;             /* stop if match long enough */
   1382     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1383         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1384     /* Stop when cur_match becomes <= limit. To simplify the code,
   1385      * we prevent matches with the string of window index 0.
   1386      */
   1387     Posf *prev = s->prev;
   1388     uInt wmask = s->w_mask;
   1389 
   1390 #ifdef UNALIGNED_OK
   1391     /* Compare two bytes at a time. Note: this is not always beneficial.
   1392      * Try with and without -DUNALIGNED_OK to check.
   1393      */
   1394     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1395     ush scan_start = *(ushf*)scan;
   1396     ush scan_end   = *(ushf*)(scan+best_len-1);
   1397 #else
   1398     Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1399     Byte scan_end1  = scan[best_len-1];
   1400     Byte scan_end   = scan[best_len];
   1401 #endif
   1402 
   1403     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1404      * It is easy to get rid of this optimization if necessary.
   1405      */
   1406     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1407 
   1408     /* Do not waste too much time if we already have a good match: */
   1409     if (s->prev_length >= s->good_match) {
   1410         chain_length >>= 2;
   1411     }
   1412     /* Do not look for matches beyond the end of the input. This is necessary
   1413      * to make deflate deterministic.
   1414      */
   1415     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
   1416 
   1417     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1418 
   1419     do {
   1420         Assert(cur_match < s->strstart, "no future");
   1421         match = s->window + cur_match;
   1422 
   1423         /* Skip to next match if the match length cannot increase
   1424          * or if the match length is less than 2:
   1425          */
   1426 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1427         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1428          * UNALIGNED_OK if your compiler uses a different size.
   1429          */
   1430         if (*(ushf*)(match+best_len-1) != scan_end ||
   1431             *(ushf*)match != scan_start) continue;
   1432 
   1433         /* It is not necessary to compare scan[2] and match[2] since they are
   1434          * always equal when the other bytes match, given that the hash keys
   1435          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1436          * strstart+3, +5, ... up to strstart+257. We check for insufficient
   1437          * lookahead only every 4th comparison; the 128th check will be made
   1438          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
   1439          * necessary to put more guard bytes at the end of the window, or
   1440          * to check more often for insufficient lookahead.
   1441          */
   1442         Assert(scan[2] == match[2], "scan[2]?");
   1443         scan++, match++;
   1444         do {
   1445         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1446                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1447                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1448                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1449                  scan < strend);
   1450         /* The funny "do {}" generates better code on most compilers */
   1451 
   1452         /* Here, scan <= window+strstart+257 */
   1453         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1454         if (*scan == *match) scan++;
   1455 
   1456         len = (MAX_MATCH - 1) - (int)(strend-scan);
   1457         scan = strend - (MAX_MATCH-1);
   1458 
   1459 #else /* UNALIGNED_OK */
   1460 
   1461         if (match[best_len]   != scan_end  ||
   1462             match[best_len-1] != scan_end1 ||
   1463             *match            != *scan     ||
   1464             *++match          != scan[1])      continue;
   1465 
   1466         /* The check at best_len-1 can be removed because it will be made
   1467          * again later. (This heuristic is not always a win.)
   1468          * It is not necessary to compare scan[2] and match[2] since they
   1469          * are always equal when the other bytes match, given that
   1470          * the hash keys are equal and that HASH_BITS >= 8.
   1471          */
   1472         scan += 2, match++;
   1473         Assert(*scan == *match, "match[2]?");
   1474 
   1475         /* We check for insufficient lookahead only every 8th comparison;
   1476          * the 256th check will be made at strstart+258.
   1477          */
   1478         do {
   1479         } while (*++scan == *++match && *++scan == *++match &&
   1480                  *++scan == *++match && *++scan == *++match &&
   1481                  *++scan == *++match && *++scan == *++match &&
   1482                  *++scan == *++match && *++scan == *++match &&
   1483                  scan < strend);
   1484 
   1485         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1486 
   1487         len = MAX_MATCH - (int)(strend - scan);
   1488         scan = strend - MAX_MATCH;
   1489 
   1490 #endif /* UNALIGNED_OK */
   1491 
   1492         if (len > best_len) {
   1493             s->match_start = cur_match;
   1494             best_len = len;
   1495             if (len >= nice_match) break;
   1496 #ifdef UNALIGNED_OK
   1497             scan_end = *(ushf*)(scan+best_len-1);
   1498 #else
   1499             scan_end1  = scan[best_len-1];
   1500             scan_end   = scan[best_len];
   1501 #endif
   1502         }
   1503     } while ((cur_match = prev[cur_match & wmask]) > limit
   1504              && --chain_length != 0);
   1505 
   1506     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1507     return s->lookahead;
   1508 }
   1509 
   1510 #else /* FASTEST */
   1511 /* ---------------------------------------------------------------------------
   1512  * Optimized version for level == 1 only
   1513  */
   1514 local uInt longest_match(s, cur_match)
   1515     deflate_state *s;
   1516     IPos cur_match;                             /* current match */
   1517 {
   1518     register Bytef *scan = s->window + s->strstart; /* current string */
   1519     register Bytef *match;                       /* matched string */
   1520     register int len;                           /* length of current match */
   1521     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1522 
   1523     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1524      * It is easy to get rid of this optimization if necessary.
   1525      */
   1526     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1527 
   1528     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1529 
   1530     Assert(cur_match < s->strstart, "no future");
   1531 
   1532     match = s->window + cur_match;
   1533 
   1534     /* Return failure if the match length is less than 2:
   1535      */
   1536     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1537 
   1538     /* The check at best_len-1 can be removed because it will be made
   1539      * again later. (This heuristic is not always a win.)
   1540      * It is not necessary to compare scan[2] and match[2] since they
   1541      * are always equal when the other bytes match, given that
   1542      * the hash keys are equal and that HASH_BITS >= 8.
   1543      */
   1544     scan += 2, match += 2;
   1545     Assert(*scan == *match, "match[2]?");
   1546 
   1547     /* We check for insufficient lookahead only every 8th comparison;
   1548      * the 256th check will be made at strstart+258.
   1549      */
   1550     do {
   1551     } while (*++scan == *++match && *++scan == *++match &&
   1552 	     *++scan == *++match && *++scan == *++match &&
   1553 	     *++scan == *++match && *++scan == *++match &&
   1554 	     *++scan == *++match && *++scan == *++match &&
   1555 	     scan < strend);
   1556 
   1557     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1558 
   1559     len = MAX_MATCH - (int)(strend - scan);
   1560 
   1561     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1562 
   1563     s->match_start = cur_match;
   1564     return len <= s->lookahead ? len : s->lookahead;
   1565 }
   1566 #endif /* FASTEST */
   1567 #endif /* ASMV */
   1568 
   1569 #ifdef DEBUG_ZLIB
   1570 /* ===========================================================================
   1571  * Check that the match at match_start is indeed a match.
   1572  */
   1573 local void check_match(s, start, match, length)
   1574     deflate_state *s;
   1575     IPos start, match;
   1576     int length;
   1577 {
   1578     /* check that the match is indeed a match */
   1579     if (zmemcmp(s->window + match,
   1580                 s->window + start, length) != EQUAL) {
   1581         fprintf(stderr, " start %u, match %u, length %d\n",
   1582 		start, match, length);
   1583         do {
   1584 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
   1585 	} while (--length != 0);
   1586         z_error("invalid match");
   1587     }
   1588     if (z_verbose > 1) {
   1589         fprintf(stderr,"\\[%d,%d]", start-match, length);
   1590         do { putc(s->window[start++], stderr); } while (--length != 0);
   1591     }
   1592 }
   1593 #else
   1594 #  define check_match(s, start, match, length)
   1595 #endif
   1596 
   1597 /* ===========================================================================
   1598  * Fill the window when the lookahead becomes insufficient.
   1599  * Updates strstart and lookahead.
   1600  *
   1601  * IN assertion: lookahead < MIN_LOOKAHEAD
   1602  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
   1603  *    At least one byte has been read, or avail_in == 0; reads are
   1604  *    performed for at least two bytes (required for the zip translate_eol
   1605  *    option -- not supported here).
   1606  */
   1607 local void fill_window(s)
   1608     deflate_state *s;
   1609 {
   1610     unsigned n, m;
   1611     Posf *p;
   1612     unsigned more;    /* Amount of free space at the end of the window. */
   1613     uInt wsize = s->w_size;
   1614 
   1615     do {
   1616         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
   1617 
   1618         /* Deal with !@#$% 64K limit: */
   1619         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
   1620             more = wsize;
   1621 
   1622         } else if (more == (unsigned)(-1)) {
   1623             /* Very unlikely, but possible on 16 bit machine if strstart == 0
   1624              * and lookahead == 1 (input done one byte at time)
   1625              */
   1626             more--;
   1627 
   1628         /* If the window is almost full and there is insufficient lookahead,
   1629          * move the upper half to the lower one to make room in the upper half.
   1630          */
   1631         } else if (s->strstart >= wsize+MAX_DIST(s)) {
   1632 
   1633             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
   1634             s->match_start -= wsize;
   1635             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
   1636             s->block_start -= (long) wsize;
   1637 
   1638             /* Slide the hash table (could be avoided with 32 bit values
   1639                at the expense of memory usage). We slide even when level == 0
   1640                to keep the hash table consistent if we switch back to level > 0
   1641                later. (Using level 0 permanently is not an optimal usage of
   1642                zlib, so we don't care about this pathological case.)
   1643              */
   1644 	    n = s->hash_size;
   1645 	    p = &s->head[n];
   1646 	    do {
   1647 		m = *--p;
   1648 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1649 	    } while (--n);
   1650 
   1651 	    n = wsize;
   1652 #ifndef FASTEST
   1653 	    p = &s->prev[n];
   1654 	    do {
   1655 		m = *--p;
   1656 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1657 		/* If n is not on any hash chain, prev[n] is garbage but
   1658 		 * its value will never be used.
   1659 		 */
   1660 	    } while (--n);
   1661 #endif
   1662             more += wsize;
   1663         }
   1664         if (s->strm->avail_in == 0) return;
   1665 
   1666         /* If there was no sliding:
   1667          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
   1668          *    more == window_size - lookahead - strstart
   1669          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
   1670          * => more >= window_size - 2*WSIZE + 2
   1671          * In the BIG_MEM or MMAP case (not yet supported),
   1672          *   window_size == input_size + MIN_LOOKAHEAD  &&
   1673          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
   1674          * Otherwise, window_size == 2*WSIZE so more >= 2.
   1675          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
   1676          */
   1677         Assert(more >= 2, "more < 2");
   1678 
   1679         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
   1680         s->lookahead += n;
   1681 
   1682         /* Initialize the hash value now that we have some input: */
   1683         if (s->lookahead >= MIN_MATCH) {
   1684             s->ins_h = s->window[s->strstart];
   1685             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1686 #if MIN_MATCH != 3
   1687             Call UPDATE_HASH() MIN_MATCH-3 more times
   1688 #endif
   1689         }
   1690         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
   1691          * but this is not important since only literal bytes will be emitted.
   1692          */
   1693 
   1694     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
   1695 }
   1696 
   1697 /* ===========================================================================
   1698  * Flush the current block, with given end-of-file flag.
   1699  * IN assertion: strstart is set to the end of the current match.
   1700  */
   1701 #define FLUSH_BLOCK_ONLY(s, eof) { \
   1702    _tr_flush_block(s, (s->block_start >= 0L ? \
   1703                    (charf *)&s->window[(unsigned)s->block_start] : \
   1704                    (charf *)Z_NULL), \
   1705 		(ulg)((long)s->strstart - s->block_start), \
   1706 		(eof)); \
   1707    s->block_start = s->strstart; \
   1708    flush_pending(s->strm); \
   1709    Tracev((stderr,"[FLUSH]")); \
   1710 }
   1711 
   1712 /* Same but force premature exit if necessary. */
   1713 #define FLUSH_BLOCK(s, eof) { \
   1714    FLUSH_BLOCK_ONLY(s, eof); \
   1715    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
   1716 }
   1717 
   1718 /* ===========================================================================
   1719  * Copy without compression as much as possible from the input stream, return
   1720  * the current block state.
   1721  * This function does not insert new strings in the dictionary since
   1722  * uncompressible data is probably not useful. This function is used
   1723  * only for the level=0 compression option.
   1724  * NOTE: this function should be optimized to avoid extra copying from
   1725  * window to pending_buf.
   1726  */
   1727 local block_state deflate_stored(s, flush)
   1728     deflate_state *s;
   1729     int flush;
   1730 {
   1731     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
   1732      * to pending_buf_size, and each stored block has a 5 byte header:
   1733      */
   1734     ulg max_block_size = 0xffff;
   1735     ulg max_start;
   1736 
   1737     if (max_block_size > s->pending_buf_size - 5) {
   1738         max_block_size = s->pending_buf_size - 5;
   1739     }
   1740 
   1741     /* Copy as much as possible from input to output: */
   1742     for (;;) {
   1743         /* Fill the window as much as possible: */
   1744         if (s->lookahead <= 1) {
   1745 
   1746             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
   1747 		   s->block_start >= (long)s->w_size, "slide too late");
   1748 
   1749             fill_window(s);
   1750             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
   1751 
   1752             if (s->lookahead == 0) break; /* flush the current block */
   1753         }
   1754 	Assert(s->block_start >= 0L, "block gone");
   1755 
   1756 	s->strstart += s->lookahead;
   1757 	s->lookahead = 0;
   1758 
   1759 	/* Emit a stored block if pending_buf will be full: */
   1760  	max_start = s->block_start + max_block_size;
   1761         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
   1762 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
   1763 	    s->lookahead = (uInt)(s->strstart - max_start);
   1764 	    s->strstart = (uInt)max_start;
   1765             FLUSH_BLOCK(s, 0);
   1766 	}
   1767 	/* Flush if we may have to slide, otherwise block_start may become
   1768          * negative and the data will be gone:
   1769          */
   1770         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
   1771             FLUSH_BLOCK(s, 0);
   1772 	}
   1773     }
   1774     FLUSH_BLOCK(s, flush == Z_FINISH);
   1775     return flush == Z_FINISH ? finish_done : block_done;
   1776 }
   1777 
   1778 /* ===========================================================================
   1779  * Compress as much as possible from the input stream, return the current
   1780  * block state.
   1781  * This function does not perform lazy evaluation of matches and inserts
   1782  * new strings in the dictionary only for unmatched strings or for short
   1783  * matches. It is used only for the fast compression options.
   1784  */
   1785 local block_state deflate_fast(s, flush)
   1786     deflate_state *s;
   1787     int flush;
   1788 {
   1789     IPos hash_head = NIL; /* head of the hash chain */
   1790     int bflush;           /* set if current block must be flushed */
   1791 
   1792     for (;;) {
   1793         /* Make sure that we always have enough lookahead, except
   1794          * at the end of the input file. We need MAX_MATCH bytes
   1795          * for the next match, plus MIN_MATCH bytes to insert the
   1796          * string following the next match.
   1797          */
   1798         if (s->lookahead < MIN_LOOKAHEAD) {
   1799             fill_window(s);
   1800             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1801 	        return need_more;
   1802 	    }
   1803             if (s->lookahead == 0) break; /* flush the current block */
   1804         }
   1805 
   1806         /* Insert the string window[strstart .. strstart+2] in the
   1807          * dictionary, and set hash_head to the head of the hash chain:
   1808          */
   1809         if (s->lookahead >= MIN_MATCH) {
   1810             INSERT_STRING(s, s->strstart, hash_head);
   1811         }
   1812 
   1813         /* Find the longest match, discarding those <= prev_length.
   1814          * At this point we have always match_length < MIN_MATCH
   1815          */
   1816         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1817             /* To simplify the code, we prevent matches with the string
   1818              * of window index 0 (in particular we have to avoid a match
   1819              * of the string with itself at the start of the input file).
   1820              */
   1821             if (s->strategy != Z_HUFFMAN_ONLY) {
   1822                 s->match_length = longest_match (s, hash_head);
   1823             }
   1824             /* longest_match() sets match_start */
   1825         }
   1826         if (s->match_length >= MIN_MATCH) {
   1827             check_match(s, s->strstart, s->match_start, s->match_length);
   1828 
   1829             _tr_tally_dist(s, s->strstart - s->match_start,
   1830                            s->match_length - MIN_MATCH, bflush);
   1831 
   1832             s->lookahead -= s->match_length;
   1833 
   1834             /* Insert new strings in the hash table only if the match length
   1835              * is not too large. This saves time but degrades compression.
   1836              */
   1837 #ifndef FASTEST
   1838             if (s->match_length <= s->max_insert_length &&
   1839                 s->lookahead >= MIN_MATCH) {
   1840                 s->match_length--; /* string at strstart already in hash table */
   1841                 do {
   1842                     s->strstart++;
   1843                     INSERT_STRING(s, s->strstart, hash_head);
   1844                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1845                      * always MIN_MATCH bytes ahead.
   1846                      */
   1847                 } while (--s->match_length != 0);
   1848                 s->strstart++;
   1849             } else
   1850 #endif
   1851 	    {
   1852                 s->strstart += s->match_length;
   1853                 s->match_length = 0;
   1854                 s->ins_h = s->window[s->strstart];
   1855                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1856 #if MIN_MATCH != 3
   1857                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1858 #endif
   1859                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1860                  * matter since it will be recomputed at next deflate call.
   1861                  */
   1862             }
   1863         } else {
   1864             /* No match, output a literal byte */
   1865             Tracevv((stderr,"%c", s->window[s->strstart]));
   1866             _tr_tally_lit (s, s->window[s->strstart], bflush);
   1867             s->lookahead--;
   1868             s->strstart++;
   1869         }
   1870         if (bflush) FLUSH_BLOCK(s, 0);
   1871     }
   1872     FLUSH_BLOCK(s, flush == Z_FINISH);
   1873     return flush == Z_FINISH ? finish_done : block_done;
   1874 }
   1875 
   1876 /* ===========================================================================
   1877  * Same as above, but achieves better compression. We use a lazy
   1878  * evaluation for matches: a match is finally adopted only if there is
   1879  * no better match at the next window position.
   1880  */
   1881 local block_state deflate_slow(s, flush)
   1882     deflate_state *s;
   1883     int flush;
   1884 {
   1885     IPos hash_head = NIL;    /* head of hash chain */
   1886     int bflush;              /* set if current block must be flushed */
   1887 
   1888     /* Process the input block. */
   1889     for (;;) {
   1890         /* Make sure that we always have enough lookahead, except
   1891          * at the end of the input file. We need MAX_MATCH bytes
   1892          * for the next match, plus MIN_MATCH bytes to insert the
   1893          * string following the next match.
   1894          */
   1895         if (s->lookahead < MIN_LOOKAHEAD) {
   1896             fill_window(s);
   1897             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1898 	        return need_more;
   1899 	    }
   1900             if (s->lookahead == 0) break; /* flush the current block */
   1901         }
   1902 
   1903         /* Insert the string window[strstart .. strstart+2] in the
   1904          * dictionary, and set hash_head to the head of the hash chain:
   1905          */
   1906         if (s->lookahead >= MIN_MATCH) {
   1907             INSERT_STRING(s, s->strstart, hash_head);
   1908         }
   1909 
   1910         /* Find the longest match, discarding those <= prev_length.
   1911          */
   1912         s->prev_length = s->match_length, s->prev_match = s->match_start;
   1913         s->match_length = MIN_MATCH-1;
   1914 
   1915         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   1916             s->strstart - hash_head <= MAX_DIST(s)) {
   1917             /* To simplify the code, we prevent matches with the string
   1918              * of window index 0 (in particular we have to avoid a match
   1919              * of the string with itself at the start of the input file).
   1920              */
   1921             if (s->strategy != Z_HUFFMAN_ONLY) {
   1922                 s->match_length = longest_match (s, hash_head);
   1923             }
   1924             /* longest_match() sets match_start */
   1925 
   1926             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
   1927                  (s->match_length == MIN_MATCH &&
   1928                   s->strstart - s->match_start > TOO_FAR))) {
   1929 
   1930                 /* If prev_match is also MIN_MATCH, match_start is garbage
   1931                  * but we will ignore the current match anyway.
   1932                  */
   1933                 s->match_length = MIN_MATCH-1;
   1934             }
   1935         }
   1936         /* If there was a match at the previous step and the current
   1937          * match is not better, output the previous match:
   1938          */
   1939         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   1940             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   1941             /* Do not insert strings in hash table beyond this. */
   1942 
   1943             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
   1944 
   1945             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
   1946 			   s->prev_length - MIN_MATCH, bflush);
   1947 
   1948             /* Insert in hash table all strings up to the end of the match.
   1949              * strstart-1 and strstart are already inserted. If there is not
   1950              * enough lookahead, the last two strings are not inserted in
   1951              * the hash table.
   1952              */
   1953             s->lookahead -= s->prev_length-1;
   1954             s->prev_length -= 2;
   1955             do {
   1956                 if (++s->strstart <= max_insert) {
   1957                     INSERT_STRING(s, s->strstart, hash_head);
   1958                 }
   1959             } while (--s->prev_length != 0);
   1960             s->match_available = 0;
   1961             s->match_length = MIN_MATCH-1;
   1962             s->strstart++;
   1963 
   1964             if (bflush) FLUSH_BLOCK(s, 0);
   1965 
   1966         } else if (s->match_available) {
   1967             /* If there was no match at the previous position, output a
   1968              * single literal. If there was a match but the current match
   1969              * is longer, truncate the previous match to a single literal.
   1970              */
   1971             Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1972 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1973 	    if (bflush) {
   1974                 FLUSH_BLOCK_ONLY(s, 0);
   1975             }
   1976             s->strstart++;
   1977             s->lookahead--;
   1978             if (s->strm->avail_out == 0) return need_more;
   1979         } else {
   1980             /* There is no previous match to compare with, wait for
   1981              * the next step to decide.
   1982              */
   1983             s->match_available = 1;
   1984             s->strstart++;
   1985             s->lookahead--;
   1986         }
   1987     }
   1988     Assert (flush != Z_NO_FLUSH, "no flush?");
   1989     if (s->match_available) {
   1990         Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1991         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1992         s->match_available = 0;
   1993     }
   1994     FLUSH_BLOCK(s, flush == Z_FINISH);
   1995     return flush == Z_FINISH ? finish_done : block_done;
   1996 }
   1997 /* --- deflate.c */
   1998 
   1999 /* +++ trees.c */
   2000 
   2001 /* trees.c -- output deflated data using Huffman coding
   2002  * Copyright (C) 1995-2002 Jean-loup Gailly
   2003  * For conditions of distribution and use, see copyright notice in zlib.h
   2004  */
   2005 
   2006 /*
   2007  *  ALGORITHM
   2008  *
   2009  *      The "deflation" process uses several Huffman trees. The more
   2010  *      common source values are represented by shorter bit sequences.
   2011  *
   2012  *      Each code tree is stored in a compressed form which is itself
   2013  * a Huffman encoding of the lengths of all the code strings (in
   2014  * ascending order by source values).  The actual code strings are
   2015  * reconstructed from the lengths in the inflate process, as described
   2016  * in the deflate specification.
   2017  *
   2018  *  REFERENCES
   2019  *
   2020  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   2021  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   2022  *
   2023  *      Storer, James A.
   2024  *          Data Compression:  Methods and Theory, pp. 49-50.
   2025  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   2026  *
   2027  *      Sedgewick, R.
   2028  *          Algorithms, p290.
   2029  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   2030  */
   2031 
   2032 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
   2033 
   2034 /* #define GEN_TREES_H */
   2035 
   2036 /* #include "deflate.h" */
   2037 
   2038 #ifdef DEBUG_ZLIB
   2039 #  include <ctype.h>
   2040 #endif
   2041 
   2042 /* ===========================================================================
   2043  * Constants
   2044  */
   2045 
   2046 #define MAX_BL_BITS 7
   2047 /* Bit length codes must not exceed MAX_BL_BITS bits */
   2048 
   2049 #define END_BLOCK 256
   2050 /* end of block literal code */
   2051 
   2052 #define REP_3_6      16
   2053 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   2054 
   2055 #define REPZ_3_10    17
   2056 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   2057 
   2058 #define REPZ_11_138  18
   2059 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   2060 
   2061 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   2062    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   2063 
   2064 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   2065    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   2066 
   2067 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   2068    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   2069 
   2070 local const uch bl_order[BL_CODES]
   2071    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   2072 /* The lengths of the bit length codes are sent in order of decreasing
   2073  * probability, to avoid transmitting the lengths for unused bit length codes.
   2074  */
   2075 
   2076 #define Buf_size (8 * 2*sizeof(char))
   2077 /* Number of bits used within bi_buf. (bi_buf might be implemented on
   2078  * more than 16 bits on some systems.)
   2079  */
   2080 
   2081 /* ===========================================================================
   2082  * Local data. These are initialized only once.
   2083  */
   2084 
   2085 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   2086 
   2087 #if defined(GEN_TREES_H) || !defined(STDC)
   2088 /* non ANSI compilers may not accept trees.h */
   2089 
   2090 local ct_data static_ltree[L_CODES+2];
   2091 /* The static literal tree. Since the bit lengths are imposed, there is no
   2092  * need for the L_CODES extra codes used during heap construction. However
   2093  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   2094  * below).
   2095  */
   2096 
   2097 local ct_data static_dtree[D_CODES];
   2098 /* The static distance tree. (Actually a trivial tree since all codes use
   2099  * 5 bits.)
   2100  */
   2101 
   2102 uch _dist_code[DIST_CODE_LEN];
   2103 /* Distance codes. The first 256 values correspond to the distances
   2104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   2105  * the 15 bit distances.
   2106  */
   2107 
   2108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   2109 /* length code for each normalized match length (0 == MIN_MATCH) */
   2110 
   2111 local int base_length[LENGTH_CODES];
   2112 /* First normalized length for each code (0 = MIN_MATCH) */
   2113 
   2114 local int base_dist[D_CODES];
   2115 /* First normalized distance for each code (0 = distance of 1) */
   2116 
   2117 #else
   2118 /* +++ trees.h */
   2119 
   2120 /* header created automatically with -DGEN_TREES_H */
   2121 
   2122 local const ct_data static_ltree[L_CODES+2] = {
   2123 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
   2124 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
   2125 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
   2126 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
   2127 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
   2128 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
   2129 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
   2130 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
   2131 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
   2132 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
   2133 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
   2134 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
   2135 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
   2136 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
   2137 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
   2138 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
   2139 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
   2140 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
   2141 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
   2142 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
   2143 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
   2144 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
   2145 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
   2146 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
   2147 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
   2148 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
   2149 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
   2150 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
   2151 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
   2152 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
   2153 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
   2154 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
   2155 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
   2156 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
   2157 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
   2158 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
   2159 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
   2160 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
   2161 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
   2162 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
   2163 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
   2164 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
   2165 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
   2166 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
   2167 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
   2168 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
   2169 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
   2170 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
   2171 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
   2172 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
   2173 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
   2174 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
   2175 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
   2176 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
   2177 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
   2178 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
   2179 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
   2180 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
   2181 };
   2182 
   2183 local const ct_data static_dtree[D_CODES] = {
   2184 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
   2185 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
   2186 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
   2187 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
   2188 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
   2189 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
   2190 };
   2191 
   2192 const uch _dist_code[DIST_CODE_LEN] = {
   2193  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
   2194  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
   2195 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
   2196 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
   2197 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
   2198 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
   2199 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2200 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2201 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2202 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
   2203 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2204 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2205 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
   2206 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
   2207 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2208 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2209 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2210 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
   2211 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2212 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2213 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2214 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2215 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2216 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2217 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2218 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
   2219 };
   2220 
   2221 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
   2222  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
   2223 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
   2224 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
   2225 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
   2226 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
   2227 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
   2228 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2229 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2230 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2231 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
   2232 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2233 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2234 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
   2235 };
   2236 
   2237 local const int base_length[LENGTH_CODES] = {
   2238 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
   2239 64, 80, 96, 112, 128, 160, 192, 224, 0
   2240 };
   2241 
   2242 local const int base_dist[D_CODES] = {
   2243     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
   2244    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
   2245  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
   2246 };
   2247 /* --- trees.h */
   2248 
   2249 #endif /* GEN_TREES_H */
   2250 
   2251 struct static_tree_desc_s {
   2252     const ct_data *static_tree;  /* static tree or NULL */
   2253     const intf *extra_bits;      /* extra bits for each code or NULL */
   2254     int     extra_base;          /* base index for extra_bits */
   2255     int     elems;               /* max number of elements in the tree */
   2256     int     max_length;          /* max bit length for the codes */
   2257 };
   2258 
   2259 local static_tree_desc  static_l_desc =
   2260 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   2261 
   2262 local static_tree_desc  static_d_desc =
   2263 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   2264 
   2265 local static_tree_desc  static_bl_desc =
   2266 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   2267 
   2268 /* ===========================================================================
   2269  * Local (static) routines in this file.
   2270  */
   2271 
   2272 local void tr_static_init __P((void));
   2273 local void init_block     __P((deflate_state *s));
   2274 local void pqdownheap     __P((deflate_state *s, ct_data *tree, int k));
   2275 local void gen_bitlen     __P((deflate_state *s, tree_desc *desc));
   2276 local void gen_codes      __P((ct_data *tree, int max_code, ushf *bl_count));
   2277 local void build_tree     __P((deflate_state *s, tree_desc *desc));
   2278 local void scan_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2279 local void send_tree      __P((deflate_state *s, ct_data *tree, int max_code));
   2280 local int  build_bl_tree  __P((deflate_state *s));
   2281 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes,
   2282                               int blcodes));
   2283 local void compress_block __P((deflate_state *s, ct_data *ltree,
   2284                               ct_data *dtree));
   2285 local void set_data_type  __P((deflate_state *s));
   2286 local unsigned bi_reverse __P((unsigned value, int length));
   2287 local void bi_windup      __P((deflate_state *s));
   2288 local void bi_flush       __P((deflate_state *s));
   2289 local void copy_block     __P((deflate_state *s, charf *buf, unsigned len,
   2290                               int header));
   2291 
   2292 #ifdef GEN_TREES_H
   2293 local void gen_trees_header __P((void));
   2294 #endif
   2295 
   2296 #ifndef DEBUG_ZLIB
   2297 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   2298    /* Send a code of the given tree. c and tree must not have side effects */
   2299 
   2300 #else /* DEBUG_ZLIB */
   2301 #  define send_code(s, c, tree) \
   2302      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   2303        send_bits(s, tree[c].Code, tree[c].Len); }
   2304 #endif
   2305 
   2306 /* ===========================================================================
   2307  * Output a short LSB first on the stream.
   2308  * IN assertion: there is enough room in pendingBuf.
   2309  */
   2310 #define put_short(s, w) { \
   2311     put_byte(s, (uch)((w) & 0xff)); \
   2312     put_byte(s, (uch)((ush)(w) >> 8)); \
   2313 }
   2314 
   2315 /* ===========================================================================
   2316  * Send a value on a given number of bits.
   2317  * IN assertion: length <= 16 and value fits in length bits.
   2318  */
   2319 #ifdef DEBUG_ZLIB
   2320 local void send_bits      __P((deflate_state *s, int value, int length));
   2321 
   2322 local void send_bits(s, value, length)
   2323     deflate_state *s;
   2324     int value;  /* value to send */
   2325     int length; /* number of bits */
   2326 {
   2327     Tracevv((stderr," l %2d v %4x ", length, value));
   2328     Assert(length > 0 && length <= 15, "invalid length");
   2329     s->bits_sent += (ulg)length;
   2330 
   2331     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   2332      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   2333      * unused bits in value.
   2334      */
   2335     if (s->bi_valid > (int)Buf_size - length) {
   2336         s->bi_buf |= (value << s->bi_valid);
   2337         put_short(s, s->bi_buf);
   2338         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   2339         s->bi_valid += length - Buf_size;
   2340     } else {
   2341         s->bi_buf |= value << s->bi_valid;
   2342         s->bi_valid += length;
   2343     }
   2344 }
   2345 #else /* !DEBUG_ZLIB */
   2346 
   2347 #define send_bits(s, value, length) \
   2348 { int len = length;\
   2349   if (s->bi_valid > (int)Buf_size - len) {\
   2350     int val = value;\
   2351     s->bi_buf |= (val << s->bi_valid);\
   2352     put_short(s, s->bi_buf);\
   2353     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   2354     s->bi_valid += len - Buf_size;\
   2355   } else {\
   2356     s->bi_buf |= (value) << s->bi_valid;\
   2357     s->bi_valid += len;\
   2358   }\
   2359 }
   2360 #endif /* DEBUG_ZLIB */
   2361 
   2362 
   2363 /* ===========================================================================
   2364  * Initialize the various 'constant' tables.
   2365  */
   2366 local void tr_static_init()
   2367 {
   2368 #if defined(GEN_TREES_H) || !defined(STDC)
   2369     static int static_init_done = 0;
   2370     int n;        /* iterates over tree elements */
   2371     int bits;     /* bit counter */
   2372     int length;   /* length value */
   2373     int code;     /* code value */
   2374     int dist;     /* distance index */
   2375     ush bl_count[MAX_BITS+1];
   2376     /* number of codes at each bit length for an optimal tree */
   2377 
   2378     if (static_init_done) return;
   2379 
   2380     /* For some embedded targets, global variables are not initialized: */
   2381     static_l_desc.static_tree = static_ltree;
   2382     static_l_desc.extra_bits = extra_lbits;
   2383     static_d_desc.static_tree = static_dtree;
   2384     static_d_desc.extra_bits = extra_dbits;
   2385     static_bl_desc.extra_bits = extra_blbits;
   2386 
   2387     /* Initialize the mapping length (0..255) -> length code (0..28) */
   2388     length = 0;
   2389     for (code = 0; code < LENGTH_CODES-1; code++) {
   2390         base_length[code] = length;
   2391         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   2392             _length_code[length++] = (uch)code;
   2393         }
   2394     }
   2395     Assert (length == 256, "tr_static_init: length != 256");
   2396     /* Note that the length 255 (match length 258) can be represented
   2397      * in two different ways: code 284 + 5 bits or code 285, so we
   2398      * overwrite length_code[255] to use the best encoding:
   2399      */
   2400     _length_code[length-1] = (uch)code;
   2401 
   2402     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   2403     dist = 0;
   2404     for (code = 0 ; code < 16; code++) {
   2405         base_dist[code] = dist;
   2406         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   2407             _dist_code[dist++] = (uch)code;
   2408         }
   2409     }
   2410     Assert (dist == 256, "tr_static_init: dist != 256");
   2411     dist >>= 7; /* from now on, all distances are divided by 128 */
   2412     for ( ; code < D_CODES; code++) {
   2413         base_dist[code] = dist << 7;
   2414         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   2415             _dist_code[256 + dist++] = (uch)code;
   2416         }
   2417     }
   2418     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   2419 
   2420     /* Construct the codes of the static literal tree */
   2421     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   2422     n = 0;
   2423     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   2424     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   2425     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   2426     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   2427     /* Codes 286 and 287 do not exist, but we must include them in the
   2428      * tree construction to get a canonical Huffman tree (longest code
   2429      * all ones)
   2430      */
   2431     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   2432 
   2433     /* The static distance tree is trivial: */
   2434     for (n = 0; n < D_CODES; n++) {
   2435         static_dtree[n].Len = 5;
   2436         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   2437     }
   2438     static_init_done = 1;
   2439 
   2440 #  ifdef GEN_TREES_H
   2441     gen_trees_header();
   2442 #  endif
   2443 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   2444 }
   2445 
   2446 /* ===========================================================================
   2447  * Genererate the file trees.h describing the static trees.
   2448  */
   2449 #ifdef GEN_TREES_H
   2450 #  ifndef DEBUG_ZLIB
   2451 #    include <stdio.h>
   2452 #  endif
   2453 
   2454 #  define SEPARATOR(i, last, width) \
   2455       ((i) == (last)? "\n};\n\n" :    \
   2456        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   2457 
   2458 void gen_trees_header()
   2459 {
   2460     FILE *header = fopen("trees.h", "w");
   2461     int i;
   2462 
   2463     Assert (header != NULL, "Can't open trees.h");
   2464     fprintf(header,
   2465 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   2466 
   2467     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   2468     for (i = 0; i < L_CODES+2; i++) {
   2469 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   2470 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   2471     }
   2472 
   2473     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   2474     for (i = 0; i < D_CODES; i++) {
   2475 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   2476 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   2477     }
   2478 
   2479     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   2480     for (i = 0; i < DIST_CODE_LEN; i++) {
   2481 	fprintf(header, "%2u%s", _dist_code[i],
   2482 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   2483     }
   2484 
   2485     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   2486     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   2487 	fprintf(header, "%2u%s", _length_code[i],
   2488 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   2489     }
   2490 
   2491     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   2492     for (i = 0; i < LENGTH_CODES; i++) {
   2493 	fprintf(header, "%1u%s", base_length[i],
   2494 		SEPARATOR(i, LENGTH_CODES-1, 20));
   2495     }
   2496 
   2497     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   2498     for (i = 0; i < D_CODES; i++) {
   2499 	fprintf(header, "%5u%s", base_dist[i],
   2500 		SEPARATOR(i, D_CODES-1, 10));
   2501     }
   2502 
   2503     fclose(header);
   2504 }
   2505 #endif /* GEN_TREES_H */
   2506 
   2507 /* ===========================================================================
   2508  * Initialize the tree data structures for a new zlib stream.
   2509  */
   2510 void _tr_init(s)
   2511     deflate_state *s;
   2512 {
   2513     tr_static_init();
   2514 
   2515     s->l_desc.dyn_tree = s->dyn_ltree;
   2516     s->l_desc.stat_desc = &static_l_desc;
   2517 
   2518     s->d_desc.dyn_tree = s->dyn_dtree;
   2519     s->d_desc.stat_desc = &static_d_desc;
   2520 
   2521     s->bl_desc.dyn_tree = s->bl_tree;
   2522     s->bl_desc.stat_desc = &static_bl_desc;
   2523 
   2524     s->bi_buf = 0;
   2525     s->bi_valid = 0;
   2526     s->last_eob_len = 8; /* enough lookahead for inflate */
   2527 #ifdef DEBUG_ZLIB
   2528     s->compressed_len = 0L;
   2529     s->bits_sent = 0L;
   2530 #endif
   2531 
   2532     /* Initialize the first block of the first file: */
   2533     init_block(s);
   2534 }
   2535 
   2536 /* ===========================================================================
   2537  * Initialize a new block.
   2538  */
   2539 local void init_block(s)
   2540     deflate_state *s;
   2541 {
   2542     int n; /* iterates over tree elements */
   2543 
   2544     /* Initialize the trees. */
   2545     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   2546     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   2547     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   2548 
   2549     s->dyn_ltree[END_BLOCK].Freq = 1;
   2550     s->opt_len = s->static_len = 0L;
   2551     s->last_lit = s->matches = 0;
   2552 }
   2553 
   2554 #define SMALLEST 1
   2555 /* Index within the heap array of least frequent node in the Huffman tree */
   2556 
   2557 
   2558 /* ===========================================================================
   2559  * Remove the smallest element from the heap and recreate the heap with
   2560  * one less element. Updates heap and heap_len.
   2561  */
   2562 #define pqremove(s, tree, top) \
   2563 {\
   2564     top = s->heap[SMALLEST]; \
   2565     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   2566     pqdownheap(s, tree, SMALLEST); \
   2567 }
   2568 
   2569 /* ===========================================================================
   2570  * Compares to subtrees, using the tree depth as tie breaker when
   2571  * the subtrees have equal frequency. This minimizes the worst case length.
   2572  */
   2573 #define smaller(tree, n, m, depth) \
   2574    (tree[n].Freq < tree[m].Freq || \
   2575    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   2576 
   2577 /* ===========================================================================
   2578  * Restore the heap property by moving down the tree starting at node k,
   2579  * exchanging a node with the smallest of its two sons if necessary, stopping
   2580  * when the heap property is re-established (each father smaller than its
   2581  * two sons).
   2582  */
   2583 local void pqdownheap(s, tree, k)
   2584     deflate_state *s;
   2585     ct_data *tree;  /* the tree to restore */
   2586     int k;               /* node to move down */
   2587 {
   2588     int v = s->heap[k];
   2589     int j = k << 1;  /* left son of k */
   2590     while (j <= s->heap_len) {
   2591         /* Set j to the smallest of the two sons: */
   2592         if (j < s->heap_len &&
   2593             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   2594             j++;
   2595         }
   2596         /* Exit if v is smaller than both sons */
   2597         if (smaller(tree, v, s->heap[j], s->depth)) break;
   2598 
   2599         /* Exchange v with the smallest son */
   2600         s->heap[k] = s->heap[j];  k = j;
   2601 
   2602         /* And continue down the tree, setting j to the left son of k */
   2603         j <<= 1;
   2604     }
   2605     s->heap[k] = v;
   2606 }
   2607 
   2608 /* ===========================================================================
   2609  * Compute the optimal bit lengths for a tree and update the total bit length
   2610  * for the current block.
   2611  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   2612  *    above are the tree nodes sorted by increasing frequency.
   2613  * OUT assertions: the field len is set to the optimal bit length, the
   2614  *     array bl_count contains the frequencies for each bit length.
   2615  *     The length opt_len is updated; static_len is also updated if stree is
   2616  *     not null.
   2617  */
   2618 local void gen_bitlen(s, desc)
   2619     deflate_state *s;
   2620     tree_desc *desc;    /* the tree descriptor */
   2621 {
   2622     ct_data *tree        = desc->dyn_tree;
   2623     int max_code         = desc->max_code;
   2624     const ct_data *stree = desc->stat_desc->static_tree;
   2625     const intf *extra    = desc->stat_desc->extra_bits;
   2626     int base             = desc->stat_desc->extra_base;
   2627     int max_length       = desc->stat_desc->max_length;
   2628     int h;              /* heap index */
   2629     int n, m;           /* iterate over the tree elements */
   2630     int bits;           /* bit length */
   2631     int xbits;          /* extra bits */
   2632     ush f;              /* frequency */
   2633     int overflow = 0;   /* number of elements with bit length too large */
   2634 
   2635     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   2636 
   2637     /* In a first pass, compute the optimal bit lengths (which may
   2638      * overflow in the case of the bit length tree).
   2639      */
   2640     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   2641 
   2642     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   2643         n = s->heap[h];
   2644         bits = tree[tree[n].Dad].Len + 1;
   2645         if (bits > max_length) bits = max_length, overflow++;
   2646         tree[n].Len = (ush)bits;
   2647         /* We overwrite tree[n].Dad which is no longer needed */
   2648 
   2649         if (n > max_code) continue; /* not a leaf node */
   2650 
   2651         s->bl_count[bits]++;
   2652         xbits = 0;
   2653         if (n >= base) xbits = extra[n-base];
   2654         f = tree[n].Freq;
   2655         s->opt_len += (ulg)f * (bits + xbits);
   2656         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   2657     }
   2658     if (overflow == 0) return;
   2659 
   2660     Trace((stderr,"\nbit length overflow\n"));
   2661     /* This happens for example on obj2 and pic of the Calgary corpus */
   2662 
   2663     /* Find the first bit length which could increase: */
   2664     do {
   2665         bits = max_length-1;
   2666         while (s->bl_count[bits] == 0) bits--;
   2667         s->bl_count[bits]--;      /* move one leaf down the tree */
   2668         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   2669         s->bl_count[max_length]--;
   2670         /* The brother of the overflow item also moves one step up,
   2671          * but this does not affect bl_count[max_length]
   2672          */
   2673         overflow -= 2;
   2674     } while (overflow > 0);
   2675 
   2676     /* Now recompute all bit lengths, scanning in increasing frequency.
   2677      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   2678      * lengths instead of fixing only the wrong ones. This idea is taken
   2679      * from 'ar' written by Haruhiko Okumura.)
   2680      */
   2681     for (bits = max_length; bits != 0; bits--) {
   2682         n = s->bl_count[bits];
   2683         while (n != 0) {
   2684             m = s->heap[--h];
   2685             if (m > max_code) continue;
   2686             if (tree[m].Len != (unsigned) bits) {
   2687                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   2688                 s->opt_len += ((long)bits - (long)tree[m].Len)
   2689                               *(long)tree[m].Freq;
   2690                 tree[m].Len = (ush)bits;
   2691             }
   2692             n--;
   2693         }
   2694     }
   2695 }
   2696 
   2697 /* ===========================================================================
   2698  * Generate the codes for a given tree and bit counts (which need not be
   2699  * optimal).
   2700  * IN assertion: the array bl_count contains the bit length statistics for
   2701  * the given tree and the field len is set for all tree elements.
   2702  * OUT assertion: the field code is set for all tree elements of non
   2703  *     zero code length.
   2704  */
   2705 local void gen_codes (tree, max_code, bl_count)
   2706     ct_data *tree;             /* the tree to decorate */
   2707     int max_code;              /* largest code with non zero frequency */
   2708     ushf *bl_count;            /* number of codes at each bit length */
   2709 {
   2710     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   2711     ush code = 0;              /* running code value */
   2712     int bits;                  /* bit index */
   2713     int n;                     /* code index */
   2714 
   2715     /* The distribution counts are first used to generate the code values
   2716      * without bit reversal.
   2717      */
   2718     for (bits = 1; bits <= MAX_BITS; bits++) {
   2719         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   2720     }
   2721     /* Check that the bit counts in bl_count are consistent. The last code
   2722      * must be all ones.
   2723      */
   2724     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   2725             "inconsistent bit counts");
   2726     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   2727 
   2728     for (n = 0;  n <= max_code; n++) {
   2729         int len = tree[n].Len;
   2730         if (len == 0) continue;
   2731         /* Now reverse the bits */
   2732         tree[n].Code = bi_reverse(next_code[len]++, len);
   2733 
   2734         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   2735              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   2736     }
   2737 }
   2738 
   2739 /* ===========================================================================
   2740  * Construct one Huffman tree and assigns the code bit strings and lengths.
   2741  * Update the total bit length for the current block.
   2742  * IN assertion: the field freq is set for all tree elements.
   2743  * OUT assertions: the fields len and code are set to the optimal bit length
   2744  *     and corresponding code. The length opt_len is updated; static_len is
   2745  *     also updated if stree is not null. The field max_code is set.
   2746  */
   2747 local void build_tree(s, desc)
   2748     deflate_state *s;
   2749     tree_desc *desc; /* the tree descriptor */
   2750 {
   2751     ct_data *tree         = desc->dyn_tree;
   2752     const ct_data *stree  = desc->stat_desc->static_tree;
   2753     int elems             = desc->stat_desc->elems;
   2754     int n, m;          /* iterate over heap elements */
   2755     int max_code = -1; /* largest code with non zero frequency */
   2756     int node;          /* new node being created */
   2757 
   2758     /* Construct the initial heap, with least frequent element in
   2759      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   2760      * heap[0] is not used.
   2761      */
   2762     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   2763 
   2764     for (n = 0; n < elems; n++) {
   2765         if (tree[n].Freq != 0) {
   2766             s->heap[++(s->heap_len)] = max_code = n;
   2767             s->depth[n] = 0;
   2768         } else {
   2769             tree[n].Len = 0;
   2770         }
   2771     }
   2772 
   2773     /* The pkzip format requires that at least one distance code exists,
   2774      * and that at least one bit should be sent even if there is only one
   2775      * possible code. So to avoid special checks later on we force at least
   2776      * two codes of non zero frequency.
   2777      */
   2778     while (s->heap_len < 2) {
   2779         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   2780         tree[node].Freq = 1;
   2781         s->depth[node] = 0;
   2782         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   2783         /* node is 0 or 1 so it does not have extra bits */
   2784     }
   2785     desc->max_code = max_code;
   2786 
   2787     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   2788      * establish sub-heaps of increasing lengths:
   2789      */
   2790     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   2791 
   2792     /* Construct the Huffman tree by repeatedly combining the least two
   2793      * frequent nodes.
   2794      */
   2795     node = elems;              /* next internal node of the tree */
   2796     do {
   2797         pqremove(s, tree, n);  /* n = node of least frequency */
   2798         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   2799 
   2800         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   2801         s->heap[--(s->heap_max)] = m;
   2802 
   2803         /* Create a new node father of n and m */
   2804         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   2805         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   2806         tree[n].Dad = tree[m].Dad = (ush)node;
   2807 #ifdef DUMP_BL_TREE
   2808         if (tree == s->bl_tree) {
   2809             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   2810                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   2811         }
   2812 #endif
   2813         /* and insert the new node in the heap */
   2814         s->heap[SMALLEST] = node++;
   2815         pqdownheap(s, tree, SMALLEST);
   2816 
   2817     } while (s->heap_len >= 2);
   2818 
   2819     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   2820 
   2821     /* At this point, the fields freq and dad are set. We can now
   2822      * generate the bit lengths.
   2823      */
   2824     gen_bitlen(s, (tree_desc *)desc);
   2825 
   2826     /* The field len is now set, we can generate the bit codes */
   2827     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   2828 }
   2829 
   2830 /* ===========================================================================
   2831  * Scan a literal or distance tree to determine the frequencies of the codes
   2832  * in the bit length tree.
   2833  */
   2834 local void scan_tree (s, tree, max_code)
   2835     deflate_state *s;
   2836     ct_data *tree;   /* the tree to be scanned */
   2837     int max_code;    /* and its largest code of non zero frequency */
   2838 {
   2839     int n;                     /* iterates over all tree elements */
   2840     int prevlen = -1;          /* last emitted length */
   2841     int curlen;                /* length of current code */
   2842     int nextlen = tree[0].Len; /* length of next code */
   2843     int count = 0;             /* repeat count of the current code */
   2844     int max_count = 7;         /* max repeat count */
   2845     int min_count = 4;         /* min repeat count */
   2846 
   2847     if (nextlen == 0) max_count = 138, min_count = 3;
   2848     tree[max_code+1].Len = (ush)0xffff; /* guard */
   2849 
   2850     for (n = 0; n <= max_code; n++) {
   2851         curlen = nextlen; nextlen = tree[n+1].Len;
   2852         if (++count < max_count && curlen == nextlen) {
   2853             continue;
   2854         } else if (count < min_count) {
   2855             s->bl_tree[curlen].Freq += count;
   2856         } else if (curlen != 0) {
   2857             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   2858             s->bl_tree[REP_3_6].Freq++;
   2859         } else if (count <= 10) {
   2860             s->bl_tree[REPZ_3_10].Freq++;
   2861         } else {
   2862             s->bl_tree[REPZ_11_138].Freq++;
   2863         }
   2864         count = 0; prevlen = curlen;
   2865         if (nextlen == 0) {
   2866             max_count = 138, min_count = 3;
   2867         } else if (curlen == nextlen) {
   2868             max_count = 6, min_count = 3;
   2869         } else {
   2870             max_count = 7, min_count = 4;
   2871         }
   2872     }
   2873 }
   2874 
   2875 /* ===========================================================================
   2876  * Send a literal or distance tree in compressed form, using the codes in
   2877  * bl_tree.
   2878  */
   2879 local void send_tree (s, tree, max_code)
   2880     deflate_state *s;
   2881     ct_data *tree; /* the tree to be scanned */
   2882     int max_code;       /* and its largest code of non zero frequency */
   2883 {
   2884     int n;                     /* iterates over all tree elements */
   2885     int prevlen = -1;          /* last emitted length */
   2886     int curlen;                /* length of current code */
   2887     int nextlen = tree[0].Len; /* length of next code */
   2888     int count = 0;             /* repeat count of the current code */
   2889     int max_count = 7;         /* max repeat count */
   2890     int min_count = 4;         /* min repeat count */
   2891 
   2892     /* tree[max_code+1].Len = -1; */  /* guard already set */
   2893     if (nextlen == 0) max_count = 138, min_count = 3;
   2894 
   2895     for (n = 0; n <= max_code; n++) {
   2896         curlen = nextlen; nextlen = tree[n+1].Len;
   2897         if (++count < max_count && curlen == nextlen) {
   2898             continue;
   2899         } else if (count < min_count) {
   2900             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   2901 
   2902         } else if (curlen != 0) {
   2903             if (curlen != prevlen) {
   2904                 send_code(s, curlen, s->bl_tree); count--;
   2905             }
   2906             Assert(count >= 3 && count <= 6, " 3_6?");
   2907             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   2908 
   2909         } else if (count <= 10) {
   2910             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   2911 
   2912         } else {
   2913             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   2914         }
   2915         count = 0; prevlen = curlen;
   2916         if (nextlen == 0) {
   2917             max_count = 138, min_count = 3;
   2918         } else if (curlen == nextlen) {
   2919             max_count = 6, min_count = 3;
   2920         } else {
   2921             max_count = 7, min_count = 4;
   2922         }
   2923     }
   2924 }
   2925 
   2926 /* ===========================================================================
   2927  * Construct the Huffman tree for the bit lengths and return the index in
   2928  * bl_order of the last bit length code to send.
   2929  */
   2930 local int build_bl_tree(s)
   2931     deflate_state *s;
   2932 {
   2933     int max_blindex;  /* index of last bit length code of non zero freq */
   2934 
   2935     /* Determine the bit length frequencies for literal and distance trees */
   2936     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   2937     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   2938 
   2939     /* Build the bit length tree: */
   2940     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   2941     /* opt_len now includes the length of the tree representations, except
   2942      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   2943      */
   2944 
   2945     /* Determine the number of bit length codes to send. The pkzip format
   2946      * requires that at least 4 bit length codes be sent. (appnote.txt says
   2947      * 3 but the actual value used is 4.)
   2948      */
   2949     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   2950         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   2951     }
   2952     /* Update opt_len to include the bit length tree and counts */
   2953     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   2954     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   2955             s->opt_len, s->static_len));
   2956 
   2957     return max_blindex;
   2958 }
   2959 
   2960 /* ===========================================================================
   2961  * Send the header for a block using dynamic Huffman trees: the counts, the
   2962  * lengths of the bit length codes, the literal tree and the distance tree.
   2963  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   2964  */
   2965 local void send_all_trees(s, lcodes, dcodes, blcodes)
   2966     deflate_state *s;
   2967     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   2968 {
   2969     int rank;                    /* index in bl_order */
   2970 
   2971     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   2972     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   2973             "too many codes");
   2974     Tracev((stderr, "\nbl counts: "));
   2975     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   2976     send_bits(s, dcodes-1,   5);
   2977     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   2978     for (rank = 0; rank < blcodes; rank++) {
   2979         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   2980         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   2981     }
   2982     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   2983 
   2984     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   2985     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   2986 
   2987     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   2988     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   2989 }
   2990 
   2991 /* ===========================================================================
   2992  * Send a stored block
   2993  */
   2994 void _tr_stored_block(s, buf, stored_len, eof)
   2995     deflate_state *s;
   2996     charf *buf;       /* input block */
   2997     ulg stored_len;   /* length of input block */
   2998     int eof;          /* true if this is the last block for a file */
   2999 {
   3000     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   3001 #ifdef DEBUG_ZLIB
   3002     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   3003     s->compressed_len += (stored_len + 4) << 3;
   3004 #endif
   3005     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   3006 }
   3007 
   3008 /* Send just the `stored block' type code without any length bytes or data.
   3009  */
   3010 void _tr_stored_type_only(s)
   3011     deflate_state *s;
   3012 {
   3013     send_bits(s, (STORED_BLOCK << 1), 3);
   3014     bi_windup(s);
   3015 #ifdef DEBUG_ZLIB
   3016     s->compressed_len = (s->compressed_len + 3) & ~7L;
   3017 #endif
   3018 }
   3019 
   3020 /* ===========================================================================
   3021  * Send one empty static block to give enough lookahead for inflate.
   3022  * This takes 10 bits, of which 7 may remain in the bit buffer.
   3023  * The current inflate code requires 9 bits of lookahead. If the
   3024  * last two codes for the previous block (real code plus EOB) were coded
   3025  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   3026  * the last real code. In this case we send two empty static blocks instead
   3027  * of one. (There are no problems if the previous block is stored or fixed.)
   3028  * To simplify the code, we assume the worst case of last real code encoded
   3029  * on one bit only.
   3030  */
   3031 void _tr_align(s)
   3032     deflate_state *s;
   3033 {
   3034     send_bits(s, STATIC_TREES<<1, 3);
   3035     send_code(s, END_BLOCK, static_ltree);
   3036 #ifdef DEBUG_ZLIB
   3037     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   3038 #endif
   3039     bi_flush(s);
   3040     /* Of the 10 bits for the empty block, we have already sent
   3041      * (10 - bi_valid) bits. The lookahead for the last real code (before
   3042      * the EOB of the previous block) was thus at least one plus the length
   3043      * of the EOB plus what we have just sent of the empty static block.
   3044      */
   3045     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   3046         send_bits(s, STATIC_TREES<<1, 3);
   3047         send_code(s, END_BLOCK, static_ltree);
   3048 #ifdef DEBUG_ZLIB
   3049         s->compressed_len += 10L;
   3050 #endif
   3051         bi_flush(s);
   3052     }
   3053     s->last_eob_len = 7;
   3054 }
   3055 
   3056 /* ===========================================================================
   3057  * Determine the best encoding for the current block: dynamic trees, static
   3058  * trees or store, and output the encoded block to the zip file.
   3059  */
   3060 void _tr_flush_block(s, buf, stored_len, eof)
   3061     deflate_state *s;
   3062     charf *buf;       /* input block, or NULL if too old */
   3063     ulg stored_len;   /* length of input block */
   3064     int eof;          /* true if this is the last block for a file */
   3065 {
   3066     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   3067     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   3068 
   3069     /* Build the Huffman trees unless a stored block is forced */
   3070     if (s->level > 0) {
   3071 
   3072 	 /* Check if the file is ascii or binary */
   3073 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   3074 
   3075 	/* Construct the literal and distance trees */
   3076 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   3077 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   3078 		s->static_len));
   3079 
   3080 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   3081 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   3082 		s->static_len));
   3083 	/* At this point, opt_len and static_len are the total bit lengths of
   3084 	 * the compressed block data, excluding the tree representations.
   3085 	 */
   3086 
   3087 	/* Build the bit length tree for the above two trees, and get the index
   3088 	 * in bl_order of the last bit length code to send.
   3089 	 */
   3090 	max_blindex = build_bl_tree(s);
   3091 
   3092 	/* Determine the best encoding. Compute first the block length in bytes*/
   3093 	opt_lenb = (s->opt_len+3+7)>>3;
   3094 	static_lenb = (s->static_len+3+7)>>3;
   3095 
   3096 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   3097 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   3098 		s->last_lit));
   3099 
   3100 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   3101 
   3102     } else {
   3103         Assert(buf != (char*)0, "lost buf");
   3104 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   3105     }
   3106 
   3107 #ifdef FORCE_STORED
   3108     if (buf != (char*)0) { /* force stored block */
   3109 #else
   3110     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   3111                        /* 4: two words for the lengths */
   3112 #endif
   3113         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   3114          * Otherwise we can't have processed more than WSIZE input bytes since
   3115          * the last block flush, because compression would have been
   3116          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   3117          * transform a block into a stored block.
   3118          */
   3119         _tr_stored_block(s, buf, stored_len, eof);
   3120 
   3121 #ifdef FORCE_STATIC
   3122     } else if (static_lenb >= 0) { /* force static trees */
   3123 #else
   3124     } else if (static_lenb == opt_lenb) {
   3125 #endif
   3126         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   3127         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   3128 #ifdef DEBUG_ZLIB
   3129         s->compressed_len += 3 + s->static_len;
   3130 #endif
   3131     } else {
   3132         send_bits(s, (DYN_TREES<<1)+eof, 3);
   3133         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   3134                        max_blindex+1);
   3135         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   3136 #ifdef DEBUG_ZLIB
   3137         s->compressed_len += 3 + s->opt_len;
   3138 #endif
   3139     }
   3140     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   3141     /* The above check is made mod 2^32, for files larger than 512 MB
   3142      * and uLong implemented on 32 bits.
   3143      */
   3144     init_block(s);
   3145 
   3146     if (eof) {
   3147         bi_windup(s);
   3148 #ifdef DEBUG_ZLIB
   3149         s->compressed_len += 7;  /* align on byte boundary */
   3150 #endif
   3151     }
   3152     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   3153            s->compressed_len-7*eof));
   3154 }
   3155 
   3156 /* ===========================================================================
   3157  * Save the match info and tally the frequency counts. Return true if
   3158  * the current block must be flushed.
   3159  */
   3160 #if 0
   3161 int _tr_tally (s, dist, lc)
   3162     deflate_state *s;
   3163     unsigned dist;  /* distance of matched string */
   3164     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   3165 {
   3166     s->d_buf[s->last_lit] = (ush)dist;
   3167     s->l_buf[s->last_lit++] = (uch)lc;
   3168     if (dist == 0) {
   3169         /* lc is the unmatched char */
   3170         s->dyn_ltree[lc].Freq++;
   3171     } else {
   3172         s->matches++;
   3173         /* Here, lc is the match length - MIN_MATCH */
   3174         dist--;             /* dist = match distance - 1 */
   3175         Assert((ush)dist < (ush)MAX_DIST(s) &&
   3176                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   3177                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   3178 
   3179         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   3180         s->dyn_dtree[d_code(dist)].Freq++;
   3181     }
   3182 
   3183 #ifdef TRUNCATE_BLOCK
   3184     /* Try to guess if it is profitable to stop the current block here */
   3185     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   3186         /* Compute an upper bound for the compressed length */
   3187         ulg out_length = (ulg)s->last_lit*8L;
   3188         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   3189         int dcode;
   3190         for (dcode = 0; dcode < D_CODES; dcode++) {
   3191             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   3192                 (5L+extra_dbits[dcode]);
   3193         }
   3194         out_length >>= 3;
   3195         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   3196                s->last_lit, in_length, out_length,
   3197                100L - out_length*100L/in_length));
   3198         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   3199     }
   3200 #endif
   3201     return (s->last_lit == s->lit_bufsize-1);
   3202     /* We avoid equality with lit_bufsize because of wraparound at 64K
   3203      * on 16 bit machines and because stored blocks are restricted to
   3204      * 64K-1 bytes.
   3205      */
   3206 }
   3207 #endif
   3208 
   3209 /* ===========================================================================
   3210  * Send the block data compressed using the given Huffman trees
   3211  */
   3212 local void compress_block(s, ltree, dtree)
   3213     deflate_state *s;
   3214     ct_data *ltree; /* literal tree */
   3215     ct_data *dtree; /* distance tree */
   3216 {
   3217     unsigned dist;      /* distance of matched string */
   3218     int lc;             /* match length or unmatched char (if dist == 0) */
   3219     unsigned lx = 0;    /* running index in l_buf */
   3220     unsigned code;      /* the code to send */
   3221     int extra;          /* number of extra bits to send */
   3222 
   3223     if (s->last_lit != 0) do {
   3224         dist = s->d_buf[lx];
   3225         lc = s->l_buf[lx++];
   3226         if (dist == 0) {
   3227             send_code(s, lc, ltree); /* send a literal byte */
   3228             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   3229         } else {
   3230             /* Here, lc is the match length - MIN_MATCH */
   3231             code = _length_code[lc];
   3232             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   3233             extra = extra_lbits[code];
   3234             if (extra != 0) {
   3235                 lc -= base_length[code];
   3236                 send_bits(s, lc, extra);       /* send the extra length bits */
   3237             }
   3238             dist--; /* dist is now the match distance - 1 */
   3239             code = d_code(dist);
   3240             Assert (code < D_CODES, "bad d_code");
   3241 
   3242             send_code(s, code, dtree);       /* send the distance code */
   3243             extra = extra_dbits[code];
   3244             if (extra != 0) {
   3245                 dist -= base_dist[code];
   3246                 send_bits(s, dist, extra);   /* send the extra distance bits */
   3247             }
   3248         } /* literal or match pair ? */
   3249 
   3250         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   3251         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
   3252 
   3253     } while (lx < s->last_lit);
   3254 
   3255     send_code(s, END_BLOCK, ltree);
   3256     s->last_eob_len = ltree[END_BLOCK].Len;
   3257 }
   3258 
   3259 /* ===========================================================================
   3260  * Set the data type to ASCII or BINARY, using a crude approximation:
   3261  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
   3262  * IN assertion: the fields freq of dyn_ltree are set and the total of all
   3263  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
   3264  */
   3265 local void set_data_type(s)
   3266     deflate_state *s;
   3267 {
   3268     int n = 0;
   3269     unsigned ascii_freq = 0;
   3270     unsigned bin_freq = 0;
   3271     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
   3272     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
   3273     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
   3274     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
   3275 }
   3276 
   3277 /* ===========================================================================
   3278  * Reverse the first len bits of a code, using straightforward code (a faster
   3279  * method would use a table)
   3280  * IN assertion: 1 <= len <= 15
   3281  */
   3282 local unsigned bi_reverse(code, len)
   3283     unsigned code; /* the value to invert */
   3284     int len;       /* its bit length */
   3285 {
   3286     unsigned res = 0;
   3287     do {
   3288         res |= code & 1;
   3289         code >>= 1, res <<= 1;
   3290     } while (--len > 0);
   3291     return res >> 1;
   3292 }
   3293 
   3294 /* ===========================================================================
   3295  * Flush the bit buffer, keeping at most 7 bits in it.
   3296  */
   3297 local void bi_flush(s)
   3298     deflate_state *s;
   3299 {
   3300     if (s->bi_valid == 16) {
   3301         put_short(s, s->bi_buf);
   3302         s->bi_buf = 0;
   3303         s->bi_valid = 0;
   3304     } else if (s->bi_valid >= 8) {
   3305         put_byte(s, (Byte)s->bi_buf);
   3306         s->bi_buf >>= 8;
   3307         s->bi_valid -= 8;
   3308     }
   3309 }
   3310 
   3311 /* ===========================================================================
   3312  * Flush the bit buffer and align the output on a byte boundary
   3313  */
   3314 local void bi_windup(s)
   3315     deflate_state *s;
   3316 {
   3317     if (s->bi_valid > 8) {
   3318         put_short(s, s->bi_buf);
   3319     } else if (s->bi_valid > 0) {
   3320         put_byte(s, (Byte)s->bi_buf);
   3321     }
   3322     s->bi_buf = 0;
   3323     s->bi_valid = 0;
   3324 #ifdef DEBUG_ZLIB
   3325     s->bits_sent = (s->bits_sent+7) & ~7;
   3326 #endif
   3327 }
   3328 
   3329 /* ===========================================================================
   3330  * Copy a stored block, storing first the length and its
   3331  * one's complement if requested.
   3332  */
   3333 local void copy_block(s, buf, len, header)
   3334     deflate_state *s;
   3335     charf    *buf;    /* the input data */
   3336     unsigned len;     /* its length */
   3337     int      header;  /* true if block header must be written */
   3338 {
   3339     bi_windup(s);        /* align on byte boundary */
   3340     s->last_eob_len = 8; /* enough lookahead for inflate */
   3341 
   3342     if (header) {
   3343         put_short(s, (ush)len);
   3344         put_short(s, (ush)~len);
   3345 #ifdef DEBUG_ZLIB
   3346         s->bits_sent += 2*16;
   3347 #endif
   3348     }
   3349 #ifdef DEBUG_ZLIB
   3350     s->bits_sent += (ulg)len<<3;
   3351 #endif
   3352     /* bundle up the put_byte(s, *buf++) calls */
   3353     zmemcpy(&s->pending_buf[s->pending], buf, len);
   3354     s->pending += len;
   3355 }
   3356 /* --- trees.c */
   3357 
   3358 /* +++ inflate.c */
   3359 
   3360 /* inflate.c -- zlib interface to inflate modules
   3361  * Copyright (C) 1995-2002 Mark Adler
   3362  * For conditions of distribution and use, see copyright notice in zlib.h
   3363  */
   3364 
   3365 /* #include "zutil.h" */
   3366 
   3367 /* +++ infblock.h */
   3368 
   3369 /* infblock.h -- header to use infblock.c
   3370  * Copyright (C) 1995-2002 Mark Adler
   3371  * For conditions of distribution and use, see copyright notice in zlib.h
   3372  */
   3373 
   3374 /* WARNING: this file should *not* be used by applications. It is
   3375    part of the implementation of the compression library and is
   3376    subject to change. Applications should only use zlib.h.
   3377  */
   3378 
   3379 struct inflate_blocks_state;
   3380 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
   3381 
   3382 extern inflate_blocks_statef * inflate_blocks_new __P((
   3383     z_streamp z,
   3384     check_func c,               /* check function */
   3385     uInt w));                   /* window size */
   3386 
   3387 extern int inflate_blocks __P((
   3388     inflate_blocks_statef *,
   3389     z_streamp ,
   3390     int));                      /* initial return code */
   3391 
   3392 extern void inflate_blocks_reset __P((
   3393     inflate_blocks_statef *,
   3394     z_streamp ,
   3395     uLongf *));                  /* check value on output */
   3396 
   3397 extern int inflate_blocks_free __P((
   3398     inflate_blocks_statef *,
   3399     z_streamp));
   3400 
   3401 extern void inflate_set_dictionary __P((
   3402     inflate_blocks_statef *s,
   3403     const Bytef *d,  /* dictionary */
   3404     uInt  n));       /* dictionary length */
   3405 
   3406 extern int inflate_blocks_sync_point __P((
   3407     inflate_blocks_statef *s));
   3408 extern int inflate_addhistory __P((
   3409     inflate_blocks_statef *,
   3410     z_streamp));
   3411 
   3412 extern int inflate_packet_flush __P((
   3413     inflate_blocks_statef *));
   3414 
   3415 /* --- infblock.h */
   3416 
   3417 #ifndef NO_DUMMY_DECL
   3418 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
   3419 #endif
   3420 
   3421 typedef enum {
   3422       METHOD,   /* waiting for method byte */
   3423       FLAG,     /* waiting for flag byte */
   3424       DICT4,    /* four dictionary check bytes to go */
   3425       DICT3,    /* three dictionary check bytes to go */
   3426       DICT2,    /* two dictionary check bytes to go */
   3427       DICT1,    /* one dictionary check byte to go */
   3428       DICT0,    /* waiting for inflateSetDictionary */
   3429       BLOCKS,   /* decompressing blocks */
   3430       CHECK4,   /* four check bytes to go */
   3431       CHECK3,   /* three check bytes to go */
   3432       CHECK2,   /* two check bytes to go */
   3433       CHECK1,   /* one check byte to go */
   3434       DONE,     /* finished check, done */
   3435       BAD}      /* got an error--stay here */
   3436 inflate_mode;
   3437 
   3438 /* inflate private state */
   3439 struct internal_state {
   3440 
   3441   /* mode */
   3442   inflate_mode  mode;   /* current inflate mode */
   3443 
   3444   /* mode dependent information */
   3445   union {
   3446     uInt method;        /* if FLAGS, method byte */
   3447     struct {
   3448       uLong was;                /* computed check value */
   3449       uLong need;               /* stream check value */
   3450     } check;            /* if CHECK, check values to compare */
   3451     uInt marker;        /* if BAD, inflateSync's marker bytes count */
   3452   } sub;        /* submode */
   3453 
   3454   /* mode independent information */
   3455   int  nowrap;          /* flag for no wrapper */
   3456   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
   3457   inflate_blocks_statef
   3458     *blocks;            /* current inflate_blocks state */
   3459 
   3460 };
   3461 
   3462 
   3463 int ZEXPORT inflateReset(z)
   3464 z_streamp z;
   3465 {
   3466   if (z == Z_NULL || z->state == Z_NULL)
   3467     return Z_STREAM_ERROR;
   3468   z->total_in = z->total_out = 0;
   3469   z->msg = Z_NULL;
   3470   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
   3471   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
   3472   Tracev((stderr, "inflate: reset\n"));
   3473   return Z_OK;
   3474 }
   3475 
   3476 
   3477 int ZEXPORT inflateEnd(z)
   3478 z_streamp z;
   3479 {
   3480   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
   3481     return Z_STREAM_ERROR;
   3482   if (z->state->blocks != Z_NULL)
   3483     inflate_blocks_free(z->state->blocks, z);
   3484   ZFREE(z, z->state);
   3485   z->state = Z_NULL;
   3486   Tracev((stderr, "inflate: end\n"));
   3487   return Z_OK;
   3488 }
   3489 
   3490 
   3491 int ZEXPORT inflateInit2_(z, w, version, stream_size)
   3492 z_streamp z;
   3493 int w;
   3494 const char *version;
   3495 int stream_size;
   3496 {
   3497   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
   3498       stream_size != sizeof(z_stream))
   3499       return Z_VERSION_ERROR;
   3500 
   3501   /* initialize state */
   3502   if (z == Z_NULL)
   3503     return Z_STREAM_ERROR;
   3504   z->msg = Z_NULL;
   3505 #ifndef NO_ZCFUNCS
   3506   if (z->zalloc == Z_NULL)
   3507   {
   3508     z->zalloc = zcalloc;
   3509     z->opaque = (voidpf)0;
   3510   }
   3511   if (z->zfree == Z_NULL) z->zfree = zcfree;
   3512 #endif
   3513   if ((z->state = (struct internal_state FAR *)
   3514        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
   3515     return Z_MEM_ERROR;
   3516   z->state->blocks = Z_NULL;
   3517 
   3518   /* handle undocumented nowrap option (no zlib header or check) */
   3519   z->state->nowrap = 0;
   3520   if (w < 0)
   3521   {
   3522     w = - w;
   3523     z->state->nowrap = 1;
   3524   }
   3525 
   3526   /* set window size */
   3527   if (w < 8 || w > 15)
   3528   {
   3529     inflateEnd(z);
   3530     return Z_STREAM_ERROR;
   3531   }
   3532   z->state->wbits = (uInt)w;
   3533 
   3534   /* create inflate_blocks state */
   3535   if ((z->state->blocks =
   3536       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
   3537       == Z_NULL)
   3538   {
   3539     inflateEnd(z);
   3540     return Z_MEM_ERROR;
   3541   }
   3542   Tracev((stderr, "inflate: allocated\n"));
   3543 
   3544   /* reset state */
   3545   inflateReset(z);
   3546   return Z_OK;
   3547 }
   3548 
   3549 
   3550 #if 0
   3551 int ZEXPORT inflateInit_(z, version, stream_size)
   3552 z_streamp z;
   3553 const char *version;
   3554 int stream_size;
   3555 {
   3556   return inflateInit2_(z, DEF_WBITS, version, stream_size);
   3557 }
   3558 #endif
   3559 
   3560 
   3561 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
   3562 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
   3563 
   3564 int ZEXPORT inflate(z, f)
   3565 z_streamp z;
   3566 int f;
   3567 {
   3568   int r, r2;
   3569   uInt b;
   3570 
   3571   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
   3572     return Z_STREAM_ERROR;
   3573   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
   3574   r = Z_BUF_ERROR;
   3575   while (1) switch (z->state->mode)
   3576   {
   3577     case METHOD:
   3578       NEEDBYTE
   3579       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
   3580       {
   3581         z->state->mode = BAD;
   3582         z->msg = (char*)"unknown compression method";
   3583         z->state->sub.marker = 5;       /* can't try inflateSync */
   3584         break;
   3585       }
   3586       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
   3587       {
   3588         z->state->mode = BAD;
   3589         z->msg = (char*)"invalid window size";
   3590         z->state->sub.marker = 5;       /* can't try inflateSync */
   3591         break;
   3592       }
   3593       z->state->mode = FLAG;
   3594     case FLAG:
   3595       NEEDBYTE
   3596       b = NEXTBYTE;
   3597       if (((z->state->sub.method << 8) + b) % 31)
   3598       {
   3599         z->state->mode = BAD;
   3600         z->msg = (char*)"incorrect header check";
   3601         z->state->sub.marker = 5;       /* can't try inflateSync */
   3602         break;
   3603       }
   3604       Tracev((stderr, "inflate: zlib header ok\n"));
   3605       if (!(b & PRESET_DICT))
   3606       {
   3607         z->state->mode = BLOCKS;
   3608         break;
   3609       }
   3610       z->state->mode = DICT4;
   3611     case DICT4:
   3612       NEEDBYTE
   3613       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3614       z->state->mode = DICT3;
   3615     case DICT3:
   3616       NEEDBYTE
   3617       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3618       z->state->mode = DICT2;
   3619     case DICT2:
   3620       NEEDBYTE
   3621       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3622       z->state->mode = DICT1;
   3623     case DICT1:
   3624       NEEDBYTE
   3625       z->state->sub.check.need += (uLong)NEXTBYTE;
   3626       z->adler = z->state->sub.check.need;
   3627       z->state->mode = DICT0;
   3628       return Z_NEED_DICT;
   3629     case DICT0:
   3630       z->state->mode = BAD;
   3631       z->msg = (char*)"need dictionary";
   3632       z->state->sub.marker = 0;       /* can try inflateSync */
   3633       return Z_STREAM_ERROR;
   3634     case BLOCKS:
   3635       r = inflate_blocks(z->state->blocks, z, r);
   3636       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
   3637          r = inflate_packet_flush(z->state->blocks);
   3638       if (r == Z_DATA_ERROR)
   3639       {
   3640         z->state->mode = BAD;
   3641         z->state->sub.marker = 0;       /* can try inflateSync */
   3642         break;
   3643       }
   3644       if (r == Z_OK)
   3645         r = r2;
   3646       if (r != Z_STREAM_END)
   3647         return r;
   3648       r = r2;
   3649       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
   3650       if (z->state->nowrap)
   3651       {
   3652         z->state->mode = DONE;
   3653         break;
   3654       }
   3655       z->state->mode = CHECK4;
   3656     case CHECK4:
   3657       NEEDBYTE
   3658       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3659       z->state->mode = CHECK3;
   3660     case CHECK3:
   3661       NEEDBYTE
   3662       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3663       z->state->mode = CHECK2;
   3664     case CHECK2:
   3665       NEEDBYTE
   3666       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3667       z->state->mode = CHECK1;
   3668     case CHECK1:
   3669       NEEDBYTE
   3670       z->state->sub.check.need += (uLong)NEXTBYTE;
   3671 
   3672       if (z->state->sub.check.was != z->state->sub.check.need)
   3673       {
   3674         z->state->mode = BAD;
   3675         z->msg = (char*)"incorrect data check";
   3676         z->state->sub.marker = 5;       /* can't try inflateSync */
   3677         break;
   3678       }
   3679       Tracev((stderr, "inflate: zlib check ok\n"));
   3680       z->state->mode = DONE;
   3681     case DONE:
   3682       return Z_STREAM_END;
   3683     case BAD:
   3684       return Z_DATA_ERROR;
   3685     default:
   3686       return Z_STREAM_ERROR;
   3687   }
   3688  empty:
   3689   if (f != Z_PACKET_FLUSH)
   3690     return r;
   3691   z->state->mode = BAD;
   3692   z->msg = (char *)"need more for packet flush";
   3693   z->state->sub.marker = 0;
   3694   return Z_DATA_ERROR;
   3695 }
   3696 
   3697 
   3698 #if 0
   3699 int ZEXPORT inflateSetDictionary(z, dictionary, dictLength)
   3700 z_streamp z;
   3701 const Bytef *dictionary;
   3702 uInt  dictLength;
   3703 {
   3704   uInt length = dictLength;
   3705 
   3706   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
   3707     return Z_STREAM_ERROR;
   3708 
   3709   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
   3710   z->adler = 1L;
   3711 
   3712   if (length >= ((uInt)1<<z->state->wbits))
   3713   {
   3714     length = (1<<z->state->wbits)-1;
   3715     dictionary += dictLength - length;
   3716   }
   3717   inflate_set_dictionary(z->state->blocks, dictionary, length);
   3718   z->state->mode = BLOCKS;
   3719   return Z_OK;
   3720 }
   3721 #endif
   3722 
   3723 /*
   3724  * This subroutine adds the data at next_in/avail_in to the output history
   3725  * without performing any output.  The output buffer must be "caught up";
   3726  * i.e. no pending output (hence s->read equals s->write), and the state must
   3727  * be BLOCKS (i.e. we should be willing to see the start of a series of
   3728  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   3729  * will have been updated if need be.
   3730  */
   3731 
   3732 int inflateIncomp(z)
   3733 z_stream *z;
   3734 {
   3735     if (z->state->mode != BLOCKS)
   3736 	return Z_DATA_ERROR;
   3737     return inflate_addhistory(z->state->blocks, z);
   3738 }
   3739 
   3740 #if 0
   3741 int ZEXPORT inflateSync(z)
   3742 z_streamp z;
   3743 {
   3744   uInt n;       /* number of bytes to look at */
   3745   Bytef *p;     /* pointer to bytes */
   3746   uInt m;       /* number of marker bytes found in a row */
   3747   uLong r, w;   /* temporaries to save total_in and total_out */
   3748 
   3749   /* set up */
   3750   if (z == Z_NULL || z->state == Z_NULL)
   3751     return Z_STREAM_ERROR;
   3752   if (z->state->mode != BAD)
   3753   {
   3754     z->state->mode = BAD;
   3755     z->state->sub.marker = 0;
   3756   }
   3757   if ((n = z->avail_in) == 0)
   3758     return Z_BUF_ERROR;
   3759   p = z->next_in;
   3760   m = z->state->sub.marker;
   3761 
   3762   /* search */
   3763   while (n && m < 4)
   3764   {
   3765     static const Byte mark[4] = {0, 0, 0xff, 0xff};
   3766     if (*p == mark[m])
   3767       m++;
   3768     else if (*p)
   3769       m = 0;
   3770     else
   3771       m = 4 - m;
   3772     p++, n--;
   3773   }
   3774 
   3775   /* restore */
   3776   z->total_in += p - z->next_in;
   3777   z->next_in = p;
   3778   z->avail_in = n;
   3779   z->state->sub.marker = m;
   3780 
   3781   /* return no joy or set up to restart on a new block */
   3782   if (m != 4)
   3783     return Z_DATA_ERROR;
   3784   r = z->total_in;  w = z->total_out;
   3785   inflateReset(z);
   3786   z->total_in = r;  z->total_out = w;
   3787   z->state->mode = BLOCKS;
   3788   return Z_OK;
   3789 }
   3790 #endif
   3791 
   3792 
   3793 /* Returns true if inflate is currently at the end of a block generated
   3794  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   3795  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
   3796  * but removes the length bytes of the resulting empty stored block. When
   3797  * decompressing, PPP checks that at the end of input packet, inflate is
   3798  * waiting for these length bytes.
   3799  */
   3800 #if 0
   3801 int ZEXPORT inflateSyncPoint(z)
   3802 z_streamp z;
   3803 {
   3804   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
   3805     return Z_STREAM_ERROR;
   3806   return inflate_blocks_sync_point(z->state->blocks);
   3807 }
   3808 #endif
   3809 #undef NEEDBYTE
   3810 #undef NEXTBYTE
   3811 /* --- inflate.c */
   3812 
   3813 /* +++ infblock.c */
   3814 
   3815 /* infblock.c -- interpret and process block types to last block
   3816  * Copyright (C) 1995-2002 Mark Adler
   3817  * For conditions of distribution and use, see copyright notice in zlib.h
   3818  */
   3819 
   3820 /* #include "zutil.h" */
   3821 /* #include "infblock.h" */
   3822 
   3823 /* +++ inftrees.h */
   3824 
   3825 /* inftrees.h -- header to use inftrees.c
   3826  * Copyright (C) 1995-2002 Mark Adler
   3827  * For conditions of distribution and use, see copyright notice in zlib.h
   3828  */
   3829 
   3830 /* WARNING: this file should *not* be used by applications. It is
   3831    part of the implementation of the compression library and is
   3832    subject to change. Applications should only use zlib.h.
   3833  */
   3834 
   3835 /* Huffman code lookup table entry--this entry is four bytes for machines
   3836    that have 16-bit pointers (e.g. PC's in the small or medium model). */
   3837 
   3838 typedef struct inflate_huft_s FAR inflate_huft;
   3839 
   3840 struct inflate_huft_s {
   3841   union {
   3842     struct {
   3843       Byte Exop;        /* number of extra bits or operation */
   3844       Byte Bits;        /* number of bits in this code or subcode */
   3845     } what;
   3846     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
   3847   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
   3848   uInt base;            /* literal, length base, distance base,
   3849                            or table offset */
   3850 };
   3851 
   3852 /* Maximum size of dynamic tree.  The maximum found in a long but non-
   3853    exhaustive search was 1004 huft structures (850 for length/literals
   3854    and 154 for distances, the latter actually the result of an
   3855    exhaustive search).  The actual maximum is not known, but the
   3856    value below is more than safe. */
   3857 #define MANY 1440
   3858 
   3859 extern int inflate_trees_bits __P((
   3860     uIntf *,                    /* 19 code lengths */
   3861     uIntf *,                    /* bits tree desired/actual depth */
   3862     inflate_huft * FAR *,       /* bits tree result */
   3863     inflate_huft *,             /* space for trees */
   3864     z_streamp));                /* for messages */
   3865 
   3866 extern int inflate_trees_dynamic __P((
   3867     uInt,                       /* number of literal/length codes */
   3868     uInt,                       /* number of distance codes */
   3869     uIntf *,                    /* that many (total) code lengths */
   3870     uIntf *,                    /* literal desired/actual bit depth */
   3871     uIntf *,                    /* distance desired/actual bit depth */
   3872     inflate_huft * FAR *,       /* literal/length tree result */
   3873     inflate_huft * FAR *,       /* distance tree result */
   3874     inflate_huft *,             /* space for trees */
   3875     z_streamp));                /* for messages */
   3876 
   3877 extern int inflate_trees_fixed __P((
   3878     uIntf *,                    /* literal desired/actual bit depth */
   3879     uIntf *,                    /* distance desired/actual bit depth */
   3880     inflate_huft * FAR *,       /* literal/length tree result */
   3881     inflate_huft * FAR *,       /* distance tree result */
   3882     z_streamp));                /* for memory allocation */
   3883 /* --- inftrees.h */
   3884 
   3885 /* +++ infcodes.h */
   3886 
   3887 /* infcodes.h -- header to use infcodes.c
   3888  * Copyright (C) 1995-2002 Mark Adler
   3889  * For conditions of distribution and use, see copyright notice in zlib.h
   3890  */
   3891 
   3892 /* WARNING: this file should *not* be used by applications. It is
   3893    part of the implementation of the compression library and is
   3894    subject to change. Applications should only use zlib.h.
   3895  */
   3896 
   3897 struct inflate_codes_state;
   3898 typedef struct inflate_codes_state FAR inflate_codes_statef;
   3899 
   3900 extern inflate_codes_statef *inflate_codes_new __P((
   3901     uInt, uInt,
   3902     inflate_huft *, inflate_huft *,
   3903     z_streamp ));
   3904 
   3905 extern int inflate_codes __P((
   3906     inflate_blocks_statef *,
   3907     z_streamp ,
   3908     int));
   3909 
   3910 extern void inflate_codes_free __P((
   3911     inflate_codes_statef *,
   3912     z_streamp ));
   3913 
   3914 /* --- infcodes.h */
   3915 
   3916 /* +++ infutil.h */
   3917 
   3918 /* infutil.h -- types and macros common to blocks and codes
   3919  * Copyright (C) 1995-2002 Mark Adler
   3920  * For conditions of distribution and use, see copyright notice in zlib.h
   3921  */
   3922 
   3923 /* WARNING: this file should *not* be used by applications. It is
   3924    part of the implementation of the compression library and is
   3925    subject to change. Applications should only use zlib.h.
   3926  */
   3927 
   3928 #ifndef _INFUTIL_H
   3929 #define _INFUTIL_H
   3930 
   3931 typedef enum {
   3932       TYPE,     /* get type bits (3, including end bit) */
   3933       LENS,     /* get lengths for stored */
   3934       STORED,   /* processing stored block */
   3935       TABLE,    /* get table lengths */
   3936       BTREE,    /* get bit lengths tree for a dynamic block */
   3937       DTREE,    /* get length, distance trees for a dynamic block */
   3938       CODES,    /* processing fixed or dynamic block */
   3939       DRY,      /* output remaining window bytes */
   3940       DONEB,    /* finished last block, done */
   3941       BADB}     /* got a data error--stuck here */
   3942 inflate_block_mode;
   3943 
   3944 /* inflate blocks semi-private state */
   3945 struct inflate_blocks_state {
   3946 
   3947   /* mode */
   3948   inflate_block_mode  mode;     /* current inflate_block mode */
   3949 
   3950   /* mode dependent information */
   3951   union {
   3952     uInt left;          /* if STORED, bytes left to copy */
   3953     struct {
   3954       uInt table;               /* table lengths (14 bits) */
   3955       uInt index;               /* index into blens (or border) */
   3956       uIntf *blens;             /* bit lengths of codes */
   3957       uInt bb;                  /* bit length tree depth */
   3958       inflate_huft *tb;         /* bit length decoding tree */
   3959     } trees;            /* if DTREE, decoding info for trees */
   3960     struct {
   3961       inflate_codes_statef
   3962          *codes;
   3963     } decode;           /* if CODES, current state */
   3964   } sub;                /* submode */
   3965   uInt last;            /* true if this block is the last block */
   3966 
   3967   /* mode independent information */
   3968   uInt bitk;            /* bits in bit buffer */
   3969   uLong bitb;           /* bit buffer */
   3970   inflate_huft *hufts;  /* single malloc for tree space */
   3971   Bytef *window;        /* sliding window */
   3972   Bytef *end;           /* one byte after sliding window */
   3973   Bytef *read;          /* window read pointer */
   3974   Bytef *write;         /* window write pointer */
   3975   check_func checkfn;   /* check function */
   3976   uLong check;          /* check on output */
   3977 
   3978 };
   3979 
   3980 
   3981 /* defines for inflate input/output */
   3982 /*   update pointers and return */
   3983 #define UPDBITS {s->bitb=b;s->bitk=k;}
   3984 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
   3985 #define UPDOUT {s->write=q;}
   3986 #define UPDATE {UPDBITS UPDIN UPDOUT}
   3987 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
   3988 /*   get bytes and bits */
   3989 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
   3990 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
   3991 #define NEXTBYTE (n--,*p++)
   3992 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   3993 #define DUMPBITS(j) {b>>=(j);k-=(j);}
   3994 /*   output bytes */
   3995 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
   3996 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
   3997 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
   3998 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
   3999 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
   4000 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
   4001 /*   load local pointers */
   4002 #define LOAD {LOADIN LOADOUT}
   4003 
   4004 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
   4005 extern uInt inflate_mask[17];
   4006 
   4007 /* copy as much as possible from the sliding window to the output area */
   4008 extern int inflate_flush __P((
   4009     inflate_blocks_statef *,
   4010     z_streamp ,
   4011     int));
   4012 
   4013 #ifndef NO_DUMMY_DECL
   4014 struct internal_state      {int dummy;}; /* for buggy compilers */
   4015 #endif
   4016 
   4017 #endif
   4018 /* --- infutil.h */
   4019 
   4020 #ifndef NO_DUMMY_DECL
   4021 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   4022 #endif
   4023 
   4024 /* simplify the use of the inflate_huft type with some defines */
   4025 #define exop word.what.Exop
   4026 #define bits word.what.Bits
   4027 
   4028 /* Table for deflate from PKZIP's appnote.txt. */
   4029 local const uInt border[] = { /* Order of the bit length code lengths */
   4030         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
   4031 
   4032 /*
   4033    Notes beyond the 1.93a appnote.txt:
   4034 
   4035    1. Distance pointers never point before the beginning of the output
   4036       stream.
   4037    2. Distance pointers can point back across blocks, up to 32k away.
   4038    3. There is an implied maximum of 7 bits for the bit length table and
   4039       15 bits for the actual data.
   4040    4. If only one code exists, then it is encoded using one bit.  (Zero
   4041       would be more efficient, but perhaps a little confusing.)  If two
   4042       codes exist, they are coded using one bit each (0 and 1).
   4043    5. There is no way of sending zero distance codes--a dummy must be
   4044       sent if there are none.  (History: a pre 2.0 version of PKZIP would
   4045       store blocks with no distance codes, but this was discovered to be
   4046       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
   4047       zero distance codes, which is sent as one code of zero bits in
   4048       length.
   4049    6. There are up to 286 literal/length codes.  Code 256 represents the
   4050       end-of-block.  Note however that the static length tree defines
   4051       288 codes just to fill out the Huffman codes.  Codes 286 and 287
   4052       cannot be used though, since there is no length base or extra bits
   4053       defined for them.  Similarily, there are up to 30 distance codes.
   4054       However, static trees define 32 codes (all 5 bits) to fill out the
   4055       Huffman codes, but the last two had better not show up in the data.
   4056    7. Unzip can check dynamic Huffman blocks for complete code sets.
   4057       The exception is that a single code would not be complete (see #4).
   4058    8. The five bits following the block type is really the number of
   4059       literal codes sent minus 257.
   4060    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
   4061       (1+6+6).  Therefore, to output three times the length, you output
   4062       three codes (1+1+1), whereas to output four times the same length,
   4063       you only need two codes (1+3).  Hmm.
   4064   10. In the tree reconstruction algorithm, Code = Code + Increment
   4065       only if BitLength(i) is not zero.  (Pretty obvious.)
   4066   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
   4067   12. Note: length code 284 can represent 227-258, but length code 285
   4068       really is 258.  The last length deserves its own, short code
   4069       since it gets used a lot in very redundant files.  The length
   4070       258 is special since 258 - 3 (the min match length) is 255.
   4071   13. The literal/length and distance code bit lengths are read as a
   4072       single stream of lengths.  It is possible (and advantageous) for
   4073       a repeat code (16, 17, or 18) to go across the boundary between
   4074       the two sets of lengths.
   4075  */
   4076 
   4077 
   4078 void inflate_blocks_reset(s, z, c)
   4079 inflate_blocks_statef *s;
   4080 z_streamp z;
   4081 uLongf *c;
   4082 {
   4083   if (c != Z_NULL)
   4084     *c = s->check;
   4085   if (s->mode == BTREE || s->mode == DTREE)
   4086     ZFREE(z, s->sub.trees.blens);
   4087   if (s->mode == CODES)
   4088     inflate_codes_free(s->sub.decode.codes, z);
   4089   s->mode = TYPE;
   4090   s->bitk = 0;
   4091   s->bitb = 0;
   4092   s->read = s->write = s->window;
   4093   if (s->checkfn != Z_NULL)
   4094     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
   4095   Tracev((stderr, "inflate:   blocks reset\n"));
   4096 }
   4097 
   4098 
   4099 inflate_blocks_statef *inflate_blocks_new(z, c, w)
   4100 z_streamp z;
   4101 check_func c;
   4102 uInt w;
   4103 {
   4104   inflate_blocks_statef *s;
   4105 
   4106   if ((s = (inflate_blocks_statef *)ZALLOC
   4107        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
   4108     return s;
   4109   if ((s->hufts =
   4110        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
   4111   {
   4112     ZFREE(z, s);
   4113     return Z_NULL;
   4114   }
   4115   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
   4116   {
   4117     ZFREE(z, s->hufts);
   4118     ZFREE(z, s);
   4119     return Z_NULL;
   4120   }
   4121   s->end = s->window + w;
   4122   s->checkfn = c;
   4123   s->mode = TYPE;
   4124   Tracev((stderr, "inflate:   blocks allocated\n"));
   4125   inflate_blocks_reset(s, z, Z_NULL);
   4126   return s;
   4127 }
   4128 
   4129 
   4130 int inflate_blocks(s, z, r)
   4131 inflate_blocks_statef *s;
   4132 z_streamp z;
   4133 int r;
   4134 {
   4135   uInt t;               /* temporary storage */
   4136   uLong b;              /* bit buffer */
   4137   uInt k;               /* bits in bit buffer */
   4138   Bytef *p;             /* input data pointer */
   4139   uInt n;               /* bytes available there */
   4140   Bytef *q;             /* output window write pointer */
   4141   uInt m;               /* bytes to end of window or read pointer */
   4142 
   4143   /* copy input/output information to locals (UPDATE macro restores) */
   4144   LOAD
   4145 
   4146   /* process input based on current state */
   4147   while (1) switch (s->mode)
   4148   {
   4149     case TYPE:
   4150       NEEDBITS(3)
   4151       t = (uInt)b & 7;
   4152       s->last = t & 1;
   4153       switch (t >> 1)
   4154       {
   4155         case 0:                         /* stored */
   4156           Tracev((stderr, "inflate:     stored block%s\n",
   4157                  s->last ? " (last)" : ""));
   4158           DUMPBITS(3)
   4159           t = k & 7;                    /* go to byte boundary */
   4160           DUMPBITS(t)
   4161           s->mode = LENS;               /* get length of stored block */
   4162           break;
   4163         case 1:                         /* fixed */
   4164           Tracev((stderr, "inflate:     fixed codes block%s\n",
   4165                  s->last ? " (last)" : ""));
   4166           {
   4167             uInt bl, bd;
   4168             inflate_huft *tl, *td;
   4169 
   4170             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
   4171             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
   4172             if (s->sub.decode.codes == Z_NULL)
   4173             {
   4174               r = Z_MEM_ERROR;
   4175               LEAVE
   4176             }
   4177           }
   4178           DUMPBITS(3)
   4179           s->mode = CODES;
   4180           break;
   4181         case 2:                         /* dynamic */
   4182           Tracev((stderr, "inflate:     dynamic codes block%s\n",
   4183                  s->last ? " (last)" : ""));
   4184           DUMPBITS(3)
   4185           s->mode = TABLE;
   4186           break;
   4187         case 3:                         /* illegal */
   4188           DUMPBITS(3)
   4189           s->mode = BADB;
   4190           z->msg = (char*)"invalid block type";
   4191           r = Z_DATA_ERROR;
   4192           LEAVE
   4193       }
   4194       break;
   4195     case LENS:
   4196       NEEDBITS(32)
   4197       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
   4198       {
   4199         s->mode = BADB;
   4200         z->msg = (char*)"invalid stored block lengths";
   4201         r = Z_DATA_ERROR;
   4202         LEAVE
   4203       }
   4204       s->sub.left = (uInt)b & 0xffff;
   4205       b = k = 0;                      /* dump bits */
   4206       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
   4207       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
   4208       break;
   4209     case STORED:
   4210       if (n == 0)
   4211         LEAVE
   4212       NEEDOUT
   4213       t = s->sub.left;
   4214       if (t > n) t = n;
   4215       if (t > m) t = m;
   4216       zmemcpy(q, p, t);
   4217       p += t;  n -= t;
   4218       q += t;  m -= t;
   4219       if ((s->sub.left -= t) != 0)
   4220         break;
   4221       Tracev((stderr, "inflate:       stored end, %lu total out\n",
   4222               z->total_out + (q >= s->read ? q - s->read :
   4223               (s->end - s->read) + (q - s->window))));
   4224       s->mode = s->last ? DRY : TYPE;
   4225       break;
   4226     case TABLE:
   4227       NEEDBITS(14)
   4228       s->sub.trees.table = t = (uInt)b & 0x3fff;
   4229 #ifndef PKZIP_BUG_WORKAROUND
   4230       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
   4231       {
   4232         s->mode = BADB;
   4233         z->msg = (char*)"too many length or distance symbols";
   4234         r = Z_DATA_ERROR;
   4235         LEAVE
   4236       }
   4237 #endif
   4238       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
   4239       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
   4240       {
   4241         r = Z_MEM_ERROR;
   4242         LEAVE
   4243       }
   4244       DUMPBITS(14)
   4245       s->sub.trees.index = 0;
   4246       Tracev((stderr, "inflate:       table sizes ok\n"));
   4247       s->mode = BTREE;
   4248     case BTREE:
   4249       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
   4250       {
   4251         NEEDBITS(3)
   4252         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
   4253         DUMPBITS(3)
   4254       }
   4255       while (s->sub.trees.index < 19)
   4256         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
   4257       s->sub.trees.bb = 7;
   4258       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
   4259                              &s->sub.trees.tb, s->hufts, z);
   4260       if (t != Z_OK)
   4261       {
   4262         r = t;
   4263         if (r == Z_DATA_ERROR)
   4264         {
   4265           ZFREE(z, s->sub.trees.blens);
   4266           s->mode = BADB;
   4267         }
   4268         LEAVE
   4269       }
   4270       s->sub.trees.index = 0;
   4271       Tracev((stderr, "inflate:       bits tree ok\n"));
   4272       s->mode = DTREE;
   4273     case DTREE:
   4274       while (t = s->sub.trees.table,
   4275              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
   4276       {
   4277         inflate_huft *h;
   4278         uInt i, j, c;
   4279 
   4280         t = s->sub.trees.bb;
   4281         NEEDBITS(t)
   4282         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
   4283         t = h->bits;
   4284         c = h->base;
   4285         if (c < 16)
   4286         {
   4287           DUMPBITS(t)
   4288           s->sub.trees.blens[s->sub.trees.index++] = c;
   4289         }
   4290         else /* c == 16..18 */
   4291         {
   4292           i = c == 18 ? 7 : c - 14;
   4293           j = c == 18 ? 11 : 3;
   4294           NEEDBITS(t + i)
   4295           DUMPBITS(t)
   4296           j += (uInt)b & inflate_mask[i];
   4297           DUMPBITS(i)
   4298           i = s->sub.trees.index;
   4299           t = s->sub.trees.table;
   4300           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
   4301               (c == 16 && i < 1))
   4302           {
   4303             ZFREE(z, s->sub.trees.blens);
   4304             s->mode = BADB;
   4305             z->msg = (char*)"invalid bit length repeat";
   4306             r = Z_DATA_ERROR;
   4307             LEAVE
   4308           }
   4309           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
   4310           do {
   4311             s->sub.trees.blens[i++] = c;
   4312           } while (--j);
   4313           s->sub.trees.index = i;
   4314         }
   4315       }
   4316       s->sub.trees.tb = Z_NULL;
   4317       {
   4318         uInt bl, bd;
   4319         inflate_huft *tl, *td;
   4320         inflate_codes_statef *c;
   4321 
   4322         bl = 9;         /* must be <= 9 for lookahead assumptions */
   4323         bd = 6;         /* must be <= 9 for lookahead assumptions */
   4324         t = s->sub.trees.table;
   4325         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
   4326                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
   4327                                   s->hufts, z);
   4328         if (t != Z_OK)
   4329         {
   4330           if (t == (uInt)Z_DATA_ERROR)
   4331           {
   4332             ZFREE(z, s->sub.trees.blens);
   4333             s->mode = BADB;
   4334           }
   4335           r = t;
   4336           LEAVE
   4337         }
   4338         Tracev((stderr, "inflate:       trees ok\n"));
   4339         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
   4340         {
   4341           r = Z_MEM_ERROR;
   4342           LEAVE
   4343         }
   4344         s->sub.decode.codes = c;
   4345       }
   4346       ZFREE(z, s->sub.trees.blens);
   4347       s->mode = CODES;
   4348     case CODES:
   4349       UPDATE
   4350       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
   4351         return inflate_flush(s, z, r);
   4352       r = Z_OK;
   4353       inflate_codes_free(s->sub.decode.codes, z);
   4354       LOAD
   4355       Tracev((stderr, "inflate:       codes end, %lu total out\n",
   4356               z->total_out + (q >= s->read ? q - s->read :
   4357               (s->end - s->read) + (q - s->window))));
   4358       if (!s->last)
   4359       {
   4360         s->mode = TYPE;
   4361         break;
   4362       }
   4363       s->mode = DRY;
   4364     case DRY:
   4365       FLUSH
   4366       if (s->read != s->write)
   4367         LEAVE
   4368       s->mode = DONEB;
   4369     case DONEB:
   4370       r = Z_STREAM_END;
   4371       LEAVE
   4372     case BADB:
   4373       r = Z_DATA_ERROR;
   4374       LEAVE
   4375     default:
   4376       r = Z_STREAM_ERROR;
   4377       LEAVE
   4378   }
   4379 }
   4380 
   4381 
   4382 int inflate_blocks_free(s, z)
   4383 inflate_blocks_statef *s;
   4384 z_streamp z;
   4385 {
   4386   inflate_blocks_reset(s, z, Z_NULL);
   4387   ZFREE(z, s->window);
   4388   ZFREE(z, s->hufts);
   4389   ZFREE(z, s);
   4390   Tracev((stderr, "inflate:   blocks freed\n"));
   4391   return Z_OK;
   4392 }
   4393 
   4394 
   4395 #if 0
   4396 void inflate_set_dictionary(s, d, n)
   4397 inflate_blocks_statef *s;
   4398 const Bytef *d;
   4399 uInt  n;
   4400 {
   4401   zmemcpy(s->window, d, n);
   4402   s->read = s->write = s->window + n;
   4403 }
   4404 #endif
   4405 
   4406 /*
   4407  * This subroutine adds the data at next_in/avail_in to the output history
   4408  * without performing any output.  The output buffer must be "caught up";
   4409  * i.e. no pending output (hence s->read equals s->write), and the state must
   4410  * be BLOCKS (i.e. we should be willing to see the start of a series of
   4411  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   4412  * will have been updated if need be.
   4413  */
   4414 int inflate_addhistory(s, z)
   4415 inflate_blocks_statef *s;
   4416 z_stream *z;
   4417 {
   4418     uLong b;              /* bit buffer */  /* NOT USED HERE */
   4419     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
   4420     uInt t;               /* temporary storage */
   4421     Bytef *p;             /* input data pointer */
   4422     uInt n;               /* bytes available there */
   4423     Bytef *q;             /* output window write pointer */
   4424     uInt m;               /* bytes to end of window or read pointer */
   4425 
   4426     if (s->read != s->write)
   4427 	return Z_STREAM_ERROR;
   4428     if (s->mode != TYPE)
   4429 	return Z_DATA_ERROR;
   4430 
   4431     /* we're ready to rock */
   4432     LOAD
   4433     /* while there is input ready, copy to output buffer, moving
   4434      * pointers as needed.
   4435      */
   4436     while (n) {
   4437 	t = n;  /* how many to do */
   4438 	/* is there room until end of buffer? */
   4439 	if (t > m) t = m;
   4440 	/* update check information */
   4441 	if (s->checkfn != Z_NULL)
   4442 	    s->check = (*s->checkfn)(s->check, q, t);
   4443 	zmemcpy(q, p, t);
   4444 	q += t;
   4445 	p += t;
   4446 	n -= t;
   4447 	z->total_out += t;
   4448 	s->read = q;    /* drag read pointer forward */
   4449 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
   4450 	if (q == s->end) {
   4451 	    s->read = q = s->window;
   4452 	    m = WAVAIL;
   4453 	}
   4454     }
   4455     UPDATE
   4456     return Z_OK;
   4457 }
   4458 
   4459 
   4460 /*
   4461  * At the end of a Deflate-compressed PPP packet, we expect to have seen
   4462  * a `stored' block type value but not the (zero) length bytes.
   4463  */
   4464 int inflate_packet_flush(s)
   4465     inflate_blocks_statef *s;
   4466 {
   4467     if (s->mode != LENS)
   4468 	return Z_DATA_ERROR;
   4469     s->mode = TYPE;
   4470     return Z_OK;
   4471 }
   4472 
   4473 /* Returns true if inflate is currently at the end of a block generated
   4474  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
   4475  * IN assertion: s != Z_NULL
   4476  */
   4477 #if 0
   4478 int inflate_blocks_sync_point(s)
   4479 inflate_blocks_statef *s;
   4480 {
   4481   return s->mode == LENS;
   4482 }
   4483 #endif
   4484 /* --- infblock.c */
   4485 
   4486 
   4487 /* +++ inftrees.c */
   4488 
   4489 /* inftrees.c -- generate Huffman trees for efficient decoding
   4490  * Copyright (C) 1995-2002 Mark Adler
   4491  * For conditions of distribution and use, see copyright notice in zlib.h
   4492  */
   4493 
   4494 /* #include "zutil.h" */
   4495 /* #include "inftrees.h" */
   4496 
   4497 #if !defined(BUILDFIXED) && !defined(STDC)
   4498 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
   4499 #endif
   4500 
   4501 const char inflate_copyright[] =
   4502    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
   4503 /*
   4504   If you use the zlib library in a product, an acknowledgment is welcome
   4505   in the documentation of your product. If for some reason you cannot
   4506   include such an acknowledgment, I would appreciate that you keep this
   4507   copyright string in the executable of your product.
   4508  */
   4509 
   4510 #ifndef NO_DUMMY_DECL
   4511 struct internal_state  {int dummy;}; /* for buggy compilers */
   4512 #endif
   4513 
   4514 /* simplify the use of the inflate_huft type with some defines */
   4515 #define exop word.what.Exop
   4516 #define bits word.what.Bits
   4517 
   4518 
   4519 local int huft_build __P((
   4520     uIntf *,            /* code lengths in bits */
   4521     uInt,               /* number of codes */
   4522     uInt,               /* number of "simple" codes */
   4523     const uIntf *,      /* list of base values for non-simple codes */
   4524     const uIntf *,      /* list of extra bits for non-simple codes */
   4525     inflate_huft * FAR*,/* result: starting table */
   4526     uIntf *,            /* maximum lookup bits (returns actual) */
   4527     inflate_huft *,     /* space for trees */
   4528     uInt *,             /* hufts used in space */
   4529     uIntf * ));         /* space for values */
   4530 
   4531 /* Tables for deflate from PKZIP's appnote.txt. */
   4532 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
   4533         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
   4534         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
   4535         /* see note #13 above about 258 */
   4536 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
   4537         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
   4538         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
   4539 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
   4540         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
   4541         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
   4542         8193, 12289, 16385, 24577};
   4543 local const uInt cpdext[30] = { /* Extra bits for distance codes */
   4544         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
   4545         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
   4546         12, 12, 13, 13};
   4547 
   4548 /*
   4549    Huffman code decoding is performed using a multi-level table lookup.
   4550    The fastest way to decode is to simply build a lookup table whose
   4551    size is determined by the longest code.  However, the time it takes
   4552    to build this table can also be a factor if the data being decoded
   4553    is not very long.  The most common codes are necessarily the
   4554    shortest codes, so those codes dominate the decoding time, and hence
   4555    the speed.  The idea is you can have a shorter table that decodes the
   4556    shorter, more probable codes, and then point to subsidiary tables for
   4557    the longer codes.  The time it costs to decode the longer codes is
   4558    then traded against the time it takes to make longer tables.
   4559 
   4560    This results of this trade are in the variables lbits and dbits
   4561    below.  lbits is the number of bits the first level table for literal/
   4562    length codes can decode in one step, and dbits is the same thing for
   4563    the distance codes.  Subsequent tables are also less than or equal to
   4564    those sizes.  These values may be adjusted either when all of the
   4565    codes are shorter than that, in which case the longest code length in
   4566    bits is used, or when the shortest code is *longer* than the requested
   4567    table size, in which case the length of the shortest code in bits is
   4568    used.
   4569 
   4570    There are two different values for the two tables, since they code a
   4571    different number of possibilities each.  The literal/length table
   4572    codes 286 possible values, or in a flat code, a little over eight
   4573    bits.  The distance table codes 30 possible values, or a little less
   4574    than five bits, flat.  The optimum values for speed end up being
   4575    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   4576    The optimum values may differ though from machine to machine, and
   4577    possibly even between compilers.  Your mileage may vary.
   4578  */
   4579 
   4580 
   4581 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
   4582 #define BMAX 15         /* maximum bit length of any code */
   4583 
   4584 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
   4585 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
   4586 uInt n;                 /* number of codes (assumed <= 288) */
   4587 uInt s;                 /* number of simple-valued codes (0..s-1) */
   4588 const uIntf *d;         /* list of base values for non-simple codes */
   4589 const uIntf *e;         /* list of extra bits for non-simple codes */
   4590 inflate_huft * FAR *t;  /* result: starting table */
   4591 uIntf *m;               /* maximum lookup bits, returns actual */
   4592 inflate_huft *hp;       /* space for trees */
   4593 uInt *hn;               /* hufts used in space */
   4594 uIntf *v;               /* working area: values in order of bit length */
   4595 /* Given a list of code lengths and a maximum table size, make a set of
   4596    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   4597    if the given code set is incomplete (the tables are still built in this
   4598    case), or Z_DATA_ERROR if the input is invalid. */
   4599 {
   4600 
   4601   uInt a;                       /* counter for codes of length k */
   4602   uInt c[BMAX+1];               /* bit length count table */
   4603   uInt f;                       /* i repeats in table every f entries */
   4604   int g;                        /* maximum code length */
   4605   int h;                        /* table level */
   4606   uInt i;                       /* counter, current code */
   4607   uInt j;                       /* counter */
   4608   int k;                        /* number of bits in current code */
   4609   int l;                        /* bits per table (returned in m) */
   4610   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
   4611   uIntf *p;                      /* pointer into c[], b[], or v[] */
   4612   inflate_huft *q;              /* points to current table */
   4613   struct inflate_huft_s r;      /* table entry for structure assignment */
   4614   inflate_huft *u[BMAX];        /* table stack */
   4615   int w;               /* bits before this table == (l * h) */
   4616   uInt x[BMAX+1];               /* bit offsets, then code stack */
   4617   uIntf *xp;                    /* pointer into x */
   4618   int y;                        /* number of dummy codes added */
   4619   uInt z;                       /* number of entries in current table */
   4620 
   4621 
   4622   /* Generate counts for each bit length */
   4623   p = c;
   4624 #define C0 *p++ = 0;
   4625 #define C2 C0 C0 C0 C0
   4626 #define C4 C2 C2 C2 C2
   4627   C4                            /* clear c[]--assume BMAX+1 is 16 */
   4628   p = b;  i = n;
   4629   do {
   4630     c[*p++]++;                  /* assume all entries <= BMAX */
   4631   } while (--i);
   4632   if (c[0] == n)                /* null input--all zero length codes */
   4633   {
   4634     *t = (inflate_huft *)Z_NULL;
   4635     *m = 0;
   4636     return Z_OK;
   4637   }
   4638 
   4639 
   4640   /* Find minimum and maximum length, bound *m by those */
   4641   l = *m;
   4642   for (j = 1; j <= BMAX; j++)
   4643     if (c[j])
   4644       break;
   4645   k = j;                        /* minimum code length */
   4646   if ((uInt)l < j)
   4647     l = j;
   4648   for (i = BMAX; i; i--)
   4649     if (c[i])
   4650       break;
   4651   g = i;                        /* maximum code length */
   4652   if ((uInt)l > i)
   4653     l = i;
   4654   *m = l;
   4655 
   4656 
   4657   /* Adjust last length count to fill out codes, if needed */
   4658   for (y = 1 << j; j < i; j++, y <<= 1)
   4659     if ((y -= c[j]) < 0)
   4660       return Z_DATA_ERROR;
   4661   if ((y -= c[i]) < 0)
   4662     return Z_DATA_ERROR;
   4663   c[i] += y;
   4664 
   4665 
   4666   /* Generate starting offsets into the value table for each length */
   4667   x[1] = j = 0;
   4668   p = c + 1;  xp = x + 2;
   4669   while (--i) {                 /* note that i == g from above */
   4670     *xp++ = (j += *p++);
   4671   }
   4672 
   4673 
   4674   /* Make a table of values in order of bit lengths */
   4675   p = b;  i = 0;
   4676   do {
   4677     if ((j = *p++) != 0)
   4678       v[x[j]++] = i;
   4679   } while (++i < n);
   4680   n = x[g];                     /* set n to length of v */
   4681 
   4682 
   4683   /* Generate the Huffman codes and for each, make the table entries */
   4684   x[0] = i = 0;                 /* first Huffman code is zero */
   4685   p = v;                        /* grab values in bit order */
   4686   h = -1;                       /* no tables yet--level -1 */
   4687   w = -l;                       /* bits decoded == (l * h) */
   4688   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   4689   q = (inflate_huft *)Z_NULL;   /* ditto */
   4690   z = 0;                        /* ditto */
   4691 
   4692   /* go through the bit lengths (k already is bits in shortest code) */
   4693   for (; k <= g; k++)
   4694   {
   4695     a = c[k];
   4696     while (a--)
   4697     {
   4698       /* here i is the Huffman code of length k bits for value *p */
   4699       /* make tables up to required level */
   4700       while (k > w + l)
   4701       {
   4702         h++;
   4703         w += l;                 /* previous table always l bits */
   4704 
   4705         /* compute minimum size table less than or equal to l bits */
   4706         z = g - w;
   4707         z = z > (uInt)l ? l : z;        /* table size upper limit */
   4708         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   4709         {                       /* too few codes for k-w bit table */
   4710           f -= a + 1;           /* deduct codes from patterns left */
   4711           xp = c + k;
   4712           if (j < z)
   4713             while (++j < z)     /* try smaller tables up to z bits */
   4714             {
   4715               if ((f <<= 1) <= *++xp)
   4716                 break;          /* enough codes to use up j bits */
   4717               f -= *xp;         /* else deduct codes from patterns */
   4718             }
   4719         }
   4720         z = 1 << j;             /* table entries for j-bit table */
   4721 
   4722         /* allocate new table */
   4723         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
   4724           return Z_DATA_ERROR;  /* overflow of MANY */
   4725         u[h] = q = hp + *hn;
   4726         *hn += z;
   4727 
   4728         /* connect to last table, if there is one */
   4729         if (h)
   4730         {
   4731           x[h] = i;             /* save pattern for backing up */
   4732           r.bits = (Byte)l;     /* bits to dump before this table */
   4733           r.exop = (Byte)j;     /* bits in this table */
   4734           j = i >> (w - l);
   4735           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
   4736           u[h-1][j] = r;        /* connect to last table */
   4737         }
   4738         else
   4739           *t = q;               /* first table is returned result */
   4740       }
   4741 
   4742       /* set up table entry in r */
   4743       r.bits = (Byte)(k - w);
   4744       if (p >= v + n)
   4745         r.exop = 128 + 64;      /* out of values--invalid code */
   4746       else if (*p < s)
   4747       {
   4748         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
   4749         r.base = *p++;          /* simple code is just the value */
   4750       }
   4751       else
   4752       {
   4753         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
   4754         r.base = d[*p++ - s];
   4755       }
   4756 
   4757       /* fill code-like entries with r */
   4758       f = 1 << (k - w);
   4759       for (j = i >> w; j < z; j += f)
   4760         q[j] = r;
   4761 
   4762       /* backwards increment the k-bit code i */
   4763       for (j = 1 << (k - 1); i & j; j >>= 1)
   4764         i ^= j;
   4765       i ^= j;
   4766 
   4767       /* backup over finished tables */
   4768       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
   4769       while ((i & mask) != x[h])
   4770       {
   4771         h--;                    /* don't need to update q */
   4772         w -= l;
   4773         mask = (1 << w) - 1;
   4774       }
   4775     }
   4776   }
   4777 
   4778 
   4779   /* Return Z_BUF_ERROR if we were given an incomplete table */
   4780   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
   4781 }
   4782 
   4783 
   4784 int inflate_trees_bits(c, bb, tb, hp, z)
   4785 uIntf *c;               /* 19 code lengths */
   4786 uIntf *bb;              /* bits tree desired/actual depth */
   4787 inflate_huft * FAR *tb; /* bits tree result */
   4788 inflate_huft *hp;       /* space for trees */
   4789 z_streamp z;            /* for messages */
   4790 {
   4791   int r;
   4792   uInt hn = 0;          /* hufts used in space */
   4793   uIntf *v;             /* work area for huft_build */
   4794 
   4795   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
   4796     return Z_MEM_ERROR;
   4797   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
   4798                  tb, bb, hp, &hn, v);
   4799   if (r == Z_DATA_ERROR)
   4800     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
   4801   else if (r == Z_BUF_ERROR || *bb == 0)
   4802   {
   4803     z->msg = (char*)"incomplete dynamic bit lengths tree";
   4804     r = Z_DATA_ERROR;
   4805   }
   4806   ZFREE(z, v);
   4807   return r;
   4808 }
   4809 
   4810 
   4811 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
   4812 uInt nl;                /* number of literal/length codes */
   4813 uInt nd;                /* number of distance codes */
   4814 uIntf *c;               /* that many (total) code lengths */
   4815 uIntf *bl;              /* literal desired/actual bit depth */
   4816 uIntf *bd;              /* distance desired/actual bit depth */
   4817 inflate_huft * FAR *tl; /* literal/length tree result */
   4818 inflate_huft * FAR *td; /* distance tree result */
   4819 inflate_huft *hp;       /* space for trees */
   4820 z_streamp z;            /* for messages */
   4821 {
   4822   int r;
   4823   uInt hn = 0;          /* hufts used in space */
   4824   uIntf *v;             /* work area for huft_build */
   4825 
   4826   /* allocate work area */
   4827   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4828     return Z_MEM_ERROR;
   4829 
   4830   /* build literal/length tree */
   4831   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
   4832   if (r != Z_OK || *bl == 0)
   4833   {
   4834     if (r == Z_DATA_ERROR)
   4835       z->msg = (char*)"oversubscribed literal/length tree";
   4836     else if (r != Z_MEM_ERROR)
   4837     {
   4838       z->msg = (char*)"incomplete literal/length tree";
   4839       r = Z_DATA_ERROR;
   4840     }
   4841     ZFREE(z, v);
   4842     return r;
   4843   }
   4844 
   4845   /* build distance tree */
   4846   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
   4847   if (r != Z_OK || (*bd == 0 && nl > 257))
   4848   {
   4849     if (r == Z_DATA_ERROR)
   4850       z->msg = (char*)"oversubscribed distance tree";
   4851     else if (r == Z_BUF_ERROR) {
   4852 #ifdef PKZIP_BUG_WORKAROUND
   4853       r = Z_OK;
   4854     }
   4855 #else
   4856       z->msg = (char*)"incomplete distance tree";
   4857       r = Z_DATA_ERROR;
   4858     }
   4859     else if (r != Z_MEM_ERROR)
   4860     {
   4861       z->msg = (char*)"empty distance tree with lengths";
   4862       r = Z_DATA_ERROR;
   4863     }
   4864     ZFREE(z, v);
   4865     return r;
   4866 #endif
   4867   }
   4868 
   4869   /* done */
   4870   ZFREE(z, v);
   4871   return Z_OK;
   4872 }
   4873 
   4874 
   4875 /* build fixed tables only once--keep them here */
   4876 #ifdef BUILDFIXED
   4877 local int fixed_built = 0;
   4878 #define FIXEDH 544      /* number of hufts used by fixed tables */
   4879 local inflate_huft fixed_mem[FIXEDH];
   4880 local uInt fixed_bl;
   4881 local uInt fixed_bd;
   4882 local inflate_huft *fixed_tl;
   4883 local inflate_huft *fixed_td;
   4884 #else
   4885 
   4886 /* +++ inffixed.h */
   4887 /* inffixed.h -- table for decoding fixed codes
   4888  * Generated automatically by the maketree.c program
   4889  */
   4890 
   4891 /* WARNING: this file should *not* be used by applications. It is
   4892    part of the implementation of the compression library and is
   4893    subject to change. Applications should only use zlib.h.
   4894  */
   4895 
   4896 local uInt fixed_bl = 9;
   4897 local uInt fixed_bd = 5;
   4898 local inflate_huft fixed_tl[] = {
   4899     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4900     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
   4901     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
   4902     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
   4903     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
   4904     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
   4905     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
   4906     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
   4907     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4908     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
   4909     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
   4910     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
   4911     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
   4912     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
   4913     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
   4914     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
   4915     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4916     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
   4917     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
   4918     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
   4919     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
   4920     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
   4921     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
   4922     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
   4923     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4924     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
   4925     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
   4926     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
   4927     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
   4928     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
   4929     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
   4930     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
   4931     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4932     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
   4933     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
   4934     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
   4935     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
   4936     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
   4937     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
   4938     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
   4939     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4940     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
   4941     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
   4942     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
   4943     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
   4944     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
   4945     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
   4946     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
   4947     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4948     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
   4949     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
   4950     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
   4951     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
   4952     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
   4953     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
   4954     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
   4955     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4956     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
   4957     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
   4958     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
   4959     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
   4960     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
   4961     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
   4962     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
   4963     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4964     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
   4965     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
   4966     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
   4967     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
   4968     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
   4969     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
   4970     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
   4971     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4972     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
   4973     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
   4974     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
   4975     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
   4976     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
   4977     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
   4978     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
   4979     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4980     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
   4981     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
   4982     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
   4983     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
   4984     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
   4985     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
   4986     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
   4987     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4988     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
   4989     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
   4990     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
   4991     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
   4992     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
   4993     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
   4994     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
   4995     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4996     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
   4997     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
   4998     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
   4999     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
   5000     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
   5001     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
   5002     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
   5003     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   5004     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
   5005     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
   5006     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
   5007     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
   5008     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
   5009     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
   5010     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
   5011     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   5012     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
   5013     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
   5014     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
   5015     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
   5016     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
   5017     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
   5018     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
   5019     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   5020     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
   5021     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
   5022     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
   5023     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
   5024     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
   5025     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
   5026     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
   5027   };
   5028 local inflate_huft fixed_td[] = {
   5029     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
   5030     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
   5031     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
   5032     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
   5033     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
   5034     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
   5035     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
   5036     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
   5037   };
   5038 /* --- inffixed.h */
   5039 
   5040 #endif
   5041 
   5042 
   5043 int inflate_trees_fixed(bl, bd, tl, td, z)
   5044 uIntf *bl;               /* literal desired/actual bit depth */
   5045 uIntf *bd;               /* distance desired/actual bit depth */
   5046 inflate_huft * FAR *tl;  /* literal/length tree result */
   5047 inflate_huft * FAR *td;  /* distance tree result */
   5048 z_streamp z;             /* for memory allocation */
   5049 {
   5050 #ifdef BUILDFIXED
   5051   /* build fixed tables if not already */
   5052   if (!fixed_built)
   5053   {
   5054     int k;              /* temporary variable */
   5055     uInt f = 0;         /* number of hufts used in fixed_mem */
   5056     uIntf *c;           /* length list for huft_build */
   5057     uIntf *v;           /* work area for huft_build */
   5058 
   5059     /* allocate memory */
   5060     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5061       return Z_MEM_ERROR;
   5062     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   5063     {
   5064       ZFREE(z, c);
   5065       return Z_MEM_ERROR;
   5066     }
   5067 
   5068     /* literal table */
   5069     for (k = 0; k < 144; k++)
   5070       c[k] = 8;
   5071     for (; k < 256; k++)
   5072       c[k] = 9;
   5073     for (; k < 280; k++)
   5074       c[k] = 7;
   5075     for (; k < 288; k++)
   5076       c[k] = 8;
   5077     fixed_bl = 9;
   5078     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
   5079                fixed_mem, &f, v);
   5080 
   5081     /* distance table */
   5082     for (k = 0; k < 30; k++)
   5083       c[k] = 5;
   5084     fixed_bd = 5;
   5085     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
   5086                fixed_mem, &f, v);
   5087 
   5088     /* done */
   5089     ZFREE(z, v);
   5090     ZFREE(z, c);
   5091     fixed_built = 1;
   5092   }
   5093 #endif
   5094   *bl = fixed_bl;
   5095   *bd = fixed_bd;
   5096   *tl = fixed_tl;
   5097   *td = fixed_td;
   5098   return Z_OK;
   5099 }
   5100 /* --- inftrees.c */
   5101 
   5102 /* +++ infcodes.c */
   5103 
   5104 /* infcodes.c -- process literals and length/distance pairs
   5105  * Copyright (C) 1995-2002 Mark Adler
   5106  * For conditions of distribution and use, see copyright notice in zlib.h
   5107  */
   5108 
   5109 /* #include "zutil.h" */
   5110 /* #include "inftrees.h" */
   5111 /* #include "infblock.h" */
   5112 /* #include "infcodes.h" */
   5113 /* #include "infutil.h" */
   5114 
   5115 /* +++ inffast.h */
   5116 
   5117 /* inffast.h -- header to use inffast.c
   5118  * Copyright (C) 1995-2002 Mark Adler
   5119  * For conditions of distribution and use, see copyright notice in zlib.h
   5120  */
   5121 
   5122 /* WARNING: this file should *not* be used by applications. It is
   5123    part of the implementation of the compression library and is
   5124    subject to change. Applications should only use zlib.h.
   5125  */
   5126 
   5127 extern int inflate_fast __P((
   5128     uInt,
   5129     uInt,
   5130     inflate_huft *,
   5131     inflate_huft *,
   5132     inflate_blocks_statef *,
   5133     z_streamp ));
   5134 /* --- inffast.h */
   5135 
   5136 /* simplify the use of the inflate_huft type with some defines */
   5137 #define exop word.what.Exop
   5138 #define bits word.what.Bits
   5139 
   5140 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5141       START,    /* x: set up for LEN */
   5142       LEN,      /* i: get length/literal/eob next */
   5143       LENEXT,   /* i: getting length extra (have base) */
   5144       DIST,     /* i: get distance next */
   5145       DISTEXT,  /* i: getting distance extra */
   5146       COPY,     /* o: copying bytes in window, waiting for space */
   5147       LIT,      /* o: got literal, waiting for output space */
   5148       WASH,     /* o: got eob, possibly still output waiting */
   5149       END,      /* x: got eob and all data flushed */
   5150       BADCODE}  /* x: got error */
   5151 inflate_codes_mode;
   5152 
   5153 /* inflate codes private state */
   5154 struct inflate_codes_state {
   5155 
   5156   /* mode */
   5157   inflate_codes_mode mode;      /* current inflate_codes mode */
   5158 
   5159   /* mode dependent information */
   5160   uInt len;
   5161   union {
   5162     struct {
   5163       inflate_huft *tree;       /* pointer into tree */
   5164       uInt need;                /* bits needed */
   5165     } code;             /* if LEN or DIST, where in tree */
   5166     uInt lit;           /* if LIT, literal */
   5167     struct {
   5168       uInt get;                 /* bits to get for extra */
   5169       uInt dist;                /* distance back to copy from */
   5170     } copy;             /* if EXT or COPY, where and how much */
   5171   } sub;                /* submode */
   5172 
   5173   /* mode independent information */
   5174   Byte lbits;           /* ltree bits decoded per branch */
   5175   Byte dbits;           /* dtree bits decoder per branch */
   5176   inflate_huft *ltree;          /* literal/length/eob tree */
   5177   inflate_huft *dtree;          /* distance tree */
   5178 
   5179 };
   5180 
   5181 
   5182 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
   5183 uInt bl, bd;
   5184 inflate_huft *tl;
   5185 inflate_huft *td; /* need separate declaration for Borland C++ */
   5186 z_streamp z;
   5187 {
   5188   inflate_codes_statef *c;
   5189 
   5190   if ((c = (inflate_codes_statef *)
   5191        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
   5192   {
   5193     c->mode = START;
   5194     c->lbits = (Byte)bl;
   5195     c->dbits = (Byte)bd;
   5196     c->ltree = tl;
   5197     c->dtree = td;
   5198     Tracev((stderr, "inflate:       codes new\n"));
   5199   }
   5200   return c;
   5201 }
   5202 
   5203 
   5204 int inflate_codes(s, z, r)
   5205 inflate_blocks_statef *s;
   5206 z_streamp z;
   5207 int r;
   5208 {
   5209   uInt j;               /* temporary storage */
   5210   inflate_huft *t;      /* temporary pointer */
   5211   uInt e;               /* extra bits or operation */
   5212   uLong b;              /* bit buffer */
   5213   uInt k;               /* bits in bit buffer */
   5214   Bytef *p;             /* input data pointer */
   5215   uInt n;               /* bytes available there */
   5216   Bytef *q;             /* output window write pointer */
   5217   uInt m;               /* bytes to end of window or read pointer */
   5218   Bytef *f;             /* pointer to copy strings from */
   5219   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
   5220 
   5221   /* copy input/output information to locals (UPDATE macro restores) */
   5222   LOAD
   5223 
   5224   /* process input and output based on current state */
   5225   while (1) switch (c->mode)
   5226   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5227     case START:         /* x: set up for LEN */
   5228 #ifndef SLOW
   5229       if (m >= 258 && n >= 10)
   5230       {
   5231         UPDATE
   5232         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
   5233         LOAD
   5234         if (r != Z_OK)
   5235         {
   5236           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
   5237           break;
   5238         }
   5239       }
   5240 #endif /* !SLOW */
   5241       c->sub.code.need = c->lbits;
   5242       c->sub.code.tree = c->ltree;
   5243       c->mode = LEN;
   5244     case LEN:           /* i: get length/literal/eob next */
   5245       j = c->sub.code.need;
   5246       NEEDBITS(j)
   5247       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5248       DUMPBITS(t->bits)
   5249       e = (uInt)(t->exop);
   5250       if (e == 0)               /* literal */
   5251       {
   5252         c->sub.lit = t->base;
   5253         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5254                  "inflate:         literal '%c'\n" :
   5255                  "inflate:         literal 0x%02x\n", t->base));
   5256         c->mode = LIT;
   5257         break;
   5258       }
   5259       if (e & 16)               /* length */
   5260       {
   5261         c->sub.copy.get = e & 15;
   5262         c->len = t->base;
   5263         c->mode = LENEXT;
   5264         break;
   5265       }
   5266       if ((e & 64) == 0)        /* next table */
   5267       {
   5268         c->sub.code.need = e;
   5269         c->sub.code.tree = t + t->base;
   5270         break;
   5271       }
   5272       if (e & 32)               /* end of block */
   5273       {
   5274         Tracevv((stderr, "inflate:         end of block\n"));
   5275         c->mode = WASH;
   5276         break;
   5277       }
   5278       c->mode = BADCODE;        /* invalid code */
   5279       z->msg = (char*)"invalid literal/length code";
   5280       r = Z_DATA_ERROR;
   5281       LEAVE
   5282     case LENEXT:        /* i: getting length extra (have base) */
   5283       j = c->sub.copy.get;
   5284       NEEDBITS(j)
   5285       c->len += (uInt)b & inflate_mask[j];
   5286       DUMPBITS(j)
   5287       c->sub.code.need = c->dbits;
   5288       c->sub.code.tree = c->dtree;
   5289       Tracevv((stderr, "inflate:         length %u\n", c->len));
   5290       c->mode = DIST;
   5291     case DIST:          /* i: get distance next */
   5292       j = c->sub.code.need;
   5293       NEEDBITS(j)
   5294       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5295       DUMPBITS(t->bits)
   5296       e = (uInt)(t->exop);
   5297       if (e & 16)               /* distance */
   5298       {
   5299         c->sub.copy.get = e & 15;
   5300         c->sub.copy.dist = t->base;
   5301         c->mode = DISTEXT;
   5302         break;
   5303       }
   5304       if ((e & 64) == 0)        /* next table */
   5305       {
   5306         c->sub.code.need = e;
   5307         c->sub.code.tree = t + t->base;
   5308         break;
   5309       }
   5310       c->mode = BADCODE;        /* invalid code */
   5311       z->msg = (char*)"invalid distance code";
   5312       r = Z_DATA_ERROR;
   5313       LEAVE
   5314     case DISTEXT:       /* i: getting distance extra */
   5315       j = c->sub.copy.get;
   5316       NEEDBITS(j)
   5317       c->sub.copy.dist += (uInt)b & inflate_mask[j];
   5318       DUMPBITS(j)
   5319       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
   5320       c->mode = COPY;
   5321     case COPY:          /* o: copying bytes in window, waiting for space */
   5322       f = q - c->sub.copy.dist;
   5323       while (f < s->window)             /* modulo window size-"while" instead */
   5324         f += s->end - s->window;        /* of "if" handles invalid distances */
   5325       while (c->len)
   5326       {
   5327         NEEDOUT
   5328         OUTBYTE(*f++)
   5329         if (f == s->end)
   5330           f = s->window;
   5331         c->len--;
   5332       }
   5333       c->mode = START;
   5334       break;
   5335     case LIT:           /* o: got literal, waiting for output space */
   5336       NEEDOUT
   5337       OUTBYTE(c->sub.lit)
   5338       c->mode = START;
   5339       break;
   5340     case WASH:          /* o: got eob, possibly more output */
   5341       if (k > 7)        /* return unused byte, if any */
   5342       {
   5343         Assert(k < 16, "inflate_codes grabbed too many bytes")
   5344         k -= 8;
   5345         n++;
   5346         p--;            /* can always return one */
   5347       }
   5348       FLUSH
   5349       if (s->read != s->write)
   5350         LEAVE
   5351       c->mode = END;
   5352     case END:
   5353       r = Z_STREAM_END;
   5354       LEAVE
   5355     case BADCODE:       /* x: got error */
   5356       r = Z_DATA_ERROR;
   5357       LEAVE
   5358     default:
   5359       r = Z_STREAM_ERROR;
   5360       LEAVE
   5361   }
   5362 #ifdef NEED_DUMMY_RETURN
   5363   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
   5364 #endif
   5365 }
   5366 
   5367 
   5368 void inflate_codes_free(c, z)
   5369 inflate_codes_statef *c;
   5370 z_streamp z;
   5371 {
   5372   ZFREE(z, c);
   5373   Tracev((stderr, "inflate:       codes free\n"));
   5374 }
   5375 /* --- infcodes.c */
   5376 
   5377 /* +++ infutil.c */
   5378 
   5379 /* inflate_util.c -- data and routines common to blocks and codes
   5380  * Copyright (C) 1995-2002 Mark Adler
   5381  * For conditions of distribution and use, see copyright notice in zlib.h
   5382  */
   5383 
   5384 /* #include "zutil.h" */
   5385 /* #include "infblock.h" */
   5386 /* #include "inftrees.h" */
   5387 /* #include "infcodes.h" */
   5388 /* #include "infutil.h" */
   5389 
   5390 #ifndef NO_DUMMY_DECL
   5391 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5392 #endif
   5393 
   5394 /* And'ing with mask[n] masks the lower n bits */
   5395 uInt inflate_mask[17] = {
   5396     0x0000,
   5397     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
   5398     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
   5399 };
   5400 
   5401 
   5402 /* copy as much as possible from the sliding window to the output area */
   5403 int inflate_flush(s, z, r)
   5404 inflate_blocks_statef *s;
   5405 z_streamp z;
   5406 int r;
   5407 {
   5408   uInt n;
   5409   Bytef *p;
   5410   Bytef *q;
   5411 
   5412   /* local copies of source and destination pointers */
   5413   p = z->next_out;
   5414   q = s->read;
   5415 
   5416   /* compute number of bytes to copy as far as end of window */
   5417   n = (uInt)((q <= s->write ? s->write : s->end) - q);
   5418   if (n > z->avail_out) n = z->avail_out;
   5419   if (n && r == Z_BUF_ERROR) r = Z_OK;
   5420 
   5421   /* update counters */
   5422   z->avail_out -= n;
   5423   z->total_out += n;
   5424 
   5425   /* update check information */
   5426   if (s->checkfn != Z_NULL)
   5427     z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5428 
   5429   /* copy as far as end of window */
   5430   if (p != Z_NULL) {
   5431     zmemcpy(p, q, n);
   5432     p += n;
   5433   }
   5434   q += n;
   5435 
   5436   /* see if more to copy at beginning of window */
   5437   if (q == s->end)
   5438   {
   5439     /* wrap pointers */
   5440     q = s->window;
   5441     if (s->write == s->end)
   5442       s->write = s->window;
   5443 
   5444     /* compute bytes to copy */
   5445     n = (uInt)(s->write - q);
   5446     if (n > z->avail_out) n = z->avail_out;
   5447     if (n && r == Z_BUF_ERROR) r = Z_OK;
   5448 
   5449     /* update counters */
   5450     z->avail_out -= n;
   5451     z->total_out += n;
   5452 
   5453     /* update check information */
   5454     if (s->checkfn != Z_NULL)
   5455       z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5456 
   5457     /* copy */
   5458     if (p != NULL) {
   5459       zmemcpy(p, q, n);
   5460       p += n;
   5461     }
   5462     q += n;
   5463   }
   5464 
   5465   /* update pointers */
   5466   z->next_out = p;
   5467   s->read = q;
   5468 
   5469   /* done */
   5470   return r;
   5471 }
   5472 /* --- infutil.c */
   5473 
   5474 /* +++ inffast.c */
   5475 
   5476 /* inffast.c -- process literals and length/distance pairs fast
   5477  * Copyright (C) 1995-2002 Mark Adler
   5478  * For conditions of distribution and use, see copyright notice in zlib.h
   5479  */
   5480 
   5481 /* #include "zutil.h" */
   5482 /* #include "inftrees.h" */
   5483 /* #include "infblock.h" */
   5484 /* #include "infcodes.h" */
   5485 /* #include "infutil.h" */
   5486 /* #include "inffast.h" */
   5487 
   5488 #ifndef NO_DUMMY_DECL
   5489 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5490 #endif
   5491 
   5492 /* simplify the use of the inflate_huft type with some defines */
   5493 #define exop word.what.Exop
   5494 #define bits word.what.Bits
   5495 
   5496 /* macros for bit input with no checking and for returning unused bytes */
   5497 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   5498 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
   5499 
   5500 /* Called with number of bytes left to write in window at least 258
   5501    (the maximum string length) and number of input bytes available
   5502    at least ten.  The ten bytes are six bytes for the longest length/
   5503    distance pair plus four bytes for overloading the bit buffer. */
   5504 
   5505 int inflate_fast(bl, bd, tl, td, s, z)
   5506 uInt bl, bd;
   5507 inflate_huft *tl;
   5508 inflate_huft *td; /* need separate declaration for Borland C++ */
   5509 inflate_blocks_statef *s;
   5510 z_streamp z;
   5511 {
   5512   inflate_huft *t;      /* temporary pointer */
   5513   uInt e;               /* extra bits or operation */
   5514   uLong b;              /* bit buffer */
   5515   uInt k;               /* bits in bit buffer */
   5516   Bytef *p;             /* input data pointer */
   5517   uInt n;               /* bytes available there */
   5518   Bytef *q;             /* output window write pointer */
   5519   uInt m;               /* bytes to end of window or read pointer */
   5520   uInt ml;              /* mask for literal/length tree */
   5521   uInt md;              /* mask for distance tree */
   5522   uInt c;               /* bytes to copy */
   5523   uInt d;               /* distance back to copy from */
   5524   Bytef *r;             /* copy source pointer */
   5525 
   5526   /* load input, output, bit values */
   5527   LOAD
   5528 
   5529   /* initialize masks */
   5530   ml = inflate_mask[bl];
   5531   md = inflate_mask[bd];
   5532 
   5533   /* do until not enough input or output space for fast loop */
   5534   do {                          /* assume called with m >= 258 && n >= 10 */
   5535     /* get literal/length code */
   5536     GRABBITS(20)                /* max bits for literal/length code */
   5537     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
   5538     {
   5539       DUMPBITS(t->bits)
   5540       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5541                 "inflate:         * literal '%c'\n" :
   5542                 "inflate:         * literal 0x%02x\n", t->base));
   5543       *q++ = (Byte)t->base;
   5544       m--;
   5545       continue;
   5546     }
   5547     do {
   5548       DUMPBITS(t->bits)
   5549       if (e & 16)
   5550       {
   5551         /* get extra bits for length */
   5552         e &= 15;
   5553         c = t->base + ((uInt)b & inflate_mask[e]);
   5554         DUMPBITS(e)
   5555         Tracevv((stderr, "inflate:         * length %u\n", c));
   5556 
   5557         /* decode distance base of block to copy */
   5558         GRABBITS(15);           /* max bits for distance code */
   5559         e = (t = td + ((uInt)b & md))->exop;
   5560         do {
   5561           DUMPBITS(t->bits)
   5562           if (e & 16)
   5563           {
   5564             /* get extra bits to add to distance base */
   5565             e &= 15;
   5566             GRABBITS(e)         /* get extra bits (up to 13) */
   5567             d = t->base + ((uInt)b & inflate_mask[e]);
   5568             DUMPBITS(e)
   5569             Tracevv((stderr, "inflate:         * distance %u\n", d));
   5570 
   5571             /* do the copy */
   5572             m -= c;
   5573             r = q - d;
   5574             if (r < s->window)                  /* wrap if needed */
   5575             {
   5576               do {
   5577                 r += s->end - s->window;        /* force pointer in window */
   5578               } while (r < s->window);          /* covers invalid distances */
   5579               e = s->end - r;
   5580               if (c > e)
   5581               {
   5582                 c -= e;                         /* wrapped copy */
   5583                 do {
   5584                     *q++ = *r++;
   5585                 } while (--e);
   5586                 r = s->window;
   5587                 do {
   5588                     *q++ = *r++;
   5589                 } while (--c);
   5590               }
   5591               else                              /* normal copy */
   5592               {
   5593                 *q++ = *r++;  c--;
   5594                 *q++ = *r++;  c--;
   5595                 do {
   5596                     *q++ = *r++;
   5597                 } while (--c);
   5598               }
   5599             }
   5600             else                                /* normal copy */
   5601             {
   5602               *q++ = *r++;  c--;
   5603               *q++ = *r++;  c--;
   5604               do {
   5605                 *q++ = *r++;
   5606               } while (--c);
   5607             }
   5608             break;
   5609           }
   5610           else if ((e & 64) == 0)
   5611           {
   5612             t += t->base;
   5613             e = (t += ((uInt)b & inflate_mask[e]))->exop;
   5614           }
   5615           else
   5616           {
   5617             z->msg = (char*)"invalid distance code";
   5618             UNGRAB
   5619             UPDATE
   5620             return Z_DATA_ERROR;
   5621           }
   5622         } while (1);
   5623         break;
   5624       }
   5625       if ((e & 64) == 0)
   5626       {
   5627         t += t->base;
   5628         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
   5629         {
   5630           DUMPBITS(t->bits)
   5631           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5632                     "inflate:         * literal '%c'\n" :
   5633                     "inflate:         * literal 0x%02x\n", t->base));
   5634           *q++ = (Byte)t->base;
   5635           m--;
   5636           break;
   5637         }
   5638       }
   5639       else if (e & 32)
   5640       {
   5641         Tracevv((stderr, "inflate:         * end of block\n"));
   5642         UNGRAB
   5643         UPDATE
   5644         return Z_STREAM_END;
   5645       }
   5646       else
   5647       {
   5648         z->msg = (char*)"invalid literal/length code";
   5649         UNGRAB
   5650         UPDATE
   5651         return Z_DATA_ERROR;
   5652       }
   5653     } while (1);
   5654   } while (m >= 258 && n >= 10);
   5655 
   5656   /* not enough input or output--restore pointers and return */
   5657   UNGRAB
   5658   UPDATE
   5659   return Z_OK;
   5660 }
   5661 /* --- inffast.c */
   5662 
   5663 /* +++ zutil.c */
   5664 
   5665 /* zutil.c -- target dependent utility functions for the compression library
   5666  * Copyright (C) 1995-2002 Jean-loup Gailly.
   5667  * For conditions of distribution and use, see copyright notice in zlib.h
   5668  */
   5669 
   5670 /* @(#) Id */
   5671 
   5672 #ifdef DEBUG_ZLIB
   5673 #include <stdio.h>
   5674 #endif
   5675 
   5676 /* #include "zutil.h" */
   5677 
   5678 #ifndef NO_DUMMY_DECL
   5679 struct internal_state      {int dummy;}; /* for buggy compilers */
   5680 #endif
   5681 
   5682 #ifndef STDC
   5683 extern void exit __P((int));
   5684 #endif
   5685 
   5686 const char *z_errmsg[10] = {
   5687 "need dictionary",     /* Z_NEED_DICT       2  */
   5688 "stream end",          /* Z_STREAM_END      1  */
   5689 "",                    /* Z_OK              0  */
   5690 "file error",          /* Z_ERRNO         (-1) */
   5691 "stream error",        /* Z_STREAM_ERROR  (-2) */
   5692 "data error",          /* Z_DATA_ERROR    (-3) */
   5693 "insufficient memory", /* Z_MEM_ERROR     (-4) */
   5694 "buffer error",        /* Z_BUF_ERROR     (-5) */
   5695 "incompatible version",/* Z_VERSION_ERROR (-6) */
   5696 ""};
   5697 
   5698 
   5699 #if 0
   5700 const char * ZEXPORT zlibVersion()
   5701 {
   5702     return ZLIB_VERSION;
   5703 }
   5704 #endif
   5705 
   5706 #ifdef DEBUG_ZLIB
   5707 
   5708 #  ifndef verbose
   5709 #    define verbose 0
   5710 #  endif
   5711 int z_verbose = verbose;
   5712 
   5713 void z_error (m)
   5714     char *m;
   5715 {
   5716     fprintf(stderr, "%s\n", m);
   5717     exit(1);
   5718 }
   5719 #endif
   5720 
   5721 /* exported to allow conversion of error code to string for compress() and
   5722  * uncompress()
   5723  */
   5724 #if 0
   5725 const char * ZEXPORT zError(err)
   5726     int err;
   5727 {
   5728     return ERR_MSG(err);
   5729 }
   5730 #endif
   5731 
   5732 
   5733 #ifndef HAVE_MEMCPY
   5734 
   5735 void zmemcpy(dest, source, len)
   5736     Bytef* dest;
   5737     const Bytef* source;
   5738     uInt  len;
   5739 {
   5740     if (len == 0) return;
   5741     do {
   5742         *dest++ = *source++; /* ??? to be unrolled */
   5743     } while (--len != 0);
   5744 }
   5745 
   5746 int zmemcmp(s1, s2, len)
   5747     const Bytef* s1;
   5748     const Bytef* s2;
   5749     uInt  len;
   5750 {
   5751     uInt j;
   5752 
   5753     for (j = 0; j < len; j++) {
   5754         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
   5755     }
   5756     return 0;
   5757 }
   5758 
   5759 void zmemzero(dest, len)
   5760     Bytef* dest;
   5761     uInt  len;
   5762 {
   5763     if (len == 0) return;
   5764     do {
   5765         *dest++ = 0;  /* ??? to be unrolled */
   5766     } while (--len != 0);
   5767 }
   5768 #endif
   5769 
   5770 #ifdef __TURBOC__
   5771 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
   5772 /* Small and medium model in Turbo C are for now limited to near allocation
   5773  * with reduced MAX_WBITS and MAX_MEM_LEVEL
   5774  */
   5775 #  define MY_ZCALLOC
   5776 
   5777 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
   5778  * and farmalloc(64K) returns a pointer with an offset of 8, so we
   5779  * must fix the pointer. Warning: the pointer must be put back to its
   5780  * original form in order to free it, use zcfree().
   5781  */
   5782 
   5783 #define MAX_PTR 10
   5784 /* 10*64K = 640K */
   5785 
   5786 local int next_ptr = 0;
   5787 
   5788 typedef struct ptr_table_s {
   5789     voidpf org_ptr;
   5790     voidpf new_ptr;
   5791 } ptr_table;
   5792 
   5793 local ptr_table table[MAX_PTR];
   5794 /* This table is used to remember the original form of pointers
   5795  * to large buffers (64K). Such pointers are normalized with a zero offset.
   5796  * Since MSDOS is not a preemptive multitasking OS, this table is not
   5797  * protected from concurrent access. This hack doesn't work anyway on
   5798  * a protected system like OS/2. Use Microsoft C instead.
   5799  */
   5800 
   5801 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5802 {
   5803     voidpf buf = opaque; /* just to make some compilers happy */
   5804     ulg bsize = (ulg)items*size;
   5805 
   5806     /* If we allocate less than 65520 bytes, we assume that farmalloc
   5807      * will return a usable pointer which doesn't have to be normalized.
   5808      */
   5809     if (bsize < 65520L) {
   5810         buf = farmalloc(bsize);
   5811         if (*(ush*)&buf != 0) return buf;
   5812     } else {
   5813         buf = farmalloc(bsize + 16L);
   5814     }
   5815     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
   5816     table[next_ptr].org_ptr = buf;
   5817 
   5818     /* Normalize the pointer to seg:0 */
   5819     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
   5820     *(ush*)&buf = 0;
   5821     table[next_ptr++].new_ptr = buf;
   5822     return buf;
   5823 }
   5824 
   5825 void  zcfree (voidpf opaque, voidpf ptr)
   5826 {
   5827     int n;
   5828     if (*(ush*)&ptr != 0) { /* object < 64K */
   5829         farfree(ptr);
   5830         return;
   5831     }
   5832     /* Find the original pointer */
   5833     for (n = 0; n < next_ptr; n++) {
   5834         if (ptr != table[n].new_ptr) continue;
   5835 
   5836         farfree(table[n].org_ptr);
   5837         while (++n < next_ptr) {
   5838             table[n-1] = table[n];
   5839         }
   5840         next_ptr--;
   5841         return;
   5842     }
   5843     ptr = opaque; /* just to make some compilers happy */
   5844     Assert(0, "zcfree: ptr not found");
   5845 }
   5846 #endif
   5847 #endif /* __TURBOC__ */
   5848 
   5849 
   5850 #if defined(M_I86) && !defined(__32BIT__)
   5851 /* Microsoft C in 16-bit mode */
   5852 
   5853 #  define MY_ZCALLOC
   5854 
   5855 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
   5856 #  define _halloc  halloc
   5857 #  define _hfree   hfree
   5858 #endif
   5859 
   5860 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5861 {
   5862     if (opaque) opaque = 0; /* to make compiler happy */
   5863     return _halloc((long)items, size);
   5864 }
   5865 
   5866 void  zcfree (voidpf opaque, voidpf ptr)
   5867 {
   5868     if (opaque) opaque = 0; /* to make compiler happy */
   5869     _hfree(ptr);
   5870 }
   5871 
   5872 #endif /* MSC */
   5873 
   5874 
   5875 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
   5876 
   5877 #ifndef STDC
   5878 extern voidp  calloc __P((uInt items, uInt size));
   5879 extern void   free   __P((voidpf ptr));
   5880 #endif
   5881 
   5882 voidpf zcalloc (opaque, items, size)
   5883     voidpf opaque;
   5884     unsigned items;
   5885     unsigned size;
   5886 {
   5887     if (opaque) items += size - size; /* make compiler happy */
   5888     return (voidpf)calloc(items, size);
   5889 }
   5890 
   5891 void  zcfree (opaque, ptr)
   5892     voidpf opaque;
   5893     voidpf ptr;
   5894 {
   5895     free(ptr);
   5896     if (opaque) return; /* make compiler happy */
   5897 }
   5898 
   5899 #endif /* MY_ZCALLOC */
   5900 /* --- zutil.c */
   5901 
   5902 /* +++ adler32.c */
   5903 /* adler32.c -- compute the Adler-32 checksum of a data stream
   5904  * Copyright (C) 1995-2002 Mark Adler
   5905  * For conditions of distribution and use, see copyright notice in zlib.h
   5906  */
   5907 
   5908 /* @(#) $Id: zlib.c,v 1.19 2002/08/20 03:52:26 kristerw Exp $ */
   5909 
   5910 /* #include "zlib.h" */
   5911 
   5912 #define BASE 65521L /* largest prime smaller than 65536 */
   5913 #define NMAX 5552
   5914 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
   5915 
   5916 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
   5917 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
   5918 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
   5919 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
   5920 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
   5921 
   5922 /* ========================================================================= */
   5923 uLong ZEXPORT adler32(adler, buf, len)
   5924     uLong adler;
   5925     const Bytef *buf;
   5926     uInt len;
   5927 {
   5928     unsigned long s1 = adler & 0xffff;
   5929     unsigned long s2 = (adler >> 16) & 0xffff;
   5930     int k;
   5931 
   5932     if (buf == Z_NULL) return 1L;
   5933 
   5934     while (len > 0) {
   5935         k = len < NMAX ? len : NMAX;
   5936         len -= k;
   5937         while (k >= 16) {
   5938             DO16(buf);
   5939 	    buf += 16;
   5940             k -= 16;
   5941         }
   5942         if (k != 0) do {
   5943             s1 += *buf++;
   5944 	    s2 += s1;
   5945         } while (--k);
   5946         s1 %= BASE;
   5947         s2 %= BASE;
   5948     }
   5949     return (s2 << 16) | s1;
   5950 }
   5951 /* --- adler32.c */
   5952 
   5953