zlib.c revision 1.5 1 /* $NetBSD: zlib.c,v 1.5 1997/03/13 20:11:53 fvdl Exp $ */
2
3 /*
4 * This file is derived from various .h and .c files from the zlib-0.95
5 * distribution by Jean-loup Gailly and Mark Adler, with some additions
6 * by Paul Mackerras to aid in implementing Deflate compression and
7 * decompression for PPP packets. See zlib.h for conditions of
8 * distribution and use.
9 *
10 * Changes that have been made include:
11 * - changed functions not used outside this file to "local"
12 * - added minCompression parameter to deflateInit2
13 * - added Z_PACKET_FLUSH (see zlib.h for details)
14 * - added inflateIncomp
15 *
16 * Id: zlib.c,v 1.5 1997/03/04 03:26:35 paulus Exp
17 */
18
19 /*
20 * ==FILEVERSION 960926==
21 *
22 * This marker is used by the Linux installation script to determine
23 * whether an up-to-date version of this file is already installed.
24 */
25
26 /*+++++*/
27 /* zutil.h -- internal interface and configuration of the compression library
28 * Copyright (C) 1995 Jean-loup Gailly.
29 * For conditions of distribution and use, see copyright notice in zlib.h
30 */
31
32 /* WARNING: this file should *not* be used by applications. It is
33 part of the implementation of the compression library and is
34 subject to change. Applications should only use zlib.h.
35 */
36
37 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
38
39 #define _Z_UTIL_H
40
41 #include "zlib.h"
42
43 #ifndef local
44 # define local static
45 #endif
46 /* compile with -Dlocal if your debugger can't find static symbols */
47
48 #define FAR
49
50 typedef unsigned char uch;
51 typedef uch FAR uchf;
52 typedef unsigned short ush;
53 typedef ush FAR ushf;
54 typedef unsigned long ulg;
55
56 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
57
58 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
59 /* To be used only when the state is known to be valid */
60
61 #ifndef NULL
62 #define NULL ((void *) 0)
63 #endif
64
65 /* common constants */
66
67 #define DEFLATED 8
68
69 #ifndef DEF_WBITS
70 # define DEF_WBITS MAX_WBITS
71 #endif
72 /* default windowBits for decompression. MAX_WBITS is for compression only */
73
74 #if MAX_MEM_LEVEL >= 8
75 # define DEF_MEM_LEVEL 8
76 #else
77 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
78 #endif
79 /* default memLevel */
80
81 #define STORED_BLOCK 0
82 #define STATIC_TREES 1
83 #define DYN_TREES 2
84 /* The three kinds of block type */
85
86 #define MIN_MATCH 3
87 #define MAX_MATCH 258
88 /* The minimum and maximum match lengths */
89
90 /* functions */
91
92 #if defined(KERNEL) || defined(_KERNEL)
93 #include <sys/types.h>
94 #include <sys/time.h>
95 #include <sys/systm.h>
96 # define zmemcpy(d, s, n) bcopy((s), (d), (n))
97 # define zmemzero bzero
98
99 #else
100 #if defined(__KERNEL__)
101 /* Assume this is Linux */
102 #include <linux/string.h>
103 #define zmemcpy memcpy
104 #define zmemzero(dest, len) memset(dest, 0, len)
105
106 #else /* not kernel */
107 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
108 # define HAVE_MEMCPY
109 #endif
110 #ifdef HAVE_MEMCPY
111 # define zmemcpy memcpy
112 # define zmemzero(dest, len) memset(dest, 0, len)
113 #else
114 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
115 extern void zmemzero OF((Bytef* dest, uInt len));
116 #endif
117 #endif /* __KERNEL__ */
118 #endif /* KERNEL */
119
120 /* Diagnostic functions */
121 #ifdef DEBUG_ZLIB
122 # include <stdio.h>
123 # ifndef verbose
124 # define verbose 0
125 # endif
126 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
127 # define Trace(x) fprintf x
128 # define Tracev(x) {if (verbose) fprintf x ;}
129 # define Tracevv(x) {if (verbose>1) fprintf x ;}
130 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
131 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
132 #else
133 # define Assert(cond,msg)
134 # define Trace(x)
135 # define Tracev(x)
136 # define Tracevv(x)
137 # define Tracec(c,x)
138 # define Tracecv(c,x)
139 #endif
140
141
142 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
143
144 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
145 /* void zcfree OF((voidpf opaque, voidpf ptr)); */
146
147 #define ZALLOC(strm, items, size) \
148 (*((strm)->zalloc))((strm)->opaque, (items), (size))
149 #define ZFREE(strm, addr, size) \
150 (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
151 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
152
153 /* deflate.h -- internal compression state
154 * Copyright (C) 1995 Jean-loup Gailly
155 * For conditions of distribution and use, see copyright notice in zlib.h
156 */
157
158 /* WARNING: this file should *not* be used by applications. It is
159 part of the implementation of the compression library and is
160 subject to change. Applications should only use zlib.h.
161 */
162
163
164 /*+++++*/
165 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
166
167 /* ===========================================================================
168 * Internal compression state.
169 */
170
171 /* Data type */
172 #define BINARY 0
173 #define ASCII 1
174 #define UNKNOWN 2
175
176 #define LENGTH_CODES 29
177 /* number of length codes, not counting the special END_BLOCK code */
178
179 #define LITERALS 256
180 /* number of literal bytes 0..255 */
181
182 #define L_CODES (LITERALS+1+LENGTH_CODES)
183 /* number of Literal or Length codes, including the END_BLOCK code */
184
185 #define D_CODES 30
186 /* number of distance codes */
187
188 #define BL_CODES 19
189 /* number of codes used to transfer the bit lengths */
190
191 #define HEAP_SIZE (2*L_CODES+1)
192 /* maximum heap size */
193
194 #define MAX_BITS 15
195 /* All codes must not exceed MAX_BITS bits */
196
197 #define INIT_STATE 42
198 #define BUSY_STATE 113
199 #define FLUSH_STATE 124
200 #define FINISH_STATE 666
201 /* Stream status */
202
203
204 /* Data structure describing a single value and its code string. */
205 typedef struct ct_data_s {
206 union {
207 ush freq; /* frequency count */
208 ush code; /* bit string */
209 } fc;
210 union {
211 ush dad; /* father node in Huffman tree */
212 ush len; /* length of bit string */
213 } dl;
214 } FAR ct_data;
215
216 #define Freq fc.freq
217 #define Code fc.code
218 #define Dad dl.dad
219 #define Len dl.len
220
221 typedef struct static_tree_desc_s static_tree_desc;
222
223 typedef struct tree_desc_s {
224 ct_data *dyn_tree; /* the dynamic tree */
225 int max_code; /* largest code with non zero frequency */
226 static_tree_desc *stat_desc; /* the corresponding static tree */
227 } FAR tree_desc;
228
229 typedef ush Pos;
230 typedef Pos FAR Posf;
231 typedef unsigned IPos;
232
233 /* A Pos is an index in the character window. We use short instead of int to
234 * save space in the various tables. IPos is used only for parameter passing.
235 */
236
237 typedef struct deflate_state {
238 z_stream *strm; /* pointer back to this zlib stream */
239 int status; /* as the name implies */
240 Bytef *pending_buf; /* output still pending */
241 Bytef *pending_out; /* next pending byte to output to the stream */
242 int pending; /* nb of bytes in the pending buffer */
243 uLong adler; /* adler32 of uncompressed data */
244 int noheader; /* suppress zlib header and adler32 */
245 Byte data_type; /* UNKNOWN, BINARY or ASCII */
246 Byte method; /* STORED (for zip only) or DEFLATED */
247 int minCompr; /* min size decrease for Z_FLUSH_NOSTORE */
248
249 /* used by deflate.c: */
250
251 uInt w_size; /* LZ77 window size (32K by default) */
252 uInt w_bits; /* log2(w_size) (8..16) */
253 uInt w_mask; /* w_size - 1 */
254
255 Bytef *window;
256 /* Sliding window. Input bytes are read into the second half of the window,
257 * and move to the first half later to keep a dictionary of at least wSize
258 * bytes. With this organization, matches are limited to a distance of
259 * wSize-MAX_MATCH bytes, but this ensures that IO is always
260 * performed with a length multiple of the block size. Also, it limits
261 * the window size to 64K, which is quite useful on MSDOS.
262 * To do: use the user input buffer as sliding window.
263 */
264
265 ulg window_size;
266 /* Actual size of window: 2*wSize, except when the user input buffer
267 * is directly used as sliding window.
268 */
269
270 Posf *prev;
271 /* Link to older string with same hash index. To limit the size of this
272 * array to 64K, this link is maintained only for the last 32K strings.
273 * An index in this array is thus a window index modulo 32K.
274 */
275
276 Posf *head; /* Heads of the hash chains or NIL. */
277
278 uInt ins_h; /* hash index of string to be inserted */
279 uInt hash_size; /* number of elements in hash table */
280 uInt hash_bits; /* log2(hash_size) */
281 uInt hash_mask; /* hash_size-1 */
282
283 uInt hash_shift;
284 /* Number of bits by which ins_h must be shifted at each input
285 * step. It must be such that after MIN_MATCH steps, the oldest
286 * byte no longer takes part in the hash key, that is:
287 * hash_shift * MIN_MATCH >= hash_bits
288 */
289
290 long block_start;
291 /* Window position at the beginning of the current output block. Gets
292 * negative when the window is moved backwards.
293 */
294
295 uInt match_length; /* length of best match */
296 IPos prev_match; /* previous match */
297 int match_available; /* set if previous match exists */
298 uInt strstart; /* start of string to insert */
299 uInt match_start; /* start of matching string */
300 uInt lookahead; /* number of valid bytes ahead in window */
301
302 uInt prev_length;
303 /* Length of the best match at previous step. Matches not greater than this
304 * are discarded. This is used in the lazy match evaluation.
305 */
306
307 uInt max_chain_length;
308 /* To speed up deflation, hash chains are never searched beyond this
309 * length. A higher limit improves compression ratio but degrades the
310 * speed.
311 */
312
313 uInt max_lazy_match;
314 /* Attempt to find a better match only when the current match is strictly
315 * smaller than this value. This mechanism is used only for compression
316 * levels >= 4.
317 */
318 # define max_insert_length max_lazy_match
319 /* Insert new strings in the hash table only if the match length is not
320 * greater than this length. This saves time but degrades compression.
321 * max_insert_length is used only for compression levels <= 3.
322 */
323
324 int level; /* compression level (1..9) */
325 int strategy; /* favor or force Huffman coding*/
326
327 uInt good_match;
328 /* Use a faster search when the previous match is longer than this */
329
330 int nice_match; /* Stop searching when current match exceeds this */
331
332 /* used by trees.c: */
333 /* Didn't use ct_data typedef below to supress compiler warning */
334 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
335 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
336 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
337
338 struct tree_desc_s l_desc; /* desc. for literal tree */
339 struct tree_desc_s d_desc; /* desc. for distance tree */
340 struct tree_desc_s bl_desc; /* desc. for bit length tree */
341
342 ush bl_count[MAX_BITS+1];
343 /* number of codes at each bit length for an optimal tree */
344
345 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
346 int heap_len; /* number of elements in the heap */
347 int heap_max; /* element of largest frequency */
348 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
349 * The same heap array is used to build all trees.
350 */
351
352 uch depth[2*L_CODES+1];
353 /* Depth of each subtree used as tie breaker for trees of equal frequency
354 */
355
356 uchf *l_buf; /* buffer for literals or lengths */
357
358 uInt lit_bufsize;
359 /* Size of match buffer for literals/lengths. There are 4 reasons for
360 * limiting lit_bufsize to 64K:
361 * - frequencies can be kept in 16 bit counters
362 * - if compression is not successful for the first block, all input
363 * data is still in the window so we can still emit a stored block even
364 * when input comes from standard input. (This can also be done for
365 * all blocks if lit_bufsize is not greater than 32K.)
366 * - if compression is not successful for a file smaller than 64K, we can
367 * even emit a stored file instead of a stored block (saving 5 bytes).
368 * This is applicable only for zip (not gzip or zlib).
369 * - creating new Huffman trees less frequently may not provide fast
370 * adaptation to changes in the input data statistics. (Take for
371 * example a binary file with poorly compressible code followed by
372 * a highly compressible string table.) Smaller buffer sizes give
373 * fast adaptation but have of course the overhead of transmitting
374 * trees more frequently.
375 * - I can't count above 4
376 */
377
378 uInt last_lit; /* running index in l_buf */
379
380 ushf *d_buf;
381 /* Buffer for distances. To simplify the code, d_buf and l_buf have
382 * the same number of elements. To use different lengths, an extra flag
383 * array would be necessary.
384 */
385
386 ulg opt_len; /* bit length of current block with optimal trees */
387 ulg static_len; /* bit length of current block with static trees */
388 ulg compressed_len; /* total bit length of compressed file */
389 uInt matches; /* number of string matches in current block */
390 int last_eob_len; /* bit length of EOB code for last block */
391
392 #ifdef DEBUG_ZLIB
393 ulg bits_sent; /* bit length of the compressed data */
394 #endif
395
396 ush bi_buf;
397 /* Output buffer. bits are inserted starting at the bottom (least
398 * significant bits).
399 */
400 int bi_valid;
401 /* Number of valid bits in bi_buf. All bits above the last valid bit
402 * are always zero.
403 */
404
405 uInt blocks_in_packet;
406 /* Number of blocks produced since the last time Z_PACKET_FLUSH
407 * was used.
408 */
409
410 } FAR deflate_state;
411
412 /* Output a byte on the stream.
413 * IN assertion: there is enough room in pending_buf.
414 */
415 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
416
417
418 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
419 /* Minimum amount of lookahead, except at the end of the input file.
420 * See deflate.c for comments about the MIN_MATCH+1.
421 */
422
423 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
424 /* In order to simplify the code, particularly on 16 bit machines, match
425 * distances are limited to MAX_DIST instead of WSIZE.
426 */
427
428 /* in trees.c */
429 local void ct_init OF((deflate_state *s));
430 local int ct_tally OF((deflate_state *s, int dist, int lc));
431 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
432 int flush));
433 local void ct_align OF((deflate_state *s));
434 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
435 int eof));
436 local void ct_stored_type_only OF((deflate_state *s));
437
438
439 /*+++++*/
440 /* deflate.c -- compress data using the deflation algorithm
441 * Copyright (C) 1995 Jean-loup Gailly.
442 * For conditions of distribution and use, see copyright notice in zlib.h
443 */
444
445 /*
446 * ALGORITHM
447 *
448 * The "deflation" process depends on being able to identify portions
449 * of the input text which are identical to earlier input (within a
450 * sliding window trailing behind the input currently being processed).
451 *
452 * The most straightforward technique turns out to be the fastest for
453 * most input files: try all possible matches and select the longest.
454 * The key feature of this algorithm is that insertions into the string
455 * dictionary are very simple and thus fast, and deletions are avoided
456 * completely. Insertions are performed at each input character, whereas
457 * string matches are performed only when the previous match ends. So it
458 * is preferable to spend more time in matches to allow very fast string
459 * insertions and avoid deletions. The matching algorithm for small
460 * strings is inspired from that of Rabin & Karp. A brute force approach
461 * is used to find longer strings when a small match has been found.
462 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
463 * (by Leonid Broukhis).
464 * A previous version of this file used a more sophisticated algorithm
465 * (by Fiala and Greene) which is guaranteed to run in linear amortized
466 * time, but has a larger average cost, uses more memory and is patented.
467 * However the F&G algorithm may be faster for some highly redundant
468 * files if the parameter max_chain_length (described below) is too large.
469 *
470 * ACKNOWLEDGEMENTS
471 *
472 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
473 * I found it in 'freeze' written by Leonid Broukhis.
474 * Thanks to many people for bug reports and testing.
475 *
476 * REFERENCES
477 *
478 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
479 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
480 *
481 * A description of the Rabin and Karp algorithm is given in the book
482 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
483 *
484 * Fiala,E.R., and Greene,D.H.
485 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
486 *
487 */
488
489 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
490
491 #if 0
492 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
493 #endif
494 /*
495 If you use the zlib library in a product, an acknowledgment is welcome
496 in the documentation of your product. If for some reason you cannot
497 include such an acknowledgment, I would appreciate that you keep this
498 copyright string in the executable of your product.
499 */
500
501 #define NIL 0
502 /* Tail of hash chains */
503
504 #ifndef TOO_FAR
505 # define TOO_FAR 4096
506 #endif
507 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
508
509 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
510 /* Minimum amount of lookahead, except at the end of the input file.
511 * See deflate.c for comments about the MIN_MATCH+1.
512 */
513
514 /* Values for max_lazy_match, good_match and max_chain_length, depending on
515 * the desired pack level (0..9). The values given below have been tuned to
516 * exclude worst case performance for pathological files. Better values may be
517 * found for specific files.
518 */
519
520 typedef struct config_s {
521 ush good_length; /* reduce lazy search above this match length */
522 ush max_lazy; /* do not perform lazy search above this match length */
523 ush nice_length; /* quit search above this match length */
524 ush max_chain;
525 } config;
526
527 local config configuration_table[10] = {
528 /* good lazy nice chain */
529 /* 0 */ {0, 0, 0, 0}, /* store only */
530 /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
531 /* 2 */ {4, 5, 16, 8},
532 /* 3 */ {4, 6, 32, 32},
533
534 /* 4 */ {4, 4, 16, 16}, /* lazy matches */
535 /* 5 */ {8, 16, 32, 32},
536 /* 6 */ {8, 16, 128, 128},
537 /* 7 */ {8, 32, 128, 256},
538 /* 8 */ {32, 128, 258, 1024},
539 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
540
541 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
542 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
543 * meaning.
544 */
545
546 #define EQUAL 0
547 /* result of memcmp for equal strings */
548
549 /* ===========================================================================
550 * Prototypes for local functions.
551 */
552
553 local void fill_window OF((deflate_state *s));
554 local int deflate_fast OF((deflate_state *s, int flush));
555 local int deflate_slow OF((deflate_state *s, int flush));
556 local void lm_init OF((deflate_state *s));
557 local int longest_match OF((deflate_state *s, IPos cur_match));
558 local void putShortMSB OF((deflate_state *s, uInt b));
559 local void flush_pending OF((z_stream *strm));
560 local int read_buf OF((z_stream *strm, charf *buf, unsigned size));
561 #ifdef ASMV
562 void match_init OF((void)); /* asm code initialization */
563 #endif
564
565 #ifdef DEBUG_ZLIB
566 local void check_match OF((deflate_state *s, IPos start, IPos match,
567 int length));
568 #endif
569
570
571 /* ===========================================================================
572 * Update a hash value with the given input byte
573 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
574 * input characters, so that a running hash key can be computed from the
575 * previous key instead of complete recalculation each time.
576 */
577 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
578
579
580 /* ===========================================================================
581 * Insert string str in the dictionary and set match_head to the previous head
582 * of the hash chain (the most recent string with same hash key). Return
583 * the previous length of the hash chain.
584 * IN assertion: all calls to to INSERT_STRING are made with consecutive
585 * input characters and the first MIN_MATCH bytes of str are valid
586 * (except for the last MIN_MATCH-1 bytes of the input file).
587 */
588 #define INSERT_STRING(s, str, match_head) \
589 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
590 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
591 s->head[s->ins_h] = (str))
592
593 /* ===========================================================================
594 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
595 * prev[] will be initialized on the fly.
596 */
597 #define CLEAR_HASH(s) \
598 s->head[s->hash_size-1] = NIL; \
599 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
600
601 /* ========================================================================= */
602 int deflateInit (strm, level)
603 z_stream *strm;
604 int level;
605 {
606 return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
607 0, 0);
608 /* To do: ignore strm->next_in if we use it as window */
609 }
610
611 /* ========================================================================= */
612 int deflateInit2 (strm, level, method, windowBits, memLevel,
613 strategy, minCompression)
614 z_stream *strm;
615 int level;
616 int method;
617 int windowBits;
618 int memLevel;
619 int strategy;
620 int minCompression;
621 {
622 deflate_state *s;
623 int noheader = 0;
624
625 if (strm == Z_NULL) return Z_STREAM_ERROR;
626
627 strm->msg = Z_NULL;
628 /* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
629 /* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
630
631 if (level == Z_DEFAULT_COMPRESSION) level = 6;
632
633 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
634 noheader = 1;
635 windowBits = -windowBits;
636 }
637 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
638 windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
639 return Z_STREAM_ERROR;
640 }
641 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
642 if (s == Z_NULL) return Z_MEM_ERROR;
643 strm->state = (struct internal_state FAR *)s;
644 s->strm = strm;
645
646 s->noheader = noheader;
647 s->w_bits = windowBits;
648 s->w_size = 1 << s->w_bits;
649 s->w_mask = s->w_size - 1;
650
651 s->hash_bits = memLevel + 7;
652 s->hash_size = 1 << s->hash_bits;
653 s->hash_mask = s->hash_size - 1;
654 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
655
656 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
657 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
658 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
659
660 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
661
662 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
663
664 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
665 s->pending_buf == Z_NULL) {
666 strm->msg = z_errmsg[1-Z_MEM_ERROR];
667 deflateEnd (strm);
668 return Z_MEM_ERROR;
669 }
670 s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
671 s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
672 /* We overlay pending_buf and d_buf+l_buf. This works since the average
673 * output size for (length,distance) codes is <= 32 bits (worst case
674 * is 15+15+13=33).
675 */
676
677 s->level = level;
678 s->strategy = strategy;
679 s->method = (Byte)method;
680 s->minCompr = minCompression;
681 s->blocks_in_packet = 0;
682
683 return deflateReset(strm);
684 }
685
686 /* ========================================================================= */
687 int deflateReset (strm)
688 z_stream *strm;
689 {
690 deflate_state *s;
691
692 if (strm == Z_NULL || strm->state == Z_NULL ||
693 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
694
695 strm->total_in = strm->total_out = 0;
696 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
697 strm->data_type = Z_UNKNOWN;
698
699 s = (deflate_state *)strm->state;
700 s->pending = 0;
701 s->pending_out = s->pending_buf;
702
703 if (s->noheader < 0) {
704 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
705 }
706 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
707 s->adler = 1;
708
709 ct_init(s);
710 lm_init(s);
711
712 return Z_OK;
713 }
714
715 /* =========================================================================
716 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
717 * IN assertion: the stream state is correct and there is enough room in
718 * pending_buf.
719 */
720 local void putShortMSB (s, b)
721 deflate_state *s;
722 uInt b;
723 {
724 put_byte(s, (Byte)(b >> 8));
725 put_byte(s, (Byte)(b & 0xff));
726 }
727
728 /* =========================================================================
729 * Flush as much pending output as possible.
730 */
731 local void flush_pending(strm)
732 z_stream *strm;
733 {
734 deflate_state *state = (deflate_state *) strm->state;
735 unsigned len = state->pending;
736
737 if (len > strm->avail_out) len = strm->avail_out;
738 if (len == 0) return;
739
740 if (strm->next_out != NULL) {
741 zmemcpy(strm->next_out, state->pending_out, len);
742 strm->next_out += len;
743 }
744 state->pending_out += len;
745 strm->total_out += len;
746 strm->avail_out -= len;
747 state->pending -= len;
748 if (state->pending == 0) {
749 state->pending_out = state->pending_buf;
750 }
751 }
752
753 /* ========================================================================= */
754 int deflate (strm, flush)
755 z_stream *strm;
756 int flush;
757 {
758 deflate_state *state = (deflate_state *) strm->state;
759
760 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
761
762 if (strm->next_in == Z_NULL && strm->avail_in != 0) {
763 ERR_RETURN(strm, Z_STREAM_ERROR);
764 }
765 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
766
767 state->strm = strm; /* just in case */
768
769 /* Write the zlib header */
770 if (state->status == INIT_STATE) {
771
772 uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
773 uInt level_flags = (state->level-1) >> 1;
774
775 if (level_flags > 3) level_flags = 3;
776 header |= (level_flags << 6);
777 header += 31 - (header % 31);
778
779 state->status = BUSY_STATE;
780 putShortMSB(state, header);
781 }
782
783 /* Flush as much pending output as possible */
784 if (state->pending != 0) {
785 flush_pending(strm);
786 if (strm->avail_out == 0) return Z_OK;
787 }
788
789 /* If we came back in here to get the last output from
790 * a previous flush, we're done for now.
791 */
792 if (state->status == FLUSH_STATE) {
793 state->status = BUSY_STATE;
794 if (flush != Z_NO_FLUSH && flush != Z_FINISH)
795 return Z_OK;
796 }
797
798 /* User must not provide more input after the first FINISH: */
799 if (state->status == FINISH_STATE && strm->avail_in != 0) {
800 ERR_RETURN(strm, Z_BUF_ERROR);
801 }
802
803 /* Start a new block or continue the current one.
804 */
805 if (strm->avail_in != 0 || state->lookahead != 0 ||
806 (flush == Z_FINISH && state->status != FINISH_STATE)) {
807 int quit;
808
809 if (flush == Z_FINISH) {
810 state->status = FINISH_STATE;
811 }
812 if (state->level <= 3) {
813 quit = deflate_fast(state, flush);
814 } else {
815 quit = deflate_slow(state, flush);
816 }
817 if (quit || strm->avail_out == 0)
818 return Z_OK;
819 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
820 * of deflate should use the same flush parameter to make sure
821 * that the flush is complete. So we don't have to output an
822 * empty block here, this will be done at next call. This also
823 * ensures that for a very small output buffer, we emit at most
824 * one empty block.
825 */
826 }
827
828 /* If a flush was requested, we have a little more to output now. */
829 if (flush != Z_NO_FLUSH && flush != Z_FINISH
830 && state->status != FINISH_STATE) {
831 switch (flush) {
832 case Z_PARTIAL_FLUSH:
833 ct_align(state);
834 break;
835 case Z_PACKET_FLUSH:
836 /* Output just the 3-bit `stored' block type value,
837 but not a zero length. */
838 ct_stored_type_only(state);
839 break;
840 default:
841 ct_stored_block(state, (char*)0, 0L, 0);
842 /* For a full flush, this empty block will be recognized
843 * as a special marker by inflate_sync().
844 */
845 if (flush == Z_FULL_FLUSH) {
846 CLEAR_HASH(state); /* forget history */
847 }
848 }
849 flush_pending(strm);
850 if (strm->avail_out == 0) {
851 /* We'll have to come back to get the rest of the output;
852 * this ensures we don't output a second zero-length stored
853 * block (or whatever).
854 */
855 state->status = FLUSH_STATE;
856 return Z_OK;
857 }
858 }
859
860 Assert(strm->avail_out > 0, "bug2");
861
862 if (flush != Z_FINISH) return Z_OK;
863 if (state->noheader) return Z_STREAM_END;
864
865 /* Write the zlib trailer (adler32) */
866 putShortMSB(state, (uInt)(state->adler >> 16));
867 putShortMSB(state, (uInt)(state->adler & 0xffff));
868 flush_pending(strm);
869 /* If avail_out is zero, the application will call deflate again
870 * to flush the rest.
871 */
872 state->noheader = -1; /* write the trailer only once! */
873 return state->pending != 0 ? Z_OK : Z_STREAM_END;
874 }
875
876 /* ========================================================================= */
877 int deflateEnd (strm)
878 z_stream *strm;
879 {
880 deflate_state *state = (deflate_state *) strm->state;
881
882 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
883
884 TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
885 TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
886 TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
887 TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
888
889 ZFREE(strm, state, sizeof(deflate_state));
890 strm->state = Z_NULL;
891
892 return Z_OK;
893 }
894
895 /* ===========================================================================
896 * Read a new buffer from the current input stream, update the adler32
897 * and total number of bytes read.
898 */
899 local int read_buf(strm, buf, size)
900 z_stream *strm;
901 charf *buf;
902 unsigned size;
903 {
904 unsigned len = strm->avail_in;
905 deflate_state *state = (deflate_state *) strm->state;
906
907 if (len > size) len = size;
908 if (len == 0) return 0;
909
910 strm->avail_in -= len;
911
912 if (!state->noheader) {
913 state->adler = adler32(state->adler, strm->next_in, len);
914 }
915 zmemcpy(buf, strm->next_in, len);
916 strm->next_in += len;
917 strm->total_in += len;
918
919 return (int)len;
920 }
921
922 /* ===========================================================================
923 * Initialize the "longest match" routines for a new zlib stream
924 */
925 local void lm_init (s)
926 deflate_state *s;
927 {
928 s->window_size = (ulg)2L*s->w_size;
929
930 CLEAR_HASH(s);
931
932 /* Set the default configuration parameters:
933 */
934 s->max_lazy_match = configuration_table[s->level].max_lazy;
935 s->good_match = configuration_table[s->level].good_length;
936 s->nice_match = configuration_table[s->level].nice_length;
937 s->max_chain_length = configuration_table[s->level].max_chain;
938
939 s->strstart = 0;
940 s->block_start = 0L;
941 s->lookahead = 0;
942 s->match_length = MIN_MATCH-1;
943 s->match_available = 0;
944 s->ins_h = 0;
945 #ifdef ASMV
946 match_init(); /* initialize the asm code */
947 #endif
948 }
949
950 /* ===========================================================================
951 * Set match_start to the longest match starting at the given string and
952 * return its length. Matches shorter or equal to prev_length are discarded,
953 * in which case the result is equal to prev_length and match_start is
954 * garbage.
955 * IN assertions: cur_match is the head of the hash chain for the current
956 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
957 */
958 #ifndef ASMV
959 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
960 * match.S. The code will be functionally equivalent.
961 */
962 local int longest_match(s, cur_match)
963 deflate_state *s;
964 IPos cur_match; /* current match */
965 {
966 unsigned chain_length = s->max_chain_length;/* max hash chain length */
967 register Bytef *scan = s->window + s->strstart; /* current string */
968 register Bytef *match; /* matched string */
969 register int len; /* length of current match */
970 int best_len = s->prev_length; /* best match length so far */
971 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
972 s->strstart - (IPos)MAX_DIST(s) : NIL;
973 /* Stop when cur_match becomes <= limit. To simplify the code,
974 * we prevent matches with the string of window index 0.
975 */
976 Posf *prev = s->prev;
977 uInt wmask = s->w_mask;
978
979 #ifdef UNALIGNED_OK
980 /* Compare two bytes at a time. Note: this is not always beneficial.
981 * Try with and without -DUNALIGNED_OK to check.
982 */
983 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
984 register ush scan_start = *(ushf*)scan;
985 register ush scan_end = *(ushf*)(scan+best_len-1);
986 #else
987 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
988 register Byte scan_end1 = scan[best_len-1];
989 register Byte scan_end = scan[best_len];
990 #endif
991
992 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
993 * It is easy to get rid of this optimization if necessary.
994 */
995 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
996
997 /* Do not waste too much time if we already have a good match: */
998 if (s->prev_length >= s->good_match) {
999 chain_length >>= 2;
1000 }
1001 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1002
1003 do {
1004 Assert(cur_match < s->strstart, "no future");
1005 match = s->window + cur_match;
1006
1007 /* Skip to next match if the match length cannot increase
1008 * or if the match length is less than 2:
1009 */
1010 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1011 /* This code assumes sizeof(unsigned short) == 2. Do not use
1012 * UNALIGNED_OK if your compiler uses a different size.
1013 */
1014 if (*(ushf*)(match+best_len-1) != scan_end ||
1015 *(ushf*)match != scan_start) continue;
1016
1017 /* It is not necessary to compare scan[2] and match[2] since they are
1018 * always equal when the other bytes match, given that the hash keys
1019 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1020 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1021 * lookahead only every 4th comparison; the 128th check will be made
1022 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1023 * necessary to put more guard bytes at the end of the window, or
1024 * to check more often for insufficient lookahead.
1025 */
1026 Assert(scan[2] == match[2], "scan[2]?");
1027 scan++, match++;
1028 do {
1029 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1030 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1031 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1032 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1033 scan < strend);
1034 /* The funny "do {}" generates better code on most compilers */
1035
1036 /* Here, scan <= window+strstart+257 */
1037 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1038 if (*scan == *match) scan++;
1039
1040 len = (MAX_MATCH - 1) - (int)(strend-scan);
1041 scan = strend - (MAX_MATCH-1);
1042
1043 #else /* UNALIGNED_OK */
1044
1045 if (match[best_len] != scan_end ||
1046 match[best_len-1] != scan_end1 ||
1047 *match != *scan ||
1048 *++match != scan[1]) continue;
1049
1050 /* The check at best_len-1 can be removed because it will be made
1051 * again later. (This heuristic is not always a win.)
1052 * It is not necessary to compare scan[2] and match[2] since they
1053 * are always equal when the other bytes match, given that
1054 * the hash keys are equal and that HASH_BITS >= 8.
1055 */
1056 scan += 2, match++;
1057 Assert(*scan == *match, "match[2]?");
1058
1059 /* We check for insufficient lookahead only every 8th comparison;
1060 * the 256th check will be made at strstart+258.
1061 */
1062 do {
1063 } while (*++scan == *++match && *++scan == *++match &&
1064 *++scan == *++match && *++scan == *++match &&
1065 *++scan == *++match && *++scan == *++match &&
1066 *++scan == *++match && *++scan == *++match &&
1067 scan < strend);
1068
1069 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1070
1071 len = MAX_MATCH - (int)(strend - scan);
1072 scan = strend - MAX_MATCH;
1073
1074 #endif /* UNALIGNED_OK */
1075
1076 if (len > best_len) {
1077 s->match_start = cur_match;
1078 best_len = len;
1079 if (len >= s->nice_match) break;
1080 #ifdef UNALIGNED_OK
1081 scan_end = *(ushf*)(scan+best_len-1);
1082 #else
1083 scan_end1 = scan[best_len-1];
1084 scan_end = scan[best_len];
1085 #endif
1086 }
1087 } while ((cur_match = prev[cur_match & wmask]) > limit
1088 && --chain_length != 0);
1089
1090 return best_len;
1091 }
1092 #endif /* ASMV */
1093
1094 #ifdef DEBUG_ZLIB
1095 /* ===========================================================================
1096 * Check that the match at match_start is indeed a match.
1097 */
1098 local void check_match(s, start, match, length)
1099 deflate_state *s;
1100 IPos start, match;
1101 int length;
1102 {
1103 /* check that the match is indeed a match */
1104 if (memcmp((charf *)s->window + match,
1105 (charf *)s->window + start, length) != EQUAL) {
1106 fprintf(stderr,
1107 " start %u, match %u, length %d\n",
1108 start, match, length);
1109 do { fprintf(stderr, "%c%c", s->window[match++],
1110 s->window[start++]); } while (--length != 0);
1111 z_error("invalid match");
1112 }
1113 if (verbose > 1) {
1114 fprintf(stderr,"\\[%d,%d]", start-match, length);
1115 do { putc(s->window[start++], stderr); } while (--length != 0);
1116 }
1117 }
1118 #else
1119 # define check_match(s, start, match, length)
1120 #endif
1121
1122 /* ===========================================================================
1123 * Fill the window when the lookahead becomes insufficient.
1124 * Updates strstart and lookahead.
1125 *
1126 * IN assertion: lookahead < MIN_LOOKAHEAD
1127 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1128 * At least one byte has been read, or avail_in == 0; reads are
1129 * performed for at least two bytes (required for the zip translate_eol
1130 * option -- not supported here).
1131 */
1132 local void fill_window(s)
1133 deflate_state *s;
1134 {
1135 register unsigned n, m;
1136 register Posf *p;
1137 unsigned more; /* Amount of free space at the end of the window. */
1138 uInt wsize = s->w_size;
1139
1140 do {
1141 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1142
1143 /* Deal with !@#$% 64K limit: */
1144 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1145 more = wsize;
1146 } else if (more == (unsigned)(-1)) {
1147 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1148 * and lookahead == 1 (input done one byte at time)
1149 */
1150 more--;
1151
1152 /* If the window is almost full and there is insufficient lookahead,
1153 * move the upper half to the lower one to make room in the upper half.
1154 */
1155 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1156
1157 /* By the IN assertion, the window is not empty so we can't confuse
1158 * more == 0 with more == 64K on a 16 bit machine.
1159 */
1160 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1161 (unsigned)wsize);
1162 s->match_start -= wsize;
1163 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1164
1165 s->block_start -= (long) wsize;
1166
1167 /* Slide the hash table (could be avoided with 32 bit values
1168 at the expense of memory usage):
1169 */
1170 n = s->hash_size;
1171 p = &s->head[n];
1172 do {
1173 m = *--p;
1174 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1175 } while (--n);
1176
1177 n = wsize;
1178 p = &s->prev[n];
1179 do {
1180 m = *--p;
1181 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1182 /* If n is not on any hash chain, prev[n] is garbage but
1183 * its value will never be used.
1184 */
1185 } while (--n);
1186
1187 more += wsize;
1188 }
1189 if (s->strm->avail_in == 0) return;
1190
1191 /* If there was no sliding:
1192 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1193 * more == window_size - lookahead - strstart
1194 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1195 * => more >= window_size - 2*WSIZE + 2
1196 * In the BIG_MEM or MMAP case (not yet supported),
1197 * window_size == input_size + MIN_LOOKAHEAD &&
1198 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1199 * Otherwise, window_size == 2*WSIZE so more >= 2.
1200 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1201 */
1202 Assert(more >= 2, "more < 2");
1203
1204 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1205 more);
1206 s->lookahead += n;
1207
1208 /* Initialize the hash value now that we have some input: */
1209 if (s->lookahead >= MIN_MATCH) {
1210 s->ins_h = s->window[s->strstart];
1211 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1212 #if MIN_MATCH != 3
1213 Call UPDATE_HASH() MIN_MATCH-3 more times
1214 #endif
1215 }
1216 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1217 * but this is not important since only literal bytes will be emitted.
1218 */
1219
1220 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1221 }
1222
1223 /* ===========================================================================
1224 * Flush the current block, with given end-of-file flag.
1225 * IN assertion: strstart is set to the end of the current match.
1226 */
1227 #define FLUSH_BLOCK_ONLY(s, flush) { \
1228 ct_flush_block(s, (s->block_start >= 0L ? \
1229 (charf *)&s->window[(unsigned)s->block_start] : \
1230 (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1231 s->block_start = s->strstart; \
1232 flush_pending(s->strm); \
1233 Tracev((stderr,"[FLUSH]")); \
1234 }
1235
1236 /* Same but force premature exit if necessary. */
1237 #define FLUSH_BLOCK(s, flush) { \
1238 FLUSH_BLOCK_ONLY(s, flush); \
1239 if (s->strm->avail_out == 0) return 1; \
1240 }
1241
1242 /* ===========================================================================
1243 * Compress as much as possible from the input stream, return true if
1244 * processing was terminated prematurely (no more input or output space).
1245 * This function does not perform lazy evaluationof matches and inserts
1246 * new strings in the dictionary only for unmatched strings or for short
1247 * matches. It is used only for the fast compression options.
1248 */
1249 local int deflate_fast(s, flush)
1250 deflate_state *s;
1251 int flush;
1252 {
1253 IPos hash_head = NIL; /* head of the hash chain */
1254 int bflush; /* set if current block must be flushed */
1255
1256 s->prev_length = MIN_MATCH-1;
1257
1258 for (;;) {
1259 /* Make sure that we always have enough lookahead, except
1260 * at the end of the input file. We need MAX_MATCH bytes
1261 * for the next match, plus MIN_MATCH bytes to insert the
1262 * string following the next match.
1263 */
1264 if (s->lookahead < MIN_LOOKAHEAD) {
1265 fill_window(s);
1266 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1267
1268 if (s->lookahead == 0) break; /* flush the current block */
1269 }
1270
1271 /* Insert the string window[strstart .. strstart+2] in the
1272 * dictionary, and set hash_head to the head of the hash chain:
1273 */
1274 if (s->lookahead >= MIN_MATCH) {
1275 INSERT_STRING(s, s->strstart, hash_head);
1276 }
1277
1278 /* Find the longest match, discarding those <= prev_length.
1279 * At this point we have always match_length < MIN_MATCH
1280 */
1281 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1282 /* To simplify the code, we prevent matches with the string
1283 * of window index 0 (in particular we have to avoid a match
1284 * of the string with itself at the start of the input file).
1285 */
1286 if (s->strategy != Z_HUFFMAN_ONLY) {
1287 s->match_length = longest_match (s, hash_head);
1288 }
1289 /* longest_match() sets match_start */
1290
1291 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1292 }
1293 if (s->match_length >= MIN_MATCH) {
1294 check_match(s, s->strstart, s->match_start, s->match_length);
1295
1296 bflush = ct_tally(s, s->strstart - s->match_start,
1297 s->match_length - MIN_MATCH);
1298
1299 s->lookahead -= s->match_length;
1300
1301 /* Insert new strings in the hash table only if the match length
1302 * is not too large. This saves time but degrades compression.
1303 */
1304 if (s->match_length <= s->max_insert_length &&
1305 s->lookahead >= MIN_MATCH) {
1306 s->match_length--; /* string at strstart already in hash table */
1307 do {
1308 s->strstart++;
1309 INSERT_STRING(s, s->strstart, hash_head);
1310 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1311 * always MIN_MATCH bytes ahead.
1312 */
1313 } while (--s->match_length != 0);
1314 s->strstart++;
1315 } else {
1316 s->strstart += s->match_length;
1317 s->match_length = 0;
1318 s->ins_h = s->window[s->strstart];
1319 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1320 #if MIN_MATCH != 3
1321 Call UPDATE_HASH() MIN_MATCH-3 more times
1322 #endif
1323 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1324 * matter since it will be recomputed at next deflate call.
1325 */
1326 }
1327 } else {
1328 /* No match, output a literal byte */
1329 Tracevv((stderr,"%c", s->window[s->strstart]));
1330 bflush = ct_tally (s, 0, s->window[s->strstart]);
1331 s->lookahead--;
1332 s->strstart++;
1333 }
1334 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1335 }
1336 FLUSH_BLOCK(s, flush);
1337 return 0; /* normal exit */
1338 }
1339
1340 /* ===========================================================================
1341 * Same as above, but achieves better compression. We use a lazy
1342 * evaluation for matches: a match is finally adopted only if there is
1343 * no better match at the next window position.
1344 */
1345 local int deflate_slow(s, flush)
1346 deflate_state *s;
1347 int flush;
1348 {
1349 IPos hash_head = NIL; /* head of hash chain */
1350 int bflush; /* set if current block must be flushed */
1351
1352 /* Process the input block. */
1353 for (;;) {
1354 /* Make sure that we always have enough lookahead, except
1355 * at the end of the input file. We need MAX_MATCH bytes
1356 * for the next match, plus MIN_MATCH bytes to insert the
1357 * string following the next match.
1358 */
1359 if (s->lookahead < MIN_LOOKAHEAD) {
1360 fill_window(s);
1361 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1362
1363 if (s->lookahead == 0) break; /* flush the current block */
1364 }
1365
1366 /* Insert the string window[strstart .. strstart+2] in the
1367 * dictionary, and set hash_head to the head of the hash chain:
1368 */
1369 if (s->lookahead >= MIN_MATCH) {
1370 INSERT_STRING(s, s->strstart, hash_head);
1371 }
1372
1373 /* Find the longest match, discarding those <= prev_length.
1374 */
1375 s->prev_length = s->match_length, s->prev_match = s->match_start;
1376 s->match_length = MIN_MATCH-1;
1377
1378 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1379 s->strstart - hash_head <= MAX_DIST(s)) {
1380 /* To simplify the code, we prevent matches with the string
1381 * of window index 0 (in particular we have to avoid a match
1382 * of the string with itself at the start of the input file).
1383 */
1384 if (s->strategy != Z_HUFFMAN_ONLY) {
1385 s->match_length = longest_match (s, hash_head);
1386 }
1387 /* longest_match() sets match_start */
1388 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1389
1390 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1391 (s->match_length == MIN_MATCH &&
1392 s->strstart - s->match_start > TOO_FAR))) {
1393
1394 /* If prev_match is also MIN_MATCH, match_start is garbage
1395 * but we will ignore the current match anyway.
1396 */
1397 s->match_length = MIN_MATCH-1;
1398 }
1399 }
1400 /* If there was a match at the previous step and the current
1401 * match is not better, output the previous match:
1402 */
1403 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1404 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1405 /* Do not insert strings in hash table beyond this. */
1406
1407 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1408
1409 bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1410 s->prev_length - MIN_MATCH);
1411
1412 /* Insert in hash table all strings up to the end of the match.
1413 * strstart-1 and strstart are already inserted. If there is not
1414 * enough lookahead, the last two strings are not inserted in
1415 * the hash table.
1416 */
1417 s->lookahead -= s->prev_length-1;
1418 s->prev_length -= 2;
1419 do {
1420 if (++s->strstart <= max_insert) {
1421 INSERT_STRING(s, s->strstart, hash_head);
1422 }
1423 } while (--s->prev_length != 0);
1424 s->match_available = 0;
1425 s->match_length = MIN_MATCH-1;
1426 s->strstart++;
1427
1428 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1429
1430 } else if (s->match_available) {
1431 /* If there was no match at the previous position, output a
1432 * single literal. If there was a match but the current match
1433 * is longer, truncate the previous match to a single literal.
1434 */
1435 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1436 if (ct_tally (s, 0, s->window[s->strstart-1])) {
1437 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1438 }
1439 s->strstart++;
1440 s->lookahead--;
1441 if (s->strm->avail_out == 0) return 1;
1442 } else {
1443 /* There is no previous match to compare with, wait for
1444 * the next step to decide.
1445 */
1446 s->match_available = 1;
1447 s->strstart++;
1448 s->lookahead--;
1449 }
1450 }
1451 Assert (flush != Z_NO_FLUSH, "no flush?");
1452 if (s->match_available) {
1453 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1454 ct_tally (s, 0, s->window[s->strstart-1]);
1455 s->match_available = 0;
1456 }
1457 FLUSH_BLOCK(s, flush);
1458 return 0;
1459 }
1460
1461
1462 /*+++++*/
1463 /* trees.c -- output deflated data using Huffman coding
1464 * Copyright (C) 1995 Jean-loup Gailly
1465 * For conditions of distribution and use, see copyright notice in zlib.h
1466 */
1467
1468 /*
1469 * ALGORITHM
1470 *
1471 * The "deflation" process uses several Huffman trees. The more
1472 * common source values are represented by shorter bit sequences.
1473 *
1474 * Each code tree is stored in a compressed form which is itself
1475 * a Huffman encoding of the lengths of all the code strings (in
1476 * ascending order by source values). The actual code strings are
1477 * reconstructed from the lengths in the inflate process, as described
1478 * in the deflate specification.
1479 *
1480 * REFERENCES
1481 *
1482 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1483 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1484 *
1485 * Storer, James A.
1486 * Data Compression: Methods and Theory, pp. 49-50.
1487 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1488 *
1489 * Sedgewick, R.
1490 * Algorithms, p290.
1491 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1492 */
1493
1494 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1495
1496 #ifdef DEBUG_ZLIB
1497 # include <ctype.h>
1498 #endif
1499
1500 /* ===========================================================================
1501 * Constants
1502 */
1503
1504 #define MAX_BL_BITS 7
1505 /* Bit length codes must not exceed MAX_BL_BITS bits */
1506
1507 #define END_BLOCK 256
1508 /* end of block literal code */
1509
1510 #define REP_3_6 16
1511 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1512
1513 #define REPZ_3_10 17
1514 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1515
1516 #define REPZ_11_138 18
1517 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1518
1519 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1520 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1521
1522 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1523 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1524
1525 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1526 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1527
1528 local uch bl_order[BL_CODES]
1529 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1530 /* The lengths of the bit length codes are sent in order of decreasing
1531 * probability, to avoid transmitting the lengths for unused bit length codes.
1532 */
1533
1534 #define Buf_size (8 * 2*sizeof(char))
1535 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1536 * more than 16 bits on some systems.)
1537 */
1538
1539 /* ===========================================================================
1540 * Local data. These are initialized only once.
1541 * To do: initialize at compile time to be completely reentrant. ???
1542 */
1543
1544 local ct_data static_ltree[L_CODES+2];
1545 /* The static literal tree. Since the bit lengths are imposed, there is no
1546 * need for the L_CODES extra codes used during heap construction. However
1547 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1548 * below).
1549 */
1550
1551 local ct_data static_dtree[D_CODES];
1552 /* The static distance tree. (Actually a trivial tree since all codes use
1553 * 5 bits.)
1554 */
1555
1556 local uch dist_code[512];
1557 /* distance codes. The first 256 values correspond to the distances
1558 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1559 * the 15 bit distances.
1560 */
1561
1562 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1563 /* length code for each normalized match length (0 == MIN_MATCH) */
1564
1565 local int base_length[LENGTH_CODES];
1566 /* First normalized length for each code (0 = MIN_MATCH) */
1567
1568 local int base_dist[D_CODES];
1569 /* First normalized distance for each code (0 = distance of 1) */
1570
1571 struct static_tree_desc_s {
1572 ct_data *static_tree; /* static tree or NULL */
1573 intf *extra_bits; /* extra bits for each code or NULL */
1574 int extra_base; /* base index for extra_bits */
1575 int elems; /* max number of elements in the tree */
1576 int max_length; /* max bit length for the codes */
1577 };
1578
1579 local static_tree_desc static_l_desc =
1580 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1581
1582 local static_tree_desc static_d_desc =
1583 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1584
1585 local static_tree_desc static_bl_desc =
1586 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1587
1588 /* ===========================================================================
1589 * Local (static) routines in this file.
1590 */
1591
1592 local void ct_static_init OF((void));
1593 local void init_block OF((deflate_state *s));
1594 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1595 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1596 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1597 local void build_tree OF((deflate_state *s, tree_desc *desc));
1598 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1599 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1600 local int build_bl_tree OF((deflate_state *s));
1601 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1602 int blcodes));
1603 local void compress_block OF((deflate_state *s, ct_data *ltree,
1604 ct_data *dtree));
1605 local void set_data_type OF((deflate_state *s));
1606 local unsigned bi_reverse OF((unsigned value, int length));
1607 local void bi_windup OF((deflate_state *s));
1608 local void bi_flush OF((deflate_state *s));
1609 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1610 int header));
1611
1612 #ifndef DEBUG_ZLIB
1613 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1614 /* Send a code of the given tree. c and tree must not have side effects */
1615
1616 #else /* DEBUG_ZLIB */
1617 # define send_code(s, c, tree) \
1618 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1619 send_bits(s, tree[c].Code, tree[c].Len); }
1620 #endif
1621
1622 #define d_code(dist) \
1623 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1624 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1625 * must not have side effects. dist_code[256] and dist_code[257] are never
1626 * used.
1627 */
1628
1629 /* ===========================================================================
1630 * Output a short LSB first on the stream.
1631 * IN assertion: there is enough room in pendingBuf.
1632 */
1633 #define put_short(s, w) { \
1634 put_byte(s, (uch)((w) & 0xff)); \
1635 put_byte(s, (uch)((ush)(w) >> 8)); \
1636 }
1637
1638 /* ===========================================================================
1639 * Send a value on a given number of bits.
1640 * IN assertion: length <= 16 and value fits in length bits.
1641 */
1642 #ifdef DEBUG_ZLIB
1643 local void send_bits OF((deflate_state *s, int value, int length));
1644
1645 local void send_bits(s, value, length)
1646 deflate_state *s;
1647 int value; /* value to send */
1648 int length; /* number of bits */
1649 {
1650 Tracev((stderr," l %2d v %4x ", length, value));
1651 Assert(length > 0 && length <= 15, "invalid length");
1652 s->bits_sent += (ulg)length;
1653
1654 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1655 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1656 * unused bits in value.
1657 */
1658 if (s->bi_valid > (int)Buf_size - length) {
1659 s->bi_buf |= (value << s->bi_valid);
1660 put_short(s, s->bi_buf);
1661 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1662 s->bi_valid += length - Buf_size;
1663 } else {
1664 s->bi_buf |= value << s->bi_valid;
1665 s->bi_valid += length;
1666 }
1667 }
1668 #else /* !DEBUG_ZLIB */
1669
1670 #define send_bits(s, value, length) \
1671 { int len = length;\
1672 if (s->bi_valid > (int)Buf_size - len) {\
1673 int val = value;\
1674 s->bi_buf |= (val << s->bi_valid);\
1675 put_short(s, s->bi_buf);\
1676 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1677 s->bi_valid += len - Buf_size;\
1678 } else {\
1679 s->bi_buf |= (value) << s->bi_valid;\
1680 s->bi_valid += len;\
1681 }\
1682 }
1683 #endif /* DEBUG_ZLIB */
1684
1685
1686 #define MAX(a,b) (a >= b ? a : b)
1687 /* the arguments must not have side effects */
1688
1689 /* ===========================================================================
1690 * Initialize the various 'constant' tables.
1691 * To do: do this at compile time.
1692 */
1693 local void ct_static_init()
1694 {
1695 int n; /* iterates over tree elements */
1696 int bits; /* bit counter */
1697 int length; /* length value */
1698 int code; /* code value */
1699 int dist; /* distance index */
1700 ush bl_count[MAX_BITS+1];
1701 /* number of codes at each bit length for an optimal tree */
1702
1703 /* Initialize the mapping length (0..255) -> length code (0..28) */
1704 length = 0;
1705 for (code = 0; code < LENGTH_CODES-1; code++) {
1706 base_length[code] = length;
1707 for (n = 0; n < (1<<extra_lbits[code]); n++) {
1708 length_code[length++] = (uch)code;
1709 }
1710 }
1711 Assert (length == 256, "ct_static_init: length != 256");
1712 /* Note that the length 255 (match length 258) can be represented
1713 * in two different ways: code 284 + 5 bits or code 285, so we
1714 * overwrite length_code[255] to use the best encoding:
1715 */
1716 length_code[length-1] = (uch)code;
1717
1718 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1719 dist = 0;
1720 for (code = 0 ; code < 16; code++) {
1721 base_dist[code] = dist;
1722 for (n = 0; n < (1<<extra_dbits[code]); n++) {
1723 dist_code[dist++] = (uch)code;
1724 }
1725 }
1726 Assert (dist == 256, "ct_static_init: dist != 256");
1727 dist >>= 7; /* from now on, all distances are divided by 128 */
1728 for ( ; code < D_CODES; code++) {
1729 base_dist[code] = dist << 7;
1730 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1731 dist_code[256 + dist++] = (uch)code;
1732 }
1733 }
1734 Assert (dist == 256, "ct_static_init: 256+dist != 512");
1735
1736 /* Construct the codes of the static literal tree */
1737 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1738 n = 0;
1739 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1740 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1741 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1742 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1743 /* Codes 286 and 287 do not exist, but we must include them in the
1744 * tree construction to get a canonical Huffman tree (longest code
1745 * all ones)
1746 */
1747 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1748
1749 /* The static distance tree is trivial: */
1750 for (n = 0; n < D_CODES; n++) {
1751 static_dtree[n].Len = 5;
1752 static_dtree[n].Code = bi_reverse(n, 5);
1753 }
1754 }
1755
1756 /* ===========================================================================
1757 * Initialize the tree data structures for a new zlib stream.
1758 */
1759 local void ct_init(s)
1760 deflate_state *s;
1761 {
1762 if (static_dtree[0].Len == 0) {
1763 ct_static_init(); /* To do: at compile time */
1764 }
1765
1766 s->compressed_len = 0L;
1767
1768 s->l_desc.dyn_tree = s->dyn_ltree;
1769 s->l_desc.stat_desc = &static_l_desc;
1770
1771 s->d_desc.dyn_tree = s->dyn_dtree;
1772 s->d_desc.stat_desc = &static_d_desc;
1773
1774 s->bl_desc.dyn_tree = s->bl_tree;
1775 s->bl_desc.stat_desc = &static_bl_desc;
1776
1777 s->bi_buf = 0;
1778 s->bi_valid = 0;
1779 s->last_eob_len = 8; /* enough lookahead for inflate */
1780 #ifdef DEBUG_ZLIB
1781 s->bits_sent = 0L;
1782 #endif
1783 s->blocks_in_packet = 0;
1784
1785 /* Initialize the first block of the first file: */
1786 init_block(s);
1787 }
1788
1789 /* ===========================================================================
1790 * Initialize a new block.
1791 */
1792 local void init_block(s)
1793 deflate_state *s;
1794 {
1795 int n; /* iterates over tree elements */
1796
1797 /* Initialize the trees. */
1798 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1799 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1800 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1801
1802 s->dyn_ltree[END_BLOCK].Freq = 1;
1803 s->opt_len = s->static_len = 0L;
1804 s->last_lit = s->matches = 0;
1805 }
1806
1807 #define SMALLEST 1
1808 /* Index within the heap array of least frequent node in the Huffman tree */
1809
1810
1811 /* ===========================================================================
1812 * Remove the smallest element from the heap and recreate the heap with
1813 * one less element. Updates heap and heap_len.
1814 */
1815 #define pqremove(s, tree, top) \
1816 {\
1817 top = s->heap[SMALLEST]; \
1818 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1819 pqdownheap(s, tree, SMALLEST); \
1820 }
1821
1822 /* ===========================================================================
1823 * Compares to subtrees, using the tree depth as tie breaker when
1824 * the subtrees have equal frequency. This minimizes the worst case length.
1825 */
1826 #define smaller(tree, n, m, depth) \
1827 (tree[n].Freq < tree[m].Freq || \
1828 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1829
1830 /* ===========================================================================
1831 * Restore the heap property by moving down the tree starting at node k,
1832 * exchanging a node with the smallest of its two sons if necessary, stopping
1833 * when the heap property is re-established (each father smaller than its
1834 * two sons).
1835 */
1836 local void pqdownheap(s, tree, k)
1837 deflate_state *s;
1838 ct_data *tree; /* the tree to restore */
1839 int k; /* node to move down */
1840 {
1841 int v = s->heap[k];
1842 int j = k << 1; /* left son of k */
1843 while (j <= s->heap_len) {
1844 /* Set j to the smallest of the two sons: */
1845 if (j < s->heap_len &&
1846 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1847 j++;
1848 }
1849 /* Exit if v is smaller than both sons */
1850 if (smaller(tree, v, s->heap[j], s->depth)) break;
1851
1852 /* Exchange v with the smallest son */
1853 s->heap[k] = s->heap[j]; k = j;
1854
1855 /* And continue down the tree, setting j to the left son of k */
1856 j <<= 1;
1857 }
1858 s->heap[k] = v;
1859 }
1860
1861 /* ===========================================================================
1862 * Compute the optimal bit lengths for a tree and update the total bit length
1863 * for the current block.
1864 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1865 * above are the tree nodes sorted by increasing frequency.
1866 * OUT assertions: the field len is set to the optimal bit length, the
1867 * array bl_count contains the frequencies for each bit length.
1868 * The length opt_len is updated; static_len is also updated if stree is
1869 * not null.
1870 */
1871 local void gen_bitlen(s, desc)
1872 deflate_state *s;
1873 tree_desc *desc; /* the tree descriptor */
1874 {
1875 ct_data *tree = desc->dyn_tree;
1876 int max_code = desc->max_code;
1877 ct_data *stree = desc->stat_desc->static_tree;
1878 intf *extra = desc->stat_desc->extra_bits;
1879 int base = desc->stat_desc->extra_base;
1880 int max_length = desc->stat_desc->max_length;
1881 int h; /* heap index */
1882 int n, m; /* iterate over the tree elements */
1883 int bits; /* bit length */
1884 int xbits; /* extra bits */
1885 ush f; /* frequency */
1886 int overflow = 0; /* number of elements with bit length too large */
1887
1888 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1889
1890 /* In a first pass, compute the optimal bit lengths (which may
1891 * overflow in the case of the bit length tree).
1892 */
1893 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1894
1895 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1896 n = s->heap[h];
1897 bits = tree[tree[n].Dad].Len + 1;
1898 if (bits > max_length) bits = max_length, overflow++;
1899 tree[n].Len = (ush)bits;
1900 /* We overwrite tree[n].Dad which is no longer needed */
1901
1902 if (n > max_code) continue; /* not a leaf node */
1903
1904 s->bl_count[bits]++;
1905 xbits = 0;
1906 if (n >= base) xbits = extra[n-base];
1907 f = tree[n].Freq;
1908 s->opt_len += (ulg)f * (bits + xbits);
1909 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1910 }
1911 if (overflow == 0) return;
1912
1913 Trace((stderr,"\nbit length overflow\n"));
1914 /* This happens for example on obj2 and pic of the Calgary corpus */
1915
1916 /* Find the first bit length which could increase: */
1917 do {
1918 bits = max_length-1;
1919 while (s->bl_count[bits] == 0) bits--;
1920 s->bl_count[bits]--; /* move one leaf down the tree */
1921 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1922 s->bl_count[max_length]--;
1923 /* The brother of the overflow item also moves one step up,
1924 * but this does not affect bl_count[max_length]
1925 */
1926 overflow -= 2;
1927 } while (overflow > 0);
1928
1929 /* Now recompute all bit lengths, scanning in increasing frequency.
1930 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1931 * lengths instead of fixing only the wrong ones. This idea is taken
1932 * from 'ar' written by Haruhiko Okumura.)
1933 */
1934 for (bits = max_length; bits != 0; bits--) {
1935 n = s->bl_count[bits];
1936 while (n != 0) {
1937 m = s->heap[--h];
1938 if (m > max_code) continue;
1939 if (tree[m].Len != (unsigned) bits) {
1940 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1941 s->opt_len += ((long)bits - (long)tree[m].Len)
1942 *(long)tree[m].Freq;
1943 tree[m].Len = (ush)bits;
1944 }
1945 n--;
1946 }
1947 }
1948 }
1949
1950 /* ===========================================================================
1951 * Generate the codes for a given tree and bit counts (which need not be
1952 * optimal).
1953 * IN assertion: the array bl_count contains the bit length statistics for
1954 * the given tree and the field len is set for all tree elements.
1955 * OUT assertion: the field code is set for all tree elements of non
1956 * zero code length.
1957 */
1958 local void gen_codes (tree, max_code, bl_count)
1959 ct_data *tree; /* the tree to decorate */
1960 int max_code; /* largest code with non zero frequency */
1961 ushf *bl_count; /* number of codes at each bit length */
1962 {
1963 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1964 ush code = 0; /* running code value */
1965 int bits; /* bit index */
1966 int n; /* code index */
1967
1968 /* The distribution counts are first used to generate the code values
1969 * without bit reversal.
1970 */
1971 for (bits = 1; bits <= MAX_BITS; bits++) {
1972 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1973 }
1974 /* Check that the bit counts in bl_count are consistent. The last code
1975 * must be all ones.
1976 */
1977 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1978 "inconsistent bit counts");
1979 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1980
1981 for (n = 0; n <= max_code; n++) {
1982 int len = tree[n].Len;
1983 if (len == 0) continue;
1984 /* Now reverse the bits */
1985 tree[n].Code = bi_reverse(next_code[len]++, len);
1986
1987 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1988 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1989 }
1990 }
1991
1992 /* ===========================================================================
1993 * Construct one Huffman tree and assigns the code bit strings and lengths.
1994 * Update the total bit length for the current block.
1995 * IN assertion: the field freq is set for all tree elements.
1996 * OUT assertions: the fields len and code are set to the optimal bit length
1997 * and corresponding code. The length opt_len is updated; static_len is
1998 * also updated if stree is not null. The field max_code is set.
1999 */
2000 local void build_tree(s, desc)
2001 deflate_state *s;
2002 tree_desc *desc; /* the tree descriptor */
2003 {
2004 ct_data *tree = desc->dyn_tree;
2005 ct_data *stree = desc->stat_desc->static_tree;
2006 int elems = desc->stat_desc->elems;
2007 int n, m; /* iterate over heap elements */
2008 int max_code = -1; /* largest code with non zero frequency */
2009 int node; /* new node being created */
2010
2011 /* Construct the initial heap, with least frequent element in
2012 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2013 * heap[0] is not used.
2014 */
2015 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2016
2017 for (n = 0; n < elems; n++) {
2018 if (tree[n].Freq != 0) {
2019 s->heap[++(s->heap_len)] = max_code = n;
2020 s->depth[n] = 0;
2021 } else {
2022 tree[n].Len = 0;
2023 }
2024 }
2025
2026 /* The pkzip format requires that at least one distance code exists,
2027 * and that at least one bit should be sent even if there is only one
2028 * possible code. So to avoid special checks later on we force at least
2029 * two codes of non zero frequency.
2030 */
2031 while (s->heap_len < 2) {
2032 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2033 tree[node].Freq = 1;
2034 s->depth[node] = 0;
2035 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2036 /* node is 0 or 1 so it does not have extra bits */
2037 }
2038 desc->max_code = max_code;
2039
2040 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2041 * establish sub-heaps of increasing lengths:
2042 */
2043 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2044
2045 /* Construct the Huffman tree by repeatedly combining the least two
2046 * frequent nodes.
2047 */
2048 node = elems; /* next internal node of the tree */
2049 do {
2050 pqremove(s, tree, n); /* n = node of least frequency */
2051 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2052
2053 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2054 s->heap[--(s->heap_max)] = m;
2055
2056 /* Create a new node father of n and m */
2057 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2058 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2059 tree[n].Dad = tree[m].Dad = (ush)node;
2060 #ifdef DUMP_BL_TREE
2061 if (tree == s->bl_tree) {
2062 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2063 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2064 }
2065 #endif
2066 /* and insert the new node in the heap */
2067 s->heap[SMALLEST] = node++;
2068 pqdownheap(s, tree, SMALLEST);
2069
2070 } while (s->heap_len >= 2);
2071
2072 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2073
2074 /* At this point, the fields freq and dad are set. We can now
2075 * generate the bit lengths.
2076 */
2077 gen_bitlen(s, (tree_desc *)desc);
2078
2079 /* The field len is now set, we can generate the bit codes */
2080 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2081 }
2082
2083 /* ===========================================================================
2084 * Scan a literal or distance tree to determine the frequencies of the codes
2085 * in the bit length tree.
2086 */
2087 local void scan_tree (s, tree, max_code)
2088 deflate_state *s;
2089 ct_data *tree; /* the tree to be scanned */
2090 int max_code; /* and its largest code of non zero frequency */
2091 {
2092 int n; /* iterates over all tree elements */
2093 int prevlen = -1; /* last emitted length */
2094 int curlen; /* length of current code */
2095 int nextlen = tree[0].Len; /* length of next code */
2096 int count = 0; /* repeat count of the current code */
2097 int max_count = 7; /* max repeat count */
2098 int min_count = 4; /* min repeat count */
2099
2100 if (nextlen == 0) max_count = 138, min_count = 3;
2101 tree[max_code+1].Len = (ush)0xffff; /* guard */
2102
2103 for (n = 0; n <= max_code; n++) {
2104 curlen = nextlen; nextlen = tree[n+1].Len;
2105 if (++count < max_count && curlen == nextlen) {
2106 continue;
2107 } else if (count < min_count) {
2108 s->bl_tree[curlen].Freq += count;
2109 } else if (curlen != 0) {
2110 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2111 s->bl_tree[REP_3_6].Freq++;
2112 } else if (count <= 10) {
2113 s->bl_tree[REPZ_3_10].Freq++;
2114 } else {
2115 s->bl_tree[REPZ_11_138].Freq++;
2116 }
2117 count = 0; prevlen = curlen;
2118 if (nextlen == 0) {
2119 max_count = 138, min_count = 3;
2120 } else if (curlen == nextlen) {
2121 max_count = 6, min_count = 3;
2122 } else {
2123 max_count = 7, min_count = 4;
2124 }
2125 }
2126 }
2127
2128 /* ===========================================================================
2129 * Send a literal or distance tree in compressed form, using the codes in
2130 * bl_tree.
2131 */
2132 local void send_tree (s, tree, max_code)
2133 deflate_state *s;
2134 ct_data *tree; /* the tree to be scanned */
2135 int max_code; /* and its largest code of non zero frequency */
2136 {
2137 int n; /* iterates over all tree elements */
2138 int prevlen = -1; /* last emitted length */
2139 int curlen; /* length of current code */
2140 int nextlen = tree[0].Len; /* length of next code */
2141 int count = 0; /* repeat count of the current code */
2142 int max_count = 7; /* max repeat count */
2143 int min_count = 4; /* min repeat count */
2144
2145 /* tree[max_code+1].Len = -1; */ /* guard already set */
2146 if (nextlen == 0) max_count = 138, min_count = 3;
2147
2148 for (n = 0; n <= max_code; n++) {
2149 curlen = nextlen; nextlen = tree[n+1].Len;
2150 if (++count < max_count && curlen == nextlen) {
2151 continue;
2152 } else if (count < min_count) {
2153 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2154
2155 } else if (curlen != 0) {
2156 if (curlen != prevlen) {
2157 send_code(s, curlen, s->bl_tree); count--;
2158 }
2159 Assert(count >= 3 && count <= 6, " 3_6?");
2160 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2161
2162 } else if (count <= 10) {
2163 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2164
2165 } else {
2166 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2167 }
2168 count = 0; prevlen = curlen;
2169 if (nextlen == 0) {
2170 max_count = 138, min_count = 3;
2171 } else if (curlen == nextlen) {
2172 max_count = 6, min_count = 3;
2173 } else {
2174 max_count = 7, min_count = 4;
2175 }
2176 }
2177 }
2178
2179 /* ===========================================================================
2180 * Construct the Huffman tree for the bit lengths and return the index in
2181 * bl_order of the last bit length code to send.
2182 */
2183 local int build_bl_tree(s)
2184 deflate_state *s;
2185 {
2186 int max_blindex; /* index of last bit length code of non zero freq */
2187
2188 /* Determine the bit length frequencies for literal and distance trees */
2189 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2190 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2191
2192 /* Build the bit length tree: */
2193 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2194 /* opt_len now includes the length of the tree representations, except
2195 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2196 */
2197
2198 /* Determine the number of bit length codes to send. The pkzip format
2199 * requires that at least 4 bit length codes be sent. (appnote.txt says
2200 * 3 but the actual value used is 4.)
2201 */
2202 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2203 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2204 }
2205 /* Update opt_len to include the bit length tree and counts */
2206 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2207 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2208 s->opt_len, s->static_len));
2209
2210 return max_blindex;
2211 }
2212
2213 /* ===========================================================================
2214 * Send the header for a block using dynamic Huffman trees: the counts, the
2215 * lengths of the bit length codes, the literal tree and the distance tree.
2216 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2217 */
2218 local void send_all_trees(s, lcodes, dcodes, blcodes)
2219 deflate_state *s;
2220 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2221 {
2222 int rank; /* index in bl_order */
2223
2224 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2225 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2226 "too many codes");
2227 Tracev((stderr, "\nbl counts: "));
2228 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2229 send_bits(s, dcodes-1, 5);
2230 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2231 for (rank = 0; rank < blcodes; rank++) {
2232 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2233 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2234 }
2235 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2236
2237 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2238 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2239
2240 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2241 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2242 }
2243
2244 /* ===========================================================================
2245 * Send a stored block
2246 */
2247 local void ct_stored_block(s, buf, stored_len, eof)
2248 deflate_state *s;
2249 charf *buf; /* input block */
2250 ulg stored_len; /* length of input block */
2251 int eof; /* true if this is the last block for a file */
2252 {
2253 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2254 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2255 s->compressed_len += (stored_len + 4) << 3;
2256
2257 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2258 }
2259
2260 /* Send just the `stored block' type code without any length bytes or data.
2261 */
2262 local void ct_stored_type_only(s)
2263 deflate_state *s;
2264 {
2265 send_bits(s, (STORED_BLOCK << 1), 3);
2266 bi_windup(s);
2267 s->compressed_len = (s->compressed_len + 3) & ~7L;
2268 }
2269
2270
2271 /* ===========================================================================
2272 * Send one empty static block to give enough lookahead for inflate.
2273 * This takes 10 bits, of which 7 may remain in the bit buffer.
2274 * The current inflate code requires 9 bits of lookahead. If the EOB
2275 * code for the previous block was coded on 5 bits or less, inflate
2276 * may have only 5+3 bits of lookahead to decode this EOB.
2277 * (There are no problems if the previous block is stored or fixed.)
2278 */
2279 local void ct_align(s)
2280 deflate_state *s;
2281 {
2282 send_bits(s, STATIC_TREES<<1, 3);
2283 send_code(s, END_BLOCK, static_ltree);
2284 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2285 bi_flush(s);
2286 /* Of the 10 bits for the empty block, we have already sent
2287 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2288 * block was thus its length plus what we have just sent.
2289 */
2290 if (s->last_eob_len + 10 - s->bi_valid < 9) {
2291 send_bits(s, STATIC_TREES<<1, 3);
2292 send_code(s, END_BLOCK, static_ltree);
2293 s->compressed_len += 10L;
2294 bi_flush(s);
2295 }
2296 s->last_eob_len = 7;
2297 }
2298
2299 /* ===========================================================================
2300 * Determine the best encoding for the current block: dynamic trees, static
2301 * trees or store, and output the encoded block to the zip file. This function
2302 * returns the total compressed length for the file so far.
2303 */
2304 local ulg ct_flush_block(s, buf, stored_len, flush)
2305 deflate_state *s;
2306 charf *buf; /* input block, or NULL if too old */
2307 ulg stored_len; /* length of input block */
2308 int flush; /* Z_FINISH if this is the last block for a file */
2309 {
2310 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2311 int max_blindex; /* index of last bit length code of non zero freq */
2312 int eof = flush == Z_FINISH;
2313
2314 ++s->blocks_in_packet;
2315
2316 /* Check if the file is ascii or binary */
2317 if (s->data_type == UNKNOWN) set_data_type(s);
2318
2319 /* Construct the literal and distance trees */
2320 build_tree(s, (tree_desc *)(&(s->l_desc)));
2321 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2322 s->static_len));
2323
2324 build_tree(s, (tree_desc *)(&(s->d_desc)));
2325 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2326 s->static_len));
2327 /* At this point, opt_len and static_len are the total bit lengths of
2328 * the compressed block data, excluding the tree representations.
2329 */
2330
2331 /* Build the bit length tree for the above two trees, and get the index
2332 * in bl_order of the last bit length code to send.
2333 */
2334 max_blindex = build_bl_tree(s);
2335
2336 /* Determine the best encoding. Compute first the block length in bytes */
2337 opt_lenb = (s->opt_len+3+7)>>3;
2338 static_lenb = (s->static_len+3+7)>>3;
2339
2340 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2341 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2342 s->last_lit));
2343
2344 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2345
2346 /* If compression failed and this is the first and last block,
2347 * and if the .zip file can be seeked (to rewrite the local header),
2348 * the whole file is transformed into a stored file:
2349 */
2350 #ifdef STORED_FILE_OK
2351 # ifdef FORCE_STORED_FILE
2352 if (eof && compressed_len == 0L) /* force stored file */
2353 # else
2354 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2355 # endif
2356 {
2357 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2358 if (buf == (charf*)0) error ("block vanished");
2359
2360 copy_block(buf, (unsigned)stored_len, 0); /* without header */
2361 s->compressed_len = stored_len << 3;
2362 s->method = STORED;
2363 } else
2364 #endif /* STORED_FILE_OK */
2365
2366 /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2367 * compression, and this block contains all the data since the last
2368 * time we used Z_PACKET_FLUSH, then just omit this block completely
2369 * from the output.
2370 */
2371 if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2372 && opt_lenb > stored_len - s->minCompr) {
2373 s->blocks_in_packet = 0;
2374 /* output nothing */
2375 } else
2376
2377 #ifdef FORCE_STORED
2378 if (buf != (char*)0) /* force stored block */
2379 #else
2380 if (stored_len+4 <= opt_lenb && buf != (char*)0)
2381 /* 4: two words for the lengths */
2382 #endif
2383 {
2384 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2385 * Otherwise we can't have processed more than WSIZE input bytes since
2386 * the last block flush, because compression would have been
2387 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2388 * transform a block into a stored block.
2389 */
2390 ct_stored_block(s, buf, stored_len, eof);
2391 } else
2392
2393 #ifdef FORCE_STATIC
2394 if (static_lenb >= 0) /* force static trees */
2395 #else
2396 if (static_lenb == opt_lenb)
2397 #endif
2398 {
2399 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2400 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2401 s->compressed_len += 3 + s->static_len;
2402 } else {
2403 send_bits(s, (DYN_TREES<<1)+eof, 3);
2404 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2405 max_blindex+1);
2406 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2407 s->compressed_len += 3 + s->opt_len;
2408 }
2409 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2410 init_block(s);
2411
2412 if (eof) {
2413 bi_windup(s);
2414 s->compressed_len += 7; /* align on byte boundary */
2415 }
2416 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2417 s->compressed_len-7*eof));
2418
2419 return s->compressed_len >> 3;
2420 }
2421
2422 /* ===========================================================================
2423 * Save the match info and tally the frequency counts. Return true if
2424 * the current block must be flushed.
2425 */
2426 local int ct_tally (s, dist, lc)
2427 deflate_state *s;
2428 int dist; /* distance of matched string */
2429 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2430 {
2431 s->d_buf[s->last_lit] = (ush)dist;
2432 s->l_buf[s->last_lit++] = (uch)lc;
2433 if (dist == 0) {
2434 /* lc is the unmatched char */
2435 s->dyn_ltree[lc].Freq++;
2436 } else {
2437 s->matches++;
2438 /* Here, lc is the match length - MIN_MATCH */
2439 dist--; /* dist = match distance - 1 */
2440 Assert((ush)dist < (ush)MAX_DIST(s) &&
2441 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2442 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2443
2444 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2445 s->dyn_dtree[d_code(dist)].Freq++;
2446 }
2447
2448 /* Try to guess if it is profitable to stop the current block here */
2449 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2450 /* Compute an upper bound for the compressed length */
2451 ulg out_length = (ulg)s->last_lit*8L;
2452 ulg in_length = (ulg)s->strstart - s->block_start;
2453 int dcode;
2454 for (dcode = 0; dcode < D_CODES; dcode++) {
2455 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2456 (5L+extra_dbits[dcode]);
2457 }
2458 out_length >>= 3;
2459 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2460 s->last_lit, in_length, out_length,
2461 100L - out_length*100L/in_length));
2462 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2463 }
2464 return (s->last_lit == s->lit_bufsize-1);
2465 /* We avoid equality with lit_bufsize because of wraparound at 64K
2466 * on 16 bit machines and because stored blocks are restricted to
2467 * 64K-1 bytes.
2468 */
2469 }
2470
2471 /* ===========================================================================
2472 * Send the block data compressed using the given Huffman trees
2473 */
2474 local void compress_block(s, ltree, dtree)
2475 deflate_state *s;
2476 ct_data *ltree; /* literal tree */
2477 ct_data *dtree; /* distance tree */
2478 {
2479 unsigned dist; /* distance of matched string */
2480 int lc; /* match length or unmatched char (if dist == 0) */
2481 unsigned lx = 0; /* running index in l_buf */
2482 unsigned code; /* the code to send */
2483 int extra; /* number of extra bits to send */
2484
2485 if (s->last_lit != 0) do {
2486 dist = s->d_buf[lx];
2487 lc = s->l_buf[lx++];
2488 if (dist == 0) {
2489 send_code(s, lc, ltree); /* send a literal byte */
2490 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2491 } else {
2492 /* Here, lc is the match length - MIN_MATCH */
2493 code = length_code[lc];
2494 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2495 extra = extra_lbits[code];
2496 if (extra != 0) {
2497 lc -= base_length[code];
2498 send_bits(s, lc, extra); /* send the extra length bits */
2499 }
2500 dist--; /* dist is now the match distance - 1 */
2501 code = d_code(dist);
2502 Assert (code < D_CODES, "bad d_code");
2503
2504 send_code(s, code, dtree); /* send the distance code */
2505 extra = extra_dbits[code];
2506 if (extra != 0) {
2507 dist -= base_dist[code];
2508 send_bits(s, dist, extra); /* send the extra distance bits */
2509 }
2510 } /* literal or match pair ? */
2511
2512 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2513 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2514
2515 } while (lx < s->last_lit);
2516
2517 send_code(s, END_BLOCK, ltree);
2518 s->last_eob_len = ltree[END_BLOCK].Len;
2519 }
2520
2521 /* ===========================================================================
2522 * Set the data type to ASCII or BINARY, using a crude approximation:
2523 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2524 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2525 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2526 */
2527 local void set_data_type(s)
2528 deflate_state *s;
2529 {
2530 int n = 0;
2531 unsigned ascii_freq = 0;
2532 unsigned bin_freq = 0;
2533 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2534 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2535 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2536 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2537 }
2538
2539 /* ===========================================================================
2540 * Reverse the first len bits of a code, using straightforward code (a faster
2541 * method would use a table)
2542 * IN assertion: 1 <= len <= 15
2543 */
2544 local unsigned bi_reverse(code, len)
2545 unsigned code; /* the value to invert */
2546 int len; /* its bit length */
2547 {
2548 register unsigned res = 0;
2549 do {
2550 res |= code & 1;
2551 code >>= 1, res <<= 1;
2552 } while (--len > 0);
2553 return res >> 1;
2554 }
2555
2556 /* ===========================================================================
2557 * Flush the bit buffer, keeping at most 7 bits in it.
2558 */
2559 local void bi_flush(s)
2560 deflate_state *s;
2561 {
2562 if (s->bi_valid == 16) {
2563 put_short(s, s->bi_buf);
2564 s->bi_buf = 0;
2565 s->bi_valid = 0;
2566 } else if (s->bi_valid >= 8) {
2567 put_byte(s, (Byte)s->bi_buf);
2568 s->bi_buf >>= 8;
2569 s->bi_valid -= 8;
2570 }
2571 }
2572
2573 /* ===========================================================================
2574 * Flush the bit buffer and align the output on a byte boundary
2575 */
2576 local void bi_windup(s)
2577 deflate_state *s;
2578 {
2579 if (s->bi_valid > 8) {
2580 put_short(s, s->bi_buf);
2581 } else if (s->bi_valid > 0) {
2582 put_byte(s, (Byte)s->bi_buf);
2583 }
2584 s->bi_buf = 0;
2585 s->bi_valid = 0;
2586 #ifdef DEBUG_ZLIB
2587 s->bits_sent = (s->bits_sent+7) & ~7;
2588 #endif
2589 }
2590
2591 /* ===========================================================================
2592 * Copy a stored block, storing first the length and its
2593 * one's complement if requested.
2594 */
2595 local void copy_block(s, buf, len, header)
2596 deflate_state *s;
2597 charf *buf; /* the input data */
2598 unsigned len; /* its length */
2599 int header; /* true if block header must be written */
2600 {
2601 bi_windup(s); /* align on byte boundary */
2602 s->last_eob_len = 8; /* enough lookahead for inflate */
2603
2604 if (header) {
2605 put_short(s, (ush)len);
2606 put_short(s, (ush)~len);
2607 #ifdef DEBUG_ZLIB
2608 s->bits_sent += 2*16;
2609 #endif
2610 }
2611 #ifdef DEBUG_ZLIB
2612 s->bits_sent += (ulg)len<<3;
2613 #endif
2614 while (len--) {
2615 put_byte(s, *buf++);
2616 }
2617 }
2618
2619
2620 /*+++++*/
2621 /* infblock.h -- header to use infblock.c
2622 * Copyright (C) 1995 Mark Adler
2623 * For conditions of distribution and use, see copyright notice in zlib.h
2624 */
2625
2626 /* WARNING: this file should *not* be used by applications. It is
2627 part of the implementation of the compression library and is
2628 subject to change. Applications should only use zlib.h.
2629 */
2630
2631 struct inflate_blocks_state;
2632 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2633
2634 local inflate_blocks_statef * inflate_blocks_new OF((
2635 z_stream *z,
2636 check_func c, /* check function */
2637 uInt w)); /* window size */
2638
2639 local int inflate_blocks OF((
2640 inflate_blocks_statef *,
2641 z_stream *,
2642 int)); /* initial return code */
2643
2644 local void inflate_blocks_reset OF((
2645 inflate_blocks_statef *,
2646 z_stream *,
2647 uLongf *)); /* check value on output */
2648
2649 local int inflate_blocks_free OF((
2650 inflate_blocks_statef *,
2651 z_stream *,
2652 uLongf *)); /* check value on output */
2653
2654 local int inflate_addhistory OF((
2655 inflate_blocks_statef *,
2656 z_stream *));
2657
2658 local int inflate_packet_flush OF((
2659 inflate_blocks_statef *));
2660
2661 /*+++++*/
2662 /* inftrees.h -- header to use inftrees.c
2663 * Copyright (C) 1995 Mark Adler
2664 * For conditions of distribution and use, see copyright notice in zlib.h
2665 */
2666
2667 /* WARNING: this file should *not* be used by applications. It is
2668 part of the implementation of the compression library and is
2669 subject to change. Applications should only use zlib.h.
2670 */
2671
2672 /* Huffman code lookup table entry--this entry is four bytes for machines
2673 that have 16-bit pointers (e.g. PC's in the small or medium model). */
2674
2675 typedef struct inflate_huft_s FAR inflate_huft;
2676
2677 struct inflate_huft_s {
2678 union {
2679 struct {
2680 Byte Exop; /* number of extra bits or operation */
2681 Byte Bits; /* number of bits in this code or subcode */
2682 } what;
2683 uInt Nalloc; /* number of these allocated here */
2684 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2685 } word; /* 16-bit, 8 bytes for 32-bit machines) */
2686 union {
2687 uInt Base; /* literal, length base, or distance base */
2688 inflate_huft *Next; /* pointer to next level of table */
2689 } more;
2690 };
2691
2692 #ifdef DEBUG_ZLIB
2693 local uInt inflate_hufts;
2694 #endif
2695
2696 local int inflate_trees_bits OF((
2697 uIntf *, /* 19 code lengths */
2698 uIntf *, /* bits tree desired/actual depth */
2699 inflate_huft * FAR *, /* bits tree result */
2700 z_stream *)); /* for zalloc, zfree functions */
2701
2702 local int inflate_trees_dynamic OF((
2703 uInt, /* number of literal/length codes */
2704 uInt, /* number of distance codes */
2705 uIntf *, /* that many (total) code lengths */
2706 uIntf *, /* literal desired/actual bit depth */
2707 uIntf *, /* distance desired/actual bit depth */
2708 inflate_huft * FAR *, /* literal/length tree result */
2709 inflate_huft * FAR *, /* distance tree result */
2710 z_stream *)); /* for zalloc, zfree functions */
2711
2712 local int inflate_trees_fixed OF((
2713 uIntf *, /* literal desired/actual bit depth */
2714 uIntf *, /* distance desired/actual bit depth */
2715 inflate_huft * FAR *, /* literal/length tree result */
2716 inflate_huft * FAR *)); /* distance tree result */
2717
2718 local int inflate_trees_free OF((
2719 inflate_huft *, /* tables to free */
2720 z_stream *)); /* for zfree function */
2721
2722
2723 /*+++++*/
2724 /* infcodes.h -- header to use infcodes.c
2725 * Copyright (C) 1995 Mark Adler
2726 * For conditions of distribution and use, see copyright notice in zlib.h
2727 */
2728
2729 /* WARNING: this file should *not* be used by applications. It is
2730 part of the implementation of the compression library and is
2731 subject to change. Applications should only use zlib.h.
2732 */
2733
2734 struct inflate_codes_state;
2735 typedef struct inflate_codes_state FAR inflate_codes_statef;
2736
2737 local inflate_codes_statef *inflate_codes_new OF((
2738 uInt, uInt,
2739 inflate_huft *, inflate_huft *,
2740 z_stream *));
2741
2742 local int inflate_codes OF((
2743 inflate_blocks_statef *,
2744 z_stream *,
2745 int));
2746
2747 local void inflate_codes_free OF((
2748 inflate_codes_statef *,
2749 z_stream *));
2750
2751
2752 /*+++++*/
2753 /* inflate.c -- zlib interface to inflate modules
2754 * Copyright (C) 1995 Mark Adler
2755 * For conditions of distribution and use, see copyright notice in zlib.h
2756 */
2757
2758 /* inflate private state */
2759 struct internal_state {
2760
2761 /* mode */
2762 enum {
2763 METHOD, /* waiting for method byte */
2764 FLAG, /* waiting for flag byte */
2765 BLOCKS, /* decompressing blocks */
2766 CHECK4, /* four check bytes to go */
2767 CHECK3, /* three check bytes to go */
2768 CHECK2, /* two check bytes to go */
2769 CHECK1, /* one check byte to go */
2770 DONE, /* finished check, done */
2771 BAD} /* got an error--stay here */
2772 mode; /* current inflate mode */
2773
2774 /* mode dependent information */
2775 union {
2776 uInt method; /* if FLAGS, method byte */
2777 struct {
2778 uLong was; /* computed check value */
2779 uLong need; /* stream check value */
2780 } check; /* if CHECK, check values to compare */
2781 uInt marker; /* if BAD, inflateSync's marker bytes count */
2782 } sub; /* submode */
2783
2784 /* mode independent information */
2785 int nowrap; /* flag for no wrapper */
2786 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2787 inflate_blocks_statef
2788 *blocks; /* current inflate_blocks state */
2789
2790 };
2791
2792
2793 int inflateReset(z)
2794 z_stream *z;
2795 {
2796 uLong c;
2797
2798 if (z == Z_NULL || z->state == Z_NULL)
2799 return Z_STREAM_ERROR;
2800 z->total_in = z->total_out = 0;
2801 z->msg = Z_NULL;
2802 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2803 inflate_blocks_reset(z->state->blocks, z, &c);
2804 Trace((stderr, "inflate: reset\n"));
2805 return Z_OK;
2806 }
2807
2808
2809 int inflateEnd(z)
2810 z_stream *z;
2811 {
2812 uLong c;
2813
2814 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2815 return Z_STREAM_ERROR;
2816 if (z->state->blocks != Z_NULL)
2817 inflate_blocks_free(z->state->blocks, z, &c);
2818 ZFREE(z, z->state, sizeof(struct internal_state));
2819 z->state = Z_NULL;
2820 Trace((stderr, "inflate: end\n"));
2821 return Z_OK;
2822 }
2823
2824
2825 int inflateInit2(z, w)
2826 z_stream *z;
2827 int w;
2828 {
2829 /* initialize state */
2830 if (z == Z_NULL)
2831 return Z_STREAM_ERROR;
2832 /* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2833 /* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2834 if ((z->state = (struct internal_state FAR *)
2835 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2836 return Z_MEM_ERROR;
2837 z->state->blocks = Z_NULL;
2838
2839 /* handle undocumented nowrap option (no zlib header or check) */
2840 z->state->nowrap = 0;
2841 if (w < 0)
2842 {
2843 w = - w;
2844 z->state->nowrap = 1;
2845 }
2846
2847 /* set window size */
2848 if (w < 8 || w > 15)
2849 {
2850 inflateEnd(z);
2851 return Z_STREAM_ERROR;
2852 }
2853 z->state->wbits = (uInt)w;
2854
2855 /* create inflate_blocks state */
2856 if ((z->state->blocks =
2857 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2858 == Z_NULL)
2859 {
2860 inflateEnd(z);
2861 return Z_MEM_ERROR;
2862 }
2863 Trace((stderr, "inflate: allocated\n"));
2864
2865 /* reset state */
2866 inflateReset(z);
2867 return Z_OK;
2868 }
2869
2870
2871 int inflateInit(z)
2872 z_stream *z;
2873 {
2874 return inflateInit2(z, DEF_WBITS);
2875 }
2876
2877
2878 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2879 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2880
2881 int inflate(z, f)
2882 z_stream *z;
2883 int f;
2884 {
2885 int r;
2886 uInt b;
2887
2888 if (z == Z_NULL || z->next_in == Z_NULL)
2889 return Z_STREAM_ERROR;
2890 r = Z_BUF_ERROR;
2891 while (1) switch (z->state->mode)
2892 {
2893 case METHOD:
2894 NEEDBYTE
2895 if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2896 {
2897 z->state->mode = BAD;
2898 z->msg = "unknown compression method";
2899 z->state->sub.marker = 5; /* can't try inflateSync */
2900 break;
2901 }
2902 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2903 {
2904 z->state->mode = BAD;
2905 z->msg = "invalid window size";
2906 z->state->sub.marker = 5; /* can't try inflateSync */
2907 break;
2908 }
2909 z->state->mode = FLAG;
2910 case FLAG:
2911 NEEDBYTE
2912 if ((b = NEXTBYTE) & 0x20)
2913 {
2914 z->state->mode = BAD;
2915 z->msg = "invalid reserved bit";
2916 z->state->sub.marker = 5; /* can't try inflateSync */
2917 break;
2918 }
2919 if (((z->state->sub.method << 8) + b) % 31)
2920 {
2921 z->state->mode = BAD;
2922 z->msg = "incorrect header check";
2923 z->state->sub.marker = 5; /* can't try inflateSync */
2924 break;
2925 }
2926 Trace((stderr, "inflate: zlib header ok\n"));
2927 z->state->mode = BLOCKS;
2928 case BLOCKS:
2929 r = inflate_blocks(z->state->blocks, z, r);
2930 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2931 r = inflate_packet_flush(z->state->blocks);
2932 if (r == Z_DATA_ERROR)
2933 {
2934 z->state->mode = BAD;
2935 z->state->sub.marker = 0; /* can try inflateSync */
2936 break;
2937 }
2938 if (r != Z_STREAM_END)
2939 return r;
2940 r = Z_OK;
2941 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2942 if (z->state->nowrap)
2943 {
2944 z->state->mode = DONE;
2945 break;
2946 }
2947 z->state->mode = CHECK4;
2948 case CHECK4:
2949 NEEDBYTE
2950 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2951 z->state->mode = CHECK3;
2952 case CHECK3:
2953 NEEDBYTE
2954 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2955 z->state->mode = CHECK2;
2956 case CHECK2:
2957 NEEDBYTE
2958 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2959 z->state->mode = CHECK1;
2960 case CHECK1:
2961 NEEDBYTE
2962 z->state->sub.check.need += (uLong)NEXTBYTE;
2963
2964 if (z->state->sub.check.was != z->state->sub.check.need)
2965 {
2966 z->state->mode = BAD;
2967 z->msg = "incorrect data check";
2968 z->state->sub.marker = 5; /* can't try inflateSync */
2969 break;
2970 }
2971 Trace((stderr, "inflate: zlib check ok\n"));
2972 z->state->mode = DONE;
2973 case DONE:
2974 return Z_STREAM_END;
2975 case BAD:
2976 return Z_DATA_ERROR;
2977 default:
2978 return Z_STREAM_ERROR;
2979 }
2980
2981 empty:
2982 if (f != Z_PACKET_FLUSH)
2983 return r;
2984 z->state->mode = BAD;
2985 z->state->sub.marker = 0; /* can try inflateSync */
2986 return Z_DATA_ERROR;
2987 }
2988
2989 /*
2990 * This subroutine adds the data at next_in/avail_in to the output history
2991 * without performing any output. The output buffer must be "caught up";
2992 * i.e. no pending output (hence s->read equals s->write), and the state must
2993 * be BLOCKS (i.e. we should be willing to see the start of a series of
2994 * BLOCKS). On exit, the output will also be caught up, and the checksum
2995 * will have been updated if need be.
2996 */
2997
2998 int inflateIncomp(z)
2999 z_stream *z;
3000 {
3001 if (z->state->mode != BLOCKS)
3002 return Z_DATA_ERROR;
3003 return inflate_addhistory(z->state->blocks, z);
3004 }
3005
3006
3007 int inflateSync(z)
3008 z_stream *z;
3009 {
3010 uInt n; /* number of bytes to look at */
3011 Bytef *p; /* pointer to bytes */
3012 uInt m; /* number of marker bytes found in a row */
3013 uLong r, w; /* temporaries to save total_in and total_out */
3014
3015 /* set up */
3016 if (z == Z_NULL || z->state == Z_NULL)
3017 return Z_STREAM_ERROR;
3018 if (z->state->mode != BAD)
3019 {
3020 z->state->mode = BAD;
3021 z->state->sub.marker = 0;
3022 }
3023 if ((n = z->avail_in) == 0)
3024 return Z_BUF_ERROR;
3025 p = z->next_in;
3026 m = z->state->sub.marker;
3027
3028 /* search */
3029 while (n && m < 4)
3030 {
3031 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3032 m++;
3033 else if (*p)
3034 m = 0;
3035 else
3036 m = 4 - m;
3037 p++, n--;
3038 }
3039
3040 /* restore */
3041 z->total_in += p - z->next_in;
3042 z->next_in = p;
3043 z->avail_in = n;
3044 z->state->sub.marker = m;
3045
3046 /* return no joy or set up to restart on a new block */
3047 if (m != 4)
3048 return Z_DATA_ERROR;
3049 r = z->total_in; w = z->total_out;
3050 inflateReset(z);
3051 z->total_in = r; z->total_out = w;
3052 z->state->mode = BLOCKS;
3053 return Z_OK;
3054 }
3055
3056 #undef NEEDBYTE
3057 #undef NEXTBYTE
3058
3059 /*+++++*/
3060 /* infutil.h -- types and macros common to blocks and codes
3061 * Copyright (C) 1995 Mark Adler
3062 * For conditions of distribution and use, see copyright notice in zlib.h
3063 */
3064
3065 /* WARNING: this file should *not* be used by applications. It is
3066 part of the implementation of the compression library and is
3067 subject to change. Applications should only use zlib.h.
3068 */
3069
3070 /* inflate blocks semi-private state */
3071 struct inflate_blocks_state {
3072
3073 /* mode */
3074 enum {
3075 TYPE, /* get type bits (3, including end bit) */
3076 LENS, /* get lengths for stored */
3077 STORED, /* processing stored block */
3078 TABLE, /* get table lengths */
3079 BTREE, /* get bit lengths tree for a dynamic block */
3080 DTREE, /* get length, distance trees for a dynamic block */
3081 CODES, /* processing fixed or dynamic block */
3082 DRY, /* output remaining window bytes */
3083 DONEB, /* finished last block, done */
3084 BADB} /* got a data error--stuck here */
3085 mode; /* current inflate_block mode */
3086
3087 /* mode dependent information */
3088 union {
3089 uInt left; /* if STORED, bytes left to copy */
3090 struct {
3091 uInt table; /* table lengths (14 bits) */
3092 uInt index; /* index into blens (or border) */
3093 uIntf *blens; /* bit lengths of codes */
3094 uInt bb; /* bit length tree depth */
3095 inflate_huft *tb; /* bit length decoding tree */
3096 int nblens; /* # elements allocated at blens */
3097 } trees; /* if DTREE, decoding info for trees */
3098 struct {
3099 inflate_huft *tl, *td; /* trees to free */
3100 inflate_codes_statef
3101 *codes;
3102 } decode; /* if CODES, current state */
3103 } sub; /* submode */
3104 uInt last; /* true if this block is the last block */
3105
3106 /* mode independent information */
3107 uInt bitk; /* bits in bit buffer */
3108 uLong bitb; /* bit buffer */
3109 Bytef *window; /* sliding window */
3110 Bytef *end; /* one byte after sliding window */
3111 Bytef *read; /* window read pointer */
3112 Bytef *write; /* window write pointer */
3113 check_func checkfn; /* check function */
3114 uLong check; /* check on output */
3115
3116 };
3117
3118
3119 /* defines for inflate input/output */
3120 /* update pointers and return */
3121 #define UPDBITS {s->bitb=b;s->bitk=k;}
3122 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3123 #define UPDOUT {s->write=q;}
3124 #define UPDATE {UPDBITS UPDIN UPDOUT}
3125 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3126 /* get bytes and bits */
3127 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3128 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3129 #define NEXTBYTE (n--,*p++)
3130 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3131 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3132 /* output bytes */
3133 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3134 #define LOADOUT {q=s->write;m=WAVAIL;}
3135 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3136 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3137 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3138 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3139 /* load local pointers */
3140 #define LOAD {LOADIN LOADOUT}
3141
3142 /* And'ing with mask[n] masks the lower n bits */
3143 local uInt inflate_mask[] = {
3144 0x0000,
3145 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3146 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3147 };
3148
3149 /* copy as much as possible from the sliding window to the output area */
3150 local int inflate_flush OF((
3151 inflate_blocks_statef *,
3152 z_stream *,
3153 int));
3154
3155 /*+++++*/
3156 /* inffast.h -- header to use inffast.c
3157 * Copyright (C) 1995 Mark Adler
3158 * For conditions of distribution and use, see copyright notice in zlib.h
3159 */
3160
3161 /* WARNING: this file should *not* be used by applications. It is
3162 part of the implementation of the compression library and is
3163 subject to change. Applications should only use zlib.h.
3164 */
3165
3166 local int inflate_fast OF((
3167 uInt,
3168 uInt,
3169 inflate_huft *,
3170 inflate_huft *,
3171 inflate_blocks_statef *,
3172 z_stream *));
3173
3174
3175 /*+++++*/
3176 /* infblock.c -- interpret and process block types to last block
3177 * Copyright (C) 1995 Mark Adler
3178 * For conditions of distribution and use, see copyright notice in zlib.h
3179 */
3180
3181 /* Table for deflate from PKZIP's appnote.txt. */
3182 local uInt border[] = { /* Order of the bit length code lengths */
3183 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3184
3185 /*
3186 Notes beyond the 1.93a appnote.txt:
3187
3188 1. Distance pointers never point before the beginning of the output
3189 stream.
3190 2. Distance pointers can point back across blocks, up to 32k away.
3191 3. There is an implied maximum of 7 bits for the bit length table and
3192 15 bits for the actual data.
3193 4. If only one code exists, then it is encoded using one bit. (Zero
3194 would be more efficient, but perhaps a little confusing.) If two
3195 codes exist, they are coded using one bit each (0 and 1).
3196 5. There is no way of sending zero distance codes--a dummy must be
3197 sent if there are none. (History: a pre 2.0 version of PKZIP would
3198 store blocks with no distance codes, but this was discovered to be
3199 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3200 zero distance codes, which is sent as one code of zero bits in
3201 length.
3202 6. There are up to 286 literal/length codes. Code 256 represents the
3203 end-of-block. Note however that the static length tree defines
3204 288 codes just to fill out the Huffman codes. Codes 286 and 287
3205 cannot be used though, since there is no length base or extra bits
3206 defined for them. Similarily, there are up to 30 distance codes.
3207 However, static trees define 32 codes (all 5 bits) to fill out the
3208 Huffman codes, but the last two had better not show up in the data.
3209 7. Unzip can check dynamic Huffman blocks for complete code sets.
3210 The exception is that a single code would not be complete (see #4).
3211 8. The five bits following the block type is really the number of
3212 literal codes sent minus 257.
3213 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3214 (1+6+6). Therefore, to output three times the length, you output
3215 three codes (1+1+1), whereas to output four times the same length,
3216 you only need two codes (1+3). Hmm.
3217 10. In the tree reconstruction algorithm, Code = Code + Increment
3218 only if BitLength(i) is not zero. (Pretty obvious.)
3219 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3220 12. Note: length code 284 can represent 227-258, but length code 285
3221 really is 258. The last length deserves its own, short code
3222 since it gets used a lot in very redundant files. The length
3223 258 is special since 258 - 3 (the min match length) is 255.
3224 13. The literal/length and distance code bit lengths are read as a
3225 single stream of lengths. It is possible (and advantageous) for
3226 a repeat code (16, 17, or 18) to go across the boundary between
3227 the two sets of lengths.
3228 */
3229
3230
3231 local void inflate_blocks_reset(s, z, c)
3232 inflate_blocks_statef *s;
3233 z_stream *z;
3234 uLongf *c;
3235 {
3236 if (s->checkfn != Z_NULL)
3237 *c = s->check;
3238 if (s->mode == BTREE || s->mode == DTREE)
3239 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3240 if (s->mode == CODES)
3241 {
3242 inflate_codes_free(s->sub.decode.codes, z);
3243 inflate_trees_free(s->sub.decode.td, z);
3244 inflate_trees_free(s->sub.decode.tl, z);
3245 }
3246 s->mode = TYPE;
3247 s->bitk = 0;
3248 s->bitb = 0;
3249 s->read = s->write = s->window;
3250 if (s->checkfn != Z_NULL)
3251 s->check = (*s->checkfn)(0L, Z_NULL, 0);
3252 Trace((stderr, "inflate: blocks reset\n"));
3253 }
3254
3255
3256 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3257 z_stream *z;
3258 check_func c;
3259 uInt w;
3260 {
3261 inflate_blocks_statef *s;
3262
3263 if ((s = (inflate_blocks_statef *)ZALLOC
3264 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3265 return s;
3266 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3267 {
3268 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3269 return Z_NULL;
3270 }
3271 s->end = s->window + w;
3272 s->checkfn = c;
3273 s->mode = TYPE;
3274 Trace((stderr, "inflate: blocks allocated\n"));
3275 inflate_blocks_reset(s, z, &s->check);
3276 return s;
3277 }
3278
3279
3280 local int inflate_blocks(s, z, r)
3281 inflate_blocks_statef *s;
3282 z_stream *z;
3283 int r;
3284 {
3285 uInt t; /* temporary storage */
3286 uLong b; /* bit buffer */
3287 uInt k; /* bits in bit buffer */
3288 Bytef *p; /* input data pointer */
3289 uInt n; /* bytes available there */
3290 Bytef *q; /* output window write pointer */
3291 uInt m; /* bytes to end of window or read pointer */
3292
3293 /* copy input/output information to locals (UPDATE macro restores) */
3294 LOAD
3295
3296 /* process input based on current state */
3297 while (1) switch (s->mode)
3298 {
3299 case TYPE:
3300 NEEDBITS(3)
3301 t = (uInt)b & 7;
3302 s->last = t & 1;
3303 switch (t >> 1)
3304 {
3305 case 0: /* stored */
3306 Trace((stderr, "inflate: stored block%s\n",
3307 s->last ? " (last)" : ""));
3308 DUMPBITS(3)
3309 t = k & 7; /* go to byte boundary */
3310 DUMPBITS(t)
3311 s->mode = LENS; /* get length of stored block */
3312 break;
3313 case 1: /* fixed */
3314 Trace((stderr, "inflate: fixed codes block%s\n",
3315 s->last ? " (last)" : ""));
3316 {
3317 uInt bl, bd;
3318 inflate_huft *tl, *td;
3319
3320 inflate_trees_fixed(&bl, &bd, &tl, &td);
3321 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3322 if (s->sub.decode.codes == Z_NULL)
3323 {
3324 r = Z_MEM_ERROR;
3325 LEAVE
3326 }
3327 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3328 s->sub.decode.td = Z_NULL;
3329 }
3330 DUMPBITS(3)
3331 s->mode = CODES;
3332 break;
3333 case 2: /* dynamic */
3334 Trace((stderr, "inflate: dynamic codes block%s\n",
3335 s->last ? " (last)" : ""));
3336 DUMPBITS(3)
3337 s->mode = TABLE;
3338 break;
3339 case 3: /* illegal */
3340 DUMPBITS(3)
3341 s->mode = BADB;
3342 z->msg = "invalid block type";
3343 r = Z_DATA_ERROR;
3344 LEAVE
3345 }
3346 break;
3347 case LENS:
3348 NEEDBITS(32)
3349 if (((~b) >> 16) != (b & 0xffff))
3350 {
3351 s->mode = BADB;
3352 z->msg = "invalid stored block lengths";
3353 r = Z_DATA_ERROR;
3354 LEAVE
3355 }
3356 s->sub.left = (uInt)b & 0xffff;
3357 b = k = 0; /* dump bits */
3358 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3359 s->mode = s->sub.left ? STORED : TYPE;
3360 break;
3361 case STORED:
3362 if (n == 0)
3363 LEAVE
3364 NEEDOUT
3365 t = s->sub.left;
3366 if (t > n) t = n;
3367 if (t > m) t = m;
3368 zmemcpy(q, p, t);
3369 p += t; n -= t;
3370 q += t; m -= t;
3371 if ((s->sub.left -= t) != 0)
3372 break;
3373 Tracev((stderr, "inflate: stored end, %lu total out\n",
3374 z->total_out + (q >= s->read ? q - s->read :
3375 (s->end - s->read) + (q - s->window))));
3376 s->mode = s->last ? DRY : TYPE;
3377 break;
3378 case TABLE:
3379 NEEDBITS(14)
3380 s->sub.trees.table = t = (uInt)b & 0x3fff;
3381 #ifndef PKZIP_BUG_WORKAROUND
3382 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3383 {
3384 s->mode = BADB;
3385 z->msg = "too many length or distance symbols";
3386 r = Z_DATA_ERROR;
3387 LEAVE
3388 }
3389 #endif
3390 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3391 if (t < 19)
3392 t = 19;
3393 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3394 {
3395 r = Z_MEM_ERROR;
3396 LEAVE
3397 }
3398 s->sub.trees.nblens = t;
3399 DUMPBITS(14)
3400 s->sub.trees.index = 0;
3401 Tracev((stderr, "inflate: table sizes ok\n"));
3402 s->mode = BTREE;
3403 case BTREE:
3404 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3405 {
3406 NEEDBITS(3)
3407 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3408 DUMPBITS(3)
3409 }
3410 while (s->sub.trees.index < 19)
3411 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3412 s->sub.trees.bb = 7;
3413 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3414 &s->sub.trees.tb, z);
3415 if (t != Z_OK)
3416 {
3417 r = t;
3418 if (r == Z_DATA_ERROR)
3419 s->mode = BADB;
3420 LEAVE
3421 }
3422 s->sub.trees.index = 0;
3423 Tracev((stderr, "inflate: bits tree ok\n"));
3424 s->mode = DTREE;
3425 case DTREE:
3426 while (t = s->sub.trees.table,
3427 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3428 {
3429 inflate_huft *h;
3430 uInt i, j, c;
3431
3432 t = s->sub.trees.bb;
3433 NEEDBITS(t)
3434 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3435 t = h->word.what.Bits;
3436 c = h->more.Base;
3437 if (c < 16)
3438 {
3439 DUMPBITS(t)
3440 s->sub.trees.blens[s->sub.trees.index++] = c;
3441 }
3442 else /* c == 16..18 */
3443 {
3444 i = c == 18 ? 7 : c - 14;
3445 j = c == 18 ? 11 : 3;
3446 NEEDBITS(t + i)
3447 DUMPBITS(t)
3448 j += (uInt)b & inflate_mask[i];
3449 DUMPBITS(i)
3450 i = s->sub.trees.index;
3451 t = s->sub.trees.table;
3452 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3453 (c == 16 && i < 1))
3454 {
3455 s->mode = BADB;
3456 z->msg = "invalid bit length repeat";
3457 r = Z_DATA_ERROR;
3458 LEAVE
3459 }
3460 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3461 do {
3462 s->sub.trees.blens[i++] = c;
3463 } while (--j);
3464 s->sub.trees.index = i;
3465 }
3466 }
3467 inflate_trees_free(s->sub.trees.tb, z);
3468 s->sub.trees.tb = Z_NULL;
3469 {
3470 uInt bl, bd;
3471 inflate_huft *tl, *td;
3472 inflate_codes_statef *c;
3473
3474 bl = 9; /* must be <= 9 for lookahead assumptions */
3475 bd = 6; /* must be <= 9 for lookahead assumptions */
3476 t = s->sub.trees.table;
3477 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3478 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3479 if (t != Z_OK)
3480 {
3481 if (t == (uInt)Z_DATA_ERROR)
3482 s->mode = BADB;
3483 r = t;
3484 LEAVE
3485 }
3486 Tracev((stderr, "inflate: trees ok\n"));
3487 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3488 {
3489 inflate_trees_free(td, z);
3490 inflate_trees_free(tl, z);
3491 r = Z_MEM_ERROR;
3492 LEAVE
3493 }
3494 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3495 s->sub.decode.codes = c;
3496 s->sub.decode.tl = tl;
3497 s->sub.decode.td = td;
3498 }
3499 s->mode = CODES;
3500 case CODES:
3501 UPDATE
3502 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3503 return inflate_flush(s, z, r);
3504 r = Z_OK;
3505 inflate_codes_free(s->sub.decode.codes, z);
3506 inflate_trees_free(s->sub.decode.td, z);
3507 inflate_trees_free(s->sub.decode.tl, z);
3508 LOAD
3509 Tracev((stderr, "inflate: codes end, %lu total out\n",
3510 z->total_out + (q >= s->read ? q - s->read :
3511 (s->end - s->read) + (q - s->window))));
3512 if (!s->last)
3513 {
3514 s->mode = TYPE;
3515 break;
3516 }
3517 if (k > 7) /* return unused byte, if any */
3518 {
3519 Assert(k < 16, "inflate_codes grabbed too many bytes")
3520 k -= 8;
3521 n++;
3522 p--; /* can always return one */
3523 }
3524 s->mode = DRY;
3525 case DRY:
3526 FLUSH
3527 if (s->read != s->write)
3528 LEAVE
3529 s->mode = DONEB;
3530 case DONEB:
3531 r = Z_STREAM_END;
3532 LEAVE
3533 case BADB:
3534 r = Z_DATA_ERROR;
3535 LEAVE
3536 default:
3537 r = Z_STREAM_ERROR;
3538 LEAVE
3539 }
3540 }
3541
3542
3543 local int inflate_blocks_free(s, z, c)
3544 inflate_blocks_statef *s;
3545 z_stream *z;
3546 uLongf *c;
3547 {
3548 inflate_blocks_reset(s, z, c);
3549 ZFREE(z, s->window, s->end - s->window);
3550 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3551 Trace((stderr, "inflate: blocks freed\n"));
3552 return Z_OK;
3553 }
3554
3555 /*
3556 * This subroutine adds the data at next_in/avail_in to the output history
3557 * without performing any output. The output buffer must be "caught up";
3558 * i.e. no pending output (hence s->read equals s->write), and the state must
3559 * be BLOCKS (i.e. we should be willing to see the start of a series of
3560 * BLOCKS). On exit, the output will also be caught up, and the checksum
3561 * will have been updated if need be.
3562 */
3563 local int inflate_addhistory(s, z)
3564 inflate_blocks_statef *s;
3565 z_stream *z;
3566 {
3567 uLong b; /* bit buffer */ /* NOT USED HERE */
3568 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3569 uInt t; /* temporary storage */
3570 Bytef *p; /* input data pointer */
3571 uInt n; /* bytes available there */
3572 Bytef *q; /* output window write pointer */
3573 uInt m; /* bytes to end of window or read pointer */
3574
3575 if (s->read != s->write)
3576 return Z_STREAM_ERROR;
3577 if (s->mode != TYPE)
3578 return Z_DATA_ERROR;
3579
3580 /* we're ready to rock */
3581 LOAD
3582 /* while there is input ready, copy to output buffer, moving
3583 * pointers as needed.
3584 */
3585 while (n) {
3586 t = n; /* how many to do */
3587 /* is there room until end of buffer? */
3588 if (t > m) t = m;
3589 /* update check information */
3590 if (s->checkfn != Z_NULL)
3591 s->check = (*s->checkfn)(s->check, q, t);
3592 zmemcpy(q, p, t);
3593 q += t;
3594 p += t;
3595 n -= t;
3596 z->total_out += t;
3597 s->read = q; /* drag read pointer forward */
3598 /* WRAP */ /* expand WRAP macro by hand to handle s->read */
3599 if (q == s->end) {
3600 s->read = q = s->window;
3601 m = WAVAIL;
3602 }
3603 }
3604 UPDATE
3605 return Z_OK;
3606 }
3607
3608
3609 /*
3610 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3611 * a `stored' block type value but not the (zero) length bytes.
3612 */
3613 local int inflate_packet_flush(s)
3614 inflate_blocks_statef *s;
3615 {
3616 if (s->mode != LENS)
3617 return Z_DATA_ERROR;
3618 s->mode = TYPE;
3619 return Z_OK;
3620 }
3621
3622
3623 /*+++++*/
3624 /* inftrees.c -- generate Huffman trees for efficient decoding
3625 * Copyright (C) 1995 Mark Adler
3626 * For conditions of distribution and use, see copyright notice in zlib.h
3627 */
3628
3629 /* simplify the use of the inflate_huft type with some defines */
3630 #define base more.Base
3631 #define next more.Next
3632 #define exop word.what.Exop
3633 #define bits word.what.Bits
3634
3635
3636 local int huft_build OF((
3637 uIntf *, /* code lengths in bits */
3638 uInt, /* number of codes */
3639 uInt, /* number of "simple" codes */
3640 uIntf *, /* list of base values for non-simple codes */
3641 uIntf *, /* list of extra bits for non-simple codes */
3642 inflate_huft * FAR*,/* result: starting table */
3643 uIntf *, /* maximum lookup bits (returns actual) */
3644 z_stream *)); /* for zalloc function */
3645
3646 local voidpf falloc OF((
3647 voidpf, /* opaque pointer (not used) */
3648 uInt, /* number of items */
3649 uInt)); /* size of item */
3650
3651 local void ffree OF((
3652 voidpf q, /* opaque pointer (not used) */
3653 voidpf p, /* what to free (not used) */
3654 uInt n)); /* number of bytes (not used) */
3655
3656 /* Tables for deflate from PKZIP's appnote.txt. */
3657 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3658 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3659 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3660 /* actually lengths - 2; also see note #13 above about 258 */
3661 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3662 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3663 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3664 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3665 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3666 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3667 8193, 12289, 16385, 24577};
3668 local uInt cpdext[] = { /* Extra bits for distance codes */
3669 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3670 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3671 12, 12, 13, 13};
3672
3673 /*
3674 Huffman code decoding is performed using a multi-level table lookup.
3675 The fastest way to decode is to simply build a lookup table whose
3676 size is determined by the longest code. However, the time it takes
3677 to build this table can also be a factor if the data being decoded
3678 is not very long. The most common codes are necessarily the
3679 shortest codes, so those codes dominate the decoding time, and hence
3680 the speed. The idea is you can have a shorter table that decodes the
3681 shorter, more probable codes, and then point to subsidiary tables for
3682 the longer codes. The time it costs to decode the longer codes is
3683 then traded against the time it takes to make longer tables.
3684
3685 This results of this trade are in the variables lbits and dbits
3686 below. lbits is the number of bits the first level table for literal/
3687 length codes can decode in one step, and dbits is the same thing for
3688 the distance codes. Subsequent tables are also less than or equal to
3689 those sizes. These values may be adjusted either when all of the
3690 codes are shorter than that, in which case the longest code length in
3691 bits is used, or when the shortest code is *longer* than the requested
3692 table size, in which case the length of the shortest code in bits is
3693 used.
3694
3695 There are two different values for the two tables, since they code a
3696 different number of possibilities each. The literal/length table
3697 codes 286 possible values, or in a flat code, a little over eight
3698 bits. The distance table codes 30 possible values, or a little less
3699 than five bits, flat. The optimum values for speed end up being
3700 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3701 The optimum values may differ though from machine to machine, and
3702 possibly even between compilers. Your mileage may vary.
3703 */
3704
3705
3706 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3707 #define BMAX 15 /* maximum bit length of any code */
3708 #define N_MAX 288 /* maximum number of codes in any set */
3709
3710 #ifdef DEBUG_ZLIB
3711 uInt inflate_hufts;
3712 #endif
3713
3714 local int huft_build(b, n, s, d, e, t, m, zs)
3715 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3716 uInt n; /* number of codes (assumed <= N_MAX) */
3717 uInt s; /* number of simple-valued codes (0..s-1) */
3718 uIntf *d; /* list of base values for non-simple codes */
3719 uIntf *e; /* list of extra bits for non-simple codes */
3720 inflate_huft * FAR *t; /* result: starting table */
3721 uIntf *m; /* maximum lookup bits, returns actual */
3722 z_stream *zs; /* for zalloc function */
3723 /* Given a list of code lengths and a maximum table size, make a set of
3724 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3725 if the given code set is incomplete (the tables are still built in this
3726 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3727 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3728 {
3729
3730 uInt a; /* counter for codes of length k */
3731 uInt c[BMAX+1]; /* bit length count table */
3732 uInt f; /* i repeats in table every f entries */
3733 int g; /* maximum code length */
3734 int h; /* table level */
3735 register uInt i; /* counter, current code */
3736 register uInt j; /* counter */
3737 register int k; /* number of bits in current code */
3738 int l; /* bits per table (returned in m) */
3739 register uIntf *p; /* pointer into c[], b[], or v[] */
3740 inflate_huft *q; /* points to current table */
3741 struct inflate_huft_s r; /* table entry for structure assignment */
3742 inflate_huft *u[BMAX]; /* table stack */
3743 uInt v[N_MAX]; /* values in order of bit length */
3744 register int w; /* bits before this table == (l * h) */
3745 uInt x[BMAX+1]; /* bit offsets, then code stack */
3746 uIntf *xp; /* pointer into x */
3747 int y; /* number of dummy codes added */
3748 uInt z; /* number of entries in current table */
3749
3750
3751 /* Generate counts for each bit length */
3752 p = c;
3753 #define C0 *p++ = 0;
3754 #define C2 C0 C0 C0 C0
3755 #define C4 C2 C2 C2 C2
3756 C4 /* clear c[]--assume BMAX+1 is 16 */
3757 p = b; i = n;
3758 do {
3759 c[*p++]++; /* assume all entries <= BMAX */
3760 } while (--i);
3761 if (c[0] == n) /* null input--all zero length codes */
3762 {
3763 *t = (inflate_huft *)Z_NULL;
3764 *m = 0;
3765 return Z_OK;
3766 }
3767
3768
3769 /* Find minimum and maximum length, bound *m by those */
3770 l = *m;
3771 for (j = 1; j <= BMAX; j++)
3772 if (c[j])
3773 break;
3774 k = j; /* minimum code length */
3775 if ((uInt)l < j)
3776 l = j;
3777 for (i = BMAX; i; i--)
3778 if (c[i])
3779 break;
3780 g = i; /* maximum code length */
3781 if ((uInt)l > i)
3782 l = i;
3783 *m = l;
3784
3785
3786 /* Adjust last length count to fill out codes, if needed */
3787 for (y = 1 << j; j < i; j++, y <<= 1)
3788 if ((y -= c[j]) < 0)
3789 return Z_DATA_ERROR;
3790 if ((y -= c[i]) < 0)
3791 return Z_DATA_ERROR;
3792 c[i] += y;
3793
3794
3795 /* Generate starting offsets into the value table for each length */
3796 x[1] = j = 0;
3797 p = c + 1; xp = x + 2;
3798 while (--i) { /* note that i == g from above */
3799 *xp++ = (j += *p++);
3800 }
3801
3802
3803 /* Make a table of values in order of bit lengths */
3804 p = b; i = 0;
3805 do {
3806 if ((j = *p++) != 0)
3807 v[x[j]++] = i;
3808 } while (++i < n);
3809
3810
3811 /* Generate the Huffman codes and for each, make the table entries */
3812 x[0] = i = 0; /* first Huffman code is zero */
3813 p = v; /* grab values in bit order */
3814 h = -1; /* no tables yet--level -1 */
3815 w = -l; /* bits decoded == (l * h) */
3816 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3817 q = (inflate_huft *)Z_NULL; /* ditto */
3818 z = 0; /* ditto */
3819
3820 /* go through the bit lengths (k already is bits in shortest code) */
3821 for (; k <= g; k++)
3822 {
3823 a = c[k];
3824 while (a--)
3825 {
3826 /* here i is the Huffman code of length k bits for value *p */
3827 /* make tables up to required level */
3828 while (k > w + l)
3829 {
3830 h++;
3831 w += l; /* previous table always l bits */
3832
3833 /* compute minimum size table less than or equal to l bits */
3834 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3835 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3836 { /* too few codes for k-w bit table */
3837 f -= a + 1; /* deduct codes from patterns left */
3838 xp = c + k;
3839 if (j < z)
3840 while (++j < z) /* try smaller tables up to z bits */
3841 {
3842 if ((f <<= 1) <= *++xp)
3843 break; /* enough codes to use up j bits */
3844 f -= *xp; /* else deduct codes from patterns */
3845 }
3846 }
3847 z = 1 << j; /* table entries for j-bit table */
3848
3849 /* allocate and link in new table */
3850 if ((q = (inflate_huft *)ZALLOC
3851 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3852 {
3853 if (h)
3854 inflate_trees_free(u[0], zs);
3855 return Z_MEM_ERROR; /* not enough memory */
3856 }
3857 q->word.Nalloc = z + 1;
3858 #ifdef DEBUG_ZLIB
3859 inflate_hufts += z + 1;
3860 #endif
3861 *t = q + 1; /* link to list for huft_free() */
3862 *(t = &(q->next)) = Z_NULL;
3863 u[h] = ++q; /* table starts after link */
3864
3865 /* connect to last table, if there is one */
3866 if (h)
3867 {
3868 x[h] = i; /* save pattern for backing up */
3869 r.bits = (Byte)l; /* bits to dump before this table */
3870 r.exop = (Byte)j; /* bits in this table */
3871 r.next = q; /* pointer to this table */
3872 j = i >> (w - l); /* (get around Turbo C bug) */
3873 u[h-1][j] = r; /* connect to last table */
3874 }
3875 }
3876
3877 /* set up table entry in r */
3878 r.bits = (Byte)(k - w);
3879 if (p >= v + n)
3880 r.exop = 128 + 64; /* out of values--invalid code */
3881 else if (*p < s)
3882 {
3883 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3884 r.base = *p++; /* simple code is just the value */
3885 }
3886 else
3887 {
3888 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3889 r.base = d[*p++ - s];
3890 }
3891
3892 /* fill code-like entries with r */
3893 f = 1 << (k - w);
3894 for (j = i >> w; j < z; j += f)
3895 q[j] = r;
3896
3897 /* backwards increment the k-bit code i */
3898 for (j = 1 << (k - 1); i & j; j >>= 1)
3899 i ^= j;
3900 i ^= j;
3901
3902 /* backup over finished tables */
3903 while ((i & ((1 << w) - 1)) != x[h])
3904 {
3905 h--; /* don't need to update q */
3906 w -= l;
3907 }
3908 }
3909 }
3910
3911
3912 /* Return Z_BUF_ERROR if we were given an incomplete table */
3913 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3914 }
3915
3916
3917 local int inflate_trees_bits(c, bb, tb, z)
3918 uIntf *c; /* 19 code lengths */
3919 uIntf *bb; /* bits tree desired/actual depth */
3920 inflate_huft * FAR *tb; /* bits tree result */
3921 z_stream *z; /* for zfree function */
3922 {
3923 int r;
3924
3925 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3926 if (r == Z_DATA_ERROR)
3927 z->msg = "oversubscribed dynamic bit lengths tree";
3928 else if (r == Z_BUF_ERROR)
3929 {
3930 inflate_trees_free(*tb, z);
3931 z->msg = "incomplete dynamic bit lengths tree";
3932 r = Z_DATA_ERROR;
3933 }
3934 return r;
3935 }
3936
3937
3938 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3939 uInt nl; /* number of literal/length codes */
3940 uInt nd; /* number of distance codes */
3941 uIntf *c; /* that many (total) code lengths */
3942 uIntf *bl; /* literal desired/actual bit depth */
3943 uIntf *bd; /* distance desired/actual bit depth */
3944 inflate_huft * FAR *tl; /* literal/length tree result */
3945 inflate_huft * FAR *td; /* distance tree result */
3946 z_stream *z; /* for zfree function */
3947 {
3948 int r;
3949
3950 /* build literal/length tree */
3951 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3952 {
3953 if (r == Z_DATA_ERROR)
3954 z->msg = "oversubscribed literal/length tree";
3955 else if (r == Z_BUF_ERROR)
3956 {
3957 inflate_trees_free(*tl, z);
3958 z->msg = "incomplete literal/length tree";
3959 r = Z_DATA_ERROR;
3960 }
3961 return r;
3962 }
3963
3964 /* build distance tree */
3965 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3966 {
3967 if (r == Z_DATA_ERROR)
3968 z->msg = "oversubscribed literal/length tree";
3969 else if (r == Z_BUF_ERROR) {
3970 #ifdef PKZIP_BUG_WORKAROUND
3971 r = Z_OK;
3972 }
3973 #else
3974 inflate_trees_free(*td, z);
3975 z->msg = "incomplete literal/length tree";
3976 r = Z_DATA_ERROR;
3977 }
3978 inflate_trees_free(*tl, z);
3979 return r;
3980 #endif
3981 }
3982
3983 /* done */
3984 return Z_OK;
3985 }
3986
3987
3988 /* build fixed tables only once--keep them here */
3989 local int fixed_lock = 0;
3990 local int fixed_built = 0;
3991 #define FIXEDH 530 /* number of hufts used by fixed tables */
3992 local uInt fixed_left = FIXEDH;
3993 local inflate_huft fixed_mem[FIXEDH];
3994 local uInt fixed_bl;
3995 local uInt fixed_bd;
3996 local inflate_huft *fixed_tl;
3997 local inflate_huft *fixed_td;
3998
3999
4000 local voidpf falloc(q, n, s)
4001 voidpf q; /* opaque pointer (not used) */
4002 uInt n; /* number of items */
4003 uInt s; /* size of item */
4004 {
4005 Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4006 "inflate_trees falloc overflow");
4007 if (q) s++; /* to make some compilers happy */
4008 fixed_left -= n;
4009 return (voidpf)(fixed_mem + fixed_left);
4010 }
4011
4012
4013 local void ffree(q, p, n)
4014 voidpf q;
4015 voidpf p;
4016 uInt n;
4017 {
4018 Assert(0, "inflate_trees ffree called!");
4019 if (q) q = p; /* to make some compilers happy */
4020 }
4021
4022
4023 local int inflate_trees_fixed(bl, bd, tl, td)
4024 uIntf *bl; /* literal desired/actual bit depth */
4025 uIntf *bd; /* distance desired/actual bit depth */
4026 inflate_huft * FAR *tl; /* literal/length tree result */
4027 inflate_huft * FAR *td; /* distance tree result */
4028 {
4029 /* build fixed tables if not built already--lock out other instances */
4030 while (++fixed_lock > 1)
4031 fixed_lock--;
4032 if (!fixed_built)
4033 {
4034 int k; /* temporary variable */
4035 unsigned c[288]; /* length list for huft_build */
4036 z_stream z; /* for falloc function */
4037
4038 /* set up fake z_stream for memory routines */
4039 z.zalloc = falloc;
4040 z.zfree = ffree;
4041 z.opaque = Z_NULL;
4042
4043 /* literal table */
4044 for (k = 0; k < 144; k++)
4045 c[k] = 8;
4046 for (; k < 256; k++)
4047 c[k] = 9;
4048 for (; k < 280; k++)
4049 c[k] = 7;
4050 for (; k < 288; k++)
4051 c[k] = 8;
4052 fixed_bl = 7;
4053 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4054
4055 /* distance table */
4056 for (k = 0; k < 30; k++)
4057 c[k] = 5;
4058 fixed_bd = 5;
4059 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4060
4061 /* done */
4062 fixed_built = 1;
4063 }
4064 fixed_lock--;
4065 *bl = fixed_bl;
4066 *bd = fixed_bd;
4067 *tl = fixed_tl;
4068 *td = fixed_td;
4069 return Z_OK;
4070 }
4071
4072
4073 local int inflate_trees_free(t, z)
4074 inflate_huft *t; /* table to free */
4075 z_stream *z; /* for zfree function */
4076 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4077 list of the tables it made, with the links in a dummy first entry of
4078 each table. */
4079 {
4080 register inflate_huft *p, *q;
4081
4082 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4083 p = t;
4084 while (p != Z_NULL)
4085 {
4086 q = (--p)->next;
4087 ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4088 p = q;
4089 }
4090 return Z_OK;
4091 }
4092
4093 /*+++++*/
4094 /* infcodes.c -- process literals and length/distance pairs
4095 * Copyright (C) 1995 Mark Adler
4096 * For conditions of distribution and use, see copyright notice in zlib.h
4097 */
4098
4099 /* simplify the use of the inflate_huft type with some defines */
4100 #define base more.Base
4101 #define next more.Next
4102 #define exop word.what.Exop
4103 #define bits word.what.Bits
4104
4105 /* inflate codes private state */
4106 struct inflate_codes_state {
4107
4108 /* mode */
4109 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4110 START, /* x: set up for LEN */
4111 LEN, /* i: get length/literal/eob next */
4112 LENEXT, /* i: getting length extra (have base) */
4113 DIST, /* i: get distance next */
4114 DISTEXT, /* i: getting distance extra */
4115 COPY, /* o: copying bytes in window, waiting for space */
4116 LIT, /* o: got literal, waiting for output space */
4117 WASH, /* o: got eob, possibly still output waiting */
4118 END, /* x: got eob and all data flushed */
4119 BADCODE} /* x: got error */
4120 mode; /* current inflate_codes mode */
4121
4122 /* mode dependent information */
4123 uInt len;
4124 union {
4125 struct {
4126 inflate_huft *tree; /* pointer into tree */
4127 uInt need; /* bits needed */
4128 } code; /* if LEN or DIST, where in tree */
4129 uInt lit; /* if LIT, literal */
4130 struct {
4131 uInt get; /* bits to get for extra */
4132 uInt dist; /* distance back to copy from */
4133 } copy; /* if EXT or COPY, where and how much */
4134 } sub; /* submode */
4135
4136 /* mode independent information */
4137 Byte lbits; /* ltree bits decoded per branch */
4138 Byte dbits; /* dtree bits decoder per branch */
4139 inflate_huft *ltree; /* literal/length/eob tree */
4140 inflate_huft *dtree; /* distance tree */
4141
4142 };
4143
4144
4145 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4146 uInt bl, bd;
4147 inflate_huft *tl, *td;
4148 z_stream *z;
4149 {
4150 inflate_codes_statef *c;
4151
4152 if ((c = (inflate_codes_statef *)
4153 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4154 {
4155 c->mode = START;
4156 c->lbits = (Byte)bl;
4157 c->dbits = (Byte)bd;
4158 c->ltree = tl;
4159 c->dtree = td;
4160 Tracev((stderr, "inflate: codes new\n"));
4161 }
4162 return c;
4163 }
4164
4165
4166 local int inflate_codes(s, z, r)
4167 inflate_blocks_statef *s;
4168 z_stream *z;
4169 int r;
4170 {
4171 uInt j; /* temporary storage */
4172 inflate_huft *t; /* temporary pointer */
4173 uInt e; /* extra bits or operation */
4174 uLong b; /* bit buffer */
4175 uInt k; /* bits in bit buffer */
4176 Bytef *p; /* input data pointer */
4177 uInt n; /* bytes available there */
4178 Bytef *q; /* output window write pointer */
4179 uInt m; /* bytes to end of window or read pointer */
4180 Bytef *f; /* pointer to copy strings from */
4181 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4182
4183 /* copy input/output information to locals (UPDATE macro restores) */
4184 LOAD
4185
4186 /* process input and output based on current state */
4187 while (1) switch (c->mode)
4188 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4189 case START: /* x: set up for LEN */
4190 #ifndef SLOW
4191 if (m >= 258 && n >= 10)
4192 {
4193 UPDATE
4194 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4195 LOAD
4196 if (r != Z_OK)
4197 {
4198 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4199 break;
4200 }
4201 }
4202 #endif /* !SLOW */
4203 c->sub.code.need = c->lbits;
4204 c->sub.code.tree = c->ltree;
4205 c->mode = LEN;
4206 case LEN: /* i: get length/literal/eob next */
4207 j = c->sub.code.need;
4208 NEEDBITS(j)
4209 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4210 DUMPBITS(t->bits)
4211 e = (uInt)(t->exop);
4212 if (e == 0) /* literal */
4213 {
4214 c->sub.lit = t->base;
4215 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4216 "inflate: literal '%c'\n" :
4217 "inflate: literal 0x%02x\n", t->base));
4218 c->mode = LIT;
4219 break;
4220 }
4221 if (e & 16) /* length */
4222 {
4223 c->sub.copy.get = e & 15;
4224 c->len = t->base;
4225 c->mode = LENEXT;
4226 break;
4227 }
4228 if ((e & 64) == 0) /* next table */
4229 {
4230 c->sub.code.need = e;
4231 c->sub.code.tree = t->next;
4232 break;
4233 }
4234 if (e & 32) /* end of block */
4235 {
4236 Tracevv((stderr, "inflate: end of block\n"));
4237 c->mode = WASH;
4238 break;
4239 }
4240 c->mode = BADCODE; /* invalid code */
4241 z->msg = "invalid literal/length code";
4242 r = Z_DATA_ERROR;
4243 LEAVE
4244 case LENEXT: /* i: getting length extra (have base) */
4245 j = c->sub.copy.get;
4246 NEEDBITS(j)
4247 c->len += (uInt)b & inflate_mask[j];
4248 DUMPBITS(j)
4249 c->sub.code.need = c->dbits;
4250 c->sub.code.tree = c->dtree;
4251 Tracevv((stderr, "inflate: length %u\n", c->len));
4252 c->mode = DIST;
4253 case DIST: /* i: get distance next */
4254 j = c->sub.code.need;
4255 NEEDBITS(j)
4256 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4257 DUMPBITS(t->bits)
4258 e = (uInt)(t->exop);
4259 if (e & 16) /* distance */
4260 {
4261 c->sub.copy.get = e & 15;
4262 c->sub.copy.dist = t->base;
4263 c->mode = DISTEXT;
4264 break;
4265 }
4266 if ((e & 64) == 0) /* next table */
4267 {
4268 c->sub.code.need = e;
4269 c->sub.code.tree = t->next;
4270 break;
4271 }
4272 c->mode = BADCODE; /* invalid code */
4273 z->msg = "invalid distance code";
4274 r = Z_DATA_ERROR;
4275 LEAVE
4276 case DISTEXT: /* i: getting distance extra */
4277 j = c->sub.copy.get;
4278 NEEDBITS(j)
4279 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4280 DUMPBITS(j)
4281 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4282 c->mode = COPY;
4283 case COPY: /* o: copying bytes in window, waiting for space */
4284 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4285 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4286 s->end - (c->sub.copy.dist - (q - s->window)) :
4287 q - c->sub.copy.dist;
4288 #else
4289 f = q - c->sub.copy.dist;
4290 if ((uInt)(q - s->window) < c->sub.copy.dist)
4291 f = s->end - (c->sub.copy.dist - (q - s->window));
4292 #endif
4293 while (c->len)
4294 {
4295 NEEDOUT
4296 OUTBYTE(*f++)
4297 if (f == s->end)
4298 f = s->window;
4299 c->len--;
4300 }
4301 c->mode = START;
4302 break;
4303 case LIT: /* o: got literal, waiting for output space */
4304 NEEDOUT
4305 OUTBYTE(c->sub.lit)
4306 c->mode = START;
4307 break;
4308 case WASH: /* o: got eob, possibly more output */
4309 FLUSH
4310 if (s->read != s->write)
4311 LEAVE
4312 c->mode = END;
4313 case END:
4314 r = Z_STREAM_END;
4315 LEAVE
4316 case BADCODE: /* x: got error */
4317 r = Z_DATA_ERROR;
4318 LEAVE
4319 default:
4320 r = Z_STREAM_ERROR;
4321 LEAVE
4322 }
4323 }
4324
4325
4326 local void inflate_codes_free(c, z)
4327 inflate_codes_statef *c;
4328 z_stream *z;
4329 {
4330 ZFREE(z, c, sizeof(struct inflate_codes_state));
4331 Tracev((stderr, "inflate: codes free\n"));
4332 }
4333
4334 /*+++++*/
4335 /* inflate_util.c -- data and routines common to blocks and codes
4336 * Copyright (C) 1995 Mark Adler
4337 * For conditions of distribution and use, see copyright notice in zlib.h
4338 */
4339
4340 /* copy as much as possible from the sliding window to the output area */
4341 local int inflate_flush(s, z, r)
4342 inflate_blocks_statef *s;
4343 z_stream *z;
4344 int r;
4345 {
4346 uInt n;
4347 Bytef *p, *q;
4348
4349 /* local copies of source and destination pointers */
4350 p = z->next_out;
4351 q = s->read;
4352
4353 /* compute number of bytes to copy as far as end of window */
4354 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4355 if (n > z->avail_out) n = z->avail_out;
4356 if (n && r == Z_BUF_ERROR) r = Z_OK;
4357
4358 /* update counters */
4359 z->avail_out -= n;
4360 z->total_out += n;
4361
4362 /* update check information */
4363 if (s->checkfn != Z_NULL)
4364 s->check = (*s->checkfn)(s->check, q, n);
4365
4366 /* copy as far as end of window */
4367 if (p != NULL) {
4368 zmemcpy(p, q, n);
4369 p += n;
4370 }
4371 q += n;
4372
4373 /* see if more to copy at beginning of window */
4374 if (q == s->end)
4375 {
4376 /* wrap pointers */
4377 q = s->window;
4378 if (s->write == s->end)
4379 s->write = s->window;
4380
4381 /* compute bytes to copy */
4382 n = (uInt)(s->write - q);
4383 if (n > z->avail_out) n = z->avail_out;
4384 if (n && r == Z_BUF_ERROR) r = Z_OK;
4385
4386 /* update counters */
4387 z->avail_out -= n;
4388 z->total_out += n;
4389
4390 /* update check information */
4391 if (s->checkfn != Z_NULL)
4392 s->check = (*s->checkfn)(s->check, q, n);
4393
4394 /* copy */
4395 if (p != NULL) {
4396 zmemcpy(p, q, n);
4397 p += n;
4398 }
4399 q += n;
4400 }
4401
4402 /* update pointers */
4403 z->next_out = p;
4404 s->read = q;
4405
4406 /* done */
4407 return r;
4408 }
4409
4410
4411 /*+++++*/
4412 /* inffast.c -- process literals and length/distance pairs fast
4413 * Copyright (C) 1995 Mark Adler
4414 * For conditions of distribution and use, see copyright notice in zlib.h
4415 */
4416
4417 /* simplify the use of the inflate_huft type with some defines */
4418 #define base more.Base
4419 #define next more.Next
4420 #define exop word.what.Exop
4421 #define bits word.what.Bits
4422
4423 /* macros for bit input with no checking and for returning unused bytes */
4424 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4425 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4426
4427 /* Called with number of bytes left to write in window at least 258
4428 (the maximum string length) and number of input bytes available
4429 at least ten. The ten bytes are six bytes for the longest length/
4430 distance pair plus four bytes for overloading the bit buffer. */
4431
4432 local int inflate_fast(bl, bd, tl, td, s, z)
4433 uInt bl, bd;
4434 inflate_huft *tl, *td;
4435 inflate_blocks_statef *s;
4436 z_stream *z;
4437 {
4438 inflate_huft *t; /* temporary pointer */
4439 uInt e; /* extra bits or operation */
4440 uLong b; /* bit buffer */
4441 uInt k; /* bits in bit buffer */
4442 Bytef *p; /* input data pointer */
4443 uInt n; /* bytes available there */
4444 Bytef *q; /* output window write pointer */
4445 uInt m; /* bytes to end of window or read pointer */
4446 uInt ml; /* mask for literal/length tree */
4447 uInt md; /* mask for distance tree */
4448 uInt c; /* bytes to copy */
4449 uInt d; /* distance back to copy from */
4450 Bytef *r; /* copy source pointer */
4451
4452 /* load input, output, bit values */
4453 LOAD
4454
4455 /* initialize masks */
4456 ml = inflate_mask[bl];
4457 md = inflate_mask[bd];
4458
4459 /* do until not enough input or output space for fast loop */
4460 do { /* assume called with m >= 258 && n >= 10 */
4461 /* get literal/length code */
4462 GRABBITS(20) /* max bits for literal/length code */
4463 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4464 {
4465 DUMPBITS(t->bits)
4466 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4467 "inflate: * literal '%c'\n" :
4468 "inflate: * literal 0x%02x\n", t->base));
4469 *q++ = (Byte)t->base;
4470 m--;
4471 continue;
4472 }
4473 do {
4474 DUMPBITS(t->bits)
4475 if (e & 16)
4476 {
4477 /* get extra bits for length */
4478 e &= 15;
4479 c = t->base + ((uInt)b & inflate_mask[e]);
4480 DUMPBITS(e)
4481 Tracevv((stderr, "inflate: * length %u\n", c));
4482
4483 /* decode distance base of block to copy */
4484 GRABBITS(15); /* max bits for distance code */
4485 e = (t = td + ((uInt)b & md))->exop;
4486 do {
4487 DUMPBITS(t->bits)
4488 if (e & 16)
4489 {
4490 /* get extra bits to add to distance base */
4491 e &= 15;
4492 GRABBITS(e) /* get extra bits (up to 13) */
4493 d = t->base + ((uInt)b & inflate_mask[e]);
4494 DUMPBITS(e)
4495 Tracevv((stderr, "inflate: * distance %u\n", d));
4496
4497 /* do the copy */
4498 m -= c;
4499 if ((uInt)(q - s->window) >= d) /* offset before dest */
4500 { /* just copy */
4501 r = q - d;
4502 *q++ = *r++; c--; /* minimum count is three, */
4503 *q++ = *r++; c--; /* so unroll loop a little */
4504 }
4505 else /* else offset after destination */
4506 {
4507 e = d - (q - s->window); /* bytes from offset to end */
4508 r = s->end - e; /* pointer to offset */
4509 if (c > e) /* if source crosses, */
4510 {
4511 c -= e; /* copy to end of window */
4512 do {
4513 *q++ = *r++;
4514 } while (--e);
4515 r = s->window; /* copy rest from start of window */
4516 }
4517 }
4518 do { /* copy all or what's left */
4519 *q++ = *r++;
4520 } while (--c);
4521 break;
4522 }
4523 else if ((e & 64) == 0)
4524 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4525 else
4526 {
4527 z->msg = "invalid distance code";
4528 UNGRAB
4529 UPDATE
4530 return Z_DATA_ERROR;
4531 }
4532 } while (1);
4533 break;
4534 }
4535 if ((e & 64) == 0)
4536 {
4537 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4538 {
4539 DUMPBITS(t->bits)
4540 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4541 "inflate: * literal '%c'\n" :
4542 "inflate: * literal 0x%02x\n", t->base));
4543 *q++ = (Byte)t->base;
4544 m--;
4545 break;
4546 }
4547 }
4548 else if (e & 32)
4549 {
4550 Tracevv((stderr, "inflate: * end of block\n"));
4551 UNGRAB
4552 UPDATE
4553 return Z_STREAM_END;
4554 }
4555 else
4556 {
4557 z->msg = "invalid literal/length code";
4558 UNGRAB
4559 UPDATE
4560 return Z_DATA_ERROR;
4561 }
4562 } while (1);
4563 } while (m >= 258 && n >= 10);
4564
4565 /* not enough input or output--restore pointers and return */
4566 UNGRAB
4567 UPDATE
4568 return Z_OK;
4569 }
4570
4571
4572 /*+++++*/
4573 /* zutil.c -- target dependent utility functions for the compression library
4574 * Copyright (C) 1995 Jean-loup Gailly.
4575 * For conditions of distribution and use, see copyright notice in zlib.h
4576 */
4577
4578 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4579
4580 char *zlib_version = ZLIB_VERSION;
4581
4582 char *z_errmsg[] = {
4583 "stream end", /* Z_STREAM_END 1 */
4584 "", /* Z_OK 0 */
4585 "file error", /* Z_ERRNO (-1) */
4586 "stream error", /* Z_STREAM_ERROR (-2) */
4587 "data error", /* Z_DATA_ERROR (-3) */
4588 "insufficient memory", /* Z_MEM_ERROR (-4) */
4589 "buffer error", /* Z_BUF_ERROR (-5) */
4590 ""};
4591
4592
4593 /*+++++*/
4594 /* adler32.c -- compute the Adler-32 checksum of a data stream
4595 * Copyright (C) 1995 Mark Adler
4596 * For conditions of distribution and use, see copyright notice in zlib.h
4597 */
4598
4599 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4600
4601 #define BASE 65521L /* largest prime smaller than 65536 */
4602 #define NMAX 5552
4603 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4604
4605 #define DO1(buf) {s1 += *buf++; s2 += s1;}
4606 #define DO2(buf) DO1(buf); DO1(buf);
4607 #define DO4(buf) DO2(buf); DO2(buf);
4608 #define DO8(buf) DO4(buf); DO4(buf);
4609 #define DO16(buf) DO8(buf); DO8(buf);
4610
4611 /* ========================================================================= */
4612 uLong adler32(adler, buf, len)
4613 uLong adler;
4614 Bytef *buf;
4615 uInt len;
4616 {
4617 unsigned long s1 = adler & 0xffff;
4618 unsigned long s2 = (adler >> 16) & 0xffff;
4619 int k;
4620
4621 if (buf == Z_NULL) return 1L;
4622
4623 while (len > 0) {
4624 k = len < NMAX ? len : NMAX;
4625 len -= k;
4626 while (k >= 16) {
4627 DO16(buf);
4628 k -= 16;
4629 }
4630 if (k != 0) do {
4631 DO1(buf);
4632 } while (--k);
4633 s1 %= BASE;
4634 s2 %= BASE;
4635 }
4636 return (s2 << 16) | s1;
4637 }
4638