Home | History | Annotate | Line # | Download | only in net80211
ieee80211_netbsd.c revision 1.31.2.2
      1 /*	$NetBSD: ieee80211_netbsd.c,v 1.31.2.2 2018/07/12 16:35:34 phil Exp $ */
      2 
      3 /*-
      4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      5  *
      6  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 /*  __FBSDID("$FreeBSD$");  */
     32 __KERNEL_RCSID(0, "$NetBSD: ieee80211_netbsd.c,v 1.31.2.2 2018/07/12 16:35:34 phil Exp $");
     33 
     34 /*
     35  * IEEE 802.11 support (NetBSD-specific code)
     36  */
     37 
     38 #include "opt_wlan.h"
     39 
     40 #include <sys/atomic.h>
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/kernel.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/module.h>
     47 #include <sys/proc.h>
     48 #include <sys/sysctl.h>
     49 #include <sys/syslog.h>
     50 
     51 #include <sys/socket.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_ether.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 #include <net/route.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_input.h>
     63 
     64 #ifdef notyet
     65 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
     66 
     67 #ifdef IEEE80211_DEBUG
     68 static int	ieee80211_debug = 0;
     69 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
     70 	    0, "debugging printfs");
     71 #endif
     72 #endif /* notyet */
     73 
     74 /* static MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state"); NNN */
     75 
     76 #ifdef notyet
     77 static const char wlanname[] = "wlan";
     78 static struct if_clone *wlan_cloner;
     79 
     80 static int
     81 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
     82 {
     83 	struct ieee80211_clone_params cp;
     84 	struct ieee80211vap *vap;
     85 	struct ieee80211com *ic;
     86 	int error;
     87 
     88 	error = copyin(params, &cp, sizeof(cp));
     89 	if (error)
     90 		return error;
     91 	ic = ieee80211_find_com(cp.icp_parent);
     92 	if (ic == NULL)
     93 		return ENXIO;
     94 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
     95 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
     96 		    cp.icp_opmode);
     97 		return EINVAL;
     98 	}
     99 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
    100 		ic_printf(ic, "%s mode not supported\n",
    101 		    ieee80211_opmode_name[cp.icp_opmode]);
    102 		return EOPNOTSUPP;
    103 	}
    104 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
    105 #ifdef IEEE80211_SUPPORT_TDMA
    106 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
    107 #else
    108 	    (1)
    109 #endif
    110 	) {
    111 		ic_printf(ic, "TDMA not supported\n");
    112 		return EOPNOTSUPP;
    113 	}
    114 	vap = ic->ic_vap_create(ic, wlanname, unit,
    115 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
    116 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
    117 			    cp.icp_macaddr : ic->ic_macaddr);
    118 
    119 	return (vap == NULL ? EIO : 0);
    120 }
    121 
    122 static void
    123 wlan_clone_destroy(struct ifnet *ifp)
    124 {
    125 	struct ieee80211vap *vap = ifp->if_softc;
    126 	struct ieee80211com *ic = vap->iv_ic;
    127 
    128 	ic->ic_vap_delete(vap);
    129 }
    130 #endif
    131 
    132 void
    133 ieee80211_vap_destroy(struct ieee80211vap *vap)
    134 {
    135 #ifdef notyet
    136 	CURVNET_SET(vap->iv_ifp->if_vnet);
    137 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
    138 	CURVNET_RESTORE();
    139 #else
    140 	panic("ieee80211_vap_destroy");
    141 #endif
    142 }
    143 
    144 #ifdef notyet
    145 int
    146 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
    147 {
    148 	int msecs = ticks_to_msecs(*(int *)arg1);
    149 	int error, t;
    150 
    151 	error = sysctl_handle_int(oidp, &msecs, 0, req);
    152 	if (error || !req->newptr)
    153 		return error;
    154 	t = msecs_to_ticks(msecs);
    155 	*(int *)arg1 = (t < 1) ? 1 : t;
    156 	return 0;
    157 }
    158 
    159 static int
    160 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
    161 {
    162 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
    163 	int error;
    164 
    165 	error = sysctl_handle_int(oidp, &inact, 0, req);
    166 	if (error || !req->newptr)
    167 		return error;
    168 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
    169 	return 0;
    170 }
    171 
    172 static int
    173 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
    174 {
    175 	struct ieee80211com *ic = arg1;
    176 
    177 	return SYSCTL_OUT_STR(req, ic->ic_name);
    178 }
    179 
    180 static int
    181 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
    182 {
    183 	struct ieee80211com *ic = arg1;
    184 	int t = 0, error;
    185 
    186 	error = sysctl_handle_int(oidp, &t, 0, req);
    187 	if (error || !req->newptr)
    188 		return error;
    189 	IEEE80211_LOCK(ic);
    190 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
    191 	IEEE80211_UNLOCK(ic);
    192 	return 0;
    193 }
    194 
    195 /*
    196  * For now, just restart everything.
    197  *
    198  * Later on, it'd be nice to have a separate VAP restart to
    199  * full-device restart.
    200  */
    201 static int
    202 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
    203 {
    204 	struct ieee80211vap *vap = arg1;
    205 	int t = 0, error;
    206 
    207 	error = sysctl_handle_int(oidp, &t, 0, req);
    208 	if (error || !req->newptr)
    209 		return error;
    210 
    211 	ieee80211_restart_all(vap->iv_ic);
    212 	return 0;
    213 }
    214 #endif /* notyet */
    215 
    216 void
    217 ieee80211_sysctl_attach(struct ieee80211com *ic)
    218 {
    219 }
    220 
    221 void
    222 ieee80211_sysctl_detach(struct ieee80211com *ic)
    223 {
    224 }
    225 
    226 void
    227 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
    228 {
    229 #ifdef notyet
    230 	struct ifnet *ifp = vap->iv_ifp;
    231 	struct sysctl_ctx_list *ctx;
    232 	struct sysctl_oid *oid;
    233 	char num[14];			/* sufficient for 32 bits */
    234 
    235 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
    236 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
    237 	if (ctx == NULL) {
    238 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
    239 			__func__);
    240 		return;
    241 	}
    242 	sysctl_ctx_init(ctx);
    243 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
    244 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
    245 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
    246 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    247 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
    248 		ieee80211_sysctl_parent, "A", "parent device");
    249 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    250 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
    251 		"driver capabilities");
    252 #ifdef IEEE80211_DEBUG
    253 	vap->iv_debug = ieee80211_debug;
    254 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    255 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
    256 		"control debugging printfs");
    257 #endif
    258 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    259 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
    260 		"consecutive beacon misses before scanning");
    261 	/* XXX inherit from tunables */
    262 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    263 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
    264 		ieee80211_sysctl_inact, "I",
    265 		"station inactivity timeout (sec)");
    266 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    267 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
    268 		ieee80211_sysctl_inact, "I",
    269 		"station inactivity probe timeout (sec)");
    270 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    271 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
    272 		ieee80211_sysctl_inact, "I",
    273 		"station authentication timeout (sec)");
    274 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    275 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
    276 		ieee80211_sysctl_inact, "I",
    277 		"station initial state timeout (sec)");
    278 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
    279 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    280 			"ampdu_mintraffic_bk", CTLFLAG_RW,
    281 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
    282 			"BK traffic tx aggr threshold (pps)");
    283 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    284 			"ampdu_mintraffic_be", CTLFLAG_RW,
    285 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
    286 			"BE traffic tx aggr threshold (pps)");
    287 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    288 			"ampdu_mintraffic_vo", CTLFLAG_RW,
    289 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
    290 			"VO traffic tx aggr threshold (pps)");
    291 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    292 			"ampdu_mintraffic_vi", CTLFLAG_RW,
    293 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
    294 			"VI traffic tx aggr threshold (pps)");
    295 	}
    296 
    297 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    298 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
    299 		ieee80211_sysctl_vap_restart, "I",
    300 		"force a VAP restart");
    301 
    302 	if (vap->iv_caps & IEEE80211_C_DFS) {
    303 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    304 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
    305 			ieee80211_sysctl_radar, "I", "simulate radar event");
    306 	}
    307 	vap->iv_sysctl = ctx;
    308 	vap->iv_oid = oid;
    309 #endif
    310 }
    311 
    312 void
    313 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
    314 {
    315 #ifdef notyet
    316 	if (vap->iv_sysctl != NULL) {
    317 		sysctl_ctx_free(vap->iv_sysctl);
    318 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
    319 		vap->iv_sysctl = NULL;
    320 	}
    321 #endif
    322 }
    323 
    324 
    325 int
    326 ieee80211_node_dectestref(struct ieee80211_node *ni)
    327 {
    328 	/* XXX need equivalent of atomic_dec_and_test */
    329 	atomic_subtract_int(&ni->ni_refcnt, 1);
    330 	return atomic_cas_uint(&ni->ni_refcnt, 0, 1) == 0;
    331 }
    332 
    333 void
    334 ieee80211_drain_ifq(struct ifqueue *ifq)
    335 {
    336 	struct ieee80211_node *ni;
    337 	struct mbuf *m;
    338 
    339 	for (;;) {
    340 		IF_DEQUEUE(ifq, m);
    341 		if (m == NULL)
    342 			break;
    343 
    344 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    345 		FBSDKASSERT(ni != NULL, ("frame w/o node"));
    346 		ieee80211_free_node(ni);
    347 		ieee80211_free_mbuf(m);
    348 	}
    349 }
    350 
    351 void
    352 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
    353 {
    354 	struct ieee80211_node *ni;
    355 	struct mbuf *m, **mprev;
    356 
    357 	IFQ_LOCK(ifq);
    358 	mprev = &ifq->ifq_head;
    359 	while ((m = *mprev) != NULL) {
    360 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    361 		if (ni != NULL && ni->ni_vap == vap) {
    362 			*mprev = m->m_nextpkt;		/* remove from list */
    363 			ifq->ifq_len--;
    364 
    365 			ieee80211_free_node(ni);	/* reclaim ref */
    366 			ieee80211_free_mbuf(m);
    367 		} else
    368 			mprev = &m->m_nextpkt;
    369 	}
    370 	/* recalculate tail ptr */
    371 	m = ifq->ifq_head;
    372 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
    373 		;
    374 	ifq->ifq_tail = m;
    375 	IFQ_UNLOCK(ifq);
    376 }
    377 
    378 /*
    379  * As above, for mbufs allocated with m_gethdr/MGETHDR
    380  * or initialized by M_COPY_PKTHDR.
    381  */
    382 #define	MC_ALIGN(m, len)						\
    383 do {									\
    384 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
    385 } while (/* CONSTCOND */ 0)
    386 
    387 /*
    388  * Allocate and setup a management frame of the specified
    389  * size.  We return the mbuf and a pointer to the start
    390  * of the contiguous data area that's been reserved based
    391  * on the packet length.  The data area is forced to 32-bit
    392  * alignment and the buffer length to a multiple of 4 bytes.
    393  * This is done mainly so beacon frames (that require this)
    394  * can use this interface too.
    395  */
    396 struct mbuf *
    397 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
    398 {
    399 	struct mbuf *m;
    400 	u_int len;
    401 
    402 	/*
    403 	 * NB: we know the mbuf routines will align the data area
    404 	 *     so we don't need to do anything special.
    405 	 */
    406 	len = roundup2(headroom + pktlen, 4);
    407 	FBSDKASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
    408 	if (len < MINCLSIZE) {
    409 		m = m_gethdr(M_NOWAIT, MT_DATA);
    410 		/*
    411 		 * Align the data in case additional headers are added.
    412 		 * This should only happen when a WEP header is added
    413 		 * which only happens for shared key authentication mgt
    414 		 * frames which all fit in MHLEN.
    415 		 */
    416 		if (m != NULL)
    417 			M_ALIGN(m, len);
    418 	} else {
    419 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    420 		if (m != NULL)
    421 			MC_ALIGN(m, len);
    422 	}
    423 	if (m != NULL) {
    424 		m->m_data += headroom;
    425 		*frm = m->m_data;
    426 	}
    427 	return m;
    428 }
    429 
    430 #ifndef __NO_STRICT_ALIGNMENT
    431 /*
    432  * Re-align the payload in the mbuf.  This is mainly used (right now)
    433  * to handle IP header alignment requirements on certain architectures.
    434  */
    435 struct mbuf *
    436 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
    437 {
    438 	int pktlen, space;
    439 	struct mbuf *n;
    440 
    441 	pktlen = m->m_pkthdr.len;
    442 	space = pktlen + align;
    443 	if (space < MINCLSIZE)
    444 		n = m_gethdr(M_NOWAIT, MT_DATA);
    445 	else {
    446 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
    447 		    space <= MCLBYTES ?     MCLBYTES :
    448 #if MJUMPAGESIZE != MCLBYTES
    449 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
    450 #endif
    451 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
    452 	}
    453 	if (__predict_true(n != NULL)) {
    454 		m_move_pkthdr(n, m);
    455 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
    456 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
    457 		n->m_len = pktlen;
    458 	} else {
    459 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
    460 		    mtod(m, const struct ieee80211_frame *), NULL,
    461 		    "%s", "no mbuf to realign");
    462 		vap->iv_stats.is_rx_badalign++;
    463 	}
    464 	m_freem(m);
    465 	return n;
    466 }
    467 #endif /* !__NO_STRICT_ALIGNMENT */
    468 
    469 int
    470 ieee80211_add_callback(struct mbuf *m,
    471 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
    472 {
    473 	struct m_tag *mtag;
    474 	struct ieee80211_cb *cb;
    475 
    476 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_CALLBACK,
    477 			sizeof(struct ieee80211_cb), M_NOWAIT);
    478 	if (mtag == NULL)
    479 		return 0;
    480 
    481 	cb = (struct ieee80211_cb *)(mtag+1);
    482 	cb->func = func;
    483 	cb->arg = arg;
    484 	m_tag_prepend(m, mtag);
    485 	m->m_flags |= M_TXCB;
    486 	return 1;
    487 }
    488 
    489 int
    490 ieee80211_add_xmit_params(struct mbuf *m,
    491     const struct ieee80211_bpf_params *params)
    492 {
    493 	struct m_tag *mtag;
    494 	struct ieee80211_tx_params *tx;
    495 
    496 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_XMIT_PARAMS,
    497 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
    498 	if (mtag == NULL)
    499 		return (0);
    500 
    501 	tx = (struct ieee80211_tx_params *)(mtag+1);
    502 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
    503 	m_tag_prepend(m, mtag);
    504 	return (1);
    505 }
    506 
    507 int
    508 ieee80211_get_xmit_params(struct mbuf *m,
    509     struct ieee80211_bpf_params *params)
    510 {
    511 	struct m_tag *mtag;
    512 	struct ieee80211_tx_params *tx;
    513 
    514 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_XMIT_PARAMS,
    515 	    NULL);
    516 	if (mtag == NULL)
    517 		return (-1);
    518 	tx = (struct ieee80211_tx_params *)(mtag + 1);
    519 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
    520 	return (0);
    521 }
    522 
    523 void
    524 ieee80211_process_callback(struct ieee80211_node *ni,
    525 	struct mbuf *m, int status)
    526 {
    527 	struct m_tag *mtag;
    528 
    529 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_CALLBACK, NULL);
    530 	if (mtag != NULL) {
    531 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
    532 		cb->func(ni, cb->arg, status);
    533 	}
    534 }
    535 
    536 /*
    537  * Add RX parameters to the given mbuf.
    538  *
    539  * Returns 1 if OK, 0 on error.
    540  */
    541 int
    542 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
    543 {
    544 	struct m_tag *mtag;
    545 	struct ieee80211_rx_params *rx;
    546 
    547 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    548 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
    549 	if (mtag == NULL)
    550 		return (0);
    551 
    552 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    553 	memcpy(&rx->params, rxs, sizeof(*rxs));
    554 	m_tag_prepend(m, mtag);
    555 	return (1);
    556 }
    557 
    558 int
    559 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
    560 {
    561 	struct m_tag *mtag;
    562 	struct ieee80211_rx_params *rx;
    563 
    564 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    565 	    NULL);
    566 	if (mtag == NULL)
    567 		return (-1);
    568 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    569 	memcpy(rxs, &rx->params, sizeof(*rxs));
    570 	return (0);
    571 }
    572 
    573 const struct ieee80211_rx_stats *
    574 ieee80211_get_rx_params_ptr(struct mbuf *m)
    575 {
    576 	struct m_tag *mtag;
    577 	struct ieee80211_rx_params *rx;
    578 
    579 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    580 	    NULL);
    581 	if (mtag == NULL)
    582 		return (NULL);
    583 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    584 	return (&rx->params);
    585 }
    586 
    587 
    588 /*
    589  * Add TOA parameters to the given mbuf.
    590  */
    591 int
    592 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
    593 {
    594 	struct m_tag *mtag;
    595 	struct ieee80211_toa_params *rp;
    596 
    597 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    598 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
    599 	if (mtag == NULL)
    600 		return (0);
    601 
    602 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    603 	memcpy(rp, p, sizeof(*rp));
    604 	m_tag_prepend(m, mtag);
    605 	return (1);
    606 }
    607 
    608 int
    609 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
    610 {
    611 	struct m_tag *mtag;
    612 	struct ieee80211_toa_params *rp;
    613 
    614 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    615 	    NULL);
    616 	if (mtag == NULL)
    617 		return (0);
    618 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    619 	if (p != NULL)
    620 		memcpy(p, rp, sizeof(*p));
    621 	return (1);
    622 }
    623 
    624 /*
    625  * Transmit a frame to the parent interface.
    626  */
    627 int
    628 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
    629 {
    630 	int error;
    631 
    632 	/*
    633 	 * Assert the IC TX lock is held - this enforces the
    634 	 * processing -> queuing order is maintained
    635 	 */
    636 	IEEE80211_TX_LOCK_ASSERT(ic);
    637 	error = ic->ic_transmit(ic, m);
    638 	if (error) {
    639 		struct ieee80211_node *ni;
    640 
    641 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    642 
    643 		/* XXX number of fragments */
    644 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
    645 		ieee80211_free_node(ni);
    646 		ieee80211_free_mbuf(m);
    647 	}
    648 	return (error);
    649 }
    650 
    651 /*
    652  * Transmit a frame to the VAP interface.
    653  */
    654 int
    655 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
    656 {
    657 	struct ifnet *ifp = vap->iv_ifp;
    658 
    659 	/*
    660 	 * When transmitting via the VAP, we shouldn't hold
    661 	 * any IC TX lock as the VAP TX path will acquire it.
    662 	 */
    663 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
    664 
    665 	return (ifp->if_transmit(ifp, m));
    666 
    667 }
    668 
    669 void
    670 get_random_bytes(void *p, size_t n)
    671 {
    672 	uint8_t *dp = p;
    673 
    674 	while (n > 0) {
    675 		uint32_t v = arc4random();
    676 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
    677 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
    678 		dp += sizeof(uint32_t), n -= nb;
    679 	}
    680 }
    681 
    682 /*
    683  * Helper function for events that pass just a single mac address.
    684  */
    685 static void
    686 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
    687 {
    688 	struct ieee80211_join_event iev;
    689 
    690 	CURVNET_SET(ifp->if_vnet);
    691 	memset(&iev, 0, sizeof(iev));
    692 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
    693 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
    694 	CURVNET_RESTORE();
    695 }
    696 
    697 void
    698 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
    699 {
    700 	struct ieee80211vap *vap = ni->ni_vap;
    701 	struct ifnet *ifp = vap->iv_ifp;
    702 
    703 	CURVNET_SET_QUIET(ifp->if_vnet);
    704 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
    705 	    (ni == vap->iv_bss) ? "bss " : "");
    706 
    707 	if (ni == vap->iv_bss) {
    708 		notify_macaddr(ifp, newassoc ?
    709 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
    710 		if_link_state_change(ifp, LINK_STATE_UP);
    711 	} else {
    712 		notify_macaddr(ifp, newassoc ?
    713 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
    714 	}
    715 	CURVNET_RESTORE();
    716 }
    717 
    718 void
    719 ieee80211_notify_node_leave(struct ieee80211_node *ni)
    720 {
    721 	struct ieee80211vap *vap = ni->ni_vap;
    722 	struct ifnet *ifp = vap->iv_ifp;
    723 
    724 	CURVNET_SET_QUIET(ifp->if_vnet);
    725 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
    726 	    (ni == vap->iv_bss) ? "bss " : "");
    727 
    728 	if (ni == vap->iv_bss) {
    729 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
    730 		if_link_state_change(ifp, LINK_STATE_DOWN);
    731 	} else {
    732 		/* fire off wireless event station leaving */
    733 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
    734 	}
    735 	CURVNET_RESTORE();
    736 }
    737 
    738 void
    739 ieee80211_notify_scan_done(struct ieee80211vap *vap)
    740 {
    741 	struct ifnet *ifp = vap->iv_ifp;
    742 
    743 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
    744 
    745 	/* dispatch wireless event indicating scan completed */
    746 	CURVNET_SET(ifp->if_vnet);
    747 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
    748 	CURVNET_RESTORE();
    749 }
    750 
    751 void
    752 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
    753 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
    754 	u_int64_t rsc, int tid)
    755 {
    756 	struct ifnet *ifp = vap->iv_ifp;
    757 
    758 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    759 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
    760 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
    761 	    (intmax_t) k->wk_keyrsc[tid],
    762 	    k->wk_keyix, k->wk_rxkeyix);
    763 
    764 	if (ifp != NULL) {		/* NB: for cipher test modules */
    765 		struct ieee80211_replay_event iev;
    766 
    767 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    768 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    769 		iev.iev_cipher = k->wk_cipher->ic_cipher;
    770 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
    771 			iev.iev_keyix = k->wk_rxkeyix;
    772 		else
    773 			iev.iev_keyix = k->wk_keyix;
    774 		iev.iev_keyrsc = k->wk_keyrsc[tid];
    775 		iev.iev_rsc = rsc;
    776 		CURVNET_SET(ifp->if_vnet);
    777 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
    778 		CURVNET_RESTORE();
    779 	}
    780 }
    781 
    782 void
    783 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
    784 	const struct ieee80211_frame *wh, u_int keyix)
    785 {
    786 	struct ifnet *ifp = vap->iv_ifp;
    787 
    788 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    789 	    "michael MIC verification failed <keyix %u>", keyix);
    790 	vap->iv_stats.is_rx_tkipmic++;
    791 
    792 	if (ifp != NULL) {		/* NB: for cipher test modules */
    793 		struct ieee80211_michael_event iev;
    794 
    795 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    796 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    797 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
    798 		iev.iev_keyix = keyix;
    799 		CURVNET_SET(ifp->if_vnet);
    800 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
    801 		CURVNET_RESTORE();
    802 	}
    803 }
    804 
    805 void
    806 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
    807 {
    808 	struct ieee80211vap *vap = ni->ni_vap;
    809 	struct ifnet *ifp = vap->iv_ifp;
    810 
    811 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
    812 }
    813 
    814 void
    815 ieee80211_notify_csa(struct ieee80211com *ic,
    816 	const struct ieee80211_channel *c, int mode, int count)
    817 {
    818 	struct ieee80211_csa_event iev;
    819 	struct ieee80211vap *vap;
    820 	struct ifnet *ifp;
    821 
    822 	memset(&iev, 0, sizeof(iev));
    823 	iev.iev_flags = c->ic_flags;
    824 	iev.iev_freq = c->ic_freq;
    825 	iev.iev_ieee = c->ic_ieee;
    826 	iev.iev_mode = mode;
    827 	iev.iev_count = count;
    828 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    829 		ifp = vap->iv_ifp;
    830 		CURVNET_SET(ifp->if_vnet);
    831 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
    832 		CURVNET_RESTORE();
    833 	}
    834 }
    835 
    836 void
    837 ieee80211_notify_radar(struct ieee80211com *ic,
    838 	const struct ieee80211_channel *c)
    839 {
    840 	struct ieee80211_radar_event iev;
    841 	struct ieee80211vap *vap;
    842 	struct ifnet *ifp;
    843 
    844 	memset(&iev, 0, sizeof(iev));
    845 	iev.iev_flags = c->ic_flags;
    846 	iev.iev_freq = c->ic_freq;
    847 	iev.iev_ieee = c->ic_ieee;
    848 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    849 		ifp = vap->iv_ifp;
    850 		CURVNET_SET(ifp->if_vnet);
    851 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
    852 		CURVNET_RESTORE();
    853 	}
    854 }
    855 
    856 void
    857 ieee80211_notify_cac(struct ieee80211com *ic,
    858 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
    859 {
    860 	struct ieee80211_cac_event iev;
    861 	struct ieee80211vap *vap;
    862 	struct ifnet *ifp;
    863 
    864 	memset(&iev, 0, sizeof(iev));
    865 	iev.iev_flags = c->ic_flags;
    866 	iev.iev_freq = c->ic_freq;
    867 	iev.iev_ieee = c->ic_ieee;
    868 	iev.iev_type = type;
    869 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    870 		ifp = vap->iv_ifp;
    871 		CURVNET_SET(ifp->if_vnet);
    872 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
    873 		CURVNET_RESTORE();
    874 	}
    875 }
    876 
    877 void
    878 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
    879 {
    880 	struct ieee80211vap *vap = ni->ni_vap;
    881 	struct ifnet *ifp = vap->iv_ifp;
    882 
    883 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
    884 
    885 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
    886 }
    887 
    888 void
    889 ieee80211_notify_node_auth(struct ieee80211_node *ni)
    890 {
    891 	struct ieee80211vap *vap = ni->ni_vap;
    892 	struct ifnet *ifp = vap->iv_ifp;
    893 
    894 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
    895 
    896 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
    897 }
    898 
    899 void
    900 ieee80211_notify_country(struct ieee80211vap *vap,
    901 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
    902 {
    903 	struct ifnet *ifp = vap->iv_ifp;
    904 	struct ieee80211_country_event iev;
    905 
    906 	memset(&iev, 0, sizeof(iev));
    907 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
    908 	iev.iev_cc[0] = cc[0];
    909 	iev.iev_cc[1] = cc[1];
    910 	CURVNET_SET(ifp->if_vnet);
    911 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
    912 	CURVNET_RESTORE();
    913 }
    914 
    915 void
    916 ieee80211_notify_radio(struct ieee80211com *ic, int state)
    917 {
    918 	struct ieee80211_radio_event iev;
    919 	struct ieee80211vap *vap;
    920 	struct ifnet *ifp;
    921 
    922 	memset(&iev, 0, sizeof(iev));
    923 	iev.iev_state = state;
    924 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    925 		ifp = vap->iv_ifp;
    926 		CURVNET_SET(ifp->if_vnet);
    927 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
    928 		CURVNET_RESTORE();
    929 	}
    930 }
    931 
    932 void
    933 ieee80211_load_module(const char *modname)
    934 {
    935 
    936 #ifdef notyet
    937 	struct thread *td = curthread;
    938 
    939 	if (suser(td) == 0 && securelevel_gt(td->td_ucred, 0) == 0) {
    940 		mtx_lock(&Giant);
    941 		(void) linker_load_module(modname, NULL, NULL, NULL, NULL);
    942 		mtx_unlock(&Giant);
    943 	}
    944 #else
    945 	printf("%s: load the %s module by hand for now.\n", __func__, modname);
    946 #endif
    947 }
    948 
    949 #ifdef notyet
    950 static eventhandler_tag wlan_bpfevent;
    951 static eventhandler_tag wlan_ifllevent;
    952 
    953 static void
    954 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
    955 {
    956 	/* NB: identify vap's by if_init */
    957 	if (dlt == DLT_IEEE802_11_RADIO &&
    958 	    ifp->if_init == ieee80211_init) {
    959 		struct ieee80211vap *vap = ifp->if_softc;
    960 		/*
    961 		 * Track bpf radiotap listener state.  We mark the vap
    962 		 * to indicate if any listener is present and the com
    963 		 * to indicate if any listener exists on any associated
    964 		 * vap.  This flag is used by drivers to prepare radiotap
    965 		 * state only when needed.
    966 		 */
    967 		if (attach) {
    968 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
    969 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
    970 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
    971 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
    972 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
    973 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
    974 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
    975 		}
    976 	}
    977 }
    978 
    979 /*
    980  * Change MAC address on the vap (if was not started).
    981  */
    982 static void
    983 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
    984 {
    985 	/* NB: identify vap's by if_init */
    986 	if (ifp->if_init == ieee80211_init &&
    987 	    (ifp->if_flags & IFF_UP) == 0) {
    988 		struct ieee80211vap *vap = ifp->if_softc;
    989 
    990 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
    991 	}
    992 }
    993 #endif
    994 
    995 void
    996 if_inc_counter(struct ifnet *ifp, ift_counter ifc, int64_t value)
    997 {
    998 	switch (ifc) {
    999 	case IFCOUNTER_IPACKETS:
   1000 		ifp->if_data.ifi_ipackets += value;
   1001 		break;
   1002 	case IFCOUNTER_IERRORS:
   1003 		ifp->if_data.ifi_ierrors += value;
   1004 		break;
   1005 	case IFCOUNTER_OPACKETS:
   1006 		ifp->if_data.ifi_opackets += value;
   1007 		break;
   1008 	case IFCOUNTER_OERRORS:
   1009 		ifp->if_data.ifi_oerrors += value;
   1010 		break;
   1011         case IFCOUNTER_COLLISIONS:
   1012 		ifp->if_data.ifi_collisions += value;
   1013 		break;
   1014         case IFCOUNTER_IBYTES:
   1015 		ifp->if_data.ifi_ibytes += value;
   1016 		break;
   1017         case IFCOUNTER_OBYTES:
   1018 		ifp->if_data.ifi_obytes += value;
   1019 		break;
   1020         case IFCOUNTER_IMCASTS:
   1021 		ifp->if_data.ifi_imcasts += value;
   1022 		break;
   1023         case IFCOUNTER_OMCASTS:
   1024 		ifp->if_data.ifi_omcasts += value;
   1025 		break;
   1026         case IFCOUNTER_IQDROPS:
   1027 		ifp->if_data.ifi_iqdrops += value;
   1028 		break;
   1029         case IFCOUNTER_OQDROPS:
   1030 		/* ifp->if_data.ifi_oqdrops += value; No such field, just ignore it q*/
   1031 		break;
   1032         case IFCOUNTER_NOPROTO:
   1033 		ifp->if_data.ifi_noproto += value;
   1034 		break;
   1035 	default:
   1036 		panic("if_inc_counter: non-existant counter");
   1037 	}
   1038 }
   1039 
   1040 
   1041 #ifdef notyet
   1042 /*
   1043  * Module glue.
   1044  *
   1045  * NB: the module name is "wlan" for compatibility with NetBSD.
   1046  */
   1047 static int
   1048 wlan_modevent(module_t mod, int type, void *unused)
   1049 {
   1050 	switch (type) {
   1051 	case MOD_LOAD:
   1052 		if (bootverbose)
   1053 			printf("wlan: <802.11 Link Layer>\n");
   1054 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
   1055 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
   1056 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
   1057 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
   1058 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
   1059 		    wlan_clone_destroy, 0);
   1060 		return 0;
   1061 	case MOD_UNLOAD:
   1062 		if_clone_detach(wlan_cloner);
   1063 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
   1064 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
   1065 		return 0;
   1066 	}
   1067 	return EINVAL;
   1068 }
   1069 
   1070 static moduledata_t wlan_mod = {
   1071 	wlanname,
   1072 	wlan_modevent,
   1073 	0
   1074 };
   1075 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1076 MODULE_VERSION(wlan, 1);
   1077 MODULE_DEPEND(wlan, ether, 1, 1, 1);
   1078 #endif
   1079 
   1080 #ifdef	IEEE80211_ALQ
   1081 MODULE_DEPEND(wlan, alq, 1, 1, 1);
   1082 #endif	/* IEEE80211_ALQ */
   1083 
   1084 /* Missing support for if_printf in NetBSD ... */
   1085 int
   1086 if_printf(struct ifnet *ifp, const char *fmt, ...)
   1087 {
   1088         char if_fmt[256];
   1089         va_list ap;
   1090 
   1091         snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
   1092         va_start(ap, fmt);
   1093         vlog(LOG_INFO, if_fmt, ap);
   1094         va_end(ap);
   1095         return (0);
   1096 }
   1097 
   1098 /*
   1099  * Set the m_data pointer of a newly-allocated mbuf
   1100  * to place an object of the specified size at the
   1101  * end of the mbuf, longword aligned.
   1102  */
   1103 void
   1104 m_align(struct mbuf *m, int len)
   1105 {
   1106 	int adjust;
   1107 
   1108 	KASSERT(len != M_COPYALL);
   1109 
   1110 	if (m->m_flags & M_EXT)
   1111 		adjust = m->m_ext.ext_size - len;
   1112 	else if (m->m_flags & M_PKTHDR)
   1113 		adjust = MHLEN - len;
   1114 	else
   1115 		adjust = MLEN - len;
   1116 	m->m_data += adjust &~ (sizeof(long)-1);
   1117 }
   1118 
   1119 /*
   1120  * Append the specified data to the indicated mbuf chain,
   1121  * Extend the mbuf chain if the new data does not fit in
   1122  * existing space.
   1123  *
   1124  * Return 1 if able to complete the job; otherwise 0.
   1125  */
   1126 int
   1127 m_append(struct mbuf *m0, int len, const void *cpv)
   1128 {
   1129 	struct mbuf *m, *n;
   1130 	int remainder, space;
   1131 	const char *cp = cpv;
   1132 
   1133 	KASSERT(len != M_COPYALL);
   1134 	for (m = m0; m->m_next != NULL; m = m->m_next)
   1135 		continue;
   1136 	remainder = len;
   1137 	space = M_TRAILINGSPACE(m);
   1138 	if (space > 0) {
   1139 		/*
   1140 		 * Copy into available space.
   1141 		 */
   1142 		if (space > remainder)
   1143 			space = remainder;
   1144 		memmove(mtod(m, char *) + m->m_len, cp, space);
   1145 		m->m_len += space;
   1146 		cp = cp + space, remainder -= space;
   1147 	}
   1148 	while (remainder > 0) {
   1149 		/*
   1150 		 * Allocate a new mbuf; could check space
   1151 		 * and allocate a cluster instead.
   1152 		 */
   1153 		n = m_get(M_DONTWAIT, m->m_type);
   1154 		if (n == NULL)
   1155 			break;
   1156 		n->m_len = min(MLEN, remainder);
   1157 		memmove(mtod(n, void *), cp, n->m_len);
   1158 		cp += n->m_len, remainder -= n->m_len;
   1159 		m->m_next = n;
   1160 		m = n;
   1161 	}
   1162 	if (m0->m_flags & M_PKTHDR)
   1163 		m0->m_pkthdr.len += len - remainder;
   1164 	return (remainder == 0);
   1165 }
   1166 
   1167 /*
   1168  * Create a writable copy of the mbuf chain.  While doing this
   1169  * we compact the chain with a goal of producing a chain with
   1170  * at most two mbufs.  The second mbuf in this chain is likely
   1171  * to be a cluster.  The primary purpose of this work is to create
   1172  * a writable packet for encryption, compression, etc.  The
   1173  * secondary goal is to linearize the data so the data can be
   1174  * passed to crypto hardware in the most efficient manner possible.
   1175  */
   1176 struct mbuf *
   1177 m_unshare(struct mbuf *m0, int how)
   1178 {
   1179 	struct mbuf *m, *mprev;
   1180 	struct mbuf *n, *mfirst, *mlast;
   1181 	int len, off;
   1182 
   1183 	mprev = NULL;
   1184 	for (m = m0; m != NULL; m = mprev->m_next) {
   1185 		/*
   1186 		 * Regular mbufs are ignored unless there's a cluster
   1187 		 * in front of it that we can use to coalesce.  We do
   1188 		 * the latter mainly so later clusters can be coalesced
   1189 		 * also w/o having to handle them specially (i.e. convert
   1190 		 * mbuf+cluster -> cluster).  This optimization is heavily
   1191 		 * influenced by the assumption that we're running over
   1192 		 * Ethernet where MCLBYTES is large enough that the max
   1193 		 * packet size will permit lots of coalescing into a
   1194 		 * single cluster.  This in turn permits efficient
   1195 		 * crypto operations, especially when using hardware.
   1196 		 */
   1197 		if ((m->m_flags & M_EXT) == 0) {
   1198 			if (mprev && (mprev->m_flags & M_EXT) &&
   1199 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1200 				/* XXX: this ignores mbuf types */
   1201 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
   1202 				    mtod(m, caddr_t), m->m_len);
   1203 				mprev->m_len += m->m_len;
   1204 				mprev->m_next = m->m_next;	/* unlink from chain */
   1205 				m_free(m);			/* reclaim mbuf */
   1206 			} else {
   1207 				mprev = m;
   1208 			}
   1209 			continue;
   1210 		}
   1211 		/*
   1212 		 * Writable mbufs are left alone (for now).
   1213 		 */
   1214 		if (!M_READONLY(m)) {
   1215 			mprev = m;
   1216 			continue;
   1217 		}
   1218 
   1219 		/*
   1220 		 * Not writable, replace with a copy or coalesce with
   1221 		 * the previous mbuf if possible (since we have to copy
   1222 		 * it anyway, we try to reduce the number of mbufs and
   1223 		 * clusters so that future work is easier).
   1224 		 */
   1225 		FBSDKASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
   1226 		/* NB: we only coalesce into a cluster or larger */
   1227 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
   1228 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1229 			/* XXX: this ignores mbuf types */
   1230 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
   1231 			    mtod(m, caddr_t), m->m_len);
   1232 			mprev->m_len += m->m_len;
   1233 			mprev->m_next = m->m_next;	/* unlink from chain */
   1234 			m_free(m);			/* reclaim mbuf */
   1235 			continue;
   1236 		}
   1237 
   1238 		/*
   1239 		 * Allocate new space to hold the copy and copy the data.
   1240 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
   1241 		 * splitting them into clusters.  We could just malloc a
   1242 		 * buffer and make it external but too many device drivers
   1243 		 * don't know how to break up the non-contiguous memory when
   1244 		 * doing DMA.
   1245 		 */
   1246 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1247 		if (n == NULL) {
   1248 			m_freem(m0);
   1249 			return (NULL);
   1250 		}
   1251 		if (m->m_flags & M_PKTHDR) {
   1252 			FBSDKASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
   1253 			    __func__, m0, m));
   1254 			m_move_pkthdr(n, m);
   1255 		}
   1256 		len = m->m_len;
   1257 		off = 0;
   1258 		mfirst = n;
   1259 		mlast = NULL;
   1260 		for (;;) {
   1261 			int cc = min(len, MCLBYTES);
   1262 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
   1263 			n->m_len = cc;
   1264 			if (mlast != NULL)
   1265 				mlast->m_next = n;
   1266 			mlast = n;
   1267 #if 0
   1268 			newipsecstat.ips_clcopied++;
   1269 #endif
   1270 
   1271 			len -= cc;
   1272 			if (len <= 0)
   1273 				break;
   1274 			off += cc;
   1275 
   1276 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1277 			if (n == NULL) {
   1278 				m_freem(mfirst);
   1279 				m_freem(m0);
   1280 				return (NULL);
   1281 			}
   1282 		}
   1283 		n->m_next = m->m_next;
   1284 		if (mprev == NULL)
   1285 			m0 = mfirst;		/* new head of chain */
   1286 		else
   1287 			mprev->m_next = mfirst;	/* replace old mbuf */
   1288 		m_free(m);			/* release old mbuf */
   1289 		mprev = mfirst;
   1290 	}
   1291 	return (m0);
   1292 }
   1293