ieee80211_crypto.c revision 1.1.1.3 1 /*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * Alternatively, this software may be distributed under the terms of the
18 * GNU General Public License ("GPL") version 2 as published by the Free
19 * Software Foundation.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto.c,v 1.8 2005/04/12 17:55:13 sam Exp $");
35
36 /*
37 * IEEE 802.11 generic crypto support.
38 */
39 #include <sys/param.h>
40 #include <sys/mbuf.h>
41
42 #include <sys/socket.h>
43
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h> /* XXX ETHER_HDR_LEN */
47
48 #include <net80211/ieee80211_var.h>
49
50 /*
51 * Table of registered cipher modules.
52 */
53 static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
54
55 static int _ieee80211_crypto_delkey(struct ieee80211com *,
56 struct ieee80211_key *);
57
58 /*
59 * Default "null" key management routines.
60 */
61 static int
62 null_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
63 {
64 return IEEE80211_KEYIX_NONE;
65 }
66 static int
67 null_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
68 {
69 return 1;
70 }
71 static int
72 null_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
73 const u_int8_t mac[IEEE80211_ADDR_LEN])
74 {
75 return 1;
76 }
77 static void null_key_update(struct ieee80211com *ic) {}
78
79 /*
80 * Write-arounds for common operations.
81 */
82 static __inline void
83 cipher_detach(struct ieee80211_key *key)
84 {
85 key->wk_cipher->ic_detach(key);
86 }
87
88 static __inline void *
89 cipher_attach(struct ieee80211com *ic, struct ieee80211_key *key)
90 {
91 return key->wk_cipher->ic_attach(ic, key);
92 }
93
94 /*
95 * Wrappers for driver key management methods.
96 */
97 static __inline int
98 dev_key_alloc(struct ieee80211com *ic,
99 const struct ieee80211_key *key)
100 {
101 return ic->ic_crypto.cs_key_alloc(ic, key);
102 }
103
104 static __inline int
105 dev_key_delete(struct ieee80211com *ic,
106 const struct ieee80211_key *key)
107 {
108 return ic->ic_crypto.cs_key_delete(ic, key);
109 }
110
111 static __inline int
112 dev_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
113 const u_int8_t mac[IEEE80211_ADDR_LEN])
114 {
115 return ic->ic_crypto.cs_key_set(ic, key, mac);
116 }
117
118 /*
119 * Setup crypto support.
120 */
121 void
122 ieee80211_crypto_attach(struct ieee80211com *ic)
123 {
124 struct ieee80211_crypto_state *cs = &ic->ic_crypto;
125 int i;
126
127 /* NB: we assume everything is pre-zero'd */
128 cs->cs_def_txkey = IEEE80211_KEYIX_NONE;
129 ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
130 for (i = 0; i < IEEE80211_WEP_NKID; i++)
131 ieee80211_crypto_resetkey(ic, &cs->cs_nw_keys[i],
132 IEEE80211_KEYIX_NONE);
133 /*
134 * Initialize the driver key support routines to noop entries.
135 * This is useful especially for the cipher test modules.
136 */
137 cs->cs_key_alloc = null_key_alloc;
138 cs->cs_key_set = null_key_set;
139 cs->cs_key_delete = null_key_delete;
140 cs->cs_key_update_begin = null_key_update;
141 cs->cs_key_update_end = null_key_update;
142 }
143
144 /*
145 * Teardown crypto support.
146 */
147 void
148 ieee80211_crypto_detach(struct ieee80211com *ic)
149 {
150 ieee80211_crypto_delglobalkeys(ic);
151 }
152
153 /*
154 * Register a crypto cipher module.
155 */
156 void
157 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
158 {
159 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
160 printf("%s: cipher %s has an invalid cipher index %u\n",
161 __func__, cip->ic_name, cip->ic_cipher);
162 return;
163 }
164 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
165 printf("%s: cipher %s registered with a different template\n",
166 __func__, cip->ic_name);
167 return;
168 }
169 ciphers[cip->ic_cipher] = cip;
170 }
171
172 /*
173 * Unregister a crypto cipher module.
174 */
175 void
176 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
177 {
178 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
179 printf("%s: cipher %s has an invalid cipher index %u\n",
180 __func__, cip->ic_name, cip->ic_cipher);
181 return;
182 }
183 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
184 printf("%s: cipher %s registered with a different template\n",
185 __func__, cip->ic_name);
186 return;
187 }
188 /* NB: don't complain about not being registered */
189 /* XXX disallow if references */
190 ciphers[cip->ic_cipher] = NULL;
191 }
192
193 int
194 ieee80211_crypto_available(u_int cipher)
195 {
196 return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
197 }
198
199 /* XXX well-known names! */
200 static const char *cipher_modnames[] = {
201 "wlan_wep", /* IEEE80211_CIPHER_WEP */
202 "wlan_tkip", /* IEEE80211_CIPHER_TKIP */
203 "wlan_aes_ocb", /* IEEE80211_CIPHER_AES_OCB */
204 "wlan_ccmp", /* IEEE80211_CIPHER_AES_CCM */
205 "wlan_ckip", /* IEEE80211_CIPHER_CKIP */
206 };
207
208 /*
209 * Establish a relationship between the specified key and cipher
210 * and, if necessary, allocate a hardware index from the driver.
211 * Note that when a fixed key index is required it must be specified
212 * and we blindly assign it w/o consulting the driver (XXX).
213 *
214 * This must be the first call applied to a key; all the other key
215 * routines assume wk_cipher is setup.
216 *
217 * Locking must be handled by the caller using:
218 * ieee80211_key_update_begin(ic);
219 * ieee80211_key_update_end(ic);
220 */
221 int
222 ieee80211_crypto_newkey(struct ieee80211com *ic,
223 int cipher, int flags, struct ieee80211_key *key)
224 {
225 #define N(a) (sizeof(a) / sizeof(a[0]))
226 const struct ieee80211_cipher *cip;
227 void *keyctx;
228 int oflags;
229
230 /*
231 * Validate cipher and set reference to cipher routines.
232 */
233 if (cipher >= IEEE80211_CIPHER_MAX) {
234 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
235 "%s: invalid cipher %u\n", __func__, cipher);
236 ic->ic_stats.is_crypto_badcipher++;
237 return 0;
238 }
239 cip = ciphers[cipher];
240 if (cip == NULL) {
241 /*
242 * Auto-load cipher module if we have a well-known name
243 * for it. It might be better to use string names rather
244 * than numbers and craft a module name based on the cipher
245 * name; e.g. wlan_cipher_<cipher-name>.
246 */
247 if (cipher < N(cipher_modnames)) {
248 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
249 "%s: unregistered cipher %u, load module %s\n",
250 __func__, cipher, cipher_modnames[cipher]);
251 ieee80211_load_module(cipher_modnames[cipher]);
252 /*
253 * If cipher module loaded it should immediately
254 * call ieee80211_crypto_register which will fill
255 * in the entry in the ciphers array.
256 */
257 cip = ciphers[cipher];
258 }
259 if (cip == NULL) {
260 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
261 "%s: unable to load cipher %u, module %s\n",
262 __func__, cipher,
263 cipher < N(cipher_modnames) ?
264 cipher_modnames[cipher] : "<unknown>");
265 ic->ic_stats.is_crypto_nocipher++;
266 return 0;
267 }
268 }
269
270 oflags = key->wk_flags;
271 flags &= IEEE80211_KEY_COMMON;
272 /*
273 * If the hardware does not support the cipher then
274 * fallback to a host-based implementation.
275 */
276 if ((ic->ic_caps & (1<<cipher)) == 0) {
277 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
278 "%s: no h/w support for cipher %s, falling back to s/w\n",
279 __func__, cip->ic_name);
280 flags |= IEEE80211_KEY_SWCRYPT;
281 }
282 /*
283 * Hardware TKIP with software MIC is an important
284 * combination; we handle it by flagging each key,
285 * the cipher modules honor it.
286 */
287 if (cipher == IEEE80211_CIPHER_TKIP &&
288 (ic->ic_caps & IEEE80211_C_TKIPMIC) == 0) {
289 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
290 "%s: no h/w support for TKIP MIC, falling back to s/w\n",
291 __func__);
292 flags |= IEEE80211_KEY_SWMIC;
293 }
294
295 /*
296 * Bind cipher to key instance. Note we do this
297 * after checking the device capabilities so the
298 * cipher module can optimize space usage based on
299 * whether or not it needs to do the cipher work.
300 */
301 if (key->wk_cipher != cip || key->wk_flags != flags) {
302 again:
303 /*
304 * Fillin the flags so cipher modules can see s/w
305 * crypto requirements and potentially allocate
306 * different state and/or attach different method
307 * pointers.
308 *
309 * XXX this is not right when s/w crypto fallback
310 * fails and we try to restore previous state.
311 */
312 key->wk_flags = flags;
313 keyctx = cip->ic_attach(ic, key);
314 if (keyctx == NULL) {
315 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
316 "%s: unable to attach cipher %s\n",
317 __func__, cip->ic_name);
318 key->wk_flags = oflags; /* restore old flags */
319 ic->ic_stats.is_crypto_attachfail++;
320 return 0;
321 }
322 cipher_detach(key);
323 key->wk_cipher = cip; /* XXX refcnt? */
324 key->wk_private = keyctx;
325 }
326 /*
327 * Commit to requested usage so driver can see the flags.
328 */
329 key->wk_flags = flags;
330
331 /*
332 * Ask the driver for a key index if we don't have one.
333 * Note that entries in the global key table always have
334 * an index; this means it's safe to call this routine
335 * for these entries just to setup the reference to the
336 * cipher template. Note also that when using software
337 * crypto we also call the driver to give us a key index.
338 */
339 if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
340 key->wk_keyix = dev_key_alloc(ic, key);
341 if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
342 /*
343 * Driver has no room; fallback to doing crypto
344 * in the host. We change the flags and start the
345 * procedure over. If we get back here then there's
346 * no hope and we bail. Note that this can leave
347 * the key in a inconsistent state if the caller
348 * continues to use it.
349 */
350 if ((key->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
351 ic->ic_stats.is_crypto_swfallback++;
352 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
353 "%s: no h/w resources for cipher %s, "
354 "falling back to s/w\n", __func__,
355 cip->ic_name);
356 oflags = key->wk_flags;
357 flags |= IEEE80211_KEY_SWCRYPT;
358 if (cipher == IEEE80211_CIPHER_TKIP)
359 flags |= IEEE80211_KEY_SWMIC;
360 goto again;
361 }
362 ic->ic_stats.is_crypto_keyfail++;
363 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
364 "%s: unable to setup cipher %s\n",
365 __func__, cip->ic_name);
366 return 0;
367 }
368 }
369 return 1;
370 #undef N
371 }
372
373 /*
374 * Remove the key (no locking, for internal use).
375 */
376 static int
377 _ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
378 {
379 u_int16_t keyix;
380
381 KASSERT(key->wk_cipher != NULL, ("No cipher!"));
382
383 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
384 "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
385 __func__, key->wk_cipher->ic_name,
386 key->wk_keyix, key->wk_flags,
387 key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
388
389 keyix = key->wk_keyix;
390 if (keyix != IEEE80211_KEYIX_NONE) {
391 /*
392 * Remove hardware entry.
393 */
394 /* XXX key cache */
395 if (!dev_key_delete(ic, key)) {
396 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
397 "%s: driver did not delete key index %u\n",
398 __func__, keyix);
399 ic->ic_stats.is_crypto_delkey++;
400 /* XXX recovery? */
401 }
402 }
403 cipher_detach(key);
404 memset(key, 0, sizeof(*key));
405 ieee80211_crypto_resetkey(ic, key, IEEE80211_KEYIX_NONE);
406 return 1;
407 }
408
409 /*
410 * Remove the specified key.
411 */
412 int
413 ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
414 {
415 int status;
416
417 ieee80211_key_update_begin(ic);
418 status = _ieee80211_crypto_delkey(ic, key);
419 ieee80211_key_update_end(ic);
420 return status;
421 }
422
423 /*
424 * Clear the global key table.
425 */
426 void
427 ieee80211_crypto_delglobalkeys(struct ieee80211com *ic)
428 {
429 int i;
430
431 ieee80211_key_update_begin(ic);
432 for (i = 0; i < IEEE80211_WEP_NKID; i++)
433 (void) _ieee80211_crypto_delkey(ic, &ic->ic_nw_keys[i]);
434 ieee80211_key_update_end(ic);
435 }
436
437 /*
438 * Set the contents of the specified key.
439 *
440 * Locking must be handled by the caller using:
441 * ieee80211_key_update_begin(ic);
442 * ieee80211_key_update_end(ic);
443 */
444 int
445 ieee80211_crypto_setkey(struct ieee80211com *ic, struct ieee80211_key *key,
446 const u_int8_t macaddr[IEEE80211_ADDR_LEN])
447 {
448 const struct ieee80211_cipher *cip = key->wk_cipher;
449
450 KASSERT(cip != NULL, ("No cipher!"));
451
452 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
453 "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
454 __func__, cip->ic_name, key->wk_keyix,
455 key->wk_flags, ether_sprintf(macaddr),
456 key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
457
458 /*
459 * Give cipher a chance to validate key contents.
460 * XXX should happen before modifying state.
461 */
462 if (!cip->ic_setkey(key)) {
463 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
464 "%s: cipher %s rejected key index %u len %u flags 0x%x\n",
465 __func__, cip->ic_name, key->wk_keyix,
466 key->wk_keylen, key->wk_flags);
467 ic->ic_stats.is_crypto_setkey_cipher++;
468 return 0;
469 }
470 if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
471 /* XXX nothing allocated, should not happen */
472 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
473 "%s: no key index; should not happen!\n", __func__);
474 ic->ic_stats.is_crypto_setkey_nokey++;
475 return 0;
476 }
477 return dev_key_set(ic, key, macaddr);
478 }
479
480 /*
481 * Add privacy headers appropriate for the specified key.
482 */
483 struct ieee80211_key *
484 ieee80211_crypto_encap(struct ieee80211com *ic,
485 struct ieee80211_node *ni, struct mbuf *m)
486 {
487 struct ieee80211_key *k;
488 struct ieee80211_frame *wh;
489 const struct ieee80211_cipher *cip;
490 u_int8_t keyid;
491
492 /*
493 * Multicast traffic always uses the multicast key.
494 * Otherwise if a unicast key is set we use that and
495 * it is always key index 0. When no unicast key is
496 * set we fall back to the default transmit key.
497 */
498 wh = mtod(m, struct ieee80211_frame *);
499 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
500 ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
501 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE) {
502 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
503 "[%s] no default transmit key (%s) deftxkey %u\n",
504 ether_sprintf(wh->i_addr1), __func__,
505 ic->ic_def_txkey);
506 ic->ic_stats.is_tx_nodefkey++;
507 return NULL;
508 }
509 keyid = ic->ic_def_txkey;
510 k = &ic->ic_nw_keys[ic->ic_def_txkey];
511 } else {
512 keyid = 0;
513 k = &ni->ni_ucastkey;
514 }
515 cip = k->wk_cipher;
516 return (cip->ic_encap(k, m, keyid<<6) ? k : NULL);
517 }
518
519 /*
520 * Validate and strip privacy headers (and trailer) for a
521 * received frame that has the WEP/Privacy bit set.
522 */
523 struct ieee80211_key *
524 ieee80211_crypto_decap(struct ieee80211com *ic,
525 struct ieee80211_node *ni, struct mbuf *m)
526 {
527 #define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
528 #define IEEE80211_WEP_MINLEN \
529 (sizeof(struct ieee80211_frame) + ETHER_HDR_LEN + \
530 IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
531 struct ieee80211_key *k;
532 struct ieee80211_frame *wh;
533 const struct ieee80211_cipher *cip;
534 const u_int8_t *ivp;
535 u_int8_t keyid;
536 int hdrlen;
537
538 /* NB: this minimum size data frame could be bigger */
539 if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
540 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
541 "%s: WEP data frame too short, len %u\n",
542 __func__, m->m_pkthdr.len);
543 ic->ic_stats.is_rx_tooshort++; /* XXX need unique stat? */
544 return NULL;
545 }
546
547 /*
548 * Locate the key. If unicast and there is no unicast
549 * key then we fall back to the key id in the header.
550 * This assumes unicast keys are only configured when
551 * the key id in the header is meaningless (typically 0).
552 */
553 wh = mtod(m, struct ieee80211_frame *);
554 hdrlen = ieee80211_hdrsize(wh);
555 ivp = mtod(m, const u_int8_t *) + hdrlen; /* XXX contig */
556 keyid = ivp[IEEE80211_WEP_IVLEN];
557 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
558 ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none)
559 k = &ic->ic_nw_keys[keyid >> 6];
560 else
561 k = &ni->ni_ucastkey;
562
563 /*
564 * Insure crypto header is contiguous for all decap work.
565 */
566 cip = k->wk_cipher;
567 if (m->m_len < hdrlen + cip->ic_header &&
568 (m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
569 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
570 "[%s] unable to pullup %s header\n",
571 ether_sprintf(wh->i_addr2), cip->ic_name);
572 ic->ic_stats.is_rx_wepfail++; /* XXX */
573 return 0;
574 }
575
576 return (cip->ic_decap(k, m) ? k : NULL);
577 #undef IEEE80211_WEP_MINLEN
578 #undef IEEE80211_WEP_HDRLEN
579 }
580