Home | History | Annotate | Line # | Download | only in net80211
ieee80211_output.c revision 1.1.1.6
      1 /*-
      2  * Copyright (c) 2001 Atsushi Onoe
      3  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the author may not be used to endorse or promote products
     15  *    derived from this software without specific prior written permission.
     16  *
     17  * Alternatively, this software may be distributed under the terms of the
     18  * GNU General Public License ("GPL") version 2 as published by the Free
     19  * Software Foundation.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.26 2005/07/06 01:55:17 sam Exp $");
     35 
     36 #include "opt_inet.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/kernel.h>
     42 #include <sys/endian.h>
     43 
     44 #include <sys/socket.h>
     45 
     46 #include <net/bpf.h>
     47 #include <net/ethernet.h>
     48 #include <net/if.h>
     49 #include <net/if_llc.h>
     50 #include <net/if_media.h>
     51 #include <net/if_vlan_var.h>
     52 
     53 #include <net80211/ieee80211_var.h>
     54 
     55 #ifdef INET
     56 #include <netinet/in.h>
     57 #include <netinet/if_ether.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/ip.h>
     60 #endif
     61 
     62 #ifdef IEEE80211_DEBUG
     63 /*
     64  * Decide if an outbound management frame should be
     65  * printed when debugging is enabled.  This filters some
     66  * of the less interesting frames that come frequently
     67  * (e.g. beacons).
     68  */
     69 static __inline int
     70 doprint(struct ieee80211com *ic, int subtype)
     71 {
     72 	switch (subtype) {
     73 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     74 		return (ic->ic_opmode == IEEE80211_M_IBSS);
     75 	}
     76 	return 1;
     77 }
     78 #endif
     79 
     80 /*
     81  * Send a management frame to the specified node.  The node pointer
     82  * must have a reference as the pointer will be passed to the driver
     83  * and potentially held for a long time.  If the frame is successfully
     84  * dispatched to the driver, then it is responsible for freeing the
     85  * reference (and potentially free'ing up any associated storage).
     86  */
     87 static int
     88 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
     89     struct mbuf *m, int type)
     90 {
     91 	struct ifnet *ifp = ic->ic_ifp;
     92 	struct ieee80211_frame *wh;
     93 
     94 	KASSERT(ni != NULL, ("null node"));
     95 
     96 	/*
     97 	 * Yech, hack alert!  We want to pass the node down to the
     98 	 * driver's start routine.  If we don't do so then the start
     99 	 * routine must immediately look it up again and that can
    100 	 * cause a lock order reversal if, for example, this frame
    101 	 * is being sent because the station is being timedout and
    102 	 * the frame being sent is a DEAUTH message.  We could stick
    103 	 * this in an m_tag and tack that on to the mbuf.  However
    104 	 * that's rather expensive to do for every frame so instead
    105 	 * we stuff it in the rcvif field since outbound frames do
    106 	 * not (presently) use this.
    107 	 */
    108 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
    109 	if (m == NULL)
    110 		return ENOMEM;
    111 	KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
    112 	m->m_pkthdr.rcvif = (void *)ni;
    113 
    114 	wh = mtod(m, struct ieee80211_frame *);
    115 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | type;
    116 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    117 	*(u_int16_t *)wh->i_dur = 0;
    118 	*(u_int16_t *)wh->i_seq =
    119 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    120 	ni->ni_txseqs[0]++;
    121 	/*
    122 	 * Hack.  When sending PROBE_REQ frames while scanning we
    123 	 * explicitly force a broadcast rather than (as before) clobber
    124 	 * ni_macaddr and ni_bssid.  This is stopgap, we need a way
    125 	 * to communicate this directly rather than do something
    126 	 * implicit based on surrounding state.
    127 	 */
    128 	if (type == IEEE80211_FC0_SUBTYPE_PROBE_REQ &&
    129 	    (ic->ic_flags & IEEE80211_F_SCAN)) {
    130 		IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
    131 		IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
    132 		IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
    133 	} else {
    134 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
    135 		IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
    136 		IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
    137 	}
    138 
    139 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
    140 		m->m_flags &= ~M_LINK0;
    141 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
    142 			"[%s] encrypting frame (%s)\n",
    143 			ether_sprintf(wh->i_addr1), __func__);
    144 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
    145 	}
    146 #ifdef IEEE80211_DEBUG
    147 	/* avoid printing too many frames */
    148 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
    149 	    ieee80211_msg_dumppkts(ic)) {
    150 		printf("[%s] send %s on channel %u\n",
    151 		    ether_sprintf(wh->i_addr1),
    152 		    ieee80211_mgt_subtype_name[
    153 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
    154 				IEEE80211_FC0_SUBTYPE_SHIFT],
    155 		    ieee80211_chan2ieee(ic, ni->ni_chan));
    156 	}
    157 #endif
    158 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    159 	IF_ENQUEUE(&ic->ic_mgtq, m);
    160 	ifp->if_timer = 1;
    161 	if_start(ifp);
    162 	return 0;
    163 }
    164 
    165 /*
    166  * Send a null data frame to the specified node.
    167  */
    168 int
    169 ieee80211_send_nulldata(struct ieee80211com *ic, struct ieee80211_node *ni)
    170 {
    171 	struct ifnet *ifp = ic->ic_ifp;
    172 	struct mbuf *m;
    173 	struct ieee80211_frame *wh;
    174 
    175 	MGETHDR(m, M_NOWAIT, MT_HEADER);
    176 	if (m == NULL) {
    177 		/* XXX debug msg */
    178 		ic->ic_stats.is_tx_nobuf++;
    179 		return ENOMEM;
    180 	}
    181 	m->m_pkthdr.rcvif = (void *) ieee80211_ref_node(ni);
    182 
    183 	wh = mtod(m, struct ieee80211_frame *);
    184 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA |
    185 		IEEE80211_FC0_SUBTYPE_NODATA;
    186 	*(u_int16_t *)wh->i_dur = 0;
    187 	*(u_int16_t *)wh->i_seq =
    188 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    189 	ni->ni_txseqs[0]++;
    190 
    191 	/* XXX WDS */
    192 	wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    193 	IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
    194 	IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    195 	IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
    196 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
    197 
    198 	IEEE80211_NODE_STAT(ni, tx_data);
    199 
    200 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
    201 	if_start(ifp);
    202 
    203 	return 0;
    204 }
    205 
    206 /*
    207  * Assign priority to a frame based on any vlan tag assigned
    208  * to the station and/or any Diffserv setting in an IP header.
    209  * Finally, if an ACM policy is setup (in station mode) it's
    210  * applied.
    211  */
    212 int
    213 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
    214 {
    215 	int v_wme_ac, d_wme_ac, ac;
    216 #ifdef INET
    217 	struct ether_header *eh;
    218 #endif
    219 
    220 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
    221 		ac = WME_AC_BE;
    222 		goto done;
    223 	}
    224 
    225 	/*
    226 	 * If node has a vlan tag then all traffic
    227 	 * to it must have a matching tag.
    228 	 */
    229 	v_wme_ac = 0;
    230 	if (ni->ni_vlan != 0) {
    231 		 struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m);
    232 		 if (mtag == NULL) {
    233 			IEEE80211_NODE_STAT(ni, tx_novlantag);
    234 			return 1;
    235 		}
    236 		if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
    237 		    EVL_VLANOFTAG(ni->ni_vlan)) {
    238 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
    239 			return 1;
    240 		}
    241 		/* map vlan priority to AC */
    242 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
    243 		case 1:
    244 		case 2:
    245 			v_wme_ac = WME_AC_BK;
    246 			break;
    247 		case 0:
    248 		case 3:
    249 			v_wme_ac = WME_AC_BE;
    250 			break;
    251 		case 4:
    252 		case 5:
    253 			v_wme_ac = WME_AC_VI;
    254 			break;
    255 		case 6:
    256 		case 7:
    257 			v_wme_ac = WME_AC_VO;
    258 			break;
    259 		}
    260 	}
    261 
    262 #ifdef INET
    263 	eh = mtod(m, struct ether_header *);
    264 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
    265 		const struct ip *ip = (struct ip *)
    266 			(mtod(m, u_int8_t *) + sizeof (*eh));
    267 		/*
    268 		 * IP frame, map the TOS field.
    269 		 */
    270 		switch (ip->ip_tos) {
    271 		case 0x08:
    272 		case 0x20:
    273 			d_wme_ac = WME_AC_BK;	/* background */
    274 			break;
    275 		case 0x28:
    276 		case 0xa0:
    277 			d_wme_ac = WME_AC_VI;	/* video */
    278 			break;
    279 		case 0x30:			/* voice */
    280 		case 0xe0:
    281 		case 0x88:			/* XXX UPSD */
    282 		case 0xb8:
    283 			d_wme_ac = WME_AC_VO;
    284 			break;
    285 		default:
    286 			d_wme_ac = WME_AC_BE;
    287 			break;
    288 		}
    289 	} else {
    290 #endif /* INET */
    291 		d_wme_ac = WME_AC_BE;
    292 #ifdef INET
    293 	}
    294 #endif
    295 	/*
    296 	 * Use highest priority AC.
    297 	 */
    298 	if (v_wme_ac > d_wme_ac)
    299 		ac = v_wme_ac;
    300 	else
    301 		ac = d_wme_ac;
    302 
    303 	/*
    304 	 * Apply ACM policy.
    305 	 */
    306 	if (ic->ic_opmode == IEEE80211_M_STA) {
    307 		static const int acmap[4] = {
    308 			WME_AC_BK,	/* WME_AC_BE */
    309 			WME_AC_BK,	/* WME_AC_BK */
    310 			WME_AC_BE,	/* WME_AC_VI */
    311 			WME_AC_VI,	/* WME_AC_VO */
    312 		};
    313 		while (ac != WME_AC_BK &&
    314 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
    315 			ac = acmap[ac];
    316 	}
    317 done:
    318 	M_WME_SETAC(m, ac);
    319 	return 0;
    320 }
    321 
    322 /*
    323  * Insure there is sufficient contiguous space to encapsulate the
    324  * 802.11 data frame.  If room isn't already there, arrange for it.
    325  * Drivers and cipher modules assume we have done the necessary work
    326  * and fail rudely if they don't find the space they need.
    327  */
    328 static struct mbuf *
    329 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
    330 	struct ieee80211_key *key, struct mbuf *m)
    331 {
    332 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
    333 	int needed_space = hdrsize;
    334 
    335 	if (key != NULL) {
    336 		/* XXX belongs in crypto code? */
    337 		needed_space += key->wk_cipher->ic_header;
    338 		/* XXX frags */
    339 	}
    340 	/*
    341 	 * We know we are called just before stripping an Ethernet
    342 	 * header and prepending an LLC header.  This means we know
    343 	 * there will be
    344 	 *	sizeof(struct ether_header) - sizeof(struct llc)
    345 	 * bytes recovered to which we need additional space for the
    346 	 * 802.11 header and any crypto header.
    347 	 */
    348 	/* XXX check trailing space and copy instead? */
    349 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
    350 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
    351 		if (n == NULL) {
    352 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    353 			    "%s: cannot expand storage\n", __func__);
    354 			ic->ic_stats.is_tx_nobuf++;
    355 			m_freem(m);
    356 			return NULL;
    357 		}
    358 		KASSERT(needed_space <= MHLEN,
    359 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
    360 		/*
    361 		 * Setup new mbuf to have leading space to prepend the
    362 		 * 802.11 header and any crypto header bits that are
    363 		 * required (the latter are added when the driver calls
    364 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
    365 		 */
    366 		/* NB: must be first 'cuz it clobbers m_data */
    367 		m_move_pkthdr(n, m);
    368 		n->m_len = 0;			/* NB: m_gethdr does not set */
    369 		n->m_data += needed_space;
    370 		/*
    371 		 * Pull up Ethernet header to create the expected layout.
    372 		 * We could use m_pullup but that's overkill (i.e. we don't
    373 		 * need the actual data) and it cannot fail so do it inline
    374 		 * for speed.
    375 		 */
    376 		/* NB: struct ether_header is known to be contiguous */
    377 		n->m_len += sizeof(struct ether_header);
    378 		m->m_len -= sizeof(struct ether_header);
    379 		m->m_data += sizeof(struct ether_header);
    380 		/*
    381 		 * Replace the head of the chain.
    382 		 */
    383 		n->m_next = m;
    384 		m = n;
    385 	}
    386 	return m;
    387 #undef TO_BE_RECLAIMED
    388 }
    389 
    390 #define	KEY_UNDEFINED(k)	((k).wk_cipher == &ieee80211_cipher_none)
    391 /*
    392  * Return the transmit key to use in sending a unicast frame.
    393  * If a unicast key is set we use that.  When no unicast key is set
    394  * we fall back to the default transmit key.
    395  */
    396 static __inline struct ieee80211_key *
    397 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    398 {
    399 	if (KEY_UNDEFINED(ni->ni_ucastkey)) {
    400 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    401 		    KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    402 			return NULL;
    403 		return &ic->ic_nw_keys[ic->ic_def_txkey];
    404 	} else {
    405 		return &ni->ni_ucastkey;
    406 	}
    407 }
    408 
    409 /*
    410  * Return the transmit key to use in sending a multicast frame.
    411  * Multicast traffic always uses the group key which is installed as
    412  * the default tx key.
    413  */
    414 static __inline struct ieee80211_key *
    415 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    416 {
    417 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    418 	    KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    419 		return NULL;
    420 	return &ic->ic_nw_keys[ic->ic_def_txkey];
    421 }
    422 
    423 /*
    424  * Encapsulate an outbound data frame.  The mbuf chain is updated.
    425  * If an error is encountered NULL is returned.  The caller is required
    426  * to provide a node reference and pullup the ethernet header in the
    427  * first mbuf.
    428  */
    429 struct mbuf *
    430 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
    431 	struct ieee80211_node *ni)
    432 {
    433 	struct ether_header eh;
    434 	struct ieee80211_frame *wh;
    435 	struct ieee80211_key *key;
    436 	struct llc *llc;
    437 	int hdrsize, datalen, addqos;
    438 
    439 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
    440 	memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header));
    441 
    442 	/*
    443 	 * Insure space for additional headers.  First identify
    444 	 * transmit key to use in calculating any buffer adjustments
    445 	 * required.  This is also used below to do privacy
    446 	 * encapsulation work.  Then calculate the 802.11 header
    447 	 * size and any padding required by the driver.
    448 	 *
    449 	 * Note key may be NULL if we fall back to the default
    450 	 * transmit key and that is not set.  In that case the
    451 	 * buffer may not be expanded as needed by the cipher
    452 	 * routines, but they will/should discard it.
    453 	 */
    454 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
    455 		if (ic->ic_opmode == IEEE80211_M_STA ||
    456 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
    457 			key = ieee80211_crypto_getucastkey(ic, ni);
    458 		else
    459 			key = ieee80211_crypto_getmcastkey(ic, ni);
    460 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
    461 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    462 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    463 			    ether_sprintf(eh.ether_dhost), __func__,
    464 			    ic->ic_def_txkey);
    465 			ic->ic_stats.is_tx_nodefkey++;
    466 		}
    467 	} else
    468 		key = NULL;
    469 	/* XXX 4-address format */
    470 	/*
    471 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
    472 	 * frames so suppress use.  This may be an issue if other
    473 	 * ap's require all data frames to be QoS-encapsulated
    474 	 * once negotiated in which case we'll need to make this
    475 	 * configurable.
    476 	 */
    477 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
    478 		 eh.ether_type != htons(ETHERTYPE_PAE);
    479 	if (addqos)
    480 		hdrsize = sizeof(struct ieee80211_qosframe);
    481 	else
    482 		hdrsize = sizeof(struct ieee80211_frame);
    483 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    484 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
    485 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
    486 	if (m == NULL) {
    487 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
    488 		goto bad;
    489 	}
    490 
    491 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
    492 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
    493 	llc = mtod(m, struct llc *);
    494 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
    495 	llc->llc_control = LLC_UI;
    496 	llc->llc_snap.org_code[0] = 0;
    497 	llc->llc_snap.org_code[1] = 0;
    498 	llc->llc_snap.org_code[2] = 0;
    499 	llc->llc_snap.ether_type = eh.ether_type;
    500 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
    501 
    502 	M_PREPEND(m, hdrsize, M_DONTWAIT);
    503 	if (m == NULL) {
    504 		ic->ic_stats.is_tx_nobuf++;
    505 		goto bad;
    506 	}
    507 	wh = mtod(m, struct ieee80211_frame *);
    508 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
    509 	*(u_int16_t *)wh->i_dur = 0;
    510 	switch (ic->ic_opmode) {
    511 	case IEEE80211_M_STA:
    512 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    513 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
    514 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    515 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
    516 		break;
    517 	case IEEE80211_M_IBSS:
    518 	case IEEE80211_M_AHDEMO:
    519 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    520 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    521 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    522 		/*
    523 		 * NB: always use the bssid from ic_bss as the
    524 		 *     neighbor's may be stale after an ibss merge
    525 		 */
    526 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
    527 		break;
    528 	case IEEE80211_M_HOSTAP:
    529 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    530 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    531 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    532 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
    533 		break;
    534 	case IEEE80211_M_MONITOR:
    535 		goto bad;
    536 	}
    537 	if (m->m_flags & M_MORE_DATA)
    538 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
    539 	if (addqos) {
    540 		struct ieee80211_qosframe *qwh =
    541 			(struct ieee80211_qosframe *) wh;
    542 		int ac, tid;
    543 
    544 		ac = M_WME_GETAC(m);
    545 		/* map from access class/queue to 11e header priorty value */
    546 		tid = WME_AC_TO_TID(ac);
    547 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
    548 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
    549 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
    550 		qwh->i_qos[1] = 0;
    551 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
    552 
    553 		*(u_int16_t *)wh->i_seq =
    554 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
    555 		ni->ni_txseqs[tid]++;
    556 	} else {
    557 		*(u_int16_t *)wh->i_seq =
    558 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    559 		ni->ni_txseqs[0]++;
    560 	}
    561 	if (key != NULL) {
    562 		/*
    563 		 * IEEE 802.1X: send EAPOL frames always in the clear.
    564 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
    565 		 */
    566 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
    567 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
    568 		     (ic->ic_opmode == IEEE80211_M_STA ?
    569 		      !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) {
    570 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
    571 			/* XXX do fragmentation */
    572 			if (!ieee80211_crypto_enmic(ic, key, m, 0)) {
    573 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    574 				    "[%s] enmic failed, discard frame\n",
    575 				    ether_sprintf(eh.ether_dhost));
    576 				ic->ic_stats.is_crypto_enmicfail++;
    577 				goto bad;
    578 			}
    579 		}
    580 	}
    581 
    582 	IEEE80211_NODE_STAT(ni, tx_data);
    583 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
    584 
    585 	return m;
    586 bad:
    587 	if (m != NULL)
    588 		m_freem(m);
    589 	return NULL;
    590 }
    591 
    592 /*
    593  * Add a supported rates element id to a frame.
    594  */
    595 static u_int8_t *
    596 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    597 {
    598 	int nrates;
    599 
    600 	*frm++ = IEEE80211_ELEMID_RATES;
    601 	nrates = rs->rs_nrates;
    602 	if (nrates > IEEE80211_RATE_SIZE)
    603 		nrates = IEEE80211_RATE_SIZE;
    604 	*frm++ = nrates;
    605 	memcpy(frm, rs->rs_rates, nrates);
    606 	return frm + nrates;
    607 }
    608 
    609 /*
    610  * Add an extended supported rates element id to a frame.
    611  */
    612 static u_int8_t *
    613 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    614 {
    615 	/*
    616 	 * Add an extended supported rates element if operating in 11g mode.
    617 	 */
    618 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
    619 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
    620 		*frm++ = IEEE80211_ELEMID_XRATES;
    621 		*frm++ = nrates;
    622 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
    623 		frm += nrates;
    624 	}
    625 	return frm;
    626 }
    627 
    628 /*
    629  * Add an ssid elemet to a frame.
    630  */
    631 static u_int8_t *
    632 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
    633 {
    634 	*frm++ = IEEE80211_ELEMID_SSID;
    635 	*frm++ = len;
    636 	memcpy(frm, ssid, len);
    637 	return frm + len;
    638 }
    639 
    640 /*
    641  * Add an erp element to a frame.
    642  */
    643 static u_int8_t *
    644 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
    645 {
    646 	u_int8_t erp;
    647 
    648 	*frm++ = IEEE80211_ELEMID_ERP;
    649 	*frm++ = 1;
    650 	erp = 0;
    651 	if (ic->ic_nonerpsta != 0)
    652 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
    653 	if (ic->ic_flags & IEEE80211_F_USEPROT)
    654 		erp |= IEEE80211_ERP_USE_PROTECTION;
    655 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
    656 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
    657 	*frm++ = erp;
    658 	return frm;
    659 }
    660 
    661 static u_int8_t *
    662 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
    663 {
    664 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
    665 #define	ADDSHORT(frm, v) do {			\
    666 	frm[0] = (v) & 0xff;			\
    667 	frm[1] = (v) >> 8;			\
    668 	frm += 2;				\
    669 } while (0)
    670 #define	ADDSELECTOR(frm, sel) do {		\
    671 	memcpy(frm, sel, 4);			\
    672 	frm += 4;				\
    673 } while (0)
    674 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
    675 	static const u_int8_t cipher_suite[][4] = {
    676 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
    677 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
    678 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
    679 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
    680 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
    681 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
    682 	};
    683 	static const u_int8_t wep104_suite[4] =
    684 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
    685 	static const u_int8_t key_mgt_unspec[4] =
    686 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
    687 	static const u_int8_t key_mgt_psk[4] =
    688 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
    689 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
    690 	u_int8_t *frm = ie;
    691 	u_int8_t *selcnt;
    692 
    693 	*frm++ = IEEE80211_ELEMID_VENDOR;
    694 	*frm++ = 0;				/* length filled in below */
    695 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
    696 	frm += sizeof(oui);
    697 	ADDSHORT(frm, WPA_VERSION);
    698 
    699 	/* XXX filter out CKIP */
    700 
    701 	/* multicast cipher */
    702 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
    703 	    rsn->rsn_mcastkeylen >= 13)
    704 		ADDSELECTOR(frm, wep104_suite);
    705 	else
    706 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
    707 
    708 	/* unicast cipher list */
    709 	selcnt = frm;
    710 	ADDSHORT(frm, 0);			/* selector count */
    711 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
    712 		selcnt[0]++;
    713 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
    714 	}
    715 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
    716 		selcnt[0]++;
    717 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
    718 	}
    719 
    720 	/* authenticator selector list */
    721 	selcnt = frm;
    722 	ADDSHORT(frm, 0);			/* selector count */
    723 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
    724 		selcnt[0]++;
    725 		ADDSELECTOR(frm, key_mgt_unspec);
    726 	}
    727 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
    728 		selcnt[0]++;
    729 		ADDSELECTOR(frm, key_mgt_psk);
    730 	}
    731 
    732 	/* optional capabilities */
    733 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
    734 		ADDSHORT(frm, rsn->rsn_caps);
    735 
    736 	/* calculate element length */
    737 	ie[1] = frm - ie - 2;
    738 	KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
    739 		("WPA IE too big, %u > %zu",
    740 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
    741 	return frm;
    742 #undef ADDSHORT
    743 #undef ADDSELECTOR
    744 #undef WPA_OUI_BYTES
    745 }
    746 
    747 static u_int8_t *
    748 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
    749 {
    750 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
    751 #define	ADDSHORT(frm, v) do {			\
    752 	frm[0] = (v) & 0xff;			\
    753 	frm[1] = (v) >> 8;			\
    754 	frm += 2;				\
    755 } while (0)
    756 #define	ADDSELECTOR(frm, sel) do {		\
    757 	memcpy(frm, sel, 4);			\
    758 	frm += 4;				\
    759 } while (0)
    760 	static const u_int8_t cipher_suite[][4] = {
    761 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
    762 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
    763 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
    764 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
    765 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
    766 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
    767 	};
    768 	static const u_int8_t wep104_suite[4] =
    769 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
    770 	static const u_int8_t key_mgt_unspec[4] =
    771 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
    772 	static const u_int8_t key_mgt_psk[4] =
    773 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
    774 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
    775 	u_int8_t *frm = ie;
    776 	u_int8_t *selcnt;
    777 
    778 	*frm++ = IEEE80211_ELEMID_RSN;
    779 	*frm++ = 0;				/* length filled in below */
    780 	ADDSHORT(frm, RSN_VERSION);
    781 
    782 	/* XXX filter out CKIP */
    783 
    784 	/* multicast cipher */
    785 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
    786 	    rsn->rsn_mcastkeylen >= 13)
    787 		ADDSELECTOR(frm, wep104_suite);
    788 	else
    789 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
    790 
    791 	/* unicast cipher list */
    792 	selcnt = frm;
    793 	ADDSHORT(frm, 0);			/* selector count */
    794 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
    795 		selcnt[0]++;
    796 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
    797 	}
    798 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
    799 		selcnt[0]++;
    800 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
    801 	}
    802 
    803 	/* authenticator selector list */
    804 	selcnt = frm;
    805 	ADDSHORT(frm, 0);			/* selector count */
    806 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
    807 		selcnt[0]++;
    808 		ADDSELECTOR(frm, key_mgt_unspec);
    809 	}
    810 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
    811 		selcnt[0]++;
    812 		ADDSELECTOR(frm, key_mgt_psk);
    813 	}
    814 
    815 	/* optional capabilities */
    816 	ADDSHORT(frm, rsn->rsn_caps);
    817 	/* XXX PMKID */
    818 
    819 	/* calculate element length */
    820 	ie[1] = frm - ie - 2;
    821 	KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
    822 		("RSN IE too big, %u > %zu",
    823 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
    824 	return frm;
    825 #undef ADDSELECTOR
    826 #undef ADDSHORT
    827 #undef RSN_OUI_BYTES
    828 }
    829 
    830 /*
    831  * Add a WPA/RSN element to a frame.
    832  */
    833 static u_int8_t *
    834 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
    835 {
    836 
    837 	KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
    838 	if (ic->ic_flags & IEEE80211_F_WPA2)
    839 		frm = ieee80211_setup_rsn_ie(ic, frm);
    840 	if (ic->ic_flags & IEEE80211_F_WPA1)
    841 		frm = ieee80211_setup_wpa_ie(ic, frm);
    842 	return frm;
    843 }
    844 
    845 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
    846 /*
    847  * Add a WME information element to a frame.
    848  */
    849 static u_int8_t *
    850 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
    851 {
    852 	static const struct ieee80211_wme_info info = {
    853 		.wme_id		= IEEE80211_ELEMID_VENDOR,
    854 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
    855 		.wme_oui	= { WME_OUI_BYTES },
    856 		.wme_type	= WME_OUI_TYPE,
    857 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
    858 		.wme_version	= WME_VERSION,
    859 		.wme_info	= 0,
    860 	};
    861 	memcpy(frm, &info, sizeof(info));
    862 	return frm + sizeof(info);
    863 }
    864 
    865 /*
    866  * Add a WME parameters element to a frame.
    867  */
    868 static u_int8_t *
    869 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
    870 {
    871 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
    872 #define	ADDSHORT(frm, v) do {			\
    873 	frm[0] = (v) & 0xff;			\
    874 	frm[1] = (v) >> 8;			\
    875 	frm += 2;				\
    876 } while (0)
    877 	/* NB: this works 'cuz a param has an info at the front */
    878 	static const struct ieee80211_wme_info param = {
    879 		.wme_id		= IEEE80211_ELEMID_VENDOR,
    880 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
    881 		.wme_oui	= { WME_OUI_BYTES },
    882 		.wme_type	= WME_OUI_TYPE,
    883 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
    884 		.wme_version	= WME_VERSION,
    885 	};
    886 	int i;
    887 
    888 	memcpy(frm, &param, sizeof(param));
    889 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
    890 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
    891 	*frm++ = 0;					/* reserved field */
    892 	for (i = 0; i < WME_NUM_AC; i++) {
    893 		const struct wmeParams *ac =
    894 		       &wme->wme_bssChanParams.cap_wmeParams[i];
    895 		*frm++ = SM(i, WME_PARAM_ACI)
    896 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
    897 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
    898 		       ;
    899 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
    900 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
    901 		       ;
    902 		ADDSHORT(frm, ac->wmep_txopLimit);
    903 	}
    904 	return frm;
    905 #undef SM
    906 #undef ADDSHORT
    907 }
    908 #undef WME_OUI_BYTES
    909 
    910 /*
    911  * Send a management frame.  The node is for the destination (or ic_bss
    912  * when in station mode).  Nodes other than ic_bss have their reference
    913  * count bumped to reflect our use for an indeterminant time.
    914  */
    915 int
    916 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
    917 	int type, int arg)
    918 {
    919 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
    920 	struct mbuf *m;
    921 	u_int8_t *frm;
    922 	enum ieee80211_phymode mode;
    923 	u_int16_t capinfo;
    924 	int has_challenge, is_shared_key, ret, timer, status;
    925 
    926 	KASSERT(ni != NULL, ("null node"));
    927 
    928 	/*
    929 	 * Hold a reference on the node so it doesn't go away until after
    930 	 * the xmit is complete all the way in the driver.  On error we
    931 	 * will remove our reference.
    932 	 */
    933 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
    934 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
    935 		__func__, __LINE__,
    936 		ni, ether_sprintf(ni->ni_macaddr),
    937 		ieee80211_node_refcnt(ni)+1);
    938 	ieee80211_ref_node(ni);
    939 
    940 	timer = 0;
    941 	switch (type) {
    942 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
    943 		/*
    944 		 * prreq frame format
    945 		 *	[tlv] ssid
    946 		 *	[tlv] supported rates
    947 		 *	[tlv] extended supported rates
    948 		 *	[tlv] user-specified ie's
    949 		 */
    950 		m = ieee80211_getmgtframe(&frm,
    951 			 2 + IEEE80211_NWID_LEN
    952 		       + 2 + IEEE80211_RATE_SIZE
    953 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
    954 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
    955 		);
    956 		if (m == NULL)
    957 			senderr(ENOMEM, is_tx_nobuf);
    958 
    959 		frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen);
    960 		mode = ieee80211_chan2mode(ic, ni->ni_chan);
    961 		frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
    962 		frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
    963 		if (ic->ic_opt_ie != NULL) {
    964 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
    965 			frm += ic->ic_opt_ie_len;
    966 		}
    967 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
    968 
    969 		IEEE80211_NODE_STAT(ni, tx_probereq);
    970 		if (ic->ic_opmode == IEEE80211_M_STA)
    971 			timer = IEEE80211_TRANS_WAIT;
    972 		break;
    973 
    974 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
    975 		/*
    976 		 * probe response frame format
    977 		 *	[8] time stamp
    978 		 *	[2] beacon interval
    979 		 *	[2] cabability information
    980 		 *	[tlv] ssid
    981 		 *	[tlv] supported rates
    982 		 *	[tlv] parameter set (FH/DS)
    983 		 *	[tlv] parameter set (IBSS)
    984 		 *	[tlv] extended rate phy (ERP)
    985 		 *	[tlv] extended supported rates
    986 		 *	[tlv] WPA
    987 		 *	[tlv] WME (optional)
    988 		 */
    989 		m = ieee80211_getmgtframe(&frm,
    990 			 8
    991 		       + sizeof(u_int16_t)
    992 		       + sizeof(u_int16_t)
    993 		       + 2 + IEEE80211_NWID_LEN
    994 		       + 2 + IEEE80211_RATE_SIZE
    995 		       + 7	/* max(7,3) */
    996 		       + 6
    997 		       + 3
    998 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
    999 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
   1000 		       + (ic->ic_flags & IEEE80211_F_WPA ?
   1001 				2*sizeof(struct ieee80211_ie_wpa) : 0)
   1002 		       + sizeof(struct ieee80211_wme_param)
   1003 		);
   1004 		if (m == NULL)
   1005 			senderr(ENOMEM, is_tx_nobuf);
   1006 
   1007 		memset(frm, 0, 8);	/* timestamp should be filled later */
   1008 		frm += 8;
   1009 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
   1010 		frm += 2;
   1011 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1012 			capinfo = IEEE80211_CAPINFO_IBSS;
   1013 		else
   1014 			capinfo = IEEE80211_CAPINFO_ESS;
   1015 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1016 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1017 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1018 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1019 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1020 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1021 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1022 		*(u_int16_t *)frm = htole16(capinfo);
   1023 		frm += 2;
   1024 
   1025 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
   1026 				ic->ic_bss->ni_esslen);
   1027 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1028 
   1029 		if (ic->ic_phytype == IEEE80211_T_FH) {
   1030                         *frm++ = IEEE80211_ELEMID_FHPARMS;
   1031                         *frm++ = 5;
   1032                         *frm++ = ni->ni_fhdwell & 0x00ff;
   1033                         *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
   1034                         *frm++ = IEEE80211_FH_CHANSET(
   1035 			    ieee80211_chan2ieee(ic, ni->ni_chan));
   1036                         *frm++ = IEEE80211_FH_CHANPAT(
   1037 			    ieee80211_chan2ieee(ic, ni->ni_chan));
   1038                         *frm++ = ni->ni_fhindex;
   1039 		} else {
   1040 			*frm++ = IEEE80211_ELEMID_DSPARMS;
   1041 			*frm++ = 1;
   1042 			*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1043 		}
   1044 
   1045 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1046 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1047 			*frm++ = 2;
   1048 			*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1049 		}
   1050 		if (ic->ic_flags & IEEE80211_F_WPA)
   1051 			frm = ieee80211_add_wpa(frm, ic);
   1052 		if (ic->ic_curmode == IEEE80211_MODE_11G)
   1053 			frm = ieee80211_add_erp(frm, ic);
   1054 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1055 		if (ic->ic_flags & IEEE80211_F_WME)
   1056 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1057 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1058 		break;
   1059 
   1060 	case IEEE80211_FC0_SUBTYPE_AUTH:
   1061 		status = arg >> 16;
   1062 		arg &= 0xffff;
   1063 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   1064 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   1065 		    ni->ni_challenge != NULL);
   1066 
   1067 		/*
   1068 		 * Deduce whether we're doing open authentication or
   1069 		 * shared key authentication.  We do the latter if
   1070 		 * we're in the middle of a shared key authentication
   1071 		 * handshake or if we're initiating an authentication
   1072 		 * request and configured to use shared key.
   1073 		 */
   1074 		is_shared_key = has_challenge ||
   1075 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
   1076 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   1077 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
   1078 
   1079 		m = ieee80211_getmgtframe(&frm,
   1080 			  3 * sizeof(u_int16_t)
   1081 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
   1082 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
   1083 		);
   1084 		if (m == NULL)
   1085 			senderr(ENOMEM, is_tx_nobuf);
   1086 
   1087 		((u_int16_t *)frm)[0] =
   1088 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
   1089 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   1090 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
   1091 		((u_int16_t *)frm)[2] = htole16(status);/* status */
   1092 
   1093 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
   1094 			((u_int16_t *)frm)[3] =
   1095 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   1096 			    IEEE80211_ELEMID_CHALLENGE);
   1097 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
   1098 			    IEEE80211_CHALLENGE_LEN);
   1099 			m->m_pkthdr.len = m->m_len =
   1100 				4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
   1101 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   1102 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1103 				    "[%s] request encrypt frame (%s)\n",
   1104 				    ether_sprintf(ni->ni_macaddr), __func__);
   1105 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
   1106 			}
   1107 		} else
   1108 			m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
   1109 
   1110 		/* XXX not right for shared key */
   1111 		if (status == IEEE80211_STATUS_SUCCESS)
   1112 			IEEE80211_NODE_STAT(ni, tx_auth);
   1113 		else
   1114 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   1115 
   1116 		if (ic->ic_opmode == IEEE80211_M_STA)
   1117 			timer = IEEE80211_TRANS_WAIT;
   1118 		break;
   1119 
   1120 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   1121 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1122 			"[%s] send station deauthenticate (reason %d)\n",
   1123 			ether_sprintf(ni->ni_macaddr), arg);
   1124 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1125 		if (m == NULL)
   1126 			senderr(ENOMEM, is_tx_nobuf);
   1127 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1128 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1129 
   1130 		IEEE80211_NODE_STAT(ni, tx_deauth);
   1131 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   1132 
   1133 		ieee80211_node_unauthorize(ic, ni);	/* port closed */
   1134 		break;
   1135 
   1136 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   1137 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   1138 		/*
   1139 		 * asreq frame format
   1140 		 *	[2] capability information
   1141 		 *	[2] listen interval
   1142 		 *	[6*] current AP address (reassoc only)
   1143 		 *	[tlv] ssid
   1144 		 *	[tlv] supported rates
   1145 		 *	[tlv] extended supported rates
   1146 		 *	[tlv] WME
   1147 		 *	[tlv] user-specified ie's
   1148 		 */
   1149 		m = ieee80211_getmgtframe(&frm,
   1150 			 sizeof(u_int16_t)
   1151 		       + sizeof(u_int16_t)
   1152 		       + IEEE80211_ADDR_LEN
   1153 		       + 2 + IEEE80211_NWID_LEN
   1154 		       + 2 + IEEE80211_RATE_SIZE
   1155 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1156 		       + sizeof(struct ieee80211_wme_info)
   1157 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
   1158 		);
   1159 		if (m == NULL)
   1160 			senderr(ENOMEM, is_tx_nobuf);
   1161 
   1162 		capinfo = 0;
   1163 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1164 			capinfo |= IEEE80211_CAPINFO_IBSS;
   1165 		else		/* IEEE80211_M_STA */
   1166 			capinfo |= IEEE80211_CAPINFO_ESS;
   1167 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1168 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1169 		/*
   1170 		 * NB: Some 11a AP's reject the request when
   1171 		 *     short premable is set.
   1172 		 */
   1173 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1174 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1175 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1176 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
   1177 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   1178 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1179 		*(u_int16_t *)frm = htole16(capinfo);
   1180 		frm += 2;
   1181 
   1182 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
   1183 		frm += 2;
   1184 
   1185 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   1186 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
   1187 			frm += IEEE80211_ADDR_LEN;
   1188 		}
   1189 
   1190 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   1191 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1192 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1193 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1194 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   1195 		if (ic->ic_opt_ie != NULL) {
   1196 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
   1197 			frm += ic->ic_opt_ie_len;
   1198 		}
   1199 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1200 
   1201 		timer = IEEE80211_TRANS_WAIT;
   1202 		break;
   1203 
   1204 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   1205 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   1206 		/*
   1207 		 * asreq frame format
   1208 		 *	[2] capability information
   1209 		 *	[2] status
   1210 		 *	[2] association ID
   1211 		 *	[tlv] supported rates
   1212 		 *	[tlv] extended supported rates
   1213 		 *	[tlv] WME (if enabled and STA enabled)
   1214 		 */
   1215 		m = ieee80211_getmgtframe(&frm,
   1216 			 sizeof(u_int16_t)
   1217 		       + sizeof(u_int16_t)
   1218 		       + sizeof(u_int16_t)
   1219 		       + 2 + IEEE80211_RATE_SIZE
   1220 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1221 		       + sizeof(struct ieee80211_wme_param)
   1222 		);
   1223 		if (m == NULL)
   1224 			senderr(ENOMEM, is_tx_nobuf);
   1225 
   1226 		capinfo = IEEE80211_CAPINFO_ESS;
   1227 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1228 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1229 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1230 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1231 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1232 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1233 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1234 		*(u_int16_t *)frm = htole16(capinfo);
   1235 		frm += 2;
   1236 
   1237 		*(u_int16_t *)frm = htole16(arg);	/* status */
   1238 		frm += 2;
   1239 
   1240 		if (arg == IEEE80211_STATUS_SUCCESS) {
   1241 			*(u_int16_t *)frm = htole16(ni->ni_associd);
   1242 			IEEE80211_NODE_STAT(ni, tx_assoc);
   1243 		} else
   1244 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   1245 		frm += 2;
   1246 
   1247 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1248 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1249 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1250 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1251 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1252 		break;
   1253 
   1254 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   1255 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
   1256 			"[%s] send station disassociate (reason %d)\n",
   1257 			ether_sprintf(ni->ni_macaddr), arg);
   1258 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1259 		if (m == NULL)
   1260 			senderr(ENOMEM, is_tx_nobuf);
   1261 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1262 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1263 
   1264 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   1265 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   1266 		break;
   1267 
   1268 	default:
   1269 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1270 			"[%s] invalid mgmt frame type %u\n",
   1271 			ether_sprintf(ni->ni_macaddr), type);
   1272 		senderr(EINVAL, is_tx_unknownmgt);
   1273 		/* NOTREACHED */
   1274 	}
   1275 
   1276 	ret = ieee80211_mgmt_output(ic, ni, m, type);
   1277 	if (ret == 0) {
   1278 		if (timer)
   1279 			ic->ic_mgt_timer = timer;
   1280 	} else {
   1281 bad:
   1282 		ieee80211_free_node(ni);
   1283 	}
   1284 	return ret;
   1285 #undef senderr
   1286 }
   1287 
   1288 /*
   1289  * Allocate a beacon frame and fillin the appropriate bits.
   1290  */
   1291 struct mbuf *
   1292 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
   1293 	struct ieee80211_beacon_offsets *bo)
   1294 {
   1295 	struct ifnet *ifp = ic->ic_ifp;
   1296 	struct ieee80211_frame *wh;
   1297 	struct mbuf *m;
   1298 	int pktlen;
   1299 	u_int8_t *frm, *efrm;
   1300 	u_int16_t capinfo;
   1301 	struct ieee80211_rateset *rs;
   1302 
   1303 	/*
   1304 	 * beacon frame format
   1305 	 *	[8] time stamp
   1306 	 *	[2] beacon interval
   1307 	 *	[2] cabability information
   1308 	 *	[tlv] ssid
   1309 	 *	[tlv] supported rates
   1310 	 *	[3] parameter set (DS)
   1311 	 *	[tlv] parameter set (IBSS/TIM)
   1312 	 *	[tlv] extended rate phy (ERP)
   1313 	 *	[tlv] extended supported rates
   1314 	 *	[tlv] WME parameters
   1315 	 *	[tlv] WPA/RSN parameters
   1316 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   1317 	 * NB: we allocate the max space required for the TIM bitmap.
   1318 	 */
   1319 	rs = &ni->ni_rates;
   1320 	pktlen =   8					/* time stamp */
   1321 		 + sizeof(u_int16_t)			/* beacon interval */
   1322 		 + sizeof(u_int16_t)			/* capabilities */
   1323 		 + 2 + ni->ni_esslen			/* ssid */
   1324 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   1325 	         + 2 + 1				/* DS parameters */
   1326 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
   1327 		 + 2 + 1				/* ERP */
   1328 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1329 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
   1330 			sizeof(struct ieee80211_wme_param) : 0)
   1331 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   1332 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   1333 		 ;
   1334 	m = ieee80211_getmgtframe(&frm, pktlen);
   1335 	if (m == NULL) {
   1336 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1337 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   1338 		ic->ic_stats.is_tx_nobuf++;
   1339 		return NULL;
   1340 	}
   1341 
   1342 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   1343 	frm += 8;
   1344 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1345 	frm += 2;
   1346 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1347 		capinfo = IEEE80211_CAPINFO_IBSS;
   1348 	else
   1349 		capinfo = IEEE80211_CAPINFO_ESS;
   1350 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1351 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1352 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1353 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1354 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1355 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1356 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1357 	bo->bo_caps = (u_int16_t *)frm;
   1358 	*(u_int16_t *)frm = htole16(capinfo);
   1359 	frm += 2;
   1360 	*frm++ = IEEE80211_ELEMID_SSID;
   1361 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
   1362 		*frm++ = ni->ni_esslen;
   1363 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1364 		frm += ni->ni_esslen;
   1365 	} else
   1366 		*frm++ = 0;
   1367 	frm = ieee80211_add_rates(frm, rs);
   1368 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
   1369 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   1370 		*frm++ = 1;
   1371 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1372 	}
   1373 	bo->bo_tim = frm;
   1374 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1375 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1376 		*frm++ = 2;
   1377 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1378 		bo->bo_tim_len = 0;
   1379 	} else {
   1380 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
   1381 
   1382 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   1383 		tie->tim_len = 4;	/* length */
   1384 		tie->tim_count = 0;	/* DTIM count */
   1385 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
   1386 		tie->tim_bitctl = 0;	/* bitmap control */
   1387 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   1388 		frm += sizeof(struct ieee80211_tim_ie);
   1389 		bo->bo_tim_len = 1;
   1390 	}
   1391 	bo->bo_trailer = frm;
   1392 	if (ic->ic_flags & IEEE80211_F_WME) {
   1393 		bo->bo_wme = frm;
   1394 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1395 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1396 	}
   1397 	if (ic->ic_flags & IEEE80211_F_WPA)
   1398 		frm = ieee80211_add_wpa(frm, ic);
   1399 	if (ic->ic_curmode == IEEE80211_MODE_11G)
   1400 		frm = ieee80211_add_erp(frm, ic);
   1401 	efrm = ieee80211_add_xrates(frm, rs);
   1402 	bo->bo_trailer_len = efrm - bo->bo_trailer;
   1403 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
   1404 
   1405 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1406 	KASSERT(m != NULL, ("no space for 802.11 header?"));
   1407 	wh = mtod(m, struct ieee80211_frame *);
   1408 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1409 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1410 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1411 	*(u_int16_t *)wh->i_dur = 0;
   1412 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   1413 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   1414 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   1415 	*(u_int16_t *)wh->i_seq = 0;
   1416 
   1417 	return m;
   1418 }
   1419 
   1420 /*
   1421  * Update the dynamic parts of a beacon frame based on the current state.
   1422  */
   1423 int
   1424 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
   1425 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
   1426 {
   1427 	int len_changed = 0;
   1428 	u_int16_t capinfo;
   1429 
   1430 	IEEE80211_BEACON_LOCK(ic);
   1431 	/* XXX faster to recalculate entirely or just changes? */
   1432 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1433 		capinfo = IEEE80211_CAPINFO_IBSS;
   1434 	else
   1435 		capinfo = IEEE80211_CAPINFO_ESS;
   1436 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1437 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1438 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1439 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1440 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1441 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1442 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1443 	*bo->bo_caps = htole16(capinfo);
   1444 
   1445 	if (ic->ic_flags & IEEE80211_F_WME) {
   1446 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   1447 
   1448 		/*
   1449 		 * Check for agressive mode change.  When there is
   1450 		 * significant high priority traffic in the BSS
   1451 		 * throttle back BE traffic by using conservative
   1452 		 * parameters.  Otherwise BE uses agressive params
   1453 		 * to optimize performance of legacy/non-QoS traffic.
   1454 		 */
   1455 		if (wme->wme_flags & WME_F_AGGRMODE) {
   1456 			if (wme->wme_hipri_traffic >
   1457 			    wme->wme_hipri_switch_thresh) {
   1458 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1459 				    "%s: traffic %u, disable aggressive mode\n",
   1460 				    __func__, wme->wme_hipri_traffic);
   1461 				wme->wme_flags &= ~WME_F_AGGRMODE;
   1462 				ieee80211_wme_updateparams_locked(ic);
   1463 				wme->wme_hipri_traffic =
   1464 					wme->wme_hipri_switch_hysteresis;
   1465 			} else
   1466 				wme->wme_hipri_traffic = 0;
   1467 		} else {
   1468 			if (wme->wme_hipri_traffic <=
   1469 			    wme->wme_hipri_switch_thresh) {
   1470 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1471 				    "%s: traffic %u, enable aggressive mode\n",
   1472 				    __func__, wme->wme_hipri_traffic);
   1473 				wme->wme_flags |= WME_F_AGGRMODE;
   1474 				ieee80211_wme_updateparams_locked(ic);
   1475 				wme->wme_hipri_traffic = 0;
   1476 			} else
   1477 				wme->wme_hipri_traffic =
   1478 					wme->wme_hipri_switch_hysteresis;
   1479 		}
   1480 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
   1481 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
   1482 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1483 		}
   1484 	}
   1485 
   1486 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
   1487 		struct ieee80211_tim_ie *tie =
   1488 			(struct ieee80211_tim_ie *) bo->bo_tim;
   1489 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
   1490 			u_int timlen, timoff, i;
   1491 			/*
   1492 			 * ATIM/DTIM needs updating.  If it fits in the
   1493 			 * current space allocated then just copy in the
   1494 			 * new bits.  Otherwise we need to move any trailing
   1495 			 * data to make room.  Note that we know there is
   1496 			 * contiguous space because ieee80211_beacon_allocate
   1497 			 * insures there is space in the mbuf to write a
   1498 			 * maximal-size virtual bitmap (based on ic_max_aid).
   1499 			 */
   1500 			/*
   1501 			 * Calculate the bitmap size and offset, copy any
   1502 			 * trailer out of the way, and then copy in the
   1503 			 * new bitmap and update the information element.
   1504 			 * Note that the tim bitmap must contain at least
   1505 			 * one byte and any offset must be even.
   1506 			 */
   1507 			if (ic->ic_ps_pending != 0) {
   1508 				timoff = 128;		/* impossibly large */
   1509 				for (i = 0; i < ic->ic_tim_len; i++)
   1510 					if (ic->ic_tim_bitmap[i]) {
   1511 						timoff = i &~ 1;
   1512 						break;
   1513 					}
   1514 				KASSERT(timoff != 128, ("tim bitmap empty!"));
   1515 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
   1516 					if (ic->ic_tim_bitmap[i])
   1517 						break;
   1518 				timlen = 1 + (i - timoff);
   1519 			} else {
   1520 				timoff = 0;
   1521 				timlen = 1;
   1522 			}
   1523 			if (timlen != bo->bo_tim_len) {
   1524 				/* copy up/down trailer */
   1525 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
   1526 					bo->bo_trailer_len);
   1527 				bo->bo_trailer = tie->tim_bitmap+timlen;
   1528 				bo->bo_wme = bo->bo_trailer;
   1529 				bo->bo_tim_len = timlen;
   1530 
   1531 				/* update information element */
   1532 				tie->tim_len = 3 + timlen;
   1533 				tie->tim_bitctl = timoff;
   1534 				len_changed = 1;
   1535 			}
   1536 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
   1537 				bo->bo_tim_len);
   1538 
   1539 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
   1540 
   1541 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   1542 				"%s: TIM updated, pending %u, off %u, len %u\n",
   1543 				__func__, ic->ic_ps_pending, timoff, timlen);
   1544 		}
   1545 		/* count down DTIM period */
   1546 		if (tie->tim_count == 0)
   1547 			tie->tim_count = tie->tim_period - 1;
   1548 		else
   1549 			tie->tim_count--;
   1550 		/* update state for buffered multicast frames on DTIM */
   1551 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
   1552 			tie->tim_bitctl |= 1;
   1553 		else
   1554 			tie->tim_bitctl &= ~1;
   1555 	}
   1556 	IEEE80211_BEACON_UNLOCK(ic);
   1557 
   1558 	return len_changed;
   1559 }
   1560 
   1561 /*
   1562  * Save an outbound packet for a node in power-save sleep state.
   1563  * The new packet is placed on the node's saved queue, and the TIM
   1564  * is changed, if necessary.
   1565  */
   1566 void
   1567 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
   1568 		  struct mbuf *m)
   1569 {
   1570 	int qlen, age;
   1571 
   1572 	IEEE80211_NODE_SAVEQ_LOCK(ni);
   1573 	if (_IF_QFULL(&ni->ni_savedq)) {
   1574 		_IF_DROP(&ni->ni_savedq);
   1575 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   1576 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1577 			"[%s] pwr save q overflow, drops %d (size %d)\n",
   1578 			ether_sprintf(ni->ni_macaddr),
   1579 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
   1580 #ifdef IEEE80211_DEBUG
   1581 		if (ieee80211_msg_dumppkts(ic))
   1582 			ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1);
   1583 #endif
   1584 		m_freem(m);
   1585 		return;
   1586 	}
   1587 	/*
   1588 	 * Tag the frame with it's expiry time and insert
   1589 	 * it in the queue.  The aging interval is 4 times
   1590 	 * the listen interval specified by the station.
   1591 	 * Frames that sit around too long are reclaimed
   1592 	 * using this information.
   1593 	 */
   1594 	/* XXX handle overflow? */
   1595 	age = ((ni->ni_intval * ic->ic_lintval) << 2) / 1024; /* TU -> secs */
   1596 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
   1597 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   1598 
   1599 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   1600 		"[%s] save frame, %u now queued\n",
   1601 		ether_sprintf(ni->ni_macaddr), qlen);
   1602 
   1603 	if (qlen == 1)
   1604 		ic->ic_set_tim(ic, ni, 1);
   1605 }
   1606