ieee80211_crypto_ccmp.c revision 1.12 1 1.1 dyoung /*-
2 1.1 dyoung * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 1.1 dyoung * All rights reserved.
4 1.1 dyoung *
5 1.1 dyoung * Redistribution and use in source and binary forms, with or without
6 1.1 dyoung * modification, are permitted provided that the following conditions
7 1.1 dyoung * are met:
8 1.1 dyoung * 1. Redistributions of source code must retain the above copyright
9 1.1 dyoung * notice, this list of conditions and the following disclaimer.
10 1.1 dyoung * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 dyoung * notice, this list of conditions and the following disclaimer in the
12 1.1 dyoung * documentation and/or other materials provided with the distribution.
13 1.1 dyoung * 3. The name of the author may not be used to endorse or promote products
14 1.1 dyoung * derived from this software without specific prior written permission.
15 1.1 dyoung *
16 1.1 dyoung * Alternatively, this software may be distributed under the terms of the
17 1.1 dyoung * GNU General Public License ("GPL") version 2 as published by the Free
18 1.1 dyoung * Software Foundation.
19 1.1 dyoung *
20 1.1 dyoung * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 1.1 dyoung * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 1.1 dyoung * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 1.1 dyoung * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 1.1 dyoung * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 1.1 dyoung * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 1.1 dyoung * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 1.1 dyoung * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 1.1 dyoung * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 1.1 dyoung * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 dyoung */
31 1.1 dyoung
32 1.1 dyoung #include <sys/cdefs.h>
33 1.2 dyoung #ifdef __FreeBSD__
34 1.3 dyoung __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_ccmp.c,v 1.7 2005/07/11 03:06:23 sam Exp $");
35 1.2 dyoung #endif
36 1.2 dyoung #ifdef __NetBSD__
37 1.12 maxv __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_ccmp.c,v 1.12 2018/01/17 17:41:38 maxv Exp $");
38 1.2 dyoung #endif
39 1.1 dyoung
40 1.1 dyoung /*
41 1.1 dyoung * IEEE 802.11i AES-CCMP crypto support.
42 1.1 dyoung *
43 1.1 dyoung * Part of this module is derived from similar code in the Host
44 1.1 dyoung * AP driver. The code is used with the consent of the author and
45 1.11 snj * its license is included below.
46 1.1 dyoung */
47 1.1 dyoung #include <sys/param.h>
48 1.9 christos #include <sys/systm.h>
49 1.10 christos #include <sys/mbuf.h>
50 1.1 dyoung #include <sys/malloc.h>
51 1.1 dyoung #include <sys/kernel.h>
52 1.1 dyoung
53 1.1 dyoung #include <sys/socket.h>
54 1.1 dyoung
55 1.1 dyoung #include <net/if.h>
56 1.5 christos #include <net/if_ether.h>
57 1.1 dyoung #include <net/if_media.h>
58 1.1 dyoung
59 1.1 dyoung #include <net80211/ieee80211_var.h>
60 1.1 dyoung
61 1.1 dyoung #include <crypto/rijndael/rijndael.h>
62 1.1 dyoung
63 1.1 dyoung #define AES_BLOCK_LEN 16
64 1.1 dyoung
65 1.1 dyoung struct ccmp_ctx {
66 1.1 dyoung struct ieee80211com *cc_ic; /* for diagnostics */
67 1.1 dyoung rijndael_ctx cc_aes;
68 1.1 dyoung };
69 1.1 dyoung
70 1.1 dyoung static void *ccmp_attach(struct ieee80211com *, struct ieee80211_key *);
71 1.1 dyoung static void ccmp_detach(struct ieee80211_key *);
72 1.1 dyoung static int ccmp_setkey(struct ieee80211_key *);
73 1.1 dyoung static int ccmp_encap(struct ieee80211_key *k, struct mbuf *, u_int8_t keyid);
74 1.3 dyoung static int ccmp_decap(struct ieee80211_key *, struct mbuf *, int);
75 1.3 dyoung static int ccmp_enmic(struct ieee80211_key *, struct mbuf *, int);
76 1.3 dyoung static int ccmp_demic(struct ieee80211_key *, struct mbuf *, int);
77 1.1 dyoung
78 1.2 dyoung const struct ieee80211_cipher ieee80211_cipher_ccmp = {
79 1.1 dyoung .ic_name = "AES-CCM",
80 1.1 dyoung .ic_cipher = IEEE80211_CIPHER_AES_CCM,
81 1.1 dyoung .ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
82 1.1 dyoung IEEE80211_WEP_EXTIVLEN,
83 1.1 dyoung .ic_trailer = IEEE80211_WEP_MICLEN,
84 1.1 dyoung .ic_miclen = 0,
85 1.1 dyoung .ic_attach = ccmp_attach,
86 1.1 dyoung .ic_detach = ccmp_detach,
87 1.1 dyoung .ic_setkey = ccmp_setkey,
88 1.1 dyoung .ic_encap = ccmp_encap,
89 1.1 dyoung .ic_decap = ccmp_decap,
90 1.1 dyoung .ic_enmic = ccmp_enmic,
91 1.1 dyoung .ic_demic = ccmp_demic,
92 1.1 dyoung };
93 1.1 dyoung
94 1.2 dyoung #define ccmp ieee80211_cipher_ccmp
95 1.2 dyoung
96 1.1 dyoung static int ccmp_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
97 1.1 dyoung static int ccmp_decrypt(struct ieee80211_key *, u_int64_t pn,
98 1.1 dyoung struct mbuf *, int hdrlen);
99 1.1 dyoung
100 1.1 dyoung static void *
101 1.7 christos ccmp_attach(struct ieee80211com *ic, struct ieee80211_key *k)
102 1.1 dyoung {
103 1.1 dyoung struct ccmp_ctx *ctx;
104 1.1 dyoung
105 1.8 cegger ctx = malloc(sizeof(struct ccmp_ctx),
106 1.1 dyoung M_DEVBUF, M_NOWAIT | M_ZERO);
107 1.1 dyoung if (ctx == NULL) {
108 1.1 dyoung ic->ic_stats.is_crypto_nomem++;
109 1.1 dyoung return NULL;
110 1.1 dyoung }
111 1.1 dyoung ctx->cc_ic = ic;
112 1.1 dyoung return ctx;
113 1.1 dyoung }
114 1.1 dyoung
115 1.1 dyoung static void
116 1.1 dyoung ccmp_detach(struct ieee80211_key *k)
117 1.1 dyoung {
118 1.1 dyoung struct ccmp_ctx *ctx = k->wk_private;
119 1.1 dyoung
120 1.8 cegger free(ctx, M_DEVBUF);
121 1.1 dyoung }
122 1.1 dyoung
123 1.1 dyoung static int
124 1.1 dyoung ccmp_setkey(struct ieee80211_key *k)
125 1.1 dyoung {
126 1.1 dyoung struct ccmp_ctx *ctx = k->wk_private;
127 1.1 dyoung
128 1.1 dyoung if (k->wk_keylen != (128/NBBY)) {
129 1.1 dyoung IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
130 1.1 dyoung "%s: Invalid key length %u, expecting %u\n",
131 1.1 dyoung __func__, k->wk_keylen, 128/NBBY);
132 1.1 dyoung return 0;
133 1.1 dyoung }
134 1.1 dyoung if (k->wk_flags & IEEE80211_KEY_SWCRYPT)
135 1.1 dyoung rijndael_set_key(&ctx->cc_aes, k->wk_key, k->wk_keylen*NBBY);
136 1.1 dyoung return 1;
137 1.1 dyoung }
138 1.1 dyoung
139 1.1 dyoung /*
140 1.1 dyoung * Add privacy headers appropriate for the specified key.
141 1.1 dyoung */
142 1.1 dyoung static int
143 1.1 dyoung ccmp_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
144 1.1 dyoung {
145 1.1 dyoung struct ccmp_ctx *ctx = k->wk_private;
146 1.1 dyoung struct ieee80211com *ic = ctx->cc_ic;
147 1.1 dyoung u_int8_t *ivp;
148 1.1 dyoung int hdrlen;
149 1.1 dyoung
150 1.1 dyoung hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
151 1.12 maxv ivp = mtod(m, u_int8_t *) + hdrlen;
152 1.1 dyoung
153 1.1 dyoung k->wk_keytsc++; /* XXX wrap at 48 bits */
154 1.1 dyoung ivp[0] = k->wk_keytsc >> 0; /* PN0 */
155 1.1 dyoung ivp[1] = k->wk_keytsc >> 8; /* PN1 */
156 1.1 dyoung ivp[2] = 0; /* Reserved */
157 1.1 dyoung ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */
158 1.1 dyoung ivp[4] = k->wk_keytsc >> 16; /* PN2 */
159 1.1 dyoung ivp[5] = k->wk_keytsc >> 24; /* PN3 */
160 1.1 dyoung ivp[6] = k->wk_keytsc >> 32; /* PN4 */
161 1.1 dyoung ivp[7] = k->wk_keytsc >> 40; /* PN5 */
162 1.1 dyoung
163 1.1 dyoung /*
164 1.1 dyoung * Finally, do software encrypt if neeed.
165 1.1 dyoung */
166 1.1 dyoung if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
167 1.1 dyoung !ccmp_encrypt(k, m, hdrlen))
168 1.1 dyoung return 0;
169 1.1 dyoung
170 1.1 dyoung return 1;
171 1.1 dyoung }
172 1.1 dyoung
173 1.1 dyoung /*
174 1.1 dyoung * Add MIC to the frame as needed.
175 1.1 dyoung */
176 1.1 dyoung static int
177 1.7 christos ccmp_enmic(struct ieee80211_key *k, struct mbuf *m,
178 1.7 christos int force)
179 1.1 dyoung {
180 1.1 dyoung
181 1.1 dyoung return 1;
182 1.1 dyoung }
183 1.1 dyoung
184 1.1 dyoung static __inline uint64_t
185 1.1 dyoung READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
186 1.1 dyoung {
187 1.1 dyoung uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
188 1.1 dyoung uint16_t iv16 = (b4 << 0) | (b5 << 8);
189 1.1 dyoung return (((uint64_t)iv16) << 32) | iv32;
190 1.1 dyoung }
191 1.1 dyoung
192 1.1 dyoung /*
193 1.1 dyoung * Validate and strip privacy headers (and trailer) for a
194 1.1 dyoung * received frame. The specified key should be correct but
195 1.1 dyoung * is also verified.
196 1.1 dyoung */
197 1.1 dyoung static int
198 1.3 dyoung ccmp_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
199 1.1 dyoung {
200 1.1 dyoung struct ccmp_ctx *ctx = k->wk_private;
201 1.1 dyoung struct ieee80211_frame *wh;
202 1.1 dyoung uint8_t *ivp;
203 1.1 dyoung uint64_t pn;
204 1.1 dyoung
205 1.1 dyoung /*
206 1.1 dyoung * Header should have extended IV and sequence number;
207 1.1 dyoung * verify the former and validate the latter.
208 1.1 dyoung */
209 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
210 1.1 dyoung ivp = mtod(m, uint8_t *) + hdrlen;
211 1.1 dyoung if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
212 1.1 dyoung /*
213 1.1 dyoung * No extended IV; discard frame.
214 1.1 dyoung */
215 1.1 dyoung IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
216 1.1 dyoung "[%s] Missing ExtIV for AES-CCM cipher\n",
217 1.1 dyoung ether_sprintf(wh->i_addr2));
218 1.1 dyoung ctx->cc_ic->ic_stats.is_rx_ccmpformat++;
219 1.1 dyoung return 0;
220 1.1 dyoung }
221 1.1 dyoung pn = READ_6(ivp[0], ivp[1], ivp[4], ivp[5], ivp[6], ivp[7]);
222 1.1 dyoung if (pn <= k->wk_keyrsc) {
223 1.1 dyoung /*
224 1.1 dyoung * Replay violation.
225 1.1 dyoung */
226 1.1 dyoung ieee80211_notify_replay_failure(ctx->cc_ic, wh, k, pn);
227 1.1 dyoung ctx->cc_ic->ic_stats.is_rx_ccmpreplay++;
228 1.1 dyoung return 0;
229 1.1 dyoung }
230 1.1 dyoung
231 1.1 dyoung /*
232 1.1 dyoung * Check if the device handled the decrypt in hardware.
233 1.1 dyoung * If so we just strip the header; otherwise we need to
234 1.1 dyoung * handle the decrypt in software. Note that for the
235 1.1 dyoung * latter we leave the header in place for use in the
236 1.1 dyoung * decryption work.
237 1.1 dyoung */
238 1.1 dyoung if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
239 1.1 dyoung !ccmp_decrypt(k, pn, m, hdrlen))
240 1.1 dyoung return 0;
241 1.1 dyoung
242 1.1 dyoung /*
243 1.1 dyoung * Copy up 802.11 header and strip crypto bits.
244 1.1 dyoung */
245 1.1 dyoung ovbcopy(mtod(m, void *), mtod(m, u_int8_t *) + ccmp.ic_header, hdrlen);
246 1.1 dyoung m_adj(m, ccmp.ic_header);
247 1.1 dyoung m_adj(m, -ccmp.ic_trailer);
248 1.1 dyoung
249 1.1 dyoung /*
250 1.1 dyoung * Ok to update rsc now.
251 1.1 dyoung */
252 1.1 dyoung k->wk_keyrsc = pn;
253 1.1 dyoung
254 1.1 dyoung return 1;
255 1.1 dyoung }
256 1.1 dyoung
257 1.1 dyoung /*
258 1.1 dyoung * Verify and strip MIC from the frame.
259 1.1 dyoung */
260 1.1 dyoung static int
261 1.7 christos ccmp_demic(struct ieee80211_key *k, struct mbuf *m,
262 1.7 christos int force)
263 1.1 dyoung {
264 1.1 dyoung return 1;
265 1.1 dyoung }
266 1.1 dyoung
267 1.1 dyoung static __inline void
268 1.1 dyoung xor_block(uint8_t *b, const uint8_t *a, size_t len)
269 1.1 dyoung {
270 1.1 dyoung int i;
271 1.1 dyoung for (i = 0; i < len; i++)
272 1.1 dyoung b[i] ^= a[i];
273 1.1 dyoung }
274 1.1 dyoung
275 1.1 dyoung /*
276 1.1 dyoung * Host AP crypt: host-based CCMP encryption implementation for Host AP driver
277 1.1 dyoung *
278 1.1 dyoung * Copyright (c) 2003-2004, Jouni Malinen <jkmaline (at) cc.hut.fi>
279 1.1 dyoung *
280 1.1 dyoung * This program is free software; you can redistribute it and/or modify
281 1.1 dyoung * it under the terms of the GNU General Public License version 2 as
282 1.1 dyoung * published by the Free Software Foundation. See README and COPYING for
283 1.1 dyoung * more details.
284 1.1 dyoung *
285 1.1 dyoung * Alternatively, this software may be distributed under the terms of BSD
286 1.1 dyoung * license.
287 1.1 dyoung */
288 1.1 dyoung
289 1.1 dyoung static void
290 1.1 dyoung ccmp_init_blocks(rijndael_ctx *ctx, struct ieee80211_frame *wh,
291 1.1 dyoung u_int64_t pn, size_t dlen,
292 1.1 dyoung uint8_t b0[AES_BLOCK_LEN], uint8_t aad[2 * AES_BLOCK_LEN],
293 1.1 dyoung uint8_t auth[AES_BLOCK_LEN], uint8_t s0[AES_BLOCK_LEN])
294 1.1 dyoung {
295 1.1 dyoung #define IS_4ADDRESS(wh) \
296 1.1 dyoung ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
297 1.10 christos #define IS_QOS_DATA(wh) ieee80211_has_qos(wh)
298 1.1 dyoung
299 1.1 dyoung /* CCM Initial Block:
300 1.1 dyoung * Flag (Include authentication header, M=3 (8-octet MIC),
301 1.1 dyoung * L=1 (2-octet Dlen))
302 1.1 dyoung * Nonce: 0x00 | A2 | PN
303 1.1 dyoung * Dlen */
304 1.1 dyoung b0[0] = 0x59;
305 1.1 dyoung /* NB: b0[1] set below */
306 1.1 dyoung IEEE80211_ADDR_COPY(b0 + 2, wh->i_addr2);
307 1.1 dyoung b0[8] = pn >> 40;
308 1.1 dyoung b0[9] = pn >> 32;
309 1.1 dyoung b0[10] = pn >> 24;
310 1.1 dyoung b0[11] = pn >> 16;
311 1.1 dyoung b0[12] = pn >> 8;
312 1.1 dyoung b0[13] = pn >> 0;
313 1.1 dyoung b0[14] = (dlen >> 8) & 0xff;
314 1.1 dyoung b0[15] = dlen & 0xff;
315 1.1 dyoung
316 1.1 dyoung /* AAD:
317 1.1 dyoung * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
318 1.1 dyoung * A1 | A2 | A3
319 1.1 dyoung * SC with bits 4..15 (seq#) masked to zero
320 1.1 dyoung * A4 (if present)
321 1.1 dyoung * QC (if present)
322 1.1 dyoung */
323 1.1 dyoung aad[0] = 0; /* AAD length >> 8 */
324 1.1 dyoung /* NB: aad[1] set below */
325 1.1 dyoung aad[2] = wh->i_fc[0] & 0x8f; /* XXX magic #s */
326 1.1 dyoung aad[3] = wh->i_fc[1] & 0xc7; /* XXX magic #s */
327 1.1 dyoung /* NB: we know 3 addresses are contiguous */
328 1.1 dyoung memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
329 1.1 dyoung aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
330 1.1 dyoung aad[23] = 0; /* all bits masked */
331 1.1 dyoung /*
332 1.1 dyoung * Construct variable-length portion of AAD based
333 1.1 dyoung * on whether this is a 4-address frame/QOS frame.
334 1.1 dyoung * We always zero-pad to 32 bytes before running it
335 1.1 dyoung * through the cipher.
336 1.1 dyoung *
337 1.1 dyoung * We also fill in the priority bits of the CCM
338 1.1 dyoung * initial block as we know whether or not we have
339 1.1 dyoung * a QOS frame.
340 1.1 dyoung */
341 1.1 dyoung if (IS_4ADDRESS(wh)) {
342 1.1 dyoung IEEE80211_ADDR_COPY(aad + 24,
343 1.1 dyoung ((struct ieee80211_frame_addr4 *)wh)->i_addr4);
344 1.1 dyoung if (IS_QOS_DATA(wh)) {
345 1.1 dyoung struct ieee80211_qosframe_addr4 *qwh4 =
346 1.1 dyoung (struct ieee80211_qosframe_addr4 *) wh;
347 1.1 dyoung aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
348 1.1 dyoung aad[31] = 0;
349 1.1 dyoung b0[1] = aad[30];
350 1.1 dyoung aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
351 1.1 dyoung } else {
352 1.1 dyoung *(u_int16_t *)&aad[30] = 0;
353 1.1 dyoung b0[1] = 0;
354 1.1 dyoung aad[1] = 22 + IEEE80211_ADDR_LEN;
355 1.1 dyoung }
356 1.1 dyoung } else {
357 1.1 dyoung if (IS_QOS_DATA(wh)) {
358 1.1 dyoung struct ieee80211_qosframe *qwh =
359 1.1 dyoung (struct ieee80211_qosframe*) wh;
360 1.1 dyoung aad[24] = qwh->i_qos[0] & 0x0f; /* just priority bits */
361 1.1 dyoung aad[25] = 0;
362 1.1 dyoung b0[1] = aad[24];
363 1.1 dyoung aad[1] = 22 + 2;
364 1.1 dyoung } else {
365 1.1 dyoung *(u_int16_t *)&aad[24] = 0;
366 1.1 dyoung b0[1] = 0;
367 1.1 dyoung aad[1] = 22;
368 1.1 dyoung }
369 1.1 dyoung *(u_int16_t *)&aad[26] = 0;
370 1.1 dyoung *(u_int32_t *)&aad[28] = 0;
371 1.1 dyoung }
372 1.1 dyoung
373 1.1 dyoung /* Start with the first block and AAD */
374 1.1 dyoung rijndael_encrypt(ctx, b0, auth);
375 1.1 dyoung xor_block(auth, aad, AES_BLOCK_LEN);
376 1.1 dyoung rijndael_encrypt(ctx, auth, auth);
377 1.1 dyoung xor_block(auth, &aad[AES_BLOCK_LEN], AES_BLOCK_LEN);
378 1.1 dyoung rijndael_encrypt(ctx, auth, auth);
379 1.1 dyoung b0[0] &= 0x07;
380 1.1 dyoung b0[14] = b0[15] = 0;
381 1.1 dyoung rijndael_encrypt(ctx, b0, s0);
382 1.1 dyoung #undef IS_QOS_DATA
383 1.1 dyoung #undef IS_4ADDRESS
384 1.1 dyoung }
385 1.1 dyoung
386 1.1 dyoung #define CCMP_ENCRYPT(_i, _b, _b0, _pos, _e, _len) do { \
387 1.1 dyoung /* Authentication */ \
388 1.1 dyoung xor_block(_b, _pos, _len); \
389 1.1 dyoung rijndael_encrypt(&ctx->cc_aes, _b, _b); \
390 1.1 dyoung /* Encryption, with counter */ \
391 1.1 dyoung _b0[14] = (_i >> 8) & 0xff; \
392 1.1 dyoung _b0[15] = _i & 0xff; \
393 1.1 dyoung rijndael_encrypt(&ctx->cc_aes, _b0, _e); \
394 1.1 dyoung xor_block(_pos, _e, _len); \
395 1.1 dyoung } while (0)
396 1.1 dyoung
397 1.1 dyoung static int
398 1.1 dyoung ccmp_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
399 1.1 dyoung {
400 1.1 dyoung struct ccmp_ctx *ctx = key->wk_private;
401 1.1 dyoung struct ieee80211_frame *wh;
402 1.1 dyoung struct mbuf *m = m0;
403 1.3 dyoung int data_len, i, space;
404 1.1 dyoung uint8_t aad[2 * AES_BLOCK_LEN], b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN],
405 1.1 dyoung e[AES_BLOCK_LEN], s0[AES_BLOCK_LEN];
406 1.1 dyoung uint8_t *pos;
407 1.1 dyoung
408 1.1 dyoung ctx->cc_ic->ic_stats.is_crypto_ccmp++;
409 1.1 dyoung
410 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
411 1.1 dyoung data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header);
412 1.1 dyoung ccmp_init_blocks(&ctx->cc_aes, wh, key->wk_keytsc,
413 1.1 dyoung data_len, b0, aad, b, s0);
414 1.1 dyoung
415 1.1 dyoung i = 1;
416 1.1 dyoung pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
417 1.1 dyoung /* NB: assumes header is entirely in first mbuf */
418 1.1 dyoung space = m->m_len - (hdrlen + ccmp.ic_header);
419 1.1 dyoung for (;;) {
420 1.1 dyoung if (space > data_len)
421 1.1 dyoung space = data_len;
422 1.1 dyoung /*
423 1.1 dyoung * Do full blocks.
424 1.1 dyoung */
425 1.1 dyoung while (space >= AES_BLOCK_LEN) {
426 1.1 dyoung CCMP_ENCRYPT(i, b, b0, pos, e, AES_BLOCK_LEN);
427 1.1 dyoung pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
428 1.1 dyoung data_len -= AES_BLOCK_LEN;
429 1.1 dyoung i++;
430 1.1 dyoung }
431 1.1 dyoung if (data_len <= 0) /* no more data */
432 1.1 dyoung break;
433 1.1 dyoung m = m->m_next;
434 1.1 dyoung if (m == NULL) { /* last buffer */
435 1.1 dyoung if (space != 0) {
436 1.1 dyoung /*
437 1.1 dyoung * Short last block.
438 1.1 dyoung */
439 1.1 dyoung CCMP_ENCRYPT(i, b, b0, pos, e, space);
440 1.1 dyoung }
441 1.1 dyoung break;
442 1.1 dyoung }
443 1.1 dyoung if (space != 0) {
444 1.1 dyoung uint8_t *pos_next;
445 1.3 dyoung int space_next;
446 1.3 dyoung int len, dl, sp;
447 1.3 dyoung struct mbuf *n;
448 1.1 dyoung
449 1.1 dyoung /*
450 1.3 dyoung * Block straddles one or more mbufs, gather data
451 1.3 dyoung * into the block buffer b, apply the cipher, then
452 1.3 dyoung * scatter the results back into the mbuf chain.
453 1.3 dyoung * The buffer will automatically get space bytes
454 1.3 dyoung * of data at offset 0 copied in+out by the
455 1.3 dyoung * CCMP_ENCRYPT request so we must take care of
456 1.3 dyoung * the remaining data.
457 1.1 dyoung */
458 1.3 dyoung n = m;
459 1.3 dyoung dl = data_len;
460 1.3 dyoung sp = space;
461 1.3 dyoung for (;;) {
462 1.3 dyoung pos_next = mtod(n, uint8_t *);
463 1.3 dyoung len = min(dl, AES_BLOCK_LEN);
464 1.3 dyoung space_next = len > sp ? len - sp : 0;
465 1.3 dyoung if (n->m_len >= space_next) {
466 1.3 dyoung /*
467 1.3 dyoung * This mbuf has enough data; just grab
468 1.3 dyoung * what we need and stop.
469 1.3 dyoung */
470 1.3 dyoung xor_block(b+sp, pos_next, space_next);
471 1.3 dyoung break;
472 1.3 dyoung }
473 1.3 dyoung /*
474 1.3 dyoung * This mbuf's contents are insufficient,
475 1.3 dyoung * take 'em all and prepare to advance to
476 1.3 dyoung * the next mbuf.
477 1.3 dyoung */
478 1.3 dyoung xor_block(b+sp, pos_next, n->m_len);
479 1.3 dyoung sp += n->m_len, dl -= n->m_len;
480 1.3 dyoung n = n->m_next;
481 1.3 dyoung if (n == NULL)
482 1.3 dyoung break;
483 1.3 dyoung }
484 1.1 dyoung
485 1.1 dyoung CCMP_ENCRYPT(i, b, b0, pos, e, space);
486 1.3 dyoung
487 1.3 dyoung /* NB: just like above, but scatter data to mbufs */
488 1.3 dyoung dl = data_len;
489 1.3 dyoung sp = space;
490 1.3 dyoung for (;;) {
491 1.3 dyoung pos_next = mtod(m, uint8_t *);
492 1.3 dyoung len = min(dl, AES_BLOCK_LEN);
493 1.3 dyoung space_next = len > sp ? len - sp : 0;
494 1.3 dyoung if (m->m_len >= space_next) {
495 1.3 dyoung xor_block(pos_next, e+sp, space_next);
496 1.3 dyoung break;
497 1.3 dyoung }
498 1.3 dyoung xor_block(pos_next, e+sp, m->m_len);
499 1.3 dyoung sp += m->m_len, dl -= m->m_len;
500 1.3 dyoung m = m->m_next;
501 1.3 dyoung if (m == NULL)
502 1.3 dyoung goto done;
503 1.3 dyoung }
504 1.3 dyoung /*
505 1.3 dyoung * Do bookkeeping. m now points to the last mbuf
506 1.3 dyoung * we grabbed data from. We know we consumed a
507 1.3 dyoung * full block of data as otherwise we'd have hit
508 1.3 dyoung * the end of the mbuf chain, so deduct from data_len.
509 1.3 dyoung * Otherwise advance the block number (i) and setup
510 1.3 dyoung * pos+space to reflect contents of the new mbuf.
511 1.3 dyoung */
512 1.3 dyoung data_len -= AES_BLOCK_LEN;
513 1.1 dyoung i++;
514 1.1 dyoung pos = pos_next + space_next;
515 1.1 dyoung space = m->m_len - space_next;
516 1.1 dyoung } else {
517 1.1 dyoung /*
518 1.1 dyoung * Setup for next buffer.
519 1.1 dyoung */
520 1.1 dyoung pos = mtod(m, uint8_t *);
521 1.1 dyoung space = m->m_len;
522 1.1 dyoung }
523 1.1 dyoung }
524 1.3 dyoung done:
525 1.1 dyoung /* tack on MIC */
526 1.1 dyoung xor_block(b, s0, ccmp.ic_trailer);
527 1.1 dyoung return m_append(m0, ccmp.ic_trailer, b);
528 1.1 dyoung }
529 1.1 dyoung #undef CCMP_ENCRYPT
530 1.1 dyoung
531 1.1 dyoung #define CCMP_DECRYPT(_i, _b, _b0, _pos, _a, _len) do { \
532 1.1 dyoung /* Decrypt, with counter */ \
533 1.1 dyoung _b0[14] = (_i >> 8) & 0xff; \
534 1.1 dyoung _b0[15] = _i & 0xff; \
535 1.1 dyoung rijndael_encrypt(&ctx->cc_aes, _b0, _b); \
536 1.1 dyoung xor_block(_pos, _b, _len); \
537 1.1 dyoung /* Authentication */ \
538 1.1 dyoung xor_block(_a, _pos, _len); \
539 1.1 dyoung rijndael_encrypt(&ctx->cc_aes, _a, _a); \
540 1.1 dyoung } while (0)
541 1.1 dyoung
542 1.1 dyoung static int
543 1.1 dyoung ccmp_decrypt(struct ieee80211_key *key, u_int64_t pn, struct mbuf *m, int hdrlen)
544 1.1 dyoung {
545 1.1 dyoung struct ccmp_ctx *ctx = key->wk_private;
546 1.1 dyoung struct ieee80211_frame *wh;
547 1.1 dyoung uint8_t aad[2 * AES_BLOCK_LEN];
548 1.1 dyoung uint8_t b0[AES_BLOCK_LEN], b[AES_BLOCK_LEN], a[AES_BLOCK_LEN];
549 1.1 dyoung uint8_t mic[AES_BLOCK_LEN];
550 1.1 dyoung size_t data_len;
551 1.1 dyoung int i;
552 1.1 dyoung uint8_t *pos;
553 1.1 dyoung u_int space;
554 1.1 dyoung
555 1.1 dyoung ctx->cc_ic->ic_stats.is_crypto_ccmp++;
556 1.1 dyoung
557 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
558 1.1 dyoung data_len = m->m_pkthdr.len - (hdrlen + ccmp.ic_header + ccmp.ic_trailer);
559 1.1 dyoung ccmp_init_blocks(&ctx->cc_aes, wh, pn, data_len, b0, aad, a, b);
560 1.1 dyoung m_copydata(m, m->m_pkthdr.len - ccmp.ic_trailer, ccmp.ic_trailer, mic);
561 1.1 dyoung xor_block(mic, b, ccmp.ic_trailer);
562 1.1 dyoung
563 1.1 dyoung i = 1;
564 1.1 dyoung pos = mtod(m, uint8_t *) + hdrlen + ccmp.ic_header;
565 1.1 dyoung space = m->m_len - (hdrlen + ccmp.ic_header);
566 1.1 dyoung for (;;) {
567 1.1 dyoung if (space > data_len)
568 1.1 dyoung space = data_len;
569 1.1 dyoung while (space >= AES_BLOCK_LEN) {
570 1.1 dyoung CCMP_DECRYPT(i, b, b0, pos, a, AES_BLOCK_LEN);
571 1.1 dyoung pos += AES_BLOCK_LEN, space -= AES_BLOCK_LEN;
572 1.1 dyoung data_len -= AES_BLOCK_LEN;
573 1.1 dyoung i++;
574 1.1 dyoung }
575 1.1 dyoung if (data_len <= 0) /* no more data */
576 1.1 dyoung break;
577 1.1 dyoung m = m->m_next;
578 1.1 dyoung if (m == NULL) { /* last buffer */
579 1.1 dyoung if (space != 0) /* short last block */
580 1.1 dyoung CCMP_DECRYPT(i, b, b0, pos, a, space);
581 1.1 dyoung break;
582 1.1 dyoung }
583 1.1 dyoung if (space != 0) {
584 1.1 dyoung uint8_t *pos_next;
585 1.1 dyoung u_int space_next;
586 1.1 dyoung u_int len;
587 1.1 dyoung
588 1.1 dyoung /*
589 1.1 dyoung * Block straddles buffers, split references. We
590 1.3 dyoung * do not handle splits that require >2 buffers
591 1.3 dyoung * since rx'd frames are never badly fragmented
592 1.3 dyoung * because drivers typically recv in clusters.
593 1.1 dyoung */
594 1.1 dyoung pos_next = mtod(m, uint8_t *);
595 1.1 dyoung len = min(data_len, AES_BLOCK_LEN);
596 1.1 dyoung space_next = len > space ? len - space : 0;
597 1.2 dyoung IASSERT(m->m_len >= space_next,
598 1.1 dyoung ("not enough data in following buffer, "
599 1.1 dyoung "m_len %u need %u\n", m->m_len, space_next));
600 1.1 dyoung
601 1.1 dyoung xor_block(b+space, pos_next, space_next);
602 1.1 dyoung CCMP_DECRYPT(i, b, b0, pos, a, space);
603 1.1 dyoung xor_block(pos_next, b+space, space_next);
604 1.1 dyoung data_len -= len;
605 1.1 dyoung i++;
606 1.1 dyoung
607 1.1 dyoung pos = pos_next + space_next;
608 1.1 dyoung space = m->m_len - space_next;
609 1.1 dyoung } else {
610 1.1 dyoung /*
611 1.1 dyoung * Setup for next buffer.
612 1.1 dyoung */
613 1.1 dyoung pos = mtod(m, uint8_t *);
614 1.1 dyoung space = m->m_len;
615 1.1 dyoung }
616 1.1 dyoung }
617 1.1 dyoung if (memcmp(mic, a, ccmp.ic_trailer) != 0) {
618 1.1 dyoung IEEE80211_DPRINTF(ctx->cc_ic, IEEE80211_MSG_CRYPTO,
619 1.1 dyoung "[%s] AES-CCM decrypt failed; MIC mismatch\n",
620 1.1 dyoung ether_sprintf(wh->i_addr2));
621 1.1 dyoung ctx->cc_ic->ic_stats.is_rx_ccmpmic++;
622 1.1 dyoung return 0;
623 1.1 dyoung }
624 1.1 dyoung return 1;
625 1.1 dyoung }
626 1.1 dyoung #undef CCMP_DECRYPT
627 1.4 skrll
628 1.4 skrll IEEE80211_CRYPTO_SETUP(ccmp_register)
629 1.4 skrll {
630 1.4 skrll ieee80211_crypto_register(&ccmp);
631 1.4 skrll }
632