Home | History | Annotate | Line # | Download | only in net80211
ieee80211_netbsd.c revision 1.31.2.7
      1 /*	$NetBSD: ieee80211_netbsd.c,v 1.31.2.7 2018/08/15 17:07:03 phil Exp $ */
      2 
      3 /*-
      4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      5  *
      6  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 /*  __FBSDID("$FreeBSD$");  */
     32 __KERNEL_RCSID(0, "$NetBSD: ieee80211_netbsd.c,v 1.31.2.7 2018/08/15 17:07:03 phil Exp $");
     33 
     34 /*
     35  * IEEE 802.11 support (NetBSD-specific code)
     36  */
     37 
     38 #include "opt_wlan.h"
     39 
     40 #include <sys/atomic.h>
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/kernel.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/module.h>
     47 #include <sys/proc.h>
     48 #include <sys/sysctl.h>
     49 #include <sys/syslog.h>
     50 
     51 #include <sys/socket.h>
     52 
     53 #include <net/bpf.h>
     54 #include <net/if.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_ether.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 #include <net/route.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_input.h>
     63 
     64 static const struct sysctlnode *
     65     ieee80211_sysctl_treetop(struct sysctllog **log);
     66 static void ieee80211_sysctl_setup(void);
     67 
     68 /* NNN in .h file? */
     69 #define SYSCTL_HANDLER_ARGS SYSCTLFN_ARGS
     70 
     71 #ifdef IEEE80211_DEBUG
     72 static int	ieee80211_debug = 0;
     73 #endif
     74 
     75 #ifdef notyet
     76 static struct if_clone *wlan_cloner;
     77 #endif
     78 /* notyet */
     79 
     80 static const char wlanname[] = "wlan";
     81 
     82 int
     83 ieee80211_init0(void)
     84 {
     85 	ieee80211_sysctl_setup();
     86 	return 0;
     87 }
     88 
     89 /*
     90  * "taskqueue" support for doing FreeBSD style taskqueue operations using
     91  * NetBSD's workqueue to do the actual function calls for the work.
     92  * Many features of the FreeBSD taskqueue are not implemented.   This should
     93  * be enough features for the 802.11 stack to run its tasks and time delayed
     94  * tasks.
     95  */
     96 
     97 void
     98 ieee80211_runwork(struct work *work2do, void *arg)
     99 {
    100 	struct task *work_task = (struct task *) work2do;
    101 #ifdef IEEE80211_DEBUG
    102 	printf ("runwork:  %s (t_arg is 0x%lx)\n",
    103 		work_task->t_func_name, (long)work_task->t_arg);
    104 #endif
    105 	mutex_enter(&work_task->t_mutex);
    106 	work_task->t_onqueue = 0;
    107 	mutex_exit(&work_task->t_mutex);
    108 
    109 	work_task->t_func(work_task->t_arg, 0);
    110 }
    111 
    112 void
    113 taskqueue_enqueue(struct workqueue *wq, struct task *task_item)
    114 {
    115 	mutex_enter(&task_item->t_mutex);
    116 	if (!task_item->t_onqueue) {
    117 		workqueue_enqueue(wq, &task_item->t_work, NULL);
    118 		task_item->t_onqueue = 1;
    119 	}
    120 	mutex_exit(&task_item->t_mutex);
    121 }
    122 
    123 void
    124 taskqueue_drain(struct workqueue *wq, struct task *task_item)
    125 {
    126 	workqueue_wait(wq, &task_item->t_work);
    127 }
    128 
    129 static void
    130 taskqueue_callout_enqueue(void *arg)
    131 {
    132 	struct timeout_task *timeout_task = arg;
    133 	mutex_enter(&timeout_task->to_task.t_mutex);
    134 	timeout_task->to_scheduled = 0;
    135 	mutex_exit(&timeout_task->to_task.t_mutex);
    136 
    137 	taskqueue_enqueue(timeout_task->to_wq, (struct task*) timeout_task);
    138 }
    139 
    140 int
    141 taskqueue_enqueue_timeout(struct workqueue *queue,
    142      struct timeout_task *timeout_task, int nticks)
    143 {
    144 	mutex_enter(&timeout_task->to_task.t_mutex);
    145 	if (!timeout_task->to_scheduled) {
    146 		callout_reset(&timeout_task->to_callout, nticks,
    147 		    taskqueue_callout_enqueue, timeout_task);
    148 		timeout_task->to_scheduled = 1;
    149 	}
    150 	mutex_exit(&timeout_task->to_task.t_mutex);
    151 
    152 	return -1;
    153 }
    154 
    155 int
    156 taskqueue_cancel_timeout(struct workqueue *queue,
    157     struct timeout_task *timeout_task, u_int *pendp)
    158 {
    159 	// printf ("taskqueue_cancel_timeout called\n");
    160 	return -1;
    161 }
    162 
    163 void
    164 taskqueue_drain_timeout(struct workqueue *queue,
    165     struct timeout_task *timeout_task)
    166 {
    167 	// printf ("taskqueue_drain_timeout called\n");
    168 }
    169 
    170 
    171 static __unused int
    172 wlan_clone_create(struct if_clone *ifc, int unit, void * params)
    173 {
    174 	struct ieee80211_clone_params cp;
    175 	struct ieee80211vap *vap;
    176 	struct ieee80211com *ic;
    177 	int error;
    178 
    179 	error = copyin(params, &cp, sizeof(cp));
    180 	if (error)
    181 		return error;
    182 	ic = ieee80211_find_com(cp.icp_parent);
    183 	if (ic == NULL)
    184 		return ENXIO;
    185 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
    186 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
    187 		    cp.icp_opmode);
    188 		return EINVAL;
    189 	}
    190 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
    191 		ic_printf(ic, "%s mode not supported\n",
    192 		    ieee80211_opmode_name[cp.icp_opmode]);
    193 		return EOPNOTSUPP;
    194 	}
    195 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
    196 #ifdef IEEE80211_SUPPORT_TDMA
    197 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
    198 #else
    199 	    (1)
    200 #endif
    201 	) {
    202 		ic_printf(ic, "TDMA not supported\n");
    203 		return EOPNOTSUPP;
    204 	}
    205 	vap = ic->ic_vap_create(ic, wlanname, unit,
    206 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
    207 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
    208 			    cp.icp_macaddr : ic->ic_macaddr);
    209 
    210 	return (vap == NULL ? EIO : 0);
    211 }
    212 
    213 static __unused void
    214 wlan_clone_destroy(struct ifnet *ifp)
    215 {
    216 	struct ieee80211vap *vap = ifp->if_softc;
    217 	struct ieee80211com *ic = vap->iv_ic;
    218 
    219 	ic->ic_vap_delete(vap);
    220 }
    221 
    222 void
    223 ieee80211_vap_destroy(struct ieee80211vap *vap)
    224 {
    225 #ifdef notyet
    226 	CURVNET_SET(vap->iv_ifp->if_vnet);
    227 	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
    228 	CURVNET_RESTORE();
    229 #else
    230 	printf ("vap_destroy called ... what next?\n");
    231 #endif
    232 }
    233 
    234 #ifdef notyet
    235 int
    236 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
    237 {
    238 	int msecs = ticks_to_msecs(*(int *)arg1);
    239 	int error, t;
    240 
    241 	error = sysctl_handle_int(oidp, &msecs, 0, req);
    242 	if (error || !req->newptr)
    243 		return error;
    244 	t = msecs_to_ticks(msecs);
    245 	*(int *)arg1 = (t < 1) ? 1 : t;
    246 	return 0;
    247 }
    248 
    249 static int
    250 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
    251 {
    252 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
    253 	int error;
    254 
    255 	error = sysctl_handle_int(oidp, &inact, 0, req);
    256 	if (error || !req->newptr)
    257 		return error;
    258 	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
    259 	return 0;
    260 }
    261 #endif
    262 
    263 static int
    264 ieee80211_sysctl_parent(SYSCTLFN_ARGS)
    265 {
    266 	struct ieee80211vap *vap;
    267 	char pname[IFNAMSIZ];
    268 	struct sysctlnode node;
    269 
    270 	node = *rnode;
    271 	vap = node.sysctl_data;
    272 	strlcpy(pname, vap->iv_ifp->if_xname, IFNAMSIZ);
    273 	node.sysctl_data = pname;
    274 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    275 }
    276 
    277 #ifdef notyet
    278 static int
    279 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
    280 {
    281 	struct ieee80211com *ic = arg1;
    282 	int t = 0, error;
    283 
    284 	error = sysctl_handle_int(oidp, &t, 0, req);
    285 	if (error || !req->newptr)
    286 		return error;
    287 	IEEE80211_LOCK(ic);
    288 	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
    289 	IEEE80211_UNLOCK(ic);
    290 	return 0;
    291 }
    292 
    293 /*
    294  * For now, just restart everything.
    295  *
    296  * Later on, it'd be nice to have a separate VAP restart to
    297  * full-device restart.
    298  */
    299 static int
    300 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
    301 {
    302 	struct ieee80211vap *vap = arg1;
    303 	int t = 0, error;
    304 
    305 	error = sysctl_handle_int(oidp, &t, 0, req);
    306 	if (error || !req->newptr)
    307 		return error;
    308 
    309 	ieee80211_restart_all(vap->iv_ic);
    310 	return 0;
    311 }
    312 #endif /* notyet */
    313 
    314 void
    315 ieee80211_sysctl_attach(struct ieee80211com *ic)
    316 {
    317 }
    318 
    319 void
    320 ieee80211_sysctl_detach(struct ieee80211com *ic)
    321 {
    322 }
    323 
    324 /*
    325  * Setup sysctl(3) MIB, net.ieee80211.*
    326  *
    327  * TBD condition CTLFLAG_PERMANENT on being a module or not
    328  */
    329 static struct sysctllog *ieee80211_sysctllog;
    330 static void
    331 ieee80211_sysctl_setup(void)
    332 {
    333 	int rc;
    334 	const struct sysctlnode *rnode;
    335 
    336 	if ((rnode = ieee80211_sysctl_treetop(&ieee80211_sysctllog)) == NULL)
    337 		return;
    338 
    339 #ifdef notyet
    340 	if ((rc = sysctl_createv(&ieee80211_sysctllog, 0, &rnode, NULL,
    341 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nodes", "client/peer stations",
    342 	    ieee80211_sysctl_node, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    343 		goto err;
    344 #endif
    345 
    346 #ifdef IEEE80211_DEBUG
    347 	/* control debugging printfs */
    348 	if ((rc = sysctl_createv(&ieee80211_sysctllog, 0, &rnode, NULL,
    349 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
    350 	    "debug", SYSCTL_DESCR("control debugging printfs"),
    351 	    NULL, 0, &ieee80211_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
    352 		goto err;
    353 #endif
    354 
    355 #ifdef notyet
    356 	ieee80211_rssadapt_sysctl_setup(&ieee80211_sysctllog);
    357 #endif
    358 
    359 	return;
    360 err:
    361 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
    362 }
    363 
    364 /*
    365  * Create or get top of sysctl tree net.link.ieee80211.
    366  */
    367 static const struct sysctlnode *
    368 ieee80211_sysctl_treetop(struct sysctllog **log)
    369 {
    370 	int rc;
    371 	const struct sysctlnode *rnode;
    372 
    373 	if ((rc = sysctl_createv(log, 0, NULL, &rnode,
    374 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "link",
    375 	    "link-layer statistics and controls",
    376 	    NULL, 0, NULL, 0, CTL_NET, PF_LINK, CTL_EOL)) != 0)
    377 		goto err;
    378 
    379 	if ((rc = sysctl_createv(log, 0, &rnode, &rnode,
    380 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ieee80211",
    381 	    "IEEE 802.11 WLAN statistics and controls",
    382 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    383 		goto err;
    384 
    385 	return rnode;
    386 err:
    387 	printf("%s: sysctl_createv failed, rc = %d\n", __func__, rc);
    388 	return NULL;
    389 }
    390 
    391 void
    392 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
    393 {
    394 	int rc;
    395 	const struct sysctlnode *cnode, *rnode;
    396 	char num[sizeof("vap") + 14];		/* sufficient for 32 bits */
    397 
    398 	if ((rnode = ieee80211_sysctl_treetop(NULL)) == NULL)
    399 		return;
    400 
    401 	snprintf(num, sizeof(num), "vap%u", vap->iv_ifp->if_index);
    402 
    403 	if ((rc = sysctl_createv(&vap->iv_sysctllog, 0, &rnode, &rnode,
    404 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, num, SYSCTL_DESCR("virtual AP"),
    405 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
    406 		goto err;
    407 
    408 	/* control debugging printfs */
    409 	if ((rc = sysctl_createv(&vap->iv_sysctllog, 0, &rnode, &cnode,
    410 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_STRING,
    411 	    "parent", SYSCTL_DESCR("parent device"),
    412 	    ieee80211_sysctl_parent, 0, (void *)vap, IFNAMSIZ,
    413 	    CTL_CREATE, CTL_EOL)) != 0)
    414 		goto err;
    415 
    416 
    417 #ifdef notyet
    418 	struct ifnet *ifp = vap->iv_ifp;
    419 	struct sysctl_ctx_list *ctx;
    420 	struct sysctl_oid *oid;
    421 	char num[14];			/* sufficient for 32 bits */
    422 
    423 	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
    424 		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
    425 	if (ctx == NULL) {
    426 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
    427 			__func__);
    428 		return;
    429 	}
    430 	sysctl_ctx_init(ctx);
    431 	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
    432 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
    433 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
    434 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    435 		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
    436 		ieee80211_sysctl_parent, "A", "parent device");
    437 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    438 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
    439 		"driver capabilities");
    440 #ifdef IEEE80211_DEBUG
    441 	vap->iv_debug = ieee80211_debug;
    442 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    443 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
    444 		"control debugging printfs");
    445 #endif
    446 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    447 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
    448 		"consecutive beacon misses before scanning");
    449 	/* XXX inherit from tunables */
    450 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    451 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
    452 		ieee80211_sysctl_inact, "I",
    453 		"station inactivity timeout (sec)");
    454 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    455 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
    456 		ieee80211_sysctl_inact, "I",
    457 		"station inactivity probe timeout (sec)");
    458 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    459 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
    460 		ieee80211_sysctl_inact, "I",
    461 		"station authentication timeout (sec)");
    462 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    463 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
    464 		ieee80211_sysctl_inact, "I",
    465 		"station initial state timeout (sec)");
    466 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
    467 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    468 			"ampdu_mintraffic_bk", CTLFLAG_RW,
    469 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
    470 			"BK traffic tx aggr threshold (pps)");
    471 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    472 			"ampdu_mintraffic_be", CTLFLAG_RW,
    473 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
    474 			"BE traffic tx aggr threshold (pps)");
    475 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    476 			"ampdu_mintraffic_vo", CTLFLAG_RW,
    477 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
    478 			"VO traffic tx aggr threshold (pps)");
    479 		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    480 			"ampdu_mintraffic_vi", CTLFLAG_RW,
    481 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
    482 			"VI traffic tx aggr threshold (pps)");
    483 	}
    484 
    485 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    486 		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
    487 		ieee80211_sysctl_vap_restart, "I",
    488 		"force a VAP restart");
    489 
    490 	if (vap->iv_caps & IEEE80211_C_DFS) {
    491 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
    492 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
    493 			ieee80211_sysctl_radar, "I", "simulate radar event");
    494 	}
    495 	vap->iv_sysctl = ctx;
    496 	vap->iv_oid = oid;
    497 #endif
    498 	return;
    499 err:
    500 	printf("%s: sysctl_createv failed, rc = %d\n", __func__, rc);
    501 }
    502 
    503 void
    504 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
    505 {
    506 #ifdef notyet
    507 	if (vap->iv_sysctl != NULL) {
    508 		sysctl_ctx_free(vap->iv_sysctl);
    509 		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
    510 		vap->iv_sysctl = NULL;
    511 	}
    512 #endif
    513 }
    514 
    515 
    516 int
    517 ieee80211_node_dectestref(struct ieee80211_node *ni)
    518 {
    519 	/* XXX need equivalent of atomic_dec_and_test */
    520 	atomic_subtract_int(&ni->ni_refcnt, 1);
    521 	return atomic_cas_uint(&ni->ni_refcnt, 0, 1) == 0;
    522 }
    523 
    524 void
    525 ieee80211_drain_ifq(struct ifqueue *ifq)
    526 {
    527 	struct ieee80211_node *ni;
    528 	struct mbuf *m;
    529 
    530 	for (;;) {
    531 		IF_DEQUEUE(ifq, m);
    532 		if (m == NULL)
    533 			break;
    534 
    535 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    536 		FBSDKASSERT(ni != NULL, ("frame w/o node"));
    537 		ieee80211_free_node(ni);
    538 		ieee80211_free_mbuf(m);
    539 	}
    540 }
    541 
    542 void
    543 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
    544 {
    545 	struct ieee80211_node *ni;
    546 	struct mbuf *m, **mprev;
    547 
    548 	IFQ_LOCK(ifq);
    549 	mprev = &ifq->ifq_head;
    550 	while ((m = *mprev) != NULL) {
    551 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    552 		if (ni != NULL && ni->ni_vap == vap) {
    553 			*mprev = m->m_nextpkt;		/* remove from list */
    554 			ifq->ifq_len--;
    555 
    556 			ieee80211_free_node(ni);	/* reclaim ref */
    557 			ieee80211_free_mbuf(m);
    558 		} else
    559 			mprev = &m->m_nextpkt;
    560 	}
    561 	/* recalculate tail ptr */
    562 	m = ifq->ifq_head;
    563 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
    564 		;
    565 	ifq->ifq_tail = m;
    566 	IFQ_UNLOCK(ifq);
    567 }
    568 
    569 /*
    570  * As above, for mbufs allocated with m_gethdr/MGETHDR
    571  * or initialized by M_COPY_PKTHDR.
    572  */
    573 #define	MC_ALIGN(m, len)						\
    574 do {									\
    575 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
    576 } while (/* CONSTCOND */ 0)
    577 
    578 /*
    579  * Allocate and setup a management frame of the specified
    580  * size.  We return the mbuf and a pointer to the start
    581  * of the contiguous data area that's been reserved based
    582  * on the packet length.  The data area is forced to 32-bit
    583  * alignment and the buffer length to a multiple of 4 bytes.
    584  * This is done mainly so beacon frames (that require this)
    585  * can use this interface too.
    586  */
    587 struct mbuf *
    588 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
    589 {
    590 	struct mbuf *m;
    591 	u_int len;
    592 
    593 	/*
    594 	 * NB: we know the mbuf routines will align the data area
    595 	 *     so we don't need to do anything special.
    596 	 */
    597 	len = roundup2(headroom + pktlen, 4);
    598 	FBSDKASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
    599 	if (len < MINCLSIZE) {
    600 		m = m_gethdr(M_NOWAIT, MT_DATA);
    601 		/*
    602 		 * Align the data in case additional headers are added.
    603 		 * This should only happen when a WEP header is added
    604 		 * which only happens for shared key authentication mgt
    605 		 * frames which all fit in MHLEN.
    606 		 */
    607 		if (m != NULL)
    608 			MH_ALIGN(m, len);
    609 	} else {
    610 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
    611 		if (m != NULL)
    612 			MC_ALIGN(m, len);
    613 	}
    614 	if (m != NULL) {
    615 		m->m_data += headroom;
    616 		*frm = m->m_data;
    617 	}
    618 	return m;
    619 }
    620 
    621 #ifndef __NO_STRICT_ALIGNMENT
    622 /*
    623  * Re-align the payload in the mbuf.  This is mainly used (right now)
    624  * to handle IP header alignment requirements on certain architectures.
    625  */
    626 struct mbuf *
    627 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
    628 {
    629 	int pktlen, space;
    630 	struct mbuf *n;
    631 
    632 	pktlen = m->m_pkthdr.len;
    633 	space = pktlen + align;
    634 	if (space < MINCLSIZE)
    635 		n = m_gethdr(M_NOWAIT, MT_DATA);
    636 	else {
    637 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
    638 		    space <= MCLBYTES ?     MCLBYTES :
    639 #if MJUMPAGESIZE != MCLBYTES
    640 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
    641 #endif
    642 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
    643 	}
    644 	if (__predict_true(n != NULL)) {
    645 		m_move_pkthdr(n, m);
    646 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
    647 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
    648 		n->m_len = pktlen;
    649 	} else {
    650 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
    651 		    mtod(m, const struct ieee80211_frame *), NULL,
    652 		    "%s", "no mbuf to realign");
    653 		vap->iv_stats.is_rx_badalign++;
    654 	}
    655 	m_freem(m);
    656 	return n;
    657 }
    658 #endif /* !__NO_STRICT_ALIGNMENT */
    659 
    660 int
    661 ieee80211_add_callback(struct mbuf *m,
    662 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
    663 {
    664 	struct m_tag *mtag;
    665 	struct ieee80211_cb *cb;
    666 
    667 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_CALLBACK,
    668 			sizeof(struct ieee80211_cb), M_NOWAIT);
    669 	if (mtag == NULL)
    670 		return 0;
    671 
    672 	cb = (struct ieee80211_cb *)(mtag+1);
    673 	cb->func = func;
    674 	cb->arg = arg;
    675 	m_tag_prepend(m, mtag);
    676 	m->m_flags |= M_TXCB;
    677 	return 1;
    678 }
    679 
    680 int
    681 ieee80211_add_xmit_params(struct mbuf *m,
    682     const struct ieee80211_bpf_params *params)
    683 {
    684 	struct m_tag *mtag;
    685 	struct ieee80211_tx_params *tx;
    686 
    687 	mtag = m_tag_get(/*MTAG_ABI_NET80211*/ NET80211_TAG_XMIT_PARAMS,
    688 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
    689 	if (mtag == NULL)
    690 		return (0);
    691 
    692 	tx = (struct ieee80211_tx_params *)(mtag+1);
    693 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
    694 	m_tag_prepend(m, mtag);
    695 	return (1);
    696 }
    697 
    698 int
    699 ieee80211_get_xmit_params(struct mbuf *m,
    700     struct ieee80211_bpf_params *params)
    701 {
    702 	struct m_tag *mtag;
    703 	struct ieee80211_tx_params *tx;
    704 
    705 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_XMIT_PARAMS,
    706 	    NULL);
    707 	if (mtag == NULL)
    708 		return (-1);
    709 	tx = (struct ieee80211_tx_params *)(mtag + 1);
    710 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
    711 	return (0);
    712 }
    713 
    714 void
    715 ieee80211_process_callback(struct ieee80211_node *ni,
    716 	struct mbuf *m, int status)
    717 {
    718 	struct m_tag *mtag;
    719 
    720 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_CALLBACK, NULL);
    721 	if (mtag != NULL) {
    722 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
    723 		cb->func(ni, cb->arg, status);
    724 	}
    725 }
    726 
    727 /*
    728  * Add RX parameters to the given mbuf.
    729  *
    730  * Returns 1 if OK, 0 on error.
    731  */
    732 int
    733 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
    734 {
    735 	struct m_tag *mtag;
    736 	struct ieee80211_rx_params *rx;
    737 
    738 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    739 	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
    740 	if (mtag == NULL)
    741 		return (0);
    742 
    743 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    744 	memcpy(&rx->params, rxs, sizeof(*rxs));
    745 	m_tag_prepend(m, mtag);
    746 	return (1);
    747 }
    748 
    749 int
    750 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
    751 {
    752 	struct m_tag *mtag;
    753 	struct ieee80211_rx_params *rx;
    754 
    755 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    756 	    NULL);
    757 	if (mtag == NULL)
    758 		return (-1);
    759 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    760 	memcpy(rxs, &rx->params, sizeof(*rxs));
    761 	return (0);
    762 }
    763 
    764 const struct ieee80211_rx_stats *
    765 ieee80211_get_rx_params_ptr(struct mbuf *m)
    766 {
    767 	struct m_tag *mtag;
    768 	struct ieee80211_rx_params *rx;
    769 
    770 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_RECV_PARAMS,
    771 	    NULL);
    772 	if (mtag == NULL)
    773 		return (NULL);
    774 	rx = (struct ieee80211_rx_params *)(mtag + 1);
    775 	return (&rx->params);
    776 }
    777 
    778 
    779 /*
    780  * Add TOA parameters to the given mbuf.
    781  */
    782 int
    783 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
    784 {
    785 	struct m_tag *mtag;
    786 	struct ieee80211_toa_params *rp;
    787 
    788 	mtag = m_tag_get(/*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    789 	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
    790 	if (mtag == NULL)
    791 		return (0);
    792 
    793 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    794 	memcpy(rp, p, sizeof(*rp));
    795 	m_tag_prepend(m, mtag);
    796 	return (1);
    797 }
    798 
    799 int
    800 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
    801 {
    802 	struct m_tag *mtag;
    803 	struct ieee80211_toa_params *rp;
    804 
    805 	mtag = m_tag_find(m, /*MTAG_ABI_NET80211,*/ NET80211_TAG_TOA_PARAMS,
    806 	    NULL);
    807 	if (mtag == NULL)
    808 		return (0);
    809 	rp = (struct ieee80211_toa_params *)(mtag + 1);
    810 	if (p != NULL)
    811 		memcpy(p, rp, sizeof(*p));
    812 	return (1);
    813 }
    814 
    815 /*
    816  * Transmit a frame to the parent interface.
    817  */
    818 int
    819 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
    820 {
    821 	int error;
    822 
    823 	/*
    824 	 * Assert the IC TX lock is held - this enforces the
    825 	 * processing -> queuing order is maintained
    826 	 */
    827 	IEEE80211_TX_LOCK_ASSERT(ic);
    828 	error = ic->ic_transmit(ic, m);
    829 	if (error) {
    830 		struct ieee80211_node *ni;
    831 
    832 		ni = (struct ieee80211_node *)m_get_rcvif_NOMPSAFE(m);
    833 
    834 		/* XXX number of fragments */
    835 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
    836 		ieee80211_free_node(ni);
    837 		ieee80211_free_mbuf(m);
    838 	}
    839 	return (error);
    840 }
    841 
    842 /*
    843  * Transmit a frame to the VAP interface.
    844  */
    845 int
    846 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
    847 {
    848 	struct ifnet *ifp = vap->iv_ifp;
    849 
    850 	/*
    851 	 * When transmitting via the VAP, we shouldn't hold
    852 	 * any IC TX lock as the VAP TX path will acquire it.
    853 	 */
    854 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
    855 
    856 	return (ifp->if_transmit(ifp, m));
    857 
    858 }
    859 
    860 void
    861 get_random_bytes(void *p, size_t n)
    862 {
    863 	uint8_t *dp = p;
    864 
    865 	while (n > 0) {
    866 		uint32_t v = arc4random();
    867 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
    868 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
    869 		dp += sizeof(uint32_t), n -= nb;
    870 	}
    871 }
    872 
    873 /*
    874  * Helper function for events that pass just a single mac address.
    875  */
    876 static void
    877 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
    878 {
    879 	struct ieee80211_join_event iev;
    880 	printf ("NNN notify_macaddr called\n");
    881 	CURVNET_SET(ifp->if_vnet);
    882 	memset(&iev, 0, sizeof(iev));
    883 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
    884 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
    885 	CURVNET_RESTORE();
    886 }
    887 
    888 void
    889 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
    890 {
    891 	struct ieee80211vap *vap = ni->ni_vap;
    892 	struct ifnet *ifp = vap->iv_ifp;
    893 
    894 	CURVNET_SET_QUIET(ifp->if_vnet);
    895 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
    896 	    (ni == vap->iv_bss) ? "bss " : "");
    897 
    898 	if (ni == vap->iv_bss) {
    899 		notify_macaddr(ifp, newassoc ?
    900 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
    901 		if_link_state_change(ifp, LINK_STATE_UP);
    902 	} else {
    903 		notify_macaddr(ifp, newassoc ?
    904 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
    905 	}
    906 	CURVNET_RESTORE();
    907 }
    908 
    909 void
    910 ieee80211_notify_node_leave(struct ieee80211_node *ni)
    911 {
    912 	struct ieee80211vap *vap = ni->ni_vap;
    913 	struct ifnet *ifp = vap->iv_ifp;
    914 
    915 	CURVNET_SET_QUIET(ifp->if_vnet);
    916 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
    917 	    (ni == vap->iv_bss) ? "bss " : "");
    918 
    919 	if (ni == vap->iv_bss) {
    920 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
    921 		if_link_state_change(ifp, LINK_STATE_DOWN);
    922 	} else {
    923 		/* fire off wireless event station leaving */
    924 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
    925 	}
    926 	CURVNET_RESTORE();
    927 }
    928 
    929 void
    930 ieee80211_notify_scan_done(struct ieee80211vap *vap)
    931 {
    932 	struct ifnet *ifp = vap->iv_ifp;
    933 
    934 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
    935 
    936 	/* dispatch wireless event indicating scan completed */
    937 	CURVNET_SET(ifp->if_vnet);
    938 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
    939 	CURVNET_RESTORE();
    940 }
    941 
    942 void
    943 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
    944 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
    945 	u_int64_t rsc, int tid)
    946 {
    947 	struct ifnet *ifp = vap->iv_ifp;
    948 
    949 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    950 	    "%s replay detected tid %d <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
    951 	    k->wk_cipher->ic_name, tid, (intmax_t) rsc,
    952 	    (intmax_t) k->wk_keyrsc[tid],
    953 	    k->wk_keyix, k->wk_rxkeyix);
    954 
    955 	if (ifp != NULL) {		/* NB: for cipher test modules */
    956 		struct ieee80211_replay_event iev;
    957 
    958 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    959 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    960 		iev.iev_cipher = k->wk_cipher->ic_cipher;
    961 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
    962 			iev.iev_keyix = k->wk_rxkeyix;
    963 		else
    964 			iev.iev_keyix = k->wk_keyix;
    965 		iev.iev_keyrsc = k->wk_keyrsc[tid];
    966 		iev.iev_rsc = rsc;
    967 		CURVNET_SET(ifp->if_vnet);
    968 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
    969 		CURVNET_RESTORE();
    970 	}
    971 }
    972 
    973 void
    974 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
    975 	const struct ieee80211_frame *wh, u_int keyix)
    976 {
    977 	struct ifnet *ifp = vap->iv_ifp;
    978 
    979 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
    980 	    "michael MIC verification failed <keyix %u>", keyix);
    981 	vap->iv_stats.is_rx_tkipmic++;
    982 
    983 	if (ifp != NULL) {		/* NB: for cipher test modules */
    984 		struct ieee80211_michael_event iev;
    985 
    986 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
    987 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
    988 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
    989 		iev.iev_keyix = keyix;
    990 		CURVNET_SET(ifp->if_vnet);
    991 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
    992 		CURVNET_RESTORE();
    993 	}
    994 }
    995 
    996 void
    997 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
    998 {
    999 	struct ieee80211vap *vap = ni->ni_vap;
   1000 	struct ifnet *ifp = vap->iv_ifp;
   1001 
   1002 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
   1003 }
   1004 
   1005 void
   1006 ieee80211_notify_csa(struct ieee80211com *ic,
   1007 	const struct ieee80211_channel *c, int mode, int count)
   1008 {
   1009 	struct ieee80211_csa_event iev;
   1010 	struct ieee80211vap *vap;
   1011 	struct ifnet *ifp;
   1012 
   1013 	memset(&iev, 0, sizeof(iev));
   1014 	iev.iev_flags = c->ic_flags;
   1015 	iev.iev_freq = c->ic_freq;
   1016 	iev.iev_ieee = c->ic_ieee;
   1017 	iev.iev_mode = mode;
   1018 	iev.iev_count = count;
   1019 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1020 		ifp = vap->iv_ifp;
   1021 		CURVNET_SET(ifp->if_vnet);
   1022 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
   1023 		CURVNET_RESTORE();
   1024 	}
   1025 }
   1026 
   1027 void
   1028 ieee80211_notify_radar(struct ieee80211com *ic,
   1029 	const struct ieee80211_channel *c)
   1030 {
   1031 	struct ieee80211_radar_event iev;
   1032 	struct ieee80211vap *vap;
   1033 	struct ifnet *ifp;
   1034 
   1035 	memset(&iev, 0, sizeof(iev));
   1036 	iev.iev_flags = c->ic_flags;
   1037 	iev.iev_freq = c->ic_freq;
   1038 	iev.iev_ieee = c->ic_ieee;
   1039 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1040 		ifp = vap->iv_ifp;
   1041 		CURVNET_SET(ifp->if_vnet);
   1042 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
   1043 		CURVNET_RESTORE();
   1044 	}
   1045 }
   1046 
   1047 void
   1048 ieee80211_notify_cac(struct ieee80211com *ic,
   1049 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
   1050 {
   1051 	struct ieee80211_cac_event iev;
   1052 	struct ieee80211vap *vap;
   1053 	struct ifnet *ifp;
   1054 
   1055 	memset(&iev, 0, sizeof(iev));
   1056 	iev.iev_flags = c->ic_flags;
   1057 	iev.iev_freq = c->ic_freq;
   1058 	iev.iev_ieee = c->ic_ieee;
   1059 	iev.iev_type = type;
   1060 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1061 		ifp = vap->iv_ifp;
   1062 		CURVNET_SET(ifp->if_vnet);
   1063 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
   1064 		CURVNET_RESTORE();
   1065 	}
   1066 }
   1067 
   1068 void
   1069 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
   1070 {
   1071 	struct ieee80211vap *vap = ni->ni_vap;
   1072 	struct ifnet *ifp = vap->iv_ifp;
   1073 
   1074 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
   1075 
   1076 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
   1077 }
   1078 
   1079 void
   1080 ieee80211_notify_node_auth(struct ieee80211_node *ni)
   1081 {
   1082 	struct ieee80211vap *vap = ni->ni_vap;
   1083 	struct ifnet *ifp = vap->iv_ifp;
   1084 
   1085 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
   1086 
   1087 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
   1088 }
   1089 
   1090 void
   1091 ieee80211_notify_country(struct ieee80211vap *vap,
   1092 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
   1093 {
   1094 	struct ifnet *ifp = vap->iv_ifp;
   1095 	struct ieee80211_country_event iev;
   1096 
   1097 	memset(&iev, 0, sizeof(iev));
   1098 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
   1099 	iev.iev_cc[0] = cc[0];
   1100 	iev.iev_cc[1] = cc[1];
   1101 	CURVNET_SET(ifp->if_vnet);
   1102 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
   1103 	CURVNET_RESTORE();
   1104 }
   1105 
   1106 void
   1107 ieee80211_notify_radio(struct ieee80211com *ic, int state)
   1108 {
   1109 	struct ieee80211_radio_event iev;
   1110 	struct ieee80211vap *vap;
   1111 	struct ifnet *ifp;
   1112 
   1113 	memset(&iev, 0, sizeof(iev));
   1114 	iev.iev_state = state;
   1115 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1116 		ifp = vap->iv_ifp;
   1117 		CURVNET_SET(ifp->if_vnet);
   1118 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
   1119 		CURVNET_RESTORE();
   1120 	}
   1121 }
   1122 
   1123 #ifdef notyet
   1124 void
   1125 ieee80211_load_module(const char *modname)
   1126 {
   1127 	struct thread *td = curthread;
   1128 
   1129 	if (suser(td) == 0 && securelevel_gt(td->td_ucred, 0) == 0) {
   1130 		mtx_lock(&Giant);
   1131 		(void) linker_load_module(modname, NULL, NULL, NULL, NULL);
   1132 		mtx_unlock(&Giant);
   1133 	}
   1134 }
   1135 #endif
   1136 
   1137 #ifdef notyet
   1138 static eventhandler_tag wlan_bpfevent;
   1139 static eventhandler_tag wlan_ifllevent;
   1140 
   1141 static void
   1142 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
   1143 {
   1144 	/* NB: identify vap's by if_init */  // NNN won't work with urtwn ...
   1145 	if (dlt == DLT_IEEE802_11_RADIO &&
   1146 	    ifp->if_init == ieee80211_init) {
   1147 		struct ieee80211vap *vap = ifp->if_softc;
   1148 		/*
   1149 		 * Track bpf radiotap listener state.  We mark the vap
   1150 		 * to indicate if any listener is present and the com
   1151 		 * to indicate if any listener exists on any associated
   1152 		 * vap.  This flag is used by drivers to prepare radiotap
   1153 		 * state only when needed.
   1154 		 */
   1155 		if (attach) {
   1156 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
   1157 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
   1158 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
   1159 		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
   1160 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
   1161 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
   1162 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
   1163 		}
   1164 	}
   1165 }
   1166 
   1167 /*
   1168  * Change MAC address on the vap (if was not started).
   1169  */
   1170 static void
   1171 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
   1172 {
   1173 	/* NB: identify vap's by if_init */  // NNN wont work on urtwn
   1174 	if (ifp->if_init == ieee80211_init &&
   1175 	    (ifp->if_flags & IFF_UP) == 0) {
   1176 		struct ieee80211vap *vap = ifp->if_softc;
   1177 
   1178 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
   1179 	}
   1180 }
   1181 #endif
   1182 
   1183 void
   1184 if_inc_counter(struct ifnet *ifp, ift_counter ifc, int64_t value)
   1185 {
   1186 	switch (ifc) {
   1187 	case IFCOUNTER_IPACKETS:
   1188 		ifp->if_data.ifi_ipackets += value;
   1189 		break;
   1190 	case IFCOUNTER_IERRORS:
   1191 		ifp->if_data.ifi_ierrors += value;
   1192 		break;
   1193 	case IFCOUNTER_OPACKETS:
   1194 		ifp->if_data.ifi_opackets += value;
   1195 		break;
   1196 	case IFCOUNTER_OERRORS:
   1197 		ifp->if_data.ifi_oerrors += value;
   1198 		break;
   1199         case IFCOUNTER_COLLISIONS:
   1200 		ifp->if_data.ifi_collisions += value;
   1201 		break;
   1202         case IFCOUNTER_IBYTES:
   1203 		ifp->if_data.ifi_ibytes += value;
   1204 		break;
   1205         case IFCOUNTER_OBYTES:
   1206 		ifp->if_data.ifi_obytes += value;
   1207 		break;
   1208         case IFCOUNTER_IMCASTS:
   1209 		ifp->if_data.ifi_imcasts += value;
   1210 		break;
   1211         case IFCOUNTER_OMCASTS:
   1212 		ifp->if_data.ifi_omcasts += value;
   1213 		break;
   1214         case IFCOUNTER_IQDROPS:
   1215 		ifp->if_data.ifi_iqdrops += value;
   1216 		break;
   1217         case IFCOUNTER_OQDROPS:
   1218 		/* ifp->if_data.ifi_oqdrops += value; No such field, just ignore it q*/
   1219 		break;
   1220         case IFCOUNTER_NOPROTO:
   1221 		ifp->if_data.ifi_noproto += value;
   1222 		break;
   1223 	default:
   1224 		panic("if_inc_counter: non-existant counter");
   1225 	}
   1226 }
   1227 
   1228 
   1229 #ifdef notyet
   1230 /*
   1231  * Module glue.
   1232  *
   1233  * NB: the module name is "wlan" for compatibility with NetBSD.
   1234  */
   1235 static int
   1236 wlan_modevent(module_t mod, int type, void *unused)
   1237 {
   1238 	switch (type) {
   1239 	case MOD_LOAD:
   1240 		if (bootverbose)
   1241 			printf("wlan: <802.11 Link Layer>\n");
   1242 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
   1243 		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
   1244 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
   1245 		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
   1246 		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
   1247 		    wlan_clone_destroy, 0);
   1248 		return 0;
   1249 	case MOD_UNLOAD:
   1250 		if_clone_detach(wlan_cloner);
   1251 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
   1252 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
   1253 		return 0;
   1254 	}
   1255 	return EINVAL;
   1256 }
   1257 
   1258 static moduledata_t wlan_mod = {
   1259 	wlanname,
   1260 	wlan_modevent,
   1261 	0
   1262 };
   1263 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1264 MODULE_VERSION(wlan, 1);
   1265 MODULE_DEPEND(wlan, ether, 1, 1, 1);
   1266 #endif
   1267 
   1268 #ifdef	IEEE80211_ALQ
   1269 MODULE_DEPEND(wlan, alq, 1, 1, 1);
   1270 #endif	/* IEEE80211_ALQ */
   1271 
   1272 /* Missing support for if_printf in NetBSD ... */
   1273 int
   1274 if_printf(struct ifnet *ifp, const char *fmt, ...)
   1275 {
   1276         char if_fmt[256];
   1277         va_list ap;
   1278 
   1279         snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
   1280         va_start(ap, fmt);
   1281         vlog(LOG_INFO, if_fmt, ap);
   1282         va_end(ap);
   1283         return (0);
   1284 }
   1285 
   1286 /*
   1287  * Set the m_data pointer of a newly-allocated mbuf
   1288  * to place an object of the specified size at the
   1289  * end of the mbuf, longword aligned.
   1290  */
   1291 void
   1292 m_align(struct mbuf *m, int len)
   1293 {
   1294 	int adjust;
   1295 
   1296 	KASSERT(len != M_COPYALL);
   1297 
   1298 	if (m->m_flags & M_EXT)
   1299 		adjust = m->m_ext.ext_size - len;
   1300 	else if (m->m_flags & M_PKTHDR)
   1301 		adjust = MHLEN - len;
   1302 	else
   1303 		adjust = MLEN - len;
   1304 	m->m_data += adjust &~ (sizeof(long)-1);
   1305 }
   1306 
   1307 /*
   1308  * Append the specified data to the indicated mbuf chain,
   1309  * Extend the mbuf chain if the new data does not fit in
   1310  * existing space.
   1311  *
   1312  * Return 1 if able to complete the job; otherwise 0.
   1313  */
   1314 int
   1315 m_append(struct mbuf *m0, int len, const void *cpv)
   1316 {
   1317 	struct mbuf *m, *n;
   1318 	int remainder, space;
   1319 	const char *cp = cpv;
   1320 
   1321 	KASSERT(len != M_COPYALL);
   1322 	for (m = m0; m->m_next != NULL; m = m->m_next)
   1323 		continue;
   1324 	remainder = len;
   1325 	space = M_TRAILINGSPACE(m);
   1326 	if (space > 0) {
   1327 		/*
   1328 		 * Copy into available space.
   1329 		 */
   1330 		if (space > remainder)
   1331 			space = remainder;
   1332 		memmove(mtod(m, char *) + m->m_len, cp, space);
   1333 		m->m_len += space;
   1334 		cp = cp + space, remainder -= space;
   1335 	}
   1336 	while (remainder > 0) {
   1337 		/*
   1338 		 * Allocate a new mbuf; could check space
   1339 		 * and allocate a cluster instead.
   1340 		 */
   1341 		n = m_get(M_DONTWAIT, m->m_type);
   1342 		if (n == NULL)
   1343 			break;
   1344 		n->m_len = min(MLEN, remainder);
   1345 		memmove(mtod(n, void *), cp, n->m_len);
   1346 		cp += n->m_len, remainder -= n->m_len;
   1347 		m->m_next = n;
   1348 		m = n;
   1349 	}
   1350 	if (m0->m_flags & M_PKTHDR)
   1351 		m0->m_pkthdr.len += len - remainder;
   1352 	return (remainder == 0);
   1353 }
   1354 
   1355 /*
   1356  * Create a writable copy of the mbuf chain.  While doing this
   1357  * we compact the chain with a goal of producing a chain with
   1358  * at most two mbufs.  The second mbuf in this chain is likely
   1359  * to be a cluster.  The primary purpose of this work is to create
   1360  * a writable packet for encryption, compression, etc.  The
   1361  * secondary goal is to linearize the data so the data can be
   1362  * passed to crypto hardware in the most efficient manner possible.
   1363  */
   1364 struct mbuf *
   1365 m_unshare(struct mbuf *m0, int how)
   1366 {
   1367 	struct mbuf *m, *mprev;
   1368 	struct mbuf *n, *mfirst, *mlast;
   1369 	int len, off;
   1370 
   1371 	mprev = NULL;
   1372 	for (m = m0; m != NULL; m = mprev->m_next) {
   1373 		/*
   1374 		 * Regular mbufs are ignored unless there's a cluster
   1375 		 * in front of it that we can use to coalesce.  We do
   1376 		 * the latter mainly so later clusters can be coalesced
   1377 		 * also w/o having to handle them specially (i.e. convert
   1378 		 * mbuf+cluster -> cluster).  This optimization is heavily
   1379 		 * influenced by the assumption that we're running over
   1380 		 * Ethernet where MCLBYTES is large enough that the max
   1381 		 * packet size will permit lots of coalescing into a
   1382 		 * single cluster.  This in turn permits efficient
   1383 		 * crypto operations, especially when using hardware.
   1384 		 */
   1385 		if ((m->m_flags & M_EXT) == 0) {
   1386 			if (mprev && (mprev->m_flags & M_EXT) &&
   1387 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1388 				/* XXX: this ignores mbuf types */
   1389 				memcpy(mtod(mprev, __uint8_t *) + mprev->m_len,
   1390 				    mtod(m, __uint8_t *), m->m_len);
   1391 				mprev->m_len += m->m_len;
   1392 				mprev->m_next = m->m_next;	/* unlink from chain */
   1393 				m_free(m);			/* reclaim mbuf */
   1394 			} else {
   1395 				mprev = m;
   1396 			}
   1397 			continue;
   1398 		}
   1399 		/*
   1400 		 * Writable mbufs are left alone (for now).
   1401 		 */
   1402 		if (!M_READONLY(m)) {
   1403 			mprev = m;
   1404 			continue;
   1405 		}
   1406 
   1407 		/*
   1408 		 * Not writable, replace with a copy or coalesce with
   1409 		 * the previous mbuf if possible (since we have to copy
   1410 		 * it anyway, we try to reduce the number of mbufs and
   1411 		 * clusters so that future work is easier).
   1412 		 */
   1413 		FBSDKASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
   1414 		/* NB: we only coalesce into a cluster or larger */
   1415 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
   1416 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
   1417 			/* XXX: this ignores mbuf types */
   1418 			memcpy(mtod(mprev, __uint8_t *) + mprev->m_len,
   1419 			    mtod(m, __uint8_t *), m->m_len);
   1420 			mprev->m_len += m->m_len;
   1421 			mprev->m_next = m->m_next;	/* unlink from chain */
   1422 			m_free(m);			/* reclaim mbuf */
   1423 			continue;
   1424 		}
   1425 
   1426 		/*
   1427 		 * Allocate new space to hold the copy and copy the data.
   1428 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
   1429 		 * splitting them into clusters.  We could just malloc a
   1430 		 * buffer and make it external but too many device drivers
   1431 		 * don't know how to break up the non-contiguous memory when
   1432 		 * doing DMA.
   1433 		 */
   1434 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1435 		if (n == NULL) {
   1436 			m_freem(m0);
   1437 			return (NULL);
   1438 		}
   1439 		if (m->m_flags & M_PKTHDR) {
   1440 			FBSDKASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
   1441 			    __func__, m0, m));
   1442 			m_move_pkthdr(n, m);
   1443 		}
   1444 		len = m->m_len;
   1445 		off = 0;
   1446 		mfirst = n;
   1447 		mlast = NULL;
   1448 		for (;;) {
   1449 			int cc = min(len, MCLBYTES);
   1450 			memcpy(mtod(n, __uint8_t *), mtod(m, __uint8_t *) + off, cc);
   1451 			n->m_len = cc;
   1452 			if (mlast != NULL)
   1453 				mlast->m_next = n;
   1454 			mlast = n;
   1455 #if 0
   1456 			newipsecstat.ips_clcopied++;
   1457 #endif
   1458 
   1459 			len -= cc;
   1460 			if (len <= 0)
   1461 				break;
   1462 			off += cc;
   1463 
   1464 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
   1465 			if (n == NULL) {
   1466 				m_freem(mfirst);
   1467 				m_freem(m0);
   1468 				return (NULL);
   1469 			}
   1470 		}
   1471 		n->m_next = m->m_next;
   1472 		if (mprev == NULL)
   1473 			m0 = mfirst;		/* new head of chain */
   1474 		else
   1475 			mprev->m_next = mfirst;	/* replace old mbuf */
   1476 		m_free(m);			/* release old mbuf */
   1477 		mprev = mfirst;
   1478 	}
   1479 	return (m0);
   1480 }
   1481