ieee80211_output.c revision 1.47 1 /* $NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $ */
2 /*-
3 * Copyright (c) 2001 Atsushi Onoe
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * Alternatively, this software may be distributed under the terms of the
19 * GNU General Public License ("GPL") version 2 as published by the Free
20 * Software Foundation.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
37 #endif
38 #ifdef __NetBSD__
39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $");
40 #endif
41
42 #include "opt_inet.h"
43
44 #ifdef __NetBSD__
45 #include "bpfilter.h"
46 #endif /* __NetBSD__ */
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/endian.h>
53 #include <sys/errno.h>
54 #include <sys/proc.h>
55 #include <sys/sysctl.h>
56
57 #include <net/if.h>
58 #include <net/if_llc.h>
59 #include <net/if_media.h>
60 #include <net/if_arp.h>
61 #include <net/if_ether.h>
62 #include <net/if_llc.h>
63 #include <net/if_vlanvar.h>
64
65 #include <net80211/ieee80211_netbsd.h>
66 #include <net80211/ieee80211_var.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <net/if_ether.h>
78 #endif
79
80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
81 u_int hdrsize, u_int ciphdrsize, u_int mtu);
82
83 #ifdef IEEE80211_DEBUG
84 /*
85 * Decide if an outbound management frame should be
86 * printed when debugging is enabled. This filters some
87 * of the less interesting frames that come frequently
88 * (e.g. beacons).
89 */
90 static __inline int
91 doprint(struct ieee80211com *ic, int subtype)
92 {
93 switch (subtype) {
94 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
95 return (ic->ic_opmode == IEEE80211_M_IBSS);
96 }
97 return 1;
98 }
99 #endif
100
101 /*
102 * Set the direction field and address fields of an outgoing
103 * non-QoS frame. Note this should be called early on in
104 * constructing a frame as it sets i_fc[1]; other bits can
105 * then be or'd in.
106 */
107 static void
108 ieee80211_send_setup(struct ieee80211com *ic,
109 struct ieee80211_node *ni,
110 struct ieee80211_frame *wh,
111 int type,
112 const u_int8_t sa[IEEE80211_ADDR_LEN],
113 const u_int8_t da[IEEE80211_ADDR_LEN],
114 const u_int8_t bssid[IEEE80211_ADDR_LEN])
115 {
116 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
117
118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
119 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
120 switch (ic->ic_opmode) {
121 case IEEE80211_M_STA:
122 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
123 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
124 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
125 IEEE80211_ADDR_COPY(wh->i_addr3, da);
126 break;
127 case IEEE80211_M_IBSS:
128 case IEEE80211_M_AHDEMO:
129 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
130 IEEE80211_ADDR_COPY(wh->i_addr1, da);
131 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
132 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
133 break;
134 case IEEE80211_M_HOSTAP:
135 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
136 IEEE80211_ADDR_COPY(wh->i_addr1, da);
137 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
138 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
139 break;
140 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
141 break;
142 }
143 } else {
144 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
145 IEEE80211_ADDR_COPY(wh->i_addr1, da);
146 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
147 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
148 }
149 *(u_int16_t *)&wh->i_dur[0] = 0;
150 /* NB: use non-QoS tid */
151 *(u_int16_t *)&wh->i_seq[0] =
152 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
153 ni->ni_txseqs[0]++;
154 #undef WH4
155 }
156
157 /*
158 * Send a management frame to the specified node. The node pointer
159 * must have a reference as the pointer will be passed to the driver
160 * and potentially held for a long time. If the frame is successfully
161 * dispatched to the driver, then it is responsible for freeing the
162 * reference (and potentially free'ing up any associated storage).
163 */
164 static int
165 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
166 struct mbuf *m, int type, int timer)
167 {
168 struct ifnet *ifp = ic->ic_ifp;
169 struct ieee80211_frame *wh;
170
171 IASSERT(ni != NULL, ("null node"));
172
173 /*
174 * Yech, hack alert! We want to pass the node down to the
175 * driver's start routine. If we don't do so then the start
176 * routine must immediately look it up again and that can
177 * cause a lock order reversal if, for example, this frame
178 * is being sent because the station is being timedout and
179 * the frame being sent is a DEAUTH message. We could stick
180 * this in an m_tag and tack that on to the mbuf. However
181 * that's rather expensive to do for every frame so instead
182 * we stuff it in the rcvif field since outbound frames do
183 * not (presently) use this.
184 */
185 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
186 if (m == NULL)
187 return ENOMEM;
188 #ifdef __FreeBSD__
189 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
190 #endif
191 m->m_pkthdr.rcvif = (void *)ni;
192
193 wh = mtod(m, struct ieee80211_frame *);
194 ieee80211_send_setup(ic, ni, wh,
195 IEEE80211_FC0_TYPE_MGT | type,
196 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
197 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
198 m->m_flags &= ~M_LINK0;
199 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
200 "[%s] encrypting frame (%s)\n",
201 ether_sprintf(wh->i_addr1), __func__);
202 wh->i_fc[1] |= IEEE80211_FC1_WEP;
203 }
204 #ifdef IEEE80211_DEBUG
205 /* avoid printing too many frames */
206 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
207 ieee80211_msg_dumppkts(ic)) {
208 printf("[%s] send %s on channel %u\n",
209 ether_sprintf(wh->i_addr1),
210 ieee80211_mgt_subtype_name[
211 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
212 IEEE80211_FC0_SUBTYPE_SHIFT],
213 ieee80211_chan2ieee(ic, ic->ic_curchan));
214 }
215 #endif
216 IEEE80211_NODE_STAT(ni, tx_mgmt);
217 IF_ENQUEUE(&ic->ic_mgtq, m);
218 if (timer) {
219 /*
220 * Set the mgt frame timeout.
221 */
222 ic->ic_mgt_timer = timer;
223 ifp->if_timer = 1;
224 }
225 (*ifp->if_start)(ifp);
226 return 0;
227 }
228
229 /*
230 * Send a null data frame to the specified node.
231 *
232 * NB: the caller is assumed to have setup a node reference
233 * for use; this is necessary to deal with a race condition
234 * when probing for inactive stations.
235 */
236 int
237 ieee80211_send_nulldata(struct ieee80211_node *ni)
238 {
239 struct ieee80211com *ic = ni->ni_ic;
240 struct ifnet *ifp = ic->ic_ifp;
241 struct mbuf *m;
242 struct ieee80211_frame *wh;
243
244 MGETHDR(m, M_NOWAIT, MT_HEADER);
245 if (m == NULL) {
246 /* XXX debug msg */
247 ic->ic_stats.is_tx_nobuf++;
248 ieee80211_unref_node(&ni);
249 return ENOMEM;
250 }
251 m->m_pkthdr.rcvif = (void *) ni;
252
253 wh = mtod(m, struct ieee80211_frame *);
254 ieee80211_send_setup(ic, ni, wh,
255 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
256 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
257 /* NB: power management bit is never sent by an AP */
258 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
259 ic->ic_opmode != IEEE80211_M_HOSTAP)
260 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
261 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
262
263 IEEE80211_NODE_STAT(ni, tx_data);
264
265 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
266 "[%s] send null data frame on channel %u, pwr mgt %s\n",
267 ether_sprintf(ni->ni_macaddr),
268 ieee80211_chan2ieee(ic, ic->ic_curchan),
269 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
270
271 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
272 (*ifp->if_start)(ifp);
273
274 return 0;
275 }
276
277 /*
278 * Assign priority to a frame based on any vlan tag assigned
279 * to the station and/or any Diffserv setting in an IP header.
280 * Finally, if an ACM policy is setup (in station mode) it's
281 * applied.
282 */
283 int
284 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
285 {
286 int v_wme_ac, d_wme_ac, ac;
287 #ifdef INET
288 struct ether_header *eh;
289 #endif
290
291 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
292 ac = WME_AC_BE;
293 goto done;
294 }
295
296 /*
297 * If node has a vlan tag then all traffic
298 * to it must have a matching tag.
299 */
300 v_wme_ac = 0;
301 if (ni->ni_vlan != 0) {
302 /* XXX used to check ec_nvlans. */
303 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
304 if (mtag == NULL) {
305 IEEE80211_NODE_STAT(ni, tx_novlantag);
306 return 1;
307 }
308 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
309 EVL_VLANOFTAG(ni->ni_vlan)) {
310 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
311 return 1;
312 }
313 /* map vlan priority to AC */
314 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
315 case 1:
316 case 2:
317 v_wme_ac = WME_AC_BK;
318 break;
319 case 0:
320 case 3:
321 v_wme_ac = WME_AC_BE;
322 break;
323 case 4:
324 case 5:
325 v_wme_ac = WME_AC_VI;
326 break;
327 case 6:
328 case 7:
329 v_wme_ac = WME_AC_VO;
330 break;
331 }
332 }
333
334 #ifdef INET
335 eh = mtod(m, struct ether_header *);
336 if (eh->ether_type == htons(ETHERTYPE_IP)) {
337 const struct ip *ip = (struct ip *)
338 (mtod(m, u_int8_t *) + sizeof (*eh));
339 /*
340 * IP frame, map the TOS field.
341 */
342 switch (ip->ip_tos) {
343 case 0x08:
344 case 0x20:
345 d_wme_ac = WME_AC_BK; /* background */
346 break;
347 case 0x28:
348 case 0xa0:
349 d_wme_ac = WME_AC_VI; /* video */
350 break;
351 case 0x30: /* voice */
352 case 0xe0:
353 case 0x88: /* XXX UPSD */
354 case 0xb8:
355 d_wme_ac = WME_AC_VO;
356 break;
357 default:
358 d_wme_ac = WME_AC_BE;
359 break;
360 }
361 } else {
362 #endif /* INET */
363 d_wme_ac = WME_AC_BE;
364 #ifdef INET
365 }
366 #endif
367 /*
368 * Use highest priority AC.
369 */
370 if (v_wme_ac > d_wme_ac)
371 ac = v_wme_ac;
372 else
373 ac = d_wme_ac;
374
375 /*
376 * Apply ACM policy.
377 */
378 if (ic->ic_opmode == IEEE80211_M_STA) {
379 static const int acmap[4] = {
380 WME_AC_BK, /* WME_AC_BE */
381 WME_AC_BK, /* WME_AC_BK */
382 WME_AC_BE, /* WME_AC_VI */
383 WME_AC_VI, /* WME_AC_VO */
384 };
385 while (ac != WME_AC_BK &&
386 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
387 ac = acmap[ac];
388 }
389 done:
390 M_WME_SETAC(m, ac);
391 return 0;
392 }
393
394 /*
395 * Insure there is sufficient contiguous space to encapsulate the
396 * 802.11 data frame. If room isn't already there, arrange for it.
397 * Drivers and cipher modules assume we have done the necessary work
398 * and fail rudely if they don't find the space they need.
399 */
400 static struct mbuf *
401 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
402 struct ieee80211_key *key, struct mbuf *m)
403 {
404 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
405 int needed_space = hdrsize;
406 int wlen = 0;
407
408 if (key != NULL) {
409 /* XXX belongs in crypto code? */
410 needed_space += key->wk_cipher->ic_header;
411 /* XXX frags */
412 }
413 /*
414 * We know we are called just before stripping an Ethernet
415 * header and prepending an LLC header. This means we know
416 * there will be
417 * sizeof(struct ether_header) - sizeof(struct llc)
418 * bytes recovered to which we need additional space for the
419 * 802.11 header and any crypto header.
420 */
421 /* XXX check trailing space and copy instead? */
422 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
423 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
424 if (n == NULL) {
425 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
426 "%s: cannot expand storage\n", __func__);
427 ic->ic_stats.is_tx_nobuf++;
428 m_freem(m);
429 return NULL;
430 }
431 IASSERT(needed_space <= MHLEN,
432 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
433 /*
434 * Setup new mbuf to have leading space to prepend the
435 * 802.11 header and any crypto header bits that are
436 * required (the latter are added when the driver calls
437 * back to ieee80211_crypto_encap to do crypto encapsulation).
438 */
439 /* NB: must be first 'cuz it clobbers m_data */
440 M_MOVE_PKTHDR(n, m);
441 n->m_len = 0; /* NB: m_gethdr does not set */
442 n->m_data += needed_space;
443 /*
444 * Pull up Ethernet header to create the expected layout.
445 * We could use m_pullup but that's overkill (i.e. we don't
446 * need the actual data) and it cannot fail so do it inline
447 * for speed.
448 */
449 /* NB: struct ether_header is known to be contiguous */
450 n->m_len += sizeof(struct ether_header);
451 m->m_len -= sizeof(struct ether_header);
452 m->m_data += sizeof(struct ether_header);
453 /*
454 * Replace the head of the chain.
455 */
456 n->m_next = m;
457 m = n;
458 } else {
459 /* We will overwrite the ethernet header in the
460 * 802.11 encapsulation stage. Make sure that it
461 * is writable.
462 */
463 wlen = sizeof(struct ether_header);
464 }
465
466 /*
467 * If we're going to s/w encrypt the mbuf chain make sure it is
468 * writable.
469 */
470 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
471 wlen = M_COPYALL;
472
473 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
474 m_freem(m);
475 return NULL;
476 }
477 return m;
478 #undef TO_BE_RECLAIMED
479 }
480
481 /*
482 * Return the transmit key to use in sending a unicast frame.
483 * If a unicast key is set we use that. When no unicast key is set
484 * we fall back to the default transmit key.
485 */
486 static __inline struct ieee80211_key *
487 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
488 {
489 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
490 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
491 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
492 return NULL;
493 return &ic->ic_nw_keys[ic->ic_def_txkey];
494 } else {
495 return &ni->ni_ucastkey;
496 }
497 }
498
499 /*
500 * Return the transmit key to use in sending a multicast frame.
501 * Multicast traffic always uses the group key which is installed as
502 * the default tx key.
503 */
504 static __inline struct ieee80211_key *
505 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
506 struct ieee80211_node *ni)
507 {
508 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
509 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
510 return NULL;
511 return &ic->ic_nw_keys[ic->ic_def_txkey];
512 }
513
514 /*
515 * Encapsulate an outbound data frame. The mbuf chain is updated.
516 * If an error is encountered NULL is returned. The caller is required
517 * to provide a node reference and pullup the ethernet header in the
518 * first mbuf.
519 */
520 struct mbuf *
521 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
522 struct ieee80211_node *ni)
523 {
524 struct ether_header eh;
525 struct ieee80211_frame *wh;
526 struct ieee80211_key *key;
527 struct llc *llc;
528 int hdrsize, datalen, addqos, txfrag;
529
530 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
531 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
532
533 /*
534 * Insure space for additional headers. First identify
535 * transmit key to use in calculating any buffer adjustments
536 * required. This is also used below to do privacy
537 * encapsulation work. Then calculate the 802.11 header
538 * size and any padding required by the driver.
539 *
540 * Note key may be NULL if we fall back to the default
541 * transmit key and that is not set. In that case the
542 * buffer may not be expanded as needed by the cipher
543 * routines, but they will/should discard it.
544 */
545 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
546 if (ic->ic_opmode == IEEE80211_M_STA ||
547 !IEEE80211_IS_MULTICAST(eh.ether_dhost))
548 key = ieee80211_crypto_getucastkey(ic, ni);
549 else
550 key = ieee80211_crypto_getmcastkey(ic, ni);
551 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
552 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
553 "[%s] no default transmit key (%s) deftxkey %u\n",
554 ether_sprintf(eh.ether_dhost), __func__,
555 ic->ic_def_txkey);
556 ic->ic_stats.is_tx_nodefkey++;
557 }
558 } else
559 key = NULL;
560 /* XXX 4-address format */
561 /*
562 * XXX Some ap's don't handle QoS-encapsulated EAPOL
563 * frames so suppress use. This may be an issue if other
564 * ap's require all data frames to be QoS-encapsulated
565 * once negotiated in which case we'll need to make this
566 * configurable.
567 */
568 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
569 eh.ether_type != htons(ETHERTYPE_PAE);
570 if (addqos)
571 hdrsize = sizeof(struct ieee80211_qosframe);
572 else
573 hdrsize = sizeof(struct ieee80211_frame);
574 if (ic->ic_flags & IEEE80211_F_DATAPAD)
575 hdrsize = roundup(hdrsize, sizeof(u_int32_t));
576 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
577 if (m == NULL) {
578 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
579 goto bad;
580 }
581
582 /* NB: this could be optimized because of ieee80211_mbuf_adjust */
583 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
584 llc = mtod(m, struct llc *);
585 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
586 llc->llc_control = LLC_UI;
587 llc->llc_snap.org_code[0] = 0;
588 llc->llc_snap.org_code[1] = 0;
589 llc->llc_snap.org_code[2] = 0;
590 llc->llc_snap.ether_type = eh.ether_type;
591 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
592
593 M_PREPEND(m, hdrsize, M_DONTWAIT);
594 if (m == NULL) {
595 ic->ic_stats.is_tx_nobuf++;
596 goto bad;
597 }
598 wh = mtod(m, struct ieee80211_frame *);
599 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
600 *(u_int16_t *)wh->i_dur = 0;
601 switch (ic->ic_opmode) {
602 case IEEE80211_M_STA:
603 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
604 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
605 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
606 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
607 break;
608 case IEEE80211_M_IBSS:
609 case IEEE80211_M_AHDEMO:
610 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
611 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
612 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
613 /*
614 * NB: always use the bssid from ic_bss as the
615 * neighbor's may be stale after an ibss merge
616 */
617 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
618 break;
619 case IEEE80211_M_HOSTAP:
620 #ifndef IEEE80211_NO_HOSTAP
621 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
622 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
623 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
624 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
625 #endif /* !IEEE80211_NO_HOSTAP */
626 break;
627 case IEEE80211_M_MONITOR:
628 goto bad;
629 }
630 if (m->m_flags & M_MORE_DATA)
631 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
632 if (addqos) {
633 struct ieee80211_qosframe *qwh =
634 (struct ieee80211_qosframe *) wh;
635 int ac, tid;
636
637 ac = M_WME_GETAC(m);
638 /* map from access class/queue to 11e header priorty value */
639 tid = WME_AC_TO_TID(ac);
640 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
641 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
642 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
643 qwh->i_qos[1] = 0;
644 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
645
646 *(u_int16_t *)wh->i_seq =
647 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
648 ni->ni_txseqs[tid]++;
649 } else {
650 *(u_int16_t *)wh->i_seq =
651 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
652 ni->ni_txseqs[0]++;
653 }
654 /* check if xmit fragmentation is required */
655 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
656 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
657 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */
658 if (key != NULL) {
659 /*
660 * IEEE 802.1X: send EAPOL frames always in the clear.
661 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
662 */
663 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
664 ((ic->ic_flags & IEEE80211_F_WPA) &&
665 (ic->ic_opmode == IEEE80211_M_STA ?
666 !IEEE80211_KEY_UNDEFINED(*key) :
667 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
668 wh->i_fc[1] |= IEEE80211_FC1_WEP;
669 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
670 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
671 "[%s] enmic failed, discard frame\n",
672 ether_sprintf(eh.ether_dhost));
673 ic->ic_stats.is_crypto_enmicfail++;
674 goto bad;
675 }
676 }
677 }
678 if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
679 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
680 goto bad;
681
682 IEEE80211_NODE_STAT(ni, tx_data);
683 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
684
685 return m;
686 bad:
687 if (m != NULL)
688 m_freem(m);
689 return NULL;
690 }
691
692 /*
693 * Arguments in:
694 *
695 * paylen: payload length (no FCS, no WEP header)
696 *
697 * hdrlen: header length
698 *
699 * rate: MSDU speed, units 500kb/s
700 *
701 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
702 * IEEE80211_F_SHSLOT (use short slot length)
703 *
704 * Arguments out:
705 *
706 * d: 802.11 Duration field for RTS,
707 * 802.11 Duration field for data frame,
708 * PLCP Length for data frame,
709 * residual octets at end of data slot
710 */
711 static int
712 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
713 struct ieee80211_duration *d)
714 {
715 int pre, ctsrate;
716 int ack, bitlen, data_dur, remainder;
717
718 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
719 * DATA reserves medium for SIFS | ACK
720 *
721 * XXXMYC: no ACK on multicast/broadcast or control packets
722 */
723
724 bitlen = len * 8;
725
726 pre = IEEE80211_DUR_DS_SIFS;
727 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
728 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
729 else
730 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
731
732 d->d_residue = 0;
733 data_dur = (bitlen * 2) / rate;
734 remainder = (bitlen * 2) % rate;
735 if (remainder != 0) {
736 d->d_residue = (rate - remainder) / 16;
737 data_dur++;
738 }
739
740 switch (rate) {
741 case 2: /* 1 Mb/s */
742 case 4: /* 2 Mb/s */
743 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
744 ctsrate = 2;
745 break;
746 case 11: /* 5.5 Mb/s */
747 case 22: /* 11 Mb/s */
748 case 44: /* 22 Mb/s */
749 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
750 ctsrate = 4;
751 break;
752 default:
753 /* TBD */
754 return -1;
755 }
756
757 d->d_plcp_len = data_dur;
758
759 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
760
761 d->d_rts_dur =
762 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
763 pre + data_dur +
764 ack;
765
766 d->d_data_dur = ack;
767
768 return 0;
769 }
770
771 /*
772 * Arguments in:
773 *
774 * wh: 802.11 header
775 *
776 * paylen: payload length (no FCS, no WEP header)
777 *
778 * rate: MSDU speed, units 500kb/s
779 *
780 * fraglen: fragment length, set to maximum (or higher) for no
781 * fragmentation
782 *
783 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
784 * IEEE80211_F_SHPREAMBLE (use short preamble),
785 * IEEE80211_F_SHSLOT (use short slot length)
786 *
787 * Arguments out:
788 *
789 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
790 * of first/only fragment
791 *
792 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
793 * of last fragment
794 *
795 * ieee80211_compute_duration assumes crypto-encapsulation, if any,
796 * has already taken place.
797 */
798 int
799 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
800 const struct ieee80211_key *wk, int len,
801 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
802 struct ieee80211_duration *dn, int *npktp, int debug)
803 {
804 int ack, rc;
805 int cryptolen, /* crypto overhead: header+trailer */
806 firstlen, /* first fragment's payload + overhead length */
807 hdrlen, /* header length w/o driver padding */
808 lastlen, /* last fragment's payload length w/ overhead */
809 lastlen0, /* last fragment's payload length w/o overhead */
810 npkt, /* number of fragments */
811 overlen, /* non-802.11 header overhead per fragment */
812 paylen; /* payload length w/o overhead */
813
814 hdrlen = ieee80211_anyhdrsize((const void *)wh);
815
816 /* Account for padding required by the driver. */
817 if (icflags & IEEE80211_F_DATAPAD)
818 paylen = len - roundup(hdrlen, sizeof(u_int32_t));
819 else
820 paylen = len - hdrlen;
821
822 overlen = IEEE80211_CRC_LEN;
823
824 if (wk != NULL) {
825 cryptolen = wk->wk_cipher->ic_header +
826 wk->wk_cipher->ic_trailer;
827 paylen -= cryptolen;
828 overlen += cryptolen;
829 }
830
831 npkt = paylen / fraglen;
832 lastlen0 = paylen % fraglen;
833
834 if (npkt == 0) /* no fragments */
835 lastlen = paylen + overlen;
836 else if (lastlen0 != 0) { /* a short "tail" fragment */
837 lastlen = lastlen0 + overlen;
838 npkt++;
839 } else /* full-length "tail" fragment */
840 lastlen = fraglen + overlen;
841
842 if (npktp != NULL)
843 *npktp = npkt;
844
845 if (npkt > 1)
846 firstlen = fraglen + overlen;
847 else
848 firstlen = paylen + overlen;
849
850 if (debug) {
851 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
852 "fraglen %d overlen %d len %d rate %d icflags %08x\n",
853 __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
854 overlen, len, rate, icflags);
855 }
856
857 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
858 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
859
860 rc = ieee80211_compute_duration1(firstlen + hdrlen,
861 ack, icflags, rate, d0);
862 if (rc == -1)
863 return rc;
864
865 if (npkt <= 1) {
866 *dn = *d0;
867 return 0;
868 }
869 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
870 dn);
871 }
872
873 /*
874 * Fragment the frame according to the specified mtu.
875 * The size of the 802.11 header (w/o padding) is provided
876 * so we don't need to recalculate it. We create a new
877 * mbuf for each fragment and chain it through m_nextpkt;
878 * we might be able to optimize this by reusing the original
879 * packet's mbufs but that is significantly more complicated.
880 */
881 static int
882 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
883 u_int hdrsize, u_int ciphdrsize, u_int mtu)
884 {
885 struct ieee80211_frame *wh, *whf;
886 struct mbuf *m, *prev, *next;
887 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
888
889 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
890 IASSERT(m0->m_pkthdr.len > mtu,
891 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
892
893 wh = mtod(m0, struct ieee80211_frame *);
894 /* NB: mark the first frag; it will be propagated below */
895 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
896 totalhdrsize = hdrsize + ciphdrsize;
897 fragno = 1;
898 off = mtu - ciphdrsize;
899 remainder = m0->m_pkthdr.len - off;
900 prev = m0;
901 do {
902 fragsize = totalhdrsize + remainder;
903 if (fragsize > mtu)
904 fragsize = mtu;
905 IASSERT(fragsize < MCLBYTES,
906 ("fragment size %u too big!", fragsize));
907 if (fragsize > MHLEN)
908 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
909 else
910 m = m_gethdr(M_DONTWAIT, MT_DATA);
911 if (m == NULL)
912 goto bad;
913 /* leave room to prepend any cipher header */
914 m_align(m, fragsize - ciphdrsize);
915
916 /*
917 * Form the header in the fragment. Note that since
918 * we mark the first fragment with the MORE_FRAG bit
919 * it automatically is propagated to each fragment; we
920 * need only clear it on the last fragment (done below).
921 */
922 whf = mtod(m, struct ieee80211_frame *);
923 memcpy(whf, wh, hdrsize);
924 *(u_int16_t *)&whf->i_seq[0] |= htole16(
925 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
926 IEEE80211_SEQ_FRAG_SHIFT);
927 fragno++;
928
929 payload = fragsize - totalhdrsize;
930 /* NB: destination is known to be contiguous */
931 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
932 m->m_len = hdrsize + payload;
933 m->m_pkthdr.len = hdrsize + payload;
934 m->m_flags |= M_FRAG;
935
936 /* chain up the fragment */
937 prev->m_nextpkt = m;
938 prev = m;
939
940 /* deduct fragment just formed */
941 remainder -= payload;
942 off += payload;
943 } while (remainder != 0);
944 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
945
946 /* strip first mbuf now that everything has been copied */
947 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
948 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
949
950 ic->ic_stats.is_tx_fragframes++;
951 ic->ic_stats.is_tx_frags += fragno-1;
952
953 return 1;
954 bad:
955 /* reclaim fragments but leave original frame for caller to free */
956 for (m = m0->m_nextpkt; m != NULL; m = next) {
957 next = m->m_nextpkt;
958 m->m_nextpkt = NULL; /* XXX paranoid */
959 m_freem(m);
960 }
961 m0->m_nextpkt = NULL;
962 return 0;
963 }
964
965 /*
966 * Add a supported rates element id to a frame.
967 */
968 static u_int8_t *
969 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
970 {
971 int nrates;
972
973 *frm++ = IEEE80211_ELEMID_RATES;
974 nrates = rs->rs_nrates;
975 if (nrates > IEEE80211_RATE_SIZE)
976 nrates = IEEE80211_RATE_SIZE;
977 *frm++ = nrates;
978 memcpy(frm, rs->rs_rates, nrates);
979 return frm + nrates;
980 }
981
982 /*
983 * Add an extended supported rates element id to a frame.
984 */
985 static u_int8_t *
986 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
987 {
988 /*
989 * Add an extended supported rates element if operating in 11g mode.
990 */
991 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
992 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
993 *frm++ = IEEE80211_ELEMID_XRATES;
994 *frm++ = nrates;
995 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
996 frm += nrates;
997 }
998 return frm;
999 }
1000
1001 /*
1002 * Add an ssid elemet to a frame.
1003 */
1004 static u_int8_t *
1005 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1006 {
1007 *frm++ = IEEE80211_ELEMID_SSID;
1008 *frm++ = len;
1009 memcpy(frm, ssid, len);
1010 return frm + len;
1011 }
1012
1013 /*
1014 * Add an erp element to a frame.
1015 */
1016 static u_int8_t *
1017 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1018 {
1019 u_int8_t erp;
1020
1021 *frm++ = IEEE80211_ELEMID_ERP;
1022 *frm++ = 1;
1023 erp = 0;
1024 if (ic->ic_nonerpsta != 0)
1025 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1026 if (ic->ic_flags & IEEE80211_F_USEPROT)
1027 erp |= IEEE80211_ERP_USE_PROTECTION;
1028 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1029 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1030 *frm++ = erp;
1031 return frm;
1032 }
1033
1034 static u_int8_t *
1035 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1036 {
1037 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2
1038 #define ADDSHORT(frm, v) do { \
1039 frm[0] = (v) & 0xff; \
1040 frm[1] = (v) >> 8; \
1041 frm += 2; \
1042 } while (0)
1043 #define ADDSELECTOR(frm, sel) do { \
1044 memcpy(frm, sel, 4); \
1045 frm += 4; \
1046 } while (0)
1047 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1048 static const u_int8_t cipher_suite[][4] = {
1049 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
1050 { WPA_OUI_BYTES, WPA_CSE_TKIP },
1051 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
1052 { WPA_OUI_BYTES, WPA_CSE_CCMP },
1053 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1054 { WPA_OUI_BYTES, WPA_CSE_NULL },
1055 };
1056 static const u_int8_t wep104_suite[4] =
1057 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
1058 static const u_int8_t key_mgt_unspec[4] =
1059 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1060 static const u_int8_t key_mgt_psk[4] =
1061 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1062 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1063 u_int8_t *frm = ie;
1064 u_int8_t *selcnt;
1065
1066 *frm++ = IEEE80211_ELEMID_VENDOR;
1067 *frm++ = 0; /* length filled in below */
1068 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
1069 frm += sizeof(oui);
1070 ADDSHORT(frm, WPA_VERSION);
1071
1072 /* XXX filter out CKIP */
1073
1074 /* multicast cipher */
1075 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1076 rsn->rsn_mcastkeylen >= 13)
1077 ADDSELECTOR(frm, wep104_suite);
1078 else
1079 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1080
1081 /* unicast cipher list */
1082 selcnt = frm;
1083 ADDSHORT(frm, 0); /* selector count */
1084 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1085 selcnt[0]++;
1086 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1087 }
1088 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1089 selcnt[0]++;
1090 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1091 }
1092
1093 /* authenticator selector list */
1094 selcnt = frm;
1095 ADDSHORT(frm, 0); /* selector count */
1096 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1097 selcnt[0]++;
1098 ADDSELECTOR(frm, key_mgt_unspec);
1099 }
1100 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1101 selcnt[0]++;
1102 ADDSELECTOR(frm, key_mgt_psk);
1103 }
1104
1105 /* optional capabilities */
1106 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1107 ADDSHORT(frm, rsn->rsn_caps);
1108
1109 /* calculate element length */
1110 ie[1] = frm - ie - 2;
1111 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1112 ("WPA IE too big, %u > %zu",
1113 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1114 return frm;
1115 #undef ADDSHORT
1116 #undef ADDSELECTOR
1117 #undef WPA_OUI_BYTES
1118 }
1119
1120 static u_int8_t *
1121 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1122 {
1123 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac
1124 #define ADDSHORT(frm, v) do { \
1125 frm[0] = (v) & 0xff; \
1126 frm[1] = (v) >> 8; \
1127 frm += 2; \
1128 } while (0)
1129 #define ADDSELECTOR(frm, sel) do { \
1130 memcpy(frm, sel, 4); \
1131 frm += 4; \
1132 } while (0)
1133 static const u_int8_t cipher_suite[][4] = {
1134 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
1135 { RSN_OUI_BYTES, RSN_CSE_TKIP },
1136 { RSN_OUI_BYTES, RSN_CSE_WRAP },
1137 { RSN_OUI_BYTES, RSN_CSE_CCMP },
1138 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1139 { RSN_OUI_BYTES, RSN_CSE_NULL },
1140 };
1141 static const u_int8_t wep104_suite[4] =
1142 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
1143 static const u_int8_t key_mgt_unspec[4] =
1144 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1145 static const u_int8_t key_mgt_psk[4] =
1146 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1147 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1148 u_int8_t *frm = ie;
1149 u_int8_t *selcnt;
1150
1151 *frm++ = IEEE80211_ELEMID_RSN;
1152 *frm++ = 0; /* length filled in below */
1153 ADDSHORT(frm, RSN_VERSION);
1154
1155 /* XXX filter out CKIP */
1156
1157 /* multicast cipher */
1158 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1159 rsn->rsn_mcastkeylen >= 13)
1160 ADDSELECTOR(frm, wep104_suite);
1161 else
1162 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1163
1164 /* unicast cipher list */
1165 selcnt = frm;
1166 ADDSHORT(frm, 0); /* selector count */
1167 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1168 selcnt[0]++;
1169 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1170 }
1171 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1172 selcnt[0]++;
1173 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1174 }
1175
1176 /* authenticator selector list */
1177 selcnt = frm;
1178 ADDSHORT(frm, 0); /* selector count */
1179 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1180 selcnt[0]++;
1181 ADDSELECTOR(frm, key_mgt_unspec);
1182 }
1183 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1184 selcnt[0]++;
1185 ADDSELECTOR(frm, key_mgt_psk);
1186 }
1187
1188 /* optional capabilities */
1189 ADDSHORT(frm, rsn->rsn_caps);
1190 /* XXX PMKID */
1191
1192 /* calculate element length */
1193 ie[1] = frm - ie - 2;
1194 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1195 ("RSN IE too big, %u > %zu",
1196 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1197 return frm;
1198 #undef ADDSELECTOR
1199 #undef ADDSHORT
1200 #undef RSN_OUI_BYTES
1201 }
1202
1203 /*
1204 * Add a WPA/RSN element to a frame.
1205 */
1206 static u_int8_t *
1207 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1208 {
1209
1210 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1211 if (ic->ic_flags & IEEE80211_F_WPA2)
1212 frm = ieee80211_setup_rsn_ie(ic, frm);
1213 if (ic->ic_flags & IEEE80211_F_WPA1)
1214 frm = ieee80211_setup_wpa_ie(ic, frm);
1215 return frm;
1216 }
1217
1218 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
1219 /*
1220 * Add a WME information element to a frame.
1221 */
1222 static u_int8_t *
1223 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1224 {
1225 static const struct ieee80211_wme_info info = {
1226 .wme_id = IEEE80211_ELEMID_VENDOR,
1227 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1228 .wme_oui = { WME_OUI_BYTES },
1229 .wme_type = WME_OUI_TYPE,
1230 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1231 .wme_version = WME_VERSION,
1232 .wme_info = 0,
1233 };
1234 memcpy(frm, &info, sizeof(info));
1235 return frm + sizeof(info);
1236 }
1237
1238 /*
1239 * Add a WME parameters element to a frame.
1240 */
1241 static u_int8_t *
1242 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1243 {
1244 #define SM(_v, _f) (((_v) << _f##_S) & _f)
1245 #define ADDSHORT(frm, v) do { \
1246 frm[0] = (v) & 0xff; \
1247 frm[1] = (v) >> 8; \
1248 frm += 2; \
1249 } while (0)
1250 /* NB: this works 'cuz a param has an info at the front */
1251 static const struct ieee80211_wme_info param = {
1252 .wme_id = IEEE80211_ELEMID_VENDOR,
1253 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1254 .wme_oui = { WME_OUI_BYTES },
1255 .wme_type = WME_OUI_TYPE,
1256 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1257 .wme_version = WME_VERSION,
1258 };
1259 int i;
1260
1261 memcpy(frm, ¶m, sizeof(param));
1262 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1263 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1264 *frm++ = 0; /* reserved field */
1265 for (i = 0; i < WME_NUM_AC; i++) {
1266 const struct wmeParams *ac =
1267 &wme->wme_bssChanParams.cap_wmeParams[i];
1268 *frm++ = SM(i, WME_PARAM_ACI)
1269 | SM(ac->wmep_acm, WME_PARAM_ACM)
1270 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1271 ;
1272 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1273 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1274 ;
1275 ADDSHORT(frm, ac->wmep_txopLimit);
1276 }
1277 return frm;
1278 #undef SM
1279 #undef ADDSHORT
1280 }
1281 #undef WME_OUI_BYTES
1282
1283 /*
1284 * Send a probe request frame with the specified ssid
1285 * and any optional information element data.
1286 */
1287 int
1288 ieee80211_send_probereq(struct ieee80211_node *ni,
1289 const u_int8_t sa[IEEE80211_ADDR_LEN],
1290 const u_int8_t da[IEEE80211_ADDR_LEN],
1291 const u_int8_t bssid[IEEE80211_ADDR_LEN],
1292 const u_int8_t *ssid, size_t ssidlen,
1293 const void *optie, size_t optielen)
1294 {
1295 struct ieee80211com *ic = ni->ni_ic;
1296 enum ieee80211_phymode mode;
1297 struct ieee80211_frame *wh;
1298 struct mbuf *m;
1299 u_int8_t *frm;
1300
1301 /*
1302 * Hold a reference on the node so it doesn't go away until after
1303 * the xmit is complete all the way in the driver. On error we
1304 * will remove our reference.
1305 */
1306 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1307 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1308 __func__, __LINE__,
1309 ni, ether_sprintf(ni->ni_macaddr),
1310 ieee80211_node_refcnt(ni)+1);
1311 ieee80211_ref_node(ni);
1312
1313 /*
1314 * prreq frame format
1315 * [tlv] ssid
1316 * [tlv] supported rates
1317 * [tlv] extended supported rates
1318 * [tlv] user-specified ie's
1319 */
1320 m = ieee80211_getmgtframe(&frm,
1321 2 + IEEE80211_NWID_LEN
1322 + 2 + IEEE80211_RATE_SIZE
1323 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1324 + (optie != NULL ? optielen : 0)
1325 );
1326 if (m == NULL) {
1327 ic->ic_stats.is_tx_nobuf++;
1328 ieee80211_free_node(ni);
1329 return ENOMEM;
1330 }
1331
1332 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1333 mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1334 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1335 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1336
1337 if (optie != NULL) {
1338 memcpy(frm, optie, optielen);
1339 frm += optielen;
1340 }
1341 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1342
1343 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1344 if (m == NULL)
1345 return ENOMEM;
1346 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1347 m->m_pkthdr.rcvif = (void *)ni;
1348
1349 wh = mtod(m, struct ieee80211_frame *);
1350 ieee80211_send_setup(ic, ni, wh,
1351 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1352 sa, da, bssid);
1353 /* XXX power management? */
1354
1355 IEEE80211_NODE_STAT(ni, tx_probereq);
1356 IEEE80211_NODE_STAT(ni, tx_mgmt);
1357
1358 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1359 "[%s] send probe req on channel %u\n",
1360 ether_sprintf(wh->i_addr1),
1361 ieee80211_chan2ieee(ic, ic->ic_curchan));
1362
1363 IF_ENQUEUE(&ic->ic_mgtq, m);
1364 (*ic->ic_ifp->if_start)(ic->ic_ifp);
1365 return 0;
1366 }
1367
1368 /*
1369 * Send a management frame. The node is for the destination (or ic_bss
1370 * when in station mode). Nodes other than ic_bss have their reference
1371 * count bumped to reflect our use for an indeterminant time.
1372 */
1373 int
1374 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1375 int type, int arg)
1376 {
1377 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1378 struct mbuf *m;
1379 u_int8_t *frm;
1380 u_int16_t capinfo;
1381 int has_challenge, is_shared_key, ret, timer, status;
1382
1383 IASSERT(ni != NULL, ("null node"));
1384
1385 /*
1386 * Hold a reference on the node so it doesn't go away until after
1387 * the xmit is complete all the way in the driver. On error we
1388 * will remove our reference.
1389 */
1390 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1391 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1392 __func__, __LINE__,
1393 ni, ether_sprintf(ni->ni_macaddr),
1394 ieee80211_node_refcnt(ni)+1);
1395 ieee80211_ref_node(ni);
1396
1397 timer = 0;
1398 switch (type) {
1399 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1400 /*
1401 * probe response frame format
1402 * [8] time stamp
1403 * [2] beacon interval
1404 * [2] cabability information
1405 * [tlv] ssid
1406 * [tlv] supported rates
1407 * [tlv] parameter set (FH/DS)
1408 * [tlv] parameter set (IBSS)
1409 * [tlv] extended rate phy (ERP)
1410 * [tlv] extended supported rates
1411 * [tlv] WPA
1412 * [tlv] WME (optional)
1413 */
1414 m = ieee80211_getmgtframe(&frm,
1415 8
1416 + sizeof(u_int16_t)
1417 + sizeof(u_int16_t)
1418 + 2 + IEEE80211_NWID_LEN
1419 + 2 + IEEE80211_RATE_SIZE
1420 + 7 /* max(7,3) */
1421 + 6
1422 + 3
1423 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1424 /* XXX !WPA1+WPA2 fits w/o a cluster */
1425 + (ic->ic_flags & IEEE80211_F_WPA ?
1426 2*sizeof(struct ieee80211_ie_wpa) : 0)
1427 + sizeof(struct ieee80211_wme_param)
1428 );
1429 if (m == NULL)
1430 senderr(ENOMEM, is_tx_nobuf);
1431
1432 memset(frm, 0, 8); /* timestamp should be filled later */
1433 frm += 8;
1434 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1435 frm += 2;
1436 if (ic->ic_opmode == IEEE80211_M_IBSS)
1437 capinfo = IEEE80211_CAPINFO_IBSS;
1438 else
1439 capinfo = IEEE80211_CAPINFO_ESS;
1440 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1441 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1442 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1443 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1444 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1445 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1446 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1447 *(u_int16_t *)frm = htole16(capinfo);
1448 frm += 2;
1449
1450 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1451 ic->ic_bss->ni_esslen);
1452 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1453
1454 if (ic->ic_phytype == IEEE80211_T_FH) {
1455 *frm++ = IEEE80211_ELEMID_FHPARMS;
1456 *frm++ = 5;
1457 *frm++ = ni->ni_fhdwell & 0x00ff;
1458 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1459 *frm++ = IEEE80211_FH_CHANSET(
1460 ieee80211_chan2ieee(ic, ic->ic_curchan));
1461 *frm++ = IEEE80211_FH_CHANPAT(
1462 ieee80211_chan2ieee(ic, ic->ic_curchan));
1463 *frm++ = ni->ni_fhindex;
1464 } else {
1465 *frm++ = IEEE80211_ELEMID_DSPARMS;
1466 *frm++ = 1;
1467 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1468 }
1469
1470 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1471 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1472 *frm++ = 2;
1473 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1474 }
1475 if (ic->ic_flags & IEEE80211_F_WPA)
1476 frm = ieee80211_add_wpa(frm, ic);
1477 if (ic->ic_curmode == IEEE80211_MODE_11G)
1478 frm = ieee80211_add_erp(frm, ic);
1479 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1480 if (ic->ic_flags & IEEE80211_F_WME)
1481 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1482 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1483 break;
1484
1485 case IEEE80211_FC0_SUBTYPE_AUTH:
1486 status = arg >> 16;
1487 arg &= 0xffff;
1488 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1489 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1490 ni->ni_challenge != NULL);
1491
1492 /*
1493 * Deduce whether we're doing open authentication or
1494 * shared key authentication. We do the latter if
1495 * we're in the middle of a shared key authentication
1496 * handshake or if we're initiating an authentication
1497 * request and configured to use shared key.
1498 */
1499 is_shared_key = has_challenge ||
1500 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1501 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1502 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1503
1504 m = ieee80211_getmgtframe(&frm,
1505 3 * sizeof(u_int16_t)
1506 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1507 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
1508 );
1509 if (m == NULL)
1510 senderr(ENOMEM, is_tx_nobuf);
1511
1512 ((u_int16_t *)frm)[0] =
1513 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1514 : htole16(IEEE80211_AUTH_ALG_OPEN);
1515 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */
1516 ((u_int16_t *)frm)[2] = htole16(status);/* status */
1517
1518 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1519 ((u_int16_t *)frm)[3] =
1520 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1521 IEEE80211_ELEMID_CHALLENGE);
1522 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1523 IEEE80211_CHALLENGE_LEN);
1524 m->m_pkthdr.len = m->m_len =
1525 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
1526 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1527 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1528 "[%s] request encrypt frame (%s)\n",
1529 ether_sprintf(ni->ni_macaddr), __func__);
1530 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1531 }
1532 } else
1533 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
1534
1535 /* XXX not right for shared key */
1536 if (status == IEEE80211_STATUS_SUCCESS)
1537 IEEE80211_NODE_STAT(ni, tx_auth);
1538 else
1539 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1540
1541 if (ic->ic_opmode == IEEE80211_M_STA)
1542 timer = IEEE80211_TRANS_WAIT;
1543 break;
1544
1545 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1546 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1547 "[%s] send station deauthenticate (reason %d)\n",
1548 ether_sprintf(ni->ni_macaddr), arg);
1549 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1550 if (m == NULL)
1551 senderr(ENOMEM, is_tx_nobuf);
1552 *(u_int16_t *)frm = htole16(arg); /* reason */
1553 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1554
1555 IEEE80211_NODE_STAT(ni, tx_deauth);
1556 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1557
1558 ieee80211_node_unauthorize(ni); /* port closed */
1559 break;
1560
1561 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1562 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1563 /*
1564 * asreq frame format
1565 * [2] capability information
1566 * [2] listen interval
1567 * [6*] current AP address (reassoc only)
1568 * [tlv] ssid
1569 * [tlv] supported rates
1570 * [tlv] extended supported rates
1571 * [tlv] WME
1572 * [tlv] user-specified ie's
1573 */
1574 m = ieee80211_getmgtframe(&frm,
1575 sizeof(u_int16_t)
1576 + sizeof(u_int16_t)
1577 + IEEE80211_ADDR_LEN
1578 + 2 + IEEE80211_NWID_LEN
1579 + 2 + IEEE80211_RATE_SIZE
1580 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1581 + sizeof(struct ieee80211_wme_info)
1582 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1583 );
1584 if (m == NULL)
1585 senderr(ENOMEM, is_tx_nobuf);
1586
1587 capinfo = 0;
1588 if (ic->ic_opmode == IEEE80211_M_IBSS)
1589 capinfo |= IEEE80211_CAPINFO_IBSS;
1590 else /* IEEE80211_M_STA */
1591 capinfo |= IEEE80211_CAPINFO_ESS;
1592 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1593 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1594 /*
1595 * NB: Some 11a AP's reject the request when
1596 * short premable is set.
1597 */
1598 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1599 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1600 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1601 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1602 (ic->ic_caps & IEEE80211_C_SHSLOT))
1603 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1604 *(u_int16_t *)frm = htole16(capinfo);
1605 frm += 2;
1606
1607 *(u_int16_t *)frm = htole16(ic->ic_lintval);
1608 frm += 2;
1609
1610 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1611 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1612 frm += IEEE80211_ADDR_LEN;
1613 }
1614
1615 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1616 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1617 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1618 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1619 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1620 if (ic->ic_opt_ie != NULL) {
1621 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1622 frm += ic->ic_opt_ie_len;
1623 }
1624 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1625
1626 timer = IEEE80211_TRANS_WAIT;
1627 break;
1628
1629 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1630 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1631 /*
1632 * asreq frame format
1633 * [2] capability information
1634 * [2] status
1635 * [2] association ID
1636 * [tlv] supported rates
1637 * [tlv] extended supported rates
1638 * [tlv] WME (if enabled and STA enabled)
1639 */
1640 m = ieee80211_getmgtframe(&frm,
1641 sizeof(u_int16_t)
1642 + sizeof(u_int16_t)
1643 + sizeof(u_int16_t)
1644 + 2 + IEEE80211_RATE_SIZE
1645 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1646 + sizeof(struct ieee80211_wme_param)
1647 );
1648 if (m == NULL)
1649 senderr(ENOMEM, is_tx_nobuf);
1650
1651 capinfo = IEEE80211_CAPINFO_ESS;
1652 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1653 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1654 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1655 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1656 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1657 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1658 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1659 *(u_int16_t *)frm = htole16(capinfo);
1660 frm += 2;
1661
1662 *(u_int16_t *)frm = htole16(arg); /* status */
1663 frm += 2;
1664
1665 if (arg == IEEE80211_STATUS_SUCCESS) {
1666 *(u_int16_t *)frm = htole16(ni->ni_associd);
1667 IEEE80211_NODE_STAT(ni, tx_assoc);
1668 } else
1669 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1670 frm += 2;
1671
1672 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1673 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1674 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1675 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1676 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1677 break;
1678
1679 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1680 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1681 "[%s] send station disassociate (reason %d)\n",
1682 ether_sprintf(ni->ni_macaddr), arg);
1683 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1684 if (m == NULL)
1685 senderr(ENOMEM, is_tx_nobuf);
1686 *(u_int16_t *)frm = htole16(arg); /* reason */
1687 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1688
1689 IEEE80211_NODE_STAT(ni, tx_disassoc);
1690 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1691 break;
1692
1693 default:
1694 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1695 "[%s] invalid mgmt frame type %u\n",
1696 ether_sprintf(ni->ni_macaddr), type);
1697 senderr(EINVAL, is_tx_unknownmgt);
1698 /* NOTREACHED */
1699 }
1700 ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1701 if (ret != 0) {
1702 bad:
1703 ieee80211_free_node(ni);
1704 }
1705 return ret;
1706 #undef senderr
1707 }
1708
1709 /*
1710 * Allocate a beacon frame and fillin the appropriate bits.
1711 */
1712 struct mbuf *
1713 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1714 struct ieee80211_beacon_offsets *bo)
1715 {
1716 struct ifnet *ifp = ic->ic_ifp;
1717 struct ieee80211_frame *wh;
1718 struct mbuf *m;
1719 int pktlen;
1720 u_int8_t *frm, *efrm;
1721 u_int16_t capinfo;
1722 struct ieee80211_rateset *rs;
1723
1724 /*
1725 * beacon frame format
1726 * [8] time stamp
1727 * [2] beacon interval
1728 * [2] cabability information
1729 * [tlv] ssid
1730 * [tlv] supported rates
1731 * [3] parameter set (DS)
1732 * [tlv] parameter set (IBSS/TIM)
1733 * [tlv] extended rate phy (ERP)
1734 * [tlv] extended supported rates
1735 * [tlv] WME parameters
1736 * [tlv] WPA/RSN parameters
1737 * XXX Vendor-specific OIDs (e.g. Atheros)
1738 * NB: we allocate the max space required for the TIM bitmap.
1739 */
1740 rs = &ni->ni_rates;
1741 pktlen = 8 /* time stamp */
1742 + sizeof(u_int16_t) /* beacon interval */
1743 + sizeof(u_int16_t) /* capabilities */
1744 + 2 + ni->ni_esslen /* ssid */
1745 + 2 + IEEE80211_RATE_SIZE /* supported rates */
1746 + 2 + 1 /* DS parameters */
1747 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
1748 + 2 + 1 /* ERP */
1749 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1750 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
1751 sizeof(struct ieee80211_wme_param) : 0)
1752 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
1753 2*sizeof(struct ieee80211_ie_wpa) : 0)
1754 ;
1755 m = ieee80211_getmgtframe(&frm, pktlen);
1756 if (m == NULL) {
1757 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1758 "%s: cannot get buf; size %u\n", __func__, pktlen);
1759 ic->ic_stats.is_tx_nobuf++;
1760 return NULL;
1761 }
1762
1763 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
1764 frm += 8;
1765 *(u_int16_t *)frm = htole16(ni->ni_intval);
1766 frm += 2;
1767 if (ic->ic_opmode == IEEE80211_M_IBSS)
1768 capinfo = IEEE80211_CAPINFO_IBSS;
1769 else
1770 capinfo = IEEE80211_CAPINFO_ESS;
1771 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1772 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1773 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1774 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1775 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1776 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1777 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1778 bo->bo_caps = (u_int16_t *)frm;
1779 *(u_int16_t *)frm = htole16(capinfo);
1780 frm += 2;
1781 *frm++ = IEEE80211_ELEMID_SSID;
1782 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1783 *frm++ = ni->ni_esslen;
1784 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1785 frm += ni->ni_esslen;
1786 } else
1787 *frm++ = 0;
1788 frm = ieee80211_add_rates(frm, rs);
1789 if (ic->ic_curmode != IEEE80211_MODE_FH) {
1790 *frm++ = IEEE80211_ELEMID_DSPARMS;
1791 *frm++ = 1;
1792 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1793 }
1794 bo->bo_tim = frm;
1795 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1796 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1797 *frm++ = 2;
1798 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1799 bo->bo_tim_len = 0;
1800 } else {
1801 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1802
1803 tie->tim_ie = IEEE80211_ELEMID_TIM;
1804 tie->tim_len = 4; /* length */
1805 tie->tim_count = 0; /* DTIM count */
1806 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
1807 tie->tim_bitctl = 0; /* bitmap control */
1808 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1809 frm += sizeof(struct ieee80211_tim_ie);
1810 bo->bo_tim_len = 1;
1811 }
1812 bo->bo_trailer = frm;
1813 if (ic->ic_flags & IEEE80211_F_WME) {
1814 bo->bo_wme = frm;
1815 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1816 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1817 }
1818 if (ic->ic_flags & IEEE80211_F_WPA)
1819 frm = ieee80211_add_wpa(frm, ic);
1820 if (ic->ic_curmode == IEEE80211_MODE_11G)
1821 frm = ieee80211_add_erp(frm, ic);
1822 efrm = ieee80211_add_xrates(frm, rs);
1823 bo->bo_trailer_len = efrm - bo->bo_trailer;
1824 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1825
1826 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1827 IASSERT(m != NULL, ("no space for 802.11 header?"));
1828 wh = mtod(m, struct ieee80211_frame *);
1829 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1830 IEEE80211_FC0_SUBTYPE_BEACON;
1831 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1832 *(u_int16_t *)wh->i_dur = 0;
1833 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1834 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1835 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1836 *(u_int16_t *)wh->i_seq = 0;
1837
1838 return m;
1839 }
1840
1841 /*
1842 * Update the dynamic parts of a beacon frame based on the current state.
1843 */
1844 int
1845 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1846 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1847 {
1848 int len_changed = 0;
1849 u_int16_t capinfo;
1850
1851 IEEE80211_BEACON_LOCK(ic);
1852 /* XXX faster to recalculate entirely or just changes? */
1853 if (ic->ic_opmode == IEEE80211_M_IBSS)
1854 capinfo = IEEE80211_CAPINFO_IBSS;
1855 else
1856 capinfo = IEEE80211_CAPINFO_ESS;
1857 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1858 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1859 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1860 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1861 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1862 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1863 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1864 *bo->bo_caps = htole16(capinfo);
1865
1866 if (ic->ic_flags & IEEE80211_F_WME) {
1867 struct ieee80211_wme_state *wme = &ic->ic_wme;
1868
1869 /*
1870 * Check for agressive mode change. When there is
1871 * significant high priority traffic in the BSS
1872 * throttle back BE traffic by using conservative
1873 * parameters. Otherwise BE uses agressive params
1874 * to optimize performance of legacy/non-QoS traffic.
1875 */
1876 if (wme->wme_flags & WME_F_AGGRMODE) {
1877 if (wme->wme_hipri_traffic >
1878 wme->wme_hipri_switch_thresh) {
1879 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1880 "%s: traffic %u, disable aggressive mode\n",
1881 __func__, wme->wme_hipri_traffic);
1882 wme->wme_flags &= ~WME_F_AGGRMODE;
1883 ieee80211_wme_updateparams_locked(ic);
1884 wme->wme_hipri_traffic =
1885 wme->wme_hipri_switch_hysteresis;
1886 } else
1887 wme->wme_hipri_traffic = 0;
1888 } else {
1889 if (wme->wme_hipri_traffic <=
1890 wme->wme_hipri_switch_thresh) {
1891 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1892 "%s: traffic %u, enable aggressive mode\n",
1893 __func__, wme->wme_hipri_traffic);
1894 wme->wme_flags |= WME_F_AGGRMODE;
1895 ieee80211_wme_updateparams_locked(ic);
1896 wme->wme_hipri_traffic = 0;
1897 } else
1898 wme->wme_hipri_traffic =
1899 wme->wme_hipri_switch_hysteresis;
1900 }
1901 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1902 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
1903 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1904 }
1905 }
1906
1907 #ifndef IEEE80211_NO_HOSTAP
1908 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
1909 struct ieee80211_tim_ie *tie =
1910 (struct ieee80211_tim_ie *) bo->bo_tim;
1911 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1912 u_int timlen, timoff, i;
1913 /*
1914 * ATIM/DTIM needs updating. If it fits in the
1915 * current space allocated then just copy in the
1916 * new bits. Otherwise we need to move any trailing
1917 * data to make room. Note that we know there is
1918 * contiguous space because ieee80211_beacon_allocate
1919 * insures there is space in the mbuf to write a
1920 * maximal-size virtual bitmap (based on ic_max_aid).
1921 */
1922 /*
1923 * Calculate the bitmap size and offset, copy any
1924 * trailer out of the way, and then copy in the
1925 * new bitmap and update the information element.
1926 * Note that the tim bitmap must contain at least
1927 * one byte and any offset must be even.
1928 */
1929 if (ic->ic_ps_pending != 0) {
1930 timoff = 128; /* impossibly large */
1931 for (i = 0; i < ic->ic_tim_len; i++)
1932 if (ic->ic_tim_bitmap[i]) {
1933 timoff = i &~ 1;
1934 break;
1935 }
1936 IASSERT(timoff != 128, ("tim bitmap empty!"));
1937 for (i = ic->ic_tim_len-1; i >= timoff; i--)
1938 if (ic->ic_tim_bitmap[i])
1939 break;
1940 timlen = 1 + (i - timoff);
1941 } else {
1942 timoff = 0;
1943 timlen = 1;
1944 }
1945 if (timlen != bo->bo_tim_len) {
1946 /* copy up/down trailer */
1947 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
1948 bo->bo_trailer_len);
1949 bo->bo_trailer = tie->tim_bitmap+timlen;
1950 bo->bo_wme = bo->bo_trailer;
1951 bo->bo_tim_len = timlen;
1952
1953 /* update information element */
1954 tie->tim_len = 3 + timlen;
1955 tie->tim_bitctl = timoff;
1956 len_changed = 1;
1957 }
1958 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
1959 bo->bo_tim_len);
1960
1961 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
1962
1963 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1964 "%s: TIM updated, pending %u, off %u, len %u\n",
1965 __func__, ic->ic_ps_pending, timoff, timlen);
1966 }
1967 /* count down DTIM period */
1968 if (tie->tim_count == 0)
1969 tie->tim_count = tie->tim_period - 1;
1970 else
1971 tie->tim_count--;
1972 /* update state for buffered multicast frames on DTIM */
1973 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
1974 tie->tim_bitctl |= 1;
1975 else
1976 tie->tim_bitctl &= ~1;
1977 }
1978 #endif /* !IEEE80211_NO_HOSTAP */
1979 IEEE80211_BEACON_UNLOCK(ic);
1980
1981 return len_changed;
1982 }
1983
1984 /*
1985 * Save an outbound packet for a node in power-save sleep state.
1986 * The new packet is placed on the node's saved queue, and the TIM
1987 * is changed, if necessary.
1988 */
1989 void
1990 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
1991 struct mbuf *m)
1992 {
1993 int qlen, age;
1994
1995 IEEE80211_NODE_SAVEQ_LOCK(ni);
1996 if (IF_QFULL(&ni->ni_savedq)) {
1997 IF_DROP(&ni->ni_savedq);
1998 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
1999 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2000 "[%s] pwr save q overflow, drops %d (size %d)\n",
2001 ether_sprintf(ni->ni_macaddr),
2002 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2003 #ifdef IEEE80211_DEBUG
2004 if (ieee80211_msg_dumppkts(ic))
2005 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2006 #endif
2007 m_freem(m);
2008 return;
2009 }
2010 /*
2011 * Tag the frame with it's expiry time and insert
2012 * it in the queue. The aging interval is 4 times
2013 * the listen interval specified by the station.
2014 * Frames that sit around too long are reclaimed
2015 * using this information.
2016 */
2017 /* XXX handle overflow? */
2018 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2019 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2020 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2021
2022 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2023 "[%s] save frame with age %d, %u now queued\n",
2024 ether_sprintf(ni->ni_macaddr), age, qlen);
2025
2026 if (qlen == 1)
2027 ic->ic_set_tim(ni, 1);
2028 }
2029