Home | History | Annotate | Line # | Download | only in net80211
ieee80211_netbsd.c revision 1.31.2.1
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      3  *
      4  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __FBSDID("$FreeBSD$");
     30 
     31 /*
     32  * IEEE 802.11 support (FreeBSD-specific code)
     33  */
     34 #include "opt_wlan.h"
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/eventhandler.h>
     39 #include <sys/kernel.h>
     40 #include <sys/linker.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/module.h>
     44 #include <sys/proc.h>
     45 #include <sys/sysctl.h>
     46 
     47 #include <sys/socket.h>
     48 
     49 #include <net/bpf.h>
     50 #include <net/if.h>
     51 #include <net/if_var.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_clone.h>
     54 #include <net/if_media.h>
     55 #include <net/if_types.h>
     56 #include <net/ethernet.h>
     57 #include <net/route.h>
     58 #include <net/vnet.h>
     59 
     60 #include <net80211/ieee80211_var.h>
     61 #include <net80211/ieee80211_input.h>
     62 
     63 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
     64 
     65 #ifdef IEEE80211_DEBUG
     66 static int	ieee80211_debug = 0;
     67 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
     68 	    0, "debugging printfs");
     69 #endif
     70 
     71 static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
     72 
     73 static const char wlanname[] = "wlan";
     74 static struct if_clone *wlan_cloner;
     75 
     76 static int
     77 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
     78 {
     79 	struct ieee80211_clone_params cp;
     80 	struct ieee80211vap *vap;
     81 	struct ieee80211com *ic;
     82 	int error;
     83 
     84 	error = copyin(params, &cp, sizeof(cp));
     85 	if (error)
     86 		return error;
     87 	ic = ieee80211_find_com(cp.icp_parent);
     88 	if (ic == NULL)
     89 		return ENXIO;
     90 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
     91 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
     92 		    cp.icp_opmode);
     93 		return EINVAL;
     94 	}
     95 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
     96 		ic_printf(ic, "%s mode not supported\n",
     97 		    ieee80211_opmode_name[cp.icp_opmode]);
     98 		return EOPNOTSUPP;
     99 	}
    100 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
    101 #ifdef IEEE80211_SUPPORT_TDMA
    102 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
    103 #else
    104 	    (1)
    105 #endif
    106 	) {
    107 		ic_printf(ic, "TDMA not supported\n");
    108 		return EOPNOTSUPP;
    109 	}
    110 	vap = ic->ic_vap_create(ic, wlanname, unit,
    111 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
    112 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
    113 			    cp.icp_macaddr : ic->ic_macaddr);
    114 
    115 	return (vap == NULL ? EIO : 0);
    116 }
    117 
    118 static void
    119 wlan_clone_destroy(struct ifnet *ifp)
    120 {
    121 	struct ieee80211vap *vap = ifp->if_softc;
    122 	struct ieee80211com *ic = vap->iv_ic;
    123 
    124 	ic->ic_vap_delete(vap);
    125 }
    126 
    127 void
    128 ieee80211_vap_destroy(struct ieee80211vap *vap)
    129 {
    130 	CURVNET_SET(vap->iv_ifp->if_vnet);
    131 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
    132 	CURVNET_RESTORE();
    133 }
    134 
    135 int
    136 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
    137 {
    138 	int msecs = ticks_to_msecs(*(int *)arg1);
    139 	int error, t;
    140 
    141 	error = sysctl_handle_int(oidp, &msecs, 0, req);
    142 	if (error || !req->newptr)
    143 		return error;
    144 	t = msecs_to_ticks(msecs);
    145 	*(int *)arg1 = (t < 1) ? 1 : t;
    146 	return 0;
    147 }
    148 
    149 static int
    150 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
    151 {
    152 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
    153 	int error;
    154 
    155 	error = sysctl_handle_int(oidp, &inact, 0, req);
    156 	if (error || !req->newptr)
    157 		return error;
    158 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
    159 	return 0;
    160 }
    161 
    162 static int
    163 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
    164 {
    165 	struct ieee80211com *ic = arg1;
    166 
    167 	return SYSCTL_OUT_STR(req, ic->ic_name);
    168 }
    169 
    170 static int
    171 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
    172 {
    173 	struct ieee80211com *ic = arg1;
    174 	int t = 0, error;
    175 
    176 	error = sysctl_handle_int(oidp, &t, 0, req);
    177 	if (error || !req->newptr)
    178 		return error;
    179 	IEEE80211_LOCK(ic);
    180 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
    181 	IEEE80211_UNLOCK(ic);
    182 	return 0;
    183 }
    184 
    185 /*
    186  * For now, just restart everything.
    187  *
    188  * Later on, it'd be nice to have a separate VAP restart to
    189  * full-device restart.
    190  */
    191 static int
    192 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
    193 {
    194 	struct ieee80211vap *vap = arg1;
    195 	int t = 0, error;
    196 
    197 	error = sysctl_handle_int(oidp, &t, 0, req);
    198 	if (error || !req->newptr)
    199 		return error;
    200 
    201 	ieee80211_restart_all(vap->iv_ic);
    202 	return 0;
    203 }
    204 
    205 void
    206 ieee80211_sysctl_attach(struct ieee80211com *ic)
    207 {
    208 }
    209 
    210 void
    211 ieee80211_sysctl_detach(struct ieee80211com *ic)
    212 {
    213 }
    214 
    215 void
    216 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
    217 {
    218 	struct ifnet *ifp = vap->iv_ifp;
    219 	struct sysctl_ctx_list *ctx;
    220 	struct sysctl_oid *oid;
    221 	char num[14];			/* sufficient for 32 bits */
    222 
    223 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
    224 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
    225 	if (ctx == NULL) {
    226 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
    227 			__func__);
    228 		return;
    229 	}
    230 	sysctl_ctx_init(ctx);
    231 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
    232 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
    233 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
    234 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    235 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
    236 		ieee80211_sysctl_parent, "A", "parent device");
    237 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    238 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
    239 		"driver capabilities");
    240 #ifdef IEEE80211_DEBUG
    241 	vap->iv_debug = ieee80211_debug;
    242 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    243 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
    244 		"control debugging printfs");
    245 #endif
    246 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    247 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
    248 		"consecutive beacon misses before scanning");
    249 	/* XXX inherit from tunables */
    250 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    251 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
    252 		ieee80211_sysctl_inact, "I",
    253 		"station inactivity timeout (sec)");
    254 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    255 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
    256 		ieee80211_sysctl_inact, "I",
    257 		"station inactivity probe timeout (sec)");
    258 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    259 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
    260 		ieee80211_sysctl_inact, "I",
    261 		"station authentication timeout (sec)");
    262 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    263 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
    264 		ieee80211_sysctl_inact, "I",
    265 		"station initial state timeout (sec)");
    266 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
    267 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    268 			"ampdu_mintraffic_bk", CTLFLAG_RW,
    269 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
    270 			"BK traffic tx aggr threshold (pps)");
    271 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    272 			"ampdu_mintraffic_be", CTLFLAG_RW,
    273 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
    274 			"BE traffic tx aggr threshold (pps)");
    275 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    276 			"ampdu_mintraffic_vo", CTLFLAG_RW,
    277 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
    278 			"VO traffic tx aggr threshold (pps)");
    279 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    280 			"ampdu_mintraffic_vi", CTLFLAG_RW,
    281 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
    282 			"VI traffic tx aggr threshold (pps)");
    283 	}
    284 
    285 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    286 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
    287 		ieee80211_sysctl_vap_restart, "I",
    288 		"force a VAP restart");
    289 
    290 	if (vap->iv_caps & IEEE80211_C_DFS) {
    291 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    292 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
    293 			ieee80211_sysctl_radar, "I", "simulate radar event");
    294 	}
    295 	vap->iv_sysctl = ctx;
    296 	vap->iv_oid = oid;
    297 }
    298 
    299 void
    300 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
    301 {
    302 
    303 	if (vap->iv_sysctl != NULL) {
    304 		sysctl_ctx_free(vap->iv_sysctl);
    305 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
    306 		vap->iv_sysctl = NULL;
    307 	}
    308 }
    309 
    310 int
    311 ieee80211_node_dectestref(struct ieee80211_node *ni)
    312 {
    313 	/* XXX need equivalent of atomic_dec_and_test */
    314 	atomic_subtract_int(&ni->ni_refcnt, 1);
    315 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
    316 }
    317 
    318 void
    319 ieee80211_drain_ifq(struct ifqueue *ifq)
    320 {
    321 	struct ieee80211_node *ni;
    322 	struct mbuf *m;
    323 
    324 	for (;;) {
    325 		IF_DEQUEUE(ifq, m);
    326 		if (m == NULL)
    327 			break;
    328 
    329 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
    330 		KASSERT(ni != NULL, ("frame w/o node"));
    331 		ieee80211_free_node(ni);
    332 		m->m_pkthdr.rcvif = NULL;
    333 
    334 		m_freem(m);
    335 	}
    336 }
    337 
    338 void
    339 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
    340 {
    341 	struct ieee80211_node *ni;
    342 	struct mbuf *m, **mprev;
    343 
    344 	IF_LOCK(ifq);
    345 	mprev = &ifq->ifq_head;
    346 	while ((m = *mprev) != NULL) {
    347 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
    348 		if (ni != NULL && ni->ni_vap == vap) {
    349 			*mprev = m->m_nextpkt;		/* remove from list */
    350 			ifq->ifq_len--;
    351 
    352 			m_freem(m);
    353 			ieee80211_free_node(ni);	/* reclaim ref */
    354 		} else
    355 			mprev = &m->m_nextpkt;
    356 	}
    357 	/* recalculate tail ptr */
    358 	m = ifq->ifq_head;
    359 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
    360 		;
    361 	ifq->ifq_tail = m;
    362 	IF_UNLOCK(ifq);
    363 }
    364 
    365 /*
    366  * As above, for mbufs allocated with m_gethdr/MGETHDR
    367  * or initialized by M_COPY_PKTHDR.
    368  */
    369 #define	MC_ALIGN(m, len)						\
    370 do {									\
    371 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
    372 } while (/* CONSTCOND */ 0)
    373 
    374 /*
    375  * Allocate and setup a management frame of the specified
    376  * size.  We return the mbuf and a pointer to the start
    377  * of the contiguous data area that's been reserved based
    378  * on the packet length.  The data area is forced to 32-bit
    379  * alignment and the buffer length to a multiple of 4 bytes.
    380  * This is done mainly so beacon frames (that require this)
    381  * can use this interface too.
    382  */
    383 struct mbuf *
    384 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
    385 {
    386 	struct mbuf *m;
    387 	u_int len;
    388 
    389 	/*
    390 	 * NB: we know the mbuf routines will align the data area
    391 	 *     so we don't need to do anything special.
    392 	 */
    393 	len = roundup2(headroom + pktlen, 4);
    394 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
    395 	if (len < MINCLSIZE) {
    396 		m = m_gethdr(M_NOWAIT, MT_DATA);
    397 		/*
    398 		 * Align the data in case additional headers are added.
    399 		 * This should only happen when a WEP header is added
    400 		 * which only happens for shared key authentication mgt
    401 		 * frames which all fit in MHLEN.
    402 		 */
    403 		if (m != NULL)
    404 			M_ALIGN(m, len);
    405 	} else {
    406 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    407 		if (m != NULL)
    408 			MC_ALIGN(m, len);
    409 	}
    410 	if (m != NULL) {
    411 		m->m_data += headroom;
    412 		*frm = m->m_data;
    413 	}
    414 	return m;
    415 }
    416 
    417 #ifndef __NO_STRICT_ALIGNMENT
    418 /*
    419  * Re-align the payload in the mbuf.  This is mainly used (right now)
    420  * to handle IP header alignment requirements on certain architectures.
    421  */
    422 struct mbuf *
    423 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
    424 {
    425 	int pktlen, space;
    426 	struct mbuf *n;
    427 
    428 	pktlen = m->m_pkthdr.len;
    429 	space = pktlen + align;
    430 	if (space < MINCLSIZE)
    431 		n = m_gethdr(M_NOWAIT, MT_DATA);
    432 	else {
    433 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
    434 		    space <= MCLBYTES ?     MCLBYTES :
    435 #if MJUMPAGESIZE != MCLBYTES
    436 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
    437 #endif
    438 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
    439 	}
    440 	if (__predict_true(n != NULL)) {
    441 		m_move_pkthdr(n, m);
    442 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
    443 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
    444 		n->m_len = pktlen;
    445 	} else {
    446 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
    447 		    mtod(m, const struct ieee80211_frame *), NULL,
    448 		    "%s", "no mbuf to realign");
    449 		vap->iv_stats.is_rx_badalign++;
    450 	}
    451 	m_freem(m);
    452 	return n;
    453 }
    454 #endif /* !__NO_STRICT_ALIGNMENT */
    455 
    456 int
    457 ieee80211_add_callback(struct mbuf *m,
    458 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
    459 {
    460 	struct m_tag *mtag;
    461 	struct ieee80211_cb *cb;
    462 
    463 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
    464 			sizeof(struct ieee80211_cb), M_NOWAIT);
    465 	if (mtag == NULL)
    466 		return 0;
    467 
    468 	cb = (struct ieee80211_cb *)(mtag+1);
    469 	cb->func = func;
    470 	cb->arg = arg;
    471 	m_tag_prepend(m, mtag);
    472 	m->m_flags |= M_TXCB;
    473 	return 1;
    474 }
    475 
    476 int
    477 ieee80211_add_xmit_params(struct mbuf *m,
    478     const struct ieee80211_bpf_params *params)
    479 {
    480 	struct m_tag *mtag;
    481 	struct ieee80211_tx_params *tx;
    482 
    483 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
    484 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
    485 	if (mtag == NULL)
    486 		return (0);
    487 
    488 	tx = (struct ieee80211_tx_params *)(mtag+1);
    489 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
    490 	m_tag_prepend(m, mtag);
    491 	return (1);
    492 }
    493 
    494 int
    495 ieee80211_get_xmit_params(struct mbuf *m,
    496     struct ieee80211_bpf_params *params)
    497 {
    498 	struct m_tag *mtag;
    499 	struct ieee80211_tx_params *tx;
    500 
    501 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
    502 	    NULL);
    503 	if (mtag == NULL)
    504 		return (-1);
    505 	tx = (struct ieee80211_tx_params *)(mtag + 1);
    506 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
    507 	return (0);
    508 }
    509 
    510 void
    511 ieee80211_process_callback(struct ieee80211_node *ni,
    512 	struct mbuf *m, int status)
    513 {
    514 	struct m_tag *mtag;
    515 
    516 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
    517 	if (mtag != NULL) {
    518 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
    519 		cb->func(ni, cb->arg, status);
    520 	}
    521 }
    522 
    523 /*
    524  * Add RX parameters to the given mbuf.
    525  *
    526  * Returns 1 if OK, 0 on error.
    527  */
    528 int
    529 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
    530 {
    531 	struct m_tag *mtag;
    532 	struct ieee80211_rx_params *rx;
    533 
    534 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
    535 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
    536 	if (mtag == NULL)
    537 		return (0);
    538 
    539 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    540 	memcpy(&rx->params, rxs, sizeof(*rxs));
    541 	m_tag_prepend(m, mtag);
    542 	return (1);
    543 }
    544 
    545 int
    546 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
    547 {
    548 	struct m_tag *mtag;
    549 	struct ieee80211_rx_params *rx;
    550 
    551 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
    552 	    NULL);
    553 	if (mtag == NULL)
    554 		return (-1);
    555 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    556 	memcpy(rxs, &rx->params, sizeof(*rxs));
    557 	return (0);
    558 }
    559 
    560 const struct ieee80211_rx_stats *
    561 ieee80211_get_rx_params_ptr(struct mbuf *m)
    562 {
    563 	struct m_tag *mtag;
    564 	struct ieee80211_rx_params *rx;
    565 
    566 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
    567 	    NULL);
    568 	if (mtag == NULL)
    569 		return (NULL);
    570 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    571 	return (&rx->params);
    572 }
    573 
    574 
    575 /*
    576  * Add TOA parameters to the given mbuf.
    577  */
    578 int
    579 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
    580 {
    581 	struct m_tag *mtag;
    582 	struct ieee80211_toa_params *rp;
    583 
    584 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
    585 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
    586 	if (mtag == NULL)
    587 		return (0);
    588 
    589 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    590 	memcpy(rp, p, sizeof(*rp));
    591 	m_tag_prepend(m, mtag);
    592 	return (1);
    593 }
    594 
    595 int
    596 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
    597 {
    598 	struct m_tag *mtag;
    599 	struct ieee80211_toa_params *rp;
    600 
    601 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
    602 	    NULL);
    603 	if (mtag == NULL)
    604 		return (0);
    605 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    606 	if (p != NULL)
    607 		memcpy(p, rp, sizeof(*p));
    608 	return (1);
    609 }
    610 
    611 /*
    612  * Transmit a frame to the parent interface.
    613  */
    614 int
    615 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
    616 {
    617 	int error;
    618 
    619 	/*
    620 	 * Assert the IC TX lock is held - this enforces the
    621 	 * processing -> queuing order is maintained
    622 	 */
    623 	IEEE80211_TX_LOCK_ASSERT(ic);
    624 	error = ic->ic_transmit(ic, m);
    625 	if (error) {
    626 		struct ieee80211_node *ni;
    627 
    628 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
    629 
    630 		/* XXX number of fragments */
    631 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
    632 		ieee80211_free_node(ni);
    633 		ieee80211_free_mbuf(m);
    634 	}
    635 	return (error);
    636 }
    637 
    638 /*
    639  * Transmit a frame to the VAP interface.
    640  */
    641 int
    642 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
    643 {
    644 	struct ifnet *ifp = vap->iv_ifp;
    645 
    646 	/*
    647 	 * When transmitting via the VAP, we shouldn't hold
    648 	 * any IC TX lock as the VAP TX path will acquire it.
    649 	 */
    650 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
    651 
    652 	return (ifp->if_transmit(ifp, m));
    653 
    654 }
    655 
    656 #include <sys/libkern.h>
    657 
    658 void
    659 get_random_bytes(void *p, size_t n)
    660 {
    661 	uint8_t *dp = p;
    662 
    663 	while (n > 0) {
    664 		uint32_t v = arc4random();
    665 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
    666 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
    667 		dp += sizeof(uint32_t), n -= nb;
    668 	}
    669 }
    670 
    671 /*
    672  * Helper function for events that pass just a single mac address.
    673  */
    674 static void
    675 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
    676 {
    677 	struct ieee80211_join_event iev;
    678 
    679 	CURVNET_SET(ifp->if_vnet);
    680 	memset(&iev, 0, sizeof(iev));
    681 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
    682 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
    683 	CURVNET_RESTORE();
    684 }
    685 
    686 void
    687 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
    688 {
    689 	struct ieee80211vap *vap = ni->ni_vap;
    690 	struct ifnet *ifp = vap->iv_ifp;
    691 
    692 	CURVNET_SET_QUIET(ifp->if_vnet);
    693 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
    694 	    (ni == vap->iv_bss) ? "bss " : "");
    695 
    696 	if (ni == vap->iv_bss) {
    697 		notify_macaddr(ifp, newassoc ?
    698 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
    699 		if_link_state_change(ifp, LINK_STATE_UP);
    700 	} else {
    701 		notify_macaddr(ifp, newassoc ?
    702 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
    703 	}
    704 	CURVNET_RESTORE();
    705 }
    706 
    707 void
    708 ieee80211_notify_node_leave(struct ieee80211_node *ni)
    709 {
    710 	struct ieee80211vap *vap = ni->ni_vap;
    711 	struct ifnet *ifp = vap->iv_ifp;
    712 
    713 	CURVNET_SET_QUIET(ifp->if_vnet);
    714 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
    715 	    (ni == vap->iv_bss) ? "bss " : "");
    716 
    717 	if (ni == vap->iv_bss) {
    718 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
    719 		if_link_state_change(ifp, LINK_STATE_DOWN);
    720 	} else {
    721 		/* fire off wireless event station leaving */
    722 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
    723 	}
    724 	CURVNET_RESTORE();
    725 }
    726 
    727 void
    728 ieee80211_notify_scan_done(struct ieee80211vap *vap)
    729 {
    730 	struct ifnet *ifp = vap->iv_ifp;
    731 
    732 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
    733 
    734 	/* dispatch wireless event indicating scan completed */
    735 	CURVNET_SET(ifp->if_vnet);
    736 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
    737 	CURVNET_RESTORE();
    738 }
    739 
    740 void
    741 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
    742 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
    743 	u_int64_t rsc, int tid)
    744 {
    745 	struct ifnet *ifp = vap->iv_ifp;
    746 
    747 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    748 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
    749 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
    750 	    (intmax_t) k->wk_keyrsc[tid],
    751 	    k->wk_keyix, k->wk_rxkeyix);
    752 
    753 	if (ifp != NULL) {		/* NB: for cipher test modules */
    754 		struct ieee80211_replay_event iev;
    755 
    756 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    757 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    758 		iev.iev_cipher = k->wk_cipher->ic_cipher;
    759 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
    760 			iev.iev_keyix = k->wk_rxkeyix;
    761 		else
    762 			iev.iev_keyix = k->wk_keyix;
    763 		iev.iev_keyrsc = k->wk_keyrsc[tid];
    764 		iev.iev_rsc = rsc;
    765 		CURVNET_SET(ifp->if_vnet);
    766 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
    767 		CURVNET_RESTORE();
    768 	}
    769 }
    770 
    771 void
    772 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
    773 	const struct ieee80211_frame *wh, u_int keyix)
    774 {
    775 	struct ifnet *ifp = vap->iv_ifp;
    776 
    777 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    778 	    "michael MIC verification failed <keyix %u>", keyix);
    779 	vap->iv_stats.is_rx_tkipmic++;
    780 
    781 	if (ifp != NULL) {		/* NB: for cipher test modules */
    782 		struct ieee80211_michael_event iev;
    783 
    784 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    785 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    786 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
    787 		iev.iev_keyix = keyix;
    788 		CURVNET_SET(ifp->if_vnet);
    789 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
    790 		CURVNET_RESTORE();
    791 	}
    792 }
    793 
    794 void
    795 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
    796 {
    797 	struct ieee80211vap *vap = ni->ni_vap;
    798 	struct ifnet *ifp = vap->iv_ifp;
    799 
    800 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
    801 }
    802 
    803 void
    804 ieee80211_notify_csa(struct ieee80211com *ic,
    805 	const struct ieee80211_channel *c, int mode, int count)
    806 {
    807 	struct ieee80211_csa_event iev;
    808 	struct ieee80211vap *vap;
    809 	struct ifnet *ifp;
    810 
    811 	memset(&iev, 0, sizeof(iev));
    812 	iev.iev_flags = c->ic_flags;
    813 	iev.iev_freq = c->ic_freq;
    814 	iev.iev_ieee = c->ic_ieee;
    815 	iev.iev_mode = mode;
    816 	iev.iev_count = count;
    817 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    818 		ifp = vap->iv_ifp;
    819 		CURVNET_SET(ifp->if_vnet);
    820 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
    821 		CURVNET_RESTORE();
    822 	}
    823 }
    824 
    825 void
    826 ieee80211_notify_radar(struct ieee80211com *ic,
    827 	const struct ieee80211_channel *c)
    828 {
    829 	struct ieee80211_radar_event iev;
    830 	struct ieee80211vap *vap;
    831 	struct ifnet *ifp;
    832 
    833 	memset(&iev, 0, sizeof(iev));
    834 	iev.iev_flags = c->ic_flags;
    835 	iev.iev_freq = c->ic_freq;
    836 	iev.iev_ieee = c->ic_ieee;
    837 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    838 		ifp = vap->iv_ifp;
    839 		CURVNET_SET(ifp->if_vnet);
    840 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
    841 		CURVNET_RESTORE();
    842 	}
    843 }
    844 
    845 void
    846 ieee80211_notify_cac(struct ieee80211com *ic,
    847 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
    848 {
    849 	struct ieee80211_cac_event iev;
    850 	struct ieee80211vap *vap;
    851 	struct ifnet *ifp;
    852 
    853 	memset(&iev, 0, sizeof(iev));
    854 	iev.iev_flags = c->ic_flags;
    855 	iev.iev_freq = c->ic_freq;
    856 	iev.iev_ieee = c->ic_ieee;
    857 	iev.iev_type = type;
    858 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    859 		ifp = vap->iv_ifp;
    860 		CURVNET_SET(ifp->if_vnet);
    861 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
    862 		CURVNET_RESTORE();
    863 	}
    864 }
    865 
    866 void
    867 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
    868 {
    869 	struct ieee80211vap *vap = ni->ni_vap;
    870 	struct ifnet *ifp = vap->iv_ifp;
    871 
    872 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
    873 
    874 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
    875 }
    876 
    877 void
    878 ieee80211_notify_node_auth(struct ieee80211_node *ni)
    879 {
    880 	struct ieee80211vap *vap = ni->ni_vap;
    881 	struct ifnet *ifp = vap->iv_ifp;
    882 
    883 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
    884 
    885 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
    886 }
    887 
    888 void
    889 ieee80211_notify_country(struct ieee80211vap *vap,
    890 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
    891 {
    892 	struct ifnet *ifp = vap->iv_ifp;
    893 	struct ieee80211_country_event iev;
    894 
    895 	memset(&iev, 0, sizeof(iev));
    896 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
    897 	iev.iev_cc[0] = cc[0];
    898 	iev.iev_cc[1] = cc[1];
    899 	CURVNET_SET(ifp->if_vnet);
    900 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
    901 	CURVNET_RESTORE();
    902 }
    903 
    904 void
    905 ieee80211_notify_radio(struct ieee80211com *ic, int state)
    906 {
    907 	struct ieee80211_radio_event iev;
    908 	struct ieee80211vap *vap;
    909 	struct ifnet *ifp;
    910 
    911 	memset(&iev, 0, sizeof(iev));
    912 	iev.iev_state = state;
    913 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    914 		ifp = vap->iv_ifp;
    915 		CURVNET_SET(ifp->if_vnet);
    916 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
    917 		CURVNET_RESTORE();
    918 	}
    919 }
    920 
    921 void
    922 ieee80211_load_module(const char *modname)
    923 {
    924 
    925 #ifdef notyet
    926 	(void)kern_kldload(curthread, modname, NULL);
    927 #else
    928 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
    929 #endif
    930 }
    931 
    932 static eventhandler_tag wlan_bpfevent;
    933 static eventhandler_tag wlan_ifllevent;
    934 
    935 static void
    936 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
    937 {
    938 	/* NB: identify vap's by if_init */
    939 	if (dlt == DLT_IEEE802_11_RADIO &&
    940 	    ifp->if_init == ieee80211_init) {
    941 		struct ieee80211vap *vap = ifp->if_softc;
    942 		/*
    943 		 * Track bpf radiotap listener state.  We mark the vap
    944 		 * to indicate if any listener is present and the com
    945 		 * to indicate if any listener exists on any associated
    946 		 * vap.  This flag is used by drivers to prepare radiotap
    947 		 * state only when needed.
    948 		 */
    949 		if (attach) {
    950 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
    951 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
    952 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
    953 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
    954 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
    955 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
    956 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
    957 		}
    958 	}
    959 }
    960 
    961 /*
    962  * Change MAC address on the vap (if was not started).
    963  */
    964 static void
    965 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
    966 {
    967 	/* NB: identify vap's by if_init */
    968 	if (ifp->if_init == ieee80211_init &&
    969 	    (ifp->if_flags & IFF_UP) == 0) {
    970 		struct ieee80211vap *vap = ifp->if_softc;
    971 
    972 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
    973 	}
    974 }
    975 
    976 /*
    977  * Module glue.
    978  *
    979  * NB: the module name is "wlan" for compatibility with NetBSD.
    980  */
    981 static int
    982 wlan_modevent(module_t mod, int type, void *unused)
    983 {
    984 	switch (type) {
    985 	case MOD_LOAD:
    986 		if (bootverbose)
    987 			printf("wlan: <802.11 Link Layer>\n");
    988 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
    989 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
    990 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
    991 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
    992 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
    993 		    wlan_clone_destroy, 0);
    994 		return 0;
    995 	case MOD_UNLOAD:
    996 		if_clone_detach(wlan_cloner);
    997 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
    998 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
    999 		return 0;
   1000 	}
   1001 	return EINVAL;
   1002 }
   1003 
   1004 static moduledata_t wlan_mod = {
   1005 	wlanname,
   1006 	wlan_modevent,
   1007 	0
   1008 };
   1009 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1010 MODULE_VERSION(wlan, 1);
   1011 MODULE_DEPEND(wlan, ether, 1, 1, 1);
   1012 #ifdef	IEEE80211_ALQ
   1013 MODULE_DEPEND(wlan, alq, 1, 1, 1);
   1014 #endif	/* IEEE80211_ALQ */
   1015 
   1016