zlib.c revision 1.6 1 /* $NetBSD: zlib.c,v 1.6 1997/05/17 21:12:14 christos Exp $ */
2
3 /*
4 * This file is derived from various .h and .c files from the zlib-0.95
5 * distribution by Jean-loup Gailly and Mark Adler, with some additions
6 * by Paul Mackerras to aid in implementing Deflate compression and
7 * decompression for PPP packets. See zlib.h for conditions of
8 * distribution and use.
9 *
10 * Changes that have been made include:
11 * - changed functions not used outside this file to "local"
12 * - added minCompression parameter to deflateInit2
13 * - added Z_PACKET_FLUSH (see zlib.h for details)
14 * - added inflateIncomp
15 *
16 * Id: zlib.c,v 1.6 1997/04/30 05:41:19 paulus Exp
17 */
18
19 /*
20 * ==FILEVERSION 970421==
21 *
22 * This marker is used by the Linux installation script to determine
23 * whether an up-to-date version of this file is already installed.
24 */
25
26 /*+++++*/
27 /* zutil.h -- internal interface and configuration of the compression library
28 * Copyright (C) 1995 Jean-loup Gailly.
29 * For conditions of distribution and use, see copyright notice in zlib.h
30 */
31
32 /* WARNING: this file should *not* be used by applications. It is
33 part of the implementation of the compression library and is
34 subject to change. Applications should only use zlib.h.
35 */
36
37 /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
38
39 #define _Z_UTIL_H
40
41 #include "zlib.h"
42
43 #ifndef local
44 # define local static
45 #endif
46 /* compile with -Dlocal if your debugger can't find static symbols */
47
48 #define FAR
49
50 typedef unsigned char uch;
51 typedef uch FAR uchf;
52 typedef unsigned short ush;
53 typedef ush FAR ushf;
54 typedef unsigned long ulg;
55
56 extern char *z_errmsg[]; /* indexed by 1-zlib_error */
57
58 #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
59 /* To be used only when the state is known to be valid */
60
61 #ifndef NULL
62 #define NULL ((void *) 0)
63 #endif
64
65 /* common constants */
66
67 #define DEFLATED 8
68
69 #ifndef DEF_WBITS
70 # define DEF_WBITS MAX_WBITS
71 #endif
72 /* default windowBits for decompression. MAX_WBITS is for compression only */
73
74 #if MAX_MEM_LEVEL >= 8
75 # define DEF_MEM_LEVEL 8
76 #else
77 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
78 #endif
79 /* default memLevel */
80
81 #define STORED_BLOCK 0
82 #define STATIC_TREES 1
83 #define DYN_TREES 2
84 /* The three kinds of block type */
85
86 #define MIN_MATCH 3
87 #define MAX_MATCH 258
88 /* The minimum and maximum match lengths */
89
90 /* functions */
91
92 #if defined(KERNEL) || defined(_KERNEL)
93 #include <sys/types.h>
94 #include <sys/time.h>
95 #include <sys/systm.h>
96 # define zmemcpy(d, s, n) bcopy((s), (d), (n))
97 # define zmemzero bzero
98
99 #else
100 #if defined(__KERNEL__)
101 /* Assume this is Linux */
102 #include <linux/string.h>
103 #define zmemcpy memcpy
104 #define zmemzero(dest, len) memset(dest, 0, len)
105
106 #else /* not kernel */
107 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
108 # define HAVE_MEMCPY
109 #endif
110 #ifdef HAVE_MEMCPY
111 # define zmemcpy memcpy
112 # define zmemzero(dest, len) memset(dest, 0, len)
113 #else
114 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
115 extern void zmemzero OF((Bytef* dest, uInt len));
116 #endif
117 #endif /* __KERNEL__ */
118 #endif /* KERNEL */
119
120 /* Diagnostic functions */
121 #ifdef DEBUG_ZLIB
122 # include <stdio.h>
123 # ifndef verbose
124 # define verbose 0
125 # endif
126 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
127 # define Trace(x) fprintf x
128 # define Tracev(x) {if (verbose) fprintf x ;}
129 # define Tracevv(x) {if (verbose>1) fprintf x ;}
130 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
131 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
132 #else
133 # define Assert(cond,msg)
134 # define Trace(x)
135 # define Tracev(x)
136 # define Tracevv(x)
137 # define Tracec(c,x)
138 # define Tracecv(c,x)
139 #endif
140
141
142 typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
143
144 /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
145 /* void zcfree OF((voidpf opaque, voidpf ptr)); */
146
147 #define ZALLOC(strm, items, size) \
148 (*((strm)->zalloc))((strm)->opaque, (items), (size))
149 #define ZALLOC_INIT(strm, items, size) \
150 (*((strm)->zalloc_init))((strm)->opaque, (items), (size))
151 #define ZFREE(strm, addr, size) \
152 (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
153 #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
154
155 /* deflate.h -- internal compression state
156 * Copyright (C) 1995 Jean-loup Gailly
157 * For conditions of distribution and use, see copyright notice in zlib.h
158 */
159
160 /* WARNING: this file should *not* be used by applications. It is
161 part of the implementation of the compression library and is
162 subject to change. Applications should only use zlib.h.
163 */
164
165
166 /*+++++*/
167 /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
168
169 /* ===========================================================================
170 * Internal compression state.
171 */
172
173 /* Data type */
174 #define Z_BINARY 0
175 #define ASCII 1
176 #define UNKNOWN 2
177
178 #define LENGTH_CODES 29
179 /* number of length codes, not counting the special END_BLOCK code */
180
181 #define LITERALS 256
182 /* number of literal bytes 0..255 */
183
184 #define L_CODES (LITERALS+1+LENGTH_CODES)
185 /* number of Literal or Length codes, including the END_BLOCK code */
186
187 #define D_CODES 30
188 /* number of distance codes */
189
190 #define BL_CODES 19
191 /* number of codes used to transfer the bit lengths */
192
193 #define HEAP_SIZE (2*L_CODES+1)
194 /* maximum heap size */
195
196 #define MAX_BITS 15
197 /* All codes must not exceed MAX_BITS bits */
198
199 #define INIT_STATE 42
200 #define BUSY_STATE 113
201 #define FLUSH_STATE 124
202 #define FINISH_STATE 666
203 /* Stream status */
204
205
206 /* Data structure describing a single value and its code string. */
207 typedef struct ct_data_s {
208 union {
209 ush freq; /* frequency count */
210 ush code; /* bit string */
211 } fc;
212 union {
213 ush dad; /* father node in Huffman tree */
214 ush len; /* length of bit string */
215 } dl;
216 } FAR ct_data;
217
218 #define Freq fc.freq
219 #define Code fc.code
220 #define Dad dl.dad
221 #define Len dl.len
222
223 typedef struct static_tree_desc_s static_tree_desc;
224
225 typedef struct tree_desc_s {
226 ct_data *dyn_tree; /* the dynamic tree */
227 int max_code; /* largest code with non zero frequency */
228 static_tree_desc *stat_desc; /* the corresponding static tree */
229 } FAR tree_desc;
230
231 typedef ush Pos;
232 typedef Pos FAR Posf;
233 typedef unsigned IPos;
234
235 /* A Pos is an index in the character window. We use short instead of int to
236 * save space in the various tables. IPos is used only for parameter passing.
237 */
238
239 typedef struct deflate_state {
240 z_stream *strm; /* pointer back to this zlib stream */
241 int status; /* as the name implies */
242 Bytef *pending_buf; /* output still pending */
243 Bytef *pending_out; /* next pending byte to output to the stream */
244 int pending; /* nb of bytes in the pending buffer */
245 uLong adler; /* adler32 of uncompressed data */
246 int noheader; /* suppress zlib header and adler32 */
247 Byte data_type; /* UNKNOWN, Z_BINARY or ASCII */
248 Byte method; /* STORED (for zip only) or DEFLATED */
249 int minCompr; /* min size decrease for Z_FLUSH_NOSTORE */
250
251 /* used by deflate.c: */
252
253 uInt w_size; /* LZ77 window size (32K by default) */
254 uInt w_bits; /* log2(w_size) (8..16) */
255 uInt w_mask; /* w_size - 1 */
256
257 Bytef *window;
258 /* Sliding window. Input bytes are read into the second half of the window,
259 * and move to the first half later to keep a dictionary of at least wSize
260 * bytes. With this organization, matches are limited to a distance of
261 * wSize-MAX_MATCH bytes, but this ensures that IO is always
262 * performed with a length multiple of the block size. Also, it limits
263 * the window size to 64K, which is quite useful on MSDOS.
264 * To do: use the user input buffer as sliding window.
265 */
266
267 ulg window_size;
268 /* Actual size of window: 2*wSize, except when the user input buffer
269 * is directly used as sliding window.
270 */
271
272 Posf *prev;
273 /* Link to older string with same hash index. To limit the size of this
274 * array to 64K, this link is maintained only for the last 32K strings.
275 * An index in this array is thus a window index modulo 32K.
276 */
277
278 Posf *head; /* Heads of the hash chains or NIL. */
279
280 uInt ins_h; /* hash index of string to be inserted */
281 uInt hash_size; /* number of elements in hash table */
282 uInt hash_bits; /* log2(hash_size) */
283 uInt hash_mask; /* hash_size-1 */
284
285 uInt hash_shift;
286 /* Number of bits by which ins_h must be shifted at each input
287 * step. It must be such that after MIN_MATCH steps, the oldest
288 * byte no longer takes part in the hash key, that is:
289 * hash_shift * MIN_MATCH >= hash_bits
290 */
291
292 long block_start;
293 /* Window position at the beginning of the current output block. Gets
294 * negative when the window is moved backwards.
295 */
296
297 uInt match_length; /* length of best match */
298 IPos prev_match; /* previous match */
299 int match_available; /* set if previous match exists */
300 uInt strstart; /* start of string to insert */
301 uInt match_start; /* start of matching string */
302 uInt lookahead; /* number of valid bytes ahead in window */
303
304 uInt prev_length;
305 /* Length of the best match at previous step. Matches not greater than this
306 * are discarded. This is used in the lazy match evaluation.
307 */
308
309 uInt max_chain_length;
310 /* To speed up deflation, hash chains are never searched beyond this
311 * length. A higher limit improves compression ratio but degrades the
312 * speed.
313 */
314
315 uInt max_lazy_match;
316 /* Attempt to find a better match only when the current match is strictly
317 * smaller than this value. This mechanism is used only for compression
318 * levels >= 4.
319 */
320 # define max_insert_length max_lazy_match
321 /* Insert new strings in the hash table only if the match length is not
322 * greater than this length. This saves time but degrades compression.
323 * max_insert_length is used only for compression levels <= 3.
324 */
325
326 int level; /* compression level (1..9) */
327 int strategy; /* favor or force Huffman coding*/
328
329 uInt good_match;
330 /* Use a faster search when the previous match is longer than this */
331
332 int nice_match; /* Stop searching when current match exceeds this */
333
334 /* used by trees.c: */
335 /* Didn't use ct_data typedef below to supress compiler warning */
336 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
337 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
338 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
339
340 struct tree_desc_s l_desc; /* desc. for literal tree */
341 struct tree_desc_s d_desc; /* desc. for distance tree */
342 struct tree_desc_s bl_desc; /* desc. for bit length tree */
343
344 ush bl_count[MAX_BITS+1];
345 /* number of codes at each bit length for an optimal tree */
346
347 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
348 int heap_len; /* number of elements in the heap */
349 int heap_max; /* element of largest frequency */
350 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
351 * The same heap array is used to build all trees.
352 */
353
354 uch depth[2*L_CODES+1];
355 /* Depth of each subtree used as tie breaker for trees of equal frequency
356 */
357
358 uchf *l_buf; /* buffer for literals or lengths */
359
360 uInt lit_bufsize;
361 /* Size of match buffer for literals/lengths. There are 4 reasons for
362 * limiting lit_bufsize to 64K:
363 * - frequencies can be kept in 16 bit counters
364 * - if compression is not successful for the first block, all input
365 * data is still in the window so we can still emit a stored block even
366 * when input comes from standard input. (This can also be done for
367 * all blocks if lit_bufsize is not greater than 32K.)
368 * - if compression is not successful for a file smaller than 64K, we can
369 * even emit a stored file instead of a stored block (saving 5 bytes).
370 * This is applicable only for zip (not gzip or zlib).
371 * - creating new Huffman trees less frequently may not provide fast
372 * adaptation to changes in the input data statistics. (Take for
373 * example a binary file with poorly compressible code followed by
374 * a highly compressible string table.) Smaller buffer sizes give
375 * fast adaptation but have of course the overhead of transmitting
376 * trees more frequently.
377 * - I can't count above 4
378 */
379
380 uInt last_lit; /* running index in l_buf */
381
382 ushf *d_buf;
383 /* Buffer for distances. To simplify the code, d_buf and l_buf have
384 * the same number of elements. To use different lengths, an extra flag
385 * array would be necessary.
386 */
387
388 ulg opt_len; /* bit length of current block with optimal trees */
389 ulg static_len; /* bit length of current block with static trees */
390 ulg compressed_len; /* total bit length of compressed file */
391 uInt matches; /* number of string matches in current block */
392 int last_eob_len; /* bit length of EOB code for last block */
393
394 #ifdef DEBUG_ZLIB
395 ulg bits_sent; /* bit length of the compressed data */
396 #endif
397
398 ush bi_buf;
399 /* Output buffer. bits are inserted starting at the bottom (least
400 * significant bits).
401 */
402 int bi_valid;
403 /* Number of valid bits in bi_buf. All bits above the last valid bit
404 * are always zero.
405 */
406
407 uInt blocks_in_packet;
408 /* Number of blocks produced since the last time Z_PACKET_FLUSH
409 * was used.
410 */
411
412 } FAR deflate_state;
413
414 /* Output a byte on the stream.
415 * IN assertion: there is enough room in pending_buf.
416 */
417 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
418
419
420 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
421 /* Minimum amount of lookahead, except at the end of the input file.
422 * See deflate.c for comments about the MIN_MATCH+1.
423 */
424
425 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
426 /* In order to simplify the code, particularly on 16 bit machines, match
427 * distances are limited to MAX_DIST instead of WSIZE.
428 */
429
430 /* in trees.c */
431 local void ct_init OF((deflate_state *s));
432 local int ct_tally OF((deflate_state *s, int dist, int lc));
433 local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
434 int flush));
435 local void ct_align OF((deflate_state *s));
436 local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
437 int eof));
438 local void ct_stored_type_only OF((deflate_state *s));
439
440
441 /*+++++*/
442 /* deflate.c -- compress data using the deflation algorithm
443 * Copyright (C) 1995 Jean-loup Gailly.
444 * For conditions of distribution and use, see copyright notice in zlib.h
445 */
446
447 /*
448 * ALGORITHM
449 *
450 * The "deflation" process depends on being able to identify portions
451 * of the input text which are identical to earlier input (within a
452 * sliding window trailing behind the input currently being processed).
453 *
454 * The most straightforward technique turns out to be the fastest for
455 * most input files: try all possible matches and select the longest.
456 * The key feature of this algorithm is that insertions into the string
457 * dictionary are very simple and thus fast, and deletions are avoided
458 * completely. Insertions are performed at each input character, whereas
459 * string matches are performed only when the previous match ends. So it
460 * is preferable to spend more time in matches to allow very fast string
461 * insertions and avoid deletions. The matching algorithm for small
462 * strings is inspired from that of Rabin & Karp. A brute force approach
463 * is used to find longer strings when a small match has been found.
464 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
465 * (by Leonid Broukhis).
466 * A previous version of this file used a more sophisticated algorithm
467 * (by Fiala and Greene) which is guaranteed to run in linear amortized
468 * time, but has a larger average cost, uses more memory and is patented.
469 * However the F&G algorithm may be faster for some highly redundant
470 * files if the parameter max_chain_length (described below) is too large.
471 *
472 * ACKNOWLEDGEMENTS
473 *
474 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
475 * I found it in 'freeze' written by Leonid Broukhis.
476 * Thanks to many people for bug reports and testing.
477 *
478 * REFERENCES
479 *
480 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
481 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
482 *
483 * A description of the Rabin and Karp algorithm is given in the book
484 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
485 *
486 * Fiala,E.R., and Greene,D.H.
487 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
488 *
489 */
490
491 /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
492
493 #if 0
494 local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
495 #endif
496 /*
497 If you use the zlib library in a product, an acknowledgment is welcome
498 in the documentation of your product. If for some reason you cannot
499 include such an acknowledgment, I would appreciate that you keep this
500 copyright string in the executable of your product.
501 */
502
503 #define NIL 0
504 /* Tail of hash chains */
505
506 #ifndef TOO_FAR
507 # define TOO_FAR 4096
508 #endif
509 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
510
511 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
512 /* Minimum amount of lookahead, except at the end of the input file.
513 * See deflate.c for comments about the MIN_MATCH+1.
514 */
515
516 /* Values for max_lazy_match, good_match and max_chain_length, depending on
517 * the desired pack level (0..9). The values given below have been tuned to
518 * exclude worst case performance for pathological files. Better values may be
519 * found for specific files.
520 */
521
522 typedef struct config_s {
523 ush good_length; /* reduce lazy search above this match length */
524 ush max_lazy; /* do not perform lazy search above this match length */
525 ush nice_length; /* quit search above this match length */
526 ush max_chain;
527 } config;
528
529 local config configuration_table[10] = {
530 /* good lazy nice chain */
531 /* 0 */ {0, 0, 0, 0}, /* store only */
532 /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
533 /* 2 */ {4, 5, 16, 8},
534 /* 3 */ {4, 6, 32, 32},
535
536 /* 4 */ {4, 4, 16, 16}, /* lazy matches */
537 /* 5 */ {8, 16, 32, 32},
538 /* 6 */ {8, 16, 128, 128},
539 /* 7 */ {8, 32, 128, 256},
540 /* 8 */ {32, 128, 258, 1024},
541 /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
542
543 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
544 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
545 * meaning.
546 */
547
548 #define EQUAL 0
549 /* result of memcmp for equal strings */
550
551 /* ===========================================================================
552 * Prototypes for local functions.
553 */
554
555 local void fill_window OF((deflate_state *s));
556 local int deflate_fast OF((deflate_state *s, int flush));
557 local int deflate_slow OF((deflate_state *s, int flush));
558 local void lm_init OF((deflate_state *s));
559 local int longest_match OF((deflate_state *s, IPos cur_match));
560 local void putShortMSB OF((deflate_state *s, uInt b));
561 local void flush_pending OF((z_stream *strm));
562 local int read_buf OF((z_stream *strm, charf *buf, unsigned size));
563 #ifdef ASMV
564 void match_init OF((void)); /* asm code initialization */
565 #endif
566
567 #ifdef DEBUG_ZLIB
568 local void check_match OF((deflate_state *s, IPos start, IPos match,
569 int length));
570 #endif
571
572
573 /* ===========================================================================
574 * Update a hash value with the given input byte
575 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
576 * input characters, so that a running hash key can be computed from the
577 * previous key instead of complete recalculation each time.
578 */
579 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
580
581
582 /* ===========================================================================
583 * Insert string str in the dictionary and set match_head to the previous head
584 * of the hash chain (the most recent string with same hash key). Return
585 * the previous length of the hash chain.
586 * IN assertion: all calls to to INSERT_STRING are made with consecutive
587 * input characters and the first MIN_MATCH bytes of str are valid
588 * (except for the last MIN_MATCH-1 bytes of the input file).
589 */
590 #define INSERT_STRING(s, str, match_head) \
591 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
592 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
593 s->head[s->ins_h] = (str))
594
595 /* ===========================================================================
596 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
597 * prev[] will be initialized on the fly.
598 */
599 #define CLEAR_HASH(s) \
600 s->head[s->hash_size-1] = NIL; \
601 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
602
603 /* ========================================================================= */
604 int deflateInit (strm, level)
605 z_stream *strm;
606 int level;
607 {
608 return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
609 0, 0);
610 /* To do: ignore strm->next_in if we use it as window */
611 }
612
613 /* ========================================================================= */
614 int deflateInit2 (strm, level, method, windowBits, memLevel,
615 strategy, minCompression)
616 z_stream *strm;
617 int level;
618 int method;
619 int windowBits;
620 int memLevel;
621 int strategy;
622 int minCompression;
623 {
624 deflate_state *s;
625 int noheader = 0;
626
627 if (strm == Z_NULL) return Z_STREAM_ERROR;
628
629 strm->msg = Z_NULL;
630 /* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
631 /* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
632
633 if (level == Z_DEFAULT_COMPRESSION) level = 6;
634
635 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
636 noheader = 1;
637 windowBits = -windowBits;
638 }
639 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
640 windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
641 return Z_STREAM_ERROR;
642 }
643 s = (deflate_state *) ZALLOC_INIT(strm, 1, sizeof(deflate_state));
644 if (s == Z_NULL) return Z_MEM_ERROR;
645 strm->state = (struct internal_state FAR *)s;
646 s->strm = strm;
647
648 s->noheader = noheader;
649 s->w_bits = windowBits;
650 s->w_size = 1 << s->w_bits;
651 s->w_mask = s->w_size - 1;
652
653 s->hash_bits = memLevel + 7;
654 s->hash_size = 1 << s->hash_bits;
655 s->hash_mask = s->hash_size - 1;
656 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
657
658 s->window = (Bytef *) ZALLOC_INIT(strm, s->w_size, 2*sizeof(Byte));
659 s->prev = (Posf *) ZALLOC_INIT(strm, s->w_size, sizeof(Pos));
660 s->head = (Posf *) ZALLOC_INIT(strm, s->hash_size, sizeof(Pos));
661
662 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
663
664 s->pending_buf = (uchf *) ZALLOC_INIT(strm, s->lit_bufsize, 2*sizeof(ush));
665
666 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
667 s->pending_buf == Z_NULL) {
668 strm->msg = z_errmsg[1-Z_MEM_ERROR];
669 deflateEnd (strm);
670 return Z_MEM_ERROR;
671 }
672 s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
673 s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
674 /* We overlay pending_buf and d_buf+l_buf. This works since the average
675 * output size for (length,distance) codes is <= 32 bits (worst case
676 * is 15+15+13=33).
677 */
678
679 s->level = level;
680 s->strategy = strategy;
681 s->method = (Byte)method;
682 s->minCompr = minCompression;
683 s->blocks_in_packet = 0;
684
685 return deflateReset(strm);
686 }
687
688 /* ========================================================================= */
689 int deflateReset (strm)
690 z_stream *strm;
691 {
692 deflate_state *s;
693
694 if (strm == Z_NULL || strm->state == Z_NULL ||
695 strm->zalloc == Z_NULL || strm->zfree == Z_NULL ||
696 strm->zalloc_init == Z_NULL) return Z_STREAM_ERROR;
697
698 strm->total_in = strm->total_out = 0;
699 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
700 strm->data_type = Z_UNKNOWN;
701
702 s = (deflate_state *)strm->state;
703 s->pending = 0;
704 s->pending_out = s->pending_buf;
705
706 if (s->noheader < 0) {
707 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
708 }
709 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
710 s->adler = 1;
711
712 ct_init(s);
713 lm_init(s);
714
715 return Z_OK;
716 }
717
718 /* =========================================================================
719 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
720 * IN assertion: the stream state is correct and there is enough room in
721 * pending_buf.
722 */
723 local void putShortMSB (s, b)
724 deflate_state *s;
725 uInt b;
726 {
727 put_byte(s, (Byte)(b >> 8));
728 put_byte(s, (Byte)(b & 0xff));
729 }
730
731 /* =========================================================================
732 * Flush as much pending output as possible.
733 */
734 local void flush_pending(strm)
735 z_stream *strm;
736 {
737 deflate_state *state = (deflate_state *) strm->state;
738 unsigned len = state->pending;
739
740 if (len > strm->avail_out) len = strm->avail_out;
741 if (len == 0) return;
742
743 if (strm->next_out != NULL) {
744 zmemcpy(strm->next_out, state->pending_out, len);
745 strm->next_out += len;
746 }
747 state->pending_out += len;
748 strm->total_out += len;
749 strm->avail_out -= len;
750 state->pending -= len;
751 if (state->pending == 0) {
752 state->pending_out = state->pending_buf;
753 }
754 }
755
756 /* ========================================================================= */
757 int deflate (strm, flush)
758 z_stream *strm;
759 int flush;
760 {
761 deflate_state *state = (deflate_state *) strm->state;
762
763 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
764
765 if (strm->next_in == Z_NULL && strm->avail_in != 0) {
766 ERR_RETURN(strm, Z_STREAM_ERROR);
767 }
768 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
769
770 state->strm = strm; /* just in case */
771
772 /* Write the zlib header */
773 if (state->status == INIT_STATE) {
774
775 uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
776 uInt level_flags = (state->level-1) >> 1;
777
778 if (level_flags > 3) level_flags = 3;
779 header |= (level_flags << 6);
780 header += 31 - (header % 31);
781
782 state->status = BUSY_STATE;
783 putShortMSB(state, header);
784 }
785
786 /* Flush as much pending output as possible */
787 if (state->pending != 0) {
788 flush_pending(strm);
789 if (strm->avail_out == 0) return Z_OK;
790 }
791
792 /* If we came back in here to get the last output from
793 * a previous flush, we're done for now.
794 */
795 if (state->status == FLUSH_STATE) {
796 state->status = BUSY_STATE;
797 if (flush != Z_NO_FLUSH && flush != Z_FINISH)
798 return Z_OK;
799 }
800
801 /* User must not provide more input after the first FINISH: */
802 if (state->status == FINISH_STATE && strm->avail_in != 0) {
803 ERR_RETURN(strm, Z_BUF_ERROR);
804 }
805
806 /* Start a new block or continue the current one.
807 */
808 if (strm->avail_in != 0 || state->lookahead != 0 ||
809 (flush == Z_FINISH && state->status != FINISH_STATE)) {
810 int quit;
811
812 if (flush == Z_FINISH) {
813 state->status = FINISH_STATE;
814 }
815 if (state->level <= 3) {
816 quit = deflate_fast(state, flush);
817 } else {
818 quit = deflate_slow(state, flush);
819 }
820 if (quit || strm->avail_out == 0)
821 return Z_OK;
822 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
823 * of deflate should use the same flush parameter to make sure
824 * that the flush is complete. So we don't have to output an
825 * empty block here, this will be done at next call. This also
826 * ensures that for a very small output buffer, we emit at most
827 * one empty block.
828 */
829 }
830
831 /* If a flush was requested, we have a little more to output now. */
832 if (flush != Z_NO_FLUSH && flush != Z_FINISH
833 && state->status != FINISH_STATE) {
834 switch (flush) {
835 case Z_PARTIAL_FLUSH:
836 ct_align(state);
837 break;
838 case Z_PACKET_FLUSH:
839 /* Output just the 3-bit `stored' block type value,
840 but not a zero length. */
841 ct_stored_type_only(state);
842 break;
843 default:
844 ct_stored_block(state, (char*)0, 0L, 0);
845 /* For a full flush, this empty block will be recognized
846 * as a special marker by inflate_sync().
847 */
848 if (flush == Z_FULL_FLUSH) {
849 CLEAR_HASH(state); /* forget history */
850 }
851 }
852 flush_pending(strm);
853 if (strm->avail_out == 0) {
854 /* We'll have to come back to get the rest of the output;
855 * this ensures we don't output a second zero-length stored
856 * block (or whatever).
857 */
858 state->status = FLUSH_STATE;
859 return Z_OK;
860 }
861 }
862
863 Assert(strm->avail_out > 0, "bug2");
864
865 if (flush != Z_FINISH) return Z_OK;
866 if (state->noheader) return Z_STREAM_END;
867
868 /* Write the zlib trailer (adler32) */
869 putShortMSB(state, (uInt)(state->adler >> 16));
870 putShortMSB(state, (uInt)(state->adler & 0xffff));
871 flush_pending(strm);
872 /* If avail_out is zero, the application will call deflate again
873 * to flush the rest.
874 */
875 state->noheader = -1; /* write the trailer only once! */
876 return state->pending != 0 ? Z_OK : Z_STREAM_END;
877 }
878
879 /* ========================================================================= */
880 int deflateEnd (strm)
881 z_stream *strm;
882 {
883 deflate_state *state = (deflate_state *) strm->state;
884
885 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
886
887 TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
888 TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
889 TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
890 TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
891
892 ZFREE(strm, state, sizeof(deflate_state));
893 strm->state = Z_NULL;
894
895 return Z_OK;
896 }
897
898 /* ===========================================================================
899 * Read a new buffer from the current input stream, update the adler32
900 * and total number of bytes read.
901 */
902 local int read_buf(strm, buf, size)
903 z_stream *strm;
904 charf *buf;
905 unsigned size;
906 {
907 unsigned len = strm->avail_in;
908 deflate_state *state = (deflate_state *) strm->state;
909
910 if (len > size) len = size;
911 if (len == 0) return 0;
912
913 strm->avail_in -= len;
914
915 if (!state->noheader) {
916 state->adler = adler32(state->adler, strm->next_in, len);
917 }
918 zmemcpy(buf, strm->next_in, len);
919 strm->next_in += len;
920 strm->total_in += len;
921
922 return (int)len;
923 }
924
925 /* ===========================================================================
926 * Initialize the "longest match" routines for a new zlib stream
927 */
928 local void lm_init (s)
929 deflate_state *s;
930 {
931 s->window_size = (ulg)2L*s->w_size;
932
933 CLEAR_HASH(s);
934
935 /* Set the default configuration parameters:
936 */
937 s->max_lazy_match = configuration_table[s->level].max_lazy;
938 s->good_match = configuration_table[s->level].good_length;
939 s->nice_match = configuration_table[s->level].nice_length;
940 s->max_chain_length = configuration_table[s->level].max_chain;
941
942 s->strstart = 0;
943 s->block_start = 0L;
944 s->lookahead = 0;
945 s->match_length = MIN_MATCH-1;
946 s->match_available = 0;
947 s->ins_h = 0;
948 #ifdef ASMV
949 match_init(); /* initialize the asm code */
950 #endif
951 }
952
953 /* ===========================================================================
954 * Set match_start to the longest match starting at the given string and
955 * return its length. Matches shorter or equal to prev_length are discarded,
956 * in which case the result is equal to prev_length and match_start is
957 * garbage.
958 * IN assertions: cur_match is the head of the hash chain for the current
959 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
960 */
961 #ifndef ASMV
962 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
963 * match.S. The code will be functionally equivalent.
964 */
965 local int longest_match(s, cur_match)
966 deflate_state *s;
967 IPos cur_match; /* current match */
968 {
969 unsigned chain_length = s->max_chain_length;/* max hash chain length */
970 register Bytef *scan = s->window + s->strstart; /* current string */
971 register Bytef *match; /* matched string */
972 register int len; /* length of current match */
973 int best_len = s->prev_length; /* best match length so far */
974 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
975 s->strstart - (IPos)MAX_DIST(s) : NIL;
976 /* Stop when cur_match becomes <= limit. To simplify the code,
977 * we prevent matches with the string of window index 0.
978 */
979 Posf *prev = s->prev;
980 uInt wmask = s->w_mask;
981
982 #ifdef UNALIGNED_OK
983 /* Compare two bytes at a time. Note: this is not always beneficial.
984 * Try with and without -DUNALIGNED_OK to check.
985 */
986 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
987 register ush scan_start = *(ushf*)scan;
988 register ush scan_end = *(ushf*)(scan+best_len-1);
989 #else
990 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
991 register Byte scan_end1 = scan[best_len-1];
992 register Byte scan_end = scan[best_len];
993 #endif
994
995 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
996 * It is easy to get rid of this optimization if necessary.
997 */
998 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
999
1000 /* Do not waste too much time if we already have a good match: */
1001 if (s->prev_length >= s->good_match) {
1002 chain_length >>= 2;
1003 }
1004 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1005
1006 do {
1007 Assert(cur_match < s->strstart, "no future");
1008 match = s->window + cur_match;
1009
1010 /* Skip to next match if the match length cannot increase
1011 * or if the match length is less than 2:
1012 */
1013 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1014 /* This code assumes sizeof(unsigned short) == 2. Do not use
1015 * UNALIGNED_OK if your compiler uses a different size.
1016 */
1017 if (*(ushf*)(match+best_len-1) != scan_end ||
1018 *(ushf*)match != scan_start) continue;
1019
1020 /* It is not necessary to compare scan[2] and match[2] since they are
1021 * always equal when the other bytes match, given that the hash keys
1022 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1023 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1024 * lookahead only every 4th comparison; the 128th check will be made
1025 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1026 * necessary to put more guard bytes at the end of the window, or
1027 * to check more often for insufficient lookahead.
1028 */
1029 Assert(scan[2] == match[2], "scan[2]?");
1030 scan++, match++;
1031 do {
1032 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1033 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1034 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1035 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1036 scan < strend);
1037 /* The funny "do {}" generates better code on most compilers */
1038
1039 /* Here, scan <= window+strstart+257 */
1040 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1041 if (*scan == *match) scan++;
1042
1043 len = (MAX_MATCH - 1) - (int)(strend-scan);
1044 scan = strend - (MAX_MATCH-1);
1045
1046 #else /* UNALIGNED_OK */
1047
1048 if (match[best_len] != scan_end ||
1049 match[best_len-1] != scan_end1 ||
1050 *match != *scan ||
1051 *++match != scan[1]) continue;
1052
1053 /* The check at best_len-1 can be removed because it will be made
1054 * again later. (This heuristic is not always a win.)
1055 * It is not necessary to compare scan[2] and match[2] since they
1056 * are always equal when the other bytes match, given that
1057 * the hash keys are equal and that HASH_BITS >= 8.
1058 */
1059 scan += 2, match++;
1060 Assert(*scan == *match, "match[2]?");
1061
1062 /* We check for insufficient lookahead only every 8th comparison;
1063 * the 256th check will be made at strstart+258.
1064 */
1065 do {
1066 } while (*++scan == *++match && *++scan == *++match &&
1067 *++scan == *++match && *++scan == *++match &&
1068 *++scan == *++match && *++scan == *++match &&
1069 *++scan == *++match && *++scan == *++match &&
1070 scan < strend);
1071
1072 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1073
1074 len = MAX_MATCH - (int)(strend - scan);
1075 scan = strend - MAX_MATCH;
1076
1077 #endif /* UNALIGNED_OK */
1078
1079 if (len > best_len) {
1080 s->match_start = cur_match;
1081 best_len = len;
1082 if (len >= s->nice_match) break;
1083 #ifdef UNALIGNED_OK
1084 scan_end = *(ushf*)(scan+best_len-1);
1085 #else
1086 scan_end1 = scan[best_len-1];
1087 scan_end = scan[best_len];
1088 #endif
1089 }
1090 } while ((cur_match = prev[cur_match & wmask]) > limit
1091 && --chain_length != 0);
1092
1093 return best_len;
1094 }
1095 #endif /* ASMV */
1096
1097 #ifdef DEBUG_ZLIB
1098 /* ===========================================================================
1099 * Check that the match at match_start is indeed a match.
1100 */
1101 local void check_match(s, start, match, length)
1102 deflate_state *s;
1103 IPos start, match;
1104 int length;
1105 {
1106 /* check that the match is indeed a match */
1107 if (memcmp((charf *)s->window + match,
1108 (charf *)s->window + start, length) != EQUAL) {
1109 fprintf(stderr,
1110 " start %u, match %u, length %d\n",
1111 start, match, length);
1112 do { fprintf(stderr, "%c%c", s->window[match++],
1113 s->window[start++]); } while (--length != 0);
1114 z_error("invalid match");
1115 }
1116 if (verbose > 1) {
1117 fprintf(stderr,"\\[%d,%d]", start-match, length);
1118 do { putc(s->window[start++], stderr); } while (--length != 0);
1119 }
1120 }
1121 #else
1122 # define check_match(s, start, match, length)
1123 #endif
1124
1125 /* ===========================================================================
1126 * Fill the window when the lookahead becomes insufficient.
1127 * Updates strstart and lookahead.
1128 *
1129 * IN assertion: lookahead < MIN_LOOKAHEAD
1130 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1131 * At least one byte has been read, or avail_in == 0; reads are
1132 * performed for at least two bytes (required for the zip translate_eol
1133 * option -- not supported here).
1134 */
1135 local void fill_window(s)
1136 deflate_state *s;
1137 {
1138 register unsigned n, m;
1139 register Posf *p;
1140 unsigned more; /* Amount of free space at the end of the window. */
1141 uInt wsize = s->w_size;
1142
1143 do {
1144 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1145
1146 /* Deal with !@#$% 64K limit: */
1147 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1148 more = wsize;
1149 } else if (more == (unsigned)(-1)) {
1150 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1151 * and lookahead == 1 (input done one byte at time)
1152 */
1153 more--;
1154
1155 /* If the window is almost full and there is insufficient lookahead,
1156 * move the upper half to the lower one to make room in the upper half.
1157 */
1158 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1159
1160 /* By the IN assertion, the window is not empty so we can't confuse
1161 * more == 0 with more == 64K on a 16 bit machine.
1162 */
1163 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1164 (unsigned)wsize);
1165 s->match_start -= wsize;
1166 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1167
1168 s->block_start -= (long) wsize;
1169
1170 /* Slide the hash table (could be avoided with 32 bit values
1171 at the expense of memory usage):
1172 */
1173 n = s->hash_size;
1174 p = &s->head[n];
1175 do {
1176 m = *--p;
1177 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1178 } while (--n);
1179
1180 n = wsize;
1181 p = &s->prev[n];
1182 do {
1183 m = *--p;
1184 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1185 /* If n is not on any hash chain, prev[n] is garbage but
1186 * its value will never be used.
1187 */
1188 } while (--n);
1189
1190 more += wsize;
1191 }
1192 if (s->strm->avail_in == 0) return;
1193
1194 /* If there was no sliding:
1195 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1196 * more == window_size - lookahead - strstart
1197 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1198 * => more >= window_size - 2*WSIZE + 2
1199 * In the BIG_MEM or MMAP case (not yet supported),
1200 * window_size == input_size + MIN_LOOKAHEAD &&
1201 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1202 * Otherwise, window_size == 2*WSIZE so more >= 2.
1203 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1204 */
1205 Assert(more >= 2, "more < 2");
1206
1207 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1208 more);
1209 s->lookahead += n;
1210
1211 /* Initialize the hash value now that we have some input: */
1212 if (s->lookahead >= MIN_MATCH) {
1213 s->ins_h = s->window[s->strstart];
1214 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1215 #if MIN_MATCH != 3
1216 Call UPDATE_HASH() MIN_MATCH-3 more times
1217 #endif
1218 }
1219 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1220 * but this is not important since only literal bytes will be emitted.
1221 */
1222
1223 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1224 }
1225
1226 /* ===========================================================================
1227 * Flush the current block, with given end-of-file flag.
1228 * IN assertion: strstart is set to the end of the current match.
1229 */
1230 #define FLUSH_BLOCK_ONLY(s, flush) { \
1231 ct_flush_block(s, (s->block_start >= 0L ? \
1232 (charf *)&s->window[(unsigned)s->block_start] : \
1233 (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1234 s->block_start = s->strstart; \
1235 flush_pending(s->strm); \
1236 Tracev((stderr,"[FLUSH]")); \
1237 }
1238
1239 /* Same but force premature exit if necessary. */
1240 #define FLUSH_BLOCK(s, flush) { \
1241 FLUSH_BLOCK_ONLY(s, flush); \
1242 if (s->strm->avail_out == 0) return 1; \
1243 }
1244
1245 /* ===========================================================================
1246 * Compress as much as possible from the input stream, return true if
1247 * processing was terminated prematurely (no more input or output space).
1248 * This function does not perform lazy evaluationof matches and inserts
1249 * new strings in the dictionary only for unmatched strings or for short
1250 * matches. It is used only for the fast compression options.
1251 */
1252 local int deflate_fast(s, flush)
1253 deflate_state *s;
1254 int flush;
1255 {
1256 IPos hash_head = NIL; /* head of the hash chain */
1257 int bflush; /* set if current block must be flushed */
1258
1259 s->prev_length = MIN_MATCH-1;
1260
1261 for (;;) {
1262 /* Make sure that we always have enough lookahead, except
1263 * at the end of the input file. We need MAX_MATCH bytes
1264 * for the next match, plus MIN_MATCH bytes to insert the
1265 * string following the next match.
1266 */
1267 if (s->lookahead < MIN_LOOKAHEAD) {
1268 fill_window(s);
1269 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1270
1271 if (s->lookahead == 0) break; /* flush the current block */
1272 }
1273
1274 /* Insert the string window[strstart .. strstart+2] in the
1275 * dictionary, and set hash_head to the head of the hash chain:
1276 */
1277 if (s->lookahead >= MIN_MATCH) {
1278 INSERT_STRING(s, s->strstart, hash_head);
1279 }
1280
1281 /* Find the longest match, discarding those <= prev_length.
1282 * At this point we have always match_length < MIN_MATCH
1283 */
1284 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1285 /* To simplify the code, we prevent matches with the string
1286 * of window index 0 (in particular we have to avoid a match
1287 * of the string with itself at the start of the input file).
1288 */
1289 if (s->strategy != Z_HUFFMAN_ONLY) {
1290 s->match_length = longest_match (s, hash_head);
1291 }
1292 /* longest_match() sets match_start */
1293
1294 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1295 }
1296 if (s->match_length >= MIN_MATCH) {
1297 check_match(s, s->strstart, s->match_start, s->match_length);
1298
1299 bflush = ct_tally(s, s->strstart - s->match_start,
1300 s->match_length - MIN_MATCH);
1301
1302 s->lookahead -= s->match_length;
1303
1304 /* Insert new strings in the hash table only if the match length
1305 * is not too large. This saves time but degrades compression.
1306 */
1307 if (s->match_length <= s->max_insert_length &&
1308 s->lookahead >= MIN_MATCH) {
1309 s->match_length--; /* string at strstart already in hash table */
1310 do {
1311 s->strstart++;
1312 INSERT_STRING(s, s->strstart, hash_head);
1313 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1314 * always MIN_MATCH bytes ahead.
1315 */
1316 } while (--s->match_length != 0);
1317 s->strstart++;
1318 } else {
1319 s->strstart += s->match_length;
1320 s->match_length = 0;
1321 s->ins_h = s->window[s->strstart];
1322 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1323 #if MIN_MATCH != 3
1324 Call UPDATE_HASH() MIN_MATCH-3 more times
1325 #endif
1326 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1327 * matter since it will be recomputed at next deflate call.
1328 */
1329 }
1330 } else {
1331 /* No match, output a literal byte */
1332 Tracevv((stderr,"%c", s->window[s->strstart]));
1333 bflush = ct_tally (s, 0, s->window[s->strstart]);
1334 s->lookahead--;
1335 s->strstart++;
1336 }
1337 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1338 }
1339 FLUSH_BLOCK(s, flush);
1340 return 0; /* normal exit */
1341 }
1342
1343 /* ===========================================================================
1344 * Same as above, but achieves better compression. We use a lazy
1345 * evaluation for matches: a match is finally adopted only if there is
1346 * no better match at the next window position.
1347 */
1348 local int deflate_slow(s, flush)
1349 deflate_state *s;
1350 int flush;
1351 {
1352 IPos hash_head = NIL; /* head of hash chain */
1353 int bflush; /* set if current block must be flushed */
1354
1355 /* Process the input block. */
1356 for (;;) {
1357 /* Make sure that we always have enough lookahead, except
1358 * at the end of the input file. We need MAX_MATCH bytes
1359 * for the next match, plus MIN_MATCH bytes to insert the
1360 * string following the next match.
1361 */
1362 if (s->lookahead < MIN_LOOKAHEAD) {
1363 fill_window(s);
1364 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1365
1366 if (s->lookahead == 0) break; /* flush the current block */
1367 }
1368
1369 /* Insert the string window[strstart .. strstart+2] in the
1370 * dictionary, and set hash_head to the head of the hash chain:
1371 */
1372 if (s->lookahead >= MIN_MATCH) {
1373 INSERT_STRING(s, s->strstart, hash_head);
1374 }
1375
1376 /* Find the longest match, discarding those <= prev_length.
1377 */
1378 s->prev_length = s->match_length, s->prev_match = s->match_start;
1379 s->match_length = MIN_MATCH-1;
1380
1381 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1382 s->strstart - hash_head <= MAX_DIST(s)) {
1383 /* To simplify the code, we prevent matches with the string
1384 * of window index 0 (in particular we have to avoid a match
1385 * of the string with itself at the start of the input file).
1386 */
1387 if (s->strategy != Z_HUFFMAN_ONLY) {
1388 s->match_length = longest_match (s, hash_head);
1389 }
1390 /* longest_match() sets match_start */
1391 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1392
1393 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1394 (s->match_length == MIN_MATCH &&
1395 s->strstart - s->match_start > TOO_FAR))) {
1396
1397 /* If prev_match is also MIN_MATCH, match_start is garbage
1398 * but we will ignore the current match anyway.
1399 */
1400 s->match_length = MIN_MATCH-1;
1401 }
1402 }
1403 /* If there was a match at the previous step and the current
1404 * match is not better, output the previous match:
1405 */
1406 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1407 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1408 /* Do not insert strings in hash table beyond this. */
1409
1410 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1411
1412 bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1413 s->prev_length - MIN_MATCH);
1414
1415 /* Insert in hash table all strings up to the end of the match.
1416 * strstart-1 and strstart are already inserted. If there is not
1417 * enough lookahead, the last two strings are not inserted in
1418 * the hash table.
1419 */
1420 s->lookahead -= s->prev_length-1;
1421 s->prev_length -= 2;
1422 do {
1423 if (++s->strstart <= max_insert) {
1424 INSERT_STRING(s, s->strstart, hash_head);
1425 }
1426 } while (--s->prev_length != 0);
1427 s->match_available = 0;
1428 s->match_length = MIN_MATCH-1;
1429 s->strstart++;
1430
1431 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1432
1433 } else if (s->match_available) {
1434 /* If there was no match at the previous position, output a
1435 * single literal. If there was a match but the current match
1436 * is longer, truncate the previous match to a single literal.
1437 */
1438 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1439 if (ct_tally (s, 0, s->window[s->strstart-1])) {
1440 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1441 }
1442 s->strstart++;
1443 s->lookahead--;
1444 if (s->strm->avail_out == 0) return 1;
1445 } else {
1446 /* There is no previous match to compare with, wait for
1447 * the next step to decide.
1448 */
1449 s->match_available = 1;
1450 s->strstart++;
1451 s->lookahead--;
1452 }
1453 }
1454 Assert (flush != Z_NO_FLUSH, "no flush?");
1455 if (s->match_available) {
1456 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1457 ct_tally (s, 0, s->window[s->strstart-1]);
1458 s->match_available = 0;
1459 }
1460 FLUSH_BLOCK(s, flush);
1461 return 0;
1462 }
1463
1464
1465 /*+++++*/
1466 /* trees.c -- output deflated data using Huffman coding
1467 * Copyright (C) 1995 Jean-loup Gailly
1468 * For conditions of distribution and use, see copyright notice in zlib.h
1469 */
1470
1471 /*
1472 * ALGORITHM
1473 *
1474 * The "deflation" process uses several Huffman trees. The more
1475 * common source values are represented by shorter bit sequences.
1476 *
1477 * Each code tree is stored in a compressed form which is itself
1478 * a Huffman encoding of the lengths of all the code strings (in
1479 * ascending order by source values). The actual code strings are
1480 * reconstructed from the lengths in the inflate process, as described
1481 * in the deflate specification.
1482 *
1483 * REFERENCES
1484 *
1485 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1486 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1487 *
1488 * Storer, James A.
1489 * Data Compression: Methods and Theory, pp. 49-50.
1490 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1491 *
1492 * Sedgewick, R.
1493 * Algorithms, p290.
1494 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1495 */
1496
1497 /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1498
1499 #ifdef DEBUG_ZLIB
1500 # include <ctype.h>
1501 #endif
1502
1503 /* ===========================================================================
1504 * Constants
1505 */
1506
1507 #define MAX_BL_BITS 7
1508 /* Bit length codes must not exceed MAX_BL_BITS bits */
1509
1510 #define END_BLOCK 256
1511 /* end of block literal code */
1512
1513 #define REP_3_6 16
1514 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1515
1516 #define REPZ_3_10 17
1517 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1518
1519 #define REPZ_11_138 18
1520 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1521
1522 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1523 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1524
1525 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1526 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1527
1528 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1529 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1530
1531 local uch bl_order[BL_CODES]
1532 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1533 /* The lengths of the bit length codes are sent in order of decreasing
1534 * probability, to avoid transmitting the lengths for unused bit length codes.
1535 */
1536
1537 #define Buf_size (8 * 2*sizeof(char))
1538 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1539 * more than 16 bits on some systems.)
1540 */
1541
1542 /* ===========================================================================
1543 * Local data. These are initialized only once.
1544 * To do: initialize at compile time to be completely reentrant. ???
1545 */
1546
1547 local ct_data static_ltree[L_CODES+2];
1548 /* The static literal tree. Since the bit lengths are imposed, there is no
1549 * need for the L_CODES extra codes used during heap construction. However
1550 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1551 * below).
1552 */
1553
1554 local ct_data static_dtree[D_CODES];
1555 /* The static distance tree. (Actually a trivial tree since all codes use
1556 * 5 bits.)
1557 */
1558
1559 local uch dist_code[512];
1560 /* distance codes. The first 256 values correspond to the distances
1561 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1562 * the 15 bit distances.
1563 */
1564
1565 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1566 /* length code for each normalized match length (0 == MIN_MATCH) */
1567
1568 local int base_length[LENGTH_CODES];
1569 /* First normalized length for each code (0 = MIN_MATCH) */
1570
1571 local int base_dist[D_CODES];
1572 /* First normalized distance for each code (0 = distance of 1) */
1573
1574 struct static_tree_desc_s {
1575 ct_data *static_tree; /* static tree or NULL */
1576 intf *extra_bits; /* extra bits for each code or NULL */
1577 int extra_base; /* base index for extra_bits */
1578 int elems; /* max number of elements in the tree */
1579 int max_length; /* max bit length for the codes */
1580 };
1581
1582 local static_tree_desc static_l_desc =
1583 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1584
1585 local static_tree_desc static_d_desc =
1586 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1587
1588 local static_tree_desc static_bl_desc =
1589 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1590
1591 /* ===========================================================================
1592 * Local (static) routines in this file.
1593 */
1594
1595 local void ct_static_init OF((void));
1596 local void init_block OF((deflate_state *s));
1597 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1598 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1599 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1600 local void build_tree OF((deflate_state *s, tree_desc *desc));
1601 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1602 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1603 local int build_bl_tree OF((deflate_state *s));
1604 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1605 int blcodes));
1606 local void compress_block OF((deflate_state *s, ct_data *ltree,
1607 ct_data *dtree));
1608 local void set_data_type OF((deflate_state *s));
1609 local unsigned bi_reverse OF((unsigned value, int length));
1610 local void bi_windup OF((deflate_state *s));
1611 local void bi_flush OF((deflate_state *s));
1612 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1613 int header));
1614
1615 #ifndef DEBUG_ZLIB
1616 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1617 /* Send a code of the given tree. c and tree must not have side effects */
1618
1619 #else /* DEBUG_ZLIB */
1620 # define send_code(s, c, tree) \
1621 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1622 send_bits(s, tree[c].Code, tree[c].Len); }
1623 #endif
1624
1625 #define d_code(dist) \
1626 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1627 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1628 * must not have side effects. dist_code[256] and dist_code[257] are never
1629 * used.
1630 */
1631
1632 /* ===========================================================================
1633 * Output a short LSB first on the stream.
1634 * IN assertion: there is enough room in pendingBuf.
1635 */
1636 #define put_short(s, w) { \
1637 put_byte(s, (uch)((w) & 0xff)); \
1638 put_byte(s, (uch)((ush)(w) >> 8)); \
1639 }
1640
1641 /* ===========================================================================
1642 * Send a value on a given number of bits.
1643 * IN assertion: length <= 16 and value fits in length bits.
1644 */
1645 #ifdef DEBUG_ZLIB
1646 local void send_bits OF((deflate_state *s, int value, int length));
1647
1648 local void send_bits(s, value, length)
1649 deflate_state *s;
1650 int value; /* value to send */
1651 int length; /* number of bits */
1652 {
1653 Tracev((stderr," l %2d v %4x ", length, value));
1654 Assert(length > 0 && length <= 15, "invalid length");
1655 s->bits_sent += (ulg)length;
1656
1657 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1658 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1659 * unused bits in value.
1660 */
1661 if (s->bi_valid > (int)Buf_size - length) {
1662 s->bi_buf |= (value << s->bi_valid);
1663 put_short(s, s->bi_buf);
1664 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1665 s->bi_valid += length - Buf_size;
1666 } else {
1667 s->bi_buf |= value << s->bi_valid;
1668 s->bi_valid += length;
1669 }
1670 }
1671 #else /* !DEBUG_ZLIB */
1672
1673 #define send_bits(s, value, length) \
1674 { int len = length;\
1675 if (s->bi_valid > (int)Buf_size - len) {\
1676 int val = value;\
1677 s->bi_buf |= (val << s->bi_valid);\
1678 put_short(s, s->bi_buf);\
1679 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1680 s->bi_valid += len - Buf_size;\
1681 } else {\
1682 s->bi_buf |= (value) << s->bi_valid;\
1683 s->bi_valid += len;\
1684 }\
1685 }
1686 #endif /* DEBUG_ZLIB */
1687
1688
1689 #define MAX(a,b) (a >= b ? a : b)
1690 /* the arguments must not have side effects */
1691
1692 /* ===========================================================================
1693 * Initialize the various 'constant' tables.
1694 * To do: do this at compile time.
1695 */
1696 local void ct_static_init()
1697 {
1698 int n; /* iterates over tree elements */
1699 int bits; /* bit counter */
1700 int length; /* length value */
1701 int code; /* code value */
1702 int dist; /* distance index */
1703 ush bl_count[MAX_BITS+1];
1704 /* number of codes at each bit length for an optimal tree */
1705
1706 /* Initialize the mapping length (0..255) -> length code (0..28) */
1707 length = 0;
1708 for (code = 0; code < LENGTH_CODES-1; code++) {
1709 base_length[code] = length;
1710 for (n = 0; n < (1<<extra_lbits[code]); n++) {
1711 length_code[length++] = (uch)code;
1712 }
1713 }
1714 Assert (length == 256, "ct_static_init: length != 256");
1715 /* Note that the length 255 (match length 258) can be represented
1716 * in two different ways: code 284 + 5 bits or code 285, so we
1717 * overwrite length_code[255] to use the best encoding:
1718 */
1719 length_code[length-1] = (uch)code;
1720
1721 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1722 dist = 0;
1723 for (code = 0 ; code < 16; code++) {
1724 base_dist[code] = dist;
1725 for (n = 0; n < (1<<extra_dbits[code]); n++) {
1726 dist_code[dist++] = (uch)code;
1727 }
1728 }
1729 Assert (dist == 256, "ct_static_init: dist != 256");
1730 dist >>= 7; /* from now on, all distances are divided by 128 */
1731 for ( ; code < D_CODES; code++) {
1732 base_dist[code] = dist << 7;
1733 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1734 dist_code[256 + dist++] = (uch)code;
1735 }
1736 }
1737 Assert (dist == 256, "ct_static_init: 256+dist != 512");
1738
1739 /* Construct the codes of the static literal tree */
1740 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1741 n = 0;
1742 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1743 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1744 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1745 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1746 /* Codes 286 and 287 do not exist, but we must include them in the
1747 * tree construction to get a canonical Huffman tree (longest code
1748 * all ones)
1749 */
1750 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1751
1752 /* The static distance tree is trivial: */
1753 for (n = 0; n < D_CODES; n++) {
1754 static_dtree[n].Len = 5;
1755 static_dtree[n].Code = bi_reverse(n, 5);
1756 }
1757 }
1758
1759 /* ===========================================================================
1760 * Initialize the tree data structures for a new zlib stream.
1761 */
1762 local void ct_init(s)
1763 deflate_state *s;
1764 {
1765 if (static_dtree[0].Len == 0) {
1766 ct_static_init(); /* To do: at compile time */
1767 }
1768
1769 s->compressed_len = 0L;
1770
1771 s->l_desc.dyn_tree = s->dyn_ltree;
1772 s->l_desc.stat_desc = &static_l_desc;
1773
1774 s->d_desc.dyn_tree = s->dyn_dtree;
1775 s->d_desc.stat_desc = &static_d_desc;
1776
1777 s->bl_desc.dyn_tree = s->bl_tree;
1778 s->bl_desc.stat_desc = &static_bl_desc;
1779
1780 s->bi_buf = 0;
1781 s->bi_valid = 0;
1782 s->last_eob_len = 8; /* enough lookahead for inflate */
1783 #ifdef DEBUG_ZLIB
1784 s->bits_sent = 0L;
1785 #endif
1786 s->blocks_in_packet = 0;
1787
1788 /* Initialize the first block of the first file: */
1789 init_block(s);
1790 }
1791
1792 /* ===========================================================================
1793 * Initialize a new block.
1794 */
1795 local void init_block(s)
1796 deflate_state *s;
1797 {
1798 int n; /* iterates over tree elements */
1799
1800 /* Initialize the trees. */
1801 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1802 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1803 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1804
1805 s->dyn_ltree[END_BLOCK].Freq = 1;
1806 s->opt_len = s->static_len = 0L;
1807 s->last_lit = s->matches = 0;
1808 }
1809
1810 #define SMALLEST 1
1811 /* Index within the heap array of least frequent node in the Huffman tree */
1812
1813
1814 /* ===========================================================================
1815 * Remove the smallest element from the heap and recreate the heap with
1816 * one less element. Updates heap and heap_len.
1817 */
1818 #define pqremove(s, tree, top) \
1819 {\
1820 top = s->heap[SMALLEST]; \
1821 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1822 pqdownheap(s, tree, SMALLEST); \
1823 }
1824
1825 /* ===========================================================================
1826 * Compares to subtrees, using the tree depth as tie breaker when
1827 * the subtrees have equal frequency. This minimizes the worst case length.
1828 */
1829 #define smaller(tree, n, m, depth) \
1830 (tree[n].Freq < tree[m].Freq || \
1831 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1832
1833 /* ===========================================================================
1834 * Restore the heap property by moving down the tree starting at node k,
1835 * exchanging a node with the smallest of its two sons if necessary, stopping
1836 * when the heap property is re-established (each father smaller than its
1837 * two sons).
1838 */
1839 local void pqdownheap(s, tree, k)
1840 deflate_state *s;
1841 ct_data *tree; /* the tree to restore */
1842 int k; /* node to move down */
1843 {
1844 int v = s->heap[k];
1845 int j = k << 1; /* left son of k */
1846 while (j <= s->heap_len) {
1847 /* Set j to the smallest of the two sons: */
1848 if (j < s->heap_len &&
1849 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1850 j++;
1851 }
1852 /* Exit if v is smaller than both sons */
1853 if (smaller(tree, v, s->heap[j], s->depth)) break;
1854
1855 /* Exchange v with the smallest son */
1856 s->heap[k] = s->heap[j]; k = j;
1857
1858 /* And continue down the tree, setting j to the left son of k */
1859 j <<= 1;
1860 }
1861 s->heap[k] = v;
1862 }
1863
1864 /* ===========================================================================
1865 * Compute the optimal bit lengths for a tree and update the total bit length
1866 * for the current block.
1867 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1868 * above are the tree nodes sorted by increasing frequency.
1869 * OUT assertions: the field len is set to the optimal bit length, the
1870 * array bl_count contains the frequencies for each bit length.
1871 * The length opt_len is updated; static_len is also updated if stree is
1872 * not null.
1873 */
1874 local void gen_bitlen(s, desc)
1875 deflate_state *s;
1876 tree_desc *desc; /* the tree descriptor */
1877 {
1878 ct_data *tree = desc->dyn_tree;
1879 int max_code = desc->max_code;
1880 ct_data *stree = desc->stat_desc->static_tree;
1881 intf *extra = desc->stat_desc->extra_bits;
1882 int base = desc->stat_desc->extra_base;
1883 int max_length = desc->stat_desc->max_length;
1884 int h; /* heap index */
1885 int n, m; /* iterate over the tree elements */
1886 int bits; /* bit length */
1887 int xbits; /* extra bits */
1888 ush f; /* frequency */
1889 int overflow = 0; /* number of elements with bit length too large */
1890
1891 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1892
1893 /* In a first pass, compute the optimal bit lengths (which may
1894 * overflow in the case of the bit length tree).
1895 */
1896 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1897
1898 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1899 n = s->heap[h];
1900 bits = tree[tree[n].Dad].Len + 1;
1901 if (bits > max_length) bits = max_length, overflow++;
1902 tree[n].Len = (ush)bits;
1903 /* We overwrite tree[n].Dad which is no longer needed */
1904
1905 if (n > max_code) continue; /* not a leaf node */
1906
1907 s->bl_count[bits]++;
1908 xbits = 0;
1909 if (n >= base) xbits = extra[n-base];
1910 f = tree[n].Freq;
1911 s->opt_len += (ulg)f * (bits + xbits);
1912 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1913 }
1914 if (overflow == 0) return;
1915
1916 Trace((stderr,"\nbit length overflow\n"));
1917 /* This happens for example on obj2 and pic of the Calgary corpus */
1918
1919 /* Find the first bit length which could increase: */
1920 do {
1921 bits = max_length-1;
1922 while (s->bl_count[bits] == 0) bits--;
1923 s->bl_count[bits]--; /* move one leaf down the tree */
1924 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1925 s->bl_count[max_length]--;
1926 /* The brother of the overflow item also moves one step up,
1927 * but this does not affect bl_count[max_length]
1928 */
1929 overflow -= 2;
1930 } while (overflow > 0);
1931
1932 /* Now recompute all bit lengths, scanning in increasing frequency.
1933 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1934 * lengths instead of fixing only the wrong ones. This idea is taken
1935 * from 'ar' written by Haruhiko Okumura.)
1936 */
1937 for (bits = max_length; bits != 0; bits--) {
1938 n = s->bl_count[bits];
1939 while (n != 0) {
1940 m = s->heap[--h];
1941 if (m > max_code) continue;
1942 if (tree[m].Len != (unsigned) bits) {
1943 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1944 s->opt_len += ((long)bits - (long)tree[m].Len)
1945 *(long)tree[m].Freq;
1946 tree[m].Len = (ush)bits;
1947 }
1948 n--;
1949 }
1950 }
1951 }
1952
1953 /* ===========================================================================
1954 * Generate the codes for a given tree and bit counts (which need not be
1955 * optimal).
1956 * IN assertion: the array bl_count contains the bit length statistics for
1957 * the given tree and the field len is set for all tree elements.
1958 * OUT assertion: the field code is set for all tree elements of non
1959 * zero code length.
1960 */
1961 local void gen_codes (tree, max_code, bl_count)
1962 ct_data *tree; /* the tree to decorate */
1963 int max_code; /* largest code with non zero frequency */
1964 ushf *bl_count; /* number of codes at each bit length */
1965 {
1966 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1967 ush code = 0; /* running code value */
1968 int bits; /* bit index */
1969 int n; /* code index */
1970
1971 /* The distribution counts are first used to generate the code values
1972 * without bit reversal.
1973 */
1974 for (bits = 1; bits <= MAX_BITS; bits++) {
1975 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1976 }
1977 /* Check that the bit counts in bl_count are consistent. The last code
1978 * must be all ones.
1979 */
1980 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1981 "inconsistent bit counts");
1982 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1983
1984 for (n = 0; n <= max_code; n++) {
1985 int len = tree[n].Len;
1986 if (len == 0) continue;
1987 /* Now reverse the bits */
1988 tree[n].Code = bi_reverse(next_code[len]++, len);
1989
1990 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1991 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1992 }
1993 }
1994
1995 /* ===========================================================================
1996 * Construct one Huffman tree and assigns the code bit strings and lengths.
1997 * Update the total bit length for the current block.
1998 * IN assertion: the field freq is set for all tree elements.
1999 * OUT assertions: the fields len and code are set to the optimal bit length
2000 * and corresponding code. The length opt_len is updated; static_len is
2001 * also updated if stree is not null. The field max_code is set.
2002 */
2003 local void build_tree(s, desc)
2004 deflate_state *s;
2005 tree_desc *desc; /* the tree descriptor */
2006 {
2007 ct_data *tree = desc->dyn_tree;
2008 ct_data *stree = desc->stat_desc->static_tree;
2009 int elems = desc->stat_desc->elems;
2010 int n, m; /* iterate over heap elements */
2011 int max_code = -1; /* largest code with non zero frequency */
2012 int node; /* new node being created */
2013
2014 /* Construct the initial heap, with least frequent element in
2015 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2016 * heap[0] is not used.
2017 */
2018 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2019
2020 for (n = 0; n < elems; n++) {
2021 if (tree[n].Freq != 0) {
2022 s->heap[++(s->heap_len)] = max_code = n;
2023 s->depth[n] = 0;
2024 } else {
2025 tree[n].Len = 0;
2026 }
2027 }
2028
2029 /* The pkzip format requires that at least one distance code exists,
2030 * and that at least one bit should be sent even if there is only one
2031 * possible code. So to avoid special checks later on we force at least
2032 * two codes of non zero frequency.
2033 */
2034 while (s->heap_len < 2) {
2035 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2036 tree[node].Freq = 1;
2037 s->depth[node] = 0;
2038 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2039 /* node is 0 or 1 so it does not have extra bits */
2040 }
2041 desc->max_code = max_code;
2042
2043 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2044 * establish sub-heaps of increasing lengths:
2045 */
2046 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2047
2048 /* Construct the Huffman tree by repeatedly combining the least two
2049 * frequent nodes.
2050 */
2051 node = elems; /* next internal node of the tree */
2052 do {
2053 pqremove(s, tree, n); /* n = node of least frequency */
2054 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2055
2056 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2057 s->heap[--(s->heap_max)] = m;
2058
2059 /* Create a new node father of n and m */
2060 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2061 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2062 tree[n].Dad = tree[m].Dad = (ush)node;
2063 #ifdef DUMP_BL_TREE
2064 if (tree == s->bl_tree) {
2065 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2066 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2067 }
2068 #endif
2069 /* and insert the new node in the heap */
2070 s->heap[SMALLEST] = node++;
2071 pqdownheap(s, tree, SMALLEST);
2072
2073 } while (s->heap_len >= 2);
2074
2075 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2076
2077 /* At this point, the fields freq and dad are set. We can now
2078 * generate the bit lengths.
2079 */
2080 gen_bitlen(s, (tree_desc *)desc);
2081
2082 /* The field len is now set, we can generate the bit codes */
2083 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2084 }
2085
2086 /* ===========================================================================
2087 * Scan a literal or distance tree to determine the frequencies of the codes
2088 * in the bit length tree.
2089 */
2090 local void scan_tree (s, tree, max_code)
2091 deflate_state *s;
2092 ct_data *tree; /* the tree to be scanned */
2093 int max_code; /* and its largest code of non zero frequency */
2094 {
2095 int n; /* iterates over all tree elements */
2096 int prevlen = -1; /* last emitted length */
2097 int curlen; /* length of current code */
2098 int nextlen = tree[0].Len; /* length of next code */
2099 int count = 0; /* repeat count of the current code */
2100 int max_count = 7; /* max repeat count */
2101 int min_count = 4; /* min repeat count */
2102
2103 if (nextlen == 0) max_count = 138, min_count = 3;
2104 tree[max_code+1].Len = (ush)0xffff; /* guard */
2105
2106 for (n = 0; n <= max_code; n++) {
2107 curlen = nextlen; nextlen = tree[n+1].Len;
2108 if (++count < max_count && curlen == nextlen) {
2109 continue;
2110 } else if (count < min_count) {
2111 s->bl_tree[curlen].Freq += count;
2112 } else if (curlen != 0) {
2113 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2114 s->bl_tree[REP_3_6].Freq++;
2115 } else if (count <= 10) {
2116 s->bl_tree[REPZ_3_10].Freq++;
2117 } else {
2118 s->bl_tree[REPZ_11_138].Freq++;
2119 }
2120 count = 0; prevlen = curlen;
2121 if (nextlen == 0) {
2122 max_count = 138, min_count = 3;
2123 } else if (curlen == nextlen) {
2124 max_count = 6, min_count = 3;
2125 } else {
2126 max_count = 7, min_count = 4;
2127 }
2128 }
2129 }
2130
2131 /* ===========================================================================
2132 * Send a literal or distance tree in compressed form, using the codes in
2133 * bl_tree.
2134 */
2135 local void send_tree (s, tree, max_code)
2136 deflate_state *s;
2137 ct_data *tree; /* the tree to be scanned */
2138 int max_code; /* and its largest code of non zero frequency */
2139 {
2140 int n; /* iterates over all tree elements */
2141 int prevlen = -1; /* last emitted length */
2142 int curlen; /* length of current code */
2143 int nextlen = tree[0].Len; /* length of next code */
2144 int count = 0; /* repeat count of the current code */
2145 int max_count = 7; /* max repeat count */
2146 int min_count = 4; /* min repeat count */
2147
2148 /* tree[max_code+1].Len = -1; */ /* guard already set */
2149 if (nextlen == 0) max_count = 138, min_count = 3;
2150
2151 for (n = 0; n <= max_code; n++) {
2152 curlen = nextlen; nextlen = tree[n+1].Len;
2153 if (++count < max_count && curlen == nextlen) {
2154 continue;
2155 } else if (count < min_count) {
2156 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2157
2158 } else if (curlen != 0) {
2159 if (curlen != prevlen) {
2160 send_code(s, curlen, s->bl_tree); count--;
2161 }
2162 Assert(count >= 3 && count <= 6, " 3_6?");
2163 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2164
2165 } else if (count <= 10) {
2166 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2167
2168 } else {
2169 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2170 }
2171 count = 0; prevlen = curlen;
2172 if (nextlen == 0) {
2173 max_count = 138, min_count = 3;
2174 } else if (curlen == nextlen) {
2175 max_count = 6, min_count = 3;
2176 } else {
2177 max_count = 7, min_count = 4;
2178 }
2179 }
2180 }
2181
2182 /* ===========================================================================
2183 * Construct the Huffman tree for the bit lengths and return the index in
2184 * bl_order of the last bit length code to send.
2185 */
2186 local int build_bl_tree(s)
2187 deflate_state *s;
2188 {
2189 int max_blindex; /* index of last bit length code of non zero freq */
2190
2191 /* Determine the bit length frequencies for literal and distance trees */
2192 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2193 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2194
2195 /* Build the bit length tree: */
2196 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2197 /* opt_len now includes the length of the tree representations, except
2198 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2199 */
2200
2201 /* Determine the number of bit length codes to send. The pkzip format
2202 * requires that at least 4 bit length codes be sent. (appnote.txt says
2203 * 3 but the actual value used is 4.)
2204 */
2205 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2206 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2207 }
2208 /* Update opt_len to include the bit length tree and counts */
2209 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2210 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2211 s->opt_len, s->static_len));
2212
2213 return max_blindex;
2214 }
2215
2216 /* ===========================================================================
2217 * Send the header for a block using dynamic Huffman trees: the counts, the
2218 * lengths of the bit length codes, the literal tree and the distance tree.
2219 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2220 */
2221 local void send_all_trees(s, lcodes, dcodes, blcodes)
2222 deflate_state *s;
2223 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2224 {
2225 int rank; /* index in bl_order */
2226
2227 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2228 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2229 "too many codes");
2230 Tracev((stderr, "\nbl counts: "));
2231 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2232 send_bits(s, dcodes-1, 5);
2233 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2234 for (rank = 0; rank < blcodes; rank++) {
2235 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2236 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2237 }
2238 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2239
2240 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2241 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2242
2243 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2244 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2245 }
2246
2247 /* ===========================================================================
2248 * Send a stored block
2249 */
2250 local void ct_stored_block(s, buf, stored_len, eof)
2251 deflate_state *s;
2252 charf *buf; /* input block */
2253 ulg stored_len; /* length of input block */
2254 int eof; /* true if this is the last block for a file */
2255 {
2256 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2257 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2258 s->compressed_len += (stored_len + 4) << 3;
2259
2260 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2261 }
2262
2263 /* Send just the `stored block' type code without any length bytes or data.
2264 */
2265 local void ct_stored_type_only(s)
2266 deflate_state *s;
2267 {
2268 send_bits(s, (STORED_BLOCK << 1), 3);
2269 bi_windup(s);
2270 s->compressed_len = (s->compressed_len + 3) & ~7L;
2271 }
2272
2273
2274 /* ===========================================================================
2275 * Send one empty static block to give enough lookahead for inflate.
2276 * This takes 10 bits, of which 7 may remain in the bit buffer.
2277 * The current inflate code requires 9 bits of lookahead. If the EOB
2278 * code for the previous block was coded on 5 bits or less, inflate
2279 * may have only 5+3 bits of lookahead to decode this EOB.
2280 * (There are no problems if the previous block is stored or fixed.)
2281 */
2282 local void ct_align(s)
2283 deflate_state *s;
2284 {
2285 send_bits(s, STATIC_TREES<<1, 3);
2286 send_code(s, END_BLOCK, static_ltree);
2287 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2288 bi_flush(s);
2289 /* Of the 10 bits for the empty block, we have already sent
2290 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2291 * block was thus its length plus what we have just sent.
2292 */
2293 if (s->last_eob_len + 10 - s->bi_valid < 9) {
2294 send_bits(s, STATIC_TREES<<1, 3);
2295 send_code(s, END_BLOCK, static_ltree);
2296 s->compressed_len += 10L;
2297 bi_flush(s);
2298 }
2299 s->last_eob_len = 7;
2300 }
2301
2302 /* ===========================================================================
2303 * Determine the best encoding for the current block: dynamic trees, static
2304 * trees or store, and output the encoded block to the zip file. This function
2305 * returns the total compressed length for the file so far.
2306 */
2307 local ulg ct_flush_block(s, buf, stored_len, flush)
2308 deflate_state *s;
2309 charf *buf; /* input block, or NULL if too old */
2310 ulg stored_len; /* length of input block */
2311 int flush; /* Z_FINISH if this is the last block for a file */
2312 {
2313 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2314 int max_blindex; /* index of last bit length code of non zero freq */
2315 int eof = flush == Z_FINISH;
2316
2317 ++s->blocks_in_packet;
2318
2319 /* Check if the file is ascii or binary */
2320 if (s->data_type == UNKNOWN) set_data_type(s);
2321
2322 /* Construct the literal and distance trees */
2323 build_tree(s, (tree_desc *)(&(s->l_desc)));
2324 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2325 s->static_len));
2326
2327 build_tree(s, (tree_desc *)(&(s->d_desc)));
2328 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2329 s->static_len));
2330 /* At this point, opt_len and static_len are the total bit lengths of
2331 * the compressed block data, excluding the tree representations.
2332 */
2333
2334 /* Build the bit length tree for the above two trees, and get the index
2335 * in bl_order of the last bit length code to send.
2336 */
2337 max_blindex = build_bl_tree(s);
2338
2339 /* Determine the best encoding. Compute first the block length in bytes */
2340 opt_lenb = (s->opt_len+3+7)>>3;
2341 static_lenb = (s->static_len+3+7)>>3;
2342
2343 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2344 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2345 s->last_lit));
2346
2347 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2348
2349 /* If compression failed and this is the first and last block,
2350 * and if the .zip file can be seeked (to rewrite the local header),
2351 * the whole file is transformed into a stored file:
2352 */
2353 #ifdef STORED_FILE_OK
2354 # ifdef FORCE_STORED_FILE
2355 if (eof && compressed_len == 0L) /* force stored file */
2356 # else
2357 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2358 # endif
2359 {
2360 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2361 if (buf == (charf*)0) error ("block vanished");
2362
2363 copy_block(buf, (unsigned)stored_len, 0); /* without header */
2364 s->compressed_len = stored_len << 3;
2365 s->method = STORED;
2366 } else
2367 #endif /* STORED_FILE_OK */
2368
2369 /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2370 * compression, and this block contains all the data since the last
2371 * time we used Z_PACKET_FLUSH, then just omit this block completely
2372 * from the output.
2373 */
2374 if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2375 && opt_lenb > stored_len - s->minCompr) {
2376 s->blocks_in_packet = 0;
2377 /* output nothing */
2378 } else
2379
2380 #ifdef FORCE_STORED
2381 if (buf != (char*)0) /* force stored block */
2382 #else
2383 if (stored_len+4 <= opt_lenb && buf != (char*)0)
2384 /* 4: two words for the lengths */
2385 #endif
2386 {
2387 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2388 * Otherwise we can't have processed more than WSIZE input bytes since
2389 * the last block flush, because compression would have been
2390 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2391 * transform a block into a stored block.
2392 */
2393 ct_stored_block(s, buf, stored_len, eof);
2394 } else
2395
2396 #ifdef FORCE_STATIC
2397 if (static_lenb >= 0) /* force static trees */
2398 #else
2399 if (static_lenb == opt_lenb)
2400 #endif
2401 {
2402 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2403 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2404 s->compressed_len += 3 + s->static_len;
2405 } else {
2406 send_bits(s, (DYN_TREES<<1)+eof, 3);
2407 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2408 max_blindex+1);
2409 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2410 s->compressed_len += 3 + s->opt_len;
2411 }
2412 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2413 init_block(s);
2414
2415 if (eof) {
2416 bi_windup(s);
2417 s->compressed_len += 7; /* align on byte boundary */
2418 }
2419 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2420 s->compressed_len-7*eof));
2421
2422 return s->compressed_len >> 3;
2423 }
2424
2425 /* ===========================================================================
2426 * Save the match info and tally the frequency counts. Return true if
2427 * the current block must be flushed.
2428 */
2429 local int ct_tally (s, dist, lc)
2430 deflate_state *s;
2431 int dist; /* distance of matched string */
2432 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2433 {
2434 s->d_buf[s->last_lit] = (ush)dist;
2435 s->l_buf[s->last_lit++] = (uch)lc;
2436 if (dist == 0) {
2437 /* lc is the unmatched char */
2438 s->dyn_ltree[lc].Freq++;
2439 } else {
2440 s->matches++;
2441 /* Here, lc is the match length - MIN_MATCH */
2442 dist--; /* dist = match distance - 1 */
2443 Assert((ush)dist < (ush)MAX_DIST(s) &&
2444 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2445 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2446
2447 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2448 s->dyn_dtree[d_code(dist)].Freq++;
2449 }
2450
2451 /* Try to guess if it is profitable to stop the current block here */
2452 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2453 /* Compute an upper bound for the compressed length */
2454 ulg out_length = (ulg)s->last_lit*8L;
2455 ulg in_length = (ulg)s->strstart - s->block_start;
2456 int dcode;
2457 for (dcode = 0; dcode < D_CODES; dcode++) {
2458 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2459 (5L+extra_dbits[dcode]);
2460 }
2461 out_length >>= 3;
2462 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2463 s->last_lit, in_length, out_length,
2464 100L - out_length*100L/in_length));
2465 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2466 }
2467 return (s->last_lit == s->lit_bufsize-1);
2468 /* We avoid equality with lit_bufsize because of wraparound at 64K
2469 * on 16 bit machines and because stored blocks are restricted to
2470 * 64K-1 bytes.
2471 */
2472 }
2473
2474 /* ===========================================================================
2475 * Send the block data compressed using the given Huffman trees
2476 */
2477 local void compress_block(s, ltree, dtree)
2478 deflate_state *s;
2479 ct_data *ltree; /* literal tree */
2480 ct_data *dtree; /* distance tree */
2481 {
2482 unsigned dist; /* distance of matched string */
2483 int lc; /* match length or unmatched char (if dist == 0) */
2484 unsigned lx = 0; /* running index in l_buf */
2485 unsigned code; /* the code to send */
2486 int extra; /* number of extra bits to send */
2487
2488 if (s->last_lit != 0) do {
2489 dist = s->d_buf[lx];
2490 lc = s->l_buf[lx++];
2491 if (dist == 0) {
2492 send_code(s, lc, ltree); /* send a literal byte */
2493 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2494 } else {
2495 /* Here, lc is the match length - MIN_MATCH */
2496 code = length_code[lc];
2497 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2498 extra = extra_lbits[code];
2499 if (extra != 0) {
2500 lc -= base_length[code];
2501 send_bits(s, lc, extra); /* send the extra length bits */
2502 }
2503 dist--; /* dist is now the match distance - 1 */
2504 code = d_code(dist);
2505 Assert (code < D_CODES, "bad d_code");
2506
2507 send_code(s, code, dtree); /* send the distance code */
2508 extra = extra_dbits[code];
2509 if (extra != 0) {
2510 dist -= base_dist[code];
2511 send_bits(s, dist, extra); /* send the extra distance bits */
2512 }
2513 } /* literal or match pair ? */
2514
2515 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2516 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2517
2518 } while (lx < s->last_lit);
2519
2520 send_code(s, END_BLOCK, ltree);
2521 s->last_eob_len = ltree[END_BLOCK].Len;
2522 }
2523
2524 /* ===========================================================================
2525 * Set the data type to ASCII or Z_BINARY, using a crude approximation:
2526 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2527 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2528 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2529 */
2530 local void set_data_type(s)
2531 deflate_state *s;
2532 {
2533 int n = 0;
2534 unsigned ascii_freq = 0;
2535 unsigned bin_freq = 0;
2536 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2537 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2538 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2539 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : ASCII);
2540 }
2541
2542 /* ===========================================================================
2543 * Reverse the first len bits of a code, using straightforward code (a faster
2544 * method would use a table)
2545 * IN assertion: 1 <= len <= 15
2546 */
2547 local unsigned bi_reverse(code, len)
2548 unsigned code; /* the value to invert */
2549 int len; /* its bit length */
2550 {
2551 register unsigned res = 0;
2552 do {
2553 res |= code & 1;
2554 code >>= 1, res <<= 1;
2555 } while (--len > 0);
2556 return res >> 1;
2557 }
2558
2559 /* ===========================================================================
2560 * Flush the bit buffer, keeping at most 7 bits in it.
2561 */
2562 local void bi_flush(s)
2563 deflate_state *s;
2564 {
2565 if (s->bi_valid == 16) {
2566 put_short(s, s->bi_buf);
2567 s->bi_buf = 0;
2568 s->bi_valid = 0;
2569 } else if (s->bi_valid >= 8) {
2570 put_byte(s, (Byte)s->bi_buf);
2571 s->bi_buf >>= 8;
2572 s->bi_valid -= 8;
2573 }
2574 }
2575
2576 /* ===========================================================================
2577 * Flush the bit buffer and align the output on a byte boundary
2578 */
2579 local void bi_windup(s)
2580 deflate_state *s;
2581 {
2582 if (s->bi_valid > 8) {
2583 put_short(s, s->bi_buf);
2584 } else if (s->bi_valid > 0) {
2585 put_byte(s, (Byte)s->bi_buf);
2586 }
2587 s->bi_buf = 0;
2588 s->bi_valid = 0;
2589 #ifdef DEBUG_ZLIB
2590 s->bits_sent = (s->bits_sent+7) & ~7;
2591 #endif
2592 }
2593
2594 /* ===========================================================================
2595 * Copy a stored block, storing first the length and its
2596 * one's complement if requested.
2597 */
2598 local void copy_block(s, buf, len, header)
2599 deflate_state *s;
2600 charf *buf; /* the input data */
2601 unsigned len; /* its length */
2602 int header; /* true if block header must be written */
2603 {
2604 bi_windup(s); /* align on byte boundary */
2605 s->last_eob_len = 8; /* enough lookahead for inflate */
2606
2607 if (header) {
2608 put_short(s, (ush)len);
2609 put_short(s, (ush)~len);
2610 #ifdef DEBUG_ZLIB
2611 s->bits_sent += 2*16;
2612 #endif
2613 }
2614 #ifdef DEBUG_ZLIB
2615 s->bits_sent += (ulg)len<<3;
2616 #endif
2617 while (len--) {
2618 put_byte(s, *buf++);
2619 }
2620 }
2621
2622
2623 /*+++++*/
2624 /* infblock.h -- header to use infblock.c
2625 * Copyright (C) 1995 Mark Adler
2626 * For conditions of distribution and use, see copyright notice in zlib.h
2627 */
2628
2629 /* WARNING: this file should *not* be used by applications. It is
2630 part of the implementation of the compression library and is
2631 subject to change. Applications should only use zlib.h.
2632 */
2633
2634 struct inflate_blocks_state;
2635 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2636
2637 local inflate_blocks_statef * inflate_blocks_new OF((
2638 z_stream *z,
2639 check_func c, /* check function */
2640 uInt w)); /* window size */
2641
2642 local int inflate_blocks OF((
2643 inflate_blocks_statef *,
2644 z_stream *,
2645 int)); /* initial return code */
2646
2647 local void inflate_blocks_reset OF((
2648 inflate_blocks_statef *,
2649 z_stream *,
2650 uLongf *)); /* check value on output */
2651
2652 local int inflate_blocks_free OF((
2653 inflate_blocks_statef *,
2654 z_stream *,
2655 uLongf *)); /* check value on output */
2656
2657 local int inflate_addhistory OF((
2658 inflate_blocks_statef *,
2659 z_stream *));
2660
2661 local int inflate_packet_flush OF((
2662 inflate_blocks_statef *));
2663
2664 /*+++++*/
2665 /* inftrees.h -- header to use inftrees.c
2666 * Copyright (C) 1995 Mark Adler
2667 * For conditions of distribution and use, see copyright notice in zlib.h
2668 */
2669
2670 /* WARNING: this file should *not* be used by applications. It is
2671 part of the implementation of the compression library and is
2672 subject to change. Applications should only use zlib.h.
2673 */
2674
2675 /* Huffman code lookup table entry--this entry is four bytes for machines
2676 that have 16-bit pointers (e.g. PC's in the small or medium model). */
2677
2678 typedef struct inflate_huft_s FAR inflate_huft;
2679
2680 struct inflate_huft_s {
2681 union {
2682 struct {
2683 Byte Exop; /* number of extra bits or operation */
2684 Byte Bits; /* number of bits in this code or subcode */
2685 } what;
2686 uInt Nalloc; /* number of these allocated here */
2687 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2688 } word; /* 16-bit, 8 bytes for 32-bit machines) */
2689 union {
2690 uInt Base; /* literal, length base, or distance base */
2691 inflate_huft *Next; /* pointer to next level of table */
2692 } more;
2693 };
2694
2695 #ifdef DEBUG_ZLIB
2696 local uInt inflate_hufts;
2697 #endif
2698
2699 local int inflate_trees_bits OF((
2700 uIntf *, /* 19 code lengths */
2701 uIntf *, /* bits tree desired/actual depth */
2702 inflate_huft * FAR *, /* bits tree result */
2703 z_stream *)); /* for zalloc, zfree functions */
2704
2705 local int inflate_trees_dynamic OF((
2706 uInt, /* number of literal/length codes */
2707 uInt, /* number of distance codes */
2708 uIntf *, /* that many (total) code lengths */
2709 uIntf *, /* literal desired/actual bit depth */
2710 uIntf *, /* distance desired/actual bit depth */
2711 inflate_huft * FAR *, /* literal/length tree result */
2712 inflate_huft * FAR *, /* distance tree result */
2713 z_stream *)); /* for zalloc, zfree functions */
2714
2715 local int inflate_trees_fixed OF((
2716 uIntf *, /* literal desired/actual bit depth */
2717 uIntf *, /* distance desired/actual bit depth */
2718 inflate_huft * FAR *, /* literal/length tree result */
2719 inflate_huft * FAR *)); /* distance tree result */
2720
2721 local int inflate_trees_free OF((
2722 inflate_huft *, /* tables to free */
2723 z_stream *)); /* for zfree function */
2724
2725
2726 /*+++++*/
2727 /* infcodes.h -- header to use infcodes.c
2728 * Copyright (C) 1995 Mark Adler
2729 * For conditions of distribution and use, see copyright notice in zlib.h
2730 */
2731
2732 /* WARNING: this file should *not* be used by applications. It is
2733 part of the implementation of the compression library and is
2734 subject to change. Applications should only use zlib.h.
2735 */
2736
2737 struct inflate_codes_state;
2738 typedef struct inflate_codes_state FAR inflate_codes_statef;
2739
2740 local inflate_codes_statef *inflate_codes_new OF((
2741 uInt, uInt,
2742 inflate_huft *, inflate_huft *,
2743 z_stream *));
2744
2745 local int inflate_codes OF((
2746 inflate_blocks_statef *,
2747 z_stream *,
2748 int));
2749
2750 local void inflate_codes_free OF((
2751 inflate_codes_statef *,
2752 z_stream *));
2753
2754
2755 /*+++++*/
2756 /* inflate.c -- zlib interface to inflate modules
2757 * Copyright (C) 1995 Mark Adler
2758 * For conditions of distribution and use, see copyright notice in zlib.h
2759 */
2760
2761 /* inflate private state */
2762 struct internal_state {
2763
2764 /* mode */
2765 enum {
2766 METHOD, /* waiting for method byte */
2767 FLAG, /* waiting for flag byte */
2768 BLOCKS, /* decompressing blocks */
2769 CHECK4, /* four check bytes to go */
2770 CHECK3, /* three check bytes to go */
2771 CHECK2, /* two check bytes to go */
2772 CHECK1, /* one check byte to go */
2773 DONE, /* finished check, done */
2774 BAD} /* got an error--stay here */
2775 mode; /* current inflate mode */
2776
2777 /* mode dependent information */
2778 union {
2779 uInt method; /* if FLAGS, method byte */
2780 struct {
2781 uLong was; /* computed check value */
2782 uLong need; /* stream check value */
2783 } check; /* if CHECK, check values to compare */
2784 uInt marker; /* if BAD, inflateSync's marker bytes count */
2785 } sub; /* submode */
2786
2787 /* mode independent information */
2788 int nowrap; /* flag for no wrapper */
2789 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2790 inflate_blocks_statef
2791 *blocks; /* current inflate_blocks state */
2792
2793 };
2794
2795
2796 int inflateReset(z)
2797 z_stream *z;
2798 {
2799 uLong c;
2800
2801 if (z == Z_NULL || z->state == Z_NULL)
2802 return Z_STREAM_ERROR;
2803 z->total_in = z->total_out = 0;
2804 z->msg = Z_NULL;
2805 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2806 inflate_blocks_reset(z->state->blocks, z, &c);
2807 Trace((stderr, "inflate: reset\n"));
2808 return Z_OK;
2809 }
2810
2811
2812 int inflateEnd(z)
2813 z_stream *z;
2814 {
2815 uLong c;
2816
2817 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2818 return Z_STREAM_ERROR;
2819 if (z->state->blocks != Z_NULL)
2820 inflate_blocks_free(z->state->blocks, z, &c);
2821 ZFREE(z, z->state, sizeof(struct internal_state));
2822 z->state = Z_NULL;
2823 Trace((stderr, "inflate: end\n"));
2824 return Z_OK;
2825 }
2826
2827
2828 int inflateInit2(z, w)
2829 z_stream *z;
2830 int w;
2831 {
2832 /* initialize state */
2833 if (z == Z_NULL)
2834 return Z_STREAM_ERROR;
2835 /* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2836 /* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2837 if ((z->state = (struct internal_state FAR *)
2838 ZALLOC_INIT(z,1,sizeof(struct internal_state))) == Z_NULL)
2839 return Z_MEM_ERROR;
2840 z->state->blocks = Z_NULL;
2841
2842 /* handle undocumented nowrap option (no zlib header or check) */
2843 z->state->nowrap = 0;
2844 if (w < 0)
2845 {
2846 w = - w;
2847 z->state->nowrap = 1;
2848 }
2849
2850 /* set window size */
2851 if (w < 8 || w > 15)
2852 {
2853 inflateEnd(z);
2854 return Z_STREAM_ERROR;
2855 }
2856 z->state->wbits = (uInt)w;
2857
2858 /* create inflate_blocks state */
2859 if ((z->state->blocks =
2860 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2861 == Z_NULL)
2862 {
2863 inflateEnd(z);
2864 return Z_MEM_ERROR;
2865 }
2866 Trace((stderr, "inflate: allocated\n"));
2867
2868 /* reset state */
2869 inflateReset(z);
2870 return Z_OK;
2871 }
2872
2873
2874 int inflateInit(z)
2875 z_stream *z;
2876 {
2877 return inflateInit2(z, DEF_WBITS);
2878 }
2879
2880
2881 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2882 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2883
2884 int inflate(z, f)
2885 z_stream *z;
2886 int f;
2887 {
2888 int r;
2889 uInt b;
2890
2891 if (z == Z_NULL || z->next_in == Z_NULL)
2892 return Z_STREAM_ERROR;
2893 r = Z_BUF_ERROR;
2894 while (1) switch (z->state->mode)
2895 {
2896 case METHOD:
2897 NEEDBYTE
2898 if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2899 {
2900 z->state->mode = BAD;
2901 z->msg = "unknown compression method";
2902 z->state->sub.marker = 5; /* can't try inflateSync */
2903 break;
2904 }
2905 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2906 {
2907 z->state->mode = BAD;
2908 z->msg = "invalid window size";
2909 z->state->sub.marker = 5; /* can't try inflateSync */
2910 break;
2911 }
2912 z->state->mode = FLAG;
2913 case FLAG:
2914 NEEDBYTE
2915 if ((b = NEXTBYTE) & 0x20)
2916 {
2917 z->state->mode = BAD;
2918 z->msg = "invalid reserved bit";
2919 z->state->sub.marker = 5; /* can't try inflateSync */
2920 break;
2921 }
2922 if (((z->state->sub.method << 8) + b) % 31)
2923 {
2924 z->state->mode = BAD;
2925 z->msg = "incorrect header check";
2926 z->state->sub.marker = 5; /* can't try inflateSync */
2927 break;
2928 }
2929 Trace((stderr, "inflate: zlib header ok\n"));
2930 z->state->mode = BLOCKS;
2931 case BLOCKS:
2932 r = inflate_blocks(z->state->blocks, z, r);
2933 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2934 r = inflate_packet_flush(z->state->blocks);
2935 if (r == Z_DATA_ERROR)
2936 {
2937 z->state->mode = BAD;
2938 z->state->sub.marker = 0; /* can try inflateSync */
2939 break;
2940 }
2941 if (r != Z_STREAM_END)
2942 return r;
2943 r = Z_OK;
2944 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2945 if (z->state->nowrap)
2946 {
2947 z->state->mode = DONE;
2948 break;
2949 }
2950 z->state->mode = CHECK4;
2951 case CHECK4:
2952 NEEDBYTE
2953 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2954 z->state->mode = CHECK3;
2955 case CHECK3:
2956 NEEDBYTE
2957 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2958 z->state->mode = CHECK2;
2959 case CHECK2:
2960 NEEDBYTE
2961 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2962 z->state->mode = CHECK1;
2963 case CHECK1:
2964 NEEDBYTE
2965 z->state->sub.check.need += (uLong)NEXTBYTE;
2966
2967 if (z->state->sub.check.was != z->state->sub.check.need)
2968 {
2969 z->state->mode = BAD;
2970 z->msg = "incorrect data check";
2971 z->state->sub.marker = 5; /* can't try inflateSync */
2972 break;
2973 }
2974 Trace((stderr, "inflate: zlib check ok\n"));
2975 z->state->mode = DONE;
2976 case DONE:
2977 return Z_STREAM_END;
2978 case BAD:
2979 return Z_DATA_ERROR;
2980 default:
2981 return Z_STREAM_ERROR;
2982 }
2983
2984 empty:
2985 if (f != Z_PACKET_FLUSH)
2986 return r;
2987 z->state->mode = BAD;
2988 z->state->sub.marker = 0; /* can try inflateSync */
2989 return Z_DATA_ERROR;
2990 }
2991
2992 /*
2993 * This subroutine adds the data at next_in/avail_in to the output history
2994 * without performing any output. The output buffer must be "caught up";
2995 * i.e. no pending output (hence s->read equals s->write), and the state must
2996 * be BLOCKS (i.e. we should be willing to see the start of a series of
2997 * BLOCKS). On exit, the output will also be caught up, and the checksum
2998 * will have been updated if need be.
2999 */
3000
3001 int inflateIncomp(z)
3002 z_stream *z;
3003 {
3004 if (z->state->mode != BLOCKS)
3005 return Z_DATA_ERROR;
3006 return inflate_addhistory(z->state->blocks, z);
3007 }
3008
3009
3010 int inflateSync(z)
3011 z_stream *z;
3012 {
3013 uInt n; /* number of bytes to look at */
3014 Bytef *p; /* pointer to bytes */
3015 uInt m; /* number of marker bytes found in a row */
3016 uLong r, w; /* temporaries to save total_in and total_out */
3017
3018 /* set up */
3019 if (z == Z_NULL || z->state == Z_NULL)
3020 return Z_STREAM_ERROR;
3021 if (z->state->mode != BAD)
3022 {
3023 z->state->mode = BAD;
3024 z->state->sub.marker = 0;
3025 }
3026 if ((n = z->avail_in) == 0)
3027 return Z_BUF_ERROR;
3028 p = z->next_in;
3029 m = z->state->sub.marker;
3030
3031 /* search */
3032 while (n && m < 4)
3033 {
3034 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3035 m++;
3036 else if (*p)
3037 m = 0;
3038 else
3039 m = 4 - m;
3040 p++, n--;
3041 }
3042
3043 /* restore */
3044 z->total_in += p - z->next_in;
3045 z->next_in = p;
3046 z->avail_in = n;
3047 z->state->sub.marker = m;
3048
3049 /* return no joy or set up to restart on a new block */
3050 if (m != 4)
3051 return Z_DATA_ERROR;
3052 r = z->total_in; w = z->total_out;
3053 inflateReset(z);
3054 z->total_in = r; z->total_out = w;
3055 z->state->mode = BLOCKS;
3056 return Z_OK;
3057 }
3058
3059 #undef NEEDBYTE
3060 #undef NEXTBYTE
3061
3062 /*+++++*/
3063 /* infutil.h -- types and macros common to blocks and codes
3064 * Copyright (C) 1995 Mark Adler
3065 * For conditions of distribution and use, see copyright notice in zlib.h
3066 */
3067
3068 /* WARNING: this file should *not* be used by applications. It is
3069 part of the implementation of the compression library and is
3070 subject to change. Applications should only use zlib.h.
3071 */
3072
3073 /* inflate blocks semi-private state */
3074 struct inflate_blocks_state {
3075
3076 /* mode */
3077 enum {
3078 TYPE, /* get type bits (3, including end bit) */
3079 LENS, /* get lengths for stored */
3080 STORED, /* processing stored block */
3081 TABLE, /* get table lengths */
3082 BTREE, /* get bit lengths tree for a dynamic block */
3083 DTREE, /* get length, distance trees for a dynamic block */
3084 CODES, /* processing fixed or dynamic block */
3085 DRY, /* output remaining window bytes */
3086 DONEB, /* finished last block, done */
3087 BADB} /* got a data error--stuck here */
3088 mode; /* current inflate_block mode */
3089
3090 /* mode dependent information */
3091 union {
3092 uInt left; /* if STORED, bytes left to copy */
3093 struct {
3094 uInt table; /* table lengths (14 bits) */
3095 uInt index; /* index into blens (or border) */
3096 uIntf *blens; /* bit lengths of codes */
3097 uInt bb; /* bit length tree depth */
3098 inflate_huft *tb; /* bit length decoding tree */
3099 int nblens; /* # elements allocated at blens */
3100 } trees; /* if DTREE, decoding info for trees */
3101 struct {
3102 inflate_huft *tl, *td; /* trees to free */
3103 inflate_codes_statef
3104 *codes;
3105 } decode; /* if CODES, current state */
3106 } sub; /* submode */
3107 uInt last; /* true if this block is the last block */
3108
3109 /* mode independent information */
3110 uInt bitk; /* bits in bit buffer */
3111 uLong bitb; /* bit buffer */
3112 Bytef *window; /* sliding window */
3113 Bytef *end; /* one byte after sliding window */
3114 Bytef *read; /* window read pointer */
3115 Bytef *write; /* window write pointer */
3116 check_func checkfn; /* check function */
3117 uLong check; /* check on output */
3118
3119 };
3120
3121
3122 /* defines for inflate input/output */
3123 /* update pointers and return */
3124 #define UPDBITS {s->bitb=b;s->bitk=k;}
3125 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3126 #define UPDOUT {s->write=q;}
3127 #define UPDATE {UPDBITS UPDIN UPDOUT}
3128 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3129 /* get bytes and bits */
3130 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3131 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3132 #define NEXTBYTE (n--,*p++)
3133 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3134 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3135 /* output bytes */
3136 #define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3137 #define LOADOUT {q=s->write;m=WAVAIL;}
3138 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3139 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3140 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3141 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3142 /* load local pointers */
3143 #define LOAD {LOADIN LOADOUT}
3144
3145 /* And'ing with mask[n] masks the lower n bits */
3146 local uInt inflate_mask[] = {
3147 0x0000,
3148 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3149 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3150 };
3151
3152 /* copy as much as possible from the sliding window to the output area */
3153 local int inflate_flush OF((
3154 inflate_blocks_statef *,
3155 z_stream *,
3156 int));
3157
3158 /*+++++*/
3159 /* inffast.h -- header to use inffast.c
3160 * Copyright (C) 1995 Mark Adler
3161 * For conditions of distribution and use, see copyright notice in zlib.h
3162 */
3163
3164 /* WARNING: this file should *not* be used by applications. It is
3165 part of the implementation of the compression library and is
3166 subject to change. Applications should only use zlib.h.
3167 */
3168
3169 local int inflate_fast OF((
3170 uInt,
3171 uInt,
3172 inflate_huft *,
3173 inflate_huft *,
3174 inflate_blocks_statef *,
3175 z_stream *));
3176
3177
3178 /*+++++*/
3179 /* infblock.c -- interpret and process block types to last block
3180 * Copyright (C) 1995 Mark Adler
3181 * For conditions of distribution and use, see copyright notice in zlib.h
3182 */
3183
3184 /* Table for deflate from PKZIP's appnote.txt. */
3185 local uInt border[] = { /* Order of the bit length code lengths */
3186 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3187
3188 /*
3189 Notes beyond the 1.93a appnote.txt:
3190
3191 1. Distance pointers never point before the beginning of the output
3192 stream.
3193 2. Distance pointers can point back across blocks, up to 32k away.
3194 3. There is an implied maximum of 7 bits for the bit length table and
3195 15 bits for the actual data.
3196 4. If only one code exists, then it is encoded using one bit. (Zero
3197 would be more efficient, but perhaps a little confusing.) If two
3198 codes exist, they are coded using one bit each (0 and 1).
3199 5. There is no way of sending zero distance codes--a dummy must be
3200 sent if there are none. (History: a pre 2.0 version of PKZIP would
3201 store blocks with no distance codes, but this was discovered to be
3202 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3203 zero distance codes, which is sent as one code of zero bits in
3204 length.
3205 6. There are up to 286 literal/length codes. Code 256 represents the
3206 end-of-block. Note however that the static length tree defines
3207 288 codes just to fill out the Huffman codes. Codes 286 and 287
3208 cannot be used though, since there is no length base or extra bits
3209 defined for them. Similarily, there are up to 30 distance codes.
3210 However, static trees define 32 codes (all 5 bits) to fill out the
3211 Huffman codes, but the last two had better not show up in the data.
3212 7. Unzip can check dynamic Huffman blocks for complete code sets.
3213 The exception is that a single code would not be complete (see #4).
3214 8. The five bits following the block type is really the number of
3215 literal codes sent minus 257.
3216 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3217 (1+6+6). Therefore, to output three times the length, you output
3218 three codes (1+1+1), whereas to output four times the same length,
3219 you only need two codes (1+3). Hmm.
3220 10. In the tree reconstruction algorithm, Code = Code + Increment
3221 only if BitLength(i) is not zero. (Pretty obvious.)
3222 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3223 12. Note: length code 284 can represent 227-258, but length code 285
3224 really is 258. The last length deserves its own, short code
3225 since it gets used a lot in very redundant files. The length
3226 258 is special since 258 - 3 (the min match length) is 255.
3227 13. The literal/length and distance code bit lengths are read as a
3228 single stream of lengths. It is possible (and advantageous) for
3229 a repeat code (16, 17, or 18) to go across the boundary between
3230 the two sets of lengths.
3231 */
3232
3233
3234 local void inflate_blocks_reset(s, z, c)
3235 inflate_blocks_statef *s;
3236 z_stream *z;
3237 uLongf *c;
3238 {
3239 if (s->checkfn != Z_NULL)
3240 *c = s->check;
3241 if (s->mode == BTREE || s->mode == DTREE)
3242 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3243 if (s->mode == CODES)
3244 {
3245 inflate_codes_free(s->sub.decode.codes, z);
3246 inflate_trees_free(s->sub.decode.td, z);
3247 inflate_trees_free(s->sub.decode.tl, z);
3248 }
3249 s->mode = TYPE;
3250 s->bitk = 0;
3251 s->bitb = 0;
3252 s->read = s->write = s->window;
3253 if (s->checkfn != Z_NULL)
3254 s->check = (*s->checkfn)(0L, Z_NULL, 0);
3255 Trace((stderr, "inflate: blocks reset\n"));
3256 }
3257
3258
3259 local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3260 z_stream *z;
3261 check_func c;
3262 uInt w;
3263 {
3264 inflate_blocks_statef *s;
3265
3266 if ((s = (inflate_blocks_statef *)ZALLOC_INIT
3267 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3268 return s;
3269 if ((s->window = (Bytef *)ZALLOC_INIT(z, 1, w)) == Z_NULL)
3270 {
3271 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3272 return Z_NULL;
3273 }
3274 s->end = s->window + w;
3275 s->checkfn = c;
3276 s->mode = TYPE;
3277 Trace((stderr, "inflate: blocks allocated\n"));
3278 inflate_blocks_reset(s, z, &s->check);
3279 return s;
3280 }
3281
3282
3283 local int inflate_blocks(s, z, r)
3284 inflate_blocks_statef *s;
3285 z_stream *z;
3286 int r;
3287 {
3288 uInt t; /* temporary storage */
3289 uLong b; /* bit buffer */
3290 uInt k; /* bits in bit buffer */
3291 Bytef *p; /* input data pointer */
3292 uInt n; /* bytes available there */
3293 Bytef *q; /* output window write pointer */
3294 uInt m; /* bytes to end of window or read pointer */
3295
3296 /* copy input/output information to locals (UPDATE macro restores) */
3297 LOAD
3298
3299 /* process input based on current state */
3300 while (1) switch (s->mode)
3301 {
3302 case TYPE:
3303 NEEDBITS(3)
3304 t = (uInt)b & 7;
3305 s->last = t & 1;
3306 switch (t >> 1)
3307 {
3308 case 0: /* stored */
3309 Trace((stderr, "inflate: stored block%s\n",
3310 s->last ? " (last)" : ""));
3311 DUMPBITS(3)
3312 t = k & 7; /* go to byte boundary */
3313 DUMPBITS(t)
3314 s->mode = LENS; /* get length of stored block */
3315 break;
3316 case 1: /* fixed */
3317 Trace((stderr, "inflate: fixed codes block%s\n",
3318 s->last ? " (last)" : ""));
3319 {
3320 uInt bl, bd;
3321 inflate_huft *tl, *td;
3322
3323 inflate_trees_fixed(&bl, &bd, &tl, &td);
3324 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3325 if (s->sub.decode.codes == Z_NULL)
3326 {
3327 r = Z_MEM_ERROR;
3328 LEAVE
3329 }
3330 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3331 s->sub.decode.td = Z_NULL;
3332 }
3333 DUMPBITS(3)
3334 s->mode = CODES;
3335 break;
3336 case 2: /* dynamic */
3337 Trace((stderr, "inflate: dynamic codes block%s\n",
3338 s->last ? " (last)" : ""));
3339 DUMPBITS(3)
3340 s->mode = TABLE;
3341 break;
3342 case 3: /* illegal */
3343 DUMPBITS(3)
3344 s->mode = BADB;
3345 z->msg = "invalid block type";
3346 r = Z_DATA_ERROR;
3347 LEAVE
3348 }
3349 break;
3350 case LENS:
3351 NEEDBITS(32)
3352 if (((~b) >> 16) != (b & 0xffff))
3353 {
3354 s->mode = BADB;
3355 z->msg = "invalid stored block lengths";
3356 r = Z_DATA_ERROR;
3357 LEAVE
3358 }
3359 s->sub.left = (uInt)b & 0xffff;
3360 b = k = 0; /* dump bits */
3361 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3362 s->mode = s->sub.left ? STORED : TYPE;
3363 break;
3364 case STORED:
3365 if (n == 0)
3366 LEAVE
3367 NEEDOUT
3368 t = s->sub.left;
3369 if (t > n) t = n;
3370 if (t > m) t = m;
3371 zmemcpy(q, p, t);
3372 p += t; n -= t;
3373 q += t; m -= t;
3374 if ((s->sub.left -= t) != 0)
3375 break;
3376 Tracev((stderr, "inflate: stored end, %lu total out\n",
3377 z->total_out + (q >= s->read ? q - s->read :
3378 (s->end - s->read) + (q - s->window))));
3379 s->mode = s->last ? DRY : TYPE;
3380 break;
3381 case TABLE:
3382 NEEDBITS(14)
3383 s->sub.trees.table = t = (uInt)b & 0x3fff;
3384 #ifndef PKZIP_BUG_WORKAROUND
3385 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3386 {
3387 s->mode = BADB;
3388 z->msg = "too many length or distance symbols";
3389 r = Z_DATA_ERROR;
3390 LEAVE
3391 }
3392 #endif
3393 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3394 if (t < 19)
3395 t = 19;
3396 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3397 {
3398 r = Z_MEM_ERROR;
3399 LEAVE
3400 }
3401 s->sub.trees.nblens = t;
3402 DUMPBITS(14)
3403 s->sub.trees.index = 0;
3404 Tracev((stderr, "inflate: table sizes ok\n"));
3405 s->mode = BTREE;
3406 case BTREE:
3407 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3408 {
3409 NEEDBITS(3)
3410 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3411 DUMPBITS(3)
3412 }
3413 while (s->sub.trees.index < 19)
3414 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3415 s->sub.trees.bb = 7;
3416 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3417 &s->sub.trees.tb, z);
3418 if (t != Z_OK)
3419 {
3420 r = t;
3421 if (r == Z_DATA_ERROR)
3422 s->mode = BADB;
3423 LEAVE
3424 }
3425 s->sub.trees.index = 0;
3426 Tracev((stderr, "inflate: bits tree ok\n"));
3427 s->mode = DTREE;
3428 case DTREE:
3429 while (t = s->sub.trees.table,
3430 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3431 {
3432 inflate_huft *h;
3433 uInt i, j, c;
3434
3435 t = s->sub.trees.bb;
3436 NEEDBITS(t)
3437 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3438 t = h->word.what.Bits;
3439 c = h->more.Base;
3440 if (c < 16)
3441 {
3442 DUMPBITS(t)
3443 s->sub.trees.blens[s->sub.trees.index++] = c;
3444 }
3445 else /* c == 16..18 */
3446 {
3447 i = c == 18 ? 7 : c - 14;
3448 j = c == 18 ? 11 : 3;
3449 NEEDBITS(t + i)
3450 DUMPBITS(t)
3451 j += (uInt)b & inflate_mask[i];
3452 DUMPBITS(i)
3453 i = s->sub.trees.index;
3454 t = s->sub.trees.table;
3455 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3456 (c == 16 && i < 1))
3457 {
3458 s->mode = BADB;
3459 z->msg = "invalid bit length repeat";
3460 r = Z_DATA_ERROR;
3461 LEAVE
3462 }
3463 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3464 do {
3465 s->sub.trees.blens[i++] = c;
3466 } while (--j);
3467 s->sub.trees.index = i;
3468 }
3469 }
3470 inflate_trees_free(s->sub.trees.tb, z);
3471 s->sub.trees.tb = Z_NULL;
3472 {
3473 uInt bl, bd;
3474 inflate_huft *tl, *td;
3475 inflate_codes_statef *c;
3476
3477 bl = 9; /* must be <= 9 for lookahead assumptions */
3478 bd = 6; /* must be <= 9 for lookahead assumptions */
3479 t = s->sub.trees.table;
3480 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3481 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3482 if (t != Z_OK)
3483 {
3484 if (t == (uInt)Z_DATA_ERROR)
3485 s->mode = BADB;
3486 r = t;
3487 LEAVE
3488 }
3489 Tracev((stderr, "inflate: trees ok\n"));
3490 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3491 {
3492 inflate_trees_free(td, z);
3493 inflate_trees_free(tl, z);
3494 r = Z_MEM_ERROR;
3495 LEAVE
3496 }
3497 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3498 s->sub.decode.codes = c;
3499 s->sub.decode.tl = tl;
3500 s->sub.decode.td = td;
3501 }
3502 s->mode = CODES;
3503 case CODES:
3504 UPDATE
3505 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3506 return inflate_flush(s, z, r);
3507 r = Z_OK;
3508 inflate_codes_free(s->sub.decode.codes, z);
3509 inflate_trees_free(s->sub.decode.td, z);
3510 inflate_trees_free(s->sub.decode.tl, z);
3511 LOAD
3512 Tracev((stderr, "inflate: codes end, %lu total out\n",
3513 z->total_out + (q >= s->read ? q - s->read :
3514 (s->end - s->read) + (q - s->window))));
3515 if (!s->last)
3516 {
3517 s->mode = TYPE;
3518 break;
3519 }
3520 if (k > 7) /* return unused byte, if any */
3521 {
3522 Assert(k < 16, "inflate_codes grabbed too many bytes")
3523 k -= 8;
3524 n++;
3525 p--; /* can always return one */
3526 }
3527 s->mode = DRY;
3528 case DRY:
3529 FLUSH
3530 if (s->read != s->write)
3531 LEAVE
3532 s->mode = DONEB;
3533 case DONEB:
3534 r = Z_STREAM_END;
3535 LEAVE
3536 case BADB:
3537 r = Z_DATA_ERROR;
3538 LEAVE
3539 default:
3540 r = Z_STREAM_ERROR;
3541 LEAVE
3542 }
3543 }
3544
3545
3546 local int inflate_blocks_free(s, z, c)
3547 inflate_blocks_statef *s;
3548 z_stream *z;
3549 uLongf *c;
3550 {
3551 inflate_blocks_reset(s, z, c);
3552 ZFREE(z, s->window, s->end - s->window);
3553 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3554 Trace((stderr, "inflate: blocks freed\n"));
3555 return Z_OK;
3556 }
3557
3558 /*
3559 * This subroutine adds the data at next_in/avail_in to the output history
3560 * without performing any output. The output buffer must be "caught up";
3561 * i.e. no pending output (hence s->read equals s->write), and the state must
3562 * be BLOCKS (i.e. we should be willing to see the start of a series of
3563 * BLOCKS). On exit, the output will also be caught up, and the checksum
3564 * will have been updated if need be.
3565 */
3566 local int inflate_addhistory(s, z)
3567 inflate_blocks_statef *s;
3568 z_stream *z;
3569 {
3570 uLong b; /* bit buffer */ /* NOT USED HERE */
3571 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3572 uInt t; /* temporary storage */
3573 Bytef *p; /* input data pointer */
3574 uInt n; /* bytes available there */
3575 Bytef *q; /* output window write pointer */
3576 uInt m; /* bytes to end of window or read pointer */
3577
3578 if (s->read != s->write)
3579 return Z_STREAM_ERROR;
3580 if (s->mode != TYPE)
3581 return Z_DATA_ERROR;
3582
3583 /* we're ready to rock */
3584 LOAD
3585 /* while there is input ready, copy to output buffer, moving
3586 * pointers as needed.
3587 */
3588 while (n) {
3589 t = n; /* how many to do */
3590 /* is there room until end of buffer? */
3591 if (t > m) t = m;
3592 /* update check information */
3593 if (s->checkfn != Z_NULL)
3594 s->check = (*s->checkfn)(s->check, q, t);
3595 zmemcpy(q, p, t);
3596 q += t;
3597 p += t;
3598 n -= t;
3599 z->total_out += t;
3600 s->read = q; /* drag read pointer forward */
3601 /* WRAP */ /* expand WRAP macro by hand to handle s->read */
3602 if (q == s->end) {
3603 s->read = q = s->window;
3604 m = WAVAIL;
3605 }
3606 }
3607 UPDATE
3608 return Z_OK;
3609 }
3610
3611
3612 /*
3613 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3614 * a `stored' block type value but not the (zero) length bytes.
3615 */
3616 local int inflate_packet_flush(s)
3617 inflate_blocks_statef *s;
3618 {
3619 if (s->mode != LENS)
3620 return Z_DATA_ERROR;
3621 s->mode = TYPE;
3622 return Z_OK;
3623 }
3624
3625
3626 /*+++++*/
3627 /* inftrees.c -- generate Huffman trees for efficient decoding
3628 * Copyright (C) 1995 Mark Adler
3629 * For conditions of distribution and use, see copyright notice in zlib.h
3630 */
3631
3632 /* simplify the use of the inflate_huft type with some defines */
3633 #define base more.Base
3634 #define next more.Next
3635 #define exop word.what.Exop
3636 #define bits word.what.Bits
3637
3638
3639 local int huft_build OF((
3640 uIntf *, /* code lengths in bits */
3641 uInt, /* number of codes */
3642 uInt, /* number of "simple" codes */
3643 uIntf *, /* list of base values for non-simple codes */
3644 uIntf *, /* list of extra bits for non-simple codes */
3645 inflate_huft * FAR*,/* result: starting table */
3646 uIntf *, /* maximum lookup bits (returns actual) */
3647 z_stream *)); /* for zalloc function */
3648
3649 local voidpf falloc OF((
3650 voidpf, /* opaque pointer (not used) */
3651 uInt, /* number of items */
3652 uInt)); /* size of item */
3653
3654 local void ffree OF((
3655 voidpf q, /* opaque pointer (not used) */
3656 voidpf p, /* what to free (not used) */
3657 uInt n)); /* number of bytes (not used) */
3658
3659 /* Tables for deflate from PKZIP's appnote.txt. */
3660 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3661 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3662 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3663 /* actually lengths - 2; also see note #13 above about 258 */
3664 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3665 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3666 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3667 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3668 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3669 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3670 8193, 12289, 16385, 24577};
3671 local uInt cpdext[] = { /* Extra bits for distance codes */
3672 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3673 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3674 12, 12, 13, 13};
3675
3676 /*
3677 Huffman code decoding is performed using a multi-level table lookup.
3678 The fastest way to decode is to simply build a lookup table whose
3679 size is determined by the longest code. However, the time it takes
3680 to build this table can also be a factor if the data being decoded
3681 is not very long. The most common codes are necessarily the
3682 shortest codes, so those codes dominate the decoding time, and hence
3683 the speed. The idea is you can have a shorter table that decodes the
3684 shorter, more probable codes, and then point to subsidiary tables for
3685 the longer codes. The time it costs to decode the longer codes is
3686 then traded against the time it takes to make longer tables.
3687
3688 This results of this trade are in the variables lbits and dbits
3689 below. lbits is the number of bits the first level table for literal/
3690 length codes can decode in one step, and dbits is the same thing for
3691 the distance codes. Subsequent tables are also less than or equal to
3692 those sizes. These values may be adjusted either when all of the
3693 codes are shorter than that, in which case the longest code length in
3694 bits is used, or when the shortest code is *longer* than the requested
3695 table size, in which case the length of the shortest code in bits is
3696 used.
3697
3698 There are two different values for the two tables, since they code a
3699 different number of possibilities each. The literal/length table
3700 codes 286 possible values, or in a flat code, a little over eight
3701 bits. The distance table codes 30 possible values, or a little less
3702 than five bits, flat. The optimum values for speed end up being
3703 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3704 The optimum values may differ though from machine to machine, and
3705 possibly even between compilers. Your mileage may vary.
3706 */
3707
3708
3709 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3710 #define BMAX 15 /* maximum bit length of any code */
3711 #define N_MAX 288 /* maximum number of codes in any set */
3712
3713 #ifdef DEBUG_ZLIB
3714 uInt inflate_hufts;
3715 #endif
3716
3717 local int huft_build(b, n, s, d, e, t, m, zs)
3718 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3719 uInt n; /* number of codes (assumed <= N_MAX) */
3720 uInt s; /* number of simple-valued codes (0..s-1) */
3721 uIntf *d; /* list of base values for non-simple codes */
3722 uIntf *e; /* list of extra bits for non-simple codes */
3723 inflate_huft * FAR *t; /* result: starting table */
3724 uIntf *m; /* maximum lookup bits, returns actual */
3725 z_stream *zs; /* for zalloc function */
3726 /* Given a list of code lengths and a maximum table size, make a set of
3727 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3728 if the given code set is incomplete (the tables are still built in this
3729 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3730 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3731 {
3732
3733 uInt a; /* counter for codes of length k */
3734 uInt c[BMAX+1]; /* bit length count table */
3735 uInt f; /* i repeats in table every f entries */
3736 int g; /* maximum code length */
3737 int h; /* table level */
3738 register uInt i; /* counter, current code */
3739 register uInt j; /* counter */
3740 register int k; /* number of bits in current code */
3741 int l; /* bits per table (returned in m) */
3742 register uIntf *p; /* pointer into c[], b[], or v[] */
3743 inflate_huft *q; /* points to current table */
3744 struct inflate_huft_s r; /* table entry for structure assignment */
3745 inflate_huft *u[BMAX]; /* table stack */
3746 uInt v[N_MAX]; /* values in order of bit length */
3747 register int w; /* bits before this table == (l * h) */
3748 uInt x[BMAX+1]; /* bit offsets, then code stack */
3749 uIntf *xp; /* pointer into x */
3750 int y; /* number of dummy codes added */
3751 uInt z; /* number of entries in current table */
3752
3753
3754 /* Generate counts for each bit length */
3755 p = c;
3756 #define C0 *p++ = 0;
3757 #define C2 C0 C0 C0 C0
3758 #define C4 C2 C2 C2 C2
3759 C4 /* clear c[]--assume BMAX+1 is 16 */
3760 p = b; i = n;
3761 do {
3762 c[*p++]++; /* assume all entries <= BMAX */
3763 } while (--i);
3764 if (c[0] == n) /* null input--all zero length codes */
3765 {
3766 *t = (inflate_huft *)Z_NULL;
3767 *m = 0;
3768 return Z_OK;
3769 }
3770
3771
3772 /* Find minimum and maximum length, bound *m by those */
3773 l = *m;
3774 for (j = 1; j <= BMAX; j++)
3775 if (c[j])
3776 break;
3777 k = j; /* minimum code length */
3778 if ((uInt)l < j)
3779 l = j;
3780 for (i = BMAX; i; i--)
3781 if (c[i])
3782 break;
3783 g = i; /* maximum code length */
3784 if ((uInt)l > i)
3785 l = i;
3786 *m = l;
3787
3788
3789 /* Adjust last length count to fill out codes, if needed */
3790 for (y = 1 << j; j < i; j++, y <<= 1)
3791 if ((y -= c[j]) < 0)
3792 return Z_DATA_ERROR;
3793 if ((y -= c[i]) < 0)
3794 return Z_DATA_ERROR;
3795 c[i] += y;
3796
3797
3798 /* Generate starting offsets into the value table for each length */
3799 x[1] = j = 0;
3800 p = c + 1; xp = x + 2;
3801 while (--i) { /* note that i == g from above */
3802 *xp++ = (j += *p++);
3803 }
3804
3805
3806 /* Make a table of values in order of bit lengths */
3807 p = b; i = 0;
3808 do {
3809 if ((j = *p++) != 0)
3810 v[x[j]++] = i;
3811 } while (++i < n);
3812
3813
3814 /* Generate the Huffman codes and for each, make the table entries */
3815 x[0] = i = 0; /* first Huffman code is zero */
3816 p = v; /* grab values in bit order */
3817 h = -1; /* no tables yet--level -1 */
3818 w = -l; /* bits decoded == (l * h) */
3819 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3820 q = (inflate_huft *)Z_NULL; /* ditto */
3821 z = 0; /* ditto */
3822
3823 /* go through the bit lengths (k already is bits in shortest code) */
3824 for (; k <= g; k++)
3825 {
3826 a = c[k];
3827 while (a--)
3828 {
3829 /* here i is the Huffman code of length k bits for value *p */
3830 /* make tables up to required level */
3831 while (k > w + l)
3832 {
3833 h++;
3834 w += l; /* previous table always l bits */
3835
3836 /* compute minimum size table less than or equal to l bits */
3837 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3838 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3839 { /* too few codes for k-w bit table */
3840 f -= a + 1; /* deduct codes from patterns left */
3841 xp = c + k;
3842 if (j < z)
3843 while (++j < z) /* try smaller tables up to z bits */
3844 {
3845 if ((f <<= 1) <= *++xp)
3846 break; /* enough codes to use up j bits */
3847 f -= *xp; /* else deduct codes from patterns */
3848 }
3849 }
3850 z = 1 << j; /* table entries for j-bit table */
3851
3852 /* allocate and link in new table */
3853 if ((q = (inflate_huft *)ZALLOC
3854 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3855 {
3856 if (h)
3857 inflate_trees_free(u[0], zs);
3858 return Z_MEM_ERROR; /* not enough memory */
3859 }
3860 q->word.Nalloc = z + 1;
3861 #ifdef DEBUG_ZLIB
3862 inflate_hufts += z + 1;
3863 #endif
3864 *t = q + 1; /* link to list for huft_free() */
3865 *(t = &(q->next)) = Z_NULL;
3866 u[h] = ++q; /* table starts after link */
3867
3868 /* connect to last table, if there is one */
3869 if (h)
3870 {
3871 x[h] = i; /* save pattern for backing up */
3872 r.bits = (Byte)l; /* bits to dump before this table */
3873 r.exop = (Byte)j; /* bits in this table */
3874 r.next = q; /* pointer to this table */
3875 j = i >> (w - l); /* (get around Turbo C bug) */
3876 u[h-1][j] = r; /* connect to last table */
3877 }
3878 }
3879
3880 /* set up table entry in r */
3881 r.bits = (Byte)(k - w);
3882 if (p >= v + n)
3883 r.exop = 128 + 64; /* out of values--invalid code */
3884 else if (*p < s)
3885 {
3886 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3887 r.base = *p++; /* simple code is just the value */
3888 }
3889 else
3890 {
3891 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3892 r.base = d[*p++ - s];
3893 }
3894
3895 /* fill code-like entries with r */
3896 f = 1 << (k - w);
3897 for (j = i >> w; j < z; j += f)
3898 q[j] = r;
3899
3900 /* backwards increment the k-bit code i */
3901 for (j = 1 << (k - 1); i & j; j >>= 1)
3902 i ^= j;
3903 i ^= j;
3904
3905 /* backup over finished tables */
3906 while ((i & ((1 << w) - 1)) != x[h])
3907 {
3908 h--; /* don't need to update q */
3909 w -= l;
3910 }
3911 }
3912 }
3913
3914
3915 /* Return Z_BUF_ERROR if we were given an incomplete table */
3916 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3917 }
3918
3919
3920 local int inflate_trees_bits(c, bb, tb, z)
3921 uIntf *c; /* 19 code lengths */
3922 uIntf *bb; /* bits tree desired/actual depth */
3923 inflate_huft * FAR *tb; /* bits tree result */
3924 z_stream *z; /* for zfree function */
3925 {
3926 int r;
3927
3928 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3929 if (r == Z_DATA_ERROR)
3930 z->msg = "oversubscribed dynamic bit lengths tree";
3931 else if (r == Z_BUF_ERROR)
3932 {
3933 inflate_trees_free(*tb, z);
3934 z->msg = "incomplete dynamic bit lengths tree";
3935 r = Z_DATA_ERROR;
3936 }
3937 return r;
3938 }
3939
3940
3941 local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3942 uInt nl; /* number of literal/length codes */
3943 uInt nd; /* number of distance codes */
3944 uIntf *c; /* that many (total) code lengths */
3945 uIntf *bl; /* literal desired/actual bit depth */
3946 uIntf *bd; /* distance desired/actual bit depth */
3947 inflate_huft * FAR *tl; /* literal/length tree result */
3948 inflate_huft * FAR *td; /* distance tree result */
3949 z_stream *z; /* for zfree function */
3950 {
3951 int r;
3952
3953 /* build literal/length tree */
3954 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3955 {
3956 if (r == Z_DATA_ERROR)
3957 z->msg = "oversubscribed literal/length tree";
3958 else if (r == Z_BUF_ERROR)
3959 {
3960 inflate_trees_free(*tl, z);
3961 z->msg = "incomplete literal/length tree";
3962 r = Z_DATA_ERROR;
3963 }
3964 return r;
3965 }
3966
3967 /* build distance tree */
3968 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3969 {
3970 if (r == Z_DATA_ERROR)
3971 z->msg = "oversubscribed literal/length tree";
3972 else if (r == Z_BUF_ERROR) {
3973 #ifdef PKZIP_BUG_WORKAROUND
3974 r = Z_OK;
3975 }
3976 #else
3977 inflate_trees_free(*td, z);
3978 z->msg = "incomplete literal/length tree";
3979 r = Z_DATA_ERROR;
3980 }
3981 inflate_trees_free(*tl, z);
3982 return r;
3983 #endif
3984 }
3985
3986 /* done */
3987 return Z_OK;
3988 }
3989
3990
3991 /* build fixed tables only once--keep them here */
3992 local int fixed_lock = 0;
3993 local int fixed_built = 0;
3994 #define FIXEDH 530 /* number of hufts used by fixed tables */
3995 local uInt fixed_left = FIXEDH;
3996 local inflate_huft fixed_mem[FIXEDH];
3997 local uInt fixed_bl;
3998 local uInt fixed_bd;
3999 local inflate_huft *fixed_tl;
4000 local inflate_huft *fixed_td;
4001
4002
4003 local voidpf falloc(q, n, s)
4004 voidpf q; /* opaque pointer (not used) */
4005 uInt n; /* number of items */
4006 uInt s; /* size of item */
4007 {
4008 Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4009 "inflate_trees falloc overflow");
4010 if (q) s++; /* to make some compilers happy */
4011 fixed_left -= n;
4012 return (voidpf)(fixed_mem + fixed_left);
4013 }
4014
4015
4016 local void ffree(q, p, n)
4017 voidpf q;
4018 voidpf p;
4019 uInt n;
4020 {
4021 Assert(0, "inflate_trees ffree called!");
4022 if (q) q = p; /* to make some compilers happy */
4023 }
4024
4025
4026 local int inflate_trees_fixed(bl, bd, tl, td)
4027 uIntf *bl; /* literal desired/actual bit depth */
4028 uIntf *bd; /* distance desired/actual bit depth */
4029 inflate_huft * FAR *tl; /* literal/length tree result */
4030 inflate_huft * FAR *td; /* distance tree result */
4031 {
4032 /* build fixed tables if not built already--lock out other instances */
4033 while (++fixed_lock > 1)
4034 fixed_lock--;
4035 if (!fixed_built)
4036 {
4037 int k; /* temporary variable */
4038 unsigned c[288]; /* length list for huft_build */
4039 z_stream z; /* for falloc function */
4040
4041 /* set up fake z_stream for memory routines */
4042 z.zalloc = falloc;
4043 z.zfree = ffree;
4044 z.opaque = Z_NULL;
4045
4046 /* literal table */
4047 for (k = 0; k < 144; k++)
4048 c[k] = 8;
4049 for (; k < 256; k++)
4050 c[k] = 9;
4051 for (; k < 280; k++)
4052 c[k] = 7;
4053 for (; k < 288; k++)
4054 c[k] = 8;
4055 fixed_bl = 7;
4056 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4057
4058 /* distance table */
4059 for (k = 0; k < 30; k++)
4060 c[k] = 5;
4061 fixed_bd = 5;
4062 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4063
4064 /* done */
4065 fixed_built = 1;
4066 }
4067 fixed_lock--;
4068 *bl = fixed_bl;
4069 *bd = fixed_bd;
4070 *tl = fixed_tl;
4071 *td = fixed_td;
4072 return Z_OK;
4073 }
4074
4075
4076 local int inflate_trees_free(t, z)
4077 inflate_huft *t; /* table to free */
4078 z_stream *z; /* for zfree function */
4079 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4080 list of the tables it made, with the links in a dummy first entry of
4081 each table. */
4082 {
4083 register inflate_huft *p, *q;
4084
4085 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4086 p = t;
4087 while (p != Z_NULL)
4088 {
4089 q = (--p)->next;
4090 ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4091 p = q;
4092 }
4093 return Z_OK;
4094 }
4095
4096 /*+++++*/
4097 /* infcodes.c -- process literals and length/distance pairs
4098 * Copyright (C) 1995 Mark Adler
4099 * For conditions of distribution and use, see copyright notice in zlib.h
4100 */
4101
4102 /* simplify the use of the inflate_huft type with some defines */
4103 #define base more.Base
4104 #define next more.Next
4105 #define exop word.what.Exop
4106 #define bits word.what.Bits
4107
4108 /* inflate codes private state */
4109 struct inflate_codes_state {
4110
4111 /* mode */
4112 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4113 START, /* x: set up for LEN */
4114 LEN, /* i: get length/literal/eob next */
4115 LENEXT, /* i: getting length extra (have base) */
4116 DIST, /* i: get distance next */
4117 DISTEXT, /* i: getting distance extra */
4118 COPY, /* o: copying bytes in window, waiting for space */
4119 LIT, /* o: got literal, waiting for output space */
4120 WASH, /* o: got eob, possibly still output waiting */
4121 END, /* x: got eob and all data flushed */
4122 BADCODE} /* x: got error */
4123 mode; /* current inflate_codes mode */
4124
4125 /* mode dependent information */
4126 uInt len;
4127 union {
4128 struct {
4129 inflate_huft *tree; /* pointer into tree */
4130 uInt need; /* bits needed */
4131 } code; /* if LEN or DIST, where in tree */
4132 uInt lit; /* if LIT, literal */
4133 struct {
4134 uInt get; /* bits to get for extra */
4135 uInt dist; /* distance back to copy from */
4136 } copy; /* if EXT or COPY, where and how much */
4137 } sub; /* submode */
4138
4139 /* mode independent information */
4140 Byte lbits; /* ltree bits decoded per branch */
4141 Byte dbits; /* dtree bits decoder per branch */
4142 inflate_huft *ltree; /* literal/length/eob tree */
4143 inflate_huft *dtree; /* distance tree */
4144
4145 };
4146
4147
4148 local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4149 uInt bl, bd;
4150 inflate_huft *tl, *td;
4151 z_stream *z;
4152 {
4153 inflate_codes_statef *c;
4154
4155 if ((c = (inflate_codes_statef *)
4156 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4157 {
4158 c->mode = START;
4159 c->lbits = (Byte)bl;
4160 c->dbits = (Byte)bd;
4161 c->ltree = tl;
4162 c->dtree = td;
4163 Tracev((stderr, "inflate: codes new\n"));
4164 }
4165 return c;
4166 }
4167
4168
4169 local int inflate_codes(s, z, r)
4170 inflate_blocks_statef *s;
4171 z_stream *z;
4172 int r;
4173 {
4174 uInt j; /* temporary storage */
4175 inflate_huft *t; /* temporary pointer */
4176 uInt e; /* extra bits or operation */
4177 uLong b; /* bit buffer */
4178 uInt k; /* bits in bit buffer */
4179 Bytef *p; /* input data pointer */
4180 uInt n; /* bytes available there */
4181 Bytef *q; /* output window write pointer */
4182 uInt m; /* bytes to end of window or read pointer */
4183 Bytef *f; /* pointer to copy strings from */
4184 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4185
4186 /* copy input/output information to locals (UPDATE macro restores) */
4187 LOAD
4188
4189 /* process input and output based on current state */
4190 while (1) switch (c->mode)
4191 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4192 case START: /* x: set up for LEN */
4193 #ifndef SLOW
4194 if (m >= 258 && n >= 10)
4195 {
4196 UPDATE
4197 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4198 LOAD
4199 if (r != Z_OK)
4200 {
4201 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4202 break;
4203 }
4204 }
4205 #endif /* !SLOW */
4206 c->sub.code.need = c->lbits;
4207 c->sub.code.tree = c->ltree;
4208 c->mode = LEN;
4209 case LEN: /* i: get length/literal/eob next */
4210 j = c->sub.code.need;
4211 NEEDBITS(j)
4212 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4213 DUMPBITS(t->bits)
4214 e = (uInt)(t->exop);
4215 if (e == 0) /* literal */
4216 {
4217 c->sub.lit = t->base;
4218 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4219 "inflate: literal '%c'\n" :
4220 "inflate: literal 0x%02x\n", t->base));
4221 c->mode = LIT;
4222 break;
4223 }
4224 if (e & 16) /* length */
4225 {
4226 c->sub.copy.get = e & 15;
4227 c->len = t->base;
4228 c->mode = LENEXT;
4229 break;
4230 }
4231 if ((e & 64) == 0) /* next table */
4232 {
4233 c->sub.code.need = e;
4234 c->sub.code.tree = t->next;
4235 break;
4236 }
4237 if (e & 32) /* end of block */
4238 {
4239 Tracevv((stderr, "inflate: end of block\n"));
4240 c->mode = WASH;
4241 break;
4242 }
4243 c->mode = BADCODE; /* invalid code */
4244 z->msg = "invalid literal/length code";
4245 r = Z_DATA_ERROR;
4246 LEAVE
4247 case LENEXT: /* i: getting length extra (have base) */
4248 j = c->sub.copy.get;
4249 NEEDBITS(j)
4250 c->len += (uInt)b & inflate_mask[j];
4251 DUMPBITS(j)
4252 c->sub.code.need = c->dbits;
4253 c->sub.code.tree = c->dtree;
4254 Tracevv((stderr, "inflate: length %u\n", c->len));
4255 c->mode = DIST;
4256 case DIST: /* i: get distance next */
4257 j = c->sub.code.need;
4258 NEEDBITS(j)
4259 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4260 DUMPBITS(t->bits)
4261 e = (uInt)(t->exop);
4262 if (e & 16) /* distance */
4263 {
4264 c->sub.copy.get = e & 15;
4265 c->sub.copy.dist = t->base;
4266 c->mode = DISTEXT;
4267 break;
4268 }
4269 if ((e & 64) == 0) /* next table */
4270 {
4271 c->sub.code.need = e;
4272 c->sub.code.tree = t->next;
4273 break;
4274 }
4275 c->mode = BADCODE; /* invalid code */
4276 z->msg = "invalid distance code";
4277 r = Z_DATA_ERROR;
4278 LEAVE
4279 case DISTEXT: /* i: getting distance extra */
4280 j = c->sub.copy.get;
4281 NEEDBITS(j)
4282 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4283 DUMPBITS(j)
4284 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4285 c->mode = COPY;
4286 case COPY: /* o: copying bytes in window, waiting for space */
4287 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4288 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4289 s->end - (c->sub.copy.dist - (q - s->window)) :
4290 q - c->sub.copy.dist;
4291 #else
4292 f = q - c->sub.copy.dist;
4293 if ((uInt)(q - s->window) < c->sub.copy.dist)
4294 f = s->end - (c->sub.copy.dist - (q - s->window));
4295 #endif
4296 while (c->len)
4297 {
4298 NEEDOUT
4299 OUTBYTE(*f++)
4300 if (f == s->end)
4301 f = s->window;
4302 c->len--;
4303 }
4304 c->mode = START;
4305 break;
4306 case LIT: /* o: got literal, waiting for output space */
4307 NEEDOUT
4308 OUTBYTE(c->sub.lit)
4309 c->mode = START;
4310 break;
4311 case WASH: /* o: got eob, possibly more output */
4312 FLUSH
4313 if (s->read != s->write)
4314 LEAVE
4315 c->mode = END;
4316 case END:
4317 r = Z_STREAM_END;
4318 LEAVE
4319 case BADCODE: /* x: got error */
4320 r = Z_DATA_ERROR;
4321 LEAVE
4322 default:
4323 r = Z_STREAM_ERROR;
4324 LEAVE
4325 }
4326 }
4327
4328
4329 local void inflate_codes_free(c, z)
4330 inflate_codes_statef *c;
4331 z_stream *z;
4332 {
4333 ZFREE(z, c, sizeof(struct inflate_codes_state));
4334 Tracev((stderr, "inflate: codes free\n"));
4335 }
4336
4337 /*+++++*/
4338 /* inflate_util.c -- data and routines common to blocks and codes
4339 * Copyright (C) 1995 Mark Adler
4340 * For conditions of distribution and use, see copyright notice in zlib.h
4341 */
4342
4343 /* copy as much as possible from the sliding window to the output area */
4344 local int inflate_flush(s, z, r)
4345 inflate_blocks_statef *s;
4346 z_stream *z;
4347 int r;
4348 {
4349 uInt n;
4350 Bytef *p, *q;
4351
4352 /* local copies of source and destination pointers */
4353 p = z->next_out;
4354 q = s->read;
4355
4356 /* compute number of bytes to copy as far as end of window */
4357 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4358 if (n > z->avail_out) n = z->avail_out;
4359 if (n && r == Z_BUF_ERROR) r = Z_OK;
4360
4361 /* update counters */
4362 z->avail_out -= n;
4363 z->total_out += n;
4364
4365 /* update check information */
4366 if (s->checkfn != Z_NULL)
4367 s->check = (*s->checkfn)(s->check, q, n);
4368
4369 /* copy as far as end of window */
4370 if (p != NULL) {
4371 zmemcpy(p, q, n);
4372 p += n;
4373 }
4374 q += n;
4375
4376 /* see if more to copy at beginning of window */
4377 if (q == s->end)
4378 {
4379 /* wrap pointers */
4380 q = s->window;
4381 if (s->write == s->end)
4382 s->write = s->window;
4383
4384 /* compute bytes to copy */
4385 n = (uInt)(s->write - q);
4386 if (n > z->avail_out) n = z->avail_out;
4387 if (n && r == Z_BUF_ERROR) r = Z_OK;
4388
4389 /* update counters */
4390 z->avail_out -= n;
4391 z->total_out += n;
4392
4393 /* update check information */
4394 if (s->checkfn != Z_NULL)
4395 s->check = (*s->checkfn)(s->check, q, n);
4396
4397 /* copy */
4398 if (p != NULL) {
4399 zmemcpy(p, q, n);
4400 p += n;
4401 }
4402 q += n;
4403 }
4404
4405 /* update pointers */
4406 z->next_out = p;
4407 s->read = q;
4408
4409 /* done */
4410 return r;
4411 }
4412
4413
4414 /*+++++*/
4415 /* inffast.c -- process literals and length/distance pairs fast
4416 * Copyright (C) 1995 Mark Adler
4417 * For conditions of distribution and use, see copyright notice in zlib.h
4418 */
4419
4420 /* simplify the use of the inflate_huft type with some defines */
4421 #define base more.Base
4422 #define next more.Next
4423 #define exop word.what.Exop
4424 #define bits word.what.Bits
4425
4426 /* macros for bit input with no checking and for returning unused bytes */
4427 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4428 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4429
4430 /* Called with number of bytes left to write in window at least 258
4431 (the maximum string length) and number of input bytes available
4432 at least ten. The ten bytes are six bytes for the longest length/
4433 distance pair plus four bytes for overloading the bit buffer. */
4434
4435 local int inflate_fast(bl, bd, tl, td, s, z)
4436 uInt bl, bd;
4437 inflate_huft *tl, *td;
4438 inflate_blocks_statef *s;
4439 z_stream *z;
4440 {
4441 inflate_huft *t; /* temporary pointer */
4442 uInt e; /* extra bits or operation */
4443 uLong b; /* bit buffer */
4444 uInt k; /* bits in bit buffer */
4445 Bytef *p; /* input data pointer */
4446 uInt n; /* bytes available there */
4447 Bytef *q; /* output window write pointer */
4448 uInt m; /* bytes to end of window or read pointer */
4449 uInt ml; /* mask for literal/length tree */
4450 uInt md; /* mask for distance tree */
4451 uInt c; /* bytes to copy */
4452 uInt d; /* distance back to copy from */
4453 Bytef *r; /* copy source pointer */
4454
4455 /* load input, output, bit values */
4456 LOAD
4457
4458 /* initialize masks */
4459 ml = inflate_mask[bl];
4460 md = inflate_mask[bd];
4461
4462 /* do until not enough input or output space for fast loop */
4463 do { /* assume called with m >= 258 && n >= 10 */
4464 /* get literal/length code */
4465 GRABBITS(20) /* max bits for literal/length code */
4466 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4467 {
4468 DUMPBITS(t->bits)
4469 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4470 "inflate: * literal '%c'\n" :
4471 "inflate: * literal 0x%02x\n", t->base));
4472 *q++ = (Byte)t->base;
4473 m--;
4474 continue;
4475 }
4476 do {
4477 DUMPBITS(t->bits)
4478 if (e & 16)
4479 {
4480 /* get extra bits for length */
4481 e &= 15;
4482 c = t->base + ((uInt)b & inflate_mask[e]);
4483 DUMPBITS(e)
4484 Tracevv((stderr, "inflate: * length %u\n", c));
4485
4486 /* decode distance base of block to copy */
4487 GRABBITS(15); /* max bits for distance code */
4488 e = (t = td + ((uInt)b & md))->exop;
4489 do {
4490 DUMPBITS(t->bits)
4491 if (e & 16)
4492 {
4493 /* get extra bits to add to distance base */
4494 e &= 15;
4495 GRABBITS(e) /* get extra bits (up to 13) */
4496 d = t->base + ((uInt)b & inflate_mask[e]);
4497 DUMPBITS(e)
4498 Tracevv((stderr, "inflate: * distance %u\n", d));
4499
4500 /* do the copy */
4501 m -= c;
4502 if ((uInt)(q - s->window) >= d) /* offset before dest */
4503 { /* just copy */
4504 r = q - d;
4505 *q++ = *r++; c--; /* minimum count is three, */
4506 *q++ = *r++; c--; /* so unroll loop a little */
4507 }
4508 else /* else offset after destination */
4509 {
4510 e = d - (q - s->window); /* bytes from offset to end */
4511 r = s->end - e; /* pointer to offset */
4512 if (c > e) /* if source crosses, */
4513 {
4514 c -= e; /* copy to end of window */
4515 do {
4516 *q++ = *r++;
4517 } while (--e);
4518 r = s->window; /* copy rest from start of window */
4519 }
4520 }
4521 do { /* copy all or what's left */
4522 *q++ = *r++;
4523 } while (--c);
4524 break;
4525 }
4526 else if ((e & 64) == 0)
4527 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4528 else
4529 {
4530 z->msg = "invalid distance code";
4531 UNGRAB
4532 UPDATE
4533 return Z_DATA_ERROR;
4534 }
4535 } while (1);
4536 break;
4537 }
4538 if ((e & 64) == 0)
4539 {
4540 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4541 {
4542 DUMPBITS(t->bits)
4543 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4544 "inflate: * literal '%c'\n" :
4545 "inflate: * literal 0x%02x\n", t->base));
4546 *q++ = (Byte)t->base;
4547 m--;
4548 break;
4549 }
4550 }
4551 else if (e & 32)
4552 {
4553 Tracevv((stderr, "inflate: * end of block\n"));
4554 UNGRAB
4555 UPDATE
4556 return Z_STREAM_END;
4557 }
4558 else
4559 {
4560 z->msg = "invalid literal/length code";
4561 UNGRAB
4562 UPDATE
4563 return Z_DATA_ERROR;
4564 }
4565 } while (1);
4566 } while (m >= 258 && n >= 10);
4567
4568 /* not enough input or output--restore pointers and return */
4569 UNGRAB
4570 UPDATE
4571 return Z_OK;
4572 }
4573
4574
4575 /*+++++*/
4576 /* zutil.c -- target dependent utility functions for the compression library
4577 * Copyright (C) 1995 Jean-loup Gailly.
4578 * For conditions of distribution and use, see copyright notice in zlib.h
4579 */
4580
4581 /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4582
4583 char *zlib_version = ZLIB_VERSION;
4584
4585 char *z_errmsg[] = {
4586 "stream end", /* Z_STREAM_END 1 */
4587 "", /* Z_OK 0 */
4588 "file error", /* Z_ERRNO (-1) */
4589 "stream error", /* Z_STREAM_ERROR (-2) */
4590 "data error", /* Z_DATA_ERROR (-3) */
4591 "insufficient memory", /* Z_MEM_ERROR (-4) */
4592 "buffer error", /* Z_BUF_ERROR (-5) */
4593 ""};
4594
4595
4596 /*+++++*/
4597 /* adler32.c -- compute the Adler-32 checksum of a data stream
4598 * Copyright (C) 1995 Mark Adler
4599 * For conditions of distribution and use, see copyright notice in zlib.h
4600 */
4601
4602 /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4603
4604 #define BASE 65521L /* largest prime smaller than 65536 */
4605 #define NMAX 5552
4606 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4607
4608 #define DO1(buf) {s1 += *buf++; s2 += s1;}
4609 #define DO2(buf) DO1(buf); DO1(buf);
4610 #define DO4(buf) DO2(buf); DO2(buf);
4611 #define DO8(buf) DO4(buf); DO4(buf);
4612 #define DO16(buf) DO8(buf); DO8(buf);
4613
4614 /* ========================================================================= */
4615 uLong adler32(adler, buf, len)
4616 uLong adler;
4617 Bytef *buf;
4618 uInt len;
4619 {
4620 unsigned long s1 = adler & 0xffff;
4621 unsigned long s2 = (adler >> 16) & 0xffff;
4622 int k;
4623
4624 if (buf == Z_NULL) return 1L;
4625
4626 while (len > 0) {
4627 k = len < NMAX ? len : NMAX;
4628 len -= k;
4629 while (k >= 16) {
4630 DO16(buf);
4631 k -= 16;
4632 }
4633 if (k != 0) do {
4634 DO1(buf);
4635 } while (--k);
4636 s1 %= BASE;
4637 s2 %= BASE;
4638 }
4639 return (s2 << 16) | s1;
4640 }
4641