Home | History | Annotate | Line # | Download | only in net80211
ieee80211_crypto.c revision 1.1.1.4
      1 /*-
      2  * Copyright (c) 2001 Atsushi Onoe
      3  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the author may not be used to endorse or promote products
     15  *    derived from this software without specific prior written permission.
     16  *
     17  * Alternatively, this software may be distributed under the terms of the
     18  * GNU General Public License ("GPL") version 2 as published by the Free
     19  * Software Foundation.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto.c,v 1.10 2005/07/09 23:15:30 sam Exp $");
     35 
     36 /*
     37  * IEEE 802.11 generic crypto support.
     38  */
     39 #include <sys/param.h>
     40 #include <sys/mbuf.h>
     41 
     42 #include <sys/socket.h>
     43 
     44 #include <net/if.h>
     45 #include <net/if_media.h>
     46 #include <net/ethernet.h>		/* XXX ETHER_HDR_LEN */
     47 
     48 #include <net80211/ieee80211_var.h>
     49 
     50 /*
     51  * Table of registered cipher modules.
     52  */
     53 static	const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
     54 
     55 static	int _ieee80211_crypto_delkey(struct ieee80211com *,
     56 		struct ieee80211_key *);
     57 
     58 /*
     59  * Default "null" key management routines.
     60  */
     61 static int
     62 null_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
     63 {
     64 	if (!(&ic->ic_nw_keys[0] <= k &&
     65 	     k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
     66 		/*
     67 		 * Not in the global key table, the driver should handle this
     68 		 * by allocating a slot in the h/w key table/cache.  In
     69 		 * lieu of that return key slot 0 for any unicast key
     70 		 * request.  We disallow the request if this is a group key.
     71 		 * This default policy does the right thing for legacy hardware
     72 		 * with a 4 key table.  It also handles devices that pass
     73 		 * packets through untouched when marked with the WEP bit
     74 		 * and key index 0.
     75 		 */
     76 		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0)
     77 			return 0;	/* NB: use key index 0 for ucast key */
     78 		else
     79 			return IEEE80211_KEYIX_NONE;
     80 	}
     81 	return k - ic->ic_nw_keys;
     82 }
     83 static int
     84 null_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
     85 {
     86 	return 1;
     87 }
     88 static 	int
     89 null_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
     90 	     const u_int8_t mac[IEEE80211_ADDR_LEN])
     91 {
     92 	return 1;
     93 }
     94 static void null_key_update(struct ieee80211com *ic) {}
     95 
     96 /*
     97  * Write-arounds for common operations.
     98  */
     99 static __inline void
    100 cipher_detach(struct ieee80211_key *key)
    101 {
    102 	key->wk_cipher->ic_detach(key);
    103 }
    104 
    105 static __inline void *
    106 cipher_attach(struct ieee80211com *ic, struct ieee80211_key *key)
    107 {
    108 	return key->wk_cipher->ic_attach(ic, key);
    109 }
    110 
    111 /*
    112  * Wrappers for driver key management methods.
    113  */
    114 static __inline int
    115 dev_key_alloc(struct ieee80211com *ic,
    116 	const struct ieee80211_key *key)
    117 {
    118 	return ic->ic_crypto.cs_key_alloc(ic, key);
    119 }
    120 
    121 static __inline int
    122 dev_key_delete(struct ieee80211com *ic,
    123 	const struct ieee80211_key *key)
    124 {
    125 	return ic->ic_crypto.cs_key_delete(ic, key);
    126 }
    127 
    128 static __inline int
    129 dev_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
    130 	const u_int8_t mac[IEEE80211_ADDR_LEN])
    131 {
    132 	return ic->ic_crypto.cs_key_set(ic, key, mac);
    133 }
    134 
    135 /*
    136  * Setup crypto support.
    137  */
    138 void
    139 ieee80211_crypto_attach(struct ieee80211com *ic)
    140 {
    141 	struct ieee80211_crypto_state *cs = &ic->ic_crypto;
    142 	int i;
    143 
    144 	/* NB: we assume everything is pre-zero'd */
    145 	cs->cs_def_txkey = IEEE80211_KEYIX_NONE;
    146 	ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
    147 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
    148 		ieee80211_crypto_resetkey(ic, &cs->cs_nw_keys[i],
    149 			IEEE80211_KEYIX_NONE);
    150 	/*
    151 	 * Initialize the driver key support routines to noop entries.
    152 	 * This is useful especially for the cipher test modules.
    153 	 */
    154 	cs->cs_key_alloc = null_key_alloc;
    155 	cs->cs_key_set = null_key_set;
    156 	cs->cs_key_delete = null_key_delete;
    157 	cs->cs_key_update_begin = null_key_update;
    158 	cs->cs_key_update_end = null_key_update;
    159 }
    160 
    161 /*
    162  * Teardown crypto support.
    163  */
    164 void
    165 ieee80211_crypto_detach(struct ieee80211com *ic)
    166 {
    167 	ieee80211_crypto_delglobalkeys(ic);
    168 }
    169 
    170 /*
    171  * Register a crypto cipher module.
    172  */
    173 void
    174 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
    175 {
    176 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
    177 		printf("%s: cipher %s has an invalid cipher index %u\n",
    178 			__func__, cip->ic_name, cip->ic_cipher);
    179 		return;
    180 	}
    181 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
    182 		printf("%s: cipher %s registered with a different template\n",
    183 			__func__, cip->ic_name);
    184 		return;
    185 	}
    186 	ciphers[cip->ic_cipher] = cip;
    187 }
    188 
    189 /*
    190  * Unregister a crypto cipher module.
    191  */
    192 void
    193 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
    194 {
    195 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
    196 		printf("%s: cipher %s has an invalid cipher index %u\n",
    197 			__func__, cip->ic_name, cip->ic_cipher);
    198 		return;
    199 	}
    200 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
    201 		printf("%s: cipher %s registered with a different template\n",
    202 			__func__, cip->ic_name);
    203 		return;
    204 	}
    205 	/* NB: don't complain about not being registered */
    206 	/* XXX disallow if references */
    207 	ciphers[cip->ic_cipher] = NULL;
    208 }
    209 
    210 int
    211 ieee80211_crypto_available(u_int cipher)
    212 {
    213 	return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
    214 }
    215 
    216 /* XXX well-known names! */
    217 static const char *cipher_modnames[] = {
    218 	"wlan_wep",	/* IEEE80211_CIPHER_WEP */
    219 	"wlan_tkip",	/* IEEE80211_CIPHER_TKIP */
    220 	"wlan_aes_ocb",	/* IEEE80211_CIPHER_AES_OCB */
    221 	"wlan_ccmp",	/* IEEE80211_CIPHER_AES_CCM */
    222 	"wlan_ckip",	/* IEEE80211_CIPHER_CKIP */
    223 };
    224 
    225 /*
    226  * Establish a relationship between the specified key and cipher
    227  * and, if necessary, allocate a hardware index from the driver.
    228  * Note that when a fixed key index is required it must be specified
    229  * and we blindly assign it w/o consulting the driver (XXX).
    230  *
    231  * This must be the first call applied to a key; all the other key
    232  * routines assume wk_cipher is setup.
    233  *
    234  * Locking must be handled by the caller using:
    235  *	ieee80211_key_update_begin(ic);
    236  *	ieee80211_key_update_end(ic);
    237  */
    238 int
    239 ieee80211_crypto_newkey(struct ieee80211com *ic,
    240 	int cipher, int flags, struct ieee80211_key *key)
    241 {
    242 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    243 	const struct ieee80211_cipher *cip;
    244 	void *keyctx;
    245 	int oflags;
    246 
    247 	/*
    248 	 * Validate cipher and set reference to cipher routines.
    249 	 */
    250 	if (cipher >= IEEE80211_CIPHER_MAX) {
    251 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    252 			"%s: invalid cipher %u\n", __func__, cipher);
    253 		ic->ic_stats.is_crypto_badcipher++;
    254 		return 0;
    255 	}
    256 	cip = ciphers[cipher];
    257 	if (cip == NULL) {
    258 		/*
    259 		 * Auto-load cipher module if we have a well-known name
    260 		 * for it.  It might be better to use string names rather
    261 		 * than numbers and craft a module name based on the cipher
    262 		 * name; e.g. wlan_cipher_<cipher-name>.
    263 		 */
    264 		if (cipher < N(cipher_modnames)) {
    265 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    266 				"%s: unregistered cipher %u, load module %s\n",
    267 				__func__, cipher, cipher_modnames[cipher]);
    268 			ieee80211_load_module(cipher_modnames[cipher]);
    269 			/*
    270 			 * If cipher module loaded it should immediately
    271 			 * call ieee80211_crypto_register which will fill
    272 			 * in the entry in the ciphers array.
    273 			 */
    274 			cip = ciphers[cipher];
    275 		}
    276 		if (cip == NULL) {
    277 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    278 				"%s: unable to load cipher %u, module %s\n",
    279 				__func__, cipher,
    280 				cipher < N(cipher_modnames) ?
    281 					cipher_modnames[cipher] : "<unknown>");
    282 			ic->ic_stats.is_crypto_nocipher++;
    283 			return 0;
    284 		}
    285 	}
    286 
    287 	oflags = key->wk_flags;
    288 	flags &= IEEE80211_KEY_COMMON;
    289 	/*
    290 	 * If the hardware does not support the cipher then
    291 	 * fallback to a host-based implementation.
    292 	 */
    293 	if ((ic->ic_caps & (1<<cipher)) == 0) {
    294 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    295 		    "%s: no h/w support for cipher %s, falling back to s/w\n",
    296 		    __func__, cip->ic_name);
    297 		flags |= IEEE80211_KEY_SWCRYPT;
    298 	}
    299 	/*
    300 	 * Hardware TKIP with software MIC is an important
    301 	 * combination; we handle it by flagging each key,
    302 	 * the cipher modules honor it.
    303 	 */
    304 	if (cipher == IEEE80211_CIPHER_TKIP &&
    305 	    (ic->ic_caps & IEEE80211_C_TKIPMIC) == 0) {
    306 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    307 		    "%s: no h/w support for TKIP MIC, falling back to s/w\n",
    308 		    __func__);
    309 		flags |= IEEE80211_KEY_SWMIC;
    310 	}
    311 
    312 	/*
    313 	 * Bind cipher to key instance.  Note we do this
    314 	 * after checking the device capabilities so the
    315 	 * cipher module can optimize space usage based on
    316 	 * whether or not it needs to do the cipher work.
    317 	 */
    318 	if (key->wk_cipher != cip || key->wk_flags != flags) {
    319 again:
    320 		/*
    321 		 * Fillin the flags so cipher modules can see s/w
    322 		 * crypto requirements and potentially allocate
    323 		 * different state and/or attach different method
    324 		 * pointers.
    325 		 *
    326 		 * XXX this is not right when s/w crypto fallback
    327 		 *     fails and we try to restore previous state.
    328 		 */
    329 		key->wk_flags = flags;
    330 		keyctx = cip->ic_attach(ic, key);
    331 		if (keyctx == NULL) {
    332 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    333 				"%s: unable to attach cipher %s\n",
    334 				__func__, cip->ic_name);
    335 			key->wk_flags = oflags;	/* restore old flags */
    336 			ic->ic_stats.is_crypto_attachfail++;
    337 			return 0;
    338 		}
    339 		cipher_detach(key);
    340 		key->wk_cipher = cip;		/* XXX refcnt? */
    341 		key->wk_private = keyctx;
    342 	}
    343 	/*
    344 	 * Commit to requested usage so driver can see the flags.
    345 	 */
    346 	key->wk_flags = flags;
    347 
    348 	/*
    349 	 * Ask the driver for a key index if we don't have one.
    350 	 * Note that entries in the global key table always have
    351 	 * an index; this means it's safe to call this routine
    352 	 * for these entries just to setup the reference to the
    353 	 * cipher template.  Note also that when using software
    354 	 * crypto we also call the driver to give us a key index.
    355 	 */
    356 	if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
    357 		key->wk_keyix = dev_key_alloc(ic, key);
    358 		if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
    359 			/*
    360 			 * Driver has no room; fallback to doing crypto
    361 			 * in the host.  We change the flags and start the
    362 			 * procedure over.  If we get back here then there's
    363 			 * no hope and we bail.  Note that this can leave
    364 			 * the key in a inconsistent state if the caller
    365 			 * continues to use it.
    366 			 */
    367 			if ((key->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
    368 				ic->ic_stats.is_crypto_swfallback++;
    369 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    370 				    "%s: no h/w resources for cipher %s, "
    371 				    "falling back to s/w\n", __func__,
    372 				    cip->ic_name);
    373 				oflags = key->wk_flags;
    374 				flags |= IEEE80211_KEY_SWCRYPT;
    375 				if (cipher == IEEE80211_CIPHER_TKIP)
    376 					flags |= IEEE80211_KEY_SWMIC;
    377 				goto again;
    378 			}
    379 			ic->ic_stats.is_crypto_keyfail++;
    380 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    381 			    "%s: unable to setup cipher %s\n",
    382 			    __func__, cip->ic_name);
    383 			return 0;
    384 		}
    385 	}
    386 	return 1;
    387 #undef N
    388 }
    389 
    390 /*
    391  * Remove the key (no locking, for internal use).
    392  */
    393 static int
    394 _ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
    395 {
    396 	u_int16_t keyix;
    397 
    398 	KASSERT(key->wk_cipher != NULL, ("No cipher!"));
    399 
    400 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    401 	    "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
    402 	    __func__, key->wk_cipher->ic_name,
    403 	    key->wk_keyix, key->wk_flags,
    404 	    key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
    405 
    406 	keyix = key->wk_keyix;
    407 	if (keyix != IEEE80211_KEYIX_NONE) {
    408 		/*
    409 		 * Remove hardware entry.
    410 		 */
    411 		/* XXX key cache */
    412 		if (!dev_key_delete(ic, key)) {
    413 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    414 			    "%s: driver did not delete key index %u\n",
    415 			    __func__, keyix);
    416 			ic->ic_stats.is_crypto_delkey++;
    417 			/* XXX recovery? */
    418 		}
    419 	}
    420 	cipher_detach(key);
    421 	memset(key, 0, sizeof(*key));
    422 	ieee80211_crypto_resetkey(ic, key, IEEE80211_KEYIX_NONE);
    423 	return 1;
    424 }
    425 
    426 /*
    427  * Remove the specified key.
    428  */
    429 int
    430 ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
    431 {
    432 	int status;
    433 
    434 	ieee80211_key_update_begin(ic);
    435 	status = _ieee80211_crypto_delkey(ic, key);
    436 	ieee80211_key_update_end(ic);
    437 	return status;
    438 }
    439 
    440 /*
    441  * Clear the global key table.
    442  */
    443 void
    444 ieee80211_crypto_delglobalkeys(struct ieee80211com *ic)
    445 {
    446 	int i;
    447 
    448 	ieee80211_key_update_begin(ic);
    449 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
    450 		(void) _ieee80211_crypto_delkey(ic, &ic->ic_nw_keys[i]);
    451 	ieee80211_key_update_end(ic);
    452 }
    453 
    454 /*
    455  * Set the contents of the specified key.
    456  *
    457  * Locking must be handled by the caller using:
    458  *	ieee80211_key_update_begin(ic);
    459  *	ieee80211_key_update_end(ic);
    460  */
    461 int
    462 ieee80211_crypto_setkey(struct ieee80211com *ic, struct ieee80211_key *key,
    463 		const u_int8_t macaddr[IEEE80211_ADDR_LEN])
    464 {
    465 	const struct ieee80211_cipher *cip = key->wk_cipher;
    466 
    467 	KASSERT(cip != NULL, ("No cipher!"));
    468 
    469 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    470 	    "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n",
    471 	    __func__, cip->ic_name, key->wk_keyix,
    472 	    key->wk_flags, ether_sprintf(macaddr),
    473 	    key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
    474 
    475 	/*
    476 	 * Give cipher a chance to validate key contents.
    477 	 * XXX should happen before modifying state.
    478 	 */
    479 	if (!cip->ic_setkey(key)) {
    480 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    481 		    "%s: cipher %s rejected key index %u len %u flags 0x%x\n",
    482 		    __func__, cip->ic_name, key->wk_keyix,
    483 		    key->wk_keylen, key->wk_flags);
    484 		ic->ic_stats.is_crypto_setkey_cipher++;
    485 		return 0;
    486 	}
    487 	if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
    488 		/* XXX nothing allocated, should not happen */
    489 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    490 		    "%s: no key index; should not happen!\n", __func__);
    491 		ic->ic_stats.is_crypto_setkey_nokey++;
    492 		return 0;
    493 	}
    494 	return dev_key_set(ic, key, macaddr);
    495 }
    496 
    497 /*
    498  * Add privacy headers appropriate for the specified key.
    499  */
    500 struct ieee80211_key *
    501 ieee80211_crypto_encap(struct ieee80211com *ic,
    502 	struct ieee80211_node *ni, struct mbuf *m)
    503 {
    504 	struct ieee80211_key *k;
    505 	struct ieee80211_frame *wh;
    506 	const struct ieee80211_cipher *cip;
    507 	u_int8_t keyid;
    508 
    509 	/*
    510 	 * Multicast traffic always uses the multicast key.
    511 	 * Otherwise if a unicast key is set we use that and
    512 	 * it is always key index 0.  When no unicast key is
    513 	 * set we fall back to the default transmit key.
    514 	 */
    515 	wh = mtod(m, struct ieee80211_frame *);
    516 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
    517 	    ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
    518 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE) {
    519 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    520 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    521 			    ether_sprintf(wh->i_addr1), __func__,
    522 			    ic->ic_def_txkey);
    523 			ic->ic_stats.is_tx_nodefkey++;
    524 			return NULL;
    525 		}
    526 		keyid = ic->ic_def_txkey;
    527 		k = &ic->ic_nw_keys[ic->ic_def_txkey];
    528 	} else {
    529 		keyid = 0;
    530 		k = &ni->ni_ucastkey;
    531 	}
    532 	cip = k->wk_cipher;
    533 	return (cip->ic_encap(k, m, keyid<<6) ? k : NULL);
    534 }
    535 
    536 /*
    537  * Validate and strip privacy headers (and trailer) for a
    538  * received frame that has the WEP/Privacy bit set.
    539  */
    540 struct ieee80211_key *
    541 ieee80211_crypto_decap(struct ieee80211com *ic,
    542 	struct ieee80211_node *ni, struct mbuf *m, int hdrlen)
    543 {
    544 #define	IEEE80211_WEP_HDRLEN	(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
    545 #define	IEEE80211_WEP_MINLEN \
    546 	(sizeof(struct ieee80211_frame) + ETHER_HDR_LEN + \
    547 	IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
    548 	struct ieee80211_key *k;
    549 	struct ieee80211_frame *wh;
    550 	const struct ieee80211_cipher *cip;
    551 	const u_int8_t *ivp;
    552 	u_int8_t keyid;
    553 
    554 	/* NB: this minimum size data frame could be bigger */
    555 	if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
    556 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
    557 			"%s: WEP data frame too short, len %u\n",
    558 			__func__, m->m_pkthdr.len);
    559 		ic->ic_stats.is_rx_tooshort++;	/* XXX need unique stat? */
    560 		return NULL;
    561 	}
    562 
    563 	/*
    564 	 * Locate the key. If unicast and there is no unicast
    565 	 * key then we fall back to the key id in the header.
    566 	 * This assumes unicast keys are only configured when
    567 	 * the key id in the header is meaningless (typically 0).
    568 	 */
    569 	wh = mtod(m, struct ieee80211_frame *);
    570 	ivp = mtod(m, const u_int8_t *) + hdrlen;	/* XXX contig */
    571 	keyid = ivp[IEEE80211_WEP_IVLEN];
    572 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
    573 	    ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none)
    574 		k = &ic->ic_nw_keys[keyid >> 6];
    575 	else
    576 		k = &ni->ni_ucastkey;
    577 
    578 	/*
    579 	 * Insure crypto header is contiguous for all decap work.
    580 	 */
    581 	cip = k->wk_cipher;
    582 	if (m->m_len < hdrlen + cip->ic_header &&
    583 	    (m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
    584 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    585 		    "[%s] unable to pullup %s header\n",
    586 		    ether_sprintf(wh->i_addr2), cip->ic_name);
    587 		ic->ic_stats.is_rx_wepfail++;	/* XXX */
    588 		return 0;
    589 	}
    590 
    591 	return (cip->ic_decap(k, m, hdrlen) ? k : NULL);
    592 #undef IEEE80211_WEP_MINLEN
    593 #undef IEEE80211_WEP_HDRLEN
    594 }
    595