Home | History | Annotate | Line # | Download | only in net80211
ieee80211_output.c revision 1.47
      1 /*	$NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 Atsushi Onoe
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * Alternatively, this software may be distributed under the terms of the
     19  * GNU General Public License ("GPL") version 2 as published by the Free
     20  * Software Foundation.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #ifdef __FreeBSD__
     36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
     37 #endif
     38 #ifdef __NetBSD__
     39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $");
     40 #endif
     41 
     42 #include "opt_inet.h"
     43 
     44 #ifdef __NetBSD__
     45 #include "bpfilter.h"
     46 #endif /* __NetBSD__ */
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/mbuf.h>
     51 #include <sys/kernel.h>
     52 #include <sys/endian.h>
     53 #include <sys/errno.h>
     54 #include <sys/proc.h>
     55 #include <sys/sysctl.h>
     56 
     57 #include <net/if.h>
     58 #include <net/if_llc.h>
     59 #include <net/if_media.h>
     60 #include <net/if_arp.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_llc.h>
     63 #include <net/if_vlanvar.h>
     64 
     65 #include <net80211/ieee80211_netbsd.h>
     66 #include <net80211/ieee80211_var.h>
     67 
     68 #if NBPFILTER > 0
     69 #include <net/bpf.h>
     70 #endif
     71 
     72 #ifdef INET
     73 #include <netinet/in.h>
     74 #include <netinet/in_systm.h>
     75 #include <netinet/in_var.h>
     76 #include <netinet/ip.h>
     77 #include <net/if_ether.h>
     78 #endif
     79 
     80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
     81 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
     82 
     83 #ifdef IEEE80211_DEBUG
     84 /*
     85  * Decide if an outbound management frame should be
     86  * printed when debugging is enabled.  This filters some
     87  * of the less interesting frames that come frequently
     88  * (e.g. beacons).
     89  */
     90 static __inline int
     91 doprint(struct ieee80211com *ic, int subtype)
     92 {
     93 	switch (subtype) {
     94 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     95 		return (ic->ic_opmode == IEEE80211_M_IBSS);
     96 	}
     97 	return 1;
     98 }
     99 #endif
    100 
    101 /*
    102  * Set the direction field and address fields of an outgoing
    103  * non-QoS frame.  Note this should be called early on in
    104  * constructing a frame as it sets i_fc[1]; other bits can
    105  * then be or'd in.
    106  */
    107 static void
    108 ieee80211_send_setup(struct ieee80211com *ic,
    109 	struct ieee80211_node *ni,
    110 	struct ieee80211_frame *wh,
    111 	int type,
    112 	const u_int8_t sa[IEEE80211_ADDR_LEN],
    113 	const u_int8_t da[IEEE80211_ADDR_LEN],
    114 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
    115 {
    116 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
    117 
    118 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
    119 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
    120 		switch (ic->ic_opmode) {
    121 		case IEEE80211_M_STA:
    122 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    123 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
    124 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    125 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    126 			break;
    127 		case IEEE80211_M_IBSS:
    128 		case IEEE80211_M_AHDEMO:
    129 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    130 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    131 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    132 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    133 			break;
    134 		case IEEE80211_M_HOSTAP:
    135 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    136 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    137 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
    138 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    139 			break;
    140 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
    141 			break;
    142 		}
    143 	} else {
    144 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    145 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
    146 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    147 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    148 	}
    149 	*(u_int16_t *)&wh->i_dur[0] = 0;
    150 	/* NB: use non-QoS tid */
    151 	*(u_int16_t *)&wh->i_seq[0] =
    152 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    153 	ni->ni_txseqs[0]++;
    154 #undef WH4
    155 }
    156 
    157 /*
    158  * Send a management frame to the specified node.  The node pointer
    159  * must have a reference as the pointer will be passed to the driver
    160  * and potentially held for a long time.  If the frame is successfully
    161  * dispatched to the driver, then it is responsible for freeing the
    162  * reference (and potentially free'ing up any associated storage).
    163  */
    164 static int
    165 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
    166     struct mbuf *m, int type, int timer)
    167 {
    168 	struct ifnet *ifp = ic->ic_ifp;
    169 	struct ieee80211_frame *wh;
    170 
    171 	IASSERT(ni != NULL, ("null node"));
    172 
    173 	/*
    174 	 * Yech, hack alert!  We want to pass the node down to the
    175 	 * driver's start routine.  If we don't do so then the start
    176 	 * routine must immediately look it up again and that can
    177 	 * cause a lock order reversal if, for example, this frame
    178 	 * is being sent because the station is being timedout and
    179 	 * the frame being sent is a DEAUTH message.  We could stick
    180 	 * this in an m_tag and tack that on to the mbuf.  However
    181 	 * that's rather expensive to do for every frame so instead
    182 	 * we stuff it in the rcvif field since outbound frames do
    183 	 * not (presently) use this.
    184 	 */
    185 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
    186 	if (m == NULL)
    187 		return ENOMEM;
    188 #ifdef __FreeBSD__
    189 	KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
    190 #endif
    191 	m->m_pkthdr.rcvif = (void *)ni;
    192 
    193 	wh = mtod(m, struct ieee80211_frame *);
    194 	ieee80211_send_setup(ic, ni, wh,
    195 		IEEE80211_FC0_TYPE_MGT | type,
    196 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    197 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
    198 		m->m_flags &= ~M_LINK0;
    199 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
    200 			"[%s] encrypting frame (%s)\n",
    201 			ether_sprintf(wh->i_addr1), __func__);
    202 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
    203 	}
    204 #ifdef IEEE80211_DEBUG
    205 	/* avoid printing too many frames */
    206 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
    207 	    ieee80211_msg_dumppkts(ic)) {
    208 		printf("[%s] send %s on channel %u\n",
    209 		    ether_sprintf(wh->i_addr1),
    210 		    ieee80211_mgt_subtype_name[
    211 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
    212 				IEEE80211_FC0_SUBTYPE_SHIFT],
    213 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
    214 	}
    215 #endif
    216 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    217 	IF_ENQUEUE(&ic->ic_mgtq, m);
    218 	if (timer) {
    219 		/*
    220 		 * Set the mgt frame timeout.
    221 		 */
    222 		ic->ic_mgt_timer = timer;
    223 		ifp->if_timer = 1;
    224 	}
    225 	(*ifp->if_start)(ifp);
    226 	return 0;
    227 }
    228 
    229 /*
    230  * Send a null data frame to the specified node.
    231  *
    232  * NB: the caller is assumed to have setup a node reference
    233  *     for use; this is necessary to deal with a race condition
    234  *     when probing for inactive stations.
    235  */
    236 int
    237 ieee80211_send_nulldata(struct ieee80211_node *ni)
    238 {
    239 	struct ieee80211com *ic = ni->ni_ic;
    240 	struct ifnet *ifp = ic->ic_ifp;
    241 	struct mbuf *m;
    242 	struct ieee80211_frame *wh;
    243 
    244 	MGETHDR(m, M_NOWAIT, MT_HEADER);
    245 	if (m == NULL) {
    246 		/* XXX debug msg */
    247 		ic->ic_stats.is_tx_nobuf++;
    248 		ieee80211_unref_node(&ni);
    249 		return ENOMEM;
    250 	}
    251 	m->m_pkthdr.rcvif = (void *) ni;
    252 
    253 	wh = mtod(m, struct ieee80211_frame *);
    254 	ieee80211_send_setup(ic, ni, wh,
    255 		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
    256 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    257 	/* NB: power management bit is never sent by an AP */
    258 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
    259 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
    260 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
    261 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
    262 
    263 	IEEE80211_NODE_STAT(ni, tx_data);
    264 
    265 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
    266 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
    267 	    ether_sprintf(ni->ni_macaddr),
    268 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
    269 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
    270 
    271 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
    272 	(*ifp->if_start)(ifp);
    273 
    274 	return 0;
    275 }
    276 
    277 /*
    278  * Assign priority to a frame based on any vlan tag assigned
    279  * to the station and/or any Diffserv setting in an IP header.
    280  * Finally, if an ACM policy is setup (in station mode) it's
    281  * applied.
    282  */
    283 int
    284 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
    285 {
    286 	int v_wme_ac, d_wme_ac, ac;
    287 #ifdef INET
    288 	struct ether_header *eh;
    289 #endif
    290 
    291 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
    292 		ac = WME_AC_BE;
    293 		goto done;
    294 	}
    295 
    296 	/*
    297 	 * If node has a vlan tag then all traffic
    298 	 * to it must have a matching tag.
    299 	 */
    300 	v_wme_ac = 0;
    301 	if (ni->ni_vlan != 0) {
    302 		/* XXX used to check ec_nvlans. */
    303 		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    304 		if (mtag == NULL) {
    305 			IEEE80211_NODE_STAT(ni, tx_novlantag);
    306 			return 1;
    307 		}
    308 		if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
    309 		    EVL_VLANOFTAG(ni->ni_vlan)) {
    310 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
    311 			return 1;
    312 		}
    313 		/* map vlan priority to AC */
    314 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
    315 		case 1:
    316 		case 2:
    317 			v_wme_ac = WME_AC_BK;
    318 			break;
    319 		case 0:
    320 		case 3:
    321 			v_wme_ac = WME_AC_BE;
    322 			break;
    323 		case 4:
    324 		case 5:
    325 			v_wme_ac = WME_AC_VI;
    326 			break;
    327 		case 6:
    328 		case 7:
    329 			v_wme_ac = WME_AC_VO;
    330 			break;
    331 		}
    332 	}
    333 
    334 #ifdef INET
    335 	eh = mtod(m, struct ether_header *);
    336 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
    337 		const struct ip *ip = (struct ip *)
    338 			(mtod(m, u_int8_t *) + sizeof (*eh));
    339 		/*
    340 		 * IP frame, map the TOS field.
    341 		 */
    342 		switch (ip->ip_tos) {
    343 		case 0x08:
    344 		case 0x20:
    345 			d_wme_ac = WME_AC_BK;	/* background */
    346 			break;
    347 		case 0x28:
    348 		case 0xa0:
    349 			d_wme_ac = WME_AC_VI;	/* video */
    350 			break;
    351 		case 0x30:			/* voice */
    352 		case 0xe0:
    353 		case 0x88:			/* XXX UPSD */
    354 		case 0xb8:
    355 			d_wme_ac = WME_AC_VO;
    356 			break;
    357 		default:
    358 			d_wme_ac = WME_AC_BE;
    359 			break;
    360 		}
    361 	} else {
    362 #endif /* INET */
    363 		d_wme_ac = WME_AC_BE;
    364 #ifdef INET
    365 	}
    366 #endif
    367 	/*
    368 	 * Use highest priority AC.
    369 	 */
    370 	if (v_wme_ac > d_wme_ac)
    371 		ac = v_wme_ac;
    372 	else
    373 		ac = d_wme_ac;
    374 
    375 	/*
    376 	 * Apply ACM policy.
    377 	 */
    378 	if (ic->ic_opmode == IEEE80211_M_STA) {
    379 		static const int acmap[4] = {
    380 			WME_AC_BK,	/* WME_AC_BE */
    381 			WME_AC_BK,	/* WME_AC_BK */
    382 			WME_AC_BE,	/* WME_AC_VI */
    383 			WME_AC_VI,	/* WME_AC_VO */
    384 		};
    385 		while (ac != WME_AC_BK &&
    386 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
    387 			ac = acmap[ac];
    388 	}
    389 done:
    390 	M_WME_SETAC(m, ac);
    391 	return 0;
    392 }
    393 
    394 /*
    395  * Insure there is sufficient contiguous space to encapsulate the
    396  * 802.11 data frame.  If room isn't already there, arrange for it.
    397  * Drivers and cipher modules assume we have done the necessary work
    398  * and fail rudely if they don't find the space they need.
    399  */
    400 static struct mbuf *
    401 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
    402 	struct ieee80211_key *key, struct mbuf *m)
    403 {
    404 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
    405 	int needed_space = hdrsize;
    406 	int wlen = 0;
    407 
    408 	if (key != NULL) {
    409 		/* XXX belongs in crypto code? */
    410 		needed_space += key->wk_cipher->ic_header;
    411 		/* XXX frags */
    412 	}
    413 	/*
    414 	 * We know we are called just before stripping an Ethernet
    415 	 * header and prepending an LLC header.  This means we know
    416 	 * there will be
    417 	 *	sizeof(struct ether_header) - sizeof(struct llc)
    418 	 * bytes recovered to which we need additional space for the
    419 	 * 802.11 header and any crypto header.
    420 	 */
    421 	/* XXX check trailing space and copy instead? */
    422 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
    423 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
    424 		if (n == NULL) {
    425 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    426 			    "%s: cannot expand storage\n", __func__);
    427 			ic->ic_stats.is_tx_nobuf++;
    428 			m_freem(m);
    429 			return NULL;
    430 		}
    431 		IASSERT(needed_space <= MHLEN,
    432 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
    433 		/*
    434 		 * Setup new mbuf to have leading space to prepend the
    435 		 * 802.11 header and any crypto header bits that are
    436 		 * required (the latter are added when the driver calls
    437 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
    438 		 */
    439 		/* NB: must be first 'cuz it clobbers m_data */
    440 		M_MOVE_PKTHDR(n, m);
    441 		n->m_len = 0;			/* NB: m_gethdr does not set */
    442 		n->m_data += needed_space;
    443 		/*
    444 		 * Pull up Ethernet header to create the expected layout.
    445 		 * We could use m_pullup but that's overkill (i.e. we don't
    446 		 * need the actual data) and it cannot fail so do it inline
    447 		 * for speed.
    448 		 */
    449 		/* NB: struct ether_header is known to be contiguous */
    450 		n->m_len += sizeof(struct ether_header);
    451 		m->m_len -= sizeof(struct ether_header);
    452 		m->m_data += sizeof(struct ether_header);
    453 		/*
    454 		 * Replace the head of the chain.
    455 		 */
    456 		n->m_next = m;
    457 		m = n;
    458 	} else {
    459                 /* We will overwrite the ethernet header in the
    460                  * 802.11 encapsulation stage.  Make sure that it
    461                  * is writable.
    462 		 */
    463 		wlen = sizeof(struct ether_header);
    464 	}
    465 
    466 	/*
    467 	 * If we're going to s/w encrypt the mbuf chain make sure it is
    468 	 * writable.
    469 	 */
    470 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
    471 		wlen = M_COPYALL;
    472 
    473 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
    474 		m_freem(m);
    475 		return NULL;
    476 	}
    477 	return m;
    478 #undef TO_BE_RECLAIMED
    479 }
    480 
    481 /*
    482  * Return the transmit key to use in sending a unicast frame.
    483  * If a unicast key is set we use that.  When no unicast key is set
    484  * we fall back to the default transmit key.
    485  */
    486 static __inline struct ieee80211_key *
    487 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    488 {
    489 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
    490 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    491 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    492 			return NULL;
    493 		return &ic->ic_nw_keys[ic->ic_def_txkey];
    494 	} else {
    495 		return &ni->ni_ucastkey;
    496 	}
    497 }
    498 
    499 /*
    500  * Return the transmit key to use in sending a multicast frame.
    501  * Multicast traffic always uses the group key which is installed as
    502  * the default tx key.
    503  */
    504 static __inline struct ieee80211_key *
    505 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
    506     struct ieee80211_node *ni)
    507 {
    508 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    509 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    510 		return NULL;
    511 	return &ic->ic_nw_keys[ic->ic_def_txkey];
    512 }
    513 
    514 /*
    515  * Encapsulate an outbound data frame.  The mbuf chain is updated.
    516  * If an error is encountered NULL is returned.  The caller is required
    517  * to provide a node reference and pullup the ethernet header in the
    518  * first mbuf.
    519  */
    520 struct mbuf *
    521 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
    522 	struct ieee80211_node *ni)
    523 {
    524 	struct ether_header eh;
    525 	struct ieee80211_frame *wh;
    526 	struct ieee80211_key *key;
    527 	struct llc *llc;
    528 	int hdrsize, datalen, addqos, txfrag;
    529 
    530 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
    531 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
    532 
    533 	/*
    534 	 * Insure space for additional headers.  First identify
    535 	 * transmit key to use in calculating any buffer adjustments
    536 	 * required.  This is also used below to do privacy
    537 	 * encapsulation work.  Then calculate the 802.11 header
    538 	 * size and any padding required by the driver.
    539 	 *
    540 	 * Note key may be NULL if we fall back to the default
    541 	 * transmit key and that is not set.  In that case the
    542 	 * buffer may not be expanded as needed by the cipher
    543 	 * routines, but they will/should discard it.
    544 	 */
    545 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
    546 		if (ic->ic_opmode == IEEE80211_M_STA ||
    547 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
    548 			key = ieee80211_crypto_getucastkey(ic, ni);
    549 		else
    550 			key = ieee80211_crypto_getmcastkey(ic, ni);
    551 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
    552 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    553 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    554 			    ether_sprintf(eh.ether_dhost), __func__,
    555 			    ic->ic_def_txkey);
    556 			ic->ic_stats.is_tx_nodefkey++;
    557 		}
    558 	} else
    559 		key = NULL;
    560 	/* XXX 4-address format */
    561 	/*
    562 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
    563 	 * frames so suppress use.  This may be an issue if other
    564 	 * ap's require all data frames to be QoS-encapsulated
    565 	 * once negotiated in which case we'll need to make this
    566 	 * configurable.
    567 	 */
    568 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
    569 		 eh.ether_type != htons(ETHERTYPE_PAE);
    570 	if (addqos)
    571 		hdrsize = sizeof(struct ieee80211_qosframe);
    572 	else
    573 		hdrsize = sizeof(struct ieee80211_frame);
    574 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    575 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
    576 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
    577 	if (m == NULL) {
    578 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
    579 		goto bad;
    580 	}
    581 
    582 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
    583 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
    584 	llc = mtod(m, struct llc *);
    585 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
    586 	llc->llc_control = LLC_UI;
    587 	llc->llc_snap.org_code[0] = 0;
    588 	llc->llc_snap.org_code[1] = 0;
    589 	llc->llc_snap.org_code[2] = 0;
    590 	llc->llc_snap.ether_type = eh.ether_type;
    591 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
    592 
    593 	M_PREPEND(m, hdrsize, M_DONTWAIT);
    594 	if (m == NULL) {
    595 		ic->ic_stats.is_tx_nobuf++;
    596 		goto bad;
    597 	}
    598 	wh = mtod(m, struct ieee80211_frame *);
    599 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
    600 	*(u_int16_t *)wh->i_dur = 0;
    601 	switch (ic->ic_opmode) {
    602 	case IEEE80211_M_STA:
    603 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    604 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
    605 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    606 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
    607 		break;
    608 	case IEEE80211_M_IBSS:
    609 	case IEEE80211_M_AHDEMO:
    610 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    611 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    612 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    613 		/*
    614 		 * NB: always use the bssid from ic_bss as the
    615 		 *     neighbor's may be stale after an ibss merge
    616 		 */
    617 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
    618 		break;
    619 	case IEEE80211_M_HOSTAP:
    620 #ifndef IEEE80211_NO_HOSTAP
    621 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    622 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    623 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    624 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
    625 #endif /* !IEEE80211_NO_HOSTAP */
    626 		break;
    627 	case IEEE80211_M_MONITOR:
    628 		goto bad;
    629 	}
    630 	if (m->m_flags & M_MORE_DATA)
    631 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
    632 	if (addqos) {
    633 		struct ieee80211_qosframe *qwh =
    634 			(struct ieee80211_qosframe *) wh;
    635 		int ac, tid;
    636 
    637 		ac = M_WME_GETAC(m);
    638 		/* map from access class/queue to 11e header priorty value */
    639 		tid = WME_AC_TO_TID(ac);
    640 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
    641 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
    642 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
    643 		qwh->i_qos[1] = 0;
    644 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
    645 
    646 		*(u_int16_t *)wh->i_seq =
    647 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
    648 		ni->ni_txseqs[tid]++;
    649 	} else {
    650 		*(u_int16_t *)wh->i_seq =
    651 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    652 		ni->ni_txseqs[0]++;
    653 	}
    654 	/* check if xmit fragmentation is required */
    655 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
    656 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    657 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
    658 	if (key != NULL) {
    659 		/*
    660 		 * IEEE 802.1X: send EAPOL frames always in the clear.
    661 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
    662 		 */
    663 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
    664 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
    665 		     (ic->ic_opmode == IEEE80211_M_STA ?
    666 		      !IEEE80211_KEY_UNDEFINED(*key) :
    667 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
    668 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
    669 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
    670 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    671 				    "[%s] enmic failed, discard frame\n",
    672 				    ether_sprintf(eh.ether_dhost));
    673 				ic->ic_stats.is_crypto_enmicfail++;
    674 				goto bad;
    675 			}
    676 		}
    677 	}
    678 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
    679 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
    680 		goto bad;
    681 
    682 	IEEE80211_NODE_STAT(ni, tx_data);
    683 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
    684 
    685 	return m;
    686 bad:
    687 	if (m != NULL)
    688 		m_freem(m);
    689 	return NULL;
    690 }
    691 
    692 /*
    693  * Arguments in:
    694  *
    695  * paylen:  payload length (no FCS, no WEP header)
    696  *
    697  * hdrlen:  header length
    698  *
    699  * rate:    MSDU speed, units 500kb/s
    700  *
    701  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
    702  *          IEEE80211_F_SHSLOT (use short slot length)
    703  *
    704  * Arguments out:
    705  *
    706  * d:       802.11 Duration field for RTS,
    707  *          802.11 Duration field for data frame,
    708  *          PLCP Length for data frame,
    709  *          residual octets at end of data slot
    710  */
    711 static int
    712 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
    713     struct ieee80211_duration *d)
    714 {
    715 	int pre, ctsrate;
    716 	int ack, bitlen, data_dur, remainder;
    717 
    718 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
    719 	 * DATA reserves medium for SIFS | ACK
    720 	 *
    721 	 * XXXMYC: no ACK on multicast/broadcast or control packets
    722 	 */
    723 
    724 	bitlen = len * 8;
    725 
    726 	pre = IEEE80211_DUR_DS_SIFS;
    727 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
    728 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
    729 	else
    730 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
    731 
    732 	d->d_residue = 0;
    733 	data_dur = (bitlen * 2) / rate;
    734 	remainder = (bitlen * 2) % rate;
    735 	if (remainder != 0) {
    736 		d->d_residue = (rate - remainder) / 16;
    737 		data_dur++;
    738 	}
    739 
    740 	switch (rate) {
    741 	case 2:		/* 1 Mb/s */
    742 	case 4:		/* 2 Mb/s */
    743 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
    744 		ctsrate = 2;
    745 		break;
    746 	case 11:	/* 5.5 Mb/s */
    747 	case 22:	/* 11  Mb/s */
    748 	case 44:	/* 22  Mb/s */
    749 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
    750 		ctsrate = 4;
    751 		break;
    752 	default:
    753 		/* TBD */
    754 		return -1;
    755 	}
    756 
    757 	d->d_plcp_len = data_dur;
    758 
    759 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
    760 
    761 	d->d_rts_dur =
    762 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
    763 	    pre + data_dur +
    764 	    ack;
    765 
    766 	d->d_data_dur = ack;
    767 
    768 	return 0;
    769 }
    770 
    771 /*
    772  * Arguments in:
    773  *
    774  * wh:      802.11 header
    775  *
    776  * paylen:  payload length (no FCS, no WEP header)
    777  *
    778  * rate:    MSDU speed, units 500kb/s
    779  *
    780  * fraglen: fragment length, set to maximum (or higher) for no
    781  *          fragmentation
    782  *
    783  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
    784  *          IEEE80211_F_SHPREAMBLE (use short preamble),
    785  *          IEEE80211_F_SHSLOT (use short slot length)
    786  *
    787  * Arguments out:
    788  *
    789  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    790  *     of first/only fragment
    791  *
    792  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    793  *     of last fragment
    794  *
    795  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
    796  * has already taken place.
    797  */
    798 int
    799 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
    800     const struct ieee80211_key *wk, int len,
    801     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
    802     struct ieee80211_duration *dn, int *npktp, int debug)
    803 {
    804 	int ack, rc;
    805 	int cryptolen,	/* crypto overhead: header+trailer */
    806 	    firstlen,	/* first fragment's payload + overhead length */
    807 	    hdrlen,	/* header length w/o driver padding */
    808 	    lastlen,	/* last fragment's payload length w/ overhead */
    809 	    lastlen0,	/* last fragment's payload length w/o overhead */
    810 	    npkt,	/* number of fragments */
    811 	    overlen,	/* non-802.11 header overhead per fragment */
    812 	    paylen;	/* payload length w/o overhead */
    813 
    814 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
    815 
    816         /* Account for padding required by the driver. */
    817 	if (icflags & IEEE80211_F_DATAPAD)
    818 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
    819 	else
    820 		paylen = len - hdrlen;
    821 
    822 	overlen = IEEE80211_CRC_LEN;
    823 
    824 	if (wk != NULL) {
    825 		cryptolen = wk->wk_cipher->ic_header +
    826 		            wk->wk_cipher->ic_trailer;
    827 		paylen -= cryptolen;
    828 		overlen += cryptolen;
    829 	}
    830 
    831 	npkt = paylen / fraglen;
    832 	lastlen0 = paylen % fraglen;
    833 
    834 	if (npkt == 0)			/* no fragments */
    835 		lastlen = paylen + overlen;
    836 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
    837 		lastlen = lastlen0 + overlen;
    838 		npkt++;
    839 	} else				/* full-length "tail" fragment */
    840 		lastlen = fraglen + overlen;
    841 
    842 	if (npktp != NULL)
    843 		*npktp = npkt;
    844 
    845 	if (npkt > 1)
    846 		firstlen = fraglen + overlen;
    847 	else
    848 		firstlen = paylen + overlen;
    849 
    850 	if (debug) {
    851 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
    852 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
    853 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
    854 		    overlen, len, rate, icflags);
    855 	}
    856 
    857 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    858 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
    859 
    860 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
    861 	    ack, icflags, rate, d0);
    862 	if (rc == -1)
    863 		return rc;
    864 
    865 	if (npkt <= 1) {
    866 		*dn = *d0;
    867 		return 0;
    868 	}
    869 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
    870 	    dn);
    871 }
    872 
    873 /*
    874  * Fragment the frame according to the specified mtu.
    875  * The size of the 802.11 header (w/o padding) is provided
    876  * so we don't need to recalculate it.  We create a new
    877  * mbuf for each fragment and chain it through m_nextpkt;
    878  * we might be able to optimize this by reusing the original
    879  * packet's mbufs but that is significantly more complicated.
    880  */
    881 static int
    882 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
    883 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
    884 {
    885 	struct ieee80211_frame *wh, *whf;
    886 	struct mbuf *m, *prev, *next;
    887 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
    888 
    889 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
    890 	IASSERT(m0->m_pkthdr.len > mtu,
    891 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
    892 
    893 	wh = mtod(m0, struct ieee80211_frame *);
    894 	/* NB: mark the first frag; it will be propagated below */
    895 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
    896 	totalhdrsize = hdrsize + ciphdrsize;
    897 	fragno = 1;
    898 	off = mtu - ciphdrsize;
    899 	remainder = m0->m_pkthdr.len - off;
    900 	prev = m0;
    901 	do {
    902 		fragsize = totalhdrsize + remainder;
    903 		if (fragsize > mtu)
    904 			fragsize = mtu;
    905 		IASSERT(fragsize < MCLBYTES,
    906 			("fragment size %u too big!", fragsize));
    907 		if (fragsize > MHLEN)
    908 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    909 		else
    910 			m = m_gethdr(M_DONTWAIT, MT_DATA);
    911 		if (m == NULL)
    912 			goto bad;
    913 		/* leave room to prepend any cipher header */
    914 		m_align(m, fragsize - ciphdrsize);
    915 
    916 		/*
    917 		 * Form the header in the fragment.  Note that since
    918 		 * we mark the first fragment with the MORE_FRAG bit
    919 		 * it automatically is propagated to each fragment; we
    920 		 * need only clear it on the last fragment (done below).
    921 		 */
    922 		whf = mtod(m, struct ieee80211_frame *);
    923 		memcpy(whf, wh, hdrsize);
    924 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
    925 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
    926 				IEEE80211_SEQ_FRAG_SHIFT);
    927 		fragno++;
    928 
    929 		payload = fragsize - totalhdrsize;
    930 		/* NB: destination is known to be contiguous */
    931 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
    932 		m->m_len = hdrsize + payload;
    933 		m->m_pkthdr.len = hdrsize + payload;
    934 		m->m_flags |= M_FRAG;
    935 
    936 		/* chain up the fragment */
    937 		prev->m_nextpkt = m;
    938 		prev = m;
    939 
    940 		/* deduct fragment just formed */
    941 		remainder -= payload;
    942 		off += payload;
    943 	} while (remainder != 0);
    944 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
    945 
    946 	/* strip first mbuf now that everything has been copied */
    947 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
    948 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
    949 
    950 	ic->ic_stats.is_tx_fragframes++;
    951 	ic->ic_stats.is_tx_frags += fragno-1;
    952 
    953 	return 1;
    954 bad:
    955 	/* reclaim fragments but leave original frame for caller to free */
    956 	for (m = m0->m_nextpkt; m != NULL; m = next) {
    957 		next = m->m_nextpkt;
    958 		m->m_nextpkt = NULL;            /* XXX paranoid */
    959 		m_freem(m);
    960 	}
    961 	m0->m_nextpkt = NULL;
    962 	return 0;
    963 }
    964 
    965 /*
    966  * Add a supported rates element id to a frame.
    967  */
    968 static u_int8_t *
    969 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    970 {
    971 	int nrates;
    972 
    973 	*frm++ = IEEE80211_ELEMID_RATES;
    974 	nrates = rs->rs_nrates;
    975 	if (nrates > IEEE80211_RATE_SIZE)
    976 		nrates = IEEE80211_RATE_SIZE;
    977 	*frm++ = nrates;
    978 	memcpy(frm, rs->rs_rates, nrates);
    979 	return frm + nrates;
    980 }
    981 
    982 /*
    983  * Add an extended supported rates element id to a frame.
    984  */
    985 static u_int8_t *
    986 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    987 {
    988 	/*
    989 	 * Add an extended supported rates element if operating in 11g mode.
    990 	 */
    991 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
    992 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
    993 		*frm++ = IEEE80211_ELEMID_XRATES;
    994 		*frm++ = nrates;
    995 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
    996 		frm += nrates;
    997 	}
    998 	return frm;
    999 }
   1000 
   1001 /*
   1002  * Add an ssid elemet to a frame.
   1003  */
   1004 static u_int8_t *
   1005 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   1006 {
   1007 	*frm++ = IEEE80211_ELEMID_SSID;
   1008 	*frm++ = len;
   1009 	memcpy(frm, ssid, len);
   1010 	return frm + len;
   1011 }
   1012 
   1013 /*
   1014  * Add an erp element to a frame.
   1015  */
   1016 static u_int8_t *
   1017 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
   1018 {
   1019 	u_int8_t erp;
   1020 
   1021 	*frm++ = IEEE80211_ELEMID_ERP;
   1022 	*frm++ = 1;
   1023 	erp = 0;
   1024 	if (ic->ic_nonerpsta != 0)
   1025 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
   1026 	if (ic->ic_flags & IEEE80211_F_USEPROT)
   1027 		erp |= IEEE80211_ERP_USE_PROTECTION;
   1028 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
   1029 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
   1030 	*frm++ = erp;
   1031 	return frm;
   1032 }
   1033 
   1034 static u_int8_t *
   1035 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
   1036 {
   1037 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
   1038 #define	ADDSHORT(frm, v) do {			\
   1039 	frm[0] = (v) & 0xff;			\
   1040 	frm[1] = (v) >> 8;			\
   1041 	frm += 2;				\
   1042 } while (0)
   1043 #define	ADDSELECTOR(frm, sel) do {		\
   1044 	memcpy(frm, sel, 4);			\
   1045 	frm += 4;				\
   1046 } while (0)
   1047 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
   1048 	static const u_int8_t cipher_suite[][4] = {
   1049 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
   1050 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
   1051 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
   1052 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
   1053 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1054 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
   1055 	};
   1056 	static const u_int8_t wep104_suite[4] =
   1057 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
   1058 	static const u_int8_t key_mgt_unspec[4] =
   1059 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
   1060 	static const u_int8_t key_mgt_psk[4] =
   1061 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
   1062 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1063 	u_int8_t *frm = ie;
   1064 	u_int8_t *selcnt;
   1065 
   1066 	*frm++ = IEEE80211_ELEMID_VENDOR;
   1067 	*frm++ = 0;				/* length filled in below */
   1068 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
   1069 	frm += sizeof(oui);
   1070 	ADDSHORT(frm, WPA_VERSION);
   1071 
   1072 	/* XXX filter out CKIP */
   1073 
   1074 	/* multicast cipher */
   1075 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1076 	    rsn->rsn_mcastkeylen >= 13)
   1077 		ADDSELECTOR(frm, wep104_suite);
   1078 	else
   1079 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1080 
   1081 	/* unicast cipher list */
   1082 	selcnt = frm;
   1083 	ADDSHORT(frm, 0);			/* selector count */
   1084 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1085 		selcnt[0]++;
   1086 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1087 	}
   1088 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1089 		selcnt[0]++;
   1090 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1091 	}
   1092 
   1093 	/* authenticator selector list */
   1094 	selcnt = frm;
   1095 	ADDSHORT(frm, 0);			/* selector count */
   1096 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1097 		selcnt[0]++;
   1098 		ADDSELECTOR(frm, key_mgt_unspec);
   1099 	}
   1100 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1101 		selcnt[0]++;
   1102 		ADDSELECTOR(frm, key_mgt_psk);
   1103 	}
   1104 
   1105 	/* optional capabilities */
   1106 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
   1107 		ADDSHORT(frm, rsn->rsn_caps);
   1108 
   1109 	/* calculate element length */
   1110 	ie[1] = frm - ie - 2;
   1111 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1112 		("WPA IE too big, %u > %zu",
   1113 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1114 	return frm;
   1115 #undef ADDSHORT
   1116 #undef ADDSELECTOR
   1117 #undef WPA_OUI_BYTES
   1118 }
   1119 
   1120 static u_int8_t *
   1121 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
   1122 {
   1123 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
   1124 #define	ADDSHORT(frm, v) do {			\
   1125 	frm[0] = (v) & 0xff;			\
   1126 	frm[1] = (v) >> 8;			\
   1127 	frm += 2;				\
   1128 } while (0)
   1129 #define	ADDSELECTOR(frm, sel) do {		\
   1130 	memcpy(frm, sel, 4);			\
   1131 	frm += 4;				\
   1132 } while (0)
   1133 	static const u_int8_t cipher_suite[][4] = {
   1134 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
   1135 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
   1136 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
   1137 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
   1138 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1139 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
   1140 	};
   1141 	static const u_int8_t wep104_suite[4] =
   1142 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
   1143 	static const u_int8_t key_mgt_unspec[4] =
   1144 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
   1145 	static const u_int8_t key_mgt_psk[4] =
   1146 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
   1147 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1148 	u_int8_t *frm = ie;
   1149 	u_int8_t *selcnt;
   1150 
   1151 	*frm++ = IEEE80211_ELEMID_RSN;
   1152 	*frm++ = 0;				/* length filled in below */
   1153 	ADDSHORT(frm, RSN_VERSION);
   1154 
   1155 	/* XXX filter out CKIP */
   1156 
   1157 	/* multicast cipher */
   1158 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1159 	    rsn->rsn_mcastkeylen >= 13)
   1160 		ADDSELECTOR(frm, wep104_suite);
   1161 	else
   1162 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1163 
   1164 	/* unicast cipher list */
   1165 	selcnt = frm;
   1166 	ADDSHORT(frm, 0);			/* selector count */
   1167 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1168 		selcnt[0]++;
   1169 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1170 	}
   1171 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1172 		selcnt[0]++;
   1173 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1174 	}
   1175 
   1176 	/* authenticator selector list */
   1177 	selcnt = frm;
   1178 	ADDSHORT(frm, 0);			/* selector count */
   1179 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1180 		selcnt[0]++;
   1181 		ADDSELECTOR(frm, key_mgt_unspec);
   1182 	}
   1183 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1184 		selcnt[0]++;
   1185 		ADDSELECTOR(frm, key_mgt_psk);
   1186 	}
   1187 
   1188 	/* optional capabilities */
   1189 	ADDSHORT(frm, rsn->rsn_caps);
   1190 	/* XXX PMKID */
   1191 
   1192 	/* calculate element length */
   1193 	ie[1] = frm - ie - 2;
   1194 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1195 		("RSN IE too big, %u > %zu",
   1196 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1197 	return frm;
   1198 #undef ADDSELECTOR
   1199 #undef ADDSHORT
   1200 #undef RSN_OUI_BYTES
   1201 }
   1202 
   1203 /*
   1204  * Add a WPA/RSN element to a frame.
   1205  */
   1206 static u_int8_t *
   1207 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
   1208 {
   1209 
   1210 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
   1211 	if (ic->ic_flags & IEEE80211_F_WPA2)
   1212 		frm = ieee80211_setup_rsn_ie(ic, frm);
   1213 	if (ic->ic_flags & IEEE80211_F_WPA1)
   1214 		frm = ieee80211_setup_wpa_ie(ic, frm);
   1215 	return frm;
   1216 }
   1217 
   1218 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
   1219 /*
   1220  * Add a WME information element to a frame.
   1221  */
   1222 static u_int8_t *
   1223 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1224 {
   1225 	static const struct ieee80211_wme_info info = {
   1226 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1227 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
   1228 		.wme_oui	= { WME_OUI_BYTES },
   1229 		.wme_type	= WME_OUI_TYPE,
   1230 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
   1231 		.wme_version	= WME_VERSION,
   1232 		.wme_info	= 0,
   1233 	};
   1234 	memcpy(frm, &info, sizeof(info));
   1235 	return frm + sizeof(info);
   1236 }
   1237 
   1238 /*
   1239  * Add a WME parameters element to a frame.
   1240  */
   1241 static u_int8_t *
   1242 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1243 {
   1244 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
   1245 #define	ADDSHORT(frm, v) do {			\
   1246 	frm[0] = (v) & 0xff;			\
   1247 	frm[1] = (v) >> 8;			\
   1248 	frm += 2;				\
   1249 } while (0)
   1250 	/* NB: this works 'cuz a param has an info at the front */
   1251 	static const struct ieee80211_wme_info param = {
   1252 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1253 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
   1254 		.wme_oui	= { WME_OUI_BYTES },
   1255 		.wme_type	= WME_OUI_TYPE,
   1256 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
   1257 		.wme_version	= WME_VERSION,
   1258 	};
   1259 	int i;
   1260 
   1261 	memcpy(frm, &param, sizeof(param));
   1262 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
   1263 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
   1264 	*frm++ = 0;					/* reserved field */
   1265 	for (i = 0; i < WME_NUM_AC; i++) {
   1266 		const struct wmeParams *ac =
   1267 		       &wme->wme_bssChanParams.cap_wmeParams[i];
   1268 		*frm++ = SM(i, WME_PARAM_ACI)
   1269 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
   1270 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
   1271 		       ;
   1272 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
   1273 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
   1274 		       ;
   1275 		ADDSHORT(frm, ac->wmep_txopLimit);
   1276 	}
   1277 	return frm;
   1278 #undef SM
   1279 #undef ADDSHORT
   1280 }
   1281 #undef WME_OUI_BYTES
   1282 
   1283 /*
   1284  * Send a probe request frame with the specified ssid
   1285  * and any optional information element data.
   1286  */
   1287 int
   1288 ieee80211_send_probereq(struct ieee80211_node *ni,
   1289 	const u_int8_t sa[IEEE80211_ADDR_LEN],
   1290 	const u_int8_t da[IEEE80211_ADDR_LEN],
   1291 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
   1292 	const u_int8_t *ssid, size_t ssidlen,
   1293 	const void *optie, size_t optielen)
   1294 {
   1295 	struct ieee80211com *ic = ni->ni_ic;
   1296 	enum ieee80211_phymode mode;
   1297 	struct ieee80211_frame *wh;
   1298 	struct mbuf *m;
   1299 	u_int8_t *frm;
   1300 
   1301 	/*
   1302 	 * Hold a reference on the node so it doesn't go away until after
   1303 	 * the xmit is complete all the way in the driver.  On error we
   1304 	 * will remove our reference.
   1305 	 */
   1306 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1307 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1308 		__func__, __LINE__,
   1309 		ni, ether_sprintf(ni->ni_macaddr),
   1310 		ieee80211_node_refcnt(ni)+1);
   1311 	ieee80211_ref_node(ni);
   1312 
   1313 	/*
   1314 	 * prreq frame format
   1315 	 *	[tlv] ssid
   1316 	 *	[tlv] supported rates
   1317 	 *	[tlv] extended supported rates
   1318 	 *	[tlv] user-specified ie's
   1319 	 */
   1320 	m = ieee80211_getmgtframe(&frm,
   1321 		 2 + IEEE80211_NWID_LEN
   1322 	       + 2 + IEEE80211_RATE_SIZE
   1323 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1324 	       + (optie != NULL ? optielen : 0)
   1325 	);
   1326 	if (m == NULL) {
   1327 		ic->ic_stats.is_tx_nobuf++;
   1328 		ieee80211_free_node(ni);
   1329 		return ENOMEM;
   1330 	}
   1331 
   1332 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
   1333 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
   1334 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
   1335 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
   1336 
   1337 	if (optie != NULL) {
   1338 		memcpy(frm, optie, optielen);
   1339 		frm += optielen;
   1340 	}
   1341 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1342 
   1343 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1344 	if (m == NULL)
   1345 		return ENOMEM;
   1346 	IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
   1347 	m->m_pkthdr.rcvif = (void *)ni;
   1348 
   1349 	wh = mtod(m, struct ieee80211_frame *);
   1350 	ieee80211_send_setup(ic, ni, wh,
   1351 		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
   1352 		sa, da, bssid);
   1353 	/* XXX power management? */
   1354 
   1355 	IEEE80211_NODE_STAT(ni, tx_probereq);
   1356 	IEEE80211_NODE_STAT(ni, tx_mgmt);
   1357 
   1358 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   1359 	    "[%s] send probe req on channel %u\n",
   1360 	    ether_sprintf(wh->i_addr1),
   1361 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1362 
   1363 	IF_ENQUEUE(&ic->ic_mgtq, m);
   1364 	(*ic->ic_ifp->if_start)(ic->ic_ifp);
   1365 	return 0;
   1366 }
   1367 
   1368 /*
   1369  * Send a management frame.  The node is for the destination (or ic_bss
   1370  * when in station mode).  Nodes other than ic_bss have their reference
   1371  * count bumped to reflect our use for an indeterminant time.
   1372  */
   1373 int
   1374 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
   1375 	int type, int arg)
   1376 {
   1377 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
   1378 	struct mbuf *m;
   1379 	u_int8_t *frm;
   1380 	u_int16_t capinfo;
   1381 	int has_challenge, is_shared_key, ret, timer, status;
   1382 
   1383 	IASSERT(ni != NULL, ("null node"));
   1384 
   1385 	/*
   1386 	 * Hold a reference on the node so it doesn't go away until after
   1387 	 * the xmit is complete all the way in the driver.  On error we
   1388 	 * will remove our reference.
   1389 	 */
   1390 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1391 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1392 		__func__, __LINE__,
   1393 		ni, ether_sprintf(ni->ni_macaddr),
   1394 		ieee80211_node_refcnt(ni)+1);
   1395 	ieee80211_ref_node(ni);
   1396 
   1397 	timer = 0;
   1398 	switch (type) {
   1399 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   1400 		/*
   1401 		 * probe response frame format
   1402 		 *	[8] time stamp
   1403 		 *	[2] beacon interval
   1404 		 *	[2] cabability information
   1405 		 *	[tlv] ssid
   1406 		 *	[tlv] supported rates
   1407 		 *	[tlv] parameter set (FH/DS)
   1408 		 *	[tlv] parameter set (IBSS)
   1409 		 *	[tlv] extended rate phy (ERP)
   1410 		 *	[tlv] extended supported rates
   1411 		 *	[tlv] WPA
   1412 		 *	[tlv] WME (optional)
   1413 		 */
   1414 		m = ieee80211_getmgtframe(&frm,
   1415 			 8
   1416 		       + sizeof(u_int16_t)
   1417 		       + sizeof(u_int16_t)
   1418 		       + 2 + IEEE80211_NWID_LEN
   1419 		       + 2 + IEEE80211_RATE_SIZE
   1420 		       + 7	/* max(7,3) */
   1421 		       + 6
   1422 		       + 3
   1423 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1424 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
   1425 		       + (ic->ic_flags & IEEE80211_F_WPA ?
   1426 				2*sizeof(struct ieee80211_ie_wpa) : 0)
   1427 		       + sizeof(struct ieee80211_wme_param)
   1428 		);
   1429 		if (m == NULL)
   1430 			senderr(ENOMEM, is_tx_nobuf);
   1431 
   1432 		memset(frm, 0, 8);	/* timestamp should be filled later */
   1433 		frm += 8;
   1434 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
   1435 		frm += 2;
   1436 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1437 			capinfo = IEEE80211_CAPINFO_IBSS;
   1438 		else
   1439 			capinfo = IEEE80211_CAPINFO_ESS;
   1440 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1441 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1442 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1443 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1444 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1445 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1446 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1447 		*(u_int16_t *)frm = htole16(capinfo);
   1448 		frm += 2;
   1449 
   1450 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
   1451 				ic->ic_bss->ni_esslen);
   1452 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1453 
   1454 		if (ic->ic_phytype == IEEE80211_T_FH) {
   1455                         *frm++ = IEEE80211_ELEMID_FHPARMS;
   1456                         *frm++ = 5;
   1457                         *frm++ = ni->ni_fhdwell & 0x00ff;
   1458                         *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
   1459                         *frm++ = IEEE80211_FH_CHANSET(
   1460 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1461                         *frm++ = IEEE80211_FH_CHANPAT(
   1462 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1463                         *frm++ = ni->ni_fhindex;
   1464 		} else {
   1465 			*frm++ = IEEE80211_ELEMID_DSPARMS;
   1466 			*frm++ = 1;
   1467 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1468 		}
   1469 
   1470 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1471 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1472 			*frm++ = 2;
   1473 			*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1474 		}
   1475 		if (ic->ic_flags & IEEE80211_F_WPA)
   1476 			frm = ieee80211_add_wpa(frm, ic);
   1477 		if (ic->ic_curmode == IEEE80211_MODE_11G)
   1478 			frm = ieee80211_add_erp(frm, ic);
   1479 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1480 		if (ic->ic_flags & IEEE80211_F_WME)
   1481 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1482 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1483 		break;
   1484 
   1485 	case IEEE80211_FC0_SUBTYPE_AUTH:
   1486 		status = arg >> 16;
   1487 		arg &= 0xffff;
   1488 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   1489 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   1490 		    ni->ni_challenge != NULL);
   1491 
   1492 		/*
   1493 		 * Deduce whether we're doing open authentication or
   1494 		 * shared key authentication.  We do the latter if
   1495 		 * we're in the middle of a shared key authentication
   1496 		 * handshake or if we're initiating an authentication
   1497 		 * request and configured to use shared key.
   1498 		 */
   1499 		is_shared_key = has_challenge ||
   1500 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
   1501 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   1502 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
   1503 
   1504 		m = ieee80211_getmgtframe(&frm,
   1505 			  3 * sizeof(u_int16_t)
   1506 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
   1507 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
   1508 		);
   1509 		if (m == NULL)
   1510 			senderr(ENOMEM, is_tx_nobuf);
   1511 
   1512 		((u_int16_t *)frm)[0] =
   1513 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
   1514 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   1515 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
   1516 		((u_int16_t *)frm)[2] = htole16(status);/* status */
   1517 
   1518 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
   1519 			((u_int16_t *)frm)[3] =
   1520 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   1521 			    IEEE80211_ELEMID_CHALLENGE);
   1522 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
   1523 			    IEEE80211_CHALLENGE_LEN);
   1524 			m->m_pkthdr.len = m->m_len =
   1525 				4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
   1526 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   1527 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1528 				    "[%s] request encrypt frame (%s)\n",
   1529 				    ether_sprintf(ni->ni_macaddr), __func__);
   1530 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
   1531 			}
   1532 		} else
   1533 			m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
   1534 
   1535 		/* XXX not right for shared key */
   1536 		if (status == IEEE80211_STATUS_SUCCESS)
   1537 			IEEE80211_NODE_STAT(ni, tx_auth);
   1538 		else
   1539 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   1540 
   1541 		if (ic->ic_opmode == IEEE80211_M_STA)
   1542 			timer = IEEE80211_TRANS_WAIT;
   1543 		break;
   1544 
   1545 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   1546 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1547 			"[%s] send station deauthenticate (reason %d)\n",
   1548 			ether_sprintf(ni->ni_macaddr), arg);
   1549 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1550 		if (m == NULL)
   1551 			senderr(ENOMEM, is_tx_nobuf);
   1552 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1553 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1554 
   1555 		IEEE80211_NODE_STAT(ni, tx_deauth);
   1556 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   1557 
   1558 		ieee80211_node_unauthorize(ni);		/* port closed */
   1559 		break;
   1560 
   1561 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   1562 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   1563 		/*
   1564 		 * asreq frame format
   1565 		 *	[2] capability information
   1566 		 *	[2] listen interval
   1567 		 *	[6*] current AP address (reassoc only)
   1568 		 *	[tlv] ssid
   1569 		 *	[tlv] supported rates
   1570 		 *	[tlv] extended supported rates
   1571 		 *	[tlv] WME
   1572 		 *	[tlv] user-specified ie's
   1573 		 */
   1574 		m = ieee80211_getmgtframe(&frm,
   1575 			 sizeof(u_int16_t)
   1576 		       + sizeof(u_int16_t)
   1577 		       + IEEE80211_ADDR_LEN
   1578 		       + 2 + IEEE80211_NWID_LEN
   1579 		       + 2 + IEEE80211_RATE_SIZE
   1580 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1581 		       + sizeof(struct ieee80211_wme_info)
   1582 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
   1583 		);
   1584 		if (m == NULL)
   1585 			senderr(ENOMEM, is_tx_nobuf);
   1586 
   1587 		capinfo = 0;
   1588 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1589 			capinfo |= IEEE80211_CAPINFO_IBSS;
   1590 		else		/* IEEE80211_M_STA */
   1591 			capinfo |= IEEE80211_CAPINFO_ESS;
   1592 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1593 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1594 		/*
   1595 		 * NB: Some 11a AP's reject the request when
   1596 		 *     short premable is set.
   1597 		 */
   1598 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1599 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1600 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1601 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
   1602 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   1603 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1604 		*(u_int16_t *)frm = htole16(capinfo);
   1605 		frm += 2;
   1606 
   1607 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
   1608 		frm += 2;
   1609 
   1610 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   1611 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
   1612 			frm += IEEE80211_ADDR_LEN;
   1613 		}
   1614 
   1615 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   1616 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1617 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1618 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1619 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   1620 		if (ic->ic_opt_ie != NULL) {
   1621 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
   1622 			frm += ic->ic_opt_ie_len;
   1623 		}
   1624 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1625 
   1626 		timer = IEEE80211_TRANS_WAIT;
   1627 		break;
   1628 
   1629 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   1630 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   1631 		/*
   1632 		 * asreq frame format
   1633 		 *	[2] capability information
   1634 		 *	[2] status
   1635 		 *	[2] association ID
   1636 		 *	[tlv] supported rates
   1637 		 *	[tlv] extended supported rates
   1638 		 *	[tlv] WME (if enabled and STA enabled)
   1639 		 */
   1640 		m = ieee80211_getmgtframe(&frm,
   1641 			 sizeof(u_int16_t)
   1642 		       + sizeof(u_int16_t)
   1643 		       + sizeof(u_int16_t)
   1644 		       + 2 + IEEE80211_RATE_SIZE
   1645 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1646 		       + sizeof(struct ieee80211_wme_param)
   1647 		);
   1648 		if (m == NULL)
   1649 			senderr(ENOMEM, is_tx_nobuf);
   1650 
   1651 		capinfo = IEEE80211_CAPINFO_ESS;
   1652 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1653 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1654 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1655 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1656 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1657 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1658 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1659 		*(u_int16_t *)frm = htole16(capinfo);
   1660 		frm += 2;
   1661 
   1662 		*(u_int16_t *)frm = htole16(arg);	/* status */
   1663 		frm += 2;
   1664 
   1665 		if (arg == IEEE80211_STATUS_SUCCESS) {
   1666 			*(u_int16_t *)frm = htole16(ni->ni_associd);
   1667 			IEEE80211_NODE_STAT(ni, tx_assoc);
   1668 		} else
   1669 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   1670 		frm += 2;
   1671 
   1672 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1673 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1674 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1675 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1676 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1677 		break;
   1678 
   1679 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   1680 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
   1681 			"[%s] send station disassociate (reason %d)\n",
   1682 			ether_sprintf(ni->ni_macaddr), arg);
   1683 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1684 		if (m == NULL)
   1685 			senderr(ENOMEM, is_tx_nobuf);
   1686 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1687 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1688 
   1689 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   1690 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   1691 		break;
   1692 
   1693 	default:
   1694 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1695 			"[%s] invalid mgmt frame type %u\n",
   1696 			ether_sprintf(ni->ni_macaddr), type);
   1697 		senderr(EINVAL, is_tx_unknownmgt);
   1698 		/* NOTREACHED */
   1699 	}
   1700 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
   1701 	if (ret != 0) {
   1702 bad:
   1703 		ieee80211_free_node(ni);
   1704 	}
   1705 	return ret;
   1706 #undef senderr
   1707 }
   1708 
   1709 /*
   1710  * Allocate a beacon frame and fillin the appropriate bits.
   1711  */
   1712 struct mbuf *
   1713 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
   1714 	struct ieee80211_beacon_offsets *bo)
   1715 {
   1716 	struct ifnet *ifp = ic->ic_ifp;
   1717 	struct ieee80211_frame *wh;
   1718 	struct mbuf *m;
   1719 	int pktlen;
   1720 	u_int8_t *frm, *efrm;
   1721 	u_int16_t capinfo;
   1722 	struct ieee80211_rateset *rs;
   1723 
   1724 	/*
   1725 	 * beacon frame format
   1726 	 *	[8] time stamp
   1727 	 *	[2] beacon interval
   1728 	 *	[2] cabability information
   1729 	 *	[tlv] ssid
   1730 	 *	[tlv] supported rates
   1731 	 *	[3] parameter set (DS)
   1732 	 *	[tlv] parameter set (IBSS/TIM)
   1733 	 *	[tlv] extended rate phy (ERP)
   1734 	 *	[tlv] extended supported rates
   1735 	 *	[tlv] WME parameters
   1736 	 *	[tlv] WPA/RSN parameters
   1737 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   1738 	 * NB: we allocate the max space required for the TIM bitmap.
   1739 	 */
   1740 	rs = &ni->ni_rates;
   1741 	pktlen =   8					/* time stamp */
   1742 		 + sizeof(u_int16_t)			/* beacon interval */
   1743 		 + sizeof(u_int16_t)			/* capabilities */
   1744 		 + 2 + ni->ni_esslen			/* ssid */
   1745 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   1746 	         + 2 + 1				/* DS parameters */
   1747 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
   1748 		 + 2 + 1				/* ERP */
   1749 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1750 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
   1751 			sizeof(struct ieee80211_wme_param) : 0)
   1752 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   1753 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   1754 		 ;
   1755 	m = ieee80211_getmgtframe(&frm, pktlen);
   1756 	if (m == NULL) {
   1757 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1758 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   1759 		ic->ic_stats.is_tx_nobuf++;
   1760 		return NULL;
   1761 	}
   1762 
   1763 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   1764 	frm += 8;
   1765 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1766 	frm += 2;
   1767 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1768 		capinfo = IEEE80211_CAPINFO_IBSS;
   1769 	else
   1770 		capinfo = IEEE80211_CAPINFO_ESS;
   1771 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1772 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1773 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1774 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1775 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1776 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1777 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1778 	bo->bo_caps = (u_int16_t *)frm;
   1779 	*(u_int16_t *)frm = htole16(capinfo);
   1780 	frm += 2;
   1781 	*frm++ = IEEE80211_ELEMID_SSID;
   1782 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
   1783 		*frm++ = ni->ni_esslen;
   1784 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1785 		frm += ni->ni_esslen;
   1786 	} else
   1787 		*frm++ = 0;
   1788 	frm = ieee80211_add_rates(frm, rs);
   1789 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
   1790 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   1791 		*frm++ = 1;
   1792 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1793 	}
   1794 	bo->bo_tim = frm;
   1795 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1796 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1797 		*frm++ = 2;
   1798 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1799 		bo->bo_tim_len = 0;
   1800 	} else {
   1801 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
   1802 
   1803 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   1804 		tie->tim_len = 4;	/* length */
   1805 		tie->tim_count = 0;	/* DTIM count */
   1806 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
   1807 		tie->tim_bitctl = 0;	/* bitmap control */
   1808 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   1809 		frm += sizeof(struct ieee80211_tim_ie);
   1810 		bo->bo_tim_len = 1;
   1811 	}
   1812 	bo->bo_trailer = frm;
   1813 	if (ic->ic_flags & IEEE80211_F_WME) {
   1814 		bo->bo_wme = frm;
   1815 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1816 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1817 	}
   1818 	if (ic->ic_flags & IEEE80211_F_WPA)
   1819 		frm = ieee80211_add_wpa(frm, ic);
   1820 	if (ic->ic_curmode == IEEE80211_MODE_11G)
   1821 		frm = ieee80211_add_erp(frm, ic);
   1822 	efrm = ieee80211_add_xrates(frm, rs);
   1823 	bo->bo_trailer_len = efrm - bo->bo_trailer;
   1824 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
   1825 
   1826 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1827 	IASSERT(m != NULL, ("no space for 802.11 header?"));
   1828 	wh = mtod(m, struct ieee80211_frame *);
   1829 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1830 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1831 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1832 	*(u_int16_t *)wh->i_dur = 0;
   1833 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   1834 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   1835 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   1836 	*(u_int16_t *)wh->i_seq = 0;
   1837 
   1838 	return m;
   1839 }
   1840 
   1841 /*
   1842  * Update the dynamic parts of a beacon frame based on the current state.
   1843  */
   1844 int
   1845 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
   1846     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
   1847 {
   1848 	int len_changed = 0;
   1849 	u_int16_t capinfo;
   1850 
   1851 	IEEE80211_BEACON_LOCK(ic);
   1852 	/* XXX faster to recalculate entirely or just changes? */
   1853 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1854 		capinfo = IEEE80211_CAPINFO_IBSS;
   1855 	else
   1856 		capinfo = IEEE80211_CAPINFO_ESS;
   1857 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1858 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1859 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1860 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1861 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1862 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1863 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1864 	*bo->bo_caps = htole16(capinfo);
   1865 
   1866 	if (ic->ic_flags & IEEE80211_F_WME) {
   1867 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   1868 
   1869 		/*
   1870 		 * Check for agressive mode change.  When there is
   1871 		 * significant high priority traffic in the BSS
   1872 		 * throttle back BE traffic by using conservative
   1873 		 * parameters.  Otherwise BE uses agressive params
   1874 		 * to optimize performance of legacy/non-QoS traffic.
   1875 		 */
   1876 		if (wme->wme_flags & WME_F_AGGRMODE) {
   1877 			if (wme->wme_hipri_traffic >
   1878 			    wme->wme_hipri_switch_thresh) {
   1879 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1880 				    "%s: traffic %u, disable aggressive mode\n",
   1881 				    __func__, wme->wme_hipri_traffic);
   1882 				wme->wme_flags &= ~WME_F_AGGRMODE;
   1883 				ieee80211_wme_updateparams_locked(ic);
   1884 				wme->wme_hipri_traffic =
   1885 					wme->wme_hipri_switch_hysteresis;
   1886 			} else
   1887 				wme->wme_hipri_traffic = 0;
   1888 		} else {
   1889 			if (wme->wme_hipri_traffic <=
   1890 			    wme->wme_hipri_switch_thresh) {
   1891 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1892 				    "%s: traffic %u, enable aggressive mode\n",
   1893 				    __func__, wme->wme_hipri_traffic);
   1894 				wme->wme_flags |= WME_F_AGGRMODE;
   1895 				ieee80211_wme_updateparams_locked(ic);
   1896 				wme->wme_hipri_traffic = 0;
   1897 			} else
   1898 				wme->wme_hipri_traffic =
   1899 					wme->wme_hipri_switch_hysteresis;
   1900 		}
   1901 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
   1902 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
   1903 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1904 		}
   1905 	}
   1906 
   1907 #ifndef IEEE80211_NO_HOSTAP
   1908 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
   1909 		struct ieee80211_tim_ie *tie =
   1910 			(struct ieee80211_tim_ie *) bo->bo_tim;
   1911 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
   1912 			u_int timlen, timoff, i;
   1913 			/*
   1914 			 * ATIM/DTIM needs updating.  If it fits in the
   1915 			 * current space allocated then just copy in the
   1916 			 * new bits.  Otherwise we need to move any trailing
   1917 			 * data to make room.  Note that we know there is
   1918 			 * contiguous space because ieee80211_beacon_allocate
   1919 			 * insures there is space in the mbuf to write a
   1920 			 * maximal-size virtual bitmap (based on ic_max_aid).
   1921 			 */
   1922 			/*
   1923 			 * Calculate the bitmap size and offset, copy any
   1924 			 * trailer out of the way, and then copy in the
   1925 			 * new bitmap and update the information element.
   1926 			 * Note that the tim bitmap must contain at least
   1927 			 * one byte and any offset must be even.
   1928 			 */
   1929 			if (ic->ic_ps_pending != 0) {
   1930 				timoff = 128;		/* impossibly large */
   1931 				for (i = 0; i < ic->ic_tim_len; i++)
   1932 					if (ic->ic_tim_bitmap[i]) {
   1933 						timoff = i &~ 1;
   1934 						break;
   1935 					}
   1936 				IASSERT(timoff != 128, ("tim bitmap empty!"));
   1937 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
   1938 					if (ic->ic_tim_bitmap[i])
   1939 						break;
   1940 				timlen = 1 + (i - timoff);
   1941 			} else {
   1942 				timoff = 0;
   1943 				timlen = 1;
   1944 			}
   1945 			if (timlen != bo->bo_tim_len) {
   1946 				/* copy up/down trailer */
   1947 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
   1948 					bo->bo_trailer_len);
   1949 				bo->bo_trailer = tie->tim_bitmap+timlen;
   1950 				bo->bo_wme = bo->bo_trailer;
   1951 				bo->bo_tim_len = timlen;
   1952 
   1953 				/* update information element */
   1954 				tie->tim_len = 3 + timlen;
   1955 				tie->tim_bitctl = timoff;
   1956 				len_changed = 1;
   1957 			}
   1958 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
   1959 				bo->bo_tim_len);
   1960 
   1961 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
   1962 
   1963 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   1964 				"%s: TIM updated, pending %u, off %u, len %u\n",
   1965 				__func__, ic->ic_ps_pending, timoff, timlen);
   1966 		}
   1967 		/* count down DTIM period */
   1968 		if (tie->tim_count == 0)
   1969 			tie->tim_count = tie->tim_period - 1;
   1970 		else
   1971 			tie->tim_count--;
   1972 		/* update state for buffered multicast frames on DTIM */
   1973 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
   1974 			tie->tim_bitctl |= 1;
   1975 		else
   1976 			tie->tim_bitctl &= ~1;
   1977 	}
   1978 #endif /* !IEEE80211_NO_HOSTAP */
   1979 	IEEE80211_BEACON_UNLOCK(ic);
   1980 
   1981 	return len_changed;
   1982 }
   1983 
   1984 /*
   1985  * Save an outbound packet for a node in power-save sleep state.
   1986  * The new packet is placed on the node's saved queue, and the TIM
   1987  * is changed, if necessary.
   1988  */
   1989 void
   1990 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
   1991 		  struct mbuf *m)
   1992 {
   1993 	int qlen, age;
   1994 
   1995 	IEEE80211_NODE_SAVEQ_LOCK(ni);
   1996 	if (IF_QFULL(&ni->ni_savedq)) {
   1997 		IF_DROP(&ni->ni_savedq);
   1998 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   1999 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   2000 			"[%s] pwr save q overflow, drops %d (size %d)\n",
   2001 			ether_sprintf(ni->ni_macaddr),
   2002 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
   2003 #ifdef IEEE80211_DEBUG
   2004 		if (ieee80211_msg_dumppkts(ic))
   2005 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
   2006 #endif
   2007 		m_freem(m);
   2008 		return;
   2009 	}
   2010 	/*
   2011 	 * Tag the frame with it's expiry time and insert
   2012 	 * it in the queue.  The aging interval is 4 times
   2013 	 * the listen interval specified by the station.
   2014 	 * Frames that sit around too long are reclaimed
   2015 	 * using this information.
   2016 	 */
   2017 	/* XXX handle overflow? */
   2018 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
   2019 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
   2020 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2021 
   2022 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2023 		"[%s] save frame with age %d, %u now queued\n",
   2024 		ether_sprintf(ni->ni_macaddr), age, qlen);
   2025 
   2026 	if (qlen == 1)
   2027 		ic->ic_set_tim(ni, 1);
   2028 }
   2029