ieee80211_crypto_wep.c revision 1.7.46.1 1 /*-
2 * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_wep.c,v 1.10 2007/06/11 03:36:54 sam Exp $");
29 #endif
30 #ifdef __NetBSD__
31 __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_wep.c,v 1.7.46.1 2008/02/22 16:50:25 skrll Exp $");
32 #endif
33
34 /*
35 * IEEE 802.11 WEP crypto support.
36 */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43
44 #include <sys/socket.h>
45
46 #include <net/if.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49
50 #include <net80211/ieee80211_var.h>
51
52 static void *wep_attach(struct ieee80211com *, struct ieee80211_key *);
53 static void wep_detach(struct ieee80211_key *);
54 static int wep_setkey(struct ieee80211_key *);
55 static int wep_encap(struct ieee80211_key *, struct mbuf *, uint8_t keyid);
56 static int wep_decap(struct ieee80211_key *, struct mbuf *, int hdrlen);
57 static int wep_enmic(struct ieee80211_key *, struct mbuf *, int);
58 static int wep_demic(struct ieee80211_key *, struct mbuf *, int);
59
60 const struct ieee80211_cipher ieee80211_cipher_wep = {
61 .ic_name = "WEP",
62 .ic_cipher = IEEE80211_CIPHER_WEP,
63 .ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
64 .ic_trailer = IEEE80211_WEP_CRCLEN,
65 .ic_miclen = 0,
66 .ic_attach = wep_attach,
67 .ic_detach = wep_detach,
68 .ic_setkey = wep_setkey,
69 .ic_encap = wep_encap,
70 .ic_decap = wep_decap,
71 .ic_enmic = wep_enmic,
72 .ic_demic = wep_demic,
73 };
74
75 #define wep ieee80211_cipher_wep
76
77 static int wep_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
78 static int wep_decrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
79
80 struct wep_ctx {
81 struct ieee80211com *wc_ic; /* for diagnostics */
82 uint32_t wc_iv; /* initial vector for crypto */
83 };
84
85 /* number of references from net80211 layer */
86 static int nrefs = 0;
87
88 static void *
89 wep_attach(struct ieee80211com *ic, struct ieee80211_key *k)
90 {
91 struct wep_ctx *ctx;
92
93 ctx = malloc(sizeof(struct wep_ctx), M_DEVBUF, M_NOWAIT | M_ZERO);
94 if (ctx == NULL) {
95 ic->ic_stats.is_crypto_nomem++;
96 return NULL;
97 }
98
99 ctx->wc_ic = ic;
100 get_random_bytes(&ctx->wc_iv, sizeof(ctx->wc_iv));
101 nrefs++; /* NB: we assume caller locking */
102 return ctx;
103 }
104
105 static void
106 wep_detach(struct ieee80211_key *k)
107 {
108 struct wep_ctx *ctx = k->wk_private;
109
110 FREE(ctx, M_DEVBUF);
111 IASSERT(nrefs > 0, ("imbalanced attach/detach"));
112 nrefs--; /* NB: we assume caller locking */
113 }
114
115 static int
116 wep_setkey(struct ieee80211_key *k)
117 {
118 return k->wk_keylen >= 40/NBBY;
119 }
120
121 /*
122 * Add privacy headers appropriate for the specified key.
123 */
124 static int
125 wep_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
126 {
127 struct wep_ctx *ctx = k->wk_private;
128 struct ieee80211com *ic = ctx->wc_ic;
129 uint32_t iv;
130 uint8_t *ivp;
131 int hdrlen;
132
133 hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
134
135 /*
136 * Copy down 802.11 header and add the IV + KeyID.
137 */
138 M_PREPEND(m, wep.ic_header, M_NOWAIT);
139 if (m == NULL)
140 return 0;
141 ivp = mtod(m, uint8_t *);
142 ovbcopy(ivp + wep.ic_header, ivp, hdrlen);
143 ivp += hdrlen;
144
145 /*
146 * XXX
147 * IV must not duplicate during the lifetime of the key.
148 * But no mechanism to renew keys is defined in IEEE 802.11
149 * for WEP. And the IV may be duplicated at other stations
150 * because the session key itself is shared. So we use a
151 * pseudo random IV for now, though it is not the right way.
152 *
153 * NB: Rather than use a strictly random IV we select a
154 * random one to start and then increment the value for
155 * each frame. This is an explicit tradeoff between
156 * overhead and security. Given the basic insecurity of
157 * WEP this seems worthwhile.
158 */
159
160 /*
161 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
162 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
163 */
164 iv = ctx->wc_iv;
165 if ((iv & 0xff00) == 0xff00) {
166 int B = (iv & 0xff0000) >> 16;
167 if (3 <= B && B < 16)
168 iv += 0x0100;
169 }
170 ctx->wc_iv = iv + 1;
171
172 /*
173 * NB: Preserve byte order of IV for packet
174 * sniffers; it doesn't matter otherwise.
175 */
176 #if _BYTE_ORDER == _BIG_ENDIAN
177 ivp[0] = iv >> 0;
178 ivp[1] = iv >> 8;
179 ivp[2] = iv >> 16;
180 #else
181 ivp[2] = iv >> 0;
182 ivp[1] = iv >> 8;
183 ivp[0] = iv >> 16;
184 #endif
185 ivp[3] = keyid;
186
187 /*
188 * Finally, do software encrypt if neeed.
189 */
190 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
191 !wep_encrypt(k, m, hdrlen))
192 return 0;
193
194 return 1;
195 }
196
197 /*
198 * Add MIC to the frame as needed.
199 */
200 static int
201 wep_enmic(struct ieee80211_key *k, struct mbuf *m,
202 int force)
203 {
204
205 return 1;
206 }
207
208 /*
209 * Validate and strip privacy headers (and trailer) for a
210 * received frame. If necessary, decrypt the frame using
211 * the specified key.
212 */
213 static int
214 wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
215 {
216 struct wep_ctx *ctx = k->wk_private;
217 struct ieee80211_frame *wh;
218
219 wh = mtod(m, struct ieee80211_frame *);
220
221 /*
222 * Check if the device handled the decrypt in hardware.
223 * If so we just strip the header; otherwise we need to
224 * handle the decrypt in software.
225 */
226 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
227 !wep_decrypt(k, m, hdrlen)) {
228 IEEE80211_DPRINTF(ctx->wc_ic, IEEE80211_MSG_CRYPTO,
229 "[%s] WEP ICV mismatch on decrypt\n",
230 ether_sprintf(wh->i_addr2));
231 ctx->wc_ic->ic_stats.is_rx_wepfail++;
232 return 0;
233 }
234
235 /*
236 * Copy up 802.11 header and strip crypto bits.
237 */
238 ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + wep.ic_header, hdrlen);
239 m_adj(m, wep.ic_header);
240 m_adj(m, -wep.ic_trailer);
241
242 return 1;
243 }
244
245 /*
246 * Verify and strip MIC from the frame.
247 */
248 static int
249 wep_demic(struct ieee80211_key *k, struct mbuf *skb,
250 int force)
251 {
252 return 1;
253 }
254
255 static const uint32_t crc32_table[256] = {
256 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
257 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
258 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
259 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
260 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
261 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
262 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
263 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
264 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
265 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
266 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
267 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
268 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
269 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
270 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
271 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
272 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
273 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
274 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
275 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
276 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
277 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
278 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
279 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
280 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
281 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
282 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
283 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
284 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
285 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
286 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
287 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
288 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
289 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
290 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
291 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
292 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
293 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
294 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
295 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
296 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
297 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
298 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
299 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
300 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
301 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
302 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
303 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
304 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
305 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
306 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
307 0x2d02ef8dL
308 };
309
310 static int
311 wep_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
312 {
313 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
314 struct wep_ctx *ctx = key->wk_private;
315 struct mbuf *m = m0;
316 uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
317 uint8_t icv[IEEE80211_WEP_CRCLEN];
318 uint32_t i, j, k, crc;
319 size_t buflen, data_len;
320 uint8_t S[256];
321 uint8_t *pos;
322 u_int off, keylen;
323
324 ctx->wc_ic->ic_stats.is_crypto_wep++;
325
326 /* NB: this assumes the header was pulled up */
327 memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
328 memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
329
330 /* Setup RC4 state */
331 for (i = 0; i < 256; i++)
332 S[i] = i;
333 j = 0;
334 keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
335 for (i = 0; i < 256; i++) {
336 j = (j + S[i] + rc4key[i % keylen]) & 0xff;
337 S_SWAP(i, j);
338 }
339
340 off = hdrlen + wep.ic_header;
341 data_len = m->m_pkthdr.len - off;
342
343 /* Compute CRC32 over unencrypted data and apply RC4 to data */
344 crc = ~0;
345 i = j = 0;
346 pos = mtod(m, uint8_t *) + off;
347 buflen = m->m_len - off;
348 for (;;) {
349 if (buflen > data_len)
350 buflen = data_len;
351 data_len -= buflen;
352 for (k = 0; k < buflen; k++) {
353 crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
354 i = (i + 1) & 0xff;
355 j = (j + S[i]) & 0xff;
356 S_SWAP(i, j);
357 *pos++ ^= S[(S[i] + S[j]) & 0xff];
358 }
359 if (m->m_next == NULL) {
360 if (data_len != 0) { /* out of data */
361 IEEE80211_DPRINTF(ctx->wc_ic,
362 IEEE80211_MSG_CRYPTO,
363 "[%s] out of data for WEP (data_len %zu)\n",
364 ether_sprintf(mtod(m0,
365 struct ieee80211_frame *)->i_addr2),
366 data_len);
367 return 0;
368 }
369 break;
370 }
371 m = m->m_next;
372 pos = mtod(m, uint8_t *);
373 buflen = m->m_len;
374 }
375 crc = ~crc;
376
377 /* Append little-endian CRC32 and encrypt it to produce ICV */
378 icv[0] = crc;
379 icv[1] = crc >> 8;
380 icv[2] = crc >> 16;
381 icv[3] = crc >> 24;
382 for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
383 i = (i + 1) & 0xff;
384 j = (j + S[i]) & 0xff;
385 S_SWAP(i, j);
386 icv[k] ^= S[(S[i] + S[j]) & 0xff];
387 }
388 return m_append(m0, IEEE80211_WEP_CRCLEN, icv);
389 #undef S_SWAP
390 }
391
392 static int
393 wep_decrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
394 {
395 #define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
396 struct wep_ctx *ctx = key->wk_private;
397 struct mbuf *m = m0;
398 uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
399 uint8_t icv[IEEE80211_WEP_CRCLEN];
400 uint32_t i, j, k, crc;
401 size_t buflen, data_len;
402 uint8_t S[256];
403 uint8_t *pos;
404 u_int off, keylen;
405
406 ctx->wc_ic->ic_stats.is_crypto_wep++;
407
408 /* NB: this assumes the header was pulled up */
409 memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
410 memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
411
412 /* Setup RC4 state */
413 for (i = 0; i < 256; i++)
414 S[i] = i;
415 j = 0;
416 keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
417 for (i = 0; i < 256; i++) {
418 j = (j + S[i] + rc4key[i % keylen]) & 0xff;
419 S_SWAP(i, j);
420 }
421
422 off = hdrlen + wep.ic_header;
423 data_len = m->m_pkthdr.len - (off + wep.ic_trailer),
424
425 /* Compute CRC32 over unencrypted data and apply RC4 to data */
426 crc = ~0;
427 i = j = 0;
428 pos = mtod(m, uint8_t *) + off;
429 buflen = m->m_len - off;
430 for (;;) {
431 if (buflen > data_len)
432 buflen = data_len;
433 data_len -= buflen;
434 for (k = 0; k < buflen; k++) {
435 i = (i + 1) & 0xff;
436 j = (j + S[i]) & 0xff;
437 S_SWAP(i, j);
438 *pos ^= S[(S[i] + S[j]) & 0xff];
439 crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
440 pos++;
441 }
442 m = m->m_next;
443 if (m == NULL) {
444 if (data_len != 0) { /* out of data */
445 IEEE80211_DPRINTF(ctx->wc_ic,
446 IEEE80211_MSG_CRYPTO,
447 "[%s] out of data for WEP (data_len %zu)\n",
448 ether_sprintf(mtod(m0,
449 struct ieee80211_frame *)->i_addr2),
450 data_len);
451 return 0;
452 }
453 break;
454 }
455 pos = mtod(m, uint8_t *);
456 buflen = m->m_len;
457 }
458 crc = ~crc;
459
460 /* Encrypt little-endian CRC32 and verify that it matches with
461 * received ICV */
462 icv[0] = crc;
463 icv[1] = crc >> 8;
464 icv[2] = crc >> 16;
465 icv[3] = crc >> 24;
466 for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
467 i = (i + 1) & 0xff;
468 j = (j + S[i]) & 0xff;
469 S_SWAP(i, j);
470 /* XXX assumes ICV is contiguous in mbuf */
471 if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
472 /* ICV mismatch - drop frame */
473 return 0;
474 }
475 }
476 return 1;
477 #undef S_SWAP
478 }
479
480 IEEE80211_CRYPTO_SETUP(wep_register)
481 {
482 ieee80211_crypto_register(&wep);
483 }
484