Home | History | Annotate | Line # | Download | only in net80211
ieee80211_netbsd.c revision 1.31.2.5
      1 /*	$NetBSD: ieee80211_netbsd.c,v 1.31.2.5 2018/07/28 00:49:43 phil Exp $ */
      2 
      3 /*-
      4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      5  *
      6  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 /*  __FBSDID("$FreeBSD$");  */
     32 __KERNEL_RCSID(0, "$NetBSD: ieee80211_netbsd.c,v 1.31.2.5 2018/07/28 00:49:43 phil Exp $");
     33 
     34 /*
     35  * IEEE 802.11 support (NetBSD-specific code)
     36  */
     37 
     38 #include "opt_wlan.h"
     39 
     40 #include <sys/atomic.h>
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/kernel.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/module.h>
     47 #include <sys/proc.h>
     48 #include <sys/sysctl.h>
     49 #include <sys/syslog.h>
     50 
     51 #include <sys/socket.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_ether.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 #include <net/route.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_input.h>
     63 
     64 static const struct sysctlnode *
     65     ieee80211_sysctl_treetop(struct sysctllog **log);
     66 static void ieee80211_sysctl_setup(void);
     67 
     68 /* NNN in .h file? */
     69 #define SYSCTL_HANDLER_ARGS SYSCTLFN_ARGS
     70 
     71 #ifdef IEEE80211_DEBUG
     72 static int	ieee80211_debug = 0;
     73 #endif
     74 
     75 #ifdef notyet
     76 static struct if_clone *wlan_cloner;
     77 #endif
     78 /* notyet */
     79 
     80 static const char wlanname[] = "wlan";
     81 
     82 int
     83 ieee80211_init0(void)
     84 {
     85 	ieee80211_sysctl_setup();
     86 	return 0;
     87 }
     88 
     89 /*
     90  * "taskqueue" support
     91  */
     92 void ieee80211_runwork(struct work *work2do, void *arg)
     93 {
     94 	struct task *work_task = (struct task *) work2do;
     95 	printf ("runwork called! work2do is 0x%lx, t_work.wk_dummy is 0x%lx\n",
     96 		(long) work2do, (long)work_task->t_work.wk_dummy);
     97 	printf ("  runwork:  t_func is 0x%lx, t_arg is 0x%lx\n",
     98 		(long)work_task->t_func, (long)work_task->t_arg);
     99 
    100 	mutex_enter(&work_task->t_mutex);
    101 	work_task->t_onqueue = 0;
    102 	mutex_exit(&work_task->t_mutex);
    103 
    104 	work_task->t_func(work_task->t_arg, 0);
    105 }
    106 
    107 void taskqueue_enqueue(struct workqueue *wq, struct task *task_item)
    108 {
    109 	printf ("taskqueue_enqueue called\n");
    110 	mutex_enter(&task_item->t_mutex);
    111 	if (!task_item->t_onqueue) {
    112 		printf ("   taskqueue_enqueue adding item to workqueue\n");
    113 		workqueue_enqueue(wq, &task_item->t_work, NULL);
    114 		task_item->t_onqueue = 1;
    115 	}
    116 	mutex_exit(&task_item->t_mutex);
    117 }
    118 
    119 void taskqueue_drain(struct workqueue *wq, struct task *task_item)
    120 {
    121 	printf ("taskqueue_drain called\n");
    122 	workqueue_wait(wq, &task_item->t_work);
    123 }
    124 
    125 
    126 static __unused int
    127 wlan_clone_create(struct if_clone *ifc, int unit, void * params)
    128 {
    129 	struct ieee80211_clone_params cp;
    130 	struct ieee80211vap *vap;
    131 	struct ieee80211com *ic;
    132 	int error;
    133 
    134 	error = copyin(params, &cp, sizeof(cp));
    135 	if (error)
    136 		return error;
    137 	ic = ieee80211_find_com(cp.icp_parent);
    138 	if (ic == NULL)
    139 		return ENXIO;
    140 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
    141 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
    142 		    cp.icp_opmode);
    143 		return EINVAL;
    144 	}
    145 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
    146 		ic_printf(ic, "%s mode not supported\n",
    147 		    ieee80211_opmode_name[cp.icp_opmode]);
    148 		return EOPNOTSUPP;
    149 	}
    150 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
    151 #ifdef IEEE80211_SUPPORT_TDMA
    152 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
    153 #else
    154 	    (1)
    155 #endif
    156 	) {
    157 		ic_printf(ic, "TDMA not supported\n");
    158 		return EOPNOTSUPP;
    159 	}
    160 	vap = ic->ic_vap_create(ic, wlanname, unit,
    161 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
    162 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
    163 			    cp.icp_macaddr : ic->ic_macaddr);
    164 
    165 	return (vap == NULL ? EIO : 0);
    166 }
    167 
    168 static __unused void
    169 wlan_clone_destroy(struct ifnet *ifp)
    170 {
    171 	struct ieee80211vap *vap = ifp->if_softc;
    172 	struct ieee80211com *ic = vap->iv_ic;
    173 
    174 	ic->ic_vap_delete(vap);
    175 }
    176 
    177 void
    178 ieee80211_vap_destroy(struct ieee80211vap *vap)
    179 {
    180 #ifdef notyet
    181 	CURVNET_SET(vap->iv_ifp->if_vnet);
    182 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
    183 	CURVNET_RESTORE();
    184 #else
    185 	printf ("vap_destroy called ... what next?\n");
    186 #endif
    187 }
    188 
    189 #ifdef notyet
    190 int
    191 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
    192 {
    193 	int msecs = ticks_to_msecs(*(int *)arg1);
    194 	int error, t;
    195 
    196 	error = sysctl_handle_int(oidp, &msecs, 0, req);
    197 	if (error || !req->newptr)
    198 		return error;
    199 	t = msecs_to_ticks(msecs);
    200 	*(int *)arg1 = (t < 1) ? 1 : t;
    201 	return 0;
    202 }
    203 
    204 static int
    205 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
    206 {
    207 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
    208 	int error;
    209 
    210 	error = sysctl_handle_int(oidp, &inact, 0, req);
    211 	if (error || !req->newptr)
    212 		return error;
    213 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
    214 	return 0;
    215 }
    216 #endif
    217 
    218 static int
    219 ieee80211_sysctl_parent(SYSCTLFN_ARGS)
    220 {
    221 	struct ieee80211vap *vap;
    222 	char pname[IFNAMSIZ];
    223 	struct sysctlnode node;
    224 
    225 	node = *rnode;
    226 	vap = node.sysctl_data;
    227 	strlcpy(pname, vap->iv_ifp->if_xname, IFNAMSIZ);
    228 	node.sysctl_data = pname;
    229 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    230 }
    231 
    232 #ifdef notyet
    233 static int
    234 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
    235 {
    236 	struct ieee80211com *ic = arg1;
    237 	int t = 0, error;
    238 
    239 	error = sysctl_handle_int(oidp, &t, 0, req);
    240 	if (error || !req->newptr)
    241 		return error;
    242 	IEEE80211_LOCK(ic);
    243 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
    244 	IEEE80211_UNLOCK(ic);
    245 	return 0;
    246 }
    247 
    248 /*
    249  * For now, just restart everything.
    250  *
    251  * Later on, it'd be nice to have a separate VAP restart to
    252  * full-device restart.
    253  */
    254 static int
    255 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
    256 {
    257 	struct ieee80211vap *vap = arg1;
    258 	int t = 0, error;
    259 
    260 	error = sysctl_handle_int(oidp, &t, 0, req);
    261 	if (error || !req->newptr)
    262 		return error;
    263 
    264 	ieee80211_restart_all(vap->iv_ic);
    265 	return 0;
    266 }
    267 #endif /* notyet */
    268 
    269 void
    270 ieee80211_sysctl_attach(struct ieee80211com *ic)
    271 {
    272 }
    273 
    274 void
    275 ieee80211_sysctl_detach(struct ieee80211com *ic)
    276 {
    277 }
    278 
    279 /*
    280  * Setup sysctl(3) MIB, net.ieee80211.*
    281  *
    282  * TBD condition CTLFLAG_PERMANENT on being a module or not
    283  */
    284 static struct sysctllog *ieee80211_sysctllog;
    285 static void
    286 ieee80211_sysctl_setup(void)
    287 {
    288 	int rc;
    289 	const struct sysctlnode *rnode;
    290 
    291 	if ((rnode = ieee80211_sysctl_treetop(&ieee80211_sysctllog)) == NULL)
    292 		return;
    293 
    294 #ifdef notyet
    295 	if ((rc = sysctl_createv(&ieee80211_sysctllog, 0, &rnode, NULL,
    296 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nodes", "client/peer stations",
    297 	    ieee80211_sysctl_node, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    298 		goto err;
    299 #endif
    300 
    301 #ifdef IEEE80211_DEBUG
    302 	/* control debugging printfs */
    303 	if ((rc = sysctl_createv(&ieee80211_sysctllog, 0, &rnode, NULL,
    304 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
    305 	    "debug", SYSCTL_DESCR("control debugging printfs"),
    306 	    NULL, 0, &ieee80211_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
    307 		goto err;
    308 #endif
    309 
    310 #ifdef notyet
    311 	ieee80211_rssadapt_sysctl_setup(&ieee80211_sysctllog);
    312 #endif
    313 
    314 	return;
    315 err:
    316 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
    317 }
    318 
    319 /*
    320  * Create or get top of sysctl tree net.link.ieee80211.
    321  */
    322 static const struct sysctlnode *
    323 ieee80211_sysctl_treetop(struct sysctllog **log)
    324 {
    325 	int rc;
    326 	const struct sysctlnode *rnode;
    327 
    328 	if ((rc = sysctl_createv(log, 0, NULL, &rnode,
    329 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "link",
    330 	    "link-layer statistics and controls",
    331 	    NULL, 0, NULL, 0, CTL_NET, PF_LINK, CTL_EOL)) != 0)
    332 		goto err;
    333 
    334 	if ((rc = sysctl_createv(log, 0, &rnode, &rnode,
    335 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ieee80211",
    336 	    "IEEE 802.11 WLAN statistics and controls",
    337 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    338 		goto err;
    339 
    340 	return rnode;
    341 err:
    342 	printf("%s: sysctl_createv failed, rc = %d\n", __func__, rc);
    343 	return NULL;
    344 }
    345 
    346 void
    347 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
    348 {
    349 	int rc;
    350 	const struct sysctlnode *cnode, *rnode;
    351 	char num[sizeof("vap") + 14];		/* sufficient for 32 bits */
    352 
    353 	if ((rnode = ieee80211_sysctl_treetop(NULL)) == NULL)
    354 		return;
    355 
    356 	snprintf(num, sizeof(num), "vap%u", vap->iv_ifp->if_index);
    357 
    358 	if ((rc = sysctl_createv(&vap->iv_sysctllog, 0, &rnode, &rnode,
    359 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, num, SYSCTL_DESCR("virtual AP"),
    360 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    361 		goto err;
    362 
    363 	/* control debugging printfs */
    364 	if ((rc = sysctl_createv(&vap->iv_sysctllog, 0, &rnode, &cnode,
    365 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRING,
    366 	    "parent", SYSCTL_DESCR("parent device"),
    367 	    ieee80211_sysctl_parent, 0, (void *)vap, IFNAMSIZ,
    368 	    CTL_CREATE, CTL_EOL)) != 0)
    369 		goto err;
    370 
    371 
    372 #ifdef notyet
    373 	struct ifnet *ifp = vap->iv_ifp;
    374 	struct sysctl_ctx_list *ctx;
    375 	struct sysctl_oid *oid;
    376 	char num[14];			/* sufficient for 32 bits */
    377 
    378 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
    379 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
    380 	if (ctx == NULL) {
    381 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
    382 			__func__);
    383 		return;
    384 	}
    385 	sysctl_ctx_init(ctx);
    386 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
    387 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
    388 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
    389 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    390 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
    391 		ieee80211_sysctl_parent, "A", "parent device");
    392 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    393 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
    394 		"driver capabilities");
    395 #ifdef IEEE80211_DEBUG
    396 	vap->iv_debug = ieee80211_debug;
    397 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    398 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
    399 		"control debugging printfs");
    400 #endif
    401 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    402 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
    403 		"consecutive beacon misses before scanning");
    404 	/* XXX inherit from tunables */
    405 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    406 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
    407 		ieee80211_sysctl_inact, "I",
    408 		"station inactivity timeout (sec)");
    409 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    410 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
    411 		ieee80211_sysctl_inact, "I",
    412 		"station inactivity probe timeout (sec)");
    413 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    414 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
    415 		ieee80211_sysctl_inact, "I",
    416 		"station authentication timeout (sec)");
    417 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    418 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
    419 		ieee80211_sysctl_inact, "I",
    420 		"station initial state timeout (sec)");
    421 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
    422 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    423 			"ampdu_mintraffic_bk", CTLFLAG_RW,
    424 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
    425 			"BK traffic tx aggr threshold (pps)");
    426 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    427 			"ampdu_mintraffic_be", CTLFLAG_RW,
    428 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
    429 			"BE traffic tx aggr threshold (pps)");
    430 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    431 			"ampdu_mintraffic_vo", CTLFLAG_RW,
    432 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
    433 			"VO traffic tx aggr threshold (pps)");
    434 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    435 			"ampdu_mintraffic_vi", CTLFLAG_RW,
    436 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
    437 			"VI traffic tx aggr threshold (pps)");
    438 	}
    439 
    440 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    441 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
    442 		ieee80211_sysctl_vap_restart, "I",
    443 		"force a VAP restart");
    444 
    445 	if (vap->iv_caps & IEEE80211_C_DFS) {
    446 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    447 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
    448 			ieee80211_sysctl_radar, "I", "simulate radar event");
    449 	}
    450 	vap->iv_sysctl = ctx;
    451 	vap->iv_oid = oid;
    452 #endif
    453 	return;
    454 err:
    455 	printf("%s: sysctl_createv failed, rc = %d\n", __func__, rc);
    456 }
    457 
    458 void
    459 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
    460 {
    461 #ifdef notyet
    462 	if (vap->iv_sysctl != NULL) {
    463 		sysctl_ctx_free(vap->iv_sysctl);
    464 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
    465 		vap->iv_sysctl = NULL;
    466 	}
    467 #endif
    468 }
    469 
    470 
    471 int
    472 ieee80211_node_dectestref(struct ieee80211_node *ni)
    473 {
    474 	/* XXX need equivalent of atomic_dec_and_test */
    475 	atomic_subtract_int(&ni->ni_refcnt, 1);
    476 	return atomic_cas_uint(&ni->ni_refcnt, 0, 1) == 0;
    477 }
    478 
    479 void
    480 ieee80211_drain_ifq(struct ifqueue *ifq)
    481 {
    482 	struct ieee80211_node *ni;
    483 	struct mbuf *m;
    484 
    485 	for (;;) {
    486 		IF_DEQUEUE(ifq, m);
    487 		if (m == NULL)
    488 			break;
    489 
    490 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    491 		FBSDKASSERT(ni != NULL, ("frame w/o node"));
    492 		ieee80211_free_node(ni);
    493 		ieee80211_free_mbuf(m);
    494 	}
    495 }
    496 
    497 void
    498 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
    499 {
    500 	struct ieee80211_node *ni;
    501 	struct mbuf *m, **mprev;
    502 
    503 	IFQ_LOCK(ifq);
    504 	mprev = &ifq->ifq_head;
    505 	while ((m = *mprev) != NULL) {
    506 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    507 		if (ni != NULL && ni->ni_vap == vap) {
    508 			*mprev = m->m_nextpkt;		/* remove from list */
    509 			ifq->ifq_len--;
    510 
    511 			ieee80211_free_node(ni);	/* reclaim ref */
    512 			ieee80211_free_mbuf(m);
    513 		} else
    514 			mprev = &m->m_nextpkt;
    515 	}
    516 	/* recalculate tail ptr */
    517 	m = ifq->ifq_head;
    518 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
    519 		;
    520 	ifq->ifq_tail = m;
    521 	IFQ_UNLOCK(ifq);
    522 }
    523 
    524 /*
    525  * As above, for mbufs allocated with m_gethdr/MGETHDR
    526  * or initialized by M_COPY_PKTHDR.
    527  */
    528 #define	MC_ALIGN(m, len)						\
    529 do {									\
    530 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
    531 } while (/* CONSTCOND */ 0)
    532 
    533 /*
    534  * Allocate and setup a management frame of the specified
    535  * size.  We return the mbuf and a pointer to the start
    536  * of the contiguous data area that's been reserved based
    537  * on the packet length.  The data area is forced to 32-bit
    538  * alignment and the buffer length to a multiple of 4 bytes.
    539  * This is done mainly so beacon frames (that require this)
    540  * can use this interface too.
    541  */
    542 struct mbuf *
    543 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
    544 {
    545 	struct mbuf *m;
    546 	u_int len;
    547 
    548 	/*
    549 	 * NB: we know the mbuf routines will align the data area
    550 	 *     so we don't need to do anything special.
    551 	 */
    552 	len = roundup2(headroom + pktlen, 4);
    553 	FBSDKASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
    554 	if (len < MINCLSIZE) {
    555 		m = m_gethdr(M_NOWAIT, MT_DATA);
    556 		/*
    557 		 * Align the data in case additional headers are added.
    558 		 * This should only happen when a WEP header is added
    559 		 * which only happens for shared key authentication mgt
    560 		 * frames which all fit in MHLEN.
    561 		 */
    562 		if (m != NULL)
    563 			MH_ALIGN(m, len);
    564 	} else {
    565 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    566 		if (m != NULL)
    567 			MC_ALIGN(m, len);
    568 	}
    569 	if (m != NULL) {
    570 		m->m_data += headroom;
    571 		*frm = m->m_data;
    572 	}
    573 	return m;
    574 }
    575 
    576 #ifndef __NO_STRICT_ALIGNMENT
    577 /*
    578  * Re-align the payload in the mbuf.  This is mainly used (right now)
    579  * to handle IP header alignment requirements on certain architectures.
    580  */
    581 struct mbuf *
    582 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
    583 {
    584 	int pktlen, space;
    585 	struct mbuf *n;
    586 
    587 	pktlen = m->m_pkthdr.len;
    588 	space = pktlen + align;
    589 	if (space < MINCLSIZE)
    590 		n = m_gethdr(M_NOWAIT, MT_DATA);
    591 	else {
    592 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
    593 		    space <= MCLBYTES ?     MCLBYTES :
    594 #if MJUMPAGESIZE != MCLBYTES
    595 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
    596 #endif
    597 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
    598 	}
    599 	if (__predict_true(n != NULL)) {
    600 		m_move_pkthdr(n, m);
    601 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
    602 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
    603 		n->m_len = pktlen;
    604 	} else {
    605 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
    606 		    mtod(m, const struct ieee80211_frame *), NULL,
    607 		    "%s", "no mbuf to realign");
    608 		vap->iv_stats.is_rx_badalign++;
    609 	}
    610 	m_freem(m);
    611 	return n;
    612 }
    613 #endif /* !__NO_STRICT_ALIGNMENT */
    614 
    615 int
    616 ieee80211_add_callback(struct mbuf *m,
    617 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
    618 {
    619 	struct m_tag *mtag;
    620 	struct ieee80211_cb *cb;
    621 
    622 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_CALLBACK,
    623 			sizeof(struct ieee80211_cb), M_NOWAIT);
    624 	if (mtag == NULL)
    625 		return 0;
    626 
    627 	cb = (struct ieee80211_cb *)(mtag+1);
    628 	cb->func = func;
    629 	cb->arg = arg;
    630 	m_tag_prepend(m, mtag);
    631 	m->m_flags |= M_TXCB;
    632 	return 1;
    633 }
    634 
    635 int
    636 ieee80211_add_xmit_params(struct mbuf *m,
    637     const struct ieee80211_bpf_params *params)
    638 {
    639 	struct m_tag *mtag;
    640 	struct ieee80211_tx_params *tx;
    641 
    642 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_XMIT_PARAMS,
    643 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
    644 	if (mtag == NULL)
    645 		return (0);
    646 
    647 	tx = (struct ieee80211_tx_params *)(mtag+1);
    648 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
    649 	m_tag_prepend(m, mtag);
    650 	return (1);
    651 }
    652 
    653 int
    654 ieee80211_get_xmit_params(struct mbuf *m,
    655     struct ieee80211_bpf_params *params)
    656 {
    657 	struct m_tag *mtag;
    658 	struct ieee80211_tx_params *tx;
    659 
    660 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_XMIT_PARAMS,
    661 	    NULL);
    662 	if (mtag == NULL)
    663 		return (-1);
    664 	tx = (struct ieee80211_tx_params *)(mtag + 1);
    665 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
    666 	return (0);
    667 }
    668 
    669 void
    670 ieee80211_process_callback(struct ieee80211_node *ni,
    671 	struct mbuf *m, int status)
    672 {
    673 	struct m_tag *mtag;
    674 
    675 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_CALLBACK, NULL);
    676 	if (mtag != NULL) {
    677 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
    678 		cb->func(ni, cb->arg, status);
    679 	}
    680 }
    681 
    682 /*
    683  * Add RX parameters to the given mbuf.
    684  *
    685  * Returns 1 if OK, 0 on error.
    686  */
    687 int
    688 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
    689 {
    690 	struct m_tag *mtag;
    691 	struct ieee80211_rx_params *rx;
    692 
    693 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    694 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
    695 	if (mtag == NULL)
    696 		return (0);
    697 
    698 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    699 	memcpy(&rx->params, rxs, sizeof(*rxs));
    700 	m_tag_prepend(m, mtag);
    701 	return (1);
    702 }
    703 
    704 int
    705 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
    706 {
    707 	struct m_tag *mtag;
    708 	struct ieee80211_rx_params *rx;
    709 
    710 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    711 	    NULL);
    712 	if (mtag == NULL)
    713 		return (-1);
    714 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    715 	memcpy(rxs, &rx->params, sizeof(*rxs));
    716 	return (0);
    717 }
    718 
    719 const struct ieee80211_rx_stats *
    720 ieee80211_get_rx_params_ptr(struct mbuf *m)
    721 {
    722 	struct m_tag *mtag;
    723 	struct ieee80211_rx_params *rx;
    724 
    725 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    726 	    NULL);
    727 	if (mtag == NULL)
    728 		return (NULL);
    729 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    730 	return (&rx->params);
    731 }
    732 
    733 
    734 /*
    735  * Add TOA parameters to the given mbuf.
    736  */
    737 int
    738 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
    739 {
    740 	struct m_tag *mtag;
    741 	struct ieee80211_toa_params *rp;
    742 
    743 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    744 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
    745 	if (mtag == NULL)
    746 		return (0);
    747 
    748 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    749 	memcpy(rp, p, sizeof(*rp));
    750 	m_tag_prepend(m, mtag);
    751 	return (1);
    752 }
    753 
    754 int
    755 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
    756 {
    757 	struct m_tag *mtag;
    758 	struct ieee80211_toa_params *rp;
    759 
    760 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    761 	    NULL);
    762 	if (mtag == NULL)
    763 		return (0);
    764 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    765 	if (p != NULL)
    766 		memcpy(p, rp, sizeof(*p));
    767 	return (1);
    768 }
    769 
    770 /*
    771  * Transmit a frame to the parent interface.
    772  */
    773 int
    774 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
    775 {
    776 	int error;
    777 	printf ("ieee80211_parent_xmitpkt called\n");
    778 	/*
    779 	 * Assert the IC TX lock is held - this enforces the
    780 	 * processing -> queuing order is maintained
    781 	 */
    782 	IEEE80211_TX_LOCK_ASSERT(ic);
    783 	error = ic->ic_transmit(ic, m);
    784 	if (error) {
    785 		struct ieee80211_node *ni;
    786 
    787 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    788 
    789 		/* XXX number of fragments */
    790 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
    791 		ieee80211_free_node(ni);
    792 		ieee80211_free_mbuf(m);
    793 	}
    794 	return (error);
    795 }
    796 
    797 /*
    798  * Transmit a frame to the VAP interface.
    799  */
    800 int
    801 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
    802 {
    803 	struct ifnet *ifp = vap->iv_ifp;
    804 
    805 	/*
    806 	 * When transmitting via the VAP, we shouldn't hold
    807 	 * any IC TX lock as the VAP TX path will acquire it.
    808 	 */
    809 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
    810 
    811 	return (ifp->if_transmit(ifp, m));
    812 
    813 }
    814 
    815 void
    816 get_random_bytes(void *p, size_t n)
    817 {
    818 	uint8_t *dp = p;
    819 
    820 	while (n > 0) {
    821 		uint32_t v = arc4random();
    822 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
    823 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
    824 		dp += sizeof(uint32_t), n -= nb;
    825 	}
    826 }
    827 
    828 /*
    829  * Helper function for events that pass just a single mac address.
    830  */
    831 static void
    832 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
    833 {
    834 	struct ieee80211_join_event iev;
    835 
    836 	CURVNET_SET(ifp->if_vnet);
    837 	memset(&iev, 0, sizeof(iev));
    838 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
    839 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
    840 	CURVNET_RESTORE();
    841 }
    842 
    843 void
    844 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
    845 {
    846 	struct ieee80211vap *vap = ni->ni_vap;
    847 	struct ifnet *ifp = vap->iv_ifp;
    848 
    849 	CURVNET_SET_QUIET(ifp->if_vnet);
    850 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
    851 	    (ni == vap->iv_bss) ? "bss " : "");
    852 
    853 	if (ni == vap->iv_bss) {
    854 		notify_macaddr(ifp, newassoc ?
    855 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
    856 		if_link_state_change(ifp, LINK_STATE_UP);
    857 	} else {
    858 		notify_macaddr(ifp, newassoc ?
    859 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
    860 	}
    861 	CURVNET_RESTORE();
    862 }
    863 
    864 void
    865 ieee80211_notify_node_leave(struct ieee80211_node *ni)
    866 {
    867 	struct ieee80211vap *vap = ni->ni_vap;
    868 	struct ifnet *ifp = vap->iv_ifp;
    869 
    870 	CURVNET_SET_QUIET(ifp->if_vnet);
    871 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
    872 	    (ni == vap->iv_bss) ? "bss " : "");
    873 
    874 	if (ni == vap->iv_bss) {
    875 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
    876 		if_link_state_change(ifp, LINK_STATE_DOWN);
    877 	} else {
    878 		/* fire off wireless event station leaving */
    879 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
    880 	}
    881 	CURVNET_RESTORE();
    882 }
    883 
    884 void
    885 ieee80211_notify_scan_done(struct ieee80211vap *vap)
    886 {
    887 	struct ifnet *ifp = vap->iv_ifp;
    888 
    889 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
    890 
    891 	/* dispatch wireless event indicating scan completed */
    892 	CURVNET_SET(ifp->if_vnet);
    893 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
    894 	CURVNET_RESTORE();
    895 }
    896 
    897 void
    898 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
    899 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
    900 	u_int64_t rsc, int tid)
    901 {
    902 	struct ifnet *ifp = vap->iv_ifp;
    903 
    904 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    905 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
    906 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
    907 	    (intmax_t) k->wk_keyrsc[tid],
    908 	    k->wk_keyix, k->wk_rxkeyix);
    909 
    910 	if (ifp != NULL) {		/* NB: for cipher test modules */
    911 		struct ieee80211_replay_event iev;
    912 
    913 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    914 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    915 		iev.iev_cipher = k->wk_cipher->ic_cipher;
    916 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
    917 			iev.iev_keyix = k->wk_rxkeyix;
    918 		else
    919 			iev.iev_keyix = k->wk_keyix;
    920 		iev.iev_keyrsc = k->wk_keyrsc[tid];
    921 		iev.iev_rsc = rsc;
    922 		CURVNET_SET(ifp->if_vnet);
    923 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
    924 		CURVNET_RESTORE();
    925 	}
    926 }
    927 
    928 void
    929 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
    930 	const struct ieee80211_frame *wh, u_int keyix)
    931 {
    932 	struct ifnet *ifp = vap->iv_ifp;
    933 
    934 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    935 	    "michael MIC verification failed <keyix %u>", keyix);
    936 	vap->iv_stats.is_rx_tkipmic++;
    937 
    938 	if (ifp != NULL) {		/* NB: for cipher test modules */
    939 		struct ieee80211_michael_event iev;
    940 
    941 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    942 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    943 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
    944 		iev.iev_keyix = keyix;
    945 		CURVNET_SET(ifp->if_vnet);
    946 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
    947 		CURVNET_RESTORE();
    948 	}
    949 }
    950 
    951 void
    952 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
    953 {
    954 	struct ieee80211vap *vap = ni->ni_vap;
    955 	struct ifnet *ifp = vap->iv_ifp;
    956 
    957 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
    958 }
    959 
    960 void
    961 ieee80211_notify_csa(struct ieee80211com *ic,
    962 	const struct ieee80211_channel *c, int mode, int count)
    963 {
    964 	struct ieee80211_csa_event iev;
    965 	struct ieee80211vap *vap;
    966 	struct ifnet *ifp;
    967 
    968 	memset(&iev, 0, sizeof(iev));
    969 	iev.iev_flags = c->ic_flags;
    970 	iev.iev_freq = c->ic_freq;
    971 	iev.iev_ieee = c->ic_ieee;
    972 	iev.iev_mode = mode;
    973 	iev.iev_count = count;
    974 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    975 		ifp = vap->iv_ifp;
    976 		CURVNET_SET(ifp->if_vnet);
    977 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
    978 		CURVNET_RESTORE();
    979 	}
    980 }
    981 
    982 void
    983 ieee80211_notify_radar(struct ieee80211com *ic,
    984 	const struct ieee80211_channel *c)
    985 {
    986 	struct ieee80211_radar_event iev;
    987 	struct ieee80211vap *vap;
    988 	struct ifnet *ifp;
    989 
    990 	memset(&iev, 0, sizeof(iev));
    991 	iev.iev_flags = c->ic_flags;
    992 	iev.iev_freq = c->ic_freq;
    993 	iev.iev_ieee = c->ic_ieee;
    994 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
    995 		ifp = vap->iv_ifp;
    996 		CURVNET_SET(ifp->if_vnet);
    997 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
    998 		CURVNET_RESTORE();
    999 	}
   1000 }
   1001 
   1002 void
   1003 ieee80211_notify_cac(struct ieee80211com *ic,
   1004 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
   1005 {
   1006 	struct ieee80211_cac_event iev;
   1007 	struct ieee80211vap *vap;
   1008 	struct ifnet *ifp;
   1009 
   1010 	memset(&iev, 0, sizeof(iev));
   1011 	iev.iev_flags = c->ic_flags;
   1012 	iev.iev_freq = c->ic_freq;
   1013 	iev.iev_ieee = c->ic_ieee;
   1014 	iev.iev_type = type;
   1015 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1016 		ifp = vap->iv_ifp;
   1017 		CURVNET_SET(ifp->if_vnet);
   1018 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
   1019 		CURVNET_RESTORE();
   1020 	}
   1021 }
   1022 
   1023 void
   1024 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
   1025 {
   1026 	struct ieee80211vap *vap = ni->ni_vap;
   1027 	struct ifnet *ifp = vap->iv_ifp;
   1028 
   1029 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
   1030 
   1031 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
   1032 }
   1033 
   1034 void
   1035 ieee80211_notify_node_auth(struct ieee80211_node *ni)
   1036 {
   1037 	struct ieee80211vap *vap = ni->ni_vap;
   1038 	struct ifnet *ifp = vap->iv_ifp;
   1039 
   1040 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
   1041 
   1042 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
   1043 }
   1044 
   1045 void
   1046 ieee80211_notify_country(struct ieee80211vap *vap,
   1047 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
   1048 {
   1049 	struct ifnet *ifp = vap->iv_ifp;
   1050 	struct ieee80211_country_event iev;
   1051 
   1052 	memset(&iev, 0, sizeof(iev));
   1053 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
   1054 	iev.iev_cc[0] = cc[0];
   1055 	iev.iev_cc[1] = cc[1];
   1056 	CURVNET_SET(ifp->if_vnet);
   1057 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
   1058 	CURVNET_RESTORE();
   1059 }
   1060 
   1061 void
   1062 ieee80211_notify_radio(struct ieee80211com *ic, int state)
   1063 {
   1064 	struct ieee80211_radio_event iev;
   1065 	struct ieee80211vap *vap;
   1066 	struct ifnet *ifp;
   1067 
   1068 	memset(&iev, 0, sizeof(iev));
   1069 	iev.iev_state = state;
   1070 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1071 		ifp = vap->iv_ifp;
   1072 		CURVNET_SET(ifp->if_vnet);
   1073 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
   1074 		CURVNET_RESTORE();
   1075 	}
   1076 }
   1077 
   1078 #ifdef notyet
   1079 void
   1080 ieee80211_load_module(const char *modname)
   1081 {
   1082 	struct thread *td = curthread;
   1083 
   1084 	if (suser(td) == 0 && securelevel_gt(td->td_ucred, 0) == 0) {
   1085 		mtx_lock(&Giant);
   1086 		(void) linker_load_module(modname, NULL, NULL, NULL, NULL);
   1087 		mtx_unlock(&Giant);
   1088 	}
   1089 }
   1090 #endif
   1091 
   1092 #ifdef notyet
   1093 static eventhandler_tag wlan_bpfevent;
   1094 static eventhandler_tag wlan_ifllevent;
   1095 
   1096 static void
   1097 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
   1098 {
   1099 	/* NB: identify vap's by if_init */
   1100 	if (dlt == DLT_IEEE802_11_RADIO &&
   1101 	    ifp->if_init == ieee80211_init) {
   1102 		struct ieee80211vap *vap = ifp->if_softc;
   1103 		/*
   1104 		 * Track bpf radiotap listener state.  We mark the vap
   1105 		 * to indicate if any listener is present and the com
   1106 		 * to indicate if any listener exists on any associated
   1107 		 * vap.  This flag is used by drivers to prepare radiotap
   1108 		 * state only when needed.
   1109 		 */
   1110 		if (attach) {
   1111 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
   1112 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
   1113 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
   1114 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
   1115 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
   1116 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
   1117 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
   1118 		}
   1119 	}
   1120 }
   1121 
   1122 /*
   1123  * Change MAC address on the vap (if was not started).
   1124  */
   1125 static void
   1126 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
   1127 {
   1128 	/* NB: identify vap's by if_init */
   1129 	if (ifp->if_init == ieee80211_init &&
   1130 	    (ifp->if_flags & IFF_UP) == 0) {
   1131 		struct ieee80211vap *vap = ifp->if_softc;
   1132 
   1133 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
   1134 	}
   1135 }
   1136 #endif
   1137 
   1138 void
   1139 if_inc_counter(struct ifnet *ifp, ift_counter ifc, int64_t value)
   1140 {
   1141 	switch (ifc) {
   1142 	case IFCOUNTER_IPACKETS:
   1143 		ifp->if_data.ifi_ipackets += value;
   1144 		break;
   1145 	case IFCOUNTER_IERRORS:
   1146 		ifp->if_data.ifi_ierrors += value;
   1147 		break;
   1148 	case IFCOUNTER_OPACKETS:
   1149 		ifp->if_data.ifi_opackets += value;
   1150 		break;
   1151 	case IFCOUNTER_OERRORS:
   1152 		ifp->if_data.ifi_oerrors += value;
   1153 		break;
   1154         case IFCOUNTER_COLLISIONS:
   1155 		ifp->if_data.ifi_collisions += value;
   1156 		break;
   1157         case IFCOUNTER_IBYTES:
   1158 		ifp->if_data.ifi_ibytes += value;
   1159 		break;
   1160         case IFCOUNTER_OBYTES:
   1161 		ifp->if_data.ifi_obytes += value;
   1162 		break;
   1163         case IFCOUNTER_IMCASTS:
   1164 		ifp->if_data.ifi_imcasts += value;
   1165 		break;
   1166         case IFCOUNTER_OMCASTS:
   1167 		ifp->if_data.ifi_omcasts += value;
   1168 		break;
   1169         case IFCOUNTER_IQDROPS:
   1170 		ifp->if_data.ifi_iqdrops += value;
   1171 		break;
   1172         case IFCOUNTER_OQDROPS:
   1173 		/* ifp->if_data.ifi_oqdrops += value; No such field, just ignore it q*/
   1174 		break;
   1175         case IFCOUNTER_NOPROTO:
   1176 		ifp->if_data.ifi_noproto += value;
   1177 		break;
   1178 	default:
   1179 		panic("if_inc_counter: non-existant counter");
   1180 	}
   1181 }
   1182 
   1183 
   1184 #ifdef notyet
   1185 /*
   1186  * Module glue.
   1187  *
   1188  * NB: the module name is "wlan" for compatibility with NetBSD.
   1189  */
   1190 static int
   1191 wlan_modevent(module_t mod, int type, void *unused)
   1192 {
   1193 	switch (type) {
   1194 	case MOD_LOAD:
   1195 		if (bootverbose)
   1196 			printf("wlan: <802.11 Link Layer>\n");
   1197 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
   1198 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
   1199 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
   1200 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
   1201 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
   1202 		    wlan_clone_destroy, 0);
   1203 		return 0;
   1204 	case MOD_UNLOAD:
   1205 		if_clone_detach(wlan_cloner);
   1206 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
   1207 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
   1208 		return 0;
   1209 	}
   1210 	return EINVAL;
   1211 }
   1212 
   1213 static moduledata_t wlan_mod = {
   1214 	wlanname,
   1215 	wlan_modevent,
   1216 	0
   1217 };
   1218 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1219 MODULE_VERSION(wlan, 1);
   1220 MODULE_DEPEND(wlan, ether, 1, 1, 1);
   1221 #endif
   1222 
   1223 #ifdef	IEEE80211_ALQ
   1224 MODULE_DEPEND(wlan, alq, 1, 1, 1);
   1225 #endif	/* IEEE80211_ALQ */
   1226 
   1227 /* Missing support for if_printf in NetBSD ... */
   1228 int
   1229 if_printf(struct ifnet *ifp, const char *fmt, ...)
   1230 {
   1231         char if_fmt[256];
   1232         va_list ap;
   1233 
   1234         snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
   1235         va_start(ap, fmt);
   1236         vlog(LOG_INFO, if_fmt, ap);
   1237         va_end(ap);
   1238         return (0);
   1239 }
   1240 
   1241 /*
   1242  * Set the m_data pointer of a newly-allocated mbuf
   1243  * to place an object of the specified size at the
   1244  * end of the mbuf, longword aligned.
   1245  */
   1246 void
   1247 m_align(struct mbuf *m, int len)
   1248 {
   1249 	int adjust;
   1250 
   1251 	KASSERT(len != M_COPYALL);
   1252 
   1253 	if (m->m_flags & M_EXT)
   1254 		adjust = m->m_ext.ext_size - len;
   1255 	else if (m->m_flags & M_PKTHDR)
   1256 		adjust = MHLEN - len;
   1257 	else
   1258 		adjust = MLEN - len;
   1259 	m->m_data += adjust &~ (sizeof(long)-1);
   1260 }
   1261 
   1262 /*
   1263  * Append the specified data to the indicated mbuf chain,
   1264  * Extend the mbuf chain if the new data does not fit in
   1265  * existing space.
   1266  *
   1267  * Return 1 if able to complete the job; otherwise 0.
   1268  */
   1269 int
   1270 m_append(struct mbuf *m0, int len, const void *cpv)
   1271 {
   1272 	struct mbuf *m, *n;
   1273 	int remainder, space;
   1274 	const char *cp = cpv;
   1275 
   1276 	KASSERT(len != M_COPYALL);
   1277 	for (m = m0; m->m_next != NULL; m = m->m_next)
   1278 		continue;
   1279 	remainder = len;
   1280 	space = M_TRAILINGSPACE(m);
   1281 	if (space > 0) {
   1282 		/*
   1283 		 * Copy into available space.
   1284 		 */
   1285 		if (space > remainder)
   1286 			space = remainder;
   1287 		memmove(mtod(m, char *) + m->m_len, cp, space);
   1288 		m->m_len += space;
   1289 		cp = cp + space, remainder -= space;
   1290 	}
   1291 	while (remainder > 0) {
   1292 		/*
   1293 		 * Allocate a new mbuf; could check space
   1294 		 * and allocate a cluster instead.
   1295 		 */
   1296 		n = m_get(M_DONTWAIT, m->m_type);
   1297 		if (n == NULL)
   1298 			break;
   1299 		n->m_len = min(MLEN, remainder);
   1300 		memmove(mtod(n, void *), cp, n->m_len);
   1301 		cp += n->m_len, remainder -= n->m_len;
   1302 		m->m_next = n;
   1303 		m = n;
   1304 	}
   1305 	if (m0->m_flags & M_PKTHDR)
   1306 		m0->m_pkthdr.len += len - remainder;
   1307 	return (remainder == 0);
   1308 }
   1309 
   1310 /*
   1311  * Create a writable copy of the mbuf chain.  While doing this
   1312  * we compact the chain with a goal of producing a chain with
   1313  * at most two mbufs.  The second mbuf in this chain is likely
   1314  * to be a cluster.  The primary purpose of this work is to create
   1315  * a writable packet for encryption, compression, etc.  The
   1316  * secondary goal is to linearize the data so the data can be
   1317  * passed to crypto hardware in the most efficient manner possible.
   1318  */
   1319 struct mbuf *
   1320 m_unshare(struct mbuf *m0, int how)
   1321 {
   1322 	struct mbuf *m, *mprev;
   1323 	struct mbuf *n, *mfirst, *mlast;
   1324 	int len, off;
   1325 
   1326 	mprev = NULL;
   1327 	for (m = m0; m != NULL; m = mprev->m_next) {
   1328 		/*
   1329 		 * Regular mbufs are ignored unless there's a cluster
   1330 		 * in front of it that we can use to coalesce.  We do
   1331 		 * the latter mainly so later clusters can be coalesced
   1332 		 * also w/o having to handle them specially (i.e. convert
   1333 		 * mbuf+cluster -> cluster).  This optimization is heavily
   1334 		 * influenced by the assumption that we're running over
   1335 		 * Ethernet where MCLBYTES is large enough that the max
   1336 		 * packet size will permit lots of coalescing into a
   1337 		 * single cluster.  This in turn permits efficient
   1338 		 * crypto operations, especially when using hardware.
   1339 		 */
   1340 		if ((m->m_flags & M_EXT) == 0) {
   1341 			if (mprev && (mprev->m_flags & M_EXT) &&
   1342 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1343 				/* XXX: this ignores mbuf types */
   1344 				memcpy(mtod(mprev, __uint8_t *) + mprev->m_len,
   1345 				    mtod(m, __uint8_t *), m->m_len);
   1346 				mprev->m_len += m->m_len;
   1347 				mprev->m_next = m->m_next;	/* unlink from chain */
   1348 				m_free(m);			/* reclaim mbuf */
   1349 			} else {
   1350 				mprev = m;
   1351 			}
   1352 			continue;
   1353 		}
   1354 		/*
   1355 		 * Writable mbufs are left alone (for now).
   1356 		 */
   1357 		if (!M_READONLY(m)) {
   1358 			mprev = m;
   1359 			continue;
   1360 		}
   1361 
   1362 		/*
   1363 		 * Not writable, replace with a copy or coalesce with
   1364 		 * the previous mbuf if possible (since we have to copy
   1365 		 * it anyway, we try to reduce the number of mbufs and
   1366 		 * clusters so that future work is easier).
   1367 		 */
   1368 		FBSDKASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
   1369 		/* NB: we only coalesce into a cluster or larger */
   1370 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
   1371 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1372 			/* XXX: this ignores mbuf types */
   1373 			memcpy(mtod(mprev, __uint8_t *) + mprev->m_len,
   1374 			    mtod(m, __uint8_t *), m->m_len);
   1375 			mprev->m_len += m->m_len;
   1376 			mprev->m_next = m->m_next;	/* unlink from chain */
   1377 			m_free(m);			/* reclaim mbuf */
   1378 			continue;
   1379 		}
   1380 
   1381 		/*
   1382 		 * Allocate new space to hold the copy and copy the data.
   1383 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
   1384 		 * splitting them into clusters.  We could just malloc a
   1385 		 * buffer and make it external but too many device drivers
   1386 		 * don't know how to break up the non-contiguous memory when
   1387 		 * doing DMA.
   1388 		 */
   1389 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1390 		if (n == NULL) {
   1391 			m_freem(m0);
   1392 			return (NULL);
   1393 		}
   1394 		if (m->m_flags & M_PKTHDR) {
   1395 			FBSDKASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
   1396 			    __func__, m0, m));
   1397 			m_move_pkthdr(n, m);
   1398 		}
   1399 		len = m->m_len;
   1400 		off = 0;
   1401 		mfirst = n;
   1402 		mlast = NULL;
   1403 		for (;;) {
   1404 			int cc = min(len, MCLBYTES);
   1405 			memcpy(mtod(n, __uint8_t *), mtod(m, __uint8_t *) + off, cc);
   1406 			n->m_len = cc;
   1407 			if (mlast != NULL)
   1408 				mlast->m_next = n;
   1409 			mlast = n;
   1410 #if 0
   1411 			newipsecstat.ips_clcopied++;
   1412 #endif
   1413 
   1414 			len -= cc;
   1415 			if (len <= 0)
   1416 				break;
   1417 			off += cc;
   1418 
   1419 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1420 			if (n == NULL) {
   1421 				m_freem(mfirst);
   1422 				m_freem(m0);
   1423 				return (NULL);
   1424 			}
   1425 		}
   1426 		n->m_next = m->m_next;
   1427 		if (mprev == NULL)
   1428 			m0 = mfirst;		/* new head of chain */
   1429 		else
   1430 			mprev->m_next = mfirst;	/* replace old mbuf */
   1431 		m_free(m);			/* release old mbuf */
   1432 		mprev = mfirst;
   1433 	}
   1434 	return (m0);
   1435 }
   1436