zlib.c revision 1.4 1 /* $NetBSD: zlib.c,v 1.4 1997/03/12 20:27:08 christos Exp $ */
2
3 /*
4 * This file is derived from various .h and .c files from the zlib-0.95
5 * distribution by Jean-loup Gailly and Mark Adler, with some additions
6 * by Paul Mackerras to aid in implementing Deflate compression and
7 * decompression for PPP packets. See zlib.h for conditions of
8 * distribution and use.
9 *
10 * Changes that have been made include:
11 * - changed functions not used outside this file to "local"
12 * - added minCompression parameter to deflateInit2
13 * - added Z_PACKET_FLUSH (see zlib.h for details)
14 * - added inflateIncomp
15 *
16 * Id: zlib.c,v 1.5 1997/03/04 03:26:35 paulus Exp
17 */
18
19 /*
20 * ==FILEVERSION 960926==
21 *
22 * This marker is used by the Linux installation script to determine
23 * whether an up-to-date version of this file is already installed.
24 */
25
26 /*+++++*/
27 /* zutil.h -- internal interface and configuration of the compression library
28 * Copyright (C) 1995 Jean-loup Gailly.
29 * For conditions of distribution and use, see copyright notice in zlib.h
30 */
31
32 /* WARNING: this file should *not* be used by applications. It is
33 part of the implementation of the compression library and is
34 subject to change. Applications should only use zlib.h.
35 */
36
37 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
38
39 #define _Z_UTIL_H
40
41 #include "zlib.h"
42
43 #ifndef local
44 # define local static
45 #endif
46 /* compile with -Dlocal if your debugger can't find static symbols */
47
48 #define FAR
49
50 typedef unsigned char uch;
51 typedef uch FAR uchf;
52 typedef unsigned short ush;
53 typedef ush FAR ushf;
54 typedef unsigned long ulg;
55
56 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
57
58 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
59 /* To be used only when the state is known to be valid */
60
61 #ifndef NULL
62 #define NULL ((void *) 0)
63 #endif
64
65 /* common constants */
66
67 #define DEFLATED 8
68
69 #ifndef DEF_WBITS
70 # define DEF_WBITS MAX_WBITS
71 #endif
72 /* default windowBits for decompression. MAX_WBITS is for compression only */
73
74 #if MAX_MEM_LEVEL >= 8
75 # define DEF_MEM_LEVEL 8
76 #else
77 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
78 #endif
79 /* default memLevel */
80
81 #define STORED_BLOCK 0
82 #define STATIC_TREES 1
83 #define DYN_TREES 2
84 /* The three kinds of block type */
85
86 #define MIN_MATCH 3
87 #define MAX_MATCH 258
88 /* The minimum and maximum match lengths */
89
90 /* functions */
91
92 #if defined(KERNEL) || defined(_KERNEL)
93 #include <sys/types.h>
94 #include <sys/time.h>
95 #include <sys/systm.h>
96 # define zmemcpy(d, s, n) bcopy((s), (d), (n))
97 # define zmemzero bzero
98
99 #else
100 #if defined(__KERNEL__)
101 /* Assume this is Linux */
102 #include <linux/string.h>
103 #define zmemcpy memcpy
104 #define zmemzero(dest, len) memset(dest, 0, len)
105
106 #else /* not kernel */
107 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
108 # define HAVE_MEMCPY
109 #endif
110 #ifdef HAVE_MEMCPY
111 # define zmemcpy memcpy
112 # define zmemzero(dest, len) memset(dest, 0, len)
113 #else
114 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
115 extern void zmemzero OF((Bytef* dest, uInt len));
116 #endif
117 #endif /* __KERNEL__ */
118 #endif /* KERNEL */
119
120 /* Diagnostic functions */
121 #ifdef DEBUG_ZLIB
122 # include <stdio.h>
123 # ifndef verbose
124 # define verbose 0
125 # endif
126 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
127 # define Trace(x) fprintf x
128 # define Tracev(x) {if (verbose) fprintf x ;}
129 # define Tracevv(x) {if (verbose>1) fprintf x ;}
130 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
131 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
132 #else
133 # define Assert(cond,msg)
134 # define Trace(x)
135 # define Tracev(x)
136 # define Tracevv(x)
137 # define Tracec(c,x)
138 # define Tracecv(c,x)
139 #endif
140
141
142 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
143
144 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
145 /* void zcfree OF((voidpf opaque, voidpf ptr)); */
146
147 #define ZALLOC(strm, items, size) \
148 (*((strm)->zalloc))((strm)->opaque, (items), (size))
149 #define ZFREE(strm, addr, size) \
150 (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
151 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
152
153 /* deflate.h -- internal compression state
154 * Copyright (C) 1995 Jean-loup Gailly
155 * For conditions of distribution and use, see copyright notice in zlib.h
156 */
157
158 /* WARNING: this file should *not* be used by applications. It is
159 part of the implementation of the compression library and is
160 subject to change. Applications should only use zlib.h.
161 */
162
163
164 /*+++++*/
165 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
166
167 /* ===========================================================================
168 * Internal compression state.
169 */
170
171 /* Data type */
172 #define BINARY 0
173 #define ASCII 1
174 #define UNKNOWN 2
175
176 #define LENGTH_CODES 29
177 /* number of length codes, not counting the special END_BLOCK code */
178
179 #define LITERALS 256
180 /* number of literal bytes 0..255 */
181
182 #define L_CODES (LITERALS+1+LENGTH_CODES)
183 /* number of Literal or Length codes, including the END_BLOCK code */
184
185 #define D_CODES 30
186 /* number of distance codes */
187
188 #define BL_CODES 19
189 /* number of codes used to transfer the bit lengths */
190
191 #define HEAP_SIZE (2*L_CODES+1)
192 /* maximum heap size */
193
194 #define MAX_BITS 15
195 /* All codes must not exceed MAX_BITS bits */
196
197 #define INIT_STATE 42
198 #define BUSY_STATE 113
199 #define FLUSH_STATE 124
200 #define FINISH_STATE 666
201 /* Stream status */
202
203
204 /* Data structure describing a single value and its code string. */
205 typedef struct ct_data_s {
206 union {
207 ush freq; /* frequency count */
208 ush code; /* bit string */
209 } fc;
210 union {
211 ush dad; /* father node in Huffman tree */
212 ush len; /* length of bit string */
213 } dl;
214 } FAR ct_data;
215
216 #define Freq fc.freq
217 #define Code fc.code
218 #define Dad dl.dad
219 #define Len dl.len
220
221 typedef struct static_tree_desc_s static_tree_desc;
222
223 typedef struct tree_desc_s {
224 ct_data *dyn_tree; /* the dynamic tree */
225 int max_code; /* largest code with non zero frequency */
226 static_tree_desc *stat_desc; /* the corresponding static tree */
227 } FAR tree_desc;
228
229 typedef ush Pos;
230 typedef Pos FAR Posf;
231 typedef unsigned IPos;
232
233 /* A Pos is an index in the character window. We use short instead of int to
234 * save space in the various tables. IPos is used only for parameter passing.
235 */
236
237 typedef struct deflate_state {
238 z_stream *strm; /* pointer back to this zlib stream */
239 int status; /* as the name implies */
240 Bytef *pending_buf; /* output still pending */
241 Bytef *pending_out; /* next pending byte to output to the stream */
242 int pending; /* nb of bytes in the pending buffer */
243 uLong adler; /* adler32 of uncompressed data */
244 int noheader; /* suppress zlib header and adler32 */
245 Byte data_type; /* UNKNOWN, BINARY or ASCII */
246 Byte method; /* STORED (for zip only) or DEFLATED */
247 int minCompr; /* min size decrease for Z_FLUSH_NOSTORE */
248
249 /* used by deflate.c: */
250
251 uInt w_size; /* LZ77 window size (32K by default) */
252 uInt w_bits; /* log2(w_size) (8..16) */
253 uInt w_mask; /* w_size - 1 */
254
255 Bytef *window;
256 /* Sliding window. Input bytes are read into the second half of the window,
257 * and move to the first half later to keep a dictionary of at least wSize
258 * bytes. With this organization, matches are limited to a distance of
259 * wSize-MAX_MATCH bytes, but this ensures that IO is always
260 * performed with a length multiple of the block size. Also, it limits
261 * the window size to 64K, which is quite useful on MSDOS.
262 * To do: use the user input buffer as sliding window.
263 */
264
265 ulg window_size;
266 /* Actual size of window: 2*wSize, except when the user input buffer
267 * is directly used as sliding window.
268 */
269
270 Posf *prev;
271 /* Link to older string with same hash index. To limit the size of this
272 * array to 64K, this link is maintained only for the last 32K strings.
273 * An index in this array is thus a window index modulo 32K.
274 */
275
276 Posf *head; /* Heads of the hash chains or NIL. */
277
278 uInt ins_h; /* hash index of string to be inserted */
279 uInt hash_size; /* number of elements in hash table */
280 uInt hash_bits; /* log2(hash_size) */
281 uInt hash_mask; /* hash_size-1 */
282
283 uInt hash_shift;
284 /* Number of bits by which ins_h must be shifted at each input
285 * step. It must be such that after MIN_MATCH steps, the oldest
286 * byte no longer takes part in the hash key, that is:
287 * hash_shift * MIN_MATCH >= hash_bits
288 */
289
290 long block_start;
291 /* Window position at the beginning of the current output block. Gets
292 * negative when the window is moved backwards.
293 */
294
295 uInt match_length; /* length of best match */
296 IPos prev_match; /* previous match */
297 int match_available; /* set if previous match exists */
298 uInt strstart; /* start of string to insert */
299 uInt match_start; /* start of matching string */
300 uInt lookahead; /* number of valid bytes ahead in window */
301
302 uInt prev_length;
303 /* Length of the best match at previous step. Matches not greater than this
304 * are discarded. This is used in the lazy match evaluation.
305 */
306
307 uInt max_chain_length;
308 /* To speed up deflation, hash chains are never searched beyond this
309 * length. A higher limit improves compression ratio but degrades the
310 * speed.
311 */
312
313 uInt max_lazy_match;
314 /* Attempt to find a better match only when the current match is strictly
315 * smaller than this value. This mechanism is used only for compression
316 * levels >= 4.
317 */
318 # define max_insert_length max_lazy_match
319 /* Insert new strings in the hash table only if the match length is not
320 * greater than this length. This saves time but degrades compression.
321 * max_insert_length is used only for compression levels <= 3.
322 */
323
324 int level; /* compression level (1..9) */
325 int strategy; /* favor or force Huffman coding*/
326
327 uInt good_match;
328 /* Use a faster search when the previous match is longer than this */
329
330 int nice_match; /* Stop searching when current match exceeds this */
331
332 /* used by trees.c: */
333 /* Didn't use ct_data typedef below to supress compiler warning */
334 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
335 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
336 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
337
338 struct tree_desc_s l_desc; /* desc. for literal tree */
339 struct tree_desc_s d_desc; /* desc. for distance tree */
340 struct tree_desc_s bl_desc; /* desc. for bit length tree */
341
342 ush bl_count[MAX_BITS+1];
343 /* number of codes at each bit length for an optimal tree */
344
345 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
346 int heap_len; /* number of elements in the heap */
347 int heap_max; /* element of largest frequency */
348 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
349 * The same heap array is used to build all trees.
350 */
351
352 uch depth[2*L_CODES+1];
353 /* Depth of each subtree used as tie breaker for trees of equal frequency
354 */
355
356 uchf *l_buf; /* buffer for literals or lengths */
357
358 uInt lit_bufsize;
359 /* Size of match buffer for literals/lengths. There are 4 reasons for
360 * limiting lit_bufsize to 64K:
361 * - frequencies can be kept in 16 bit counters
362 * - if compression is not successful for the first block, all input
363 * data is still in the window so we can still emit a stored block even
364 * when input comes from standard input. (This can also be done for
365 * all blocks if lit_bufsize is not greater than 32K.)
366 * - if compression is not successful for a file smaller than 64K, we can
367 * even emit a stored file instead of a stored block (saving 5 bytes).
368 * This is applicable only for zip (not gzip or zlib).
369 * - creating new Huffman trees less frequently may not provide fast
370 * adaptation to changes in the input data statistics. (Take for
371 * example a binary file with poorly compressible code followed by
372 * a highly compressible string table.) Smaller buffer sizes give
373 * fast adaptation but have of course the overhead of transmitting
374 * trees more frequently.
375 * - I can't count above 4
376 */
377
378 uInt last_lit; /* running index in l_buf */
379
380 ushf *d_buf;
381 /* Buffer for distances. To simplify the code, d_buf and l_buf have
382 * the same number of elements. To use different lengths, an extra flag
383 * array would be necessary.
384 */
385
386 ulg opt_len; /* bit length of current block with optimal trees */
387 ulg static_len; /* bit length of current block with static trees */
388 ulg compressed_len; /* total bit length of compressed file */
389 uInt matches; /* number of string matches in current block */
390 int last_eob_len; /* bit length of EOB code for last block */
391
392 #ifdef DEBUG_ZLIB
393 ulg bits_sent; /* bit length of the compressed data */
394 #endif
395
396 ush bi_buf;
397 /* Output buffer. bits are inserted starting at the bottom (least
398 * significant bits).
399 */
400 int bi_valid;
401 /* Number of valid bits in bi_buf. All bits above the last valid bit
402 * are always zero.
403 */
404
405 uInt blocks_in_packet;
406 /* Number of blocks produced since the last time Z_PACKET_FLUSH
407 * was used.
408 */
409
410 } FAR deflate_state;
411
412 /* Output a byte on the stream.
413 * IN assertion: there is enough room in pending_buf.
414 */
415 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
416
417
418 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
419 /* Minimum amount of lookahead, except at the end of the input file.
420 * See deflate.c for comments about the MIN_MATCH+1.
421 */
422
423 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
424 /* In order to simplify the code, particularly on 16 bit machines, match
425 * distances are limited to MAX_DIST instead of WSIZE.
426 */
427
428 /* in trees.c */
429 local void ct_init OF((deflate_state *s));
430 local int ct_tally OF((deflate_state *s, int dist, int lc));
431 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
432 int flush));
433 local void ct_align OF((deflate_state *s));
434 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
435 int eof));
436 local void ct_stored_type_only OF((deflate_state *s));
437
438
439 /*+++++*/
440 /* deflate.c -- compress data using the deflation algorithm
441 * Copyright (C) 1995 Jean-loup Gailly.
442 * For conditions of distribution and use, see copyright notice in zlib.h
443 */
444
445 /*
446 * ALGORITHM
447 *
448 * The "deflation" process depends on being able to identify portions
449 * of the input text which are identical to earlier input (within a
450 * sliding window trailing behind the input currently being processed).
451 *
452 * The most straightforward technique turns out to be the fastest for
453 * most input files: try all possible matches and select the longest.
454 * The key feature of this algorithm is that insertions into the string
455 * dictionary are very simple and thus fast, and deletions are avoided
456 * completely. Insertions are performed at each input character, whereas
457 * string matches are performed only when the previous match ends. So it
458 * is preferable to spend more time in matches to allow very fast string
459 * insertions and avoid deletions. The matching algorithm for small
460 * strings is inspired from that of Rabin & Karp. A brute force approach
461 * is used to find longer strings when a small match has been found.
462 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
463 * (by Leonid Broukhis).
464 * A previous version of this file used a more sophisticated algorithm
465 * (by Fiala and Greene) which is guaranteed to run in linear amortized
466 * time, but has a larger average cost, uses more memory and is patented.
467 * However the F&G algorithm may be faster for some highly redundant
468 * files if the parameter max_chain_length (described below) is too large.
469 *
470 * ACKNOWLEDGEMENTS
471 *
472 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
473 * I found it in 'freeze' written by Leonid Broukhis.
474 * Thanks to many people for bug reports and testing.
475 *
476 * REFERENCES
477 *
478 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
479 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
480 *
481 * A description of the Rabin and Karp algorithm is given in the book
482 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
483 *
484 * Fiala,E.R., and Greene,D.H.
485 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
486 *
487 */
488
489 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
490
491 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
492 /*
493 If you use the zlib library in a product, an acknowledgment is welcome
494 in the documentation of your product. If for some reason you cannot
495 include such an acknowledgment, I would appreciate that you keep this
496 copyright string in the executable of your product.
497 */
498
499 #define NIL 0
500 /* Tail of hash chains */
501
502 #ifndef TOO_FAR
503 # define TOO_FAR 4096
504 #endif
505 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
506
507 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
508 /* Minimum amount of lookahead, except at the end of the input file.
509 * See deflate.c for comments about the MIN_MATCH+1.
510 */
511
512 /* Values for max_lazy_match, good_match and max_chain_length, depending on
513 * the desired pack level (0..9). The values given below have been tuned to
514 * exclude worst case performance for pathological files. Better values may be
515 * found for specific files.
516 */
517
518 typedef struct config_s {
519 ush good_length; /* reduce lazy search above this match length */
520 ush max_lazy; /* do not perform lazy search above this match length */
521 ush nice_length; /* quit search above this match length */
522 ush max_chain;
523 } config;
524
525 local config configuration_table[10] = {
526 /* good lazy nice chain */
527 /* 0 */ {0, 0, 0, 0}, /* store only */
528 /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
529 /* 2 */ {4, 5, 16, 8},
530 /* 3 */ {4, 6, 32, 32},
531
532 /* 4 */ {4, 4, 16, 16}, /* lazy matches */
533 /* 5 */ {8, 16, 32, 32},
534 /* 6 */ {8, 16, 128, 128},
535 /* 7 */ {8, 32, 128, 256},
536 /* 8 */ {32, 128, 258, 1024},
537 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
538
539 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
540 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
541 * meaning.
542 */
543
544 #define EQUAL 0
545 /* result of memcmp for equal strings */
546
547 /* ===========================================================================
548 * Prototypes for local functions.
549 */
550
551 local void fill_window OF((deflate_state *s));
552 local int deflate_fast OF((deflate_state *s, int flush));
553 local int deflate_slow OF((deflate_state *s, int flush));
554 local void lm_init OF((deflate_state *s));
555 local int longest_match OF((deflate_state *s, IPos cur_match));
556 local void putShortMSB OF((deflate_state *s, uInt b));
557 local void flush_pending OF((z_stream *strm));
558 local int read_buf OF((z_stream *strm, charf *buf, unsigned size));
559 #ifdef ASMV
560 void match_init OF((void)); /* asm code initialization */
561 #endif
562
563 #ifdef DEBUG_ZLIB
564 local void check_match OF((deflate_state *s, IPos start, IPos match,
565 int length));
566 #endif
567
568
569 /* ===========================================================================
570 * Update a hash value with the given input byte
571 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
572 * input characters, so that a running hash key can be computed from the
573 * previous key instead of complete recalculation each time.
574 */
575 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
576
577
578 /* ===========================================================================
579 * Insert string str in the dictionary and set match_head to the previous head
580 * of the hash chain (the most recent string with same hash key). Return
581 * the previous length of the hash chain.
582 * IN assertion: all calls to to INSERT_STRING are made with consecutive
583 * input characters and the first MIN_MATCH bytes of str are valid
584 * (except for the last MIN_MATCH-1 bytes of the input file).
585 */
586 #define INSERT_STRING(s, str, match_head) \
587 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
588 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
589 s->head[s->ins_h] = (str))
590
591 /* ===========================================================================
592 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
593 * prev[] will be initialized on the fly.
594 */
595 #define CLEAR_HASH(s) \
596 s->head[s->hash_size-1] = NIL; \
597 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
598
599 /* ========================================================================= */
600 int deflateInit (strm, level)
601 z_stream *strm;
602 int level;
603 {
604 return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
605 0, 0);
606 /* To do: ignore strm->next_in if we use it as window */
607 }
608
609 /* ========================================================================= */
610 int deflateInit2 (strm, level, method, windowBits, memLevel,
611 strategy, minCompression)
612 z_stream *strm;
613 int level;
614 int method;
615 int windowBits;
616 int memLevel;
617 int strategy;
618 int minCompression;
619 {
620 deflate_state *s;
621 int noheader = 0;
622
623 if (strm == Z_NULL) return Z_STREAM_ERROR;
624
625 strm->msg = Z_NULL;
626 /* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
627 /* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
628
629 if (level == Z_DEFAULT_COMPRESSION) level = 6;
630
631 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
632 noheader = 1;
633 windowBits = -windowBits;
634 }
635 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
636 windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
637 return Z_STREAM_ERROR;
638 }
639 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
640 if (s == Z_NULL) return Z_MEM_ERROR;
641 strm->state = (struct internal_state FAR *)s;
642 s->strm = strm;
643
644 s->noheader = noheader;
645 s->w_bits = windowBits;
646 s->w_size = 1 << s->w_bits;
647 s->w_mask = s->w_size - 1;
648
649 s->hash_bits = memLevel + 7;
650 s->hash_size = 1 << s->hash_bits;
651 s->hash_mask = s->hash_size - 1;
652 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
653
654 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
655 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
656 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
657
658 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
659
660 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
661
662 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
663 s->pending_buf == Z_NULL) {
664 strm->msg = z_errmsg[1-Z_MEM_ERROR];
665 deflateEnd (strm);
666 return Z_MEM_ERROR;
667 }
668 s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
669 s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
670 /* We overlay pending_buf and d_buf+l_buf. This works since the average
671 * output size for (length,distance) codes is <= 32 bits (worst case
672 * is 15+15+13=33).
673 */
674
675 s->level = level;
676 s->strategy = strategy;
677 s->method = (Byte)method;
678 s->minCompr = minCompression;
679 s->blocks_in_packet = 0;
680
681 return deflateReset(strm);
682 }
683
684 /* ========================================================================= */
685 int deflateReset (strm)
686 z_stream *strm;
687 {
688 deflate_state *s;
689
690 if (strm == Z_NULL || strm->state == Z_NULL ||
691 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
692
693 strm->total_in = strm->total_out = 0;
694 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
695 strm->data_type = Z_UNKNOWN;
696
697 s = (deflate_state *)strm->state;
698 s->pending = 0;
699 s->pending_out = s->pending_buf;
700
701 if (s->noheader < 0) {
702 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
703 }
704 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
705 s->adler = 1;
706
707 ct_init(s);
708 lm_init(s);
709
710 return Z_OK;
711 }
712
713 /* =========================================================================
714 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
715 * IN assertion: the stream state is correct and there is enough room in
716 * pending_buf.
717 */
718 local void putShortMSB (s, b)
719 deflate_state *s;
720 uInt b;
721 {
722 put_byte(s, (Byte)(b >> 8));
723 put_byte(s, (Byte)(b & 0xff));
724 }
725
726 /* =========================================================================
727 * Flush as much pending output as possible.
728 */
729 local void flush_pending(strm)
730 z_stream *strm;
731 {
732 deflate_state *state = (deflate_state *) strm->state;
733 unsigned len = state->pending;
734
735 if (len > strm->avail_out) len = strm->avail_out;
736 if (len == 0) return;
737
738 if (strm->next_out != NULL) {
739 zmemcpy(strm->next_out, state->pending_out, len);
740 strm->next_out += len;
741 }
742 state->pending_out += len;
743 strm->total_out += len;
744 strm->avail_out -= len;
745 state->pending -= len;
746 if (state->pending == 0) {
747 state->pending_out = state->pending_buf;
748 }
749 }
750
751 /* ========================================================================= */
752 int deflate (strm, flush)
753 z_stream *strm;
754 int flush;
755 {
756 deflate_state *state = (deflate_state *) strm->state;
757
758 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
759
760 if (strm->next_in == Z_NULL && strm->avail_in != 0) {
761 ERR_RETURN(strm, Z_STREAM_ERROR);
762 }
763 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
764
765 state->strm = strm; /* just in case */
766
767 /* Write the zlib header */
768 if (state->status == INIT_STATE) {
769
770 uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
771 uInt level_flags = (state->level-1) >> 1;
772
773 if (level_flags > 3) level_flags = 3;
774 header |= (level_flags << 6);
775 header += 31 - (header % 31);
776
777 state->status = BUSY_STATE;
778 putShortMSB(state, header);
779 }
780
781 /* Flush as much pending output as possible */
782 if (state->pending != 0) {
783 flush_pending(strm);
784 if (strm->avail_out == 0) return Z_OK;
785 }
786
787 /* If we came back in here to get the last output from
788 * a previous flush, we're done for now.
789 */
790 if (state->status == FLUSH_STATE) {
791 state->status = BUSY_STATE;
792 if (flush != Z_NO_FLUSH && flush != Z_FINISH)
793 return Z_OK;
794 }
795
796 /* User must not provide more input after the first FINISH: */
797 if (state->status == FINISH_STATE && strm->avail_in != 0) {
798 ERR_RETURN(strm, Z_BUF_ERROR);
799 }
800
801 /* Start a new block or continue the current one.
802 */
803 if (strm->avail_in != 0 || state->lookahead != 0 ||
804 (flush == Z_FINISH && state->status != FINISH_STATE)) {
805 int quit;
806
807 if (flush == Z_FINISH) {
808 state->status = FINISH_STATE;
809 }
810 if (state->level <= 3) {
811 quit = deflate_fast(state, flush);
812 } else {
813 quit = deflate_slow(state, flush);
814 }
815 if (quit || strm->avail_out == 0)
816 return Z_OK;
817 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
818 * of deflate should use the same flush parameter to make sure
819 * that the flush is complete. So we don't have to output an
820 * empty block here, this will be done at next call. This also
821 * ensures that for a very small output buffer, we emit at most
822 * one empty block.
823 */
824 }
825
826 /* If a flush was requested, we have a little more to output now. */
827 if (flush != Z_NO_FLUSH && flush != Z_FINISH
828 && state->status != FINISH_STATE) {
829 switch (flush) {
830 case Z_PARTIAL_FLUSH:
831 ct_align(state);
832 break;
833 case Z_PACKET_FLUSH:
834 /* Output just the 3-bit `stored' block type value,
835 but not a zero length. */
836 ct_stored_type_only(state);
837 break;
838 default:
839 ct_stored_block(state, (char*)0, 0L, 0);
840 /* For a full flush, this empty block will be recognized
841 * as a special marker by inflate_sync().
842 */
843 if (flush == Z_FULL_FLUSH) {
844 CLEAR_HASH(state); /* forget history */
845 }
846 }
847 flush_pending(strm);
848 if (strm->avail_out == 0) {
849 /* We'll have to come back to get the rest of the output;
850 * this ensures we don't output a second zero-length stored
851 * block (or whatever).
852 */
853 state->status = FLUSH_STATE;
854 return Z_OK;
855 }
856 }
857
858 Assert(strm->avail_out > 0, "bug2");
859
860 if (flush != Z_FINISH) return Z_OK;
861 if (state->noheader) return Z_STREAM_END;
862
863 /* Write the zlib trailer (adler32) */
864 putShortMSB(state, (uInt)(state->adler >> 16));
865 putShortMSB(state, (uInt)(state->adler & 0xffff));
866 flush_pending(strm);
867 /* If avail_out is zero, the application will call deflate again
868 * to flush the rest.
869 */
870 state->noheader = -1; /* write the trailer only once! */
871 return state->pending != 0 ? Z_OK : Z_STREAM_END;
872 }
873
874 /* ========================================================================= */
875 int deflateEnd (strm)
876 z_stream *strm;
877 {
878 deflate_state *state = (deflate_state *) strm->state;
879
880 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
881
882 TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
883 TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
884 TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
885 TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
886
887 ZFREE(strm, state, sizeof(deflate_state));
888 strm->state = Z_NULL;
889
890 return Z_OK;
891 }
892
893 /* ===========================================================================
894 * Read a new buffer from the current input stream, update the adler32
895 * and total number of bytes read.
896 */
897 local int read_buf(strm, buf, size)
898 z_stream *strm;
899 charf *buf;
900 unsigned size;
901 {
902 unsigned len = strm->avail_in;
903 deflate_state *state = (deflate_state *) strm->state;
904
905 if (len > size) len = size;
906 if (len == 0) return 0;
907
908 strm->avail_in -= len;
909
910 if (!state->noheader) {
911 state->adler = adler32(state->adler, strm->next_in, len);
912 }
913 zmemcpy(buf, strm->next_in, len);
914 strm->next_in += len;
915 strm->total_in += len;
916
917 return (int)len;
918 }
919
920 /* ===========================================================================
921 * Initialize the "longest match" routines for a new zlib stream
922 */
923 local void lm_init (s)
924 deflate_state *s;
925 {
926 s->window_size = (ulg)2L*s->w_size;
927
928 CLEAR_HASH(s);
929
930 /* Set the default configuration parameters:
931 */
932 s->max_lazy_match = configuration_table[s->level].max_lazy;
933 s->good_match = configuration_table[s->level].good_length;
934 s->nice_match = configuration_table[s->level].nice_length;
935 s->max_chain_length = configuration_table[s->level].max_chain;
936
937 s->strstart = 0;
938 s->block_start = 0L;
939 s->lookahead = 0;
940 s->match_length = MIN_MATCH-1;
941 s->match_available = 0;
942 s->ins_h = 0;
943 #ifdef ASMV
944 match_init(); /* initialize the asm code */
945 #endif
946 }
947
948 /* ===========================================================================
949 * Set match_start to the longest match starting at the given string and
950 * return its length. Matches shorter or equal to prev_length are discarded,
951 * in which case the result is equal to prev_length and match_start is
952 * garbage.
953 * IN assertions: cur_match is the head of the hash chain for the current
954 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
955 */
956 #ifndef ASMV
957 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
958 * match.S. The code will be functionally equivalent.
959 */
960 local int longest_match(s, cur_match)
961 deflate_state *s;
962 IPos cur_match; /* current match */
963 {
964 unsigned chain_length = s->max_chain_length;/* max hash chain length */
965 register Bytef *scan = s->window + s->strstart; /* current string */
966 register Bytef *match; /* matched string */
967 register int len; /* length of current match */
968 int best_len = s->prev_length; /* best match length so far */
969 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
970 s->strstart - (IPos)MAX_DIST(s) : NIL;
971 /* Stop when cur_match becomes <= limit. To simplify the code,
972 * we prevent matches with the string of window index 0.
973 */
974 Posf *prev = s->prev;
975 uInt wmask = s->w_mask;
976
977 #ifdef UNALIGNED_OK
978 /* Compare two bytes at a time. Note: this is not always beneficial.
979 * Try with and without -DUNALIGNED_OK to check.
980 */
981 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
982 register ush scan_start = *(ushf*)scan;
983 register ush scan_end = *(ushf*)(scan+best_len-1);
984 #else
985 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
986 register Byte scan_end1 = scan[best_len-1];
987 register Byte scan_end = scan[best_len];
988 #endif
989
990 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
991 * It is easy to get rid of this optimization if necessary.
992 */
993 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
994
995 /* Do not waste too much time if we already have a good match: */
996 if (s->prev_length >= s->good_match) {
997 chain_length >>= 2;
998 }
999 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1000
1001 do {
1002 Assert(cur_match < s->strstart, "no future");
1003 match = s->window + cur_match;
1004
1005 /* Skip to next match if the match length cannot increase
1006 * or if the match length is less than 2:
1007 */
1008 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1009 /* This code assumes sizeof(unsigned short) == 2. Do not use
1010 * UNALIGNED_OK if your compiler uses a different size.
1011 */
1012 if (*(ushf*)(match+best_len-1) != scan_end ||
1013 *(ushf*)match != scan_start) continue;
1014
1015 /* It is not necessary to compare scan[2] and match[2] since they are
1016 * always equal when the other bytes match, given that the hash keys
1017 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1018 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1019 * lookahead only every 4th comparison; the 128th check will be made
1020 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1021 * necessary to put more guard bytes at the end of the window, or
1022 * to check more often for insufficient lookahead.
1023 */
1024 Assert(scan[2] == match[2], "scan[2]?");
1025 scan++, match++;
1026 do {
1027 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1028 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1029 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1030 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1031 scan < strend);
1032 /* The funny "do {}" generates better code on most compilers */
1033
1034 /* Here, scan <= window+strstart+257 */
1035 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1036 if (*scan == *match) scan++;
1037
1038 len = (MAX_MATCH - 1) - (int)(strend-scan);
1039 scan = strend - (MAX_MATCH-1);
1040
1041 #else /* UNALIGNED_OK */
1042
1043 if (match[best_len] != scan_end ||
1044 match[best_len-1] != scan_end1 ||
1045 *match != *scan ||
1046 *++match != scan[1]) continue;
1047
1048 /* The check at best_len-1 can be removed because it will be made
1049 * again later. (This heuristic is not always a win.)
1050 * It is not necessary to compare scan[2] and match[2] since they
1051 * are always equal when the other bytes match, given that
1052 * the hash keys are equal and that HASH_BITS >= 8.
1053 */
1054 scan += 2, match++;
1055 Assert(*scan == *match, "match[2]?");
1056
1057 /* We check for insufficient lookahead only every 8th comparison;
1058 * the 256th check will be made at strstart+258.
1059 */
1060 do {
1061 } while (*++scan == *++match && *++scan == *++match &&
1062 *++scan == *++match && *++scan == *++match &&
1063 *++scan == *++match && *++scan == *++match &&
1064 *++scan == *++match && *++scan == *++match &&
1065 scan < strend);
1066
1067 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1068
1069 len = MAX_MATCH - (int)(strend - scan);
1070 scan = strend - MAX_MATCH;
1071
1072 #endif /* UNALIGNED_OK */
1073
1074 if (len > best_len) {
1075 s->match_start = cur_match;
1076 best_len = len;
1077 if (len >= s->nice_match) break;
1078 #ifdef UNALIGNED_OK
1079 scan_end = *(ushf*)(scan+best_len-1);
1080 #else
1081 scan_end1 = scan[best_len-1];
1082 scan_end = scan[best_len];
1083 #endif
1084 }
1085 } while ((cur_match = prev[cur_match & wmask]) > limit
1086 && --chain_length != 0);
1087
1088 return best_len;
1089 }
1090 #endif /* ASMV */
1091
1092 #ifdef DEBUG_ZLIB
1093 /* ===========================================================================
1094 * Check that the match at match_start is indeed a match.
1095 */
1096 local void check_match(s, start, match, length)
1097 deflate_state *s;
1098 IPos start, match;
1099 int length;
1100 {
1101 /* check that the match is indeed a match */
1102 if (memcmp((charf *)s->window + match,
1103 (charf *)s->window + start, length) != EQUAL) {
1104 fprintf(stderr,
1105 " start %u, match %u, length %d\n",
1106 start, match, length);
1107 do { fprintf(stderr, "%c%c", s->window[match++],
1108 s->window[start++]); } while (--length != 0);
1109 z_error("invalid match");
1110 }
1111 if (verbose > 1) {
1112 fprintf(stderr,"\\[%d,%d]", start-match, length);
1113 do { putc(s->window[start++], stderr); } while (--length != 0);
1114 }
1115 }
1116 #else
1117 # define check_match(s, start, match, length)
1118 #endif
1119
1120 /* ===========================================================================
1121 * Fill the window when the lookahead becomes insufficient.
1122 * Updates strstart and lookahead.
1123 *
1124 * IN assertion: lookahead < MIN_LOOKAHEAD
1125 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1126 * At least one byte has been read, or avail_in == 0; reads are
1127 * performed for at least two bytes (required for the zip translate_eol
1128 * option -- not supported here).
1129 */
1130 local void fill_window(s)
1131 deflate_state *s;
1132 {
1133 register unsigned n, m;
1134 register Posf *p;
1135 unsigned more; /* Amount of free space at the end of the window. */
1136 uInt wsize = s->w_size;
1137
1138 do {
1139 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1140
1141 /* Deal with !@#$% 64K limit: */
1142 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1143 more = wsize;
1144 } else if (more == (unsigned)(-1)) {
1145 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1146 * and lookahead == 1 (input done one byte at time)
1147 */
1148 more--;
1149
1150 /* If the window is almost full and there is insufficient lookahead,
1151 * move the upper half to the lower one to make room in the upper half.
1152 */
1153 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1154
1155 /* By the IN assertion, the window is not empty so we can't confuse
1156 * more == 0 with more == 64K on a 16 bit machine.
1157 */
1158 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1159 (unsigned)wsize);
1160 s->match_start -= wsize;
1161 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1162
1163 s->block_start -= (long) wsize;
1164
1165 /* Slide the hash table (could be avoided with 32 bit values
1166 at the expense of memory usage):
1167 */
1168 n = s->hash_size;
1169 p = &s->head[n];
1170 do {
1171 m = *--p;
1172 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1173 } while (--n);
1174
1175 n = wsize;
1176 p = &s->prev[n];
1177 do {
1178 m = *--p;
1179 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1180 /* If n is not on any hash chain, prev[n] is garbage but
1181 * its value will never be used.
1182 */
1183 } while (--n);
1184
1185 more += wsize;
1186 }
1187 if (s->strm->avail_in == 0) return;
1188
1189 /* If there was no sliding:
1190 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1191 * more == window_size - lookahead - strstart
1192 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1193 * => more >= window_size - 2*WSIZE + 2
1194 * In the BIG_MEM or MMAP case (not yet supported),
1195 * window_size == input_size + MIN_LOOKAHEAD &&
1196 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1197 * Otherwise, window_size == 2*WSIZE so more >= 2.
1198 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1199 */
1200 Assert(more >= 2, "more < 2");
1201
1202 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1203 more);
1204 s->lookahead += n;
1205
1206 /* Initialize the hash value now that we have some input: */
1207 if (s->lookahead >= MIN_MATCH) {
1208 s->ins_h = s->window[s->strstart];
1209 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1210 #if MIN_MATCH != 3
1211 Call UPDATE_HASH() MIN_MATCH-3 more times
1212 #endif
1213 }
1214 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1215 * but this is not important since only literal bytes will be emitted.
1216 */
1217
1218 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1219 }
1220
1221 /* ===========================================================================
1222 * Flush the current block, with given end-of-file flag.
1223 * IN assertion: strstart is set to the end of the current match.
1224 */
1225 #define FLUSH_BLOCK_ONLY(s, flush) { \
1226 ct_flush_block(s, (s->block_start >= 0L ? \
1227 (charf *)&s->window[(unsigned)s->block_start] : \
1228 (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1229 s->block_start = s->strstart; \
1230 flush_pending(s->strm); \
1231 Tracev((stderr,"[FLUSH]")); \
1232 }
1233
1234 /* Same but force premature exit if necessary. */
1235 #define FLUSH_BLOCK(s, flush) { \
1236 FLUSH_BLOCK_ONLY(s, flush); \
1237 if (s->strm->avail_out == 0) return 1; \
1238 }
1239
1240 /* ===========================================================================
1241 * Compress as much as possible from the input stream, return true if
1242 * processing was terminated prematurely (no more input or output space).
1243 * This function does not perform lazy evaluationof matches and inserts
1244 * new strings in the dictionary only for unmatched strings or for short
1245 * matches. It is used only for the fast compression options.
1246 */
1247 local int deflate_fast(s, flush)
1248 deflate_state *s;
1249 int flush;
1250 {
1251 IPos hash_head = NIL; /* head of the hash chain */
1252 int bflush; /* set if current block must be flushed */
1253
1254 s->prev_length = MIN_MATCH-1;
1255
1256 for (;;) {
1257 /* Make sure that we always have enough lookahead, except
1258 * at the end of the input file. We need MAX_MATCH bytes
1259 * for the next match, plus MIN_MATCH bytes to insert the
1260 * string following the next match.
1261 */
1262 if (s->lookahead < MIN_LOOKAHEAD) {
1263 fill_window(s);
1264 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1265
1266 if (s->lookahead == 0) break; /* flush the current block */
1267 }
1268
1269 /* Insert the string window[strstart .. strstart+2] in the
1270 * dictionary, and set hash_head to the head of the hash chain:
1271 */
1272 if (s->lookahead >= MIN_MATCH) {
1273 INSERT_STRING(s, s->strstart, hash_head);
1274 }
1275
1276 /* Find the longest match, discarding those <= prev_length.
1277 * At this point we have always match_length < MIN_MATCH
1278 */
1279 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1280 /* To simplify the code, we prevent matches with the string
1281 * of window index 0 (in particular we have to avoid a match
1282 * of the string with itself at the start of the input file).
1283 */
1284 if (s->strategy != Z_HUFFMAN_ONLY) {
1285 s->match_length = longest_match (s, hash_head);
1286 }
1287 /* longest_match() sets match_start */
1288
1289 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1290 }
1291 if (s->match_length >= MIN_MATCH) {
1292 check_match(s, s->strstart, s->match_start, s->match_length);
1293
1294 bflush = ct_tally(s, s->strstart - s->match_start,
1295 s->match_length - MIN_MATCH);
1296
1297 s->lookahead -= s->match_length;
1298
1299 /* Insert new strings in the hash table only if the match length
1300 * is not too large. This saves time but degrades compression.
1301 */
1302 if (s->match_length <= s->max_insert_length &&
1303 s->lookahead >= MIN_MATCH) {
1304 s->match_length--; /* string at strstart already in hash table */
1305 do {
1306 s->strstart++;
1307 INSERT_STRING(s, s->strstart, hash_head);
1308 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1309 * always MIN_MATCH bytes ahead.
1310 */
1311 } while (--s->match_length != 0);
1312 s->strstart++;
1313 } else {
1314 s->strstart += s->match_length;
1315 s->match_length = 0;
1316 s->ins_h = s->window[s->strstart];
1317 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1318 #if MIN_MATCH != 3
1319 Call UPDATE_HASH() MIN_MATCH-3 more times
1320 #endif
1321 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1322 * matter since it will be recomputed at next deflate call.
1323 */
1324 }
1325 } else {
1326 /* No match, output a literal byte */
1327 Tracevv((stderr,"%c", s->window[s->strstart]));
1328 bflush = ct_tally (s, 0, s->window[s->strstart]);
1329 s->lookahead--;
1330 s->strstart++;
1331 }
1332 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1333 }
1334 FLUSH_BLOCK(s, flush);
1335 return 0; /* normal exit */
1336 }
1337
1338 /* ===========================================================================
1339 * Same as above, but achieves better compression. We use a lazy
1340 * evaluation for matches: a match is finally adopted only if there is
1341 * no better match at the next window position.
1342 */
1343 local int deflate_slow(s, flush)
1344 deflate_state *s;
1345 int flush;
1346 {
1347 IPos hash_head = NIL; /* head of hash chain */
1348 int bflush; /* set if current block must be flushed */
1349
1350 /* Process the input block. */
1351 for (;;) {
1352 /* Make sure that we always have enough lookahead, except
1353 * at the end of the input file. We need MAX_MATCH bytes
1354 * for the next match, plus MIN_MATCH bytes to insert the
1355 * string following the next match.
1356 */
1357 if (s->lookahead < MIN_LOOKAHEAD) {
1358 fill_window(s);
1359 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1360
1361 if (s->lookahead == 0) break; /* flush the current block */
1362 }
1363
1364 /* Insert the string window[strstart .. strstart+2] in the
1365 * dictionary, and set hash_head to the head of the hash chain:
1366 */
1367 if (s->lookahead >= MIN_MATCH) {
1368 INSERT_STRING(s, s->strstart, hash_head);
1369 }
1370
1371 /* Find the longest match, discarding those <= prev_length.
1372 */
1373 s->prev_length = s->match_length, s->prev_match = s->match_start;
1374 s->match_length = MIN_MATCH-1;
1375
1376 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1377 s->strstart - hash_head <= MAX_DIST(s)) {
1378 /* To simplify the code, we prevent matches with the string
1379 * of window index 0 (in particular we have to avoid a match
1380 * of the string with itself at the start of the input file).
1381 */
1382 if (s->strategy != Z_HUFFMAN_ONLY) {
1383 s->match_length = longest_match (s, hash_head);
1384 }
1385 /* longest_match() sets match_start */
1386 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1387
1388 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1389 (s->match_length == MIN_MATCH &&
1390 s->strstart - s->match_start > TOO_FAR))) {
1391
1392 /* If prev_match is also MIN_MATCH, match_start is garbage
1393 * but we will ignore the current match anyway.
1394 */
1395 s->match_length = MIN_MATCH-1;
1396 }
1397 }
1398 /* If there was a match at the previous step and the current
1399 * match is not better, output the previous match:
1400 */
1401 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1402 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1403 /* Do not insert strings in hash table beyond this. */
1404
1405 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1406
1407 bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1408 s->prev_length - MIN_MATCH);
1409
1410 /* Insert in hash table all strings up to the end of the match.
1411 * strstart-1 and strstart are already inserted. If there is not
1412 * enough lookahead, the last two strings are not inserted in
1413 * the hash table.
1414 */
1415 s->lookahead -= s->prev_length-1;
1416 s->prev_length -= 2;
1417 do {
1418 if (++s->strstart <= max_insert) {
1419 INSERT_STRING(s, s->strstart, hash_head);
1420 }
1421 } while (--s->prev_length != 0);
1422 s->match_available = 0;
1423 s->match_length = MIN_MATCH-1;
1424 s->strstart++;
1425
1426 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1427
1428 } else if (s->match_available) {
1429 /* If there was no match at the previous position, output a
1430 * single literal. If there was a match but the current match
1431 * is longer, truncate the previous match to a single literal.
1432 */
1433 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1434 if (ct_tally (s, 0, s->window[s->strstart-1])) {
1435 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1436 }
1437 s->strstart++;
1438 s->lookahead--;
1439 if (s->strm->avail_out == 0) return 1;
1440 } else {
1441 /* There is no previous match to compare with, wait for
1442 * the next step to decide.
1443 */
1444 s->match_available = 1;
1445 s->strstart++;
1446 s->lookahead--;
1447 }
1448 }
1449 Assert (flush != Z_NO_FLUSH, "no flush?");
1450 if (s->match_available) {
1451 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1452 ct_tally (s, 0, s->window[s->strstart-1]);
1453 s->match_available = 0;
1454 }
1455 FLUSH_BLOCK(s, flush);
1456 return 0;
1457 }
1458
1459
1460 /*+++++*/
1461 /* trees.c -- output deflated data using Huffman coding
1462 * Copyright (C) 1995 Jean-loup Gailly
1463 * For conditions of distribution and use, see copyright notice in zlib.h
1464 */
1465
1466 /*
1467 * ALGORITHM
1468 *
1469 * The "deflation" process uses several Huffman trees. The more
1470 * common source values are represented by shorter bit sequences.
1471 *
1472 * Each code tree is stored in a compressed form which is itself
1473 * a Huffman encoding of the lengths of all the code strings (in
1474 * ascending order by source values). The actual code strings are
1475 * reconstructed from the lengths in the inflate process, as described
1476 * in the deflate specification.
1477 *
1478 * REFERENCES
1479 *
1480 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1481 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1482 *
1483 * Storer, James A.
1484 * Data Compression: Methods and Theory, pp. 49-50.
1485 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1486 *
1487 * Sedgewick, R.
1488 * Algorithms, p290.
1489 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1490 */
1491
1492 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1493
1494 #ifdef DEBUG_ZLIB
1495 # include <ctype.h>
1496 #endif
1497
1498 /* ===========================================================================
1499 * Constants
1500 */
1501
1502 #define MAX_BL_BITS 7
1503 /* Bit length codes must not exceed MAX_BL_BITS bits */
1504
1505 #define END_BLOCK 256
1506 /* end of block literal code */
1507
1508 #define REP_3_6 16
1509 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1510
1511 #define REPZ_3_10 17
1512 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1513
1514 #define REPZ_11_138 18
1515 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1516
1517 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1518 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1519
1520 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1521 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1522
1523 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1524 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1525
1526 local uch bl_order[BL_CODES]
1527 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1528 /* The lengths of the bit length codes are sent in order of decreasing
1529 * probability, to avoid transmitting the lengths for unused bit length codes.
1530 */
1531
1532 #define Buf_size (8 * 2*sizeof(char))
1533 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1534 * more than 16 bits on some systems.)
1535 */
1536
1537 /* ===========================================================================
1538 * Local data. These are initialized only once.
1539 * To do: initialize at compile time to be completely reentrant. ???
1540 */
1541
1542 local ct_data static_ltree[L_CODES+2];
1543 /* The static literal tree. Since the bit lengths are imposed, there is no
1544 * need for the L_CODES extra codes used during heap construction. However
1545 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1546 * below).
1547 */
1548
1549 local ct_data static_dtree[D_CODES];
1550 /* The static distance tree. (Actually a trivial tree since all codes use
1551 * 5 bits.)
1552 */
1553
1554 local uch dist_code[512];
1555 /* distance codes. The first 256 values correspond to the distances
1556 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1557 * the 15 bit distances.
1558 */
1559
1560 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1561 /* length code for each normalized match length (0 == MIN_MATCH) */
1562
1563 local int base_length[LENGTH_CODES];
1564 /* First normalized length for each code (0 = MIN_MATCH) */
1565
1566 local int base_dist[D_CODES];
1567 /* First normalized distance for each code (0 = distance of 1) */
1568
1569 struct static_tree_desc_s {
1570 ct_data *static_tree; /* static tree or NULL */
1571 intf *extra_bits; /* extra bits for each code or NULL */
1572 int extra_base; /* base index for extra_bits */
1573 int elems; /* max number of elements in the tree */
1574 int max_length; /* max bit length for the codes */
1575 };
1576
1577 local static_tree_desc static_l_desc =
1578 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1579
1580 local static_tree_desc static_d_desc =
1581 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1582
1583 local static_tree_desc static_bl_desc =
1584 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1585
1586 /* ===========================================================================
1587 * Local (static) routines in this file.
1588 */
1589
1590 local void ct_static_init OF((void));
1591 local void init_block OF((deflate_state *s));
1592 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1593 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1594 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1595 local void build_tree OF((deflate_state *s, tree_desc *desc));
1596 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1597 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1598 local int build_bl_tree OF((deflate_state *s));
1599 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1600 int blcodes));
1601 local void compress_block OF((deflate_state *s, ct_data *ltree,
1602 ct_data *dtree));
1603 local void set_data_type OF((deflate_state *s));
1604 local unsigned bi_reverse OF((unsigned value, int length));
1605 local void bi_windup OF((deflate_state *s));
1606 local void bi_flush OF((deflate_state *s));
1607 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1608 int header));
1609
1610 #ifndef DEBUG_ZLIB
1611 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1612 /* Send a code of the given tree. c and tree must not have side effects */
1613
1614 #else /* DEBUG_ZLIB */
1615 # define send_code(s, c, tree) \
1616 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1617 send_bits(s, tree[c].Code, tree[c].Len); }
1618 #endif
1619
1620 #define d_code(dist) \
1621 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1622 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1623 * must not have side effects. dist_code[256] and dist_code[257] are never
1624 * used.
1625 */
1626
1627 /* ===========================================================================
1628 * Output a short LSB first on the stream.
1629 * IN assertion: there is enough room in pendingBuf.
1630 */
1631 #define put_short(s, w) { \
1632 put_byte(s, (uch)((w) & 0xff)); \
1633 put_byte(s, (uch)((ush)(w) >> 8)); \
1634 }
1635
1636 /* ===========================================================================
1637 * Send a value on a given number of bits.
1638 * IN assertion: length <= 16 and value fits in length bits.
1639 */
1640 #ifdef DEBUG_ZLIB
1641 local void send_bits OF((deflate_state *s, int value, int length));
1642
1643 local void send_bits(s, value, length)
1644 deflate_state *s;
1645 int value; /* value to send */
1646 int length; /* number of bits */
1647 {
1648 Tracev((stderr," l %2d v %4x ", length, value));
1649 Assert(length > 0 && length <= 15, "invalid length");
1650 s->bits_sent += (ulg)length;
1651
1652 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1653 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1654 * unused bits in value.
1655 */
1656 if (s->bi_valid > (int)Buf_size - length) {
1657 s->bi_buf |= (value << s->bi_valid);
1658 put_short(s, s->bi_buf);
1659 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1660 s->bi_valid += length - Buf_size;
1661 } else {
1662 s->bi_buf |= value << s->bi_valid;
1663 s->bi_valid += length;
1664 }
1665 }
1666 #else /* !DEBUG_ZLIB */
1667
1668 #define send_bits(s, value, length) \
1669 { int len = length;\
1670 if (s->bi_valid > (int)Buf_size - len) {\
1671 int val = value;\
1672 s->bi_buf |= (val << s->bi_valid);\
1673 put_short(s, s->bi_buf);\
1674 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1675 s->bi_valid += len - Buf_size;\
1676 } else {\
1677 s->bi_buf |= (value) << s->bi_valid;\
1678 s->bi_valid += len;\
1679 }\
1680 }
1681 #endif /* DEBUG_ZLIB */
1682
1683
1684 #define MAX(a,b) (a >= b ? a : b)
1685 /* the arguments must not have side effects */
1686
1687 /* ===========================================================================
1688 * Initialize the various 'constant' tables.
1689 * To do: do this at compile time.
1690 */
1691 local void ct_static_init()
1692 {
1693 int n; /* iterates over tree elements */
1694 int bits; /* bit counter */
1695 int length; /* length value */
1696 int code; /* code value */
1697 int dist; /* distance index */
1698 ush bl_count[MAX_BITS+1];
1699 /* number of codes at each bit length for an optimal tree */
1700
1701 /* Initialize the mapping length (0..255) -> length code (0..28) */
1702 length = 0;
1703 for (code = 0; code < LENGTH_CODES-1; code++) {
1704 base_length[code] = length;
1705 for (n = 0; n < (1<<extra_lbits[code]); n++) {
1706 length_code[length++] = (uch)code;
1707 }
1708 }
1709 Assert (length == 256, "ct_static_init: length != 256");
1710 /* Note that the length 255 (match length 258) can be represented
1711 * in two different ways: code 284 + 5 bits or code 285, so we
1712 * overwrite length_code[255] to use the best encoding:
1713 */
1714 length_code[length-1] = (uch)code;
1715
1716 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1717 dist = 0;
1718 for (code = 0 ; code < 16; code++) {
1719 base_dist[code] = dist;
1720 for (n = 0; n < (1<<extra_dbits[code]); n++) {
1721 dist_code[dist++] = (uch)code;
1722 }
1723 }
1724 Assert (dist == 256, "ct_static_init: dist != 256");
1725 dist >>= 7; /* from now on, all distances are divided by 128 */
1726 for ( ; code < D_CODES; code++) {
1727 base_dist[code] = dist << 7;
1728 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1729 dist_code[256 + dist++] = (uch)code;
1730 }
1731 }
1732 Assert (dist == 256, "ct_static_init: 256+dist != 512");
1733
1734 /* Construct the codes of the static literal tree */
1735 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1736 n = 0;
1737 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1738 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1739 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1740 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1741 /* Codes 286 and 287 do not exist, but we must include them in the
1742 * tree construction to get a canonical Huffman tree (longest code
1743 * all ones)
1744 */
1745 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1746
1747 /* The static distance tree is trivial: */
1748 for (n = 0; n < D_CODES; n++) {
1749 static_dtree[n].Len = 5;
1750 static_dtree[n].Code = bi_reverse(n, 5);
1751 }
1752 }
1753
1754 /* ===========================================================================
1755 * Initialize the tree data structures for a new zlib stream.
1756 */
1757 local void ct_init(s)
1758 deflate_state *s;
1759 {
1760 if (static_dtree[0].Len == 0) {
1761 ct_static_init(); /* To do: at compile time */
1762 }
1763
1764 s->compressed_len = 0L;
1765
1766 s->l_desc.dyn_tree = s->dyn_ltree;
1767 s->l_desc.stat_desc = &static_l_desc;
1768
1769 s->d_desc.dyn_tree = s->dyn_dtree;
1770 s->d_desc.stat_desc = &static_d_desc;
1771
1772 s->bl_desc.dyn_tree = s->bl_tree;
1773 s->bl_desc.stat_desc = &static_bl_desc;
1774
1775 s->bi_buf = 0;
1776 s->bi_valid = 0;
1777 s->last_eob_len = 8; /* enough lookahead for inflate */
1778 #ifdef DEBUG_ZLIB
1779 s->bits_sent = 0L;
1780 #endif
1781 s->blocks_in_packet = 0;
1782
1783 /* Initialize the first block of the first file: */
1784 init_block(s);
1785 }
1786
1787 /* ===========================================================================
1788 * Initialize a new block.
1789 */
1790 local void init_block(s)
1791 deflate_state *s;
1792 {
1793 int n; /* iterates over tree elements */
1794
1795 /* Initialize the trees. */
1796 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1797 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1798 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1799
1800 s->dyn_ltree[END_BLOCK].Freq = 1;
1801 s->opt_len = s->static_len = 0L;
1802 s->last_lit = s->matches = 0;
1803 }
1804
1805 #define SMALLEST 1
1806 /* Index within the heap array of least frequent node in the Huffman tree */
1807
1808
1809 /* ===========================================================================
1810 * Remove the smallest element from the heap and recreate the heap with
1811 * one less element. Updates heap and heap_len.
1812 */
1813 #define pqremove(s, tree, top) \
1814 {\
1815 top = s->heap[SMALLEST]; \
1816 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1817 pqdownheap(s, tree, SMALLEST); \
1818 }
1819
1820 /* ===========================================================================
1821 * Compares to subtrees, using the tree depth as tie breaker when
1822 * the subtrees have equal frequency. This minimizes the worst case length.
1823 */
1824 #define smaller(tree, n, m, depth) \
1825 (tree[n].Freq < tree[m].Freq || \
1826 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1827
1828 /* ===========================================================================
1829 * Restore the heap property by moving down the tree starting at node k,
1830 * exchanging a node with the smallest of its two sons if necessary, stopping
1831 * when the heap property is re-established (each father smaller than its
1832 * two sons).
1833 */
1834 local void pqdownheap(s, tree, k)
1835 deflate_state *s;
1836 ct_data *tree; /* the tree to restore */
1837 int k; /* node to move down */
1838 {
1839 int v = s->heap[k];
1840 int j = k << 1; /* left son of k */
1841 while (j <= s->heap_len) {
1842 /* Set j to the smallest of the two sons: */
1843 if (j < s->heap_len &&
1844 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1845 j++;
1846 }
1847 /* Exit if v is smaller than both sons */
1848 if (smaller(tree, v, s->heap[j], s->depth)) break;
1849
1850 /* Exchange v with the smallest son */
1851 s->heap[k] = s->heap[j]; k = j;
1852
1853 /* And continue down the tree, setting j to the left son of k */
1854 j <<= 1;
1855 }
1856 s->heap[k] = v;
1857 }
1858
1859 /* ===========================================================================
1860 * Compute the optimal bit lengths for a tree and update the total bit length
1861 * for the current block.
1862 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1863 * above are the tree nodes sorted by increasing frequency.
1864 * OUT assertions: the field len is set to the optimal bit length, the
1865 * array bl_count contains the frequencies for each bit length.
1866 * The length opt_len is updated; static_len is also updated if stree is
1867 * not null.
1868 */
1869 local void gen_bitlen(s, desc)
1870 deflate_state *s;
1871 tree_desc *desc; /* the tree descriptor */
1872 {
1873 ct_data *tree = desc->dyn_tree;
1874 int max_code = desc->max_code;
1875 ct_data *stree = desc->stat_desc->static_tree;
1876 intf *extra = desc->stat_desc->extra_bits;
1877 int base = desc->stat_desc->extra_base;
1878 int max_length = desc->stat_desc->max_length;
1879 int h; /* heap index */
1880 int n, m; /* iterate over the tree elements */
1881 int bits; /* bit length */
1882 int xbits; /* extra bits */
1883 ush f; /* frequency */
1884 int overflow = 0; /* number of elements with bit length too large */
1885
1886 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1887
1888 /* In a first pass, compute the optimal bit lengths (which may
1889 * overflow in the case of the bit length tree).
1890 */
1891 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1892
1893 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1894 n = s->heap[h];
1895 bits = tree[tree[n].Dad].Len + 1;
1896 if (bits > max_length) bits = max_length, overflow++;
1897 tree[n].Len = (ush)bits;
1898 /* We overwrite tree[n].Dad which is no longer needed */
1899
1900 if (n > max_code) continue; /* not a leaf node */
1901
1902 s->bl_count[bits]++;
1903 xbits = 0;
1904 if (n >= base) xbits = extra[n-base];
1905 f = tree[n].Freq;
1906 s->opt_len += (ulg)f * (bits + xbits);
1907 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1908 }
1909 if (overflow == 0) return;
1910
1911 Trace((stderr,"\nbit length overflow\n"));
1912 /* This happens for example on obj2 and pic of the Calgary corpus */
1913
1914 /* Find the first bit length which could increase: */
1915 do {
1916 bits = max_length-1;
1917 while (s->bl_count[bits] == 0) bits--;
1918 s->bl_count[bits]--; /* move one leaf down the tree */
1919 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1920 s->bl_count[max_length]--;
1921 /* The brother of the overflow item also moves one step up,
1922 * but this does not affect bl_count[max_length]
1923 */
1924 overflow -= 2;
1925 } while (overflow > 0);
1926
1927 /* Now recompute all bit lengths, scanning in increasing frequency.
1928 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1929 * lengths instead of fixing only the wrong ones. This idea is taken
1930 * from 'ar' written by Haruhiko Okumura.)
1931 */
1932 for (bits = max_length; bits != 0; bits--) {
1933 n = s->bl_count[bits];
1934 while (n != 0) {
1935 m = s->heap[--h];
1936 if (m > max_code) continue;
1937 if (tree[m].Len != (unsigned) bits) {
1938 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1939 s->opt_len += ((long)bits - (long)tree[m].Len)
1940 *(long)tree[m].Freq;
1941 tree[m].Len = (ush)bits;
1942 }
1943 n--;
1944 }
1945 }
1946 }
1947
1948 /* ===========================================================================
1949 * Generate the codes for a given tree and bit counts (which need not be
1950 * optimal).
1951 * IN assertion: the array bl_count contains the bit length statistics for
1952 * the given tree and the field len is set for all tree elements.
1953 * OUT assertion: the field code is set for all tree elements of non
1954 * zero code length.
1955 */
1956 local void gen_codes (tree, max_code, bl_count)
1957 ct_data *tree; /* the tree to decorate */
1958 int max_code; /* largest code with non zero frequency */
1959 ushf *bl_count; /* number of codes at each bit length */
1960 {
1961 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1962 ush code = 0; /* running code value */
1963 int bits; /* bit index */
1964 int n; /* code index */
1965
1966 /* The distribution counts are first used to generate the code values
1967 * without bit reversal.
1968 */
1969 for (bits = 1; bits <= MAX_BITS; bits++) {
1970 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1971 }
1972 /* Check that the bit counts in bl_count are consistent. The last code
1973 * must be all ones.
1974 */
1975 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1976 "inconsistent bit counts");
1977 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1978
1979 for (n = 0; n <= max_code; n++) {
1980 int len = tree[n].Len;
1981 if (len == 0) continue;
1982 /* Now reverse the bits */
1983 tree[n].Code = bi_reverse(next_code[len]++, len);
1984
1985 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1986 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1987 }
1988 }
1989
1990 /* ===========================================================================
1991 * Construct one Huffman tree and assigns the code bit strings and lengths.
1992 * Update the total bit length for the current block.
1993 * IN assertion: the field freq is set for all tree elements.
1994 * OUT assertions: the fields len and code are set to the optimal bit length
1995 * and corresponding code. The length opt_len is updated; static_len is
1996 * also updated if stree is not null. The field max_code is set.
1997 */
1998 local void build_tree(s, desc)
1999 deflate_state *s;
2000 tree_desc *desc; /* the tree descriptor */
2001 {
2002 ct_data *tree = desc->dyn_tree;
2003 ct_data *stree = desc->stat_desc->static_tree;
2004 int elems = desc->stat_desc->elems;
2005 int n, m; /* iterate over heap elements */
2006 int max_code = -1; /* largest code with non zero frequency */
2007 int node; /* new node being created */
2008
2009 /* Construct the initial heap, with least frequent element in
2010 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2011 * heap[0] is not used.
2012 */
2013 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2014
2015 for (n = 0; n < elems; n++) {
2016 if (tree[n].Freq != 0) {
2017 s->heap[++(s->heap_len)] = max_code = n;
2018 s->depth[n] = 0;
2019 } else {
2020 tree[n].Len = 0;
2021 }
2022 }
2023
2024 /* The pkzip format requires that at least one distance code exists,
2025 * and that at least one bit should be sent even if there is only one
2026 * possible code. So to avoid special checks later on we force at least
2027 * two codes of non zero frequency.
2028 */
2029 while (s->heap_len < 2) {
2030 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2031 tree[node].Freq = 1;
2032 s->depth[node] = 0;
2033 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2034 /* node is 0 or 1 so it does not have extra bits */
2035 }
2036 desc->max_code = max_code;
2037
2038 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2039 * establish sub-heaps of increasing lengths:
2040 */
2041 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2042
2043 /* Construct the Huffman tree by repeatedly combining the least two
2044 * frequent nodes.
2045 */
2046 node = elems; /* next internal node of the tree */
2047 do {
2048 pqremove(s, tree, n); /* n = node of least frequency */
2049 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2050
2051 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2052 s->heap[--(s->heap_max)] = m;
2053
2054 /* Create a new node father of n and m */
2055 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2056 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2057 tree[n].Dad = tree[m].Dad = (ush)node;
2058 #ifdef DUMP_BL_TREE
2059 if (tree == s->bl_tree) {
2060 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2061 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2062 }
2063 #endif
2064 /* and insert the new node in the heap */
2065 s->heap[SMALLEST] = node++;
2066 pqdownheap(s, tree, SMALLEST);
2067
2068 } while (s->heap_len >= 2);
2069
2070 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2071
2072 /* At this point, the fields freq and dad are set. We can now
2073 * generate the bit lengths.
2074 */
2075 gen_bitlen(s, (tree_desc *)desc);
2076
2077 /* The field len is now set, we can generate the bit codes */
2078 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2079 }
2080
2081 /* ===========================================================================
2082 * Scan a literal or distance tree to determine the frequencies of the codes
2083 * in the bit length tree.
2084 */
2085 local void scan_tree (s, tree, max_code)
2086 deflate_state *s;
2087 ct_data *tree; /* the tree to be scanned */
2088 int max_code; /* and its largest code of non zero frequency */
2089 {
2090 int n; /* iterates over all tree elements */
2091 int prevlen = -1; /* last emitted length */
2092 int curlen; /* length of current code */
2093 int nextlen = tree[0].Len; /* length of next code */
2094 int count = 0; /* repeat count of the current code */
2095 int max_count = 7; /* max repeat count */
2096 int min_count = 4; /* min repeat count */
2097
2098 if (nextlen == 0) max_count = 138, min_count = 3;
2099 tree[max_code+1].Len = (ush)0xffff; /* guard */
2100
2101 for (n = 0; n <= max_code; n++) {
2102 curlen = nextlen; nextlen = tree[n+1].Len;
2103 if (++count < max_count && curlen == nextlen) {
2104 continue;
2105 } else if (count < min_count) {
2106 s->bl_tree[curlen].Freq += count;
2107 } else if (curlen != 0) {
2108 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2109 s->bl_tree[REP_3_6].Freq++;
2110 } else if (count <= 10) {
2111 s->bl_tree[REPZ_3_10].Freq++;
2112 } else {
2113 s->bl_tree[REPZ_11_138].Freq++;
2114 }
2115 count = 0; prevlen = curlen;
2116 if (nextlen == 0) {
2117 max_count = 138, min_count = 3;
2118 } else if (curlen == nextlen) {
2119 max_count = 6, min_count = 3;
2120 } else {
2121 max_count = 7, min_count = 4;
2122 }
2123 }
2124 }
2125
2126 /* ===========================================================================
2127 * Send a literal or distance tree in compressed form, using the codes in
2128 * bl_tree.
2129 */
2130 local void send_tree (s, tree, max_code)
2131 deflate_state *s;
2132 ct_data *tree; /* the tree to be scanned */
2133 int max_code; /* and its largest code of non zero frequency */
2134 {
2135 int n; /* iterates over all tree elements */
2136 int prevlen = -1; /* last emitted length */
2137 int curlen; /* length of current code */
2138 int nextlen = tree[0].Len; /* length of next code */
2139 int count = 0; /* repeat count of the current code */
2140 int max_count = 7; /* max repeat count */
2141 int min_count = 4; /* min repeat count */
2142
2143 /* tree[max_code+1].Len = -1; */ /* guard already set */
2144 if (nextlen == 0) max_count = 138, min_count = 3;
2145
2146 for (n = 0; n <= max_code; n++) {
2147 curlen = nextlen; nextlen = tree[n+1].Len;
2148 if (++count < max_count && curlen == nextlen) {
2149 continue;
2150 } else if (count < min_count) {
2151 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2152
2153 } else if (curlen != 0) {
2154 if (curlen != prevlen) {
2155 send_code(s, curlen, s->bl_tree); count--;
2156 }
2157 Assert(count >= 3 && count <= 6, " 3_6?");
2158 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2159
2160 } else if (count <= 10) {
2161 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2162
2163 } else {
2164 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2165 }
2166 count = 0; prevlen = curlen;
2167 if (nextlen == 0) {
2168 max_count = 138, min_count = 3;
2169 } else if (curlen == nextlen) {
2170 max_count = 6, min_count = 3;
2171 } else {
2172 max_count = 7, min_count = 4;
2173 }
2174 }
2175 }
2176
2177 /* ===========================================================================
2178 * Construct the Huffman tree for the bit lengths and return the index in
2179 * bl_order of the last bit length code to send.
2180 */
2181 local int build_bl_tree(s)
2182 deflate_state *s;
2183 {
2184 int max_blindex; /* index of last bit length code of non zero freq */
2185
2186 /* Determine the bit length frequencies for literal and distance trees */
2187 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2188 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2189
2190 /* Build the bit length tree: */
2191 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2192 /* opt_len now includes the length of the tree representations, except
2193 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2194 */
2195
2196 /* Determine the number of bit length codes to send. The pkzip format
2197 * requires that at least 4 bit length codes be sent. (appnote.txt says
2198 * 3 but the actual value used is 4.)
2199 */
2200 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2201 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2202 }
2203 /* Update opt_len to include the bit length tree and counts */
2204 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2205 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2206 s->opt_len, s->static_len));
2207
2208 return max_blindex;
2209 }
2210
2211 /* ===========================================================================
2212 * Send the header for a block using dynamic Huffman trees: the counts, the
2213 * lengths of the bit length codes, the literal tree and the distance tree.
2214 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2215 */
2216 local void send_all_trees(s, lcodes, dcodes, blcodes)
2217 deflate_state *s;
2218 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2219 {
2220 int rank; /* index in bl_order */
2221
2222 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2223 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2224 "too many codes");
2225 Tracev((stderr, "\nbl counts: "));
2226 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2227 send_bits(s, dcodes-1, 5);
2228 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2229 for (rank = 0; rank < blcodes; rank++) {
2230 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2231 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2232 }
2233 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2234
2235 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2236 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2237
2238 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2239 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2240 }
2241
2242 /* ===========================================================================
2243 * Send a stored block
2244 */
2245 local void ct_stored_block(s, buf, stored_len, eof)
2246 deflate_state *s;
2247 charf *buf; /* input block */
2248 ulg stored_len; /* length of input block */
2249 int eof; /* true if this is the last block for a file */
2250 {
2251 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2252 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2253 s->compressed_len += (stored_len + 4) << 3;
2254
2255 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2256 }
2257
2258 /* Send just the `stored block' type code without any length bytes or data.
2259 */
2260 local void ct_stored_type_only(s)
2261 deflate_state *s;
2262 {
2263 send_bits(s, (STORED_BLOCK << 1), 3);
2264 bi_windup(s);
2265 s->compressed_len = (s->compressed_len + 3) & ~7L;
2266 }
2267
2268
2269 /* ===========================================================================
2270 * Send one empty static block to give enough lookahead for inflate.
2271 * This takes 10 bits, of which 7 may remain in the bit buffer.
2272 * The current inflate code requires 9 bits of lookahead. If the EOB
2273 * code for the previous block was coded on 5 bits or less, inflate
2274 * may have only 5+3 bits of lookahead to decode this EOB.
2275 * (There are no problems if the previous block is stored or fixed.)
2276 */
2277 local void ct_align(s)
2278 deflate_state *s;
2279 {
2280 send_bits(s, STATIC_TREES<<1, 3);
2281 send_code(s, END_BLOCK, static_ltree);
2282 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2283 bi_flush(s);
2284 /* Of the 10 bits for the empty block, we have already sent
2285 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2286 * block was thus its length plus what we have just sent.
2287 */
2288 if (s->last_eob_len + 10 - s->bi_valid < 9) {
2289 send_bits(s, STATIC_TREES<<1, 3);
2290 send_code(s, END_BLOCK, static_ltree);
2291 s->compressed_len += 10L;
2292 bi_flush(s);
2293 }
2294 s->last_eob_len = 7;
2295 }
2296
2297 /* ===========================================================================
2298 * Determine the best encoding for the current block: dynamic trees, static
2299 * trees or store, and output the encoded block to the zip file. This function
2300 * returns the total compressed length for the file so far.
2301 */
2302 local ulg ct_flush_block(s, buf, stored_len, flush)
2303 deflate_state *s;
2304 charf *buf; /* input block, or NULL if too old */
2305 ulg stored_len; /* length of input block */
2306 int flush; /* Z_FINISH if this is the last block for a file */
2307 {
2308 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2309 int max_blindex; /* index of last bit length code of non zero freq */
2310 int eof = flush == Z_FINISH;
2311
2312 ++s->blocks_in_packet;
2313
2314 /* Check if the file is ascii or binary */
2315 if (s->data_type == UNKNOWN) set_data_type(s);
2316
2317 /* Construct the literal and distance trees */
2318 build_tree(s, (tree_desc *)(&(s->l_desc)));
2319 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2320 s->static_len));
2321
2322 build_tree(s, (tree_desc *)(&(s->d_desc)));
2323 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2324 s->static_len));
2325 /* At this point, opt_len and static_len are the total bit lengths of
2326 * the compressed block data, excluding the tree representations.
2327 */
2328
2329 /* Build the bit length tree for the above two trees, and get the index
2330 * in bl_order of the last bit length code to send.
2331 */
2332 max_blindex = build_bl_tree(s);
2333
2334 /* Determine the best encoding. Compute first the block length in bytes */
2335 opt_lenb = (s->opt_len+3+7)>>3;
2336 static_lenb = (s->static_len+3+7)>>3;
2337
2338 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2339 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2340 s->last_lit));
2341
2342 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2343
2344 /* If compression failed and this is the first and last block,
2345 * and if the .zip file can be seeked (to rewrite the local header),
2346 * the whole file is transformed into a stored file:
2347 */
2348 #ifdef STORED_FILE_OK
2349 # ifdef FORCE_STORED_FILE
2350 if (eof && compressed_len == 0L) /* force stored file */
2351 # else
2352 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2353 # endif
2354 {
2355 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2356 if (buf == (charf*)0) error ("block vanished");
2357
2358 copy_block(buf, (unsigned)stored_len, 0); /* without header */
2359 s->compressed_len = stored_len << 3;
2360 s->method = STORED;
2361 } else
2362 #endif /* STORED_FILE_OK */
2363
2364 /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2365 * compression, and this block contains all the data since the last
2366 * time we used Z_PACKET_FLUSH, then just omit this block completely
2367 * from the output.
2368 */
2369 if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2370 && opt_lenb > stored_len - s->minCompr) {
2371 s->blocks_in_packet = 0;
2372 /* output nothing */
2373 } else
2374
2375 #ifdef FORCE_STORED
2376 if (buf != (char*)0) /* force stored block */
2377 #else
2378 if (stored_len+4 <= opt_lenb && buf != (char*)0)
2379 /* 4: two words for the lengths */
2380 #endif
2381 {
2382 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2383 * Otherwise we can't have processed more than WSIZE input bytes since
2384 * the last block flush, because compression would have been
2385 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2386 * transform a block into a stored block.
2387 */
2388 ct_stored_block(s, buf, stored_len, eof);
2389 } else
2390
2391 #ifdef FORCE_STATIC
2392 if (static_lenb >= 0) /* force static trees */
2393 #else
2394 if (static_lenb == opt_lenb)
2395 #endif
2396 {
2397 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2398 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2399 s->compressed_len += 3 + s->static_len;
2400 } else {
2401 send_bits(s, (DYN_TREES<<1)+eof, 3);
2402 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2403 max_blindex+1);
2404 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2405 s->compressed_len += 3 + s->opt_len;
2406 }
2407 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2408 init_block(s);
2409
2410 if (eof) {
2411 bi_windup(s);
2412 s->compressed_len += 7; /* align on byte boundary */
2413 }
2414 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2415 s->compressed_len-7*eof));
2416
2417 return s->compressed_len >> 3;
2418 }
2419
2420 /* ===========================================================================
2421 * Save the match info and tally the frequency counts. Return true if
2422 * the current block must be flushed.
2423 */
2424 local int ct_tally (s, dist, lc)
2425 deflate_state *s;
2426 int dist; /* distance of matched string */
2427 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2428 {
2429 s->d_buf[s->last_lit] = (ush)dist;
2430 s->l_buf[s->last_lit++] = (uch)lc;
2431 if (dist == 0) {
2432 /* lc is the unmatched char */
2433 s->dyn_ltree[lc].Freq++;
2434 } else {
2435 s->matches++;
2436 /* Here, lc is the match length - MIN_MATCH */
2437 dist--; /* dist = match distance - 1 */
2438 Assert((ush)dist < (ush)MAX_DIST(s) &&
2439 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2440 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2441
2442 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2443 s->dyn_dtree[d_code(dist)].Freq++;
2444 }
2445
2446 /* Try to guess if it is profitable to stop the current block here */
2447 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2448 /* Compute an upper bound for the compressed length */
2449 ulg out_length = (ulg)s->last_lit*8L;
2450 ulg in_length = (ulg)s->strstart - s->block_start;
2451 int dcode;
2452 for (dcode = 0; dcode < D_CODES; dcode++) {
2453 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2454 (5L+extra_dbits[dcode]);
2455 }
2456 out_length >>= 3;
2457 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2458 s->last_lit, in_length, out_length,
2459 100L - out_length*100L/in_length));
2460 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2461 }
2462 return (s->last_lit == s->lit_bufsize-1);
2463 /* We avoid equality with lit_bufsize because of wraparound at 64K
2464 * on 16 bit machines and because stored blocks are restricted to
2465 * 64K-1 bytes.
2466 */
2467 }
2468
2469 /* ===========================================================================
2470 * Send the block data compressed using the given Huffman trees
2471 */
2472 local void compress_block(s, ltree, dtree)
2473 deflate_state *s;
2474 ct_data *ltree; /* literal tree */
2475 ct_data *dtree; /* distance tree */
2476 {
2477 unsigned dist; /* distance of matched string */
2478 int lc; /* match length or unmatched char (if dist == 0) */
2479 unsigned lx = 0; /* running index in l_buf */
2480 unsigned code; /* the code to send */
2481 int extra; /* number of extra bits to send */
2482
2483 if (s->last_lit != 0) do {
2484 dist = s->d_buf[lx];
2485 lc = s->l_buf[lx++];
2486 if (dist == 0) {
2487 send_code(s, lc, ltree); /* send a literal byte */
2488 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2489 } else {
2490 /* Here, lc is the match length - MIN_MATCH */
2491 code = length_code[lc];
2492 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2493 extra = extra_lbits[code];
2494 if (extra != 0) {
2495 lc -= base_length[code];
2496 send_bits(s, lc, extra); /* send the extra length bits */
2497 }
2498 dist--; /* dist is now the match distance - 1 */
2499 code = d_code(dist);
2500 Assert (code < D_CODES, "bad d_code");
2501
2502 send_code(s, code, dtree); /* send the distance code */
2503 extra = extra_dbits[code];
2504 if (extra != 0) {
2505 dist -= base_dist[code];
2506 send_bits(s, dist, extra); /* send the extra distance bits */
2507 }
2508 } /* literal or match pair ? */
2509
2510 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2511 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2512
2513 } while (lx < s->last_lit);
2514
2515 send_code(s, END_BLOCK, ltree);
2516 s->last_eob_len = ltree[END_BLOCK].Len;
2517 }
2518
2519 /* ===========================================================================
2520 * Set the data type to ASCII or BINARY, using a crude approximation:
2521 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2522 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2523 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2524 */
2525 local void set_data_type(s)
2526 deflate_state *s;
2527 {
2528 int n = 0;
2529 unsigned ascii_freq = 0;
2530 unsigned bin_freq = 0;
2531 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2532 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2533 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2534 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2535 }
2536
2537 /* ===========================================================================
2538 * Reverse the first len bits of a code, using straightforward code (a faster
2539 * method would use a table)
2540 * IN assertion: 1 <= len <= 15
2541 */
2542 local unsigned bi_reverse(code, len)
2543 unsigned code; /* the value to invert */
2544 int len; /* its bit length */
2545 {
2546 register unsigned res = 0;
2547 do {
2548 res |= code & 1;
2549 code >>= 1, res <<= 1;
2550 } while (--len > 0);
2551 return res >> 1;
2552 }
2553
2554 /* ===========================================================================
2555 * Flush the bit buffer, keeping at most 7 bits in it.
2556 */
2557 local void bi_flush(s)
2558 deflate_state *s;
2559 {
2560 if (s->bi_valid == 16) {
2561 put_short(s, s->bi_buf);
2562 s->bi_buf = 0;
2563 s->bi_valid = 0;
2564 } else if (s->bi_valid >= 8) {
2565 put_byte(s, (Byte)s->bi_buf);
2566 s->bi_buf >>= 8;
2567 s->bi_valid -= 8;
2568 }
2569 }
2570
2571 /* ===========================================================================
2572 * Flush the bit buffer and align the output on a byte boundary
2573 */
2574 local void bi_windup(s)
2575 deflate_state *s;
2576 {
2577 if (s->bi_valid > 8) {
2578 put_short(s, s->bi_buf);
2579 } else if (s->bi_valid > 0) {
2580 put_byte(s, (Byte)s->bi_buf);
2581 }
2582 s->bi_buf = 0;
2583 s->bi_valid = 0;
2584 #ifdef DEBUG_ZLIB
2585 s->bits_sent = (s->bits_sent+7) & ~7;
2586 #endif
2587 }
2588
2589 /* ===========================================================================
2590 * Copy a stored block, storing first the length and its
2591 * one's complement if requested.
2592 */
2593 local void copy_block(s, buf, len, header)
2594 deflate_state *s;
2595 charf *buf; /* the input data */
2596 unsigned len; /* its length */
2597 int header; /* true if block header must be written */
2598 {
2599 bi_windup(s); /* align on byte boundary */
2600 s->last_eob_len = 8; /* enough lookahead for inflate */
2601
2602 if (header) {
2603 put_short(s, (ush)len);
2604 put_short(s, (ush)~len);
2605 #ifdef DEBUG_ZLIB
2606 s->bits_sent += 2*16;
2607 #endif
2608 }
2609 #ifdef DEBUG_ZLIB
2610 s->bits_sent += (ulg)len<<3;
2611 #endif
2612 while (len--) {
2613 put_byte(s, *buf++);
2614 }
2615 }
2616
2617
2618 /*+++++*/
2619 /* infblock.h -- header to use infblock.c
2620 * Copyright (C) 1995 Mark Adler
2621 * For conditions of distribution and use, see copyright notice in zlib.h
2622 */
2623
2624 /* WARNING: this file should *not* be used by applications. It is
2625 part of the implementation of the compression library and is
2626 subject to change. Applications should only use zlib.h.
2627 */
2628
2629 struct inflate_blocks_state;
2630 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2631
2632 local inflate_blocks_statef * inflate_blocks_new OF((
2633 z_stream *z,
2634 check_func c, /* check function */
2635 uInt w)); /* window size */
2636
2637 local int inflate_blocks OF((
2638 inflate_blocks_statef *,
2639 z_stream *,
2640 int)); /* initial return code */
2641
2642 local void inflate_blocks_reset OF((
2643 inflate_blocks_statef *,
2644 z_stream *,
2645 uLongf *)); /* check value on output */
2646
2647 local int inflate_blocks_free OF((
2648 inflate_blocks_statef *,
2649 z_stream *,
2650 uLongf *)); /* check value on output */
2651
2652 local int inflate_addhistory OF((
2653 inflate_blocks_statef *,
2654 z_stream *));
2655
2656 local int inflate_packet_flush OF((
2657 inflate_blocks_statef *));
2658
2659 /*+++++*/
2660 /* inftrees.h -- header to use inftrees.c
2661 * Copyright (C) 1995 Mark Adler
2662 * For conditions of distribution and use, see copyright notice in zlib.h
2663 */
2664
2665 /* WARNING: this file should *not* be used by applications. It is
2666 part of the implementation of the compression library and is
2667 subject to change. Applications should only use zlib.h.
2668 */
2669
2670 /* Huffman code lookup table entry--this entry is four bytes for machines
2671 that have 16-bit pointers (e.g. PC's in the small or medium model). */
2672
2673 typedef struct inflate_huft_s FAR inflate_huft;
2674
2675 struct inflate_huft_s {
2676 union {
2677 struct {
2678 Byte Exop; /* number of extra bits or operation */
2679 Byte Bits; /* number of bits in this code or subcode */
2680 } what;
2681 uInt Nalloc; /* number of these allocated here */
2682 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2683 } word; /* 16-bit, 8 bytes for 32-bit machines) */
2684 union {
2685 uInt Base; /* literal, length base, or distance base */
2686 inflate_huft *Next; /* pointer to next level of table */
2687 } more;
2688 };
2689
2690 #ifdef DEBUG_ZLIB
2691 local uInt inflate_hufts;
2692 #endif
2693
2694 local int inflate_trees_bits OF((
2695 uIntf *, /* 19 code lengths */
2696 uIntf *, /* bits tree desired/actual depth */
2697 inflate_huft * FAR *, /* bits tree result */
2698 z_stream *)); /* for zalloc, zfree functions */
2699
2700 local int inflate_trees_dynamic OF((
2701 uInt, /* number of literal/length codes */
2702 uInt, /* number of distance codes */
2703 uIntf *, /* that many (total) code lengths */
2704 uIntf *, /* literal desired/actual bit depth */
2705 uIntf *, /* distance desired/actual bit depth */
2706 inflate_huft * FAR *, /* literal/length tree result */
2707 inflate_huft * FAR *, /* distance tree result */
2708 z_stream *)); /* for zalloc, zfree functions */
2709
2710 local int inflate_trees_fixed OF((
2711 uIntf *, /* literal desired/actual bit depth */
2712 uIntf *, /* distance desired/actual bit depth */
2713 inflate_huft * FAR *, /* literal/length tree result */
2714 inflate_huft * FAR *)); /* distance tree result */
2715
2716 local int inflate_trees_free OF((
2717 inflate_huft *, /* tables to free */
2718 z_stream *)); /* for zfree function */
2719
2720
2721 /*+++++*/
2722 /* infcodes.h -- header to use infcodes.c
2723 * Copyright (C) 1995 Mark Adler
2724 * For conditions of distribution and use, see copyright notice in zlib.h
2725 */
2726
2727 /* WARNING: this file should *not* be used by applications. It is
2728 part of the implementation of the compression library and is
2729 subject to change. Applications should only use zlib.h.
2730 */
2731
2732 struct inflate_codes_state;
2733 typedef struct inflate_codes_state FAR inflate_codes_statef;
2734
2735 local inflate_codes_statef *inflate_codes_new OF((
2736 uInt, uInt,
2737 inflate_huft *, inflate_huft *,
2738 z_stream *));
2739
2740 local int inflate_codes OF((
2741 inflate_blocks_statef *,
2742 z_stream *,
2743 int));
2744
2745 local void inflate_codes_free OF((
2746 inflate_codes_statef *,
2747 z_stream *));
2748
2749
2750 /*+++++*/
2751 /* inflate.c -- zlib interface to inflate modules
2752 * Copyright (C) 1995 Mark Adler
2753 * For conditions of distribution and use, see copyright notice in zlib.h
2754 */
2755
2756 /* inflate private state */
2757 struct internal_state {
2758
2759 /* mode */
2760 enum {
2761 METHOD, /* waiting for method byte */
2762 FLAG, /* waiting for flag byte */
2763 BLOCKS, /* decompressing blocks */
2764 CHECK4, /* four check bytes to go */
2765 CHECK3, /* three check bytes to go */
2766 CHECK2, /* two check bytes to go */
2767 CHECK1, /* one check byte to go */
2768 DONE, /* finished check, done */
2769 BAD} /* got an error--stay here */
2770 mode; /* current inflate mode */
2771
2772 /* mode dependent information */
2773 union {
2774 uInt method; /* if FLAGS, method byte */
2775 struct {
2776 uLong was; /* computed check value */
2777 uLong need; /* stream check value */
2778 } check; /* if CHECK, check values to compare */
2779 uInt marker; /* if BAD, inflateSync's marker bytes count */
2780 } sub; /* submode */
2781
2782 /* mode independent information */
2783 int nowrap; /* flag for no wrapper */
2784 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2785 inflate_blocks_statef
2786 *blocks; /* current inflate_blocks state */
2787
2788 };
2789
2790
2791 int inflateReset(z)
2792 z_stream *z;
2793 {
2794 uLong c;
2795
2796 if (z == Z_NULL || z->state == Z_NULL)
2797 return Z_STREAM_ERROR;
2798 z->total_in = z->total_out = 0;
2799 z->msg = Z_NULL;
2800 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2801 inflate_blocks_reset(z->state->blocks, z, &c);
2802 Trace((stderr, "inflate: reset\n"));
2803 return Z_OK;
2804 }
2805
2806
2807 int inflateEnd(z)
2808 z_stream *z;
2809 {
2810 uLong c;
2811
2812 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2813 return Z_STREAM_ERROR;
2814 if (z->state->blocks != Z_NULL)
2815 inflate_blocks_free(z->state->blocks, z, &c);
2816 ZFREE(z, z->state, sizeof(struct internal_state));
2817 z->state = Z_NULL;
2818 Trace((stderr, "inflate: end\n"));
2819 return Z_OK;
2820 }
2821
2822
2823 int inflateInit2(z, w)
2824 z_stream *z;
2825 int w;
2826 {
2827 /* initialize state */
2828 if (z == Z_NULL)
2829 return Z_STREAM_ERROR;
2830 /* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2831 /* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2832 if ((z->state = (struct internal_state FAR *)
2833 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2834 return Z_MEM_ERROR;
2835 z->state->blocks = Z_NULL;
2836
2837 /* handle undocumented nowrap option (no zlib header or check) */
2838 z->state->nowrap = 0;
2839 if (w < 0)
2840 {
2841 w = - w;
2842 z->state->nowrap = 1;
2843 }
2844
2845 /* set window size */
2846 if (w < 8 || w > 15)
2847 {
2848 inflateEnd(z);
2849 return Z_STREAM_ERROR;
2850 }
2851 z->state->wbits = (uInt)w;
2852
2853 /* create inflate_blocks state */
2854 if ((z->state->blocks =
2855 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2856 == Z_NULL)
2857 {
2858 inflateEnd(z);
2859 return Z_MEM_ERROR;
2860 }
2861 Trace((stderr, "inflate: allocated\n"));
2862
2863 /* reset state */
2864 inflateReset(z);
2865 return Z_OK;
2866 }
2867
2868
2869 int inflateInit(z)
2870 z_stream *z;
2871 {
2872 return inflateInit2(z, DEF_WBITS);
2873 }
2874
2875
2876 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2877 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2878
2879 int inflate(z, f)
2880 z_stream *z;
2881 int f;
2882 {
2883 int r;
2884 uInt b;
2885
2886 if (z == Z_NULL || z->next_in == Z_NULL)
2887 return Z_STREAM_ERROR;
2888 r = Z_BUF_ERROR;
2889 while (1) switch (z->state->mode)
2890 {
2891 case METHOD:
2892 NEEDBYTE
2893 if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2894 {
2895 z->state->mode = BAD;
2896 z->msg = "unknown compression method";
2897 z->state->sub.marker = 5; /* can't try inflateSync */
2898 break;
2899 }
2900 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2901 {
2902 z->state->mode = BAD;
2903 z->msg = "invalid window size";
2904 z->state->sub.marker = 5; /* can't try inflateSync */
2905 break;
2906 }
2907 z->state->mode = FLAG;
2908 case FLAG:
2909 NEEDBYTE
2910 if ((b = NEXTBYTE) & 0x20)
2911 {
2912 z->state->mode = BAD;
2913 z->msg = "invalid reserved bit";
2914 z->state->sub.marker = 5; /* can't try inflateSync */
2915 break;
2916 }
2917 if (((z->state->sub.method << 8) + b) % 31)
2918 {
2919 z->state->mode = BAD;
2920 z->msg = "incorrect header check";
2921 z->state->sub.marker = 5; /* can't try inflateSync */
2922 break;
2923 }
2924 Trace((stderr, "inflate: zlib header ok\n"));
2925 z->state->mode = BLOCKS;
2926 case BLOCKS:
2927 r = inflate_blocks(z->state->blocks, z, r);
2928 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2929 r = inflate_packet_flush(z->state->blocks);
2930 if (r == Z_DATA_ERROR)
2931 {
2932 z->state->mode = BAD;
2933 z->state->sub.marker = 0; /* can try inflateSync */
2934 break;
2935 }
2936 if (r != Z_STREAM_END)
2937 return r;
2938 r = Z_OK;
2939 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2940 if (z->state->nowrap)
2941 {
2942 z->state->mode = DONE;
2943 break;
2944 }
2945 z->state->mode = CHECK4;
2946 case CHECK4:
2947 NEEDBYTE
2948 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2949 z->state->mode = CHECK3;
2950 case CHECK3:
2951 NEEDBYTE
2952 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2953 z->state->mode = CHECK2;
2954 case CHECK2:
2955 NEEDBYTE
2956 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2957 z->state->mode = CHECK1;
2958 case CHECK1:
2959 NEEDBYTE
2960 z->state->sub.check.need += (uLong)NEXTBYTE;
2961
2962 if (z->state->sub.check.was != z->state->sub.check.need)
2963 {
2964 z->state->mode = BAD;
2965 z->msg = "incorrect data check";
2966 z->state->sub.marker = 5; /* can't try inflateSync */
2967 break;
2968 }
2969 Trace((stderr, "inflate: zlib check ok\n"));
2970 z->state->mode = DONE;
2971 case DONE:
2972 return Z_STREAM_END;
2973 case BAD:
2974 return Z_DATA_ERROR;
2975 default:
2976 return Z_STREAM_ERROR;
2977 }
2978
2979 empty:
2980 if (f != Z_PACKET_FLUSH)
2981 return r;
2982 z->state->mode = BAD;
2983 z->state->sub.marker = 0; /* can try inflateSync */
2984 return Z_DATA_ERROR;
2985 }
2986
2987 /*
2988 * This subroutine adds the data at next_in/avail_in to the output history
2989 * without performing any output. The output buffer must be "caught up";
2990 * i.e. no pending output (hence s->read equals s->write), and the state must
2991 * be BLOCKS (i.e. we should be willing to see the start of a series of
2992 * BLOCKS). On exit, the output will also be caught up, and the checksum
2993 * will have been updated if need be.
2994 */
2995
2996 int inflateIncomp(z)
2997 z_stream *z;
2998 {
2999 if (z->state->mode != BLOCKS)
3000 return Z_DATA_ERROR;
3001 return inflate_addhistory(z->state->blocks, z);
3002 }
3003
3004
3005 int inflateSync(z)
3006 z_stream *z;
3007 {
3008 uInt n; /* number of bytes to look at */
3009 Bytef *p; /* pointer to bytes */
3010 uInt m; /* number of marker bytes found in a row */
3011 uLong r, w; /* temporaries to save total_in and total_out */
3012
3013 /* set up */
3014 if (z == Z_NULL || z->state == Z_NULL)
3015 return Z_STREAM_ERROR;
3016 if (z->state->mode != BAD)
3017 {
3018 z->state->mode = BAD;
3019 z->state->sub.marker = 0;
3020 }
3021 if ((n = z->avail_in) == 0)
3022 return Z_BUF_ERROR;
3023 p = z->next_in;
3024 m = z->state->sub.marker;
3025
3026 /* search */
3027 while (n && m < 4)
3028 {
3029 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3030 m++;
3031 else if (*p)
3032 m = 0;
3033 else
3034 m = 4 - m;
3035 p++, n--;
3036 }
3037
3038 /* restore */
3039 z->total_in += p - z->next_in;
3040 z->next_in = p;
3041 z->avail_in = n;
3042 z->state->sub.marker = m;
3043
3044 /* return no joy or set up to restart on a new block */
3045 if (m != 4)
3046 return Z_DATA_ERROR;
3047 r = z->total_in; w = z->total_out;
3048 inflateReset(z);
3049 z->total_in = r; z->total_out = w;
3050 z->state->mode = BLOCKS;
3051 return Z_OK;
3052 }
3053
3054 #undef NEEDBYTE
3055 #undef NEXTBYTE
3056
3057 /*+++++*/
3058 /* infutil.h -- types and macros common to blocks and codes
3059 * Copyright (C) 1995 Mark Adler
3060 * For conditions of distribution and use, see copyright notice in zlib.h
3061 */
3062
3063 /* WARNING: this file should *not* be used by applications. It is
3064 part of the implementation of the compression library and is
3065 subject to change. Applications should only use zlib.h.
3066 */
3067
3068 /* inflate blocks semi-private state */
3069 struct inflate_blocks_state {
3070
3071 /* mode */
3072 enum {
3073 TYPE, /* get type bits (3, including end bit) */
3074 LENS, /* get lengths for stored */
3075 STORED, /* processing stored block */
3076 TABLE, /* get table lengths */
3077 BTREE, /* get bit lengths tree for a dynamic block */
3078 DTREE, /* get length, distance trees for a dynamic block */
3079 CODES, /* processing fixed or dynamic block */
3080 DRY, /* output remaining window bytes */
3081 DONEB, /* finished last block, done */
3082 BADB} /* got a data error--stuck here */
3083 mode; /* current inflate_block mode */
3084
3085 /* mode dependent information */
3086 union {
3087 uInt left; /* if STORED, bytes left to copy */
3088 struct {
3089 uInt table; /* table lengths (14 bits) */
3090 uInt index; /* index into blens (or border) */
3091 uIntf *blens; /* bit lengths of codes */
3092 uInt bb; /* bit length tree depth */
3093 inflate_huft *tb; /* bit length decoding tree */
3094 int nblens; /* # elements allocated at blens */
3095 } trees; /* if DTREE, decoding info for trees */
3096 struct {
3097 inflate_huft *tl, *td; /* trees to free */
3098 inflate_codes_statef
3099 *codes;
3100 } decode; /* if CODES, current state */
3101 } sub; /* submode */
3102 uInt last; /* true if this block is the last block */
3103
3104 /* mode independent information */
3105 uInt bitk; /* bits in bit buffer */
3106 uLong bitb; /* bit buffer */
3107 Bytef *window; /* sliding window */
3108 Bytef *end; /* one byte after sliding window */
3109 Bytef *read; /* window read pointer */
3110 Bytef *write; /* window write pointer */
3111 check_func checkfn; /* check function */
3112 uLong check; /* check on output */
3113
3114 };
3115
3116
3117 /* defines for inflate input/output */
3118 /* update pointers and return */
3119 #define UPDBITS {s->bitb=b;s->bitk=k;}
3120 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3121 #define UPDOUT {s->write=q;}
3122 #define UPDATE {UPDBITS UPDIN UPDOUT}
3123 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3124 /* get bytes and bits */
3125 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3126 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3127 #define NEXTBYTE (n--,*p++)
3128 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3129 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3130 /* output bytes */
3131 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3132 #define LOADOUT {q=s->write;m=WAVAIL;}
3133 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3134 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3135 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3136 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3137 /* load local pointers */
3138 #define LOAD {LOADIN LOADOUT}
3139
3140 /* And'ing with mask[n] masks the lower n bits */
3141 local uInt inflate_mask[] = {
3142 0x0000,
3143 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3144 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3145 };
3146
3147 /* copy as much as possible from the sliding window to the output area */
3148 local int inflate_flush OF((
3149 inflate_blocks_statef *,
3150 z_stream *,
3151 int));
3152
3153 /*+++++*/
3154 /* inffast.h -- header to use inffast.c
3155 * Copyright (C) 1995 Mark Adler
3156 * For conditions of distribution and use, see copyright notice in zlib.h
3157 */
3158
3159 /* WARNING: this file should *not* be used by applications. It is
3160 part of the implementation of the compression library and is
3161 subject to change. Applications should only use zlib.h.
3162 */
3163
3164 local int inflate_fast OF((
3165 uInt,
3166 uInt,
3167 inflate_huft *,
3168 inflate_huft *,
3169 inflate_blocks_statef *,
3170 z_stream *));
3171
3172
3173 /*+++++*/
3174 /* infblock.c -- interpret and process block types to last block
3175 * Copyright (C) 1995 Mark Adler
3176 * For conditions of distribution and use, see copyright notice in zlib.h
3177 */
3178
3179 /* Table for deflate from PKZIP's appnote.txt. */
3180 local uInt border[] = { /* Order of the bit length code lengths */
3181 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3182
3183 /*
3184 Notes beyond the 1.93a appnote.txt:
3185
3186 1. Distance pointers never point before the beginning of the output
3187 stream.
3188 2. Distance pointers can point back across blocks, up to 32k away.
3189 3. There is an implied maximum of 7 bits for the bit length table and
3190 15 bits for the actual data.
3191 4. If only one code exists, then it is encoded using one bit. (Zero
3192 would be more efficient, but perhaps a little confusing.) If two
3193 codes exist, they are coded using one bit each (0 and 1).
3194 5. There is no way of sending zero distance codes--a dummy must be
3195 sent if there are none. (History: a pre 2.0 version of PKZIP would
3196 store blocks with no distance codes, but this was discovered to be
3197 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3198 zero distance codes, which is sent as one code of zero bits in
3199 length.
3200 6. There are up to 286 literal/length codes. Code 256 represents the
3201 end-of-block. Note however that the static length tree defines
3202 288 codes just to fill out the Huffman codes. Codes 286 and 287
3203 cannot be used though, since there is no length base or extra bits
3204 defined for them. Similarily, there are up to 30 distance codes.
3205 However, static trees define 32 codes (all 5 bits) to fill out the
3206 Huffman codes, but the last two had better not show up in the data.
3207 7. Unzip can check dynamic Huffman blocks for complete code sets.
3208 The exception is that a single code would not be complete (see #4).
3209 8. The five bits following the block type is really the number of
3210 literal codes sent minus 257.
3211 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3212 (1+6+6). Therefore, to output three times the length, you output
3213 three codes (1+1+1), whereas to output four times the same length,
3214 you only need two codes (1+3). Hmm.
3215 10. In the tree reconstruction algorithm, Code = Code + Increment
3216 only if BitLength(i) is not zero. (Pretty obvious.)
3217 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3218 12. Note: length code 284 can represent 227-258, but length code 285
3219 really is 258. The last length deserves its own, short code
3220 since it gets used a lot in very redundant files. The length
3221 258 is special since 258 - 3 (the min match length) is 255.
3222 13. The literal/length and distance code bit lengths are read as a
3223 single stream of lengths. It is possible (and advantageous) for
3224 a repeat code (16, 17, or 18) to go across the boundary between
3225 the two sets of lengths.
3226 */
3227
3228
3229 local void inflate_blocks_reset(s, z, c)
3230 inflate_blocks_statef *s;
3231 z_stream *z;
3232 uLongf *c;
3233 {
3234 if (s->checkfn != Z_NULL)
3235 *c = s->check;
3236 if (s->mode == BTREE || s->mode == DTREE)
3237 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3238 if (s->mode == CODES)
3239 {
3240 inflate_codes_free(s->sub.decode.codes, z);
3241 inflate_trees_free(s->sub.decode.td, z);
3242 inflate_trees_free(s->sub.decode.tl, z);
3243 }
3244 s->mode = TYPE;
3245 s->bitk = 0;
3246 s->bitb = 0;
3247 s->read = s->write = s->window;
3248 if (s->checkfn != Z_NULL)
3249 s->check = (*s->checkfn)(0L, Z_NULL, 0);
3250 Trace((stderr, "inflate: blocks reset\n"));
3251 }
3252
3253
3254 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3255 z_stream *z;
3256 check_func c;
3257 uInt w;
3258 {
3259 inflate_blocks_statef *s;
3260
3261 if ((s = (inflate_blocks_statef *)ZALLOC
3262 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3263 return s;
3264 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3265 {
3266 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3267 return Z_NULL;
3268 }
3269 s->end = s->window + w;
3270 s->checkfn = c;
3271 s->mode = TYPE;
3272 Trace((stderr, "inflate: blocks allocated\n"));
3273 inflate_blocks_reset(s, z, &s->check);
3274 return s;
3275 }
3276
3277
3278 local int inflate_blocks(s, z, r)
3279 inflate_blocks_statef *s;
3280 z_stream *z;
3281 int r;
3282 {
3283 uInt t; /* temporary storage */
3284 uLong b; /* bit buffer */
3285 uInt k; /* bits in bit buffer */
3286 Bytef *p; /* input data pointer */
3287 uInt n; /* bytes available there */
3288 Bytef *q; /* output window write pointer */
3289 uInt m; /* bytes to end of window or read pointer */
3290
3291 /* copy input/output information to locals (UPDATE macro restores) */
3292 LOAD
3293
3294 /* process input based on current state */
3295 while (1) switch (s->mode)
3296 {
3297 case TYPE:
3298 NEEDBITS(3)
3299 t = (uInt)b & 7;
3300 s->last = t & 1;
3301 switch (t >> 1)
3302 {
3303 case 0: /* stored */
3304 Trace((stderr, "inflate: stored block%s\n",
3305 s->last ? " (last)" : ""));
3306 DUMPBITS(3)
3307 t = k & 7; /* go to byte boundary */
3308 DUMPBITS(t)
3309 s->mode = LENS; /* get length of stored block */
3310 break;
3311 case 1: /* fixed */
3312 Trace((stderr, "inflate: fixed codes block%s\n",
3313 s->last ? " (last)" : ""));
3314 {
3315 uInt bl, bd;
3316 inflate_huft *tl, *td;
3317
3318 inflate_trees_fixed(&bl, &bd, &tl, &td);
3319 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3320 if (s->sub.decode.codes == Z_NULL)
3321 {
3322 r = Z_MEM_ERROR;
3323 LEAVE
3324 }
3325 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3326 s->sub.decode.td = Z_NULL;
3327 }
3328 DUMPBITS(3)
3329 s->mode = CODES;
3330 break;
3331 case 2: /* dynamic */
3332 Trace((stderr, "inflate: dynamic codes block%s\n",
3333 s->last ? " (last)" : ""));
3334 DUMPBITS(3)
3335 s->mode = TABLE;
3336 break;
3337 case 3: /* illegal */
3338 DUMPBITS(3)
3339 s->mode = BADB;
3340 z->msg = "invalid block type";
3341 r = Z_DATA_ERROR;
3342 LEAVE
3343 }
3344 break;
3345 case LENS:
3346 NEEDBITS(32)
3347 if (((~b) >> 16) != (b & 0xffff))
3348 {
3349 s->mode = BADB;
3350 z->msg = "invalid stored block lengths";
3351 r = Z_DATA_ERROR;
3352 LEAVE
3353 }
3354 s->sub.left = (uInt)b & 0xffff;
3355 b = k = 0; /* dump bits */
3356 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3357 s->mode = s->sub.left ? STORED : TYPE;
3358 break;
3359 case STORED:
3360 if (n == 0)
3361 LEAVE
3362 NEEDOUT
3363 t = s->sub.left;
3364 if (t > n) t = n;
3365 if (t > m) t = m;
3366 zmemcpy(q, p, t);
3367 p += t; n -= t;
3368 q += t; m -= t;
3369 if ((s->sub.left -= t) != 0)
3370 break;
3371 Tracev((stderr, "inflate: stored end, %lu total out\n",
3372 z->total_out + (q >= s->read ? q - s->read :
3373 (s->end - s->read) + (q - s->window))));
3374 s->mode = s->last ? DRY : TYPE;
3375 break;
3376 case TABLE:
3377 NEEDBITS(14)
3378 s->sub.trees.table = t = (uInt)b & 0x3fff;
3379 #ifndef PKZIP_BUG_WORKAROUND
3380 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3381 {
3382 s->mode = BADB;
3383 z->msg = "too many length or distance symbols";
3384 r = Z_DATA_ERROR;
3385 LEAVE
3386 }
3387 #endif
3388 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3389 if (t < 19)
3390 t = 19;
3391 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3392 {
3393 r = Z_MEM_ERROR;
3394 LEAVE
3395 }
3396 s->sub.trees.nblens = t;
3397 DUMPBITS(14)
3398 s->sub.trees.index = 0;
3399 Tracev((stderr, "inflate: table sizes ok\n"));
3400 s->mode = BTREE;
3401 case BTREE:
3402 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3403 {
3404 NEEDBITS(3)
3405 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3406 DUMPBITS(3)
3407 }
3408 while (s->sub.trees.index < 19)
3409 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3410 s->sub.trees.bb = 7;
3411 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3412 &s->sub.trees.tb, z);
3413 if (t != Z_OK)
3414 {
3415 r = t;
3416 if (r == Z_DATA_ERROR)
3417 s->mode = BADB;
3418 LEAVE
3419 }
3420 s->sub.trees.index = 0;
3421 Tracev((stderr, "inflate: bits tree ok\n"));
3422 s->mode = DTREE;
3423 case DTREE:
3424 while (t = s->sub.trees.table,
3425 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3426 {
3427 inflate_huft *h;
3428 uInt i, j, c;
3429
3430 t = s->sub.trees.bb;
3431 NEEDBITS(t)
3432 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3433 t = h->word.what.Bits;
3434 c = h->more.Base;
3435 if (c < 16)
3436 {
3437 DUMPBITS(t)
3438 s->sub.trees.blens[s->sub.trees.index++] = c;
3439 }
3440 else /* c == 16..18 */
3441 {
3442 i = c == 18 ? 7 : c - 14;
3443 j = c == 18 ? 11 : 3;
3444 NEEDBITS(t + i)
3445 DUMPBITS(t)
3446 j += (uInt)b & inflate_mask[i];
3447 DUMPBITS(i)
3448 i = s->sub.trees.index;
3449 t = s->sub.trees.table;
3450 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3451 (c == 16 && i < 1))
3452 {
3453 s->mode = BADB;
3454 z->msg = "invalid bit length repeat";
3455 r = Z_DATA_ERROR;
3456 LEAVE
3457 }
3458 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3459 do {
3460 s->sub.trees.blens[i++] = c;
3461 } while (--j);
3462 s->sub.trees.index = i;
3463 }
3464 }
3465 inflate_trees_free(s->sub.trees.tb, z);
3466 s->sub.trees.tb = Z_NULL;
3467 {
3468 uInt bl, bd;
3469 inflate_huft *tl, *td;
3470 inflate_codes_statef *c;
3471
3472 bl = 9; /* must be <= 9 for lookahead assumptions */
3473 bd = 6; /* must be <= 9 for lookahead assumptions */
3474 t = s->sub.trees.table;
3475 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3476 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3477 if (t != Z_OK)
3478 {
3479 if (t == (uInt)Z_DATA_ERROR)
3480 s->mode = BADB;
3481 r = t;
3482 LEAVE
3483 }
3484 Tracev((stderr, "inflate: trees ok\n"));
3485 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3486 {
3487 inflate_trees_free(td, z);
3488 inflate_trees_free(tl, z);
3489 r = Z_MEM_ERROR;
3490 LEAVE
3491 }
3492 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3493 s->sub.decode.codes = c;
3494 s->sub.decode.tl = tl;
3495 s->sub.decode.td = td;
3496 }
3497 s->mode = CODES;
3498 case CODES:
3499 UPDATE
3500 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3501 return inflate_flush(s, z, r);
3502 r = Z_OK;
3503 inflate_codes_free(s->sub.decode.codes, z);
3504 inflate_trees_free(s->sub.decode.td, z);
3505 inflate_trees_free(s->sub.decode.tl, z);
3506 LOAD
3507 Tracev((stderr, "inflate: codes end, %lu total out\n",
3508 z->total_out + (q >= s->read ? q - s->read :
3509 (s->end - s->read) + (q - s->window))));
3510 if (!s->last)
3511 {
3512 s->mode = TYPE;
3513 break;
3514 }
3515 if (k > 7) /* return unused byte, if any */
3516 {
3517 Assert(k < 16, "inflate_codes grabbed too many bytes")
3518 k -= 8;
3519 n++;
3520 p--; /* can always return one */
3521 }
3522 s->mode = DRY;
3523 case DRY:
3524 FLUSH
3525 if (s->read != s->write)
3526 LEAVE
3527 s->mode = DONEB;
3528 case DONEB:
3529 r = Z_STREAM_END;
3530 LEAVE
3531 case BADB:
3532 r = Z_DATA_ERROR;
3533 LEAVE
3534 default:
3535 r = Z_STREAM_ERROR;
3536 LEAVE
3537 }
3538 }
3539
3540
3541 local int inflate_blocks_free(s, z, c)
3542 inflate_blocks_statef *s;
3543 z_stream *z;
3544 uLongf *c;
3545 {
3546 inflate_blocks_reset(s, z, c);
3547 ZFREE(z, s->window, s->end - s->window);
3548 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3549 Trace((stderr, "inflate: blocks freed\n"));
3550 return Z_OK;
3551 }
3552
3553 /*
3554 * This subroutine adds the data at next_in/avail_in to the output history
3555 * without performing any output. The output buffer must be "caught up";
3556 * i.e. no pending output (hence s->read equals s->write), and the state must
3557 * be BLOCKS (i.e. we should be willing to see the start of a series of
3558 * BLOCKS). On exit, the output will also be caught up, and the checksum
3559 * will have been updated if need be.
3560 */
3561 local int inflate_addhistory(s, z)
3562 inflate_blocks_statef *s;
3563 z_stream *z;
3564 {
3565 uLong b; /* bit buffer */ /* NOT USED HERE */
3566 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3567 uInt t; /* temporary storage */
3568 Bytef *p; /* input data pointer */
3569 uInt n; /* bytes available there */
3570 Bytef *q; /* output window write pointer */
3571 uInt m; /* bytes to end of window or read pointer */
3572
3573 if (s->read != s->write)
3574 return Z_STREAM_ERROR;
3575 if (s->mode != TYPE)
3576 return Z_DATA_ERROR;
3577
3578 /* we're ready to rock */
3579 LOAD
3580 /* while there is input ready, copy to output buffer, moving
3581 * pointers as needed.
3582 */
3583 while (n) {
3584 t = n; /* how many to do */
3585 /* is there room until end of buffer? */
3586 if (t > m) t = m;
3587 /* update check information */
3588 if (s->checkfn != Z_NULL)
3589 s->check = (*s->checkfn)(s->check, q, t);
3590 zmemcpy(q, p, t);
3591 q += t;
3592 p += t;
3593 n -= t;
3594 z->total_out += t;
3595 s->read = q; /* drag read pointer forward */
3596 /* WRAP */ /* expand WRAP macro by hand to handle s->read */
3597 if (q == s->end) {
3598 s->read = q = s->window;
3599 m = WAVAIL;
3600 }
3601 }
3602 UPDATE
3603 return Z_OK;
3604 }
3605
3606
3607 /*
3608 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3609 * a `stored' block type value but not the (zero) length bytes.
3610 */
3611 local int inflate_packet_flush(s)
3612 inflate_blocks_statef *s;
3613 {
3614 if (s->mode != LENS)
3615 return Z_DATA_ERROR;
3616 s->mode = TYPE;
3617 return Z_OK;
3618 }
3619
3620
3621 /*+++++*/
3622 /* inftrees.c -- generate Huffman trees for efficient decoding
3623 * Copyright (C) 1995 Mark Adler
3624 * For conditions of distribution and use, see copyright notice in zlib.h
3625 */
3626
3627 /* simplify the use of the inflate_huft type with some defines */
3628 #define base more.Base
3629 #define next more.Next
3630 #define exop word.what.Exop
3631 #define bits word.what.Bits
3632
3633
3634 local int huft_build OF((
3635 uIntf *, /* code lengths in bits */
3636 uInt, /* number of codes */
3637 uInt, /* number of "simple" codes */
3638 uIntf *, /* list of base values for non-simple codes */
3639 uIntf *, /* list of extra bits for non-simple codes */
3640 inflate_huft * FAR*,/* result: starting table */
3641 uIntf *, /* maximum lookup bits (returns actual) */
3642 z_stream *)); /* for zalloc function */
3643
3644 local voidpf falloc OF((
3645 voidpf, /* opaque pointer (not used) */
3646 uInt, /* number of items */
3647 uInt)); /* size of item */
3648
3649 local void ffree OF((
3650 voidpf q, /* opaque pointer (not used) */
3651 voidpf p, /* what to free (not used) */
3652 uInt n)); /* number of bytes (not used) */
3653
3654 /* Tables for deflate from PKZIP's appnote.txt. */
3655 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3656 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3657 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3658 /* actually lengths - 2; also see note #13 above about 258 */
3659 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3660 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3661 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3662 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3663 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3664 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3665 8193, 12289, 16385, 24577};
3666 local uInt cpdext[] = { /* Extra bits for distance codes */
3667 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3668 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3669 12, 12, 13, 13};
3670
3671 /*
3672 Huffman code decoding is performed using a multi-level table lookup.
3673 The fastest way to decode is to simply build a lookup table whose
3674 size is determined by the longest code. However, the time it takes
3675 to build this table can also be a factor if the data being decoded
3676 is not very long. The most common codes are necessarily the
3677 shortest codes, so those codes dominate the decoding time, and hence
3678 the speed. The idea is you can have a shorter table that decodes the
3679 shorter, more probable codes, and then point to subsidiary tables for
3680 the longer codes. The time it costs to decode the longer codes is
3681 then traded against the time it takes to make longer tables.
3682
3683 This results of this trade are in the variables lbits and dbits
3684 below. lbits is the number of bits the first level table for literal/
3685 length codes can decode in one step, and dbits is the same thing for
3686 the distance codes. Subsequent tables are also less than or equal to
3687 those sizes. These values may be adjusted either when all of the
3688 codes are shorter than that, in which case the longest code length in
3689 bits is used, or when the shortest code is *longer* than the requested
3690 table size, in which case the length of the shortest code in bits is
3691 used.
3692
3693 There are two different values for the two tables, since they code a
3694 different number of possibilities each. The literal/length table
3695 codes 286 possible values, or in a flat code, a little over eight
3696 bits. The distance table codes 30 possible values, or a little less
3697 than five bits, flat. The optimum values for speed end up being
3698 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3699 The optimum values may differ though from machine to machine, and
3700 possibly even between compilers. Your mileage may vary.
3701 */
3702
3703
3704 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3705 #define BMAX 15 /* maximum bit length of any code */
3706 #define N_MAX 288 /* maximum number of codes in any set */
3707
3708 #ifdef DEBUG_ZLIB
3709 uInt inflate_hufts;
3710 #endif
3711
3712 local int huft_build(b, n, s, d, e, t, m, zs)
3713 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3714 uInt n; /* number of codes (assumed <= N_MAX) */
3715 uInt s; /* number of simple-valued codes (0..s-1) */
3716 uIntf *d; /* list of base values for non-simple codes */
3717 uIntf *e; /* list of extra bits for non-simple codes */
3718 inflate_huft * FAR *t; /* result: starting table */
3719 uIntf *m; /* maximum lookup bits, returns actual */
3720 z_stream *zs; /* for zalloc function */
3721 /* Given a list of code lengths and a maximum table size, make a set of
3722 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3723 if the given code set is incomplete (the tables are still built in this
3724 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3725 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3726 {
3727
3728 uInt a; /* counter for codes of length k */
3729 uInt c[BMAX+1]; /* bit length count table */
3730 uInt f; /* i repeats in table every f entries */
3731 int g; /* maximum code length */
3732 int h; /* table level */
3733 register uInt i; /* counter, current code */
3734 register uInt j; /* counter */
3735 register int k; /* number of bits in current code */
3736 int l; /* bits per table (returned in m) */
3737 register uIntf *p; /* pointer into c[], b[], or v[] */
3738 inflate_huft *q; /* points to current table */
3739 struct inflate_huft_s r; /* table entry for structure assignment */
3740 inflate_huft *u[BMAX]; /* table stack */
3741 uInt v[N_MAX]; /* values in order of bit length */
3742 register int w; /* bits before this table == (l * h) */
3743 uInt x[BMAX+1]; /* bit offsets, then code stack */
3744 uIntf *xp; /* pointer into x */
3745 int y; /* number of dummy codes added */
3746 uInt z; /* number of entries in current table */
3747
3748
3749 /* Generate counts for each bit length */
3750 p = c;
3751 #define C0 *p++ = 0;
3752 #define C2 C0 C0 C0 C0
3753 #define C4 C2 C2 C2 C2
3754 C4 /* clear c[]--assume BMAX+1 is 16 */
3755 p = b; i = n;
3756 do {
3757 c[*p++]++; /* assume all entries <= BMAX */
3758 } while (--i);
3759 if (c[0] == n) /* null input--all zero length codes */
3760 {
3761 *t = (inflate_huft *)Z_NULL;
3762 *m = 0;
3763 return Z_OK;
3764 }
3765
3766
3767 /* Find minimum and maximum length, bound *m by those */
3768 l = *m;
3769 for (j = 1; j <= BMAX; j++)
3770 if (c[j])
3771 break;
3772 k = j; /* minimum code length */
3773 if ((uInt)l < j)
3774 l = j;
3775 for (i = BMAX; i; i--)
3776 if (c[i])
3777 break;
3778 g = i; /* maximum code length */
3779 if ((uInt)l > i)
3780 l = i;
3781 *m = l;
3782
3783
3784 /* Adjust last length count to fill out codes, if needed */
3785 for (y = 1 << j; j < i; j++, y <<= 1)
3786 if ((y -= c[j]) < 0)
3787 return Z_DATA_ERROR;
3788 if ((y -= c[i]) < 0)
3789 return Z_DATA_ERROR;
3790 c[i] += y;
3791
3792
3793 /* Generate starting offsets into the value table for each length */
3794 x[1] = j = 0;
3795 p = c + 1; xp = x + 2;
3796 while (--i) { /* note that i == g from above */
3797 *xp++ = (j += *p++);
3798 }
3799
3800
3801 /* Make a table of values in order of bit lengths */
3802 p = b; i = 0;
3803 do {
3804 if ((j = *p++) != 0)
3805 v[x[j]++] = i;
3806 } while (++i < n);
3807
3808
3809 /* Generate the Huffman codes and for each, make the table entries */
3810 x[0] = i = 0; /* first Huffman code is zero */
3811 p = v; /* grab values in bit order */
3812 h = -1; /* no tables yet--level -1 */
3813 w = -l; /* bits decoded == (l * h) */
3814 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3815 q = (inflate_huft *)Z_NULL; /* ditto */
3816 z = 0; /* ditto */
3817
3818 /* go through the bit lengths (k already is bits in shortest code) */
3819 for (; k <= g; k++)
3820 {
3821 a = c[k];
3822 while (a--)
3823 {
3824 /* here i is the Huffman code of length k bits for value *p */
3825 /* make tables up to required level */
3826 while (k > w + l)
3827 {
3828 h++;
3829 w += l; /* previous table always l bits */
3830
3831 /* compute minimum size table less than or equal to l bits */
3832 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3833 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3834 { /* too few codes for k-w bit table */
3835 f -= a + 1; /* deduct codes from patterns left */
3836 xp = c + k;
3837 if (j < z)
3838 while (++j < z) /* try smaller tables up to z bits */
3839 {
3840 if ((f <<= 1) <= *++xp)
3841 break; /* enough codes to use up j bits */
3842 f -= *xp; /* else deduct codes from patterns */
3843 }
3844 }
3845 z = 1 << j; /* table entries for j-bit table */
3846
3847 /* allocate and link in new table */
3848 if ((q = (inflate_huft *)ZALLOC
3849 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3850 {
3851 if (h)
3852 inflate_trees_free(u[0], zs);
3853 return Z_MEM_ERROR; /* not enough memory */
3854 }
3855 q->word.Nalloc = z + 1;
3856 #ifdef DEBUG_ZLIB
3857 inflate_hufts += z + 1;
3858 #endif
3859 *t = q + 1; /* link to list for huft_free() */
3860 *(t = &(q->next)) = Z_NULL;
3861 u[h] = ++q; /* table starts after link */
3862
3863 /* connect to last table, if there is one */
3864 if (h)
3865 {
3866 x[h] = i; /* save pattern for backing up */
3867 r.bits = (Byte)l; /* bits to dump before this table */
3868 r.exop = (Byte)j; /* bits in this table */
3869 r.next = q; /* pointer to this table */
3870 j = i >> (w - l); /* (get around Turbo C bug) */
3871 u[h-1][j] = r; /* connect to last table */
3872 }
3873 }
3874
3875 /* set up table entry in r */
3876 r.bits = (Byte)(k - w);
3877 if (p >= v + n)
3878 r.exop = 128 + 64; /* out of values--invalid code */
3879 else if (*p < s)
3880 {
3881 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3882 r.base = *p++; /* simple code is just the value */
3883 }
3884 else
3885 {
3886 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3887 r.base = d[*p++ - s];
3888 }
3889
3890 /* fill code-like entries with r */
3891 f = 1 << (k - w);
3892 for (j = i >> w; j < z; j += f)
3893 q[j] = r;
3894
3895 /* backwards increment the k-bit code i */
3896 for (j = 1 << (k - 1); i & j; j >>= 1)
3897 i ^= j;
3898 i ^= j;
3899
3900 /* backup over finished tables */
3901 while ((i & ((1 << w) - 1)) != x[h])
3902 {
3903 h--; /* don't need to update q */
3904 w -= l;
3905 }
3906 }
3907 }
3908
3909
3910 /* Return Z_BUF_ERROR if we were given an incomplete table */
3911 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3912 }
3913
3914
3915 local int inflate_trees_bits(c, bb, tb, z)
3916 uIntf *c; /* 19 code lengths */
3917 uIntf *bb; /* bits tree desired/actual depth */
3918 inflate_huft * FAR *tb; /* bits tree result */
3919 z_stream *z; /* for zfree function */
3920 {
3921 int r;
3922
3923 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3924 if (r == Z_DATA_ERROR)
3925 z->msg = "oversubscribed dynamic bit lengths tree";
3926 else if (r == Z_BUF_ERROR)
3927 {
3928 inflate_trees_free(*tb, z);
3929 z->msg = "incomplete dynamic bit lengths tree";
3930 r = Z_DATA_ERROR;
3931 }
3932 return r;
3933 }
3934
3935
3936 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3937 uInt nl; /* number of literal/length codes */
3938 uInt nd; /* number of distance codes */
3939 uIntf *c; /* that many (total) code lengths */
3940 uIntf *bl; /* literal desired/actual bit depth */
3941 uIntf *bd; /* distance desired/actual bit depth */
3942 inflate_huft * FAR *tl; /* literal/length tree result */
3943 inflate_huft * FAR *td; /* distance tree result */
3944 z_stream *z; /* for zfree function */
3945 {
3946 int r;
3947
3948 /* build literal/length tree */
3949 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3950 {
3951 if (r == Z_DATA_ERROR)
3952 z->msg = "oversubscribed literal/length tree";
3953 else if (r == Z_BUF_ERROR)
3954 {
3955 inflate_trees_free(*tl, z);
3956 z->msg = "incomplete literal/length tree";
3957 r = Z_DATA_ERROR;
3958 }
3959 return r;
3960 }
3961
3962 /* build distance tree */
3963 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3964 {
3965 if (r == Z_DATA_ERROR)
3966 z->msg = "oversubscribed literal/length tree";
3967 else if (r == Z_BUF_ERROR) {
3968 #ifdef PKZIP_BUG_WORKAROUND
3969 r = Z_OK;
3970 }
3971 #else
3972 inflate_trees_free(*td, z);
3973 z->msg = "incomplete literal/length tree";
3974 r = Z_DATA_ERROR;
3975 }
3976 inflate_trees_free(*tl, z);
3977 return r;
3978 #endif
3979 }
3980
3981 /* done */
3982 return Z_OK;
3983 }
3984
3985
3986 /* build fixed tables only once--keep them here */
3987 local int fixed_lock = 0;
3988 local int fixed_built = 0;
3989 #define FIXEDH 530 /* number of hufts used by fixed tables */
3990 local uInt fixed_left = FIXEDH;
3991 local inflate_huft fixed_mem[FIXEDH];
3992 local uInt fixed_bl;
3993 local uInt fixed_bd;
3994 local inflate_huft *fixed_tl;
3995 local inflate_huft *fixed_td;
3996
3997
3998 local voidpf falloc(q, n, s)
3999 voidpf q; /* opaque pointer (not used) */
4000 uInt n; /* number of items */
4001 uInt s; /* size of item */
4002 {
4003 Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4004 "inflate_trees falloc overflow");
4005 if (q) s++; /* to make some compilers happy */
4006 fixed_left -= n;
4007 return (voidpf)(fixed_mem + fixed_left);
4008 }
4009
4010
4011 local void ffree(q, p, n)
4012 voidpf q;
4013 voidpf p;
4014 uInt n;
4015 {
4016 Assert(0, "inflate_trees ffree called!");
4017 if (q) q = p; /* to make some compilers happy */
4018 }
4019
4020
4021 local int inflate_trees_fixed(bl, bd, tl, td)
4022 uIntf *bl; /* literal desired/actual bit depth */
4023 uIntf *bd; /* distance desired/actual bit depth */
4024 inflate_huft * FAR *tl; /* literal/length tree result */
4025 inflate_huft * FAR *td; /* distance tree result */
4026 {
4027 /* build fixed tables if not built already--lock out other instances */
4028 while (++fixed_lock > 1)
4029 fixed_lock--;
4030 if (!fixed_built)
4031 {
4032 int k; /* temporary variable */
4033 unsigned c[288]; /* length list for huft_build */
4034 z_stream z; /* for falloc function */
4035
4036 /* set up fake z_stream for memory routines */
4037 z.zalloc = falloc;
4038 z.zfree = ffree;
4039 z.opaque = Z_NULL;
4040
4041 /* literal table */
4042 for (k = 0; k < 144; k++)
4043 c[k] = 8;
4044 for (; k < 256; k++)
4045 c[k] = 9;
4046 for (; k < 280; k++)
4047 c[k] = 7;
4048 for (; k < 288; k++)
4049 c[k] = 8;
4050 fixed_bl = 7;
4051 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4052
4053 /* distance table */
4054 for (k = 0; k < 30; k++)
4055 c[k] = 5;
4056 fixed_bd = 5;
4057 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4058
4059 /* done */
4060 fixed_built = 1;
4061 }
4062 fixed_lock--;
4063 *bl = fixed_bl;
4064 *bd = fixed_bd;
4065 *tl = fixed_tl;
4066 *td = fixed_td;
4067 return Z_OK;
4068 }
4069
4070
4071 local int inflate_trees_free(t, z)
4072 inflate_huft *t; /* table to free */
4073 z_stream *z; /* for zfree function */
4074 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4075 list of the tables it made, with the links in a dummy first entry of
4076 each table. */
4077 {
4078 register inflate_huft *p, *q;
4079
4080 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4081 p = t;
4082 while (p != Z_NULL)
4083 {
4084 q = (--p)->next;
4085 ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4086 p = q;
4087 }
4088 return Z_OK;
4089 }
4090
4091 /*+++++*/
4092 /* infcodes.c -- process literals and length/distance pairs
4093 * Copyright (C) 1995 Mark Adler
4094 * For conditions of distribution and use, see copyright notice in zlib.h
4095 */
4096
4097 /* simplify the use of the inflate_huft type with some defines */
4098 #define base more.Base
4099 #define next more.Next
4100 #define exop word.what.Exop
4101 #define bits word.what.Bits
4102
4103 /* inflate codes private state */
4104 struct inflate_codes_state {
4105
4106 /* mode */
4107 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4108 START, /* x: set up for LEN */
4109 LEN, /* i: get length/literal/eob next */
4110 LENEXT, /* i: getting length extra (have base) */
4111 DIST, /* i: get distance next */
4112 DISTEXT, /* i: getting distance extra */
4113 COPY, /* o: copying bytes in window, waiting for space */
4114 LIT, /* o: got literal, waiting for output space */
4115 WASH, /* o: got eob, possibly still output waiting */
4116 END, /* x: got eob and all data flushed */
4117 BADCODE} /* x: got error */
4118 mode; /* current inflate_codes mode */
4119
4120 /* mode dependent information */
4121 uInt len;
4122 union {
4123 struct {
4124 inflate_huft *tree; /* pointer into tree */
4125 uInt need; /* bits needed */
4126 } code; /* if LEN or DIST, where in tree */
4127 uInt lit; /* if LIT, literal */
4128 struct {
4129 uInt get; /* bits to get for extra */
4130 uInt dist; /* distance back to copy from */
4131 } copy; /* if EXT or COPY, where and how much */
4132 } sub; /* submode */
4133
4134 /* mode independent information */
4135 Byte lbits; /* ltree bits decoded per branch */
4136 Byte dbits; /* dtree bits decoder per branch */
4137 inflate_huft *ltree; /* literal/length/eob tree */
4138 inflate_huft *dtree; /* distance tree */
4139
4140 };
4141
4142
4143 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4144 uInt bl, bd;
4145 inflate_huft *tl, *td;
4146 z_stream *z;
4147 {
4148 inflate_codes_statef *c;
4149
4150 if ((c = (inflate_codes_statef *)
4151 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4152 {
4153 c->mode = START;
4154 c->lbits = (Byte)bl;
4155 c->dbits = (Byte)bd;
4156 c->ltree = tl;
4157 c->dtree = td;
4158 Tracev((stderr, "inflate: codes new\n"));
4159 }
4160 return c;
4161 }
4162
4163
4164 local int inflate_codes(s, z, r)
4165 inflate_blocks_statef *s;
4166 z_stream *z;
4167 int r;
4168 {
4169 uInt j; /* temporary storage */
4170 inflate_huft *t; /* temporary pointer */
4171 uInt e; /* extra bits or operation */
4172 uLong b; /* bit buffer */
4173 uInt k; /* bits in bit buffer */
4174 Bytef *p; /* input data pointer */
4175 uInt n; /* bytes available there */
4176 Bytef *q; /* output window write pointer */
4177 uInt m; /* bytes to end of window or read pointer */
4178 Bytef *f; /* pointer to copy strings from */
4179 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4180
4181 /* copy input/output information to locals (UPDATE macro restores) */
4182 LOAD
4183
4184 /* process input and output based on current state */
4185 while (1) switch (c->mode)
4186 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4187 case START: /* x: set up for LEN */
4188 #ifndef SLOW
4189 if (m >= 258 && n >= 10)
4190 {
4191 UPDATE
4192 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4193 LOAD
4194 if (r != Z_OK)
4195 {
4196 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4197 break;
4198 }
4199 }
4200 #endif /* !SLOW */
4201 c->sub.code.need = c->lbits;
4202 c->sub.code.tree = c->ltree;
4203 c->mode = LEN;
4204 case LEN: /* i: get length/literal/eob next */
4205 j = c->sub.code.need;
4206 NEEDBITS(j)
4207 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4208 DUMPBITS(t->bits)
4209 e = (uInt)(t->exop);
4210 if (e == 0) /* literal */
4211 {
4212 c->sub.lit = t->base;
4213 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4214 "inflate: literal '%c'\n" :
4215 "inflate: literal 0x%02x\n", t->base));
4216 c->mode = LIT;
4217 break;
4218 }
4219 if (e & 16) /* length */
4220 {
4221 c->sub.copy.get = e & 15;
4222 c->len = t->base;
4223 c->mode = LENEXT;
4224 break;
4225 }
4226 if ((e & 64) == 0) /* next table */
4227 {
4228 c->sub.code.need = e;
4229 c->sub.code.tree = t->next;
4230 break;
4231 }
4232 if (e & 32) /* end of block */
4233 {
4234 Tracevv((stderr, "inflate: end of block\n"));
4235 c->mode = WASH;
4236 break;
4237 }
4238 c->mode = BADCODE; /* invalid code */
4239 z->msg = "invalid literal/length code";
4240 r = Z_DATA_ERROR;
4241 LEAVE
4242 case LENEXT: /* i: getting length extra (have base) */
4243 j = c->sub.copy.get;
4244 NEEDBITS(j)
4245 c->len += (uInt)b & inflate_mask[j];
4246 DUMPBITS(j)
4247 c->sub.code.need = c->dbits;
4248 c->sub.code.tree = c->dtree;
4249 Tracevv((stderr, "inflate: length %u\n", c->len));
4250 c->mode = DIST;
4251 case DIST: /* i: get distance next */
4252 j = c->sub.code.need;
4253 NEEDBITS(j)
4254 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4255 DUMPBITS(t->bits)
4256 e = (uInt)(t->exop);
4257 if (e & 16) /* distance */
4258 {
4259 c->sub.copy.get = e & 15;
4260 c->sub.copy.dist = t->base;
4261 c->mode = DISTEXT;
4262 break;
4263 }
4264 if ((e & 64) == 0) /* next table */
4265 {
4266 c->sub.code.need = e;
4267 c->sub.code.tree = t->next;
4268 break;
4269 }
4270 c->mode = BADCODE; /* invalid code */
4271 z->msg = "invalid distance code";
4272 r = Z_DATA_ERROR;
4273 LEAVE
4274 case DISTEXT: /* i: getting distance extra */
4275 j = c->sub.copy.get;
4276 NEEDBITS(j)
4277 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4278 DUMPBITS(j)
4279 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4280 c->mode = COPY;
4281 case COPY: /* o: copying bytes in window, waiting for space */
4282 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4283 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4284 s->end - (c->sub.copy.dist - (q - s->window)) :
4285 q - c->sub.copy.dist;
4286 #else
4287 f = q - c->sub.copy.dist;
4288 if ((uInt)(q - s->window) < c->sub.copy.dist)
4289 f = s->end - (c->sub.copy.dist - (q - s->window));
4290 #endif
4291 while (c->len)
4292 {
4293 NEEDOUT
4294 OUTBYTE(*f++)
4295 if (f == s->end)
4296 f = s->window;
4297 c->len--;
4298 }
4299 c->mode = START;
4300 break;
4301 case LIT: /* o: got literal, waiting for output space */
4302 NEEDOUT
4303 OUTBYTE(c->sub.lit)
4304 c->mode = START;
4305 break;
4306 case WASH: /* o: got eob, possibly more output */
4307 FLUSH
4308 if (s->read != s->write)
4309 LEAVE
4310 c->mode = END;
4311 case END:
4312 r = Z_STREAM_END;
4313 LEAVE
4314 case BADCODE: /* x: got error */
4315 r = Z_DATA_ERROR;
4316 LEAVE
4317 default:
4318 r = Z_STREAM_ERROR;
4319 LEAVE
4320 }
4321 }
4322
4323
4324 local void inflate_codes_free(c, z)
4325 inflate_codes_statef *c;
4326 z_stream *z;
4327 {
4328 ZFREE(z, c, sizeof(struct inflate_codes_state));
4329 Tracev((stderr, "inflate: codes free\n"));
4330 }
4331
4332 /*+++++*/
4333 /* inflate_util.c -- data and routines common to blocks and codes
4334 * Copyright (C) 1995 Mark Adler
4335 * For conditions of distribution and use, see copyright notice in zlib.h
4336 */
4337
4338 /* copy as much as possible from the sliding window to the output area */
4339 local int inflate_flush(s, z, r)
4340 inflate_blocks_statef *s;
4341 z_stream *z;
4342 int r;
4343 {
4344 uInt n;
4345 Bytef *p, *q;
4346
4347 /* local copies of source and destination pointers */
4348 p = z->next_out;
4349 q = s->read;
4350
4351 /* compute number of bytes to copy as far as end of window */
4352 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4353 if (n > z->avail_out) n = z->avail_out;
4354 if (n && r == Z_BUF_ERROR) r = Z_OK;
4355
4356 /* update counters */
4357 z->avail_out -= n;
4358 z->total_out += n;
4359
4360 /* update check information */
4361 if (s->checkfn != Z_NULL)
4362 s->check = (*s->checkfn)(s->check, q, n);
4363
4364 /* copy as far as end of window */
4365 if (p != NULL) {
4366 zmemcpy(p, q, n);
4367 p += n;
4368 }
4369 q += n;
4370
4371 /* see if more to copy at beginning of window */
4372 if (q == s->end)
4373 {
4374 /* wrap pointers */
4375 q = s->window;
4376 if (s->write == s->end)
4377 s->write = s->window;
4378
4379 /* compute bytes to copy */
4380 n = (uInt)(s->write - q);
4381 if (n > z->avail_out) n = z->avail_out;
4382 if (n && r == Z_BUF_ERROR) r = Z_OK;
4383
4384 /* update counters */
4385 z->avail_out -= n;
4386 z->total_out += n;
4387
4388 /* update check information */
4389 if (s->checkfn != Z_NULL)
4390 s->check = (*s->checkfn)(s->check, q, n);
4391
4392 /* copy */
4393 if (p != NULL) {
4394 zmemcpy(p, q, n);
4395 p += n;
4396 }
4397 q += n;
4398 }
4399
4400 /* update pointers */
4401 z->next_out = p;
4402 s->read = q;
4403
4404 /* done */
4405 return r;
4406 }
4407
4408
4409 /*+++++*/
4410 /* inffast.c -- process literals and length/distance pairs fast
4411 * Copyright (C) 1995 Mark Adler
4412 * For conditions of distribution and use, see copyright notice in zlib.h
4413 */
4414
4415 /* simplify the use of the inflate_huft type with some defines */
4416 #define base more.Base
4417 #define next more.Next
4418 #define exop word.what.Exop
4419 #define bits word.what.Bits
4420
4421 /* macros for bit input with no checking and for returning unused bytes */
4422 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4423 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4424
4425 /* Called with number of bytes left to write in window at least 258
4426 (the maximum string length) and number of input bytes available
4427 at least ten. The ten bytes are six bytes for the longest length/
4428 distance pair plus four bytes for overloading the bit buffer. */
4429
4430 local int inflate_fast(bl, bd, tl, td, s, z)
4431 uInt bl, bd;
4432 inflate_huft *tl, *td;
4433 inflate_blocks_statef *s;
4434 z_stream *z;
4435 {
4436 inflate_huft *t; /* temporary pointer */
4437 uInt e; /* extra bits or operation */
4438 uLong b; /* bit buffer */
4439 uInt k; /* bits in bit buffer */
4440 Bytef *p; /* input data pointer */
4441 uInt n; /* bytes available there */
4442 Bytef *q; /* output window write pointer */
4443 uInt m; /* bytes to end of window or read pointer */
4444 uInt ml; /* mask for literal/length tree */
4445 uInt md; /* mask for distance tree */
4446 uInt c; /* bytes to copy */
4447 uInt d; /* distance back to copy from */
4448 Bytef *r; /* copy source pointer */
4449
4450 /* load input, output, bit values */
4451 LOAD
4452
4453 /* initialize masks */
4454 ml = inflate_mask[bl];
4455 md = inflate_mask[bd];
4456
4457 /* do until not enough input or output space for fast loop */
4458 do { /* assume called with m >= 258 && n >= 10 */
4459 /* get literal/length code */
4460 GRABBITS(20) /* max bits for literal/length code */
4461 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4462 {
4463 DUMPBITS(t->bits)
4464 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4465 "inflate: * literal '%c'\n" :
4466 "inflate: * literal 0x%02x\n", t->base));
4467 *q++ = (Byte)t->base;
4468 m--;
4469 continue;
4470 }
4471 do {
4472 DUMPBITS(t->bits)
4473 if (e & 16)
4474 {
4475 /* get extra bits for length */
4476 e &= 15;
4477 c = t->base + ((uInt)b & inflate_mask[e]);
4478 DUMPBITS(e)
4479 Tracevv((stderr, "inflate: * length %u\n", c));
4480
4481 /* decode distance base of block to copy */
4482 GRABBITS(15); /* max bits for distance code */
4483 e = (t = td + ((uInt)b & md))->exop;
4484 do {
4485 DUMPBITS(t->bits)
4486 if (e & 16)
4487 {
4488 /* get extra bits to add to distance base */
4489 e &= 15;
4490 GRABBITS(e) /* get extra bits (up to 13) */
4491 d = t->base + ((uInt)b & inflate_mask[e]);
4492 DUMPBITS(e)
4493 Tracevv((stderr, "inflate: * distance %u\n", d));
4494
4495 /* do the copy */
4496 m -= c;
4497 if ((uInt)(q - s->window) >= d) /* offset before dest */
4498 { /* just copy */
4499 r = q - d;
4500 *q++ = *r++; c--; /* minimum count is three, */
4501 *q++ = *r++; c--; /* so unroll loop a little */
4502 }
4503 else /* else offset after destination */
4504 {
4505 e = d - (q - s->window); /* bytes from offset to end */
4506 r = s->end - e; /* pointer to offset */
4507 if (c > e) /* if source crosses, */
4508 {
4509 c -= e; /* copy to end of window */
4510 do {
4511 *q++ = *r++;
4512 } while (--e);
4513 r = s->window; /* copy rest from start of window */
4514 }
4515 }
4516 do { /* copy all or what's left */
4517 *q++ = *r++;
4518 } while (--c);
4519 break;
4520 }
4521 else if ((e & 64) == 0)
4522 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4523 else
4524 {
4525 z->msg = "invalid distance code";
4526 UNGRAB
4527 UPDATE
4528 return Z_DATA_ERROR;
4529 }
4530 } while (1);
4531 break;
4532 }
4533 if ((e & 64) == 0)
4534 {
4535 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4536 {
4537 DUMPBITS(t->bits)
4538 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4539 "inflate: * literal '%c'\n" :
4540 "inflate: * literal 0x%02x\n", t->base));
4541 *q++ = (Byte)t->base;
4542 m--;
4543 break;
4544 }
4545 }
4546 else if (e & 32)
4547 {
4548 Tracevv((stderr, "inflate: * end of block\n"));
4549 UNGRAB
4550 UPDATE
4551 return Z_STREAM_END;
4552 }
4553 else
4554 {
4555 z->msg = "invalid literal/length code";
4556 UNGRAB
4557 UPDATE
4558 return Z_DATA_ERROR;
4559 }
4560 } while (1);
4561 } while (m >= 258 && n >= 10);
4562
4563 /* not enough input or output--restore pointers and return */
4564 UNGRAB
4565 UPDATE
4566 return Z_OK;
4567 }
4568
4569
4570 /*+++++*/
4571 /* zutil.c -- target dependent utility functions for the compression library
4572 * Copyright (C) 1995 Jean-loup Gailly.
4573 * For conditions of distribution and use, see copyright notice in zlib.h
4574 */
4575
4576 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4577
4578 char *zlib_version = ZLIB_VERSION;
4579
4580 char *z_errmsg[] = {
4581 "stream end", /* Z_STREAM_END 1 */
4582 "", /* Z_OK 0 */
4583 "file error", /* Z_ERRNO (-1) */
4584 "stream error", /* Z_STREAM_ERROR (-2) */
4585 "data error", /* Z_DATA_ERROR (-3) */
4586 "insufficient memory", /* Z_MEM_ERROR (-4) */
4587 "buffer error", /* Z_BUF_ERROR (-5) */
4588 ""};
4589
4590
4591 /*+++++*/
4592 /* adler32.c -- compute the Adler-32 checksum of a data stream
4593 * Copyright (C) 1995 Mark Adler
4594 * For conditions of distribution and use, see copyright notice in zlib.h
4595 */
4596
4597 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4598
4599 #define BASE 65521L /* largest prime smaller than 65536 */
4600 #define NMAX 5552
4601 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4602
4603 #define DO1(buf) {s1 += *buf++; s2 += s1;}
4604 #define DO2(buf) DO1(buf); DO1(buf);
4605 #define DO4(buf) DO2(buf); DO2(buf);
4606 #define DO8(buf) DO4(buf); DO4(buf);
4607 #define DO16(buf) DO8(buf); DO8(buf);
4608
4609 /* ========================================================================= */
4610 uLong adler32(adler, buf, len)
4611 uLong adler;
4612 Bytef *buf;
4613 uInt len;
4614 {
4615 unsigned long s1 = adler & 0xffff;
4616 unsigned long s2 = (adler >> 16) & 0xffff;
4617 int k;
4618
4619 if (buf == Z_NULL) return 1L;
4620
4621 while (len > 0) {
4622 k = len < NMAX ? len : NMAX;
4623 len -= k;
4624 while (k >= 16) {
4625 DO16(buf);
4626 k -= 16;
4627 }
4628 if (k != 0) do {
4629 DO1(buf);
4630 } while (--k);
4631 s1 %= BASE;
4632 s2 %= BASE;
4633 }
4634 return (s2 << 16) | s1;
4635 }
4636