Home | History | Annotate | Line # | Download | only in net
zlib.c revision 1.37
      1 /*	$NetBSD: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $	*/
      2 /*
      3  * This file is derived from various .h and .c files from the zlib-1.0.4
      4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
      5  * by Paul Mackerras to aid in implementing Deflate compression and
      6  * decompression for PPP packets.  See zlib.h for conditions of
      7  * distribution and use.
      8  *
      9  * Changes that have been made include:
     10  * - added Z_PACKET_FLUSH (see zlib.h for details)
     11  * - added inflateIncomp and deflateOutputPending
     12  * - allow strm->next_out to be NULL, meaning discard the output
     13  *
     14  * $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $
     15  */
     16 
     17 /*
     18  *  ==FILEVERSION 020312==
     19  *
     20  * This marker is used by the Linux installation script to determine
     21  * whether an up-to-date version of this file is already installed.
     22  */
     23 
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $");
     26 
     27 #define NO_DUMMY_DECL
     28 #define NO_ZCFUNCS
     29 #define MY_ZCALLOC
     30 
     31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
     32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
     33 #endif
     34 
     35 
     36 /* +++ zutil.h */
     37 
     38 /* zutil.h -- internal interface and configuration of the compression library
     39  * Copyright (C) 1995-2002 Jean-loup Gailly.
     40  * For conditions of distribution and use, see copyright notice in zlib.h
     41  */
     42 
     43 /* WARNING: this file should *not* be used by applications. It is
     44    part of the implementation of the compression library and is
     45    subject to change. Applications should only use zlib.h.
     46  */
     47 
     48 /* @(#) $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $ */
     49 
     50 #ifndef _Z_UTIL_H
     51 #define _Z_UTIL_H
     52 
     53 #include "zlib.h"
     54 
     55 #if defined(KERNEL) || defined(_KERNEL)
     56 /* Assume this is a *BSD or SVR4 kernel */
     57 #include <sys/param.h>
     58 #include <sys/time.h>
     59 #include <sys/systm.h>
     60 #  define HAVE_MEMCPY
     61 #else
     62 #if defined(__KERNEL__)
     63 /* Assume this is a Linux kernel */
     64 #include <linux/string.h>
     65 #define HAVE_MEMCPY
     66 
     67 #else /* not kernel */
     68 
     69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
     70 
     71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
     72 #  include <lib/libkern/libkern.h>
     73 
     74 #else
     75 #  include <sys/types.h>
     76 #  include <sys/param.h>
     77 #ifdef STDC
     78 #  include <stddef.h>
     79 #  include <string.h>
     80 #  include <stdlib.h>
     81 #endif
     82 #ifdef NO_ERRNO_H
     83     extern int errno;
     84 #else
     85 #   include <errno.h>
     86 #endif
     87 #endif /* __NetBSD__ && _STANDALONE */
     88 #endif /* __KERNEL__ */
     89 #endif /* _KERNEL || KERNEL */
     90 
     91 #ifndef local
     92 #  define local static
     93 #endif
     94 /* compile with -Dlocal if your debugger can't find static symbols */
     95 
     96 typedef unsigned char  uch;
     97 typedef uch FAR uchf;
     98 typedef unsigned short ush;
     99 typedef ush FAR ushf;
    100 typedef unsigned long  ulg;
    101 
    102 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
    103 /* (size given to avoid silly warnings with Visual C++) */
    104 
    105 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
    106 
    107 #define ERR_RETURN(strm,err) \
    108   return (strm->msg = ERR_MSG(err), (err))
    109 /* To be used only when the state is known to be valid */
    110 
    111         /* common constants */
    112 
    113 #ifndef DEF_WBITS
    114 #  define DEF_WBITS MAX_WBITS
    115 #endif
    116 /* default windowBits for decompression. MAX_WBITS is for compression only */
    117 
    118 #if MAX_MEM_LEVEL >= 8
    119 #  define DEF_MEM_LEVEL 8
    120 #else
    121 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
    122 #endif
    123 /* default memLevel */
    124 
    125 #define STORED_BLOCK 0
    126 #define STATIC_TREES 1
    127 #define DYN_TREES    2
    128 /* The three kinds of block type */
    129 
    130 #define MIN_MATCH  3
    131 #define MAX_MATCH  258
    132 /* The minimum and maximum match lengths */
    133 
    134 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
    135 
    136         /* target dependencies */
    137 
    138 #ifdef MSDOS
    139 #  define OS_CODE  0x00
    140 #  if defined(__TURBOC__) || defined(__BORLANDC__)
    141 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
    142        /* Allow compilation with ANSI keywords only enabled */
    143        void _Cdecl farfree( void *block );
    144        void *_Cdecl farmalloc( unsigned long nbytes );
    145 #    else
    146 #     include <alloc.h>
    147 #    endif
    148 #  else /* MSC or DJGPP */
    149 #    include <malloc.h>
    150 #  endif
    151 #endif
    152 
    153 #ifdef OS2
    154 #  define OS_CODE  0x06
    155 #endif
    156 
    157 #ifdef WIN32 /* Window 95 & Windows NT */
    158 #  define OS_CODE  0x0b
    159 #endif
    160 
    161 #if defined(VAXC) || defined(VMS)
    162 #  define OS_CODE  0x02
    163 #  define F_OPEN(name, mode) \
    164      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
    165 #endif
    166 
    167 #ifdef AMIGA
    168 #  define OS_CODE  0x01
    169 #endif
    170 
    171 #if defined(ATARI) || defined(atarist)
    172 #  define OS_CODE  0x05
    173 #endif
    174 
    175 #if defined(MACOS) || defined(TARGET_OS_MAC)
    176 #  define OS_CODE  0x07
    177 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
    178 #    include <unix.h> /* for fdopen */
    179 #  else
    180 #    ifndef fdopen
    181 #      define fdopen(fd,mode) NULL /* No fdopen() */
    182 #    endif
    183 #  endif
    184 #endif
    185 
    186 #ifdef __50SERIES /* Prime/PRIMOS */
    187 #  define OS_CODE  0x0F
    188 #endif
    189 
    190 #ifdef TOPS20
    191 #  define OS_CODE  0x0a
    192 #endif
    193 
    194 #if defined(_BEOS_) || defined(RISCOS)
    195 #  define fdopen(fd,mode) NULL /* No fdopen() */
    196 #endif
    197 
    198 #if (defined(_MSC_VER) && (_MSC_VER > 600))
    199 #  define fdopen(fd,type)  _fdopen(fd,type)
    200 #endif
    201 
    202 
    203         /* Common defaults */
    204 
    205 #ifndef OS_CODE
    206 #  define OS_CODE  0x03  /* assume Unix */
    207 #endif
    208 
    209 #ifndef F_OPEN
    210 #  define F_OPEN(name, mode) fopen((name), (mode))
    211 #endif
    212 
    213          /* functions */
    214 
    215 #ifdef HAVE_STRERROR
    216    extern char *strerror(int);
    217 #  define zstrerror(errnum) strerror(errnum)
    218 #else
    219 #  define zstrerror(errnum) ""
    220 #endif
    221 
    222 #if defined(pyr)
    223 #  define NO_MEMCPY
    224 #endif
    225 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
    226  /* Use our own functions for small and medium model with MSC <= 5.0.
    227   * You may have to use the same strategy for Borland C (untested).
    228   * The __SC__ check is for Symantec.
    229   */
    230 #  define NO_MEMCPY
    231 #endif
    232 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
    233 #  define HAVE_MEMCPY
    234 #endif
    235 #ifdef HAVE_MEMCPY
    236 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
    237 #    define zmemcpy _fmemcpy
    238 #    define zmemcmp _fmemcmp
    239 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
    240 #  else
    241 #    define zmemcpy memcpy
    242 #    define zmemcmp memcmp
    243 #    define zmemzero(dest, len) memset(dest, 0, len)
    244 #  endif
    245 #else
    246    extern void zmemcpy(Bytef* dest, const Bytef* source, uInt len);
    247    extern int  zmemcmp(const Bytef* s1, const Bytef* s2, uInt len);
    248    extern void zmemzero(Bytef* dest, uInt len);
    249 #endif
    250 
    251 /* Diagnostic functions */
    252 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
    253 #  include <stdio.h>
    254    extern int z_verbose;
    255    extern void z_error(char *m);
    256 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
    257 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
    258 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
    259 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
    260 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
    261 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
    262 #else
    263 #  define Assert(cond,msg)
    264 #  define Trace(x)
    265 #  define Tracev(x)
    266 #  define Tracevv(x)
    267 #  define Tracec(c,x)
    268 #  define Tracecv(c,x)
    269 #endif
    270 
    271 
    272 typedef uLong (ZEXPORT *check_func)(uLong check, const Bytef *buf,
    273 				       uInt len);
    274 voidpf zcalloc(voidpf opaque, unsigned items, unsigned size);
    275 void   zcfree(voidpf opaque, voidpf ptr);
    276 
    277 #define ZALLOC(strm, items, size) \
    278            (*((strm)->zalloc))((strm)->opaque, (items), (size))
    279 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
    280 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
    281 
    282 #endif /* _Z_UTIL_H */
    283 /* --- zutil.h */
    284 
    285 /* +++ deflate.h */
    286 
    287 /* deflate.h -- internal compression state
    288  * Copyright (C) 1995-2002 Jean-loup Gailly
    289  * For conditions of distribution and use, see copyright notice in zlib.h
    290  */
    291 
    292 /* WARNING: this file should *not* be used by applications. It is
    293    part of the implementation of the compression library and is
    294    subject to change. Applications should only use zlib.h.
    295  */
    296 
    297 /* @(#) $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $ */
    298 
    299 #ifndef _DEFLATE_H
    300 #define _DEFLATE_H
    301 
    302 /* #include "zutil.h" */
    303 
    304 /* ===========================================================================
    305  * Internal compression state.
    306  */
    307 
    308 #define LENGTH_CODES 29
    309 /* number of length codes, not counting the special END_BLOCK code */
    310 
    311 #define LITERALS  256
    312 /* number of literal bytes 0..255 */
    313 
    314 #define L_CODES (LITERALS+1+LENGTH_CODES)
    315 /* number of Literal or Length codes, including the END_BLOCK code */
    316 
    317 #define D_CODES   30
    318 /* number of distance codes */
    319 
    320 #define BL_CODES  19
    321 /* number of codes used to transfer the bit lengths */
    322 
    323 #define HEAP_SIZE (2*L_CODES+1)
    324 /* maximum heap size */
    325 
    326 #define MAX_BITS 15
    327 /* All codes must not exceed MAX_BITS bits */
    328 
    329 #define INIT_STATE    42
    330 #define BUSY_STATE   113
    331 #define FINISH_STATE 666
    332 /* Stream status */
    333 
    334 
    335 /* Data structure describing a single value and its code string. */
    336 typedef struct ct_data_s {
    337     union {
    338         ush  freq;       /* frequency count */
    339         ush  code;       /* bit string */
    340     } fc;
    341     union {
    342         ush  dad;        /* father node in Huffman tree */
    343         ush  len;        /* length of bit string */
    344     } dl;
    345 } FAR ct_data;
    346 
    347 #define Freq fc.freq
    348 #define Code fc.code
    349 #define Dad  dl.dad
    350 #define Len  dl.len
    351 
    352 typedef struct static_tree_desc_s  static_tree_desc;
    353 
    354 typedef struct tree_desc_s {
    355     ct_data *dyn_tree;           /* the dynamic tree */
    356     int     max_code;            /* largest code with non zero frequency */
    357     static_tree_desc *stat_desc; /* the corresponding static tree */
    358 } FAR tree_desc;
    359 
    360 typedef ush Pos;
    361 typedef Pos FAR Posf;
    362 typedef unsigned IPos;
    363 
    364 /* A Pos is an index in the character window. We use short instead of int to
    365  * save space in the various tables. IPos is used only for parameter passing.
    366  */
    367 
    368 typedef struct deflate_state {
    369     z_streamp strm;      /* pointer back to this zlib stream */
    370     int   status;        /* as the name implies */
    371     Bytef *pending_buf;  /* output still pending */
    372     ulg   pending_buf_size; /* size of pending_buf */
    373     Bytef *pending_out;  /* next pending byte to output to the stream */
    374     int   pending;       /* nb of bytes in the pending buffer */
    375     int   noheader;      /* suppress zlib header and adler32 */
    376     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
    377     Byte  method;        /* STORED (for zip only) or DEFLATED */
    378     int   last_flush;    /* value of flush param for previous deflate call */
    379 
    380                 /* used by deflate.c: */
    381 
    382     uInt  w_size;        /* LZ77 window size (32K by default) */
    383     uInt  w_bits;        /* log2(w_size)  (8..16) */
    384     uInt  w_mask;        /* w_size - 1 */
    385 
    386     Bytef *window;
    387     /* Sliding window. Input bytes are read into the second half of the window,
    388      * and move to the first half later to keep a dictionary of at least wSize
    389      * bytes. With this organization, matches are limited to a distance of
    390      * wSize-MAX_MATCH bytes, but this ensures that IO is always
    391      * performed with a length multiple of the block size. Also, it limits
    392      * the window size to 64K, which is quite useful on MSDOS.
    393      * To do: use the user input buffer as sliding window.
    394      */
    395 
    396     ulg window_size;
    397     /* Actual size of window: 2*wSize, except when the user input buffer
    398      * is directly used as sliding window.
    399      */
    400 
    401     Posf *prev;
    402     /* Link to older string with same hash index. To limit the size of this
    403      * array to 64K, this link is maintained only for the last 32K strings.
    404      * An index in this array is thus a window index modulo 32K.
    405      */
    406 
    407     Posf *head; /* Heads of the hash chains or NIL. */
    408 
    409     uInt  ins_h;          /* hash index of string to be inserted */
    410     uInt  hash_size;      /* number of elements in hash table */
    411     uInt  hash_bits;      /* log2(hash_size) */
    412     uInt  hash_mask;      /* hash_size-1 */
    413 
    414     uInt  hash_shift;
    415     /* Number of bits by which ins_h must be shifted at each input
    416      * step. It must be such that after MIN_MATCH steps, the oldest
    417      * byte no longer takes part in the hash key, that is:
    418      *   hash_shift * MIN_MATCH >= hash_bits
    419      */
    420 
    421     long block_start;
    422     /* Window position at the beginning of the current output block. Gets
    423      * negative when the window is moved backwards.
    424      */
    425 
    426     uInt match_length;           /* length of best match */
    427     IPos prev_match;             /* previous match */
    428     int match_available;         /* set if previous match exists */
    429     uInt strstart;               /* start of string to insert */
    430     uInt match_start;            /* start of matching string */
    431     uInt lookahead;              /* number of valid bytes ahead in window */
    432 
    433     uInt prev_length;
    434     /* Length of the best match at previous step. Matches not greater than this
    435      * are discarded. This is used in the lazy match evaluation.
    436      */
    437 
    438     uInt max_chain_length;
    439     /* To speed up deflation, hash chains are never searched beyond this
    440      * length.  A higher limit improves compression ratio but degrades the
    441      * speed.
    442      */
    443 
    444     uInt max_lazy_match;
    445     /* Attempt to find a better match only when the current match is strictly
    446      * smaller than this value. This mechanism is used only for compression
    447      * levels >= 4.
    448      */
    449 #   define max_insert_length  max_lazy_match
    450     /* Insert new strings in the hash table only if the match length is not
    451      * greater than this length. This saves time but degrades compression.
    452      * max_insert_length is used only for compression levels <= 3.
    453      */
    454 
    455     int level;    /* compression level (1..9) */
    456     int strategy; /* favor or force Huffman coding*/
    457 
    458     uInt good_match;
    459     /* Use a faster search when the previous match is longer than this */
    460 
    461     int nice_match; /* Stop searching when current match exceeds this */
    462 
    463                 /* used by trees.c: */
    464     /* Didn't use ct_data typedef below to suppress compiler warning */
    465     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
    466     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
    467     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
    468 
    469     struct tree_desc_s l_desc;               /* desc. for literal tree */
    470     struct tree_desc_s d_desc;               /* desc. for distance tree */
    471     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
    472 
    473     ush bl_count[MAX_BITS+1];
    474     /* number of codes at each bit length for an optimal tree */
    475 
    476     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
    477     int heap_len;               /* number of elements in the heap */
    478     int heap_max;               /* element of largest frequency */
    479     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
    480      * The same heap array is used to build all trees.
    481      */
    482 
    483     uch depth[2*L_CODES+1];
    484     /* Depth of each subtree used as tie breaker for trees of equal frequency
    485      */
    486 
    487     uchf *l_buf;          /* buffer for literals or lengths */
    488 
    489     uInt  lit_bufsize;
    490     /* Size of match buffer for literals/lengths.  There are 4 reasons for
    491      * limiting lit_bufsize to 64K:
    492      *   - frequencies can be kept in 16 bit counters
    493      *   - if compression is not successful for the first block, all input
    494      *     data is still in the window so we can still emit a stored block even
    495      *     when input comes from standard input.  (This can also be done for
    496      *     all blocks if lit_bufsize is not greater than 32K.)
    497      *   - if compression is not successful for a file smaller than 64K, we can
    498      *     even emit a stored file instead of a stored block (saving 5 bytes).
    499      *     This is applicable only for zip (not gzip or zlib).
    500      *   - creating new Huffman trees less frequently may not provide fast
    501      *     adaptation to changes in the input data statistics. (Take for
    502      *     example a binary file with poorly compressible code followed by
    503      *     a highly compressible string table.) Smaller buffer sizes give
    504      *     fast adaptation but have of course the overhead of transmitting
    505      *     trees more frequently.
    506      *   - I can't count above 4
    507      */
    508 
    509     uInt last_lit;      /* running index in l_buf */
    510 
    511     ushf *d_buf;
    512     /* Buffer for distances. To simplify the code, d_buf and l_buf have
    513      * the same number of elements. To use different lengths, an extra flag
    514      * array would be necessary.
    515      */
    516 
    517     ulg opt_len;        /* bit length of current block with optimal trees */
    518     ulg static_len;     /* bit length of current block with static trees */
    519     uInt matches;       /* number of string matches in current block */
    520     int last_eob_len;   /* bit length of EOB code for last block */
    521 
    522 #ifdef DEBUG_ZLIB
    523     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
    524     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
    525 #endif
    526 
    527     ush bi_buf;
    528     /* Output buffer. bits are inserted starting at the bottom (least
    529      * significant bits).
    530      */
    531     int bi_valid;
    532     /* Number of valid bits in bi_buf.  All bits above the last valid bit
    533      * are always zero.
    534      */
    535 
    536 } FAR deflate_state;
    537 
    538 /* Output a byte on the stream.
    539  * IN assertion: there is enough room in pending_buf.
    540  */
    541 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
    542 
    543 
    544 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    545 /* Minimum amount of lookahead, except at the end of the input file.
    546  * See deflate.c for comments about the MIN_MATCH+1.
    547  */
    548 
    549 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
    550 /* In order to simplify the code, particularly on 16 bit machines, match
    551  * distances are limited to MAX_DIST instead of WSIZE.
    552  */
    553 
    554         /* in trees.c */
    555 void _tr_init(deflate_state *s);
    556 int  _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
    557 void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len,
    558 			  int eof);
    559 void _tr_align(deflate_state *s);
    560 void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len,
    561                           int eof);
    562 void _tr_stored_type_only(deflate_state *);
    563 
    564 #define d_code(dist) \
    565    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
    566 /* Mapping from a distance to a distance code. dist is the distance - 1 and
    567  * must not have side effects. _dist_code[256] and _dist_code[257] are never
    568  * used.
    569  */
    570 
    571 #ifndef DEBUG_ZLIB
    572 /* Inline versions of _tr_tally for speed: */
    573 
    574 #if defined(GEN_TREES_H) || !defined(STDC)
    575   extern uch _length_code[];
    576   extern uch _dist_code[];
    577 #else
    578   extern const uch _length_code[];
    579   extern const uch _dist_code[];
    580 #endif
    581 
    582 # define _tr_tally_lit(s, c, flush) \
    583   { uch cc = (c); \
    584     s->d_buf[s->last_lit] = 0; \
    585     s->l_buf[s->last_lit++] = cc; \
    586     s->dyn_ltree[cc].Freq++; \
    587     flush = (s->last_lit == s->lit_bufsize-1); \
    588    }
    589 # define _tr_tally_dist(s, distance, length, flush) \
    590   { uch len = (length); \
    591     ush dist = (distance); \
    592     s->d_buf[s->last_lit] = dist; \
    593     s->l_buf[s->last_lit++] = len; \
    594     dist--; \
    595     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
    596     s->dyn_dtree[d_code(dist)].Freq++; \
    597     flush = (s->last_lit == s->lit_bufsize-1); \
    598   }
    599 #else
    600 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
    601 # define _tr_tally_dist(s, distance, length, flush) \
    602               flush = _tr_tally(s, distance, length)
    603 #endif
    604 
    605 #endif
    606 /* --- deflate.h */
    607 
    608 /* +++ deflate.c */
    609 
    610 /* deflate.c -- compress data using the deflation algorithm
    611  * Copyright (C) 1995-2002 Jean-loup Gailly.
    612  * For conditions of distribution and use, see copyright notice in zlib.h
    613  */
    614 
    615 /*
    616  *  ALGORITHM
    617  *
    618  *      The "deflation" process depends on being able to identify portions
    619  *      of the input text which are identical to earlier input (within a
    620  *      sliding window trailing behind the input currently being processed).
    621  *
    622  *      The most straightforward technique turns out to be the fastest for
    623  *      most input files: try all possible matches and select the longest.
    624  *      The key feature of this algorithm is that insertions into the string
    625  *      dictionary are very simple and thus fast, and deletions are avoided
    626  *      completely. Insertions are performed at each input character, whereas
    627  *      string matches are performed only when the previous match ends. So it
    628  *      is preferable to spend more time in matches to allow very fast string
    629  *      insertions and avoid deletions. The matching algorithm for small
    630  *      strings is inspired from that of Rabin & Karp. A brute force approach
    631  *      is used to find longer strings when a small match has been found.
    632  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
    633  *      (by Leonid Broukhis).
    634  *         A previous version of this file used a more sophisticated algorithm
    635  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
    636  *      time, but has a larger average cost, uses more memory and is patented.
    637  *      However the F&G algorithm may be faster for some highly redundant
    638  *      files if the parameter max_chain_length (described below) is too large.
    639  *
    640  *  ACKNOWLEDGEMENTS
    641  *
    642  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
    643  *      I found it in 'freeze' written by Leonid Broukhis.
    644  *      Thanks to many people for bug reports and testing.
    645  *
    646  *  REFERENCES
    647  *
    648  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
    649  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
    650  *
    651  *      A description of the Rabin and Karp algorithm is given in the book
    652  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
    653  *
    654  *      Fiala,E.R., and Greene,D.H.
    655  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
    656  *
    657  */
    658 
    659 /* @(#) $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $ */
    660 
    661 /* #include "deflate.h" */
    662 
    663 const char deflate_copyright[] =
    664    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
    665 /*
    666   If you use the zlib library in a product, an acknowledgment is welcome
    667   in the documentation of your product. If for some reason you cannot
    668   include such an acknowledgment, I would appreciate that you keep this
    669   copyright string in the executable of your product.
    670  */
    671 
    672 /* ===========================================================================
    673  *  Function prototypes.
    674  */
    675 typedef enum {
    676     need_more,      /* block not completed, need more input or more output */
    677     block_done,     /* block flush performed */
    678     finish_started, /* finish started, need only more output at next deflate */
    679     finish_done     /* finish done, accept no more input or output */
    680 } block_state;
    681 
    682 typedef block_state (*compress_func)(deflate_state *s, int flush);
    683 /* Compression function. Returns the block state after the call. */
    684 
    685 local void fill_window(deflate_state *s);
    686 local block_state deflate_stored(deflate_state *s, int flush);
    687 local block_state deflate_fast(deflate_state *s, int flush);
    688 local block_state deflate_slow(deflate_state *s, int flush);
    689 local void lm_init(deflate_state *s);
    690 local void putShortMSB(deflate_state *s, uInt b);
    691 local void flush_pending(z_streamp strm);
    692 local int read_buf(z_streamp strm, Bytef *buf, unsigned size);
    693 #ifdef ASMV
    694       void match_init(void); /* asm code initialization */
    695       uInt longest_match(deflate_state *s, IPos cur_match);
    696 #else
    697 local uInt longest_match(deflate_state *s, IPos cur_match);
    698 #endif
    699 
    700 #ifdef DEBUG_ZLIB
    701 local  void check_match(deflate_state *s, IPos start, IPos match,
    702                             int length);
    703 #endif
    704 
    705 /* ===========================================================================
    706  * Local data
    707  */
    708 
    709 #define NIL 0
    710 /* Tail of hash chains */
    711 
    712 #ifndef TOO_FAR
    713 #  define TOO_FAR 4096
    714 #endif
    715 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
    716 
    717 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
    718 /* Minimum amount of lookahead, except at the end of the input file.
    719  * See deflate.c for comments about the MIN_MATCH+1.
    720  */
    721 
    722 /* Values for max_lazy_match, good_match and max_chain_length, depending on
    723  * the desired pack level (0..9). The values given below have been tuned to
    724  * exclude worst case performance for pathological files. Better values may be
    725  * found for specific files.
    726  */
    727 typedef struct config_s {
    728    ush good_length; /* reduce lazy search above this match length */
    729    ush max_lazy;    /* do not perform lazy search above this match length */
    730    ush nice_length; /* quit search above this match length */
    731    ush max_chain;
    732    compress_func func;
    733 } config;
    734 
    735 local const config configuration_table[10] = {
    736 /*      good lazy nice chain */
    737 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    738 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
    739 /* 2 */ {4,    5, 16,    8, deflate_fast},
    740 /* 3 */ {4,    6, 32,   32, deflate_fast},
    741 
    742 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    743 /* 5 */ {8,   16, 32,   32, deflate_slow},
    744 /* 6 */ {8,   16, 128, 128, deflate_slow},
    745 /* 7 */ {8,   32, 128, 256, deflate_slow},
    746 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    747 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
    748 
    749 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    750  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    751  * meaning.
    752  */
    753 
    754 #define EQUAL 0
    755 /* result of memcmp for equal strings */
    756 
    757 #ifndef NO_DUMMY_DECL
    758 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
    759 #endif
    760 
    761 /* ===========================================================================
    762  * Update a hash value with the given input byte
    763  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
    764  *    input characters, so that a running hash key can be computed from the
    765  *    previous key instead of complete recalculation each time.
    766  */
    767 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
    768 
    769 
    770 /* ===========================================================================
    771  * Insert string str in the dictionary and set match_head to the previous head
    772  * of the hash chain (the most recent string with same hash key). Return
    773  * the previous length of the hash chain.
    774  * If this file is compiled with -DFASTEST, the compression level is forced
    775  * to 1, and no hash chains are maintained.
    776  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
    777  *    input characters and the first MIN_MATCH bytes of str are valid
    778  *    (except for the last MIN_MATCH-1 bytes of the input file).
    779  */
    780 #ifdef FASTEST
    781 #define INSERT_STRING(s, str, match_head) \
    782    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    783     match_head = s->head[s->ins_h], \
    784     s->head[s->ins_h] = (Pos)(str))
    785 #else
    786 #define INSERT_STRING(s, str, match_head) \
    787    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    788     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
    789     s->head[s->ins_h] = (Pos)(str))
    790 #endif
    791 
    792 /* ===========================================================================
    793  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    794  * prev[] will be initialized on the fly.
    795  */
    796 #define CLEAR_HASH(s) \
    797     s->head[s->hash_size-1] = NIL; \
    798     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
    799 
    800 /* ========================================================================= */
    801 #if 0
    802 int ZEXPORT deflateInit_(z_streamp strm,
    803 	int level, const char *version, int stream_size)
    804 {
    805     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    806 			 Z_DEFAULT_STRATEGY, version, stream_size);
    807     /* To do: ignore strm->next_in if we use it as window */
    808 }
    809 #endif
    810 
    811 /* ========================================================================= */
    812 int ZEXPORT deflateInit2_(z_streamp strm,
    813 	int level, int method, int windowBits, int memLevel, int strategy,
    814 	const char *vers, int stream_size)
    815 {
    816     deflate_state *s;
    817     int noheader = 0;
    818     static const char* my_version = ZLIB_VERSION;
    819 
    820     ushf *overlay;
    821     /* We overlay pending_buf and d_buf+l_buf. This works since the average
    822      * output size for (length,distance) codes is <= 24 bits.
    823      */
    824 
    825     if (vers == Z_NULL || vers[0] != my_version[0] ||
    826         stream_size != sizeof(z_stream)) {
    827 	return Z_VERSION_ERROR;
    828     }
    829     if (strm == Z_NULL) return Z_STREAM_ERROR;
    830 
    831     strm->msg = Z_NULL;
    832 #ifndef NO_ZCFUNCS
    833     if (strm->zalloc == Z_NULL) {
    834 	strm->zalloc = zcalloc;
    835 	strm->opaque = (voidpf)0;
    836     }
    837     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
    838 #endif
    839 
    840     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    841 #ifdef FASTEST
    842     level = 1;
    843 #endif
    844 
    845     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
    846         noheader = 1;
    847         windowBits = -windowBits;
    848     }
    849     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    850         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
    851 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    852         return Z_STREAM_ERROR;
    853     }
    854     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    855     if (s == Z_NULL) return Z_MEM_ERROR;
    856     strm->state = (struct internal_state FAR *)s;
    857     s->strm = strm;
    858 
    859     s->noheader = noheader;
    860     s->w_bits = windowBits;
    861     s->w_size = 1 << s->w_bits;
    862     s->w_mask = s->w_size - 1;
    863 
    864     s->hash_bits = memLevel + 7;
    865     s->hash_size = 1 << s->hash_bits;
    866     s->hash_mask = s->hash_size - 1;
    867     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
    868 
    869     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    870     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    871     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    872 
    873     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    874 
    875     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
    876     s->pending_buf = (uchf *) overlay;
    877     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
    878 
    879     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    880         s->pending_buf == Z_NULL) {
    881         strm->msg = ERR_MSG(Z_MEM_ERROR);
    882 	s->status = INIT_STATE;
    883         deflateEnd (strm);
    884         return Z_MEM_ERROR;
    885     }
    886     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
    887     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
    888 
    889     s->level = level;
    890     s->strategy = strategy;
    891     s->method = (Byte)method;
    892 
    893     return deflateReset(strm);
    894 }
    895 
    896 /* ========================================================================= */
    897 #if 0
    898 int ZEXPORT deflateSetDictionary (z_streamp strm,
    899 	const Bytef *dictionary,
    900 	uInt dictLength)
    901 {
    902     deflate_state *s;
    903     uInt length = dictLength;
    904     uInt n;
    905     IPos hash_head = 0;
    906 
    907     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
    908         return Z_STREAM_ERROR;
    909 
    910     s = (deflate_state *)strm->state;
    911     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
    912 
    913     strm->adler = adler32(strm->adler, dictionary, dictLength);
    914 
    915     if (length < MIN_MATCH) return Z_OK;
    916     if (length > MAX_DIST(s)) {
    917 	length = MAX_DIST(s);
    918 #ifndef USE_DICT_HEAD
    919 	dictionary += dictLength - length; /* use the tail of the dictionary */
    920 #endif
    921     }
    922     zmemcpy(s->window, dictionary, length);
    923     s->strstart = length;
    924     s->block_start = (long)length;
    925 
    926     /* Insert all strings in the hash table (except for the last two bytes).
    927      * s->lookahead stays null, so s->ins_h will be recomputed at the next
    928      * call of fill_window.
    929      */
    930     s->ins_h = s->window[0];
    931     UPDATE_HASH(s, s->ins_h, s->window[1]);
    932     for (n = 0; n <= length - MIN_MATCH; n++) {
    933 	INSERT_STRING(s, n, hash_head);
    934     }
    935     if (hash_head) hash_head = 0;  /* to make compiler happy */
    936     return Z_OK;
    937 }
    938 #endif
    939 
    940 /* ========================================================================= */
    941 int ZEXPORT deflateReset (z_streamp strm)
    942 {
    943     deflate_state *s;
    944 
    945     if (strm == Z_NULL || strm->state == Z_NULL ||
    946         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
    947 
    948     strm->total_in = strm->total_out = 0;
    949     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    950     strm->data_type = Z_UNKNOWN;
    951 
    952     s = (deflate_state *)strm->state;
    953     s->pending = 0;
    954     s->pending_out = s->pending_buf;
    955 
    956     if (s->noheader < 0) {
    957         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
    958     }
    959     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
    960     strm->adler = 1;
    961     s->last_flush = Z_NO_FLUSH;
    962 
    963     _tr_init(s);
    964     lm_init(s);
    965 
    966     return Z_OK;
    967 }
    968 
    969 /* ========================================================================= */
    970 #if 0
    971 int ZEXPORT deflateParams(strm, level, strategy)
    972     z_streamp strm;
    973     int level;
    974     int strategy;
    975 {
    976     deflate_state *s;
    977     compress_func func;
    978     int err = Z_OK;
    979 
    980     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
    981     s = (deflate_state *)strm->state;
    982 
    983     if (level == Z_DEFAULT_COMPRESSION) {
    984 	level = 6;
    985     }
    986     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
    987 	return Z_STREAM_ERROR;
    988     }
    989     func = configuration_table[s->level].func;
    990 
    991     if (func != configuration_table[level].func && strm->total_in != 0) {
    992 	/* Flush the last buffer: */
    993 	err = deflate(strm, Z_PARTIAL_FLUSH);
    994     }
    995     if (s->level != level) {
    996 	s->level = level;
    997 	s->max_lazy_match   = configuration_table[level].max_lazy;
    998 	s->good_match       = configuration_table[level].good_length;
    999 	s->nice_match       = configuration_table[level].nice_length;
   1000 	s->max_chain_length = configuration_table[level].max_chain;
   1001     }
   1002     s->strategy = strategy;
   1003     return err;
   1004 }
   1005 #endif
   1006 
   1007 /* =========================================================================
   1008  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
   1009  * IN assertion: the stream state is correct and there is enough room in
   1010  * pending_buf.
   1011  */
   1012 local void putShortMSB (deflate_state *s, uInt b)
   1013 {
   1014     put_byte(s, (Byte)(b >> 8));
   1015     put_byte(s, (Byte)(b & 0xff));
   1016 }
   1017 
   1018 /* =========================================================================
   1019  * Flush as much pending output as possible. All deflate() output goes
   1020  * through this function so some applications may wish to modify it
   1021  * to avoid allocating a large strm->next_out buffer and copying into it.
   1022  * (See also read_buf()).
   1023  */
   1024 local void flush_pending(z_streamp strm)
   1025 {
   1026     deflate_state *s = (deflate_state *) strm->state;
   1027     unsigned len = s->pending;
   1028 
   1029     if (len > strm->avail_out) len = strm->avail_out;
   1030     if (len == 0) return;
   1031 
   1032     if (strm->next_out != Z_NULL) {
   1033       zmemcpy(strm->next_out, s->pending_out, len);
   1034       strm->next_out  += len;
   1035     }
   1036     s->pending_out  += len;
   1037     strm->total_out += len;
   1038     strm->avail_out  -= len;
   1039     s->pending -= len;
   1040     if (s->pending == 0) {
   1041         s->pending_out = s->pending_buf;
   1042     }
   1043 }
   1044 
   1045 /* ========================================================================= */
   1046 int ZEXPORT deflate (z_streamp strm, int flush)
   1047 {
   1048     int old_flush; /* value of flush param for previous deflate call */
   1049     deflate_state *s;
   1050 
   1051     if (strm == Z_NULL || strm->state == Z_NULL ||
   1052 	flush > Z_FINISH || flush < 0) {
   1053         return Z_STREAM_ERROR;
   1054     }
   1055     s = (deflate_state *)strm->state;
   1056 
   1057     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
   1058 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
   1059         ERR_RETURN(strm, Z_STREAM_ERROR);
   1060     }
   1061     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
   1062 
   1063     s->strm = strm; /* just in case */
   1064     old_flush = s->last_flush;
   1065     s->last_flush = flush;
   1066 
   1067     /* Write the zlib header */
   1068     if (s->status == INIT_STATE) {
   1069 
   1070         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
   1071         uInt level_flags = (s->level-1) >> 1;
   1072 
   1073         if (level_flags > 3) level_flags = 3;
   1074         header |= (level_flags << 6);
   1075 	if (s->strstart != 0) header |= PRESET_DICT;
   1076         header += 31 - (header % 31);
   1077 
   1078         s->status = BUSY_STATE;
   1079         putShortMSB(s, header);
   1080 
   1081 	/* Save the adler32 of the preset dictionary: */
   1082 	if (s->strstart != 0) {
   1083 	    putShortMSB(s, (uInt)(strm->adler >> 16));
   1084 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1085 	}
   1086 	strm->adler = 1L;
   1087     }
   1088 
   1089     /* Flush as much pending output as possible */
   1090     if (s->pending != 0) {
   1091         flush_pending(strm);
   1092         if (strm->avail_out == 0) {
   1093 	    /* Since avail_out is 0, deflate will be called again with
   1094 	     * more output space, but possibly with both pending and
   1095 	     * avail_in equal to zero. There won't be anything to do,
   1096 	     * but this is not an error situation so make sure we
   1097 	     * return OK instead of BUF_ERROR at next call of deflate:
   1098              */
   1099 	    s->last_flush = -1;
   1100 	    return Z_OK;
   1101 	}
   1102 
   1103     /* Make sure there is something to do and avoid duplicate consecutive
   1104      * flushes. For repeated and useless calls with Z_FINISH, we keep
   1105      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
   1106      */
   1107     } else if (strm->avail_in == 0 && flush <= old_flush &&
   1108 	       flush != Z_FINISH) {
   1109         ERR_RETURN(strm, Z_BUF_ERROR);
   1110     }
   1111 
   1112     /* User must not provide more input after the first FINISH: */
   1113     if (s->status == FINISH_STATE && strm->avail_in != 0) {
   1114         ERR_RETURN(strm, Z_BUF_ERROR);
   1115     }
   1116 
   1117     /* Start a new block or continue the current one.
   1118      */
   1119     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1120         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1121         block_state bstate;
   1122 
   1123 	bstate = (*(configuration_table[s->level].func))(s, flush);
   1124 
   1125         if (bstate == finish_started || bstate == finish_done) {
   1126             s->status = FINISH_STATE;
   1127         }
   1128         if (bstate == need_more || bstate == finish_started) {
   1129 	    if (strm->avail_out == 0) {
   1130 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1131 	    }
   1132 	    return Z_OK;
   1133 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1134 	     * of deflate should use the same flush parameter to make sure
   1135 	     * that the flush is complete. So we don't have to output an
   1136 	     * empty block here, this will be done at next call. This also
   1137 	     * ensures that for a very small output buffer, we emit at most
   1138 	     * one empty block.
   1139 	     */
   1140 	}
   1141         if (bstate == block_done) {
   1142             if (flush == Z_PARTIAL_FLUSH) {
   1143                 _tr_align(s);
   1144 	    } else if (flush == Z_PACKET_FLUSH) {
   1145 		/* Output just the 3-bit `stored' block type value,
   1146 		   but not a zero length. */
   1147 		_tr_stored_type_only(s);
   1148             } else { /* FULL_FLUSH or SYNC_FLUSH */
   1149                 _tr_stored_block(s, (char*)0, 0L, 0);
   1150                 /* For a full flush, this empty block will be recognized
   1151                  * as a special marker by inflate_sync().
   1152                  */
   1153                 if (flush == Z_FULL_FLUSH) {
   1154                     CLEAR_HASH(s);             /* forget history */
   1155                 }
   1156             }
   1157             flush_pending(strm);
   1158 	    if (strm->avail_out == 0) {
   1159 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1160 	      return Z_OK;
   1161 	    }
   1162         }
   1163     }
   1164     Assert(strm->avail_out > 0, "bug2");
   1165 
   1166     if (flush != Z_FINISH) return Z_OK;
   1167     if (s->noheader) return Z_STREAM_END;
   1168 
   1169     /* Write the zlib trailer (adler32) */
   1170     putShortMSB(s, (uInt)(strm->adler >> 16));
   1171     putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1172     flush_pending(strm);
   1173     /* If avail_out is zero, the application will call deflate again
   1174      * to flush the rest.
   1175      */
   1176     s->noheader = -1; /* write the trailer only once! */
   1177     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1178 }
   1179 
   1180 /* ========================================================================= */
   1181 int ZEXPORT deflateEnd (z_streamp strm)
   1182 {
   1183     int status;
   1184     deflate_state *s;
   1185 
   1186     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
   1187     s = (deflate_state *) strm->state;
   1188 
   1189     status = s->status;
   1190     if (status != INIT_STATE && status != BUSY_STATE &&
   1191 	status != FINISH_STATE) {
   1192       return Z_STREAM_ERROR;
   1193     }
   1194 
   1195     /* Deallocate in reverse order of allocations: */
   1196     TRY_FREE(strm, s->pending_buf);
   1197     TRY_FREE(strm, s->head);
   1198     TRY_FREE(strm, s->prev);
   1199     TRY_FREE(strm, s->window);
   1200 
   1201     ZFREE(strm, s);
   1202     strm->state = Z_NULL;
   1203 
   1204     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1205 }
   1206 
   1207 /* =========================================================================
   1208  * Copy the source state to the destination state.
   1209  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1210  * doesn't have enough memory anyway to duplicate compression states).
   1211  */
   1212 #if 0
   1213 int ZEXPORT deflateCopy (z_streamp dest, z_streamp source)
   1214 {
   1215 #ifdef MAXSEG_64K
   1216     return Z_STREAM_ERROR;
   1217 #else
   1218     deflate_state *ds;
   1219     deflate_state *ss;
   1220     ushf *overlay;
   1221 
   1222 
   1223     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
   1224         return Z_STREAM_ERROR;
   1225     }
   1226 
   1227     ss = (deflate_state *)source->state;
   1228 
   1229     *dest = *source;
   1230 
   1231     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1232     if (ds == Z_NULL) return Z_MEM_ERROR;
   1233     dest->state = (void *) ds;
   1234     *ds = *ss;
   1235     ds->strm = dest;
   1236 
   1237     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1238     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1239     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1240     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
   1241     ds->pending_buf = (uchf *) overlay;
   1242 
   1243     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1244         ds->pending_buf == Z_NULL) {
   1245 	ds->status = INIT_STATE;
   1246         deflateEnd (dest);
   1247         return Z_MEM_ERROR;
   1248     }
   1249     /* following zmemcpy do not work for 16-bit MSDOS */
   1250     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1251     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
   1252     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
   1253     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
   1254 
   1255     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1256     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
   1257     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
   1258 
   1259     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1260     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1261     ds->bl_desc.dyn_tree = ds->bl_tree;
   1262 
   1263     return Z_OK;
   1264 #endif
   1265 }
   1266 #endif
   1267 
   1268 /* ===========================================================================
   1269  * Return the number of bytes of output which are immediately available
   1270  * for output from the decompressor.
   1271  */
   1272 #if 0
   1273 int deflateOutputPending (z_streamp strm)
   1274 {
   1275     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
   1276 
   1277     return ((deflate_state *)(strm->state))->pending;
   1278 }
   1279 #endif
   1280 
   1281 /* ===========================================================================
   1282  * Read a new buffer from the current input stream, update the adler32
   1283  * and total number of bytes read.  All deflate() input goes through
   1284  * this function so some applications may wish to modify it to avoid
   1285  * allocating a large strm->next_in buffer and copying from it.
   1286  * (See also flush_pending()).
   1287  */
   1288 local int read_buf(z_streamp strm,
   1289 	Bytef *buf,
   1290 	unsigned size)
   1291 {
   1292     unsigned len = strm->avail_in;
   1293 
   1294     if (len > size) len = size;
   1295     if (len == 0) return 0;
   1296 
   1297     strm->avail_in  -= len;
   1298 
   1299     if (!((deflate_state *)(strm->state))->noheader) {
   1300         strm->adler = adler32(strm->adler, strm->next_in, len);
   1301     }
   1302     zmemcpy(buf, strm->next_in, len);
   1303     strm->next_in  += len;
   1304     strm->total_in += len;
   1305 
   1306     return (int)len;
   1307 }
   1308 
   1309 /* ===========================================================================
   1310  * Initialize the "longest match" routines for a new zlib stream
   1311  */
   1312 local void lm_init (deflate_state *s)
   1313 {
   1314     s->window_size = (ulg)2L*s->w_size;
   1315 
   1316     CLEAR_HASH(s);
   1317 
   1318     /* Set the default configuration parameters:
   1319      */
   1320     s->max_lazy_match   = configuration_table[s->level].max_lazy;
   1321     s->good_match       = configuration_table[s->level].good_length;
   1322     s->nice_match       = configuration_table[s->level].nice_length;
   1323     s->max_chain_length = configuration_table[s->level].max_chain;
   1324 
   1325     s->strstart = 0;
   1326     s->block_start = 0L;
   1327     s->lookahead = 0;
   1328     s->match_length = s->prev_length = MIN_MATCH-1;
   1329     s->match_available = 0;
   1330     s->ins_h = 0;
   1331 #ifdef ASMV
   1332     match_init(); /* initialize the asm code */
   1333 #endif
   1334 }
   1335 
   1336 /* ===========================================================================
   1337  * Set match_start to the longest match starting at the given string and
   1338  * return its length. Matches shorter or equal to prev_length are discarded,
   1339  * in which case the result is equal to prev_length and match_start is
   1340  * garbage.
   1341  * IN assertions: cur_match is the head of the hash chain for the current
   1342  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1343  * OUT assertion: the match length is not greater than s->lookahead.
   1344  */
   1345 #ifndef ASMV
   1346 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
   1347  * match.S. The code will be functionally equivalent.
   1348  */
   1349 #ifndef FASTEST
   1350 local uInt longest_match(deflate_state *s,
   1351 	IPos cur_match)	/* current match */
   1352 {
   1353     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1354     Bytef *scan = s->window + s->strstart; /* current string */
   1355     Bytef *match;                       /* matched string */
   1356     int len;                           /* length of current match */
   1357     int best_len = s->prev_length;              /* best match length so far */
   1358     int nice_match = s->nice_match;             /* stop if match long enough */
   1359     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1360         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1361     /* Stop when cur_match becomes <= limit. To simplify the code,
   1362      * we prevent matches with the string of window index 0.
   1363      */
   1364     Posf *prev = s->prev;
   1365     uInt wmask = s->w_mask;
   1366 
   1367 #ifdef UNALIGNED_OK
   1368     /* Compare two bytes at a time. Note: this is not always beneficial.
   1369      * Try with and without -DUNALIGNED_OK to check.
   1370      */
   1371     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1372     ush scan_start = *(ushf*)scan;
   1373     ush scan_end   = *(ushf*)(scan+best_len-1);
   1374 #else
   1375     Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1376     Byte scan_end1  = scan[best_len-1];
   1377     Byte scan_end   = scan[best_len];
   1378 #endif
   1379 
   1380     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1381      * It is easy to get rid of this optimization if necessary.
   1382      */
   1383     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1384 
   1385     /* Do not waste too much time if we already have a good match: */
   1386     if (s->prev_length >= s->good_match) {
   1387         chain_length >>= 2;
   1388     }
   1389     /* Do not look for matches beyond the end of the input. This is necessary
   1390      * to make deflate deterministic.
   1391      */
   1392     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
   1393 
   1394     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1395 
   1396     do {
   1397         Assert(cur_match < s->strstart, "no future");
   1398         match = s->window + cur_match;
   1399 
   1400         /* Skip to next match if the match length cannot increase
   1401          * or if the match length is less than 2:
   1402          */
   1403 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1404         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1405          * UNALIGNED_OK if your compiler uses a different size.
   1406          */
   1407         if (*(ushf*)(match+best_len-1) != scan_end ||
   1408             *(ushf*)match != scan_start) continue;
   1409 
   1410         /* It is not necessary to compare scan[2] and match[2] since they are
   1411          * always equal when the other bytes match, given that the hash keys
   1412          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1413          * strstart+3, +5, ... up to strstart+257. We check for insufficient
   1414          * lookahead only every 4th comparison; the 128th check will be made
   1415          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
   1416          * necessary to put more guard bytes at the end of the window, or
   1417          * to check more often for insufficient lookahead.
   1418          */
   1419         Assert(scan[2] == match[2], "scan[2]?");
   1420         scan++, match++;
   1421         do {
   1422         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1423                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1424                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1425                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
   1426                  scan < strend);
   1427         /* The funny "do {}" generates better code on most compilers */
   1428 
   1429         /* Here, scan <= window+strstart+257 */
   1430         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1431         if (*scan == *match) scan++;
   1432 
   1433         len = (MAX_MATCH - 1) - (int)(strend-scan);
   1434         scan = strend - (MAX_MATCH-1);
   1435 
   1436 #else /* UNALIGNED_OK */
   1437 
   1438         if (match[best_len]   != scan_end  ||
   1439             match[best_len-1] != scan_end1 ||
   1440             *match            != *scan     ||
   1441             *++match          != scan[1])      continue;
   1442 
   1443         /* The check at best_len-1 can be removed because it will be made
   1444          * again later. (This heuristic is not always a win.)
   1445          * It is not necessary to compare scan[2] and match[2] since they
   1446          * are always equal when the other bytes match, given that
   1447          * the hash keys are equal and that HASH_BITS >= 8.
   1448          */
   1449         scan += 2, match++;
   1450         Assert(*scan == *match, "match[2]?");
   1451 
   1452         /* We check for insufficient lookahead only every 8th comparison;
   1453          * the 256th check will be made at strstart+258.
   1454          */
   1455         do {
   1456         } while (*++scan == *++match && *++scan == *++match &&
   1457                  *++scan == *++match && *++scan == *++match &&
   1458                  *++scan == *++match && *++scan == *++match &&
   1459                  *++scan == *++match && *++scan == *++match &&
   1460                  scan < strend);
   1461 
   1462         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1463 
   1464         len = MAX_MATCH - (int)(strend - scan);
   1465         scan = strend - MAX_MATCH;
   1466 
   1467 #endif /* UNALIGNED_OK */
   1468 
   1469         if (len > best_len) {
   1470             s->match_start = cur_match;
   1471             best_len = len;
   1472             if (len >= nice_match) break;
   1473 #ifdef UNALIGNED_OK
   1474             scan_end = *(ushf*)(scan+best_len-1);
   1475 #else
   1476             scan_end1  = scan[best_len-1];
   1477             scan_end   = scan[best_len];
   1478 #endif
   1479         }
   1480     } while ((cur_match = prev[cur_match & wmask]) > limit
   1481              && --chain_length != 0);
   1482 
   1483     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1484     return s->lookahead;
   1485 }
   1486 
   1487 #else /* FASTEST */
   1488 /* ---------------------------------------------------------------------------
   1489  * Optimized version for level == 1 only
   1490  */
   1491 local uInt longest_match(s, cur_match)
   1492     deflate_state *s;
   1493     IPos cur_match;                             /* current match */
   1494 {
   1495     register Bytef *scan = s->window + s->strstart; /* current string */
   1496     register Bytef *match;                       /* matched string */
   1497     register int len;                           /* length of current match */
   1498     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1499 
   1500     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1501      * It is easy to get rid of this optimization if necessary.
   1502      */
   1503     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1504 
   1505     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
   1506 
   1507     Assert(cur_match < s->strstart, "no future");
   1508 
   1509     match = s->window + cur_match;
   1510 
   1511     /* Return failure if the match length is less than 2:
   1512      */
   1513     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1514 
   1515     /* The check at best_len-1 can be removed because it will be made
   1516      * again later. (This heuristic is not always a win.)
   1517      * It is not necessary to compare scan[2] and match[2] since they
   1518      * are always equal when the other bytes match, given that
   1519      * the hash keys are equal and that HASH_BITS >= 8.
   1520      */
   1521     scan += 2, match += 2;
   1522     Assert(*scan == *match, "match[2]?");
   1523 
   1524     /* We check for insufficient lookahead only every 8th comparison;
   1525      * the 256th check will be made at strstart+258.
   1526      */
   1527     do {
   1528     } while (*++scan == *++match && *++scan == *++match &&
   1529 	     *++scan == *++match && *++scan == *++match &&
   1530 	     *++scan == *++match && *++scan == *++match &&
   1531 	     *++scan == *++match && *++scan == *++match &&
   1532 	     scan < strend);
   1533 
   1534     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
   1535 
   1536     len = MAX_MATCH - (int)(strend - scan);
   1537 
   1538     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1539 
   1540     s->match_start = cur_match;
   1541     return len <= s->lookahead ? len : s->lookahead;
   1542 }
   1543 #endif /* FASTEST */
   1544 #endif /* ASMV */
   1545 
   1546 #ifdef DEBUG_ZLIB
   1547 /* ===========================================================================
   1548  * Check that the match at match_start is indeed a match.
   1549  */
   1550 local void check_match(s, start, match, length)
   1551     deflate_state *s;
   1552     IPos start, match;
   1553     int length;
   1554 {
   1555     /* check that the match is indeed a match */
   1556     if (zmemcmp(s->window + match,
   1557                 s->window + start, length) != EQUAL) {
   1558         fprintf(stderr, " start %u, match %u, length %d\n",
   1559 		start, match, length);
   1560         do {
   1561 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
   1562 	} while (--length != 0);
   1563         z_error("invalid match");
   1564     }
   1565     if (z_verbose > 1) {
   1566         fprintf(stderr,"\\[%d,%d]", start-match, length);
   1567         do { putc(s->window[start++], stderr); } while (--length != 0);
   1568     }
   1569 }
   1570 #else
   1571 #  define check_match(s, start, match, length)
   1572 #endif
   1573 
   1574 /* ===========================================================================
   1575  * Fill the window when the lookahead becomes insufficient.
   1576  * Updates strstart and lookahead.
   1577  *
   1578  * IN assertion: lookahead < MIN_LOOKAHEAD
   1579  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
   1580  *    At least one byte has been read, or avail_in == 0; reads are
   1581  *    performed for at least two bytes (required for the zip translate_eol
   1582  *    option -- not supported here).
   1583  */
   1584 local void fill_window(deflate_state *s)
   1585 {
   1586     unsigned n, m;
   1587     Posf *p;
   1588     unsigned more;    /* Amount of free space at the end of the window. */
   1589     uInt wsize = s->w_size;
   1590 
   1591     do {
   1592         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
   1593 
   1594         /* Deal with !@#$% 64K limit: */
   1595         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
   1596             more = wsize;
   1597 
   1598         } else if (more == (unsigned)(-1)) {
   1599             /* Very unlikely, but possible on 16 bit machine if strstart == 0
   1600              * and lookahead == 1 (input done one byte at time)
   1601              */
   1602             more--;
   1603 
   1604         /* If the window is almost full and there is insufficient lookahead,
   1605          * move the upper half to the lower one to make room in the upper half.
   1606          */
   1607         } else if (s->strstart >= wsize+MAX_DIST(s)) {
   1608 
   1609             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
   1610             s->match_start -= wsize;
   1611             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
   1612             s->block_start -= (long) wsize;
   1613 
   1614             /* Slide the hash table (could be avoided with 32 bit values
   1615                at the expense of memory usage). We slide even when level == 0
   1616                to keep the hash table consistent if we switch back to level > 0
   1617                later. (Using level 0 permanently is not an optimal usage of
   1618                zlib, so we don't care about this pathological case.)
   1619              */
   1620 	    n = s->hash_size;
   1621 	    p = &s->head[n];
   1622 	    do {
   1623 		m = *--p;
   1624 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1625 	    } while (--n);
   1626 
   1627 	    n = wsize;
   1628 #ifndef FASTEST
   1629 	    p = &s->prev[n];
   1630 	    do {
   1631 		m = *--p;
   1632 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
   1633 		/* If n is not on any hash chain, prev[n] is garbage but
   1634 		 * its value will never be used.
   1635 		 */
   1636 	    } while (--n);
   1637 #endif
   1638             more += wsize;
   1639         }
   1640         if (s->strm->avail_in == 0) return;
   1641 
   1642         /* If there was no sliding:
   1643          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
   1644          *    more == window_size - lookahead - strstart
   1645          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
   1646          * => more >= window_size - 2*WSIZE + 2
   1647          * In the BIG_MEM or MMAP case (not yet supported),
   1648          *   window_size == input_size + MIN_LOOKAHEAD  &&
   1649          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
   1650          * Otherwise, window_size == 2*WSIZE so more >= 2.
   1651          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
   1652          */
   1653         Assert(more >= 2, "more < 2");
   1654 
   1655         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
   1656         s->lookahead += n;
   1657 
   1658         /* Initialize the hash value now that we have some input: */
   1659         if (s->lookahead >= MIN_MATCH) {
   1660             s->ins_h = s->window[s->strstart];
   1661             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1662 #if MIN_MATCH != 3
   1663             Call UPDATE_HASH() MIN_MATCH-3 more times
   1664 #endif
   1665         }
   1666         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
   1667          * but this is not important since only literal bytes will be emitted.
   1668          */
   1669 
   1670     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
   1671 }
   1672 
   1673 /* ===========================================================================
   1674  * Flush the current block, with given end-of-file flag.
   1675  * IN assertion: strstart is set to the end of the current match.
   1676  */
   1677 #define FLUSH_BLOCK_ONLY(s, eof) { \
   1678    _tr_flush_block(s, (s->block_start >= 0L ? \
   1679                    (charf *)&s->window[(unsigned)s->block_start] : \
   1680                    (charf *)Z_NULL), \
   1681 		(ulg)((long)s->strstart - s->block_start), \
   1682 		(eof)); \
   1683    s->block_start = s->strstart; \
   1684    flush_pending(s->strm); \
   1685    Tracev((stderr,"[FLUSH]")); \
   1686 }
   1687 
   1688 /* Same but force premature exit if necessary. */
   1689 #define FLUSH_BLOCK(s, eof) { \
   1690    FLUSH_BLOCK_ONLY(s, eof); \
   1691    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
   1692 }
   1693 
   1694 /* ===========================================================================
   1695  * Copy without compression as much as possible from the input stream, return
   1696  * the current block state.
   1697  * This function does not insert new strings in the dictionary since
   1698  * uncompressible data is probably not useful. This function is used
   1699  * only for the level=0 compression option.
   1700  * NOTE: this function should be optimized to avoid extra copying from
   1701  * window to pending_buf.
   1702  */
   1703 local block_state deflate_stored(deflate_state *s, int flush)
   1704 {
   1705     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
   1706      * to pending_buf_size, and each stored block has a 5 byte header:
   1707      */
   1708     ulg max_block_size = 0xffff;
   1709     ulg max_start;
   1710 
   1711     if (max_block_size > s->pending_buf_size - 5) {
   1712         max_block_size = s->pending_buf_size - 5;
   1713     }
   1714 
   1715     /* Copy as much as possible from input to output: */
   1716     for (;;) {
   1717         /* Fill the window as much as possible: */
   1718         if (s->lookahead <= 1) {
   1719 
   1720             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
   1721 		   s->block_start >= (long)s->w_size, "slide too late");
   1722 
   1723             fill_window(s);
   1724             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
   1725 
   1726             if (s->lookahead == 0) break; /* flush the current block */
   1727         }
   1728 	Assert(s->block_start >= 0L, "block gone");
   1729 
   1730 	s->strstart += s->lookahead;
   1731 	s->lookahead = 0;
   1732 
   1733 	/* Emit a stored block if pending_buf will be full: */
   1734  	max_start = s->block_start + max_block_size;
   1735         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
   1736 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
   1737 	    s->lookahead = (uInt)(s->strstart - max_start);
   1738 	    s->strstart = (uInt)max_start;
   1739             FLUSH_BLOCK(s, 0);
   1740 	}
   1741 	/* Flush if we may have to slide, otherwise block_start may become
   1742          * negative and the data will be gone:
   1743          */
   1744         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
   1745             FLUSH_BLOCK(s, 0);
   1746 	}
   1747     }
   1748     FLUSH_BLOCK(s, flush == Z_FINISH);
   1749     return flush == Z_FINISH ? finish_done : block_done;
   1750 }
   1751 
   1752 /* ===========================================================================
   1753  * Compress as much as possible from the input stream, return the current
   1754  * block state.
   1755  * This function does not perform lazy evaluation of matches and inserts
   1756  * new strings in the dictionary only for unmatched strings or for short
   1757  * matches. It is used only for the fast compression options.
   1758  */
   1759 local block_state deflate_fast(deflate_state *s, int flush)
   1760 {
   1761     IPos hash_head = NIL; /* head of the hash chain */
   1762     int bflush;           /* set if current block must be flushed */
   1763 
   1764     for (;;) {
   1765         /* Make sure that we always have enough lookahead, except
   1766          * at the end of the input file. We need MAX_MATCH bytes
   1767          * for the next match, plus MIN_MATCH bytes to insert the
   1768          * string following the next match.
   1769          */
   1770         if (s->lookahead < MIN_LOOKAHEAD) {
   1771             fill_window(s);
   1772             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1773 	        return need_more;
   1774 	    }
   1775             if (s->lookahead == 0) break; /* flush the current block */
   1776         }
   1777 
   1778         /* Insert the string window[strstart .. strstart+2] in the
   1779          * dictionary, and set hash_head to the head of the hash chain:
   1780          */
   1781         if (s->lookahead >= MIN_MATCH) {
   1782             INSERT_STRING(s, s->strstart, hash_head);
   1783         }
   1784 
   1785         /* Find the longest match, discarding those <= prev_length.
   1786          * At this point we have always match_length < MIN_MATCH
   1787          */
   1788         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1789             /* To simplify the code, we prevent matches with the string
   1790              * of window index 0 (in particular we have to avoid a match
   1791              * of the string with itself at the start of the input file).
   1792              */
   1793             if (s->strategy != Z_HUFFMAN_ONLY) {
   1794                 s->match_length = longest_match (s, hash_head);
   1795             }
   1796             /* longest_match() sets match_start */
   1797         }
   1798         if (s->match_length >= MIN_MATCH) {
   1799             check_match(s, s->strstart, s->match_start, s->match_length);
   1800 
   1801             _tr_tally_dist(s, s->strstart - s->match_start,
   1802                            s->match_length - MIN_MATCH, bflush);
   1803 
   1804             s->lookahead -= s->match_length;
   1805 
   1806             /* Insert new strings in the hash table only if the match length
   1807              * is not too large. This saves time but degrades compression.
   1808              */
   1809 #ifndef FASTEST
   1810             if (s->match_length <= s->max_insert_length &&
   1811                 s->lookahead >= MIN_MATCH) {
   1812                 s->match_length--; /* string at strstart already in hash table */
   1813                 do {
   1814                     s->strstart++;
   1815                     INSERT_STRING(s, s->strstart, hash_head);
   1816                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1817                      * always MIN_MATCH bytes ahead.
   1818                      */
   1819                 } while (--s->match_length != 0);
   1820                 s->strstart++;
   1821             } else
   1822 #endif
   1823 	    {
   1824                 s->strstart += s->match_length;
   1825                 s->match_length = 0;
   1826                 s->ins_h = s->window[s->strstart];
   1827                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
   1828 #if MIN_MATCH != 3
   1829                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1830 #endif
   1831                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1832                  * matter since it will be recomputed at next deflate call.
   1833                  */
   1834             }
   1835         } else {
   1836             /* No match, output a literal byte */
   1837             Tracevv((stderr,"%c", s->window[s->strstart]));
   1838             _tr_tally_lit (s, s->window[s->strstart], bflush);
   1839             s->lookahead--;
   1840             s->strstart++;
   1841         }
   1842         if (bflush) FLUSH_BLOCK(s, 0);
   1843     }
   1844     FLUSH_BLOCK(s, flush == Z_FINISH);
   1845     return flush == Z_FINISH ? finish_done : block_done;
   1846 }
   1847 
   1848 /* ===========================================================================
   1849  * Same as above, but achieves better compression. We use a lazy
   1850  * evaluation for matches: a match is finally adopted only if there is
   1851  * no better match at the next window position.
   1852  */
   1853 local block_state deflate_slow(deflate_state *s, int flush)
   1854 {
   1855     IPos hash_head = NIL;    /* head of hash chain */
   1856     int bflush;              /* set if current block must be flushed */
   1857 
   1858     /* Process the input block. */
   1859     for (;;) {
   1860         /* Make sure that we always have enough lookahead, except
   1861          * at the end of the input file. We need MAX_MATCH bytes
   1862          * for the next match, plus MIN_MATCH bytes to insert the
   1863          * string following the next match.
   1864          */
   1865         if (s->lookahead < MIN_LOOKAHEAD) {
   1866             fill_window(s);
   1867             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1868 	        return need_more;
   1869 	    }
   1870             if (s->lookahead == 0) break; /* flush the current block */
   1871         }
   1872 
   1873         /* Insert the string window[strstart .. strstart+2] in the
   1874          * dictionary, and set hash_head to the head of the hash chain:
   1875          */
   1876         if (s->lookahead >= MIN_MATCH) {
   1877             INSERT_STRING(s, s->strstart, hash_head);
   1878         }
   1879 
   1880         /* Find the longest match, discarding those <= prev_length.
   1881          */
   1882         s->prev_length = s->match_length, s->prev_match = s->match_start;
   1883         s->match_length = MIN_MATCH-1;
   1884 
   1885         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   1886             s->strstart - hash_head <= MAX_DIST(s)) {
   1887             /* To simplify the code, we prevent matches with the string
   1888              * of window index 0 (in particular we have to avoid a match
   1889              * of the string with itself at the start of the input file).
   1890              */
   1891             if (s->strategy != Z_HUFFMAN_ONLY) {
   1892                 s->match_length = longest_match (s, hash_head);
   1893             }
   1894             /* longest_match() sets match_start */
   1895 
   1896             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
   1897                  (s->match_length == MIN_MATCH &&
   1898                   s->strstart - s->match_start > TOO_FAR))) {
   1899 
   1900                 /* If prev_match is also MIN_MATCH, match_start is garbage
   1901                  * but we will ignore the current match anyway.
   1902                  */
   1903                 s->match_length = MIN_MATCH-1;
   1904             }
   1905         }
   1906         /* If there was a match at the previous step and the current
   1907          * match is not better, output the previous match:
   1908          */
   1909         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   1910             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   1911             /* Do not insert strings in hash table beyond this. */
   1912 
   1913             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
   1914 
   1915             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
   1916 			   s->prev_length - MIN_MATCH, bflush);
   1917 
   1918             /* Insert in hash table all strings up to the end of the match.
   1919              * strstart-1 and strstart are already inserted. If there is not
   1920              * enough lookahead, the last two strings are not inserted in
   1921              * the hash table.
   1922              */
   1923             s->lookahead -= s->prev_length-1;
   1924             s->prev_length -= 2;
   1925             do {
   1926                 if (++s->strstart <= max_insert) {
   1927                     INSERT_STRING(s, s->strstart, hash_head);
   1928                 }
   1929             } while (--s->prev_length != 0);
   1930             s->match_available = 0;
   1931             s->match_length = MIN_MATCH-1;
   1932             s->strstart++;
   1933 
   1934             if (bflush) FLUSH_BLOCK(s, 0);
   1935 
   1936         } else if (s->match_available) {
   1937             /* If there was no match at the previous position, output a
   1938              * single literal. If there was a match but the current match
   1939              * is longer, truncate the previous match to a single literal.
   1940              */
   1941             Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1942 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1943 	    if (bflush) {
   1944                 FLUSH_BLOCK_ONLY(s, 0);
   1945             }
   1946             s->strstart++;
   1947             s->lookahead--;
   1948             if (s->strm->avail_out == 0) return need_more;
   1949         } else {
   1950             /* There is no previous match to compare with, wait for
   1951              * the next step to decide.
   1952              */
   1953             s->match_available = 1;
   1954             s->strstart++;
   1955             s->lookahead--;
   1956         }
   1957     }
   1958     Assert (flush != Z_NO_FLUSH, "no flush?");
   1959     if (s->match_available) {
   1960         Tracevv((stderr,"%c", s->window[s->strstart-1]));
   1961         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
   1962         s->match_available = 0;
   1963     }
   1964     FLUSH_BLOCK(s, flush == Z_FINISH);
   1965     return flush == Z_FINISH ? finish_done : block_done;
   1966 }
   1967 /* --- deflate.c */
   1968 
   1969 /* +++ trees.c */
   1970 
   1971 /* trees.c -- output deflated data using Huffman coding
   1972  * Copyright (C) 1995-2002 Jean-loup Gailly
   1973  * For conditions of distribution and use, see copyright notice in zlib.h
   1974  */
   1975 
   1976 /*
   1977  *  ALGORITHM
   1978  *
   1979  *      The "deflation" process uses several Huffman trees. The more
   1980  *      common source values are represented by shorter bit sequences.
   1981  *
   1982  *      Each code tree is stored in a compressed form which is itself
   1983  * a Huffman encoding of the lengths of all the code strings (in
   1984  * ascending order by source values).  The actual code strings are
   1985  * reconstructed from the lengths in the inflate process, as described
   1986  * in the deflate specification.
   1987  *
   1988  *  REFERENCES
   1989  *
   1990  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
   1991  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
   1992  *
   1993  *      Storer, James A.
   1994  *          Data Compression:  Methods and Theory, pp. 49-50.
   1995  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
   1996  *
   1997  *      Sedgewick, R.
   1998  *          Algorithms, p290.
   1999  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
   2000  */
   2001 
   2002 /* @(#) $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $ */
   2003 
   2004 /* #define GEN_TREES_H */
   2005 
   2006 /* #include "deflate.h" */
   2007 
   2008 #ifdef DEBUG_ZLIB
   2009 #  include <ctype.h>
   2010 #endif
   2011 
   2012 /* ===========================================================================
   2013  * Constants
   2014  */
   2015 
   2016 #define MAX_BL_BITS 7
   2017 /* Bit length codes must not exceed MAX_BL_BITS bits */
   2018 
   2019 #define END_BLOCK 256
   2020 /* end of block literal code */
   2021 
   2022 #define REP_3_6      16
   2023 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
   2024 
   2025 #define REPZ_3_10    17
   2026 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
   2027 
   2028 #define REPZ_11_138  18
   2029 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
   2030 
   2031 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   2032    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
   2033 
   2034 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   2035    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
   2036 
   2037 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   2038    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
   2039 
   2040 local const uch bl_order[BL_CODES]
   2041    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
   2042 /* The lengths of the bit length codes are sent in order of decreasing
   2043  * probability, to avoid transmitting the lengths for unused bit length codes.
   2044  */
   2045 
   2046 #define Buf_size (8 * 2*sizeof(char))
   2047 /* Number of bits used within bi_buf. (bi_buf might be implemented on
   2048  * more than 16 bits on some systems.)
   2049  */
   2050 
   2051 /* ===========================================================================
   2052  * Local data. These are initialized only once.
   2053  */
   2054 
   2055 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
   2056 
   2057 #if defined(GEN_TREES_H) || !defined(STDC)
   2058 /* non ANSI compilers may not accept trees.h */
   2059 
   2060 local ct_data static_ltree[L_CODES+2];
   2061 /* The static literal tree. Since the bit lengths are imposed, there is no
   2062  * need for the L_CODES extra codes used during heap construction. However
   2063  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   2064  * below).
   2065  */
   2066 
   2067 local ct_data static_dtree[D_CODES];
   2068 /* The static distance tree. (Actually a trivial tree since all codes use
   2069  * 5 bits.)
   2070  */
   2071 
   2072 uch _dist_code[DIST_CODE_LEN];
   2073 /* Distance codes. The first 256 values correspond to the distances
   2074  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   2075  * the 15 bit distances.
   2076  */
   2077 
   2078 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   2079 /* length code for each normalized match length (0 == MIN_MATCH) */
   2080 
   2081 local int base_length[LENGTH_CODES];
   2082 /* First normalized length for each code (0 = MIN_MATCH) */
   2083 
   2084 local int base_dist[D_CODES];
   2085 /* First normalized distance for each code (0 = distance of 1) */
   2086 
   2087 #else
   2088 /* +++ trees.h */
   2089 
   2090 /* header created automatically with -DGEN_TREES_H */
   2091 
   2092 local const ct_data static_ltree[L_CODES+2] = {
   2093 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
   2094 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
   2095 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
   2096 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
   2097 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
   2098 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
   2099 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
   2100 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
   2101 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
   2102 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
   2103 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
   2104 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
   2105 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
   2106 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
   2107 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
   2108 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
   2109 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
   2110 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
   2111 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
   2112 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
   2113 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
   2114 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
   2115 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
   2116 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
   2117 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
   2118 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
   2119 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
   2120 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
   2121 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
   2122 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
   2123 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
   2124 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
   2125 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
   2126 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
   2127 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
   2128 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
   2129 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
   2130 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
   2131 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
   2132 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
   2133 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
   2134 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
   2135 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
   2136 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
   2137 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
   2138 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
   2139 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
   2140 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
   2141 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
   2142 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
   2143 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
   2144 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
   2145 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
   2146 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
   2147 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
   2148 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
   2149 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
   2150 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
   2151 };
   2152 
   2153 local const ct_data static_dtree[D_CODES] = {
   2154 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
   2155 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
   2156 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
   2157 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
   2158 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
   2159 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
   2160 };
   2161 
   2162 const uch _dist_code[DIST_CODE_LEN] = {
   2163  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
   2164  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
   2165 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
   2166 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
   2167 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
   2168 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
   2169 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2170 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2171 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
   2172 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
   2173 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2174 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
   2175 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
   2176 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
   2177 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2178 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2179 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2180 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
   2181 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2182 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2183 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2184 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
   2185 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2186 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2187 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
   2188 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
   2189 };
   2190 
   2191 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
   2192  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
   2193 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
   2194 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
   2195 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
   2196 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
   2197 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
   2198 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2199 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
   2200 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
   2201 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
   2202 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
   2203 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   2204 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
   2205 };
   2206 
   2207 local const int base_length[LENGTH_CODES] = {
   2208 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
   2209 64, 80, 96, 112, 128, 160, 192, 224, 0
   2210 };
   2211 
   2212 local const int base_dist[D_CODES] = {
   2213     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
   2214    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
   2215  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
   2216 };
   2217 /* --- trees.h */
   2218 
   2219 #endif /* GEN_TREES_H */
   2220 
   2221 struct static_tree_desc_s {
   2222     const ct_data *static_tree;  /* static tree or NULL */
   2223     const intf *extra_bits;      /* extra bits for each code or NULL */
   2224     int     extra_base;          /* base index for extra_bits */
   2225     int     elems;               /* max number of elements in the tree */
   2226     int     max_length;          /* max bit length for the codes */
   2227 };
   2228 
   2229 local static_tree_desc  static_l_desc =
   2230 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   2231 
   2232 local static_tree_desc  static_d_desc =
   2233 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   2234 
   2235 local static_tree_desc  static_bl_desc =
   2236 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   2237 
   2238 /* ===========================================================================
   2239  * Local (static) routines in this file.
   2240  */
   2241 
   2242 local void tr_static_init(void);
   2243 local void init_block(deflate_state *s);
   2244 local void pqdownheap(deflate_state *s, ct_data *tree, int k);
   2245 local void gen_bitlen(deflate_state *s, tree_desc *desc);
   2246 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count);
   2247 local void build_tree(deflate_state *s, tree_desc *desc);
   2248 local void scan_tree(deflate_state *s, ct_data *tree, int max_code);
   2249 local void send_tree(deflate_state *s, ct_data *tree, int max_code);
   2250 local int  build_bl_tree(deflate_state *s);
   2251 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
   2252                               int blcodes);
   2253 local void compress_block(deflate_state *s, const ct_data *ltree,
   2254                               const ct_data *dtree);
   2255 local void set_data_type(deflate_state *s);
   2256 local unsigned bi_reverse(unsigned value, int length);
   2257 local void bi_windup(deflate_state *s);
   2258 local void bi_flush(deflate_state *s);
   2259 local void copy_block(deflate_state *s, charf *buf, unsigned len,
   2260                               int header);
   2261 
   2262 #ifdef GEN_TREES_H
   2263 local void gen_trees_header(void);
   2264 #endif
   2265 
   2266 #ifndef DEBUG_ZLIB
   2267 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   2268    /* Send a code of the given tree. c and tree must not have side effects */
   2269 
   2270 #else /* DEBUG_ZLIB */
   2271 #  define send_code(s, c, tree) \
   2272      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   2273        send_bits(s, tree[c].Code, tree[c].Len); }
   2274 #endif
   2275 
   2276 /* ===========================================================================
   2277  * Output a short LSB first on the stream.
   2278  * IN assertion: there is enough room in pendingBuf.
   2279  */
   2280 #define put_short(s, w) { \
   2281     put_byte(s, (uch)((w) & 0xff)); \
   2282     put_byte(s, (uch)((ush)(w) >> 8)); \
   2283 }
   2284 
   2285 /* ===========================================================================
   2286  * Send a value on a given number of bits.
   2287  * IN assertion: length <= 16 and value fits in length bits.
   2288  */
   2289 #ifdef DEBUG_ZLIB
   2290 local void send_bits(deflate_state *s, int value, int length);
   2291 
   2292 local void send_bits(s, value, length)
   2293     deflate_state *s;
   2294     int value;  /* value to send */
   2295     int length; /* number of bits */
   2296 {
   2297     Tracevv((stderr," l %2d v %4x ", length, value));
   2298     Assert(length > 0 && length <= 15, "invalid length");
   2299     s->bits_sent += (ulg)length;
   2300 
   2301     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   2302      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   2303      * unused bits in value.
   2304      */
   2305     if (s->bi_valid > (int)Buf_size - length) {
   2306         s->bi_buf |= (value << s->bi_valid);
   2307         put_short(s, s->bi_buf);
   2308         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   2309         s->bi_valid += length - Buf_size;
   2310     } else {
   2311         s->bi_buf |= value << s->bi_valid;
   2312         s->bi_valid += length;
   2313     }
   2314 }
   2315 #else /* !DEBUG_ZLIB */
   2316 
   2317 #define send_bits(s, value, length) \
   2318 { int len = length;\
   2319   if (s->bi_valid > (int)Buf_size - len) {\
   2320     int val = value;\
   2321     s->bi_buf |= (val << s->bi_valid);\
   2322     put_short(s, s->bi_buf);\
   2323     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   2324     s->bi_valid += len - Buf_size;\
   2325   } else {\
   2326     s->bi_buf |= (value) << s->bi_valid;\
   2327     s->bi_valid += len;\
   2328   }\
   2329 }
   2330 #endif /* DEBUG_ZLIB */
   2331 
   2332 
   2333 /* ===========================================================================
   2334  * Initialize the various 'constant' tables.
   2335  */
   2336 local void tr_static_init(void)
   2337 {
   2338 #if defined(GEN_TREES_H) || !defined(STDC)
   2339     static int static_init_done = 0;
   2340     int n;        /* iterates over tree elements */
   2341     int bits;     /* bit counter */
   2342     int length;   /* length value */
   2343     int code;     /* code value */
   2344     int dist;     /* distance index */
   2345     ush bl_count[MAX_BITS+1];
   2346     /* number of codes at each bit length for an optimal tree */
   2347 
   2348     if (static_init_done) return;
   2349 
   2350     /* For some embedded targets, global variables are not initialized: */
   2351     static_l_desc.static_tree = static_ltree;
   2352     static_l_desc.extra_bits = extra_lbits;
   2353     static_d_desc.static_tree = static_dtree;
   2354     static_d_desc.extra_bits = extra_dbits;
   2355     static_bl_desc.extra_bits = extra_blbits;
   2356 
   2357     /* Initialize the mapping length (0..255) -> length code (0..28) */
   2358     length = 0;
   2359     for (code = 0; code < LENGTH_CODES-1; code++) {
   2360         base_length[code] = length;
   2361         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   2362             _length_code[length++] = (uch)code;
   2363         }
   2364     }
   2365     Assert (length == 256, "tr_static_init: length != 256");
   2366     /* Note that the length 255 (match length 258) can be represented
   2367      * in two different ways: code 284 + 5 bits or code 285, so we
   2368      * overwrite length_code[255] to use the best encoding:
   2369      */
   2370     _length_code[length-1] = (uch)code;
   2371 
   2372     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   2373     dist = 0;
   2374     for (code = 0 ; code < 16; code++) {
   2375         base_dist[code] = dist;
   2376         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   2377             _dist_code[dist++] = (uch)code;
   2378         }
   2379     }
   2380     Assert (dist == 256, "tr_static_init: dist != 256");
   2381     dist >>= 7; /* from now on, all distances are divided by 128 */
   2382     for ( ; code < D_CODES; code++) {
   2383         base_dist[code] = dist << 7;
   2384         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   2385             _dist_code[256 + dist++] = (uch)code;
   2386         }
   2387     }
   2388     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   2389 
   2390     /* Construct the codes of the static literal tree */
   2391     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   2392     n = 0;
   2393     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   2394     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   2395     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   2396     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   2397     /* Codes 286 and 287 do not exist, but we must include them in the
   2398      * tree construction to get a canonical Huffman tree (longest code
   2399      * all ones)
   2400      */
   2401     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   2402 
   2403     /* The static distance tree is trivial: */
   2404     for (n = 0; n < D_CODES; n++) {
   2405         static_dtree[n].Len = 5;
   2406         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   2407     }
   2408     static_init_done = 1;
   2409 
   2410 #  ifdef GEN_TREES_H
   2411     gen_trees_header();
   2412 #  endif
   2413 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   2414 }
   2415 
   2416 /* ===========================================================================
   2417  * Genererate the file trees.h describing the static trees.
   2418  */
   2419 #ifdef GEN_TREES_H
   2420 #  ifndef DEBUG_ZLIB
   2421 #    include <stdio.h>
   2422 #  endif
   2423 
   2424 #  define SEPARATOR(i, last, width) \
   2425       ((i) == (last)? "\n};\n\n" :    \
   2426        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   2427 
   2428 void gen_trees_header(void)
   2429 {
   2430     FILE *header = fopen("trees.h", "w");
   2431     int i;
   2432 
   2433     Assert (header != NULL, "Can't open trees.h");
   2434     fprintf(header,
   2435 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   2436 
   2437     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   2438     for (i = 0; i < L_CODES+2; i++) {
   2439 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   2440 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   2441     }
   2442 
   2443     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   2444     for (i = 0; i < D_CODES; i++) {
   2445 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   2446 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   2447     }
   2448 
   2449     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   2450     for (i = 0; i < DIST_CODE_LEN; i++) {
   2451 	fprintf(header, "%2u%s", _dist_code[i],
   2452 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   2453     }
   2454 
   2455     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   2456     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   2457 	fprintf(header, "%2u%s", _length_code[i],
   2458 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   2459     }
   2460 
   2461     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   2462     for (i = 0; i < LENGTH_CODES; i++) {
   2463 	fprintf(header, "%1u%s", base_length[i],
   2464 		SEPARATOR(i, LENGTH_CODES-1, 20));
   2465     }
   2466 
   2467     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   2468     for (i = 0; i < D_CODES; i++) {
   2469 	fprintf(header, "%5u%s", base_dist[i],
   2470 		SEPARATOR(i, D_CODES-1, 10));
   2471     }
   2472 
   2473     fclose(header);
   2474 }
   2475 #endif /* GEN_TREES_H */
   2476 
   2477 /* ===========================================================================
   2478  * Initialize the tree data structures for a new zlib stream.
   2479  */
   2480 void _tr_init(deflate_state *s)
   2481 {
   2482     tr_static_init();
   2483 
   2484     s->l_desc.dyn_tree = s->dyn_ltree;
   2485     s->l_desc.stat_desc = &static_l_desc;
   2486 
   2487     s->d_desc.dyn_tree = s->dyn_dtree;
   2488     s->d_desc.stat_desc = &static_d_desc;
   2489 
   2490     s->bl_desc.dyn_tree = s->bl_tree;
   2491     s->bl_desc.stat_desc = &static_bl_desc;
   2492 
   2493     s->bi_buf = 0;
   2494     s->bi_valid = 0;
   2495     s->last_eob_len = 8; /* enough lookahead for inflate */
   2496 #ifdef DEBUG_ZLIB
   2497     s->compressed_len = 0L;
   2498     s->bits_sent = 0L;
   2499 #endif
   2500 
   2501     /* Initialize the first block of the first file: */
   2502     init_block(s);
   2503 }
   2504 
   2505 /* ===========================================================================
   2506  * Initialize a new block.
   2507  */
   2508 local void init_block(deflate_state *s)
   2509 {
   2510     int n; /* iterates over tree elements */
   2511 
   2512     /* Initialize the trees. */
   2513     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   2514     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   2515     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   2516 
   2517     s->dyn_ltree[END_BLOCK].Freq = 1;
   2518     s->opt_len = s->static_len = 0L;
   2519     s->last_lit = s->matches = 0;
   2520 }
   2521 
   2522 #define SMALLEST 1
   2523 /* Index within the heap array of least frequent node in the Huffman tree */
   2524 
   2525 
   2526 /* ===========================================================================
   2527  * Remove the smallest element from the heap and recreate the heap with
   2528  * one less element. Updates heap and heap_len.
   2529  */
   2530 #define pqremove(s, tree, top) \
   2531 {\
   2532     top = s->heap[SMALLEST]; \
   2533     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   2534     pqdownheap(s, tree, SMALLEST); \
   2535 }
   2536 
   2537 /* ===========================================================================
   2538  * Compares to subtrees, using the tree depth as tie breaker when
   2539  * the subtrees have equal frequency. This minimizes the worst case length.
   2540  */
   2541 #define smaller(tree, n, m, depth) \
   2542    (tree[n].Freq < tree[m].Freq || \
   2543    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   2544 
   2545 /* ===========================================================================
   2546  * Restore the heap property by moving down the tree starting at node k,
   2547  * exchanging a node with the smallest of its two sons if necessary, stopping
   2548  * when the heap property is re-established (each father smaller than its
   2549  * two sons).
   2550  */
   2551 local void pqdownheap(deflate_state *s,
   2552 	ct_data *tree,	/* the tree to restore */
   2553 	int k)		/* node to move down */
   2554 {
   2555     int v = s->heap[k];
   2556     int j = k << 1;  /* left son of k */
   2557     while (j <= s->heap_len) {
   2558         /* Set j to the smallest of the two sons: */
   2559         if (j < s->heap_len &&
   2560             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   2561             j++;
   2562         }
   2563         /* Exit if v is smaller than both sons */
   2564         if (smaller(tree, v, s->heap[j], s->depth)) break;
   2565 
   2566         /* Exchange v with the smallest son */
   2567         s->heap[k] = s->heap[j];  k = j;
   2568 
   2569         /* And continue down the tree, setting j to the left son of k */
   2570         j <<= 1;
   2571     }
   2572     s->heap[k] = v;
   2573 }
   2574 
   2575 /* ===========================================================================
   2576  * Compute the optimal bit lengths for a tree and update the total bit length
   2577  * for the current block.
   2578  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   2579  *    above are the tree nodes sorted by increasing frequency.
   2580  * OUT assertions: the field len is set to the optimal bit length, the
   2581  *     array bl_count contains the frequencies for each bit length.
   2582  *     The length opt_len is updated; static_len is also updated if stree is
   2583  *     not null.
   2584  */
   2585 local void gen_bitlen(deflate_state *s,
   2586 	tree_desc *desc)	/* the tree descriptor */
   2587 {
   2588     ct_data *tree        = desc->dyn_tree;
   2589     int max_code         = desc->max_code;
   2590     const ct_data *stree = desc->stat_desc->static_tree;
   2591     const intf *extra    = desc->stat_desc->extra_bits;
   2592     int base             = desc->stat_desc->extra_base;
   2593     int max_length       = desc->stat_desc->max_length;
   2594     int h;              /* heap index */
   2595     int n, m;           /* iterate over the tree elements */
   2596     int bits;           /* bit length */
   2597     int xbits;          /* extra bits */
   2598     ush f;              /* frequency */
   2599     int overflow = 0;   /* number of elements with bit length too large */
   2600 
   2601     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   2602 
   2603     /* In a first pass, compute the optimal bit lengths (which may
   2604      * overflow in the case of the bit length tree).
   2605      */
   2606     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   2607 
   2608     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   2609         n = s->heap[h];
   2610         bits = tree[tree[n].Dad].Len + 1;
   2611         if (bits > max_length) bits = max_length, overflow++;
   2612         tree[n].Len = (ush)bits;
   2613         /* We overwrite tree[n].Dad which is no longer needed */
   2614 
   2615         if (n > max_code) continue; /* not a leaf node */
   2616 
   2617         s->bl_count[bits]++;
   2618         xbits = 0;
   2619         if (n >= base) xbits = extra[n-base];
   2620         f = tree[n].Freq;
   2621         s->opt_len += (ulg)f * (bits + xbits);
   2622         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   2623     }
   2624     if (overflow == 0) return;
   2625 
   2626     Trace((stderr,"\nbit length overflow\n"));
   2627     /* This happens for example on obj2 and pic of the Calgary corpus */
   2628 
   2629     /* Find the first bit length which could increase: */
   2630     do {
   2631         bits = max_length-1;
   2632         while (s->bl_count[bits] == 0) bits--;
   2633         s->bl_count[bits]--;      /* move one leaf down the tree */
   2634         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   2635         s->bl_count[max_length]--;
   2636         /* The brother of the overflow item also moves one step up,
   2637          * but this does not affect bl_count[max_length]
   2638          */
   2639         overflow -= 2;
   2640     } while (overflow > 0);
   2641 
   2642     /* Now recompute all bit lengths, scanning in increasing frequency.
   2643      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   2644      * lengths instead of fixing only the wrong ones. This idea is taken
   2645      * from 'ar' written by Haruhiko Okumura.)
   2646      */
   2647     for (bits = max_length; bits != 0; bits--) {
   2648         n = s->bl_count[bits];
   2649         while (n != 0) {
   2650             m = s->heap[--h];
   2651             if (m > max_code) continue;
   2652             if (tree[m].Len != (unsigned) bits) {
   2653                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   2654                 s->opt_len += ((long)bits - (long)tree[m].Len)
   2655                               *(long)tree[m].Freq;
   2656                 tree[m].Len = (ush)bits;
   2657             }
   2658             n--;
   2659         }
   2660     }
   2661 }
   2662 
   2663 /* ===========================================================================
   2664  * Generate the codes for a given tree and bit counts (which need not be
   2665  * optimal).
   2666  * IN assertion: the array bl_count contains the bit length statistics for
   2667  * the given tree and the field len is set for all tree elements.
   2668  * OUT assertion: the field code is set for all tree elements of non
   2669  *     zero code length.
   2670  */
   2671 local void gen_codes (ct_data *tree,	/* the tree to decorate */
   2672 	int max_code,			/* largest code with non zero frequency */
   2673 	ushf *bl_count)			/* number of codes at each bit length */
   2674 {
   2675     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   2676     ush code = 0;              /* running code value */
   2677     int bits;                  /* bit index */
   2678     int n;                     /* code index */
   2679 
   2680     /* The distribution counts are first used to generate the code values
   2681      * without bit reversal.
   2682      */
   2683     for (bits = 1; bits <= MAX_BITS; bits++) {
   2684         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   2685     }
   2686     /* Check that the bit counts in bl_count are consistent. The last code
   2687      * must be all ones.
   2688      */
   2689     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   2690             "inconsistent bit counts");
   2691     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   2692 
   2693     for (n = 0;  n <= max_code; n++) {
   2694         int len = tree[n].Len;
   2695         if (len == 0) continue;
   2696         /* Now reverse the bits */
   2697         tree[n].Code = bi_reverse(next_code[len]++, len);
   2698 
   2699         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   2700              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   2701     }
   2702 }
   2703 
   2704 /* ===========================================================================
   2705  * Construct one Huffman tree and assigns the code bit strings and lengths.
   2706  * Update the total bit length for the current block.
   2707  * IN assertion: the field freq is set for all tree elements.
   2708  * OUT assertions: the fields len and code are set to the optimal bit length
   2709  *     and corresponding code. The length opt_len is updated; static_len is
   2710  *     also updated if stree is not null. The field max_code is set.
   2711  */
   2712 local void build_tree(deflate_state *s,
   2713 	tree_desc *desc)	/* the tree descriptor */
   2714 {
   2715     ct_data *tree         = desc->dyn_tree;
   2716     const ct_data *stree  = desc->stat_desc->static_tree;
   2717     int elems             = desc->stat_desc->elems;
   2718     int n, m;          /* iterate over heap elements */
   2719     int max_code = -1; /* largest code with non zero frequency */
   2720     int node;          /* new node being created */
   2721 
   2722     /* Construct the initial heap, with least frequent element in
   2723      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   2724      * heap[0] is not used.
   2725      */
   2726     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   2727 
   2728     for (n = 0; n < elems; n++) {
   2729         if (tree[n].Freq != 0) {
   2730             s->heap[++(s->heap_len)] = max_code = n;
   2731             s->depth[n] = 0;
   2732         } else {
   2733             tree[n].Len = 0;
   2734         }
   2735     }
   2736 
   2737     /* The pkzip format requires that at least one distance code exists,
   2738      * and that at least one bit should be sent even if there is only one
   2739      * possible code. So to avoid special checks later on we force at least
   2740      * two codes of non zero frequency.
   2741      */
   2742     while (s->heap_len < 2) {
   2743         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   2744         tree[node].Freq = 1;
   2745         s->depth[node] = 0;
   2746         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   2747         /* node is 0 or 1 so it does not have extra bits */
   2748     }
   2749     desc->max_code = max_code;
   2750 
   2751     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   2752      * establish sub-heaps of increasing lengths:
   2753      */
   2754     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   2755 
   2756     /* Construct the Huffman tree by repeatedly combining the least two
   2757      * frequent nodes.
   2758      */
   2759     node = elems;              /* next internal node of the tree */
   2760     do {
   2761         pqremove(s, tree, n);  /* n = node of least frequency */
   2762         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   2763 
   2764         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   2765         s->heap[--(s->heap_max)] = m;
   2766 
   2767         /* Create a new node father of n and m */
   2768         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   2769         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   2770         tree[n].Dad = tree[m].Dad = (ush)node;
   2771 #ifdef DUMP_BL_TREE
   2772         if (tree == s->bl_tree) {
   2773             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   2774                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   2775         }
   2776 #endif
   2777         /* and insert the new node in the heap */
   2778         s->heap[SMALLEST] = node++;
   2779         pqdownheap(s, tree, SMALLEST);
   2780 
   2781     } while (s->heap_len >= 2);
   2782 
   2783     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   2784 
   2785     /* At this point, the fields freq and dad are set. We can now
   2786      * generate the bit lengths.
   2787      */
   2788     gen_bitlen(s, (tree_desc *)desc);
   2789 
   2790     /* The field len is now set, we can generate the bit codes */
   2791     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   2792 }
   2793 
   2794 /* ===========================================================================
   2795  * Scan a literal or distance tree to determine the frequencies of the codes
   2796  * in the bit length tree.
   2797  */
   2798 local void scan_tree (deflate_state *s,
   2799 	ct_data *tree,	/* the tree to be scanned */
   2800 	int max_code)	/* and its largest code of non zero frequency */
   2801 {
   2802     int n;                     /* iterates over all tree elements */
   2803     int prevlen = -1;          /* last emitted length */
   2804     int curlen;                /* length of current code */
   2805     int nextlen = tree[0].Len; /* length of next code */
   2806     int count = 0;             /* repeat count of the current code */
   2807     int max_count = 7;         /* max repeat count */
   2808     int min_count = 4;         /* min repeat count */
   2809 
   2810     if (nextlen == 0) max_count = 138, min_count = 3;
   2811     tree[max_code+1].Len = (ush)0xffff; /* guard */
   2812 
   2813     for (n = 0; n <= max_code; n++) {
   2814         curlen = nextlen; nextlen = tree[n+1].Len;
   2815         if (++count < max_count && curlen == nextlen) {
   2816             continue;
   2817         } else if (count < min_count) {
   2818             s->bl_tree[curlen].Freq += count;
   2819         } else if (curlen != 0) {
   2820             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   2821             s->bl_tree[REP_3_6].Freq++;
   2822         } else if (count <= 10) {
   2823             s->bl_tree[REPZ_3_10].Freq++;
   2824         } else {
   2825             s->bl_tree[REPZ_11_138].Freq++;
   2826         }
   2827         count = 0; prevlen = curlen;
   2828         if (nextlen == 0) {
   2829             max_count = 138, min_count = 3;
   2830         } else if (curlen == nextlen) {
   2831             max_count = 6, min_count = 3;
   2832         } else {
   2833             max_count = 7, min_count = 4;
   2834         }
   2835     }
   2836 }
   2837 
   2838 /* ===========================================================================
   2839  * Send a literal or distance tree in compressed form, using the codes in
   2840  * bl_tree.
   2841  */
   2842 local void send_tree (deflate_state *s,
   2843 	ct_data *tree,	/* the tree to be scanned */
   2844 	int max_code)	/* and its largest code of non zero frequency */
   2845 {
   2846     int n;                     /* iterates over all tree elements */
   2847     int prevlen = -1;          /* last emitted length */
   2848     int curlen;                /* length of current code */
   2849     int nextlen = tree[0].Len; /* length of next code */
   2850     int count = 0;             /* repeat count of the current code */
   2851     int max_count = 7;         /* max repeat count */
   2852     int min_count = 4;         /* min repeat count */
   2853 
   2854     /* tree[max_code+1].Len = -1; */  /* guard already set */
   2855     if (nextlen == 0) max_count = 138, min_count = 3;
   2856 
   2857     for (n = 0; n <= max_code; n++) {
   2858         curlen = nextlen; nextlen = tree[n+1].Len;
   2859         if (++count < max_count && curlen == nextlen) {
   2860             continue;
   2861         } else if (count < min_count) {
   2862             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   2863 
   2864         } else if (curlen != 0) {
   2865             if (curlen != prevlen) {
   2866                 send_code(s, curlen, s->bl_tree); count--;
   2867             }
   2868             Assert(count >= 3 && count <= 6, " 3_6?");
   2869             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   2870 
   2871         } else if (count <= 10) {
   2872             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   2873 
   2874         } else {
   2875             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   2876         }
   2877         count = 0; prevlen = curlen;
   2878         if (nextlen == 0) {
   2879             max_count = 138, min_count = 3;
   2880         } else if (curlen == nextlen) {
   2881             max_count = 6, min_count = 3;
   2882         } else {
   2883             max_count = 7, min_count = 4;
   2884         }
   2885     }
   2886 }
   2887 
   2888 /* ===========================================================================
   2889  * Construct the Huffman tree for the bit lengths and return the index in
   2890  * bl_order of the last bit length code to send.
   2891  */
   2892 local int build_bl_tree(deflate_state *s)
   2893 {
   2894     int max_blindex;  /* index of last bit length code of non zero freq */
   2895 
   2896     /* Determine the bit length frequencies for literal and distance trees */
   2897     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   2898     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   2899 
   2900     /* Build the bit length tree: */
   2901     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   2902     /* opt_len now includes the length of the tree representations, except
   2903      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   2904      */
   2905 
   2906     /* Determine the number of bit length codes to send. The pkzip format
   2907      * requires that at least 4 bit length codes be sent. (appnote.txt says
   2908      * 3 but the actual value used is 4.)
   2909      */
   2910     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   2911         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   2912     }
   2913     /* Update opt_len to include the bit length tree and counts */
   2914     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   2915     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   2916             s->opt_len, s->static_len));
   2917 
   2918     return max_blindex;
   2919 }
   2920 
   2921 /* ===========================================================================
   2922  * Send the header for a block using dynamic Huffman trees: the counts, the
   2923  * lengths of the bit length codes, the literal tree and the distance tree.
   2924  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   2925  */
   2926 local void send_all_trees(deflate_state *s,
   2927 	int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
   2928 {
   2929     int rank;                    /* index in bl_order */
   2930 
   2931     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   2932     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   2933             "too many codes");
   2934     Tracev((stderr, "\nbl counts: "));
   2935     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   2936     send_bits(s, dcodes-1,   5);
   2937     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   2938     for (rank = 0; rank < blcodes; rank++) {
   2939         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   2940         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   2941     }
   2942     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   2943 
   2944     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   2945     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   2946 
   2947     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   2948     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   2949 }
   2950 
   2951 /* ===========================================================================
   2952  * Send a stored block
   2953  */
   2954 void _tr_stored_block(deflate_state *s,
   2955 	charf *buf,	/* input block */
   2956 	ulg stored_len,	/* length of input block */
   2957 	int eof)	/* true if this is the last block for a file */
   2958 {
   2959     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   2960 #ifdef DEBUG_ZLIB
   2961     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   2962     s->compressed_len += (stored_len + 4) << 3;
   2963 #endif
   2964     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   2965 }
   2966 
   2967 /* Send just the `stored block' type code without any length bytes or data.
   2968  */
   2969 void _tr_stored_type_only(deflate_state *s)
   2970 {
   2971     send_bits(s, (STORED_BLOCK << 1), 3);
   2972     bi_windup(s);
   2973 #ifdef DEBUG_ZLIB
   2974     s->compressed_len = (s->compressed_len + 3) & ~7L;
   2975 #endif
   2976 }
   2977 
   2978 /* ===========================================================================
   2979  * Send one empty static block to give enough lookahead for inflate.
   2980  * This takes 10 bits, of which 7 may remain in the bit buffer.
   2981  * The current inflate code requires 9 bits of lookahead. If the
   2982  * last two codes for the previous block (real code plus EOB) were coded
   2983  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   2984  * the last real code. In this case we send two empty static blocks instead
   2985  * of one. (There are no problems if the previous block is stored or fixed.)
   2986  * To simplify the code, we assume the worst case of last real code encoded
   2987  * on one bit only.
   2988  */
   2989 void _tr_align(deflate_state *s)
   2990 {
   2991     send_bits(s, STATIC_TREES<<1, 3);
   2992     send_code(s, END_BLOCK, static_ltree);
   2993 #ifdef DEBUG_ZLIB
   2994     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   2995 #endif
   2996     bi_flush(s);
   2997     /* Of the 10 bits for the empty block, we have already sent
   2998      * (10 - bi_valid) bits. The lookahead for the last real code (before
   2999      * the EOB of the previous block) was thus at least one plus the length
   3000      * of the EOB plus what we have just sent of the empty static block.
   3001      */
   3002     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   3003         send_bits(s, STATIC_TREES<<1, 3);
   3004         send_code(s, END_BLOCK, static_ltree);
   3005 #ifdef DEBUG_ZLIB
   3006         s->compressed_len += 10L;
   3007 #endif
   3008         bi_flush(s);
   3009     }
   3010     s->last_eob_len = 7;
   3011 }
   3012 
   3013 /* ===========================================================================
   3014  * Determine the best encoding for the current block: dynamic trees, static
   3015  * trees or store, and output the encoded block to the zip file.
   3016  */
   3017 void _tr_flush_block(deflate_state *s,
   3018 	charf *buf,	/* input block, or NULL if too old */
   3019 	ulg stored_len,	/* length of input block */
   3020 	int eof)		/* true if this is the last block for a file */
   3021 {
   3022     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   3023     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   3024 
   3025     /* Build the Huffman trees unless a stored block is forced */
   3026     if (s->level > 0) {
   3027 
   3028 	 /* Check if the file is ascii or binary */
   3029 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   3030 
   3031 	/* Construct the literal and distance trees */
   3032 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   3033 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   3034 		s->static_len));
   3035 
   3036 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   3037 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   3038 		s->static_len));
   3039 	/* At this point, opt_len and static_len are the total bit lengths of
   3040 	 * the compressed block data, excluding the tree representations.
   3041 	 */
   3042 
   3043 	/* Build the bit length tree for the above two trees, and get the index
   3044 	 * in bl_order of the last bit length code to send.
   3045 	 */
   3046 	max_blindex = build_bl_tree(s);
   3047 
   3048 	/* Determine the best encoding. Compute first the block length in bytes*/
   3049 	opt_lenb = (s->opt_len+3+7)>>3;
   3050 	static_lenb = (s->static_len+3+7)>>3;
   3051 
   3052 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   3053 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   3054 		s->last_lit));
   3055 
   3056 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   3057 
   3058     } else {
   3059         Assert(buf != (char*)0, "lost buf");
   3060 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   3061     }
   3062 
   3063 #ifdef FORCE_STORED
   3064     if (buf != (char*)0) { /* force stored block */
   3065 #else
   3066     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   3067                        /* 4: two words for the lengths */
   3068 #endif
   3069         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   3070          * Otherwise we can't have processed more than WSIZE input bytes since
   3071          * the last block flush, because compression would have been
   3072          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   3073          * transform a block into a stored block.
   3074          */
   3075         _tr_stored_block(s, buf, stored_len, eof);
   3076 
   3077 #ifdef FORCE_STATIC
   3078     } else if (static_lenb >= 0) { /* force static trees */
   3079 #else
   3080     } else if (static_lenb == opt_lenb) {
   3081 #endif
   3082         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   3083         compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
   3084 #ifdef DEBUG_ZLIB
   3085         s->compressed_len += 3 + s->static_len;
   3086 #endif
   3087     } else {
   3088         send_bits(s, (DYN_TREES<<1)+eof, 3);
   3089         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   3090                        max_blindex+1);
   3091         compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
   3092 #ifdef DEBUG_ZLIB
   3093         s->compressed_len += 3 + s->opt_len;
   3094 #endif
   3095     }
   3096     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   3097     /* The above check is made mod 2^32, for files larger than 512 MB
   3098      * and uLong implemented on 32 bits.
   3099      */
   3100     init_block(s);
   3101 
   3102     if (eof) {
   3103         bi_windup(s);
   3104 #ifdef DEBUG_ZLIB
   3105         s->compressed_len += 7;  /* align on byte boundary */
   3106 #endif
   3107     }
   3108     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   3109            s->compressed_len-7*eof));
   3110 }
   3111 
   3112 /* ===========================================================================
   3113  * Save the match info and tally the frequency counts. Return true if
   3114  * the current block must be flushed.
   3115  */
   3116 #if 0
   3117 int _tr_tally (deflate_state *s,
   3118 	unsigned dist,	/* distance of matched string */
   3119 	unsigned lc)	/* match length-MIN_MATCH or unmatched char (if dist==0) */
   3120 {
   3121     s->d_buf[s->last_lit] = (ush)dist;
   3122     s->l_buf[s->last_lit++] = (uch)lc;
   3123     if (dist == 0) {
   3124         /* lc is the unmatched char */
   3125         s->dyn_ltree[lc].Freq++;
   3126     } else {
   3127         s->matches++;
   3128         /* Here, lc is the match length - MIN_MATCH */
   3129         dist--;             /* dist = match distance - 1 */
   3130         Assert((ush)dist < (ush)MAX_DIST(s) &&
   3131                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   3132                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   3133 
   3134         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   3135         s->dyn_dtree[d_code(dist)].Freq++;
   3136     }
   3137 
   3138 #ifdef TRUNCATE_BLOCK
   3139     /* Try to guess if it is profitable to stop the current block here */
   3140     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   3141         /* Compute an upper bound for the compressed length */
   3142         ulg out_length = (ulg)s->last_lit*8L;
   3143         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   3144         int dcode;
   3145         for (dcode = 0; dcode < D_CODES; dcode++) {
   3146             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   3147                 (5L+extra_dbits[dcode]);
   3148         }
   3149         out_length >>= 3;
   3150         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   3151                s->last_lit, in_length, out_length,
   3152                100L - out_length*100L/in_length));
   3153         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   3154     }
   3155 #endif
   3156     return (s->last_lit == s->lit_bufsize-1);
   3157     /* We avoid equality with lit_bufsize because of wraparound at 64K
   3158      * on 16 bit machines and because stored blocks are restricted to
   3159      * 64K-1 bytes.
   3160      */
   3161 }
   3162 #endif
   3163 
   3164 /* ===========================================================================
   3165  * Send the block data compressed using the given Huffman trees
   3166  */
   3167 local void compress_block(deflate_state *s,
   3168 	const ct_data *ltree,	/* literal tree */
   3169 	const ct_data *dtree)	/* distance tree */
   3170 {
   3171     unsigned dist;      /* distance of matched string */
   3172     int lc;             /* match length or unmatched char (if dist == 0) */
   3173     unsigned lx = 0;    /* running index in l_buf */
   3174     unsigned code;      /* the code to send */
   3175     int extra;          /* number of extra bits to send */
   3176 
   3177     if (s->last_lit != 0) do {
   3178         dist = s->d_buf[lx];
   3179         lc = s->l_buf[lx++];
   3180         if (dist == 0) {
   3181             send_code(s, lc, ltree); /* send a literal byte */
   3182             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   3183         } else {
   3184             /* Here, lc is the match length - MIN_MATCH */
   3185             code = _length_code[lc];
   3186             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   3187             extra = extra_lbits[code];
   3188             if (extra != 0) {
   3189                 lc -= base_length[code];
   3190                 send_bits(s, lc, extra);       /* send the extra length bits */
   3191             }
   3192             dist--; /* dist is now the match distance - 1 */
   3193             code = d_code(dist);
   3194             Assert (code < D_CODES, "bad d_code");
   3195 
   3196             send_code(s, code, dtree);       /* send the distance code */
   3197             extra = extra_dbits[code];
   3198             if (extra != 0) {
   3199                 dist -= base_dist[code];
   3200                 send_bits(s, dist, extra);   /* send the extra distance bits */
   3201             }
   3202         } /* literal or match pair ? */
   3203 
   3204         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   3205         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
   3206 
   3207     } while (lx < s->last_lit);
   3208 
   3209     send_code(s, END_BLOCK, ltree);
   3210     s->last_eob_len = ltree[END_BLOCK].Len;
   3211 }
   3212 
   3213 /* ===========================================================================
   3214  * Set the data type to ASCII or BINARY, using a crude approximation:
   3215  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
   3216  * IN assertion: the fields freq of dyn_ltree are set and the total of all
   3217  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
   3218  */
   3219 local void set_data_type(deflate_state *s)
   3220 {
   3221     int n = 0;
   3222     unsigned ascii_freq = 0;
   3223     unsigned bin_freq = 0;
   3224     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
   3225     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
   3226     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
   3227     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
   3228 }
   3229 
   3230 /* ===========================================================================
   3231  * Reverse the first len bits of a code, using straightforward code (a faster
   3232  * method would use a table)
   3233  * IN assertion: 1 <= len <= 15
   3234  */
   3235 local unsigned bi_reverse(unsigned code, /* the value to invert */
   3236 			int len)	/* its bit length */
   3237 {
   3238     unsigned res = 0;
   3239     do {
   3240         res |= code & 1;
   3241         code >>= 1, res <<= 1;
   3242     } while (--len > 0);
   3243     return res >> 1;
   3244 }
   3245 
   3246 /* ===========================================================================
   3247  * Flush the bit buffer, keeping at most 7 bits in it.
   3248  */
   3249 local void bi_flush(deflate_state *s)
   3250 {
   3251     if (s->bi_valid == 16) {
   3252         put_short(s, s->bi_buf);
   3253         s->bi_buf = 0;
   3254         s->bi_valid = 0;
   3255     } else if (s->bi_valid >= 8) {
   3256         put_byte(s, (Byte)s->bi_buf);
   3257         s->bi_buf >>= 8;
   3258         s->bi_valid -= 8;
   3259     }
   3260 }
   3261 
   3262 /* ===========================================================================
   3263  * Flush the bit buffer and align the output on a byte boundary
   3264  */
   3265 local void bi_windup(deflate_state *s)
   3266 {
   3267     if (s->bi_valid > 8) {
   3268         put_short(s, s->bi_buf);
   3269     } else if (s->bi_valid > 0) {
   3270         put_byte(s, (Byte)s->bi_buf);
   3271     }
   3272     s->bi_buf = 0;
   3273     s->bi_valid = 0;
   3274 #ifdef DEBUG_ZLIB
   3275     s->bits_sent = (s->bits_sent+7) & ~7;
   3276 #endif
   3277 }
   3278 
   3279 /* ===========================================================================
   3280  * Copy a stored block, storing first the length and its
   3281  * one's complement if requested.
   3282  */
   3283 local void copy_block(deflate_state *s,
   3284 	charf *buf,	/* the input data */
   3285 	unsigned len,	/* its length */
   3286 	int header)	/* true if block header must be written */
   3287 {
   3288     bi_windup(s);        /* align on byte boundary */
   3289     s->last_eob_len = 8; /* enough lookahead for inflate */
   3290 
   3291     if (header) {
   3292         put_short(s, (ush)len);
   3293         put_short(s, (ush)~len);
   3294 #ifdef DEBUG_ZLIB
   3295         s->bits_sent += 2*16;
   3296 #endif
   3297     }
   3298 #ifdef DEBUG_ZLIB
   3299     s->bits_sent += (ulg)len<<3;
   3300 #endif
   3301     /* bundle up the put_byte(s, *buf++) calls */
   3302     zmemcpy(&s->pending_buf[s->pending], buf, len);
   3303     s->pending += len;
   3304 }
   3305 /* --- trees.c */
   3306 
   3307 /* +++ inflate.c */
   3308 
   3309 /* inflate.c -- zlib interface to inflate modules
   3310  * Copyright (C) 1995-2002 Mark Adler
   3311  * For conditions of distribution and use, see copyright notice in zlib.h
   3312  */
   3313 
   3314 /* #include "zutil.h" */
   3315 
   3316 /* +++ infblock.h */
   3317 
   3318 /* infblock.h -- header to use infblock.c
   3319  * Copyright (C) 1995-2002 Mark Adler
   3320  * For conditions of distribution and use, see copyright notice in zlib.h
   3321  */
   3322 
   3323 /* WARNING: this file should *not* be used by applications. It is
   3324    part of the implementation of the compression library and is
   3325    subject to change. Applications should only use zlib.h.
   3326  */
   3327 
   3328 struct inflate_blocks_state;
   3329 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
   3330 
   3331 extern inflate_blocks_statef * inflate_blocks_new(
   3332     z_streamp z,
   3333     check_func c,               /* check function */
   3334     uInt w);                   /* window size */
   3335 
   3336 extern int inflate_blocks(
   3337     inflate_blocks_statef *,
   3338     z_streamp ,
   3339     int);                      /* initial return code */
   3340 
   3341 extern void inflate_blocks_reset(
   3342     inflate_blocks_statef *,
   3343     z_streamp ,
   3344     uLongf *);                  /* check value on output */
   3345 
   3346 extern int inflate_blocks_free(
   3347     inflate_blocks_statef *,
   3348     z_streamp);
   3349 
   3350 extern void inflate_set_dictionary(
   3351     inflate_blocks_statef *s,
   3352     const Bytef *d,  /* dictionary */
   3353     uInt  n);       /* dictionary length */
   3354 
   3355 extern int inflate_blocks_sync_point(
   3356     inflate_blocks_statef *s);
   3357 extern int inflate_addhistory(
   3358     inflate_blocks_statef *,
   3359     z_streamp);
   3360 
   3361 extern int inflate_packet_flush(
   3362     inflate_blocks_statef *);
   3363 
   3364 /* --- infblock.h */
   3365 
   3366 #ifndef NO_DUMMY_DECL
   3367 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
   3368 #endif
   3369 
   3370 typedef enum {
   3371       METHOD,   /* waiting for method byte */
   3372       FLAG,     /* waiting for flag byte */
   3373       DICT4,    /* four dictionary check bytes to go */
   3374       DICT3,    /* three dictionary check bytes to go */
   3375       DICT2,    /* two dictionary check bytes to go */
   3376       DICT1,    /* one dictionary check byte to go */
   3377       DICT0,    /* waiting for inflateSetDictionary */
   3378       BLOCKS,   /* decompressing blocks */
   3379       CHECK4,   /* four check bytes to go */
   3380       CHECK3,   /* three check bytes to go */
   3381       CHECK2,   /* two check bytes to go */
   3382       CHECK1,   /* one check byte to go */
   3383       DONE,     /* finished check, done */
   3384       BAD}      /* got an error--stay here */
   3385 inflate_mode;
   3386 
   3387 /* inflate private state */
   3388 struct internal_state {
   3389 
   3390   /* mode */
   3391   inflate_mode  mode;   /* current inflate mode */
   3392 
   3393   /* mode dependent information */
   3394   union {
   3395     uInt method;        /* if FLAGS, method byte */
   3396     struct {
   3397       uLong was;                /* computed check value */
   3398       uLong need;               /* stream check value */
   3399     } check;            /* if CHECK, check values to compare */
   3400     uInt marker;        /* if BAD, inflateSync's marker bytes count */
   3401   } sub;        /* submode */
   3402 
   3403   /* mode independent information */
   3404   int  nowrap;          /* flag for no wrapper */
   3405   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
   3406   inflate_blocks_statef
   3407     *blocks;            /* current inflate_blocks state */
   3408 
   3409 };
   3410 
   3411 
   3412 int ZEXPORT inflateReset(z_streamp z)
   3413 {
   3414   if (z == Z_NULL || z->state == Z_NULL)
   3415     return Z_STREAM_ERROR;
   3416   z->total_in = z->total_out = 0;
   3417   z->msg = Z_NULL;
   3418   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
   3419   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
   3420   Tracev((stderr, "inflate: reset\n"));
   3421   return Z_OK;
   3422 }
   3423 
   3424 
   3425 int ZEXPORT inflateEnd(z_streamp z)
   3426 {
   3427   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
   3428     return Z_STREAM_ERROR;
   3429   if (z->state->blocks != Z_NULL)
   3430     inflate_blocks_free(z->state->blocks, z);
   3431   ZFREE(z, z->state);
   3432   z->state = Z_NULL;
   3433   Tracev((stderr, "inflate: end\n"));
   3434   return Z_OK;
   3435 }
   3436 
   3437 
   3438 int ZEXPORT inflateInit2_(z_streamp z, int w, const char *vers, int stream_size)
   3439 {
   3440   if (vers == Z_NULL || vers[0] != ZLIB_VERSION[0] ||
   3441       stream_size != sizeof(z_stream))
   3442       return Z_VERSION_ERROR;
   3443 
   3444   /* initialize state */
   3445   if (z == Z_NULL)
   3446     return Z_STREAM_ERROR;
   3447   z->msg = Z_NULL;
   3448 #ifndef NO_ZCFUNCS
   3449   if (z->zalloc == Z_NULL)
   3450   {
   3451     z->zalloc = zcalloc;
   3452     z->opaque = (voidpf)0;
   3453   }
   3454   if (z->zfree == Z_NULL) z->zfree = zcfree;
   3455 #endif
   3456   if ((z->state = (struct internal_state FAR *)
   3457        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
   3458     return Z_MEM_ERROR;
   3459   z->state->blocks = Z_NULL;
   3460 
   3461   /* handle undocumented nowrap option (no zlib header or check) */
   3462   z->state->nowrap = 0;
   3463   if (w < 0)
   3464   {
   3465     w = - w;
   3466     z->state->nowrap = 1;
   3467   }
   3468 
   3469   /* set window size */
   3470   if (w < 8 || w > 15)
   3471   {
   3472     inflateEnd(z);
   3473     return Z_STREAM_ERROR;
   3474   }
   3475   z->state->wbits = (uInt)w;
   3476 
   3477   /* create inflate_blocks state */
   3478   if ((z->state->blocks =
   3479       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
   3480       == Z_NULL)
   3481   {
   3482     inflateEnd(z);
   3483     return Z_MEM_ERROR;
   3484   }
   3485   Tracev((stderr, "inflate: allocated\n"));
   3486 
   3487   /* reset state */
   3488   inflateReset(z);
   3489   return Z_OK;
   3490 }
   3491 
   3492 
   3493 #if 0
   3494 int ZEXPORT inflateInit_(z_streamp z, const char *vers, int stream_size)
   3495 {
   3496   return inflateInit2_(z, DEF_WBITS, vers, stream_size);
   3497 }
   3498 #endif
   3499 
   3500 
   3501 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
   3502 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
   3503 
   3504 int ZEXPORT inflate(z_streamp z, int f)
   3505 {
   3506   int r, r2;
   3507   uInt b;
   3508 
   3509   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
   3510     return Z_STREAM_ERROR;
   3511   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
   3512   r = Z_BUF_ERROR;
   3513   while (1) switch (z->state->mode)
   3514   {
   3515     case METHOD:
   3516       NEEDBYTE
   3517       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
   3518       {
   3519         z->state->mode = BAD;
   3520         z->msg = "unknown compression method";
   3521         z->state->sub.marker = 5;       /* can't try inflateSync */
   3522         break;
   3523       }
   3524       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
   3525       {
   3526         z->state->mode = BAD;
   3527         z->msg = "invalid window size";
   3528         z->state->sub.marker = 5;       /* can't try inflateSync */
   3529         break;
   3530       }
   3531       z->state->mode = FLAG;
   3532     case FLAG:
   3533       NEEDBYTE
   3534       b = NEXTBYTE;
   3535       if (((z->state->sub.method << 8) + b) % 31)
   3536       {
   3537         z->state->mode = BAD;
   3538         z->msg = "incorrect header check";
   3539         z->state->sub.marker = 5;       /* can't try inflateSync */
   3540         break;
   3541       }
   3542       Tracev((stderr, "inflate: zlib header ok\n"));
   3543       if (!(b & PRESET_DICT))
   3544       {
   3545         z->state->mode = BLOCKS;
   3546         break;
   3547       }
   3548       z->state->mode = DICT4;
   3549     case DICT4:
   3550       NEEDBYTE
   3551       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3552       z->state->mode = DICT3;
   3553     case DICT3:
   3554       NEEDBYTE
   3555       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3556       z->state->mode = DICT2;
   3557     case DICT2:
   3558       NEEDBYTE
   3559       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3560       z->state->mode = DICT1;
   3561     case DICT1:
   3562       NEEDBYTE
   3563       z->state->sub.check.need += (uLong)NEXTBYTE;
   3564       z->adler = z->state->sub.check.need;
   3565       z->state->mode = DICT0;
   3566       return Z_NEED_DICT;
   3567     case DICT0:
   3568       z->state->mode = BAD;
   3569       z->msg = "need dictionary";
   3570       z->state->sub.marker = 0;       /* can try inflateSync */
   3571       return Z_STREAM_ERROR;
   3572     case BLOCKS:
   3573       r = inflate_blocks(z->state->blocks, z, r);
   3574       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
   3575          r = inflate_packet_flush(z->state->blocks);
   3576       if (r == Z_DATA_ERROR)
   3577       {
   3578         z->state->mode = BAD;
   3579         z->state->sub.marker = 0;       /* can try inflateSync */
   3580         break;
   3581       }
   3582       if (r == Z_OK)
   3583         r = r2;
   3584       if (r != Z_STREAM_END)
   3585         return r;
   3586       r = r2;
   3587       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
   3588       if (z->state->nowrap)
   3589       {
   3590         z->state->mode = DONE;
   3591         break;
   3592       }
   3593       z->state->mode = CHECK4;
   3594     case CHECK4:
   3595       NEEDBYTE
   3596       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
   3597       z->state->mode = CHECK3;
   3598     case CHECK3:
   3599       NEEDBYTE
   3600       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
   3601       z->state->mode = CHECK2;
   3602     case CHECK2:
   3603       NEEDBYTE
   3604       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
   3605       z->state->mode = CHECK1;
   3606     case CHECK1:
   3607       NEEDBYTE
   3608       z->state->sub.check.need += (uLong)NEXTBYTE;
   3609 
   3610       if (z->state->sub.check.was != z->state->sub.check.need)
   3611       {
   3612         z->state->mode = BAD;
   3613         z->msg = "incorrect data check";
   3614         z->state->sub.marker = 5;       /* can't try inflateSync */
   3615         break;
   3616       }
   3617       Tracev((stderr, "inflate: zlib check ok\n"));
   3618       z->state->mode = DONE;
   3619     case DONE:
   3620       return Z_STREAM_END;
   3621     case BAD:
   3622       return Z_DATA_ERROR;
   3623     default:
   3624       return Z_STREAM_ERROR;
   3625   }
   3626  empty:
   3627   if (f != Z_PACKET_FLUSH)
   3628     return r;
   3629   z->state->mode = BAD;
   3630   z->msg = "need more for packet flush";
   3631   z->state->sub.marker = 0;
   3632   return Z_DATA_ERROR;
   3633 }
   3634 
   3635 
   3636 #if 0
   3637 int ZEXPORT inflateSetDictionary(z_streamp z,
   3638 	const Bytef *dictionary,
   3639 	uInt dictLength)
   3640 {
   3641   uInt length = dictLength;
   3642 
   3643   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
   3644     return Z_STREAM_ERROR;
   3645 
   3646   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
   3647   z->adler = 1L;
   3648 
   3649   if (length >= ((uInt)1<<z->state->wbits))
   3650   {
   3651     length = (1<<z->state->wbits)-1;
   3652     dictionary += dictLength - length;
   3653   }
   3654   inflate_set_dictionary(z->state->blocks, dictionary, length);
   3655   z->state->mode = BLOCKS;
   3656   return Z_OK;
   3657 }
   3658 #endif
   3659 
   3660 /*
   3661  * This subroutine adds the data at next_in/avail_in to the output history
   3662  * without performing any output.  The output buffer must be "caught up";
   3663  * i.e. no pending output (hence s->read equals s->write), and the state must
   3664  * be BLOCKS (i.e. we should be willing to see the start of a series of
   3665  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   3666  * will have been updated if need be.
   3667  */
   3668 
   3669 int inflateIncomp(z_stream *z)
   3670 {
   3671     if (z->state->mode != BLOCKS)
   3672 	return Z_DATA_ERROR;
   3673     return inflate_addhistory(z->state->blocks, z);
   3674 }
   3675 
   3676 #if 0
   3677 int ZEXPORT inflateSync(z)
   3678 z_streamp z;
   3679 {
   3680   uInt n;       /* number of bytes to look at */
   3681   Bytef *p;     /* pointer to bytes */
   3682   uInt m;       /* number of marker bytes found in a row */
   3683   uLong r, w;   /* temporaries to save total_in and total_out */
   3684 
   3685   /* set up */
   3686   if (z == Z_NULL || z->state == Z_NULL)
   3687     return Z_STREAM_ERROR;
   3688   if (z->state->mode != BAD)
   3689   {
   3690     z->state->mode = BAD;
   3691     z->state->sub.marker = 0;
   3692   }
   3693   if ((n = z->avail_in) == 0)
   3694     return Z_BUF_ERROR;
   3695   p = z->next_in;
   3696   m = z->state->sub.marker;
   3697 
   3698   /* search */
   3699   while (n && m < 4)
   3700   {
   3701     static const Byte mark[4] = {0, 0, 0xff, 0xff};
   3702     if (*p == mark[m])
   3703       m++;
   3704     else if (*p)
   3705       m = 0;
   3706     else
   3707       m = 4 - m;
   3708     p++, n--;
   3709   }
   3710 
   3711   /* restore */
   3712   z->total_in += p - z->next_in;
   3713   z->next_in = p;
   3714   z->avail_in = n;
   3715   z->state->sub.marker = m;
   3716 
   3717   /* return no joy or set up to restart on a new block */
   3718   if (m != 4)
   3719     return Z_DATA_ERROR;
   3720   r = z->total_in;  w = z->total_out;
   3721   inflateReset(z);
   3722   z->total_in = r;  z->total_out = w;
   3723   z->state->mode = BLOCKS;
   3724   return Z_OK;
   3725 }
   3726 #endif
   3727 
   3728 
   3729 /* Returns true if inflate is currently at the end of a block generated
   3730  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   3731  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
   3732  * but removes the length bytes of the resulting empty stored block. When
   3733  * decompressing, PPP checks that at the end of input packet, inflate is
   3734  * waiting for these length bytes.
   3735  */
   3736 #if 0
   3737 int ZEXPORT inflateSyncPoint(z)
   3738 z_streamp z;
   3739 {
   3740   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
   3741     return Z_STREAM_ERROR;
   3742   return inflate_blocks_sync_point(z->state->blocks);
   3743 }
   3744 #endif
   3745 #undef NEEDBYTE
   3746 #undef NEXTBYTE
   3747 /* --- inflate.c */
   3748 
   3749 /* +++ infblock.c */
   3750 
   3751 /* infblock.c -- interpret and process block types to last block
   3752  * Copyright (C) 1995-2002 Mark Adler
   3753  * For conditions of distribution and use, see copyright notice in zlib.h
   3754  */
   3755 
   3756 /* #include "zutil.h" */
   3757 /* #include "infblock.h" */
   3758 
   3759 /* +++ inftrees.h */
   3760 
   3761 /* inftrees.h -- header to use inftrees.c
   3762  * Copyright (C) 1995-2002 Mark Adler
   3763  * For conditions of distribution and use, see copyright notice in zlib.h
   3764  */
   3765 
   3766 /* WARNING: this file should *not* be used by applications. It is
   3767    part of the implementation of the compression library and is
   3768    subject to change. Applications should only use zlib.h.
   3769  */
   3770 
   3771 /* Huffman code lookup table entry--this entry is four bytes for machines
   3772    that have 16-bit pointers (e.g. PC's in the small or medium model). */
   3773 
   3774 typedef struct inflate_huft_s FAR inflate_huft;
   3775 
   3776 struct inflate_huft_s {
   3777   union {
   3778     struct {
   3779       Byte Exop;        /* number of extra bits or operation */
   3780       Byte Bits;        /* number of bits in this code or subcode */
   3781     } what;
   3782     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
   3783   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
   3784   uInt base;            /* literal, length base, distance base,
   3785                            or table offset */
   3786 };
   3787 
   3788 /* Maximum size of dynamic tree.  The maximum found in a long but non-
   3789    exhaustive search was 1004 huft structures (850 for length/literals
   3790    and 154 for distances, the latter actually the result of an
   3791    exhaustive search).  The actual maximum is not known, but the
   3792    value below is more than safe. */
   3793 #define MANY 1440
   3794 
   3795 extern int inflate_trees_bits(
   3796     uIntf *,                    /* 19 code lengths */
   3797     uIntf *,                    /* bits tree desired/actual depth */
   3798     inflate_huft * FAR *,       /* bits tree result */
   3799     inflate_huft *,             /* space for trees */
   3800     z_streamp);                /* for messages */
   3801 
   3802 extern int inflate_trees_dynamic(
   3803     uInt,                       /* number of literal/length codes */
   3804     uInt,                       /* number of distance codes */
   3805     uIntf *,                    /* that many (total) code lengths */
   3806     uIntf *,                    /* literal desired/actual bit depth */
   3807     uIntf *,                    /* distance desired/actual bit depth */
   3808     inflate_huft * FAR *,       /* literal/length tree result */
   3809     inflate_huft * FAR *,       /* distance tree result */
   3810     inflate_huft *,             /* space for trees */
   3811     z_streamp);                /* for messages */
   3812 
   3813 extern int inflate_trees_fixed(
   3814     uIntf *,                    /* literal desired/actual bit depth */
   3815     uIntf *,                    /* distance desired/actual bit depth */
   3816     inflate_huft * FAR *,       /* literal/length tree result */
   3817     inflate_huft * FAR *,       /* distance tree result */
   3818     z_streamp);                /* for memory allocation */
   3819 /* --- inftrees.h */
   3820 
   3821 /* +++ infcodes.h */
   3822 
   3823 /* infcodes.h -- header to use infcodes.c
   3824  * Copyright (C) 1995-2002 Mark Adler
   3825  * For conditions of distribution and use, see copyright notice in zlib.h
   3826  */
   3827 
   3828 /* WARNING: this file should *not* be used by applications. It is
   3829    part of the implementation of the compression library and is
   3830    subject to change. Applications should only use zlib.h.
   3831  */
   3832 
   3833 struct inflate_codes_state;
   3834 typedef struct inflate_codes_state FAR inflate_codes_statef;
   3835 
   3836 extern inflate_codes_statef *inflate_codes_new(
   3837     uInt, uInt,
   3838     inflate_huft *, inflate_huft *,
   3839     z_streamp );
   3840 
   3841 extern int inflate_codes(
   3842     inflate_blocks_statef *,
   3843     z_streamp ,
   3844     int);
   3845 
   3846 extern void inflate_codes_free(
   3847     inflate_codes_statef *,
   3848     z_streamp );
   3849 
   3850 /* --- infcodes.h */
   3851 
   3852 /* +++ infutil.h */
   3853 
   3854 /* infutil.h -- types and macros common to blocks and codes
   3855  * Copyright (C) 1995-2002 Mark Adler
   3856  * For conditions of distribution and use, see copyright notice in zlib.h
   3857  */
   3858 
   3859 /* WARNING: this file should *not* be used by applications. It is
   3860    part of the implementation of the compression library and is
   3861    subject to change. Applications should only use zlib.h.
   3862  */
   3863 
   3864 #ifndef _INFUTIL_H
   3865 #define _INFUTIL_H
   3866 
   3867 typedef enum {
   3868       TYPE,     /* get type bits (3, including end bit) */
   3869       LENS,     /* get lengths for stored */
   3870       STORED,   /* processing stored block */
   3871       TABLE,    /* get table lengths */
   3872       BTREE,    /* get bit lengths tree for a dynamic block */
   3873       DTREE,    /* get length, distance trees for a dynamic block */
   3874       CODES,    /* processing fixed or dynamic block */
   3875       DRY,      /* output remaining window bytes */
   3876       DONEB,    /* finished last block, done */
   3877       BADB}     /* got a data error--stuck here */
   3878 inflate_block_mode;
   3879 
   3880 /* inflate blocks semi-private state */
   3881 struct inflate_blocks_state {
   3882 
   3883   /* mode */
   3884   inflate_block_mode  mode;     /* current inflate_block mode */
   3885 
   3886   /* mode dependent information */
   3887   union {
   3888     uInt left;          /* if STORED, bytes left to copy */
   3889     struct {
   3890       uInt table;               /* table lengths (14 bits) */
   3891       uInt index;               /* index into blens (or border) */
   3892       uIntf *blens;             /* bit lengths of codes */
   3893       uInt bb;                  /* bit length tree depth */
   3894       inflate_huft *tb;         /* bit length decoding tree */
   3895     } trees;            /* if DTREE, decoding info for trees */
   3896     struct {
   3897       inflate_codes_statef
   3898          *codes;
   3899     } decode;           /* if CODES, current state */
   3900   } sub;                /* submode */
   3901   uInt last;            /* true if this block is the last block */
   3902 
   3903   /* mode independent information */
   3904   uInt bitk;            /* bits in bit buffer */
   3905   uLong bitb;           /* bit buffer */
   3906   inflate_huft *hufts;  /* single malloc for tree space */
   3907   Bytef *window;        /* sliding window */
   3908   Bytef *end;           /* one byte after sliding window */
   3909   Bytef *read;          /* window read pointer */
   3910   Bytef *write;         /* window write pointer */
   3911   check_func checkfn;   /* check function */
   3912   uLong check;          /* check on output */
   3913 
   3914 };
   3915 
   3916 
   3917 /* defines for inflate input/output */
   3918 /*   update pointers and return */
   3919 #define UPDBITS {s->bitb=b;s->bitk=k;}
   3920 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
   3921 #define UPDOUT {s->write=q;}
   3922 #define UPDATE {UPDBITS UPDIN UPDOUT}
   3923 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
   3924 /*   get bytes and bits */
   3925 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
   3926 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
   3927 #define NEXTBYTE (n--,*p++)
   3928 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   3929 #define DUMPBITS(j) {b>>=(j);k-=(j);}
   3930 /*   output bytes */
   3931 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
   3932 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
   3933 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
   3934 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
   3935 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
   3936 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
   3937 /*   load local pointers */
   3938 #define LOAD {LOADIN LOADOUT}
   3939 
   3940 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
   3941 extern uInt inflate_mask[17];
   3942 
   3943 /* copy as much as possible from the sliding window to the output area */
   3944 extern int inflate_flush(
   3945     inflate_blocks_statef *,
   3946     z_streamp ,
   3947     int);
   3948 
   3949 #ifndef NO_DUMMY_DECL
   3950 struct internal_state      {int dummy;}; /* for buggy compilers */
   3951 #endif
   3952 
   3953 #endif
   3954 /* --- infutil.h */
   3955 
   3956 #ifndef NO_DUMMY_DECL
   3957 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   3958 #endif
   3959 
   3960 /* simplify the use of the inflate_huft type with some defines */
   3961 #define exop word.what.Exop
   3962 #define bits word.what.Bits
   3963 
   3964 /* Table for deflate from PKZIP's appnote.txt. */
   3965 local const uInt border[] = { /* Order of the bit length code lengths */
   3966         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
   3967 
   3968 /*
   3969    Notes beyond the 1.93a appnote.txt:
   3970 
   3971    1. Distance pointers never point before the beginning of the output
   3972       stream.
   3973    2. Distance pointers can point back across blocks, up to 32k away.
   3974    3. There is an implied maximum of 7 bits for the bit length table and
   3975       15 bits for the actual data.
   3976    4. If only one code exists, then it is encoded using one bit.  (Zero
   3977       would be more efficient, but perhaps a little confusing.)  If two
   3978       codes exist, they are coded using one bit each (0 and 1).
   3979    5. There is no way of sending zero distance codes--a dummy must be
   3980       sent if there are none.  (History: a pre 2.0 version of PKZIP would
   3981       store blocks with no distance codes, but this was discovered to be
   3982       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
   3983       zero distance codes, which is sent as one code of zero bits in
   3984       length.
   3985    6. There are up to 286 literal/length codes.  Code 256 represents the
   3986       end-of-block.  Note however that the static length tree defines
   3987       288 codes just to fill out the Huffman codes.  Codes 286 and 287
   3988       cannot be used though, since there is no length base or extra bits
   3989       defined for them.  Similarily, there are up to 30 distance codes.
   3990       However, static trees define 32 codes (all 5 bits) to fill out the
   3991       Huffman codes, but the last two had better not show up in the data.
   3992    7. Unzip can check dynamic Huffman blocks for complete code sets.
   3993       The exception is that a single code would not be complete (see #4).
   3994    8. The five bits following the block type is really the number of
   3995       literal codes sent minus 257.
   3996    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
   3997       (1+6+6).  Therefore, to output three times the length, you output
   3998       three codes (1+1+1), whereas to output four times the same length,
   3999       you only need two codes (1+3).  Hmm.
   4000   10. In the tree reconstruction algorithm, Code = Code + Increment
   4001       only if BitLength(i) is not zero.  (Pretty obvious.)
   4002   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
   4003   12. Note: length code 284 can represent 227-258, but length code 285
   4004       really is 258.  The last length deserves its own, short code
   4005       since it gets used a lot in very redundant files.  The length
   4006       258 is special since 258 - 3 (the min match length) is 255.
   4007   13. The literal/length and distance code bit lengths are read as a
   4008       single stream of lengths.  It is possible (and advantageous) for
   4009       a repeat code (16, 17, or 18) to go across the boundary between
   4010       the two sets of lengths.
   4011  */
   4012 
   4013 
   4014 void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
   4015 {
   4016   if (c != Z_NULL)
   4017     *c = s->check;
   4018   if (s->mode == BTREE || s->mode == DTREE)
   4019     ZFREE(z, s->sub.trees.blens);
   4020   if (s->mode == CODES)
   4021     inflate_codes_free(s->sub.decode.codes, z);
   4022   s->mode = TYPE;
   4023   s->bitk = 0;
   4024   s->bitb = 0;
   4025   s->read = s->write = s->window;
   4026   if (s->checkfn != Z_NULL)
   4027     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
   4028   Tracev((stderr, "inflate:   blocks reset\n"));
   4029 }
   4030 
   4031 
   4032 inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w)
   4033 {
   4034   inflate_blocks_statef *s;
   4035 
   4036   if ((s = (inflate_blocks_statef *)ZALLOC
   4037        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
   4038     return s;
   4039   if ((s->hufts =
   4040        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
   4041   {
   4042     ZFREE(z, s);
   4043     return Z_NULL;
   4044   }
   4045   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
   4046   {
   4047     ZFREE(z, s->hufts);
   4048     ZFREE(z, s);
   4049     return Z_NULL;
   4050   }
   4051   s->end = s->window + w;
   4052   s->checkfn = c;
   4053   s->mode = TYPE;
   4054   Tracev((stderr, "inflate:   blocks allocated\n"));
   4055   inflate_blocks_reset(s, z, Z_NULL);
   4056   return s;
   4057 }
   4058 
   4059 
   4060 int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
   4061 {
   4062   uInt t;               /* temporary storage */
   4063   uLong b;              /* bit buffer */
   4064   uInt k;               /* bits in bit buffer */
   4065   Bytef *p;             /* input data pointer */
   4066   uInt n;               /* bytes available there */
   4067   Bytef *q;             /* output window write pointer */
   4068   uInt m;               /* bytes to end of window or read pointer */
   4069 
   4070   /* copy input/output information to locals (UPDATE macro restores) */
   4071   LOAD
   4072 
   4073   /* process input based on current state */
   4074   while (1) switch (s->mode)
   4075   {
   4076     case TYPE:
   4077       NEEDBITS(3)
   4078       t = (uInt)b & 7;
   4079       s->last = t & 1;
   4080       switch (t >> 1)
   4081       {
   4082         case 0:                         /* stored */
   4083           Tracev((stderr, "inflate:     stored block%s\n",
   4084                  s->last ? " (last)" : ""));
   4085           DUMPBITS(3)
   4086           t = k & 7;                    /* go to byte boundary */
   4087           DUMPBITS(t)
   4088           s->mode = LENS;               /* get length of stored block */
   4089           break;
   4090         case 1:                         /* fixed */
   4091           Tracev((stderr, "inflate:     fixed codes block%s\n",
   4092                  s->last ? " (last)" : ""));
   4093           {
   4094             uInt bl, bd;
   4095             inflate_huft *tl, *td;
   4096 
   4097             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
   4098             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
   4099             if (s->sub.decode.codes == Z_NULL)
   4100             {
   4101               r = Z_MEM_ERROR;
   4102               LEAVE
   4103             }
   4104           }
   4105           DUMPBITS(3)
   4106           s->mode = CODES;
   4107           break;
   4108         case 2:                         /* dynamic */
   4109           Tracev((stderr, "inflate:     dynamic codes block%s\n",
   4110                  s->last ? " (last)" : ""));
   4111           DUMPBITS(3)
   4112           s->mode = TABLE;
   4113           break;
   4114         case 3:                         /* illegal */
   4115           DUMPBITS(3)
   4116           s->mode = BADB;
   4117           z->msg = "invalid block type";
   4118           r = Z_DATA_ERROR;
   4119           LEAVE
   4120       }
   4121       break;
   4122     case LENS:
   4123       NEEDBITS(32)
   4124       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
   4125       {
   4126         s->mode = BADB;
   4127         z->msg = "invalid stored block lengths";
   4128         r = Z_DATA_ERROR;
   4129         LEAVE
   4130       }
   4131       s->sub.left = (uInt)b & 0xffff;
   4132       b = k = 0;                      /* dump bits */
   4133       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
   4134       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
   4135       break;
   4136     case STORED:
   4137       if (n == 0)
   4138         LEAVE
   4139       NEEDOUT
   4140       t = s->sub.left;
   4141       if (t > n) t = n;
   4142       if (t > m) t = m;
   4143       zmemcpy(q, p, t);
   4144       p += t;  n -= t;
   4145       q += t;  m -= t;
   4146       if ((s->sub.left -= t) != 0)
   4147         break;
   4148       Tracev((stderr, "inflate:       stored end, %lu total out\n",
   4149               z->total_out + (q >= s->read ? q - s->read :
   4150               (s->end - s->read) + (q - s->window))));
   4151       s->mode = s->last ? DRY : TYPE;
   4152       break;
   4153     case TABLE:
   4154       NEEDBITS(14)
   4155       s->sub.trees.table = t = (uInt)b & 0x3fff;
   4156 #ifndef PKZIP_BUG_WORKAROUND
   4157       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
   4158       {
   4159         s->mode = BADB;
   4160         z->msg = "too many length or distance symbols";
   4161         r = Z_DATA_ERROR;
   4162         LEAVE
   4163       }
   4164 #endif
   4165       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
   4166       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
   4167       {
   4168         r = Z_MEM_ERROR;
   4169         LEAVE
   4170       }
   4171       DUMPBITS(14)
   4172       s->sub.trees.index = 0;
   4173       Tracev((stderr, "inflate:       table sizes ok\n"));
   4174       s->mode = BTREE;
   4175     case BTREE:
   4176       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
   4177       {
   4178         NEEDBITS(3)
   4179         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
   4180         DUMPBITS(3)
   4181       }
   4182       while (s->sub.trees.index < 19)
   4183         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
   4184       s->sub.trees.bb = 7;
   4185       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
   4186                              &s->sub.trees.tb, s->hufts, z);
   4187       if (t != Z_OK)
   4188       {
   4189         r = t;
   4190         if (r == Z_DATA_ERROR)
   4191         {
   4192           ZFREE(z, s->sub.trees.blens);
   4193           s->mode = BADB;
   4194         }
   4195         LEAVE
   4196       }
   4197       s->sub.trees.index = 0;
   4198       Tracev((stderr, "inflate:       bits tree ok\n"));
   4199       s->mode = DTREE;
   4200     case DTREE:
   4201       while (t = s->sub.trees.table,
   4202              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
   4203       {
   4204         inflate_huft *h;
   4205         uInt i, j, c;
   4206 
   4207         t = s->sub.trees.bb;
   4208         NEEDBITS(t)
   4209         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
   4210         t = h->bits;
   4211         c = h->base;
   4212         if (c < 16)
   4213         {
   4214           DUMPBITS(t)
   4215           s->sub.trees.blens[s->sub.trees.index++] = c;
   4216         }
   4217         else /* c == 16..18 */
   4218         {
   4219           i = c == 18 ? 7 : c - 14;
   4220           j = c == 18 ? 11 : 3;
   4221           NEEDBITS(t + i)
   4222           DUMPBITS(t)
   4223           j += (uInt)b & inflate_mask[i];
   4224           DUMPBITS(i)
   4225           i = s->sub.trees.index;
   4226           t = s->sub.trees.table;
   4227           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
   4228               (c == 16 && i < 1))
   4229           {
   4230             ZFREE(z, s->sub.trees.blens);
   4231             s->mode = BADB;
   4232             z->msg = "invalid bit length repeat";
   4233             r = Z_DATA_ERROR;
   4234             LEAVE
   4235           }
   4236           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
   4237           do {
   4238             s->sub.trees.blens[i++] = c;
   4239           } while (--j);
   4240           s->sub.trees.index = i;
   4241         }
   4242       }
   4243       s->sub.trees.tb = Z_NULL;
   4244       {
   4245         uInt bl, bd;
   4246         inflate_huft *tl, *td;
   4247         inflate_codes_statef *c;
   4248 
   4249         bl = 9;         /* must be <= 9 for lookahead assumptions */
   4250         bd = 6;         /* must be <= 9 for lookahead assumptions */
   4251         t = s->sub.trees.table;
   4252         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
   4253                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
   4254                                   s->hufts, z);
   4255         if (t != Z_OK)
   4256         {
   4257           if (t == (uInt)Z_DATA_ERROR)
   4258           {
   4259             ZFREE(z, s->sub.trees.blens);
   4260             s->mode = BADB;
   4261           }
   4262           r = t;
   4263           LEAVE
   4264         }
   4265         Tracev((stderr, "inflate:       trees ok\n"));
   4266         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
   4267         {
   4268           r = Z_MEM_ERROR;
   4269           LEAVE
   4270         }
   4271         s->sub.decode.codes = c;
   4272       }
   4273       ZFREE(z, s->sub.trees.blens);
   4274       s->mode = CODES;
   4275     case CODES:
   4276       UPDATE
   4277       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
   4278         return inflate_flush(s, z, r);
   4279       r = Z_OK;
   4280       inflate_codes_free(s->sub.decode.codes, z);
   4281       LOAD
   4282       Tracev((stderr, "inflate:       codes end, %lu total out\n",
   4283               z->total_out + (q >= s->read ? q - s->read :
   4284               (s->end - s->read) + (q - s->window))));
   4285       if (!s->last)
   4286       {
   4287         s->mode = TYPE;
   4288         break;
   4289       }
   4290       s->mode = DRY;
   4291     case DRY:
   4292       FLUSH
   4293       if (s->read != s->write)
   4294         LEAVE
   4295       s->mode = DONEB;
   4296     case DONEB:
   4297       r = Z_STREAM_END;
   4298       LEAVE
   4299     case BADB:
   4300       r = Z_DATA_ERROR;
   4301       LEAVE
   4302     default:
   4303       r = Z_STREAM_ERROR;
   4304       LEAVE
   4305   }
   4306 }
   4307 
   4308 
   4309 int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z)
   4310 {
   4311   inflate_blocks_reset(s, z, Z_NULL);
   4312   ZFREE(z, s->window);
   4313   ZFREE(z, s->hufts);
   4314   ZFREE(z, s);
   4315   Tracev((stderr, "inflate:   blocks freed\n"));
   4316   return Z_OK;
   4317 }
   4318 
   4319 
   4320 #if 0
   4321 void inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
   4322 {
   4323   zmemcpy(s->window, d, n);
   4324   s->read = s->write = s->window + n;
   4325 }
   4326 #endif
   4327 
   4328 /*
   4329  * This subroutine adds the data at next_in/avail_in to the output history
   4330  * without performing any output.  The output buffer must be "caught up";
   4331  * i.e. no pending output (hence s->read equals s->write), and the state must
   4332  * be BLOCKS (i.e. we should be willing to see the start of a series of
   4333  * BLOCKS).  On exit, the output will also be caught up, and the checksum
   4334  * will have been updated if need be.
   4335  */
   4336 int inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
   4337 {
   4338     uLong b;              /* bit buffer */  /* NOT USED HERE */
   4339     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
   4340     uInt t;               /* temporary storage */
   4341     Bytef *p;             /* input data pointer */
   4342     uInt n;               /* bytes available there */
   4343     Bytef *q;             /* output window write pointer */
   4344     uInt m;               /* bytes to end of window or read pointer */
   4345 
   4346     if (s->read != s->write)
   4347 	return Z_STREAM_ERROR;
   4348     if (s->mode != TYPE)
   4349 	return Z_DATA_ERROR;
   4350 
   4351     /* we're ready to rock */
   4352     LOAD
   4353     /* while there is input ready, copy to output buffer, moving
   4354      * pointers as needed.
   4355      */
   4356     while (n) {
   4357 	t = n;  /* how many to do */
   4358 	/* is there room until end of buffer? */
   4359 	if (t > m) t = m;
   4360 	/* update check information */
   4361 	if (s->checkfn != Z_NULL)
   4362 	    s->check = (*s->checkfn)(s->check, q, t);
   4363 	zmemcpy(q, p, t);
   4364 	q += t;
   4365 	p += t;
   4366 	n -= t;
   4367 	z->total_out += t;
   4368 	s->read = q;    /* drag read pointer forward */
   4369 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
   4370 	if (q == s->end) {
   4371 	    s->read = q = s->window;
   4372 	    m = WAVAIL;
   4373 	}
   4374     }
   4375     UPDATE
   4376     return Z_OK;
   4377 }
   4378 
   4379 
   4380 /*
   4381  * At the end of a Deflate-compressed PPP packet, we expect to have seen
   4382  * a `stored' block type value but not the (zero) length bytes.
   4383  */
   4384 int inflate_packet_flush(inflate_blocks_statef *s)
   4385 {
   4386     if (s->mode != LENS)
   4387 	return Z_DATA_ERROR;
   4388     s->mode = TYPE;
   4389     return Z_OK;
   4390 }
   4391 
   4392 /* Returns true if inflate is currently at the end of a block generated
   4393  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
   4394  * IN assertion: s != Z_NULL
   4395  */
   4396 #if 0
   4397 int inflate_blocks_sync_point(s)
   4398 inflate_blocks_statef *s;
   4399 {
   4400   return s->mode == LENS;
   4401 }
   4402 #endif
   4403 /* --- infblock.c */
   4404 
   4405 
   4406 /* +++ inftrees.c */
   4407 
   4408 /* inftrees.c -- generate Huffman trees for efficient decoding
   4409  * Copyright (C) 1995-2002 Mark Adler
   4410  * For conditions of distribution and use, see copyright notice in zlib.h
   4411  */
   4412 
   4413 /* #include "zutil.h" */
   4414 /* #include "inftrees.h" */
   4415 
   4416 #if !defined(BUILDFIXED) && !defined(STDC)
   4417 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
   4418 #endif
   4419 
   4420 const char inflate_copyright[] =
   4421    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
   4422 /*
   4423   If you use the zlib library in a product, an acknowledgment is welcome
   4424   in the documentation of your product. If for some reason you cannot
   4425   include such an acknowledgment, I would appreciate that you keep this
   4426   copyright string in the executable of your product.
   4427  */
   4428 
   4429 #ifndef NO_DUMMY_DECL
   4430 struct internal_state  {int dummy;}; /* for buggy compilers */
   4431 #endif
   4432 
   4433 /* simplify the use of the inflate_huft type with some defines */
   4434 #define exop word.what.Exop
   4435 #define bits word.what.Bits
   4436 
   4437 
   4438 local int huft_build(
   4439     uIntf *,            /* code lengths in bits */
   4440     uInt,               /* number of codes */
   4441     uInt,               /* number of "simple" codes */
   4442     const uIntf *,      /* list of base values for non-simple codes */
   4443     const uIntf *,      /* list of extra bits for non-simple codes */
   4444     inflate_huft * FAR*,/* result: starting table */
   4445     uIntf *,            /* maximum lookup bits (returns actual) */
   4446     inflate_huft *,     /* space for trees */
   4447     uInt *,             /* hufts used in space */
   4448     uIntf * );         /* space for values */
   4449 
   4450 /* Tables for deflate from PKZIP's appnote.txt. */
   4451 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
   4452         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
   4453         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
   4454         /* see note #13 above about 258 */
   4455 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
   4456         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
   4457         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
   4458 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
   4459         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
   4460         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
   4461         8193, 12289, 16385, 24577};
   4462 local const uInt cpdext[30] = { /* Extra bits for distance codes */
   4463         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
   4464         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
   4465         12, 12, 13, 13};
   4466 
   4467 /*
   4468    Huffman code decoding is performed using a multi-level table lookup.
   4469    The fastest way to decode is to simply build a lookup table whose
   4470    size is determined by the longest code.  However, the time it takes
   4471    to build this table can also be a factor if the data being decoded
   4472    is not very long.  The most common codes are necessarily the
   4473    shortest codes, so those codes dominate the decoding time, and hence
   4474    the speed.  The idea is you can have a shorter table that decodes the
   4475    shorter, more probable codes, and then point to subsidiary tables for
   4476    the longer codes.  The time it costs to decode the longer codes is
   4477    then traded against the time it takes to make longer tables.
   4478 
   4479    This results of this trade are in the variables lbits and dbits
   4480    below.  lbits is the number of bits the first level table for literal/
   4481    length codes can decode in one step, and dbits is the same thing for
   4482    the distance codes.  Subsequent tables are also less than or equal to
   4483    those sizes.  These values may be adjusted either when all of the
   4484    codes are shorter than that, in which case the longest code length in
   4485    bits is used, or when the shortest code is *longer* than the requested
   4486    table size, in which case the length of the shortest code in bits is
   4487    used.
   4488 
   4489    There are two different values for the two tables, since they code a
   4490    different number of possibilities each.  The literal/length table
   4491    codes 286 possible values, or in a flat code, a little over eight
   4492    bits.  The distance table codes 30 possible values, or a little less
   4493    than five bits, flat.  The optimum values for speed end up being
   4494    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   4495    The optimum values may differ though from machine to machine, and
   4496    possibly even between compilers.  Your mileage may vary.
   4497  */
   4498 
   4499 
   4500 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
   4501 #define BMAX 15         /* maximum bit length of any code */
   4502 
   4503 local int huft_build(uIntf *b,	/* code lengths in bits (all assumed <= BMAX) */
   4504 	uInt n,			/* number of codes (assumed <= 288) */
   4505 	uInt s,			/* number of simple-valued codes (0..s-1) */
   4506 	const uIntf *d,		/* list of base values for non-simple codes */
   4507 	const uIntf *e,		/* list of extra bits for non-simple codes */
   4508 	inflate_huft * FAR *t,	/* result: starting table */
   4509 	uIntf *m,		/* maximum lookup bits, returns actual */
   4510 	inflate_huft *hp,	/* space for trees */
   4511 	uInt *hn,		/* hufts used in space */
   4512 	uIntf *v)		/* working area: values in order of bit length */
   4513 
   4514 /* Given a list of code lengths and a maximum table size, make a set of
   4515    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
   4516    if the given code set is incomplete (the tables are still built in this
   4517    case), or Z_DATA_ERROR if the input is invalid. */
   4518 {
   4519 
   4520   uInt a;                       /* counter for codes of length k */
   4521   uInt c[BMAX+1];               /* bit length count table */
   4522   uInt f;                       /* i repeats in table every f entries */
   4523   int g;                        /* maximum code length */
   4524   int h;                        /* table level */
   4525   uInt i;                       /* counter, current code */
   4526   uInt j;                       /* counter */
   4527   int k;                        /* number of bits in current code */
   4528   int l;                        /* bits per table (returned in m) */
   4529   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
   4530   uIntf *p;                      /* pointer into c[], b[], or v[] */
   4531   inflate_huft *q;              /* points to current table */
   4532   struct inflate_huft_s r;      /* table entry for structure assignment */
   4533   inflate_huft *u[BMAX];        /* table stack */
   4534   int w;               /* bits before this table == (l * h) */
   4535   uInt x[BMAX+1];               /* bit offsets, then code stack */
   4536   uIntf *xp;                    /* pointer into x */
   4537   int y;                        /* number of dummy codes added */
   4538   uInt z;                       /* number of entries in current table */
   4539 
   4540   r.base = 0;	/* XXX gcc */
   4541 
   4542   /* Generate counts for each bit length */
   4543   p = c;
   4544 #define C0 *p++ = 0;
   4545 #define C2 C0 C0 C0 C0
   4546 #define C4 C2 C2 C2 C2
   4547   C4                            /* clear c[]--assume BMAX+1 is 16 */
   4548   p = b;  i = n;
   4549   do {
   4550     c[*p++]++;                  /* assume all entries <= BMAX */
   4551   } while (--i);
   4552   if (c[0] == n)                /* null input--all zero length codes */
   4553   {
   4554     *t = (inflate_huft *)Z_NULL;
   4555     *m = 0;
   4556     return Z_OK;
   4557   }
   4558 
   4559 
   4560   /* Find minimum and maximum length, bound *m by those */
   4561   l = *m;
   4562   for (j = 1; j <= BMAX; j++)
   4563     if (c[j])
   4564       break;
   4565   k = j;                        /* minimum code length */
   4566   if ((uInt)l < j)
   4567     l = j;
   4568   for (i = BMAX; i; i--)
   4569     if (c[i])
   4570       break;
   4571   g = i;                        /* maximum code length */
   4572   if ((uInt)l > i)
   4573     l = i;
   4574   *m = l;
   4575 
   4576 
   4577   /* Adjust last length count to fill out codes, if needed */
   4578   for (y = 1 << j; j < i; j++, y <<= 1)
   4579     if ((y -= c[j]) < 0)
   4580       return Z_DATA_ERROR;
   4581   if ((y -= c[i]) < 0)
   4582     return Z_DATA_ERROR;
   4583   c[i] += y;
   4584 
   4585 
   4586   /* Generate starting offsets into the value table for each length */
   4587   x[1] = j = 0;
   4588   p = c + 1;  xp = x + 2;
   4589   while (--i) {                 /* note that i == g from above */
   4590     *xp++ = (j += *p++);
   4591   }
   4592 
   4593 
   4594   /* Make a table of values in order of bit lengths */
   4595   p = b;  i = 0;
   4596   do {
   4597     if ((j = *p++) != 0)
   4598       v[x[j]++] = i;
   4599   } while (++i < n);
   4600   n = x[g];                     /* set n to length of v */
   4601 
   4602 
   4603   /* Generate the Huffman codes and for each, make the table entries */
   4604   x[0] = i = 0;                 /* first Huffman code is zero */
   4605   p = v;                        /* grab values in bit order */
   4606   h = -1;                       /* no tables yet--level -1 */
   4607   w = -l;                       /* bits decoded == (l * h) */
   4608   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
   4609   q = (inflate_huft *)Z_NULL;   /* ditto */
   4610   z = 0;                        /* ditto */
   4611 
   4612   /* go through the bit lengths (k already is bits in shortest code) */
   4613   for (; k <= g; k++)
   4614   {
   4615     a = c[k];
   4616     while (a--)
   4617     {
   4618       /* here i is the Huffman code of length k bits for value *p */
   4619       /* make tables up to required level */
   4620       while (k > w + l)
   4621       {
   4622         h++;
   4623         w += l;                 /* previous table always l bits */
   4624 
   4625         /* compute minimum size table less than or equal to l bits */
   4626         z = g - w;
   4627         z = z > (uInt)l ? l : z;        /* table size upper limit */
   4628         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   4629         {                       /* too few codes for k-w bit table */
   4630           f -= a + 1;           /* deduct codes from patterns left */
   4631           xp = c + k;
   4632           if (j < z)
   4633             while (++j < z)     /* try smaller tables up to z bits */
   4634             {
   4635               if ((f <<= 1) <= *++xp)
   4636                 break;          /* enough codes to use up j bits */
   4637               f -= *xp;         /* else deduct codes from patterns */
   4638             }
   4639         }
   4640         z = 1 << j;             /* table entries for j-bit table */
   4641 
   4642         /* allocate new table */
   4643         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
   4644           return Z_DATA_ERROR;  /* overflow of MANY */
   4645         u[h] = q = hp + *hn;
   4646         *hn += z;
   4647 
   4648         /* connect to last table, if there is one */
   4649         if (h)
   4650         {
   4651           x[h] = i;             /* save pattern for backing up */
   4652           r.bits = (Byte)l;     /* bits to dump before this table */
   4653           r.exop = (Byte)j;     /* bits in this table */
   4654           j = i >> (w - l);
   4655           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
   4656           u[h-1][j] = r;        /* connect to last table */
   4657         }
   4658         else
   4659           *t = q;               /* first table is returned result */
   4660       }
   4661 
   4662       /* set up table entry in r */
   4663       r.bits = (Byte)(k - w);
   4664       if (p >= v + n)
   4665         r.exop = 128 + 64;      /* out of values--invalid code */
   4666       else if (*p < s)
   4667       {
   4668         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
   4669         r.base = *p++;          /* simple code is just the value */
   4670       }
   4671       else
   4672       {
   4673         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
   4674         r.base = d[*p++ - s];
   4675       }
   4676 
   4677       /* fill code-like entries with r */
   4678       f = 1 << (k - w);
   4679       for (j = i >> w; j < z; j += f)
   4680         q[j] = r;
   4681 
   4682       /* backwards increment the k-bit code i */
   4683       for (j = 1 << (k - 1); i & j; j >>= 1)
   4684         i ^= j;
   4685       i ^= j;
   4686 
   4687       /* backup over finished tables */
   4688       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
   4689       if (h == -1)
   4690 	return Z_BUF_ERROR;
   4691       while ((i & mask) != x[h])
   4692       {
   4693         h--;                    /* don't need to update q */
   4694         w -= l;
   4695         mask = (1 << w) - 1;
   4696       }
   4697     }
   4698   }
   4699 
   4700 
   4701   /* Return Z_BUF_ERROR if we were given an incomplete table */
   4702   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
   4703 }
   4704 
   4705 
   4706 int inflate_trees_bits(uIntf *c, /* 19 code lengths */
   4707 	uIntf *bb, /* bits tree desired/actual depth */
   4708 	inflate_huft * FAR *tb, /* bits tree result */
   4709 	inflate_huft *hp, /* space for trees */
   4710 	z_streamp z) /* for message */
   4711 {
   4712   int r;
   4713   uInt hn = 0;          /* hufts used in space */
   4714   uIntf *v;             /* work area for huft_build */
   4715 
   4716   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
   4717     return Z_MEM_ERROR;
   4718   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
   4719                  tb, bb, hp, &hn, v);
   4720   if (r == Z_DATA_ERROR)
   4721     z->msg = "oversubscribed dynamic bit lengths tree";
   4722   else if (r == Z_BUF_ERROR || *bb == 0)
   4723   {
   4724     z->msg = "incomplete dynamic bit lengths tree";
   4725     r = Z_DATA_ERROR;
   4726   }
   4727   ZFREE(z, v);
   4728   return r;
   4729 }
   4730 
   4731 
   4732 int inflate_trees_dynamic(uInt nl,
   4733 	uInt nd, /* number of literal/length codes */
   4734 	uIntf *c, /* number of distance codes */
   4735 	uIntf *bl, /* that many (total) code lengths */
   4736 	uIntf *bd, /* literal desired/actual bit depth */
   4737 	inflate_huft * FAR *tl, /* literal/length tree result */
   4738 	inflate_huft * FAR *td, /* distance tree result */
   4739 	inflate_huft *hp, /* space for trees */
   4740 	z_streamp z) /* for message */
   4741 {
   4742   int r;
   4743   uInt hn = 0;          /* hufts used in space */
   4744   uIntf *v;             /* work area for huft_build */
   4745 
   4746   /* allocate work area */
   4747   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4748     return Z_MEM_ERROR;
   4749 
   4750   /* build literal/length tree */
   4751   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
   4752   if (r != Z_OK || *bl == 0)
   4753   {
   4754     if (r == Z_DATA_ERROR)
   4755       z->msg = "oversubscribed literal/length tree";
   4756     else if (r != Z_MEM_ERROR)
   4757     {
   4758       z->msg = "incomplete literal/length tree";
   4759       r = Z_DATA_ERROR;
   4760     }
   4761     ZFREE(z, v);
   4762     return r;
   4763   }
   4764 
   4765   /* build distance tree */
   4766   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
   4767   if (r != Z_OK || (*bd == 0 && nl > 257))
   4768   {
   4769     if (r == Z_DATA_ERROR)
   4770       z->msg = "oversubscribed distance tree";
   4771     else if (r == Z_BUF_ERROR) {
   4772 #ifdef PKZIP_BUG_WORKAROUND
   4773       r = Z_OK;
   4774     }
   4775 #else
   4776       z->msg = "incomplete distance tree";
   4777       r = Z_DATA_ERROR;
   4778     }
   4779     else if (r != Z_MEM_ERROR)
   4780     {
   4781       z->msg = "empty distance tree with lengths";
   4782       r = Z_DATA_ERROR;
   4783     }
   4784     ZFREE(z, v);
   4785     return r;
   4786 #endif
   4787   }
   4788 
   4789   /* done */
   4790   ZFREE(z, v);
   4791   return Z_OK;
   4792 }
   4793 
   4794 
   4795 /* build fixed tables only once--keep them here */
   4796 #ifdef BUILDFIXED
   4797 local int fixed_built = 0;
   4798 #define FIXEDH 544      /* number of hufts used by fixed tables */
   4799 local inflate_huft fixed_mem[FIXEDH];
   4800 local uInt fixed_bl;
   4801 local uInt fixed_bd;
   4802 local inflate_huft *fixed_tl;
   4803 local inflate_huft *fixed_td;
   4804 #else
   4805 
   4806 /* +++ inffixed.h */
   4807 /* inffixed.h -- table for decoding fixed codes
   4808  * Generated automatically by the maketree.c program
   4809  */
   4810 
   4811 /* WARNING: this file should *not* be used by applications. It is
   4812    part of the implementation of the compression library and is
   4813    subject to change. Applications should only use zlib.h.
   4814  */
   4815 
   4816 local uInt fixed_bl = 9;
   4817 local uInt fixed_bd = 5;
   4818 local inflate_huft fixed_tl[] = {
   4819     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4820     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
   4821     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
   4822     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
   4823     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
   4824     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
   4825     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
   4826     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
   4827     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4828     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
   4829     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
   4830     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
   4831     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
   4832     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
   4833     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
   4834     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
   4835     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4836     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
   4837     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
   4838     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
   4839     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
   4840     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
   4841     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
   4842     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
   4843     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4844     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
   4845     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
   4846     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
   4847     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
   4848     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
   4849     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
   4850     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
   4851     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4852     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
   4853     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
   4854     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
   4855     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
   4856     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
   4857     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
   4858     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
   4859     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4860     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
   4861     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
   4862     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
   4863     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
   4864     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
   4865     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
   4866     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
   4867     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4868     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
   4869     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
   4870     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
   4871     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
   4872     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
   4873     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
   4874     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
   4875     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4876     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
   4877     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
   4878     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
   4879     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
   4880     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
   4881     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
   4882     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
   4883     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
   4884     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
   4885     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
   4886     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
   4887     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
   4888     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
   4889     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
   4890     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
   4891     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
   4892     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
   4893     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
   4894     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
   4895     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
   4896     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
   4897     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
   4898     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
   4899     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
   4900     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
   4901     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
   4902     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
   4903     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
   4904     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
   4905     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
   4906     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
   4907     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
   4908     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
   4909     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
   4910     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
   4911     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
   4912     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
   4913     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
   4914     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
   4915     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
   4916     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
   4917     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
   4918     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
   4919     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
   4920     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
   4921     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
   4922     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
   4923     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
   4924     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
   4925     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
   4926     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
   4927     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
   4928     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
   4929     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
   4930     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
   4931     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
   4932     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
   4933     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
   4934     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
   4935     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
   4936     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
   4937     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
   4938     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
   4939     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
   4940     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
   4941     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
   4942     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
   4943     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
   4944     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
   4945     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
   4946     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
   4947   };
   4948 local inflate_huft fixed_td[] = {
   4949     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
   4950     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
   4951     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
   4952     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
   4953     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
   4954     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
   4955     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
   4956     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
   4957   };
   4958 /* --- inffixed.h */
   4959 
   4960 #endif
   4961 
   4962 
   4963 int inflate_trees_fixed(
   4964 uIntf *bl,               /* literal desired/actual bit depth */
   4965 uIntf *bd,               /* distance desired/actual bit depth */
   4966 inflate_huft * FAR *tl,  /* literal/length tree result */
   4967 inflate_huft * FAR *td,  /* distance tree result */
   4968 z_streamp z)    /* for memory allocation */
   4969 {
   4970 #ifdef BUILDFIXED
   4971   /* build fixed tables if not already */
   4972   if (!fixed_built)
   4973   {
   4974     int k;              /* temporary variable */
   4975     uInt f = 0;         /* number of hufts used in fixed_mem */
   4976     uIntf *c;           /* length list for huft_build */
   4977     uIntf *v;           /* work area for huft_build */
   4978 
   4979     /* allocate memory */
   4980     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4981       return Z_MEM_ERROR;
   4982     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
   4983     {
   4984       ZFREE(z, c);
   4985       return Z_MEM_ERROR;
   4986     }
   4987 
   4988     /* literal table */
   4989     for (k = 0; k < 144; k++)
   4990       c[k] = 8;
   4991     for (; k < 256; k++)
   4992       c[k] = 9;
   4993     for (; k < 280; k++)
   4994       c[k] = 7;
   4995     for (; k < 288; k++)
   4996       c[k] = 8;
   4997     fixed_bl = 9;
   4998     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
   4999                fixed_mem, &f, v);
   5000 
   5001     /* distance table */
   5002     for (k = 0; k < 30; k++)
   5003       c[k] = 5;
   5004     fixed_bd = 5;
   5005     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
   5006                fixed_mem, &f, v);
   5007 
   5008     /* done */
   5009     ZFREE(z, v);
   5010     ZFREE(z, c);
   5011     fixed_built = 1;
   5012   }
   5013 #endif
   5014   *bl = fixed_bl;
   5015   *bd = fixed_bd;
   5016   *tl = fixed_tl;
   5017   *td = fixed_td;
   5018   return Z_OK;
   5019 }
   5020 /* --- inftrees.c */
   5021 
   5022 /* +++ infcodes.c */
   5023 
   5024 /* infcodes.c -- process literals and length/distance pairs
   5025  * Copyright (C) 1995-2002 Mark Adler
   5026  * For conditions of distribution and use, see copyright notice in zlib.h
   5027  */
   5028 
   5029 /* #include "zutil.h" */
   5030 /* #include "inftrees.h" */
   5031 /* #include "infblock.h" */
   5032 /* #include "infcodes.h" */
   5033 /* #include "infutil.h" */
   5034 
   5035 /* +++ inffast.h */
   5036 
   5037 /* inffast.h -- header to use inffast.c
   5038  * Copyright (C) 1995-2002 Mark Adler
   5039  * For conditions of distribution and use, see copyright notice in zlib.h
   5040  */
   5041 
   5042 /* WARNING: this file should *not* be used by applications. It is
   5043    part of the implementation of the compression library and is
   5044    subject to change. Applications should only use zlib.h.
   5045  */
   5046 
   5047 extern int inflate_fast(
   5048     uInt,
   5049     uInt,
   5050     inflate_huft *,
   5051     inflate_huft *,
   5052     inflate_blocks_statef *,
   5053     z_streamp );
   5054 /* --- inffast.h */
   5055 
   5056 /* simplify the use of the inflate_huft type with some defines */
   5057 #define exop word.what.Exop
   5058 #define bits word.what.Bits
   5059 
   5060 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5061       START,    /* x: set up for LEN */
   5062       LEN,      /* i: get length/literal/eob next */
   5063       LENEXT,   /* i: getting length extra (have base) */
   5064       DIST,     /* i: get distance next */
   5065       DISTEXT,  /* i: getting distance extra */
   5066       COPY,     /* o: copying bytes in window, waiting for space */
   5067       LIT,      /* o: got literal, waiting for output space */
   5068       WASH,     /* o: got eob, possibly still output waiting */
   5069       END,      /* x: got eob and all data flushed */
   5070       BADCODE}  /* x: got error */
   5071 inflate_codes_mode;
   5072 
   5073 /* inflate codes private state */
   5074 struct inflate_codes_state {
   5075 
   5076   /* mode */
   5077   inflate_codes_mode mode;      /* current inflate_codes mode */
   5078 
   5079   /* mode dependent information */
   5080   uInt len;
   5081   union {
   5082     struct {
   5083       inflate_huft *tree;       /* pointer into tree */
   5084       uInt need;                /* bits needed */
   5085     } code;             /* if LEN or DIST, where in tree */
   5086     uInt lit;           /* if LIT, literal */
   5087     struct {
   5088       uInt get;                 /* bits to get for extra */
   5089       uInt dist;                /* distance back to copy from */
   5090     } copy;             /* if EXT or COPY, where and how much */
   5091   } sub;                /* submode */
   5092 
   5093   /* mode independent information */
   5094   Byte lbits;           /* ltree bits decoded per branch */
   5095   Byte dbits;           /* dtree bits decoder per branch */
   5096   inflate_huft *ltree;          /* literal/length/eob tree */
   5097   inflate_huft *dtree;          /* distance tree */
   5098 
   5099 };
   5100 
   5101 
   5102 inflate_codes_statef *inflate_codes_new(uInt bl, uInt bd,
   5103 	inflate_huft *tl, inflate_huft *td, z_streamp z)
   5104 {
   5105   inflate_codes_statef *c;
   5106 
   5107   if ((c = (inflate_codes_statef *)
   5108        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
   5109   {
   5110     c->mode = START;
   5111     c->lbits = (Byte)bl;
   5112     c->dbits = (Byte)bd;
   5113     c->ltree = tl;
   5114     c->dtree = td;
   5115     Tracev((stderr, "inflate:       codes new\n"));
   5116   }
   5117   return c;
   5118 }
   5119 
   5120 
   5121 int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
   5122 {
   5123   uInt j;               /* temporary storage */
   5124   inflate_huft *t;      /* temporary pointer */
   5125   uInt e;               /* extra bits or operation */
   5126   uLong b;              /* bit buffer */
   5127   uInt k;               /* bits in bit buffer */
   5128   Bytef *p;             /* input data pointer */
   5129   uInt n;               /* bytes available there */
   5130   Bytef *q;             /* output window write pointer */
   5131   uInt m;               /* bytes to end of window or read pointer */
   5132   Bytef *f;             /* pointer to copy strings from */
   5133   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
   5134 
   5135   /* copy input/output information to locals (UPDATE macro restores) */
   5136   LOAD
   5137 
   5138   /* process input and output based on current state */
   5139   while (1) switch (c->mode)
   5140   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
   5141     case START:         /* x: set up for LEN */
   5142 #ifndef SLOW
   5143       if (m >= 258 && n >= 10)
   5144       {
   5145         UPDATE
   5146         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
   5147         LOAD
   5148         if (r != Z_OK)
   5149         {
   5150           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
   5151           break;
   5152         }
   5153       }
   5154 #endif /* !SLOW */
   5155       c->sub.code.need = c->lbits;
   5156       c->sub.code.tree = c->ltree;
   5157       c->mode = LEN;
   5158     case LEN:           /* i: get length/literal/eob next */
   5159       j = c->sub.code.need;
   5160       NEEDBITS(j)
   5161       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5162       DUMPBITS(t->bits)
   5163       e = (uInt)(t->exop);
   5164       if (e == 0)               /* literal */
   5165       {
   5166         c->sub.lit = t->base;
   5167         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5168                  "inflate:         literal '%c'\n" :
   5169                  "inflate:         literal 0x%02x\n", t->base));
   5170         c->mode = LIT;
   5171         break;
   5172       }
   5173       if (e & 16)               /* length */
   5174       {
   5175         c->sub.copy.get = e & 15;
   5176         c->len = t->base;
   5177         c->mode = LENEXT;
   5178         break;
   5179       }
   5180       if ((e & 64) == 0)        /* next table */
   5181       {
   5182         c->sub.code.need = e;
   5183         c->sub.code.tree = t + t->base;
   5184         break;
   5185       }
   5186       if (e & 32)               /* end of block */
   5187       {
   5188         Tracevv((stderr, "inflate:         end of block\n"));
   5189         c->mode = WASH;
   5190         break;
   5191       }
   5192       c->mode = BADCODE;        /* invalid code */
   5193       z->msg = "invalid literal/length code";
   5194       r = Z_DATA_ERROR;
   5195       LEAVE
   5196     case LENEXT:        /* i: getting length extra (have base) */
   5197       j = c->sub.copy.get;
   5198       NEEDBITS(j)
   5199       c->len += (uInt)b & inflate_mask[j];
   5200       DUMPBITS(j)
   5201       c->sub.code.need = c->dbits;
   5202       c->sub.code.tree = c->dtree;
   5203       Tracevv((stderr, "inflate:         length %u\n", c->len));
   5204       c->mode = DIST;
   5205     case DIST:          /* i: get distance next */
   5206       j = c->sub.code.need;
   5207       NEEDBITS(j)
   5208       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
   5209       DUMPBITS(t->bits)
   5210       e = (uInt)(t->exop);
   5211       if (e & 16)               /* distance */
   5212       {
   5213         c->sub.copy.get = e & 15;
   5214         c->sub.copy.dist = t->base;
   5215         c->mode = DISTEXT;
   5216         break;
   5217       }
   5218       if ((e & 64) == 0)        /* next table */
   5219       {
   5220         c->sub.code.need = e;
   5221         c->sub.code.tree = t + t->base;
   5222         break;
   5223       }
   5224       c->mode = BADCODE;        /* invalid code */
   5225       z->msg = "invalid distance code";
   5226       r = Z_DATA_ERROR;
   5227       LEAVE
   5228     case DISTEXT:       /* i: getting distance extra */
   5229       j = c->sub.copy.get;
   5230       NEEDBITS(j)
   5231       c->sub.copy.dist += (uInt)b & inflate_mask[j];
   5232       DUMPBITS(j)
   5233       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
   5234       c->mode = COPY;
   5235     case COPY:          /* o: copying bytes in window, waiting for space */
   5236       f = q - c->sub.copy.dist;
   5237       while (f < s->window)             /* modulo window size-"while" instead */
   5238         f += s->end - s->window;        /* of "if" handles invalid distances */
   5239       while (c->len)
   5240       {
   5241         NEEDOUT
   5242         OUTBYTE(*f++)
   5243         if (f == s->end)
   5244           f = s->window;
   5245         c->len--;
   5246       }
   5247       c->mode = START;
   5248       break;
   5249     case LIT:           /* o: got literal, waiting for output space */
   5250       NEEDOUT
   5251       OUTBYTE(c->sub.lit)
   5252       c->mode = START;
   5253       break;
   5254     case WASH:          /* o: got eob, possibly more output */
   5255       if (k > 7)        /* return unused byte, if any */
   5256       {
   5257         Assert(k < 16, "inflate_codes grabbed too many bytes")
   5258         k -= 8;
   5259         n++;
   5260         p--;            /* can always return one */
   5261       }
   5262       FLUSH
   5263       if (s->read != s->write)
   5264         LEAVE
   5265       c->mode = END;
   5266     case END:
   5267       r = Z_STREAM_END;
   5268       LEAVE
   5269     case BADCODE:       /* x: got error */
   5270       r = Z_DATA_ERROR;
   5271       LEAVE
   5272     default:
   5273       r = Z_STREAM_ERROR;
   5274       LEAVE
   5275   }
   5276 #ifdef NEED_DUMMY_RETURN
   5277   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
   5278 #endif
   5279 }
   5280 
   5281 
   5282 void inflate_codes_free(inflate_codes_statef *c, z_streamp z)
   5283 {
   5284   ZFREE(z, c);
   5285   Tracev((stderr, "inflate:       codes free\n"));
   5286 }
   5287 /* --- infcodes.c */
   5288 
   5289 /* +++ infutil.c */
   5290 
   5291 /* inflate_util.c -- data and routines common to blocks and codes
   5292  * Copyright (C) 1995-2002 Mark Adler
   5293  * For conditions of distribution and use, see copyright notice in zlib.h
   5294  */
   5295 
   5296 /* #include "zutil.h" */
   5297 /* #include "infblock.h" */
   5298 /* #include "inftrees.h" */
   5299 /* #include "infcodes.h" */
   5300 /* #include "infutil.h" */
   5301 
   5302 #ifndef NO_DUMMY_DECL
   5303 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5304 #endif
   5305 
   5306 /* And'ing with mask[n] masks the lower n bits */
   5307 uInt inflate_mask[17] = {
   5308     0x0000,
   5309     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
   5310     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
   5311 };
   5312 
   5313 
   5314 /* copy as much as possible from the sliding window to the output area */
   5315 int inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
   5316 {
   5317   uInt n;
   5318   Bytef *p;
   5319   Bytef *q;
   5320 
   5321   /* local copies of source and destination pointers */
   5322   p = z->next_out;
   5323   q = s->read;
   5324 
   5325   /* compute number of bytes to copy as far as end of window */
   5326   n = (uInt)((q <= s->write ? s->write : s->end) - q);
   5327   if (n > z->avail_out) n = z->avail_out;
   5328   if (n && r == Z_BUF_ERROR) r = Z_OK;
   5329 
   5330   /* update counters */
   5331   z->avail_out -= n;
   5332   z->total_out += n;
   5333 
   5334   /* update check information */
   5335   if (s->checkfn != Z_NULL)
   5336     z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5337 
   5338   /* copy as far as end of window */
   5339   if (p != Z_NULL) {
   5340     zmemcpy(p, q, n);
   5341     p += n;
   5342   }
   5343   q += n;
   5344 
   5345   /* see if more to copy at beginning of window */
   5346   if (q == s->end)
   5347   {
   5348     /* wrap pointers */
   5349     q = s->window;
   5350     if (s->write == s->end)
   5351       s->write = s->window;
   5352 
   5353     /* compute bytes to copy */
   5354     n = (uInt)(s->write - q);
   5355     if (n > z->avail_out) n = z->avail_out;
   5356     if (n && r == Z_BUF_ERROR) r = Z_OK;
   5357 
   5358     /* update counters */
   5359     z->avail_out -= n;
   5360     z->total_out += n;
   5361 
   5362     /* update check information */
   5363     if (s->checkfn != Z_NULL)
   5364       z->adler = s->check = (*s->checkfn)(s->check, q, n);
   5365 
   5366     /* copy */
   5367     if (p != NULL) {
   5368       zmemcpy(p, q, n);
   5369       p += n;
   5370     }
   5371     q += n;
   5372   }
   5373 
   5374   /* update pointers */
   5375   z->next_out = p;
   5376   s->read = q;
   5377 
   5378   /* done */
   5379   return r;
   5380 }
   5381 /* --- infutil.c */
   5382 
   5383 /* +++ inffast.c */
   5384 
   5385 /* inffast.c -- process literals and length/distance pairs fast
   5386  * Copyright (C) 1995-2002 Mark Adler
   5387  * For conditions of distribution and use, see copyright notice in zlib.h
   5388  */
   5389 
   5390 /* #include "zutil.h" */
   5391 /* #include "inftrees.h" */
   5392 /* #include "infblock.h" */
   5393 /* #include "infcodes.h" */
   5394 /* #include "infutil.h" */
   5395 /* #include "inffast.h" */
   5396 
   5397 #ifndef NO_DUMMY_DECL
   5398 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
   5399 #endif
   5400 
   5401 /* simplify the use of the inflate_huft type with some defines */
   5402 #define exop word.what.Exop
   5403 #define bits word.what.Bits
   5404 
   5405 /* macros for bit input with no checking and for returning unused bytes */
   5406 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
   5407 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
   5408 
   5409 /* Called with number of bytes left to write in window at least 258
   5410    (the maximum string length) and number of input bytes available
   5411    at least ten.  The ten bytes are six bytes for the longest length/
   5412    distance pair plus four bytes for overloading the bit buffer. */
   5413 
   5414 int inflate_fast(uInt bl, uInt bd,
   5415 	inflate_huft *tl,
   5416 	inflate_huft *td,
   5417 	inflate_blocks_statef *s,
   5418 	z_streamp z)
   5419 {
   5420   inflate_huft *t;      /* temporary pointer */
   5421   uInt e;               /* extra bits or operation */
   5422   uLong b;              /* bit buffer */
   5423   uInt k;               /* bits in bit buffer */
   5424   Bytef *p;             /* input data pointer */
   5425   uInt n;               /* bytes available there */
   5426   Bytef *q;             /* output window write pointer */
   5427   uInt m;               /* bytes to end of window or read pointer */
   5428   uInt ml;              /* mask for literal/length tree */
   5429   uInt md;              /* mask for distance tree */
   5430   uInt c;               /* bytes to copy */
   5431   uInt d;               /* distance back to copy from */
   5432   Bytef *r;             /* copy source pointer */
   5433 
   5434   /* load input, output, bit values */
   5435   LOAD
   5436 
   5437   /* initialize masks */
   5438   ml = inflate_mask[bl];
   5439   md = inflate_mask[bd];
   5440 
   5441   /* do until not enough input or output space for fast loop */
   5442   do {                          /* assume called with m >= 258 && n >= 10 */
   5443     /* get literal/length code */
   5444     GRABBITS(20)                /* max bits for literal/length code */
   5445     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
   5446     {
   5447       DUMPBITS(t->bits)
   5448       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5449                 "inflate:         * literal '%c'\n" :
   5450                 "inflate:         * literal 0x%02x\n", t->base));
   5451       *q++ = (Byte)t->base;
   5452       m--;
   5453       continue;
   5454     }
   5455     do {
   5456       DUMPBITS(t->bits)
   5457       if (e & 16)
   5458       {
   5459         /* get extra bits for length */
   5460         e &= 15;
   5461         c = t->base + ((uInt)b & inflate_mask[e]);
   5462         DUMPBITS(e)
   5463         Tracevv((stderr, "inflate:         * length %u\n", c));
   5464 
   5465         /* decode distance base of block to copy */
   5466         GRABBITS(15);           /* max bits for distance code */
   5467         e = (t = td + ((uInt)b & md))->exop;
   5468         do {
   5469           DUMPBITS(t->bits)
   5470           if (e & 16)
   5471           {
   5472             /* get extra bits to add to distance base */
   5473             e &= 15;
   5474             GRABBITS(e)         /* get extra bits (up to 13) */
   5475             d = t->base + ((uInt)b & inflate_mask[e]);
   5476             DUMPBITS(e)
   5477             Tracevv((stderr, "inflate:         * distance %u\n", d));
   5478 
   5479             /* do the copy */
   5480             m -= c;
   5481             r = q - d;
   5482             if (r < s->window)                  /* wrap if needed */
   5483             {
   5484               do {
   5485                 r += s->end - s->window;        /* force pointer in window */
   5486               } while (r < s->window);          /* covers invalid distances */
   5487               e = s->end - r;
   5488               if (c > e)
   5489               {
   5490                 c -= e;                         /* wrapped copy */
   5491                 do {
   5492                     *q++ = *r++;
   5493                 } while (--e);
   5494                 r = s->window;
   5495                 do {
   5496                     *q++ = *r++;
   5497                 } while (--c);
   5498               }
   5499               else                              /* normal copy */
   5500               {
   5501                 *q++ = *r++;  c--;
   5502                 *q++ = *r++;  c--;
   5503                 do {
   5504                     *q++ = *r++;
   5505                 } while (--c);
   5506               }
   5507             }
   5508             else                                /* normal copy */
   5509             {
   5510               *q++ = *r++;  c--;
   5511               *q++ = *r++;  c--;
   5512               do {
   5513                 *q++ = *r++;
   5514               } while (--c);
   5515             }
   5516             break;
   5517           }
   5518           else if ((e & 64) == 0)
   5519           {
   5520             t += t->base;
   5521             e = (t += ((uInt)b & inflate_mask[e]))->exop;
   5522           }
   5523           else
   5524           {
   5525             z->msg = "invalid distance code";
   5526             UNGRAB
   5527             UPDATE
   5528             return Z_DATA_ERROR;
   5529           }
   5530         } while (1);
   5531         break;
   5532       }
   5533       if ((e & 64) == 0)
   5534       {
   5535         t += t->base;
   5536         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
   5537         {
   5538           DUMPBITS(t->bits)
   5539           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
   5540                     "inflate:         * literal '%c'\n" :
   5541                     "inflate:         * literal 0x%02x\n", t->base));
   5542           *q++ = (Byte)t->base;
   5543           m--;
   5544           break;
   5545         }
   5546       }
   5547       else if (e & 32)
   5548       {
   5549         Tracevv((stderr, "inflate:         * end of block\n"));
   5550         UNGRAB
   5551         UPDATE
   5552         return Z_STREAM_END;
   5553       }
   5554       else
   5555       {
   5556         z->msg = "invalid literal/length code";
   5557         UNGRAB
   5558         UPDATE
   5559         return Z_DATA_ERROR;
   5560       }
   5561     } while (1);
   5562   } while (m >= 258 && n >= 10);
   5563 
   5564   /* not enough input or output--restore pointers and return */
   5565   UNGRAB
   5566   UPDATE
   5567   return Z_OK;
   5568 }
   5569 /* --- inffast.c */
   5570 
   5571 /* +++ zutil.c */
   5572 
   5573 /* zutil.c -- target dependent utility functions for the compression library
   5574  * Copyright (C) 1995-2002 Jean-loup Gailly.
   5575  * For conditions of distribution and use, see copyright notice in zlib.h
   5576  */
   5577 
   5578 /* @(#) Id */
   5579 
   5580 #ifdef DEBUG_ZLIB
   5581 #include <stdio.h>
   5582 #endif
   5583 
   5584 /* #include "zutil.h" */
   5585 
   5586 #ifndef NO_DUMMY_DECL
   5587 struct internal_state      {int dummy;}; /* for buggy compilers */
   5588 #endif
   5589 
   5590 #ifndef STDC
   5591 extern void exit(int);
   5592 #endif
   5593 
   5594 const char *z_errmsg[10] = {
   5595 "need dictionary",     /* Z_NEED_DICT       2  */
   5596 "stream end",          /* Z_STREAM_END      1  */
   5597 "",                    /* Z_OK              0  */
   5598 "file error",          /* Z_ERRNO         (-1) */
   5599 "stream error",        /* Z_STREAM_ERROR  (-2) */
   5600 "data error",          /* Z_DATA_ERROR    (-3) */
   5601 "insufficient memory", /* Z_MEM_ERROR     (-4) */
   5602 "buffer error",        /* Z_BUF_ERROR     (-5) */
   5603 "incompatible version",/* Z_VERSION_ERROR (-6) */
   5604 ""};
   5605 
   5606 
   5607 #if 0
   5608 const char * ZEXPORT zlibVersion()
   5609 {
   5610     return ZLIB_VERSION;
   5611 }
   5612 #endif
   5613 
   5614 #ifdef DEBUG_ZLIB
   5615 
   5616 #  ifndef verbose
   5617 #    define verbose 0
   5618 #  endif
   5619 int z_verbose = verbose;
   5620 
   5621 void z_error (m)
   5622     char *m;
   5623 {
   5624     fprintf(stderr, "%s\n", m);
   5625     exit(1);
   5626 }
   5627 #endif
   5628 
   5629 /* exported to allow conversion of error code to string for compress() and
   5630  * uncompress()
   5631  */
   5632 #if 0
   5633 const char * ZEXPORT zError(err)
   5634     int err;
   5635 {
   5636     return ERR_MSG(err);
   5637 }
   5638 #endif
   5639 
   5640 
   5641 #ifndef HAVE_MEMCPY
   5642 
   5643 void zmemcpy(dest, source, len)
   5644     Bytef* dest;
   5645     const Bytef* source;
   5646     uInt  len;
   5647 {
   5648     if (len == 0) return;
   5649     do {
   5650         *dest++ = *source++; /* ??? to be unrolled */
   5651     } while (--len != 0);
   5652 }
   5653 
   5654 int zmemcmp(s1, s2, len)
   5655     const Bytef* s1;
   5656     const Bytef* s2;
   5657     uInt  len;
   5658 {
   5659     uInt j;
   5660 
   5661     for (j = 0; j < len; j++) {
   5662         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
   5663     }
   5664     return 0;
   5665 }
   5666 
   5667 void zmemzero(dest, len)
   5668     Bytef* dest;
   5669     uInt  len;
   5670 {
   5671     if (len == 0) return;
   5672     do {
   5673         *dest++ = 0;  /* ??? to be unrolled */
   5674     } while (--len != 0);
   5675 }
   5676 #endif
   5677 
   5678 #ifdef __TURBOC__
   5679 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
   5680 /* Small and medium model in Turbo C are for now limited to near allocation
   5681  * with reduced MAX_WBITS and MAX_MEM_LEVEL
   5682  */
   5683 #  define MY_ZCALLOC
   5684 
   5685 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
   5686  * and farmalloc(64K) returns a pointer with an offset of 8, so we
   5687  * must fix the pointer. Warning: the pointer must be put back to its
   5688  * original form in order to free it, use zcfree().
   5689  */
   5690 
   5691 #define MAX_PTR 10
   5692 /* 10*64K = 640K */
   5693 
   5694 local int next_ptr = 0;
   5695 
   5696 typedef struct ptr_table_s {
   5697     voidpf org_ptr;
   5698     voidpf new_ptr;
   5699 } ptr_table;
   5700 
   5701 local ptr_table table[MAX_PTR];
   5702 /* This table is used to remember the original form of pointers
   5703  * to large buffers (64K). Such pointers are normalized with a zero offset.
   5704  * Since MSDOS is not a preemptive multitasking OS, this table is not
   5705  * protected from concurrent access. This hack doesn't work anyway on
   5706  * a protected system like OS/2. Use Microsoft C instead.
   5707  */
   5708 
   5709 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5710 {
   5711     voidpf buf = opaque; /* just to make some compilers happy */
   5712     ulg bsize = (ulg)items*size;
   5713 
   5714     /* If we allocate less than 65520 bytes, we assume that farmalloc
   5715      * will return a usable pointer which doesn't have to be normalized.
   5716      */
   5717     if (bsize < 65520L) {
   5718         buf = farmalloc(bsize);
   5719         if (*(ush*)&buf != 0) return buf;
   5720     } else {
   5721         buf = farmalloc(bsize + 16L);
   5722     }
   5723     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
   5724     table[next_ptr].org_ptr = buf;
   5725 
   5726     /* Normalize the pointer to seg:0 */
   5727     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
   5728     *(ush*)&buf = 0;
   5729     table[next_ptr++].new_ptr = buf;
   5730     return buf;
   5731 }
   5732 
   5733 void  zcfree (voidpf opaque, voidpf ptr)
   5734 {
   5735     int n;
   5736     if (*(ush*)&ptr != 0) { /* object < 64K */
   5737         farfree(ptr);
   5738         return;
   5739     }
   5740     /* Find the original pointer */
   5741     for (n = 0; n < next_ptr; n++) {
   5742         if (ptr != table[n].new_ptr) continue;
   5743 
   5744         farfree(table[n].org_ptr);
   5745         while (++n < next_ptr) {
   5746             table[n-1] = table[n];
   5747         }
   5748         next_ptr--;
   5749         return;
   5750     }
   5751     ptr = opaque; /* just to make some compilers happy */
   5752     Assert(0, "zcfree: ptr not found");
   5753 }
   5754 #endif
   5755 #endif /* __TURBOC__ */
   5756 
   5757 
   5758 #if defined(M_I86) && !defined(__32BIT__)
   5759 /* Microsoft C in 16-bit mode */
   5760 
   5761 #  define MY_ZCALLOC
   5762 
   5763 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
   5764 #  define _halloc  halloc
   5765 #  define _hfree   hfree
   5766 #endif
   5767 
   5768 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
   5769 {
   5770     if (opaque) opaque = 0; /* to make compiler happy */
   5771     return _halloc((long)items, size);
   5772 }
   5773 
   5774 void  zcfree (voidpf opaque, voidpf ptr)
   5775 {
   5776     if (opaque) opaque = 0; /* to make compiler happy */
   5777     _hfree(ptr);
   5778 }
   5779 
   5780 #endif /* MSC */
   5781 
   5782 
   5783 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
   5784 
   5785 #ifndef STDC
   5786 extern voidp  calloc(uInt items, uInt size);
   5787 extern void   free(voidpf ptr);
   5788 #endif
   5789 
   5790 voidpf zcalloc (opaque, items, size)
   5791     voidpf opaque;
   5792     unsigned items;
   5793     unsigned size;
   5794 {
   5795     if (opaque) items += size - size; /* make compiler happy */
   5796     return (voidpf)calloc(items, size);
   5797 }
   5798 
   5799 void  zcfree (opaque, ptr)
   5800     voidpf opaque;
   5801     voidpf ptr;
   5802 {
   5803     free(ptr);
   5804     if (opaque) return; /* make compiler happy */
   5805 }
   5806 
   5807 #endif /* MY_ZCALLOC */
   5808 /* --- zutil.c */
   5809 
   5810 /* +++ adler32.c */
   5811 /* adler32.c -- compute the Adler-32 checksum of a data stream
   5812  * Copyright (C) 1995-2002 Mark Adler
   5813  * For conditions of distribution and use, see copyright notice in zlib.h
   5814  */
   5815 
   5816 /* @(#) $Id: zlib.c,v 1.37 2019/07/11 03:49:51 msaitoh Exp $ */
   5817 
   5818 /* #include "zlib.h" */
   5819 
   5820 #define BASE 65521L /* largest prime smaller than 65536 */
   5821 #define NMAX 5552
   5822 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
   5823 
   5824 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
   5825 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
   5826 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
   5827 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
   5828 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
   5829 
   5830 /* ========================================================================= */
   5831 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
   5832 {
   5833     unsigned long s1 = adler & 0xffff;
   5834     unsigned long s2 = (adler >> 16) & 0xffff;
   5835     int k;
   5836 
   5837     if (buf == Z_NULL) return 1L;
   5838 
   5839     while (len > 0) {
   5840         k = len < NMAX ? len : NMAX;
   5841         len -= k;
   5842         while (k >= 16) {
   5843             DO16(buf);
   5844 	    buf += 16;
   5845             k -= 16;
   5846         }
   5847         if (k != 0) do {
   5848             s1 += *buf++;
   5849 	    s2 += s1;
   5850         } while (--k);
   5851         s1 %= BASE;
   5852         s2 %= BASE;
   5853     }
   5854     return (s2 << 16) | s1;
   5855 }
   5856 /* --- adler32.c */
   5857 
   5858 #if defined(_KERNEL)
   5859 
   5860 /*
   5861  * NetBSD module glue - this code is required for the vnd and swcrypto
   5862  * pseudo-devices.
   5863  */
   5864 #include <sys/module.h>
   5865 
   5866 static int zlib_modcmd(modcmd_t, void *);
   5867 
   5868 MODULE(MODULE_CLASS_MISC, zlib, NULL);
   5869 
   5870 static int
   5871 zlib_modcmd(modcmd_t cmd, void *arg)
   5872 {
   5873 
   5874 	switch (cmd) {
   5875 	case MODULE_CMD_INIT:
   5876 	case MODULE_CMD_FINI:
   5877 		return 0;
   5878 	case MODULE_CMD_STAT:
   5879 	case MODULE_CMD_AUTOUNLOAD:
   5880 	default:
   5881 		return ENOTTY;
   5882 	}
   5883 }
   5884 
   5885 #endif	/* defined(_KERNEL) */
   5886