ieee80211_output.c revision 1.47.34.1 1 /* $NetBSD: ieee80211_output.c,v 1.47.34.1 2008/02/22 16:50:25 skrll Exp $ */
2 /*-
3 * Copyright (c) 2001 Atsushi Onoe
4 * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 #ifdef __FreeBSD__
30 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.57 2007/12/07 01:46:12 kmacy Exp $");
31 #endif
32 #ifdef __NetBSD__
33 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.47.34.1 2008/02/22 16:50:25 skrll Exp $");
34 #endif
35
36 #include "opt_inet.h"
37
38 #ifdef __NetBSD__
39 #include "bpfilter.h"
40 #endif /* __NetBSD__ */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/endian.h>
47 #include <sys/errno.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50
51 #include <net/if.h>
52 #include <net/if_llc.h>
53 #include <net/if_media.h>
54 #include <net/if_arp.h>
55 #include <net/if_ether.h>
56 #include <net/if_llc.h>
57 #include <net/if_vlanvar.h>
58
59 #include <net80211/ieee80211_netbsd.h>
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_regdomain.h>
62
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <net/if_ether.h>
73 #endif
74
75 #define ETHER_HEADER_COPY(dst, src) \
76 memcpy(dst, src, sizeof(struct ether_header))
77
78 static struct mbuf *ieee80211_encap_fastframe(struct ieee80211com *ic,
79 struct mbuf *m1, const struct ether_header *eh1,
80 struct mbuf *m2, const struct ether_header *eh2);
81 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
82 u_int hdrsize, u_int ciphdrsize, u_int mtu);
83 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
84
85 #ifdef IEEE80211_DEBUG
86 /*
87 * Decide if an outbound management frame should be
88 * printed when debugging is enabled. This filters some
89 * of the less interesting frames that come frequently
90 * (e.g. beacons).
91 */
92 static __inline int
93 doprint(struct ieee80211com *ic, int subtype)
94 {
95 switch (subtype) {
96 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
97 return (ic->ic_opmode == IEEE80211_M_IBSS);
98 }
99 return 1;
100 }
101 #endif
102
103 /*
104 * Set the direction field and address fields of an outgoing
105 * non-QoS frame. Note this should be called early on in
106 * constructing a frame as it sets i_fc[1]; other bits can
107 * then be or'd in.
108 */
109 static void
110 ieee80211_send_setup(struct ieee80211com *ic,
111 struct ieee80211_node *ni,
112 struct ieee80211_frame *wh,
113 int type,
114 const uint8_t sa[IEEE80211_ADDR_LEN],
115 const uint8_t da[IEEE80211_ADDR_LEN],
116 const uint8_t bssid[IEEE80211_ADDR_LEN])
117 {
118 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
119
120 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
121 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
122 switch (ic->ic_opmode) {
123 case IEEE80211_M_STA:
124 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
125 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
126 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
127 IEEE80211_ADDR_COPY(wh->i_addr3, da);
128 break;
129 case IEEE80211_M_IBSS:
130 case IEEE80211_M_AHDEMO:
131 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
132 IEEE80211_ADDR_COPY(wh->i_addr1, da);
133 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
134 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
135 break;
136 case IEEE80211_M_HOSTAP:
137 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
138 IEEE80211_ADDR_COPY(wh->i_addr1, da);
139 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
140 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
141 break;
142 case IEEE80211_M_WDS:
143 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
144 /* XXX cheat, bssid holds RA */
145 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
146 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
147 IEEE80211_ADDR_COPY(wh->i_addr3, da);
148 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
149 break;
150 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
151 break;
152 }
153 } else {
154 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
155 IEEE80211_ADDR_COPY(wh->i_addr1, da);
156 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
157 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
158 }
159 *(uint16_t *)&wh->i_dur[0] = 0;
160 /* NB: use non-QoS tid */
161 *(uint16_t *)&wh->i_seq[0] =
162 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
163 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
164 #undef WH4
165 }
166
167 /*
168 * Send a management frame to the specified node. The node pointer
169 * must have a reference as the pointer will be passed to the driver
170 * and potentially held for a long time. If the frame is successfully
171 * dispatched to the driver, then it is responsible for freeing the
172 * reference (and potentially free'ing up any associated storage).
173 */
174 int
175 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
176 struct mbuf *m, int type)
177 {
178 struct ifnet *ifp = ic->ic_ifp;
179 struct ieee80211_frame *wh;
180
181 IASSERT(ni != NULL, ("null node"));
182
183 /*
184 * Yech, hack alert! We want to pass the node down to the
185 * driver's start routine. If we don't do so then the start
186 * routine must immediately look it up again and that can
187 * cause a lock order reversal if, for example, this frame
188 * is being sent because the station is being timedout and
189 * the frame being sent is a DEAUTH message. We could stick
190 * this in an m_tag and tack that on to the mbuf. However
191 * that's rather expensive to do for every frame so instead
192 * we stuff it in the rcvif field since outbound frames do
193 * not (presently) use this.
194 */
195 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
196 if (m == NULL)
197 return ENOMEM;
198 #ifdef __FreeBSD__
199 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
200 #endif
201 m->m_pkthdr.rcvif = (void *)ni;
202
203 wh = mtod(m, struct ieee80211_frame *);
204 ieee80211_send_setup(ic, ni, wh,
205 IEEE80211_FC0_TYPE_MGT | type,
206 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
207 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
208 m->m_flags &= ~M_LINK0;
209 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
210 "[%s] encrypting frame (%s)\n",
211 ether_sprintf(wh->i_addr1), __func__);
212 wh->i_fc[1] |= IEEE80211_FC1_WEP;
213 }
214 if (ni->ni_flags & IEEE80211_NODE_QOS) {
215 /* NB: force all management frames to the highest queue */
216 M_WME_SETAC(m, WME_AC_VO);
217 } else
218 M_WME_SETAC(m, WME_AC_BE);
219 #ifdef IEEE80211_DEBUG
220 /* avoid printing too many frames */
221 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
222 ieee80211_msg_dumppkts(ic)) {
223 printf("[%s] send %s on channel %u\n",
224 ether_sprintf(wh->i_addr1),
225 ieee80211_mgt_subtype_name[
226 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
227 IEEE80211_FC0_SUBTYPE_SHIFT],
228 ieee80211_chan2ieee(ic, ic->ic_curchan));
229 }
230 #endif
231 IEEE80211_NODE_STAT(ni, tx_mgmt);
232 IF_ENQUEUE(&ic->ic_mgtq, m);
233 ifp->if_timer = 1;
234 (*ifp->if_start)(ifp);
235 ifp->if_opackets++;
236
237 return 0;
238 }
239
240 /*
241 * Raw packet transmit stub for legacy drivers.
242 * Send the packet through the mgt q so we bypass
243 * the normal encapsulation work.
244 */
245 int
246 ieee80211_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
247 const struct ieee80211_bpf_params *params)
248 {
249 struct ieee80211com *ic = ni->ni_ic;
250 struct ifnet *ifp = ic->ic_ifp;
251
252 m->m_pkthdr.rcvif = (void *) ni;
253 IF_ENQUEUE(&ic->ic_mgtq, m);
254 (*ifp->if_start)(ifp);
255 ifp->if_opackets++;
256
257 return 0;
258 }
259
260 /* XXXNH */
261 #if 0
262 /*
263 * 802.11 output routine. This is (currently) used only to
264 * connect bpf write calls to the 802.11 layer for injecting
265 * raw 802.11 frames. Note we locate the ieee80211com from
266 * the ifnet using a spare field setup at attach time. This
267 * will go away when the virtual ap support comes in.
268 */
269 int
270 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
271 const struct sockaddr *dst, struct rtentry *rt0)
272 {
273 #define senderr(e) do { error = (e); goto bad;} while (0)
274 struct ieee80211com *ic = ifp->if_llsoftc; /* XXX */
275 struct ieee80211_node *ni = NULL;
276 struct ieee80211_frame *wh;
277 int error;
278
279 /*
280 * Hand to the 802.3 code if not tagged as
281 * a raw 802.11 frame.
282 */
283 if (dst->sa_family != AF_IEEE80211)
284 return ether_output(ifp, m, dst, rt0);
285 #ifdef MAC
286 error = mac_check_ifnet_transmit(ifp, m);
287 if (error)
288 senderr(error);
289 #endif
290 if (ifp->if_flags & IFF_MONITOR)
291 senderr(ENETDOWN);
292 if ((ifp->if_flags & IFF_UP) == 0)
293 senderr(ENETDOWN);
294
295 /* XXX bypass bridge, pfil, carp, etc. */
296
297 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
298 senderr(EIO); /* XXX */
299 wh = mtod(m, struct ieee80211_frame *);
300 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
301 IEEE80211_FC0_VERSION_0)
302 senderr(EIO); /* XXX */
303
304 /* locate destination node */
305 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
306 case IEEE80211_FC1_DIR_NODS:
307 case IEEE80211_FC1_DIR_FROMDS:
308 ni = ieee80211_find_txnode(ic, wh->i_addr1);
309 break;
310 case IEEE80211_FC1_DIR_TODS:
311 case IEEE80211_FC1_DIR_DSTODS:
312 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
313 senderr(EIO); /* XXX */
314 ni = ieee80211_find_txnode(ic, wh->i_addr3);
315 break;
316 default:
317 senderr(EIO); /* XXX */
318 }
319 if (ni == NULL) {
320 /*
321 * Permit packets w/ bpf params through regardless
322 * (see below about sa_len).
323 */
324 if (dst->sa_len == 0)
325 senderr(EHOSTUNREACH);
326 ni = ieee80211_ref_node(ic->ic_bss);
327 }
328
329 /* XXX ctrl frames should go through */
330 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
331 (m->m_flags & M_PWR_SAV) == 0) {
332 /*
333 * Station in power save mode; pass the frame
334 * to the 802.11 layer and continue. We'll get
335 * the frame back when the time is right.
336 */
337 ieee80211_pwrsave(ni, m);
338 error = 0;
339 goto reclaim;
340 }
341
342 /* calculate priority so drivers can find the tx queue */
343 /* XXX assumes an 802.3 frame */
344 if (ieee80211_classify(ic, m, ni))
345 senderr(EIO); /* XXX */
346
347 BPF_MTAP(ifp, m);
348 /*
349 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
350 * present by setting the sa_len field of the sockaddr (yes,
351 * this is a hack).
352 * NB: we assume sa_data is suitably aligned to cast.
353 */
354 return ic->ic_raw_xmit(ni, m, (const struct ieee80211_bpf_params *)
355 (dst->sa_len ? dst->sa_data : NULL));
356 bad:
357 if (m != NULL)
358 m_freem(m);
359 reclaim:
360 if (ni != NULL)
361 ieee80211_free_node(ni);
362 return error;
363 #undef senderr
364 }
365 #endif
366
367 /*
368 * Send a null data frame to the specified node.
369 *
370 * NB: the caller is assumed to have setup a node reference
371 * for use; this is necessary to deal with a race condition
372 * when probing for inactive stations.
373 */
374 int
375 ieee80211_send_nulldata(struct ieee80211_node *ni)
376 {
377 struct ieee80211com *ic = ni->ni_ic;
378 struct ifnet *ifp = ic->ic_ifp;
379 struct mbuf *m;
380 struct ieee80211_frame *wh;
381
382 MGETHDR(m, M_NOWAIT, MT_DATA);
383 if (m == NULL) {
384 /* XXX debug msg */
385 ieee80211_unref_node(&ni);
386 ic->ic_stats.is_tx_nobuf++;
387 return ENOMEM;
388 }
389 MH_ALIGN(m, sizeof(struct ieee80211_frame));
390 m->m_pkthdr.rcvif = (void *) ni;
391
392 wh = mtod(m, struct ieee80211_frame *);
393 ieee80211_send_setup(ic, ni, wh,
394 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
395 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
396 /* NB: power management bit is never sent by an AP */
397 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
398 ic->ic_opmode != IEEE80211_M_HOSTAP &&
399 ic->ic_opmode != IEEE80211_M_WDS)
400 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
401 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
402 M_WME_SETAC(m, WME_AC_BE);
403
404 IEEE80211_NODE_STAT(ni, tx_data);
405
406 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
407 "[%s] send null data frame on channel %u, pwr mgt %s\n",
408 ether_sprintf(ni->ni_macaddr),
409 ieee80211_chan2ieee(ic, ic->ic_curchan),
410 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
411
412 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
413 (*ifp->if_start)(ifp);
414
415 return 0;
416 }
417
418 /*
419 * Assign priority to a frame based on any vlan tag assigned
420 * to the station and/or any Diffserv setting in an IP header.
421 * Finally, if an ACM policy is setup (in station mode) it's
422 * applied.
423 */
424 int
425 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
426 {
427 int v_wme_ac, d_wme_ac, ac;
428 #ifdef INET
429 struct ether_header *eh;
430 #endif
431
432 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
433 ac = WME_AC_BE;
434 goto done;
435 }
436
437 /*
438 * If node has a vlan tag then all traffic
439 * to it must have a matching tag.
440 */
441 v_wme_ac = 0;
442 if (ni->ni_vlan != 0) {
443 /* XXX used to check ec_nvlans. */
444 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
445 if (mtag == NULL) {
446 IEEE80211_NODE_STAT(ni, tx_novlantag);
447 return 1;
448 }
449 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
450 EVL_VLANOFTAG(ni->ni_vlan)) {
451 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
452 return 1;
453 }
454 /* map vlan priority to AC */
455 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
456 }
457
458 #ifdef INET
459 eh = mtod(m, struct ether_header *);
460 if (eh->ether_type == htons(ETHERTYPE_IP)) {
461 uint8_t tos;
462 /*
463 * IP frame, map the DSCP bits from the TOS field.
464 */
465 /* XXX m_copydata may be too slow for fast path */
466 /* NB: ip header may not be in first mbuf */
467 m_copydata(m, sizeof(struct ether_header) +
468 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
469 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
470 d_wme_ac = TID_TO_WME_AC(tos);
471 } else {
472 #endif /* INET */
473 d_wme_ac = WME_AC_BE;
474 #ifdef INET
475 }
476 #endif
477 /*
478 * Use highest priority AC.
479 */
480 if (v_wme_ac > d_wme_ac)
481 ac = v_wme_ac;
482 else
483 ac = d_wme_ac;
484
485 /*
486 * Apply ACM policy.
487 */
488 if (ic->ic_opmode == IEEE80211_M_STA) {
489 static const int acmap[4] = {
490 WME_AC_BK, /* WME_AC_BE */
491 WME_AC_BK, /* WME_AC_BK */
492 WME_AC_BE, /* WME_AC_VI */
493 WME_AC_VI, /* WME_AC_VO */
494 };
495 while (ac != WME_AC_BK &&
496 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
497 ac = acmap[ac];
498 }
499 done:
500 M_WME_SETAC(m, ac);
501 return 0;
502 }
503
504 /*
505 * Insure there is sufficient contiguous space to encapsulate the
506 * 802.11 data frame. If room isn't already there, arrange for it.
507 * Drivers and cipher modules assume we have done the necessary work
508 * and fail rudely if they don't find the space they need.
509 */
510 static struct mbuf *
511 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
512 struct ieee80211_key *key, struct mbuf *m)
513 {
514 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
515 int needed_space = ic->ic_headroom + hdrsize;
516 int wlen = 0;
517
518 if (key != NULL) {
519 /* XXX belongs in crypto code? */
520 needed_space += key->wk_cipher->ic_header;
521 /* XXX frags */
522 }
523 /*
524 * We know we are called just before stripping an Ethernet
525 * header and prepending an LLC header. This means we know
526 * there will be
527 * sizeof(struct ether_header) - sizeof(struct llc)
528 * bytes recovered to which we need additional space for the
529 * 802.11 header and any crypto header.
530 */
531 /* XXX check trailing space and copy instead? */
532 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
533 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
534 if (n == NULL) {
535 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
536 "%s: cannot expand storage\n", __func__);
537 ic->ic_stats.is_tx_nobuf++;
538 m_freem(m);
539 return NULL;
540 }
541 IASSERT(needed_space <= MHLEN,
542 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
543 /*
544 * Setup new mbuf to have leading space to prepend the
545 * 802.11 header and any crypto header bits that are
546 * required (the latter are added when the driver calls
547 * back to ieee80211_crypto_encap to do crypto encapsulation).
548 */
549 /* NB: must be first 'cuz it clobbers m_data */
550 M_MOVE_PKTHDR(n, m);
551 n->m_len = 0; /* NB: m_gethdr does not set */
552 n->m_data += needed_space;
553 /*
554 * Pull up Ethernet header to create the expected layout.
555 * We could use m_pullup but that's overkill (i.e. we don't
556 * need the actual data) and it cannot fail so do it inline
557 * for speed.
558 */
559 /* NB: struct ether_header is known to be contiguous */
560 n->m_len += sizeof(struct ether_header);
561 m->m_len -= sizeof(struct ether_header);
562 m->m_data += sizeof(struct ether_header);
563 /*
564 * Replace the head of the chain.
565 */
566 n->m_next = m;
567 m = n;
568 } else {
569 /* We will overwrite the ethernet header in the
570 * 802.11 encapsulation stage. Make sure that it
571 * is writable.
572 */
573 wlen = sizeof(struct ether_header);
574 }
575
576 /*
577 * If we're going to s/w encrypt the mbuf chain make sure it is
578 * writable.
579 */
580 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
581 wlen = M_COPYALL;
582
583 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
584 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
585 "%s: cannot get writable mbuf\n", __func__);
586 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */
587 m_freem(m);
588 return NULL;
589 }
590 return m;
591 #undef TO_BE_RECLAIMED
592 }
593
594 /*
595 * Return the transmit key to use in sending a unicast frame.
596 * If a unicast key is set we use that. When no unicast key is set
597 * we fall back to the default transmit key.
598 */
599 static __inline struct ieee80211_key *
600 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
601 {
602 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
603 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
604 IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey]))
605 return NULL;
606 return &ic->ic_nw_keys[ic->ic_def_txkey];
607 } else {
608 return &ni->ni_ucastkey;
609 }
610 }
611
612 /*
613 * Return the transmit key to use in sending a multicast frame.
614 * Multicast traffic always uses the group key which is installed as
615 * the default tx key.
616 */
617 static __inline struct ieee80211_key *
618 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
619 struct ieee80211_node *ni)
620 {
621 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
622 IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey]))
623 return NULL;
624 return &ic->ic_nw_keys[ic->ic_def_txkey];
625 }
626
627 /*
628 * Encapsulate an outbound data frame. The mbuf chain is updated.
629 * If an error is encountered NULL is returned. The caller is required
630 * to provide a node reference and pullup the ethernet header in the
631 * first mbuf.
632 */
633 struct mbuf *
634 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
635 struct ieee80211_node *ni)
636 {
637 struct ether_header eh;
638 struct ieee80211_frame *wh;
639 struct ieee80211_key *key;
640 struct llc *llc;
641 int hdrsize, datalen, addqos, txfrag, isff;
642
643 /*
644 * Copy existing Ethernet header to a safe place. The
645 * rest of the code assumes it's ok to strip it when
646 * reorganizing state for the final encapsulation.
647 */
648 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
649 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
650
651 /*
652 * Insure space for additional headers. First identify
653 * transmit key to use in calculating any buffer adjustments
654 * required. This is also used below to do privacy
655 * encapsulation work. Then calculate the 802.11 header
656 * size and any padding required by the driver.
657 *
658 * Note key may be NULL if we fall back to the default
659 * transmit key and that is not set. In that case the
660 * buffer may not be expanded as needed by the cipher
661 * routines, but they will/should discard it.
662 */
663 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
664 if (ic->ic_opmode == IEEE80211_M_STA ||
665 !IEEE80211_IS_MULTICAST(eh.ether_dhost))
666 key = ieee80211_crypto_getucastkey(ic, ni);
667 else
668 key = ieee80211_crypto_getmcastkey(ic, ni);
669 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
670 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
671 "[%s] no default transmit key (%s) deftxkey %u\n",
672 ether_sprintf(eh.ether_dhost), __func__,
673 ic->ic_def_txkey);
674 ic->ic_stats.is_tx_nodefkey++;
675 goto bad;
676 }
677 } else
678 key = NULL;
679 /* XXX 4-address format */
680 /*
681 * XXX Some ap's don't handle QoS-encapsulated EAPOL
682 * frames so suppress use. This may be an issue if other
683 * ap's require all data frames to be QoS-encapsulated
684 * once negotiated in which case we'll need to make this
685 * configurable.
686 */
687 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
688 eh.ether_type != htons(ETHERTYPE_PAE);
689 if (addqos)
690 hdrsize = sizeof(struct ieee80211_qosframe);
691 else
692 hdrsize = sizeof(struct ieee80211_frame);
693 if (ic->ic_flags & IEEE80211_F_DATAPAD)
694 hdrsize = roundup(hdrsize, sizeof(uint32_t));
695
696 if ((isff = m->m_flags & M_FF) != 0) {
697 struct mbuf *m2;
698 struct ether_header eh2;
699
700 /*
701 * Fast frame encapsulation. There must be two packets
702 * chained with m_nextpkt. We do header adjustment for
703 * each, add the tunnel encapsulation, and then concatenate
704 * the mbuf chains to form a single frame for transmission.
705 */
706 m2 = m->m_nextpkt;
707 if (m2 == NULL) {
708 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
709 "%s: only one frame\n", __func__);
710 goto bad;
711 }
712 m->m_nextpkt = NULL;
713 /*
714 * Include fast frame headers in adjusting header
715 * layout; this allocates space according to what
716 * ieee80211_encap_fastframe will do.
717 */
718 m = ieee80211_mbuf_adjust(ic,
719 hdrsize + sizeof(struct llc) + sizeof(uint32_t) + 2 +
720 sizeof(struct ether_header),
721 key, m);
722 if (m == NULL) {
723 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
724 m_freem(m2);
725 goto bad;
726 }
727 /*
728 * Copy second frame's Ethernet header out of line
729 * and adjust for encapsulation headers. Note that
730 * we make room for padding in case there isn't room
731 * at the end of first frame.
732 */
733 IASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
734 memcpy(&eh2, mtod(m2, void *), sizeof(struct ether_header));
735 m2 = ieee80211_mbuf_adjust(ic,
736 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
737 NULL, m2);
738 if (m2 == NULL) {
739 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
740 goto bad;
741 }
742 m = ieee80211_encap_fastframe(ic, m, &eh, m2, &eh2);
743 if (m == NULL)
744 goto bad;
745 } else {
746 /*
747 * Normal frame.
748 */
749 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
750 if (m == NULL) {
751 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
752 goto bad;
753 }
754 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
755 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
756 llc = mtod(m, struct llc *);
757 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
758 llc->llc_control = LLC_UI;
759 llc->llc_snap.org_code[0] = 0;
760 llc->llc_snap.org_code[1] = 0;
761 llc->llc_snap.org_code[2] = 0;
762 llc->llc_snap.ether_type = eh.ether_type;
763 }
764 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
765
766 M_PREPEND(m, hdrsize, M_DONTWAIT);
767 if (m == NULL) {
768 ic->ic_stats.is_tx_nobuf++;
769 goto bad;
770 }
771 wh = mtod(m, struct ieee80211_frame *);
772 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
773 *(uint16_t *)wh->i_dur = 0;
774 switch (ic->ic_opmode) {
775 case IEEE80211_M_STA:
776 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
777 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
778 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
779 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
780 break;
781 case IEEE80211_M_IBSS:
782 case IEEE80211_M_AHDEMO:
783 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
784 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
785 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
786 /*
787 * NB: always use the bssid from ic_bss as the
788 * neighbor's may be stale after an ibss merge
789 */
790 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
791 break;
792 case IEEE80211_M_HOSTAP:
793 #ifndef IEEE80211_NO_HOSTAP
794 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
795 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
796 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
797 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
798 #endif /* !IEEE80211_NO_HOSTAP */
799 break;
800 case IEEE80211_M_MONITOR:
801 case IEEE80211_M_WDS:
802 goto bad;
803 }
804 if (m->m_flags & M_MORE_DATA)
805 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
806 if (addqos) {
807 struct ieee80211_qosframe *qwh =
808 (struct ieee80211_qosframe *) wh;
809 int ac, tid;
810
811 ac = M_WME_GETAC(m);
812 /* map from access class/queue to 11e header priorty value */
813 tid = WME_AC_TO_TID(ac);
814 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
815 /*
816 * Check if A-MPDU tx aggregation is setup or if we
817 * should try to enable it. The sta must be associated
818 * with HT and A-MPDU enabled for use. On the first
819 * frame that goes out We issue an ADDBA request and
820 * wait for a reply. The frame being encapsulated
821 * will go out w/o using A-MPDU, or possibly it might
822 * be collected by the driver and held/retransmit.
823 * ieee80211_ampdu_request handles staggering requests
824 * in case the receiver NAK's us or we are otherwise
825 * unable to establish a BA stream.
826 */
827 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
828 (ic->ic_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
829 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
830
831 if (IEEE80211_AMPDU_RUNNING(tap)) {
832 /*
833 * Operational, mark frame for aggregation.
834 */
835 qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_BA;
836 } else if (!IEEE80211_AMPDU_REQUESTED(tap)) {
837 /*
838 * Not negotiated yet, request service.
839 */
840 ieee80211_ampdu_request(ni, tap);
841 }
842 }
843 /* XXX works even when BA marked above */
844 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
845 qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
846 qwh->i_qos[1] = 0;
847 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
848
849 *(uint16_t *)wh->i_seq =
850 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
851 ni->ni_txseqs[tid]++;
852 } else {
853 *(uint16_t *)wh->i_seq =
854 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
855 ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
856 }
857 /* check if xmit fragmentation is required */
858 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
859 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
860 (ic->ic_caps & IEEE80211_C_TXFRAG) &&
861 !isff); /* NB: don't fragment ff's */
862 if (key != NULL) {
863 /*
864 * IEEE 802.1X: send EAPOL frames always in the clear.
865 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
866 */
867 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
868 ((ic->ic_flags & IEEE80211_F_WPA) &&
869 (ic->ic_opmode == IEEE80211_M_STA ?
870 !IEEE80211_KEY_UNDEFINED(key) :
871 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
872 wh->i_fc[1] |= IEEE80211_FC1_WEP;
873 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
874 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
875 "[%s] enmic failed, discard frame\n",
876 ether_sprintf(eh.ether_dhost));
877 ic->ic_stats.is_crypto_enmicfail++;
878 goto bad;
879 }
880 }
881 }
882 /*
883 * NB: frag flags may leak from above; they should only
884 * be set on return to the caller if we fragment at
885 * the 802.11 layer.
886 */
887 m->m_flags &= ~(M_FRAG | M_FIRSTFRAG);
888 if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
889 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
890 goto bad;
891
892 IEEE80211_NODE_STAT(ni, tx_data);
893 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
894 IEEE80211_NODE_STAT(ni, tx_mcast);
895 else
896 IEEE80211_NODE_STAT(ni, tx_ucast);
897 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
898
899 return m;
900 bad:
901 if (m != NULL)
902 m_freem(m);
903 return NULL;
904 }
905
906 /*
907 * Arguments in:
908 *
909 * paylen: payload length (no FCS, no WEP header)
910 *
911 * hdrlen: header length
912 *
913 * rate: MSDU speed, units 500kb/s
914 *
915 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
916 * IEEE80211_F_SHSLOT (use short slot length)
917 *
918 * Arguments out:
919 *
920 * d: 802.11 Duration field for RTS,
921 * 802.11 Duration field for data frame,
922 * PLCP Length for data frame,
923 * residual octets at end of data slot
924 */
925 static int
926 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
927 struct ieee80211_duration *d)
928 {
929 int pre, ctsrate;
930 int ack, bitlen, data_dur, remainder;
931
932 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
933 * DATA reserves medium for SIFS | ACK
934 *
935 * XXXMYC: no ACK on multicast/broadcast or control packets
936 */
937
938 bitlen = len * 8;
939
940 pre = IEEE80211_DUR_DS_SIFS;
941 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
942 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
943 else
944 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
945
946 d->d_residue = 0;
947 data_dur = (bitlen * 2) / rate;
948 remainder = (bitlen * 2) % rate;
949 if (remainder != 0) {
950 d->d_residue = (rate - remainder) / 16;
951 data_dur++;
952 }
953
954 switch (rate) {
955 case 2: /* 1 Mb/s */
956 case 4: /* 2 Mb/s */
957 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
958 ctsrate = 2;
959 break;
960 case 11: /* 5.5 Mb/s */
961 case 22: /* 11 Mb/s */
962 case 44: /* 22 Mb/s */
963 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
964 ctsrate = 4;
965 break;
966 default:
967 /* TBD */
968 return -1;
969 }
970
971 d->d_plcp_len = data_dur;
972
973 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
974
975 d->d_rts_dur =
976 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
977 pre + data_dur +
978 ack;
979
980 d->d_data_dur = ack;
981
982 return 0;
983 }
984
985 /*
986 * Arguments in:
987 *
988 * wh: 802.11 header
989 *
990 * paylen: payload length (no FCS, no WEP header)
991 *
992 * rate: MSDU speed, units 500kb/s
993 *
994 * fraglen: fragment length, set to maximum (or higher) for no
995 * fragmentation
996 *
997 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
998 * IEEE80211_F_SHPREAMBLE (use short preamble),
999 * IEEE80211_F_SHSLOT (use short slot length)
1000 *
1001 * Arguments out:
1002 *
1003 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
1004 * of first/only fragment
1005 *
1006 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
1007 * of last fragment
1008 *
1009 * ieee80211_compute_duration assumes crypto-encapsulation, if any,
1010 * has already taken place.
1011 */
1012 int
1013 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
1014 const struct ieee80211_key *wk, int len,
1015 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
1016 struct ieee80211_duration *dn, int *npktp, int debug)
1017 {
1018 int ack, rc;
1019 int cryptolen, /* crypto overhead: header+trailer */
1020 firstlen, /* first fragment's payload + overhead length */
1021 hdrlen, /* header length w/o driver padding */
1022 lastlen, /* last fragment's payload length w/ overhead */
1023 lastlen0, /* last fragment's payload length w/o overhead */
1024 npkt, /* number of fragments */
1025 overlen, /* non-802.11 header overhead per fragment */
1026 paylen; /* payload length w/o overhead */
1027
1028 hdrlen = ieee80211_anyhdrsize((const void *)wh);
1029
1030 /* Account for padding required by the driver. */
1031 if (icflags & IEEE80211_F_DATAPAD)
1032 paylen = len - roundup(hdrlen, sizeof(u_int32_t));
1033 else
1034 paylen = len - hdrlen;
1035
1036 overlen = IEEE80211_CRC_LEN;
1037
1038 if (wk != NULL) {
1039 cryptolen = wk->wk_cipher->ic_header +
1040 wk->wk_cipher->ic_trailer;
1041 paylen -= cryptolen;
1042 overlen += cryptolen;
1043 }
1044
1045 npkt = paylen / fraglen;
1046 lastlen0 = paylen % fraglen;
1047
1048 if (npkt == 0) /* no fragments */
1049 lastlen = paylen + overlen;
1050 else if (lastlen0 != 0) { /* a short "tail" fragment */
1051 lastlen = lastlen0 + overlen;
1052 npkt++;
1053 } else /* full-length "tail" fragment */
1054 lastlen = fraglen + overlen;
1055
1056 if (npktp != NULL)
1057 *npktp = npkt;
1058
1059 if (npkt > 1)
1060 firstlen = fraglen + overlen;
1061 else
1062 firstlen = paylen + overlen;
1063
1064 if (debug) {
1065 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
1066 "fraglen %d overlen %d len %d rate %d icflags %08x\n",
1067 __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
1068 overlen, len, rate, icflags);
1069 }
1070
1071 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1072 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
1073
1074 rc = ieee80211_compute_duration1(firstlen + hdrlen,
1075 ack, icflags, rate, d0);
1076 if (rc == -1)
1077 return rc;
1078
1079 if (npkt <= 1) {
1080 *dn = *d0;
1081 return 0;
1082 }
1083 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
1084 dn);
1085 }
1086
1087 /*
1088 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1089 * tunnel encapsulation. The frame is assumed to have an Ethernet
1090 * header at the front that must be stripped before prepending the
1091 * LLC followed by the Ethernet header passed in (with an Ethernet
1092 * type that specifies the payload size).
1093 */
1094 static struct mbuf *
1095 ieee80211_encap1(struct ieee80211com *ic, struct mbuf *m,
1096 const struct ether_header *eh)
1097 {
1098 struct llc *llc;
1099 uint16_t payload;
1100
1101 /* XXX optimize by combining m_adj+M_PREPEND */
1102 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1103 llc = mtod(m, struct llc *);
1104 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1105 llc->llc_control = LLC_UI;
1106 llc->llc_snap.org_code[0] = 0;
1107 llc->llc_snap.org_code[1] = 0;
1108 llc->llc_snap.org_code[2] = 0;
1109 llc->llc_snap.ether_type = eh->ether_type;
1110 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
1111
1112 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1113 if (m == NULL) { /* XXX cannot happen */
1114 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
1115 "%s: no space for ether_header\n", __func__);
1116 ic->ic_stats.is_tx_nobuf++;
1117 return NULL;
1118 }
1119 ETHER_HEADER_COPY(mtod(m, void *), eh);
1120 mtod(m, struct ether_header *)->ether_type = htons(payload);
1121 return m;
1122 }
1123
1124 /*
1125 * Do fast frame tunnel encapsulation. The two frames and
1126 * Ethernet headers are supplied. The caller is assumed to
1127 * have arrange for space in the mbuf chains for encapsulating
1128 * headers (to avoid major mbuf fragmentation).
1129 *
1130 * The encapsulated frame is returned or NULL if there is a
1131 * problem (should not happen).
1132 */
1133 static struct mbuf *
1134 ieee80211_encap_fastframe(struct ieee80211com *ic,
1135 struct mbuf *m1, const struct ether_header *eh1,
1136 struct mbuf *m2, const struct ether_header *eh2)
1137 {
1138 struct llc *llc;
1139 struct mbuf *m;
1140 int pad;
1141
1142 /*
1143 * First, each frame gets a standard encapsulation.
1144 */
1145 m1 = ieee80211_encap1(ic, m1, eh1);
1146 if (m1 == NULL) {
1147 m_freem(m2);
1148 return NULL;
1149 }
1150 m2 = ieee80211_encap1(ic, m2, eh2);
1151 if (m2 == NULL) {
1152 m_freem(m1);
1153 return NULL;
1154 }
1155
1156 /*
1157 * Pad leading frame to a 4-byte boundary. If there
1158 * is space at the end of the first frame, put it
1159 * there; otherwise prepend to the front of the second
1160 * frame. We know doing the second will always work
1161 * because we reserve space above. We prefer appending
1162 * as this typically has better DMA alignment properties.
1163 */
1164 for (m = m1; m->m_next != NULL; m = m->m_next)
1165 ;
1166 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1167 if (pad) {
1168 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
1169 m2->m_data -= pad;
1170 m2->m_len += pad;
1171 m2->m_pkthdr.len += pad;
1172 } else { /* append to first */
1173 m->m_len += pad;
1174 m1->m_pkthdr.len += pad;
1175 }
1176 }
1177
1178 /*
1179 * Now, stick 'em together and prepend the tunnel headers;
1180 * first the Atheros tunnel header (all zero for now) and
1181 * then a special fast frame LLC.
1182 *
1183 * XXX optimize by prepending together
1184 */
1185 m->m_next = m2; /* NB: last mbuf from above */
1186 m1->m_pkthdr.len += m2->m_pkthdr.len;
1187 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1188 if (m1 == NULL) { /* XXX cannot happen */
1189 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
1190 "%s: no space for tunnel header\n", __func__);
1191 ic->ic_stats.is_tx_nobuf++;
1192 return NULL;
1193 }
1194 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1195
1196 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1197 if (m1 == NULL) { /* XXX cannot happen */
1198 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG,
1199 "%s: no space for llc header\n", __func__);
1200 ic->ic_stats.is_tx_nobuf++;
1201 return NULL;
1202 }
1203 llc = mtod(m1, struct llc *);
1204 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1205 llc->llc_control = LLC_UI;
1206 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1207 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1208 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1209 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1210
1211 ic->ic_stats.is_ff_encap++;
1212
1213 return m1;
1214 }
1215
1216 /*
1217 * Fragment the frame according to the specified mtu.
1218 * The size of the 802.11 header (w/o padding) is provided
1219 * so we don't need to recalculate it. We create a new
1220 * mbuf for each fragment and chain it through m_nextpkt;
1221 * we might be able to optimize this by reusing the original
1222 * packet's mbufs but that is significantly more complicated.
1223 */
1224 static int
1225 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
1226 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1227 {
1228 struct ieee80211_frame *wh, *whf;
1229 struct mbuf *m, *prev, *next;
1230 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1231
1232 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1233 IASSERT(m0->m_pkthdr.len > mtu,
1234 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1235
1236 wh = mtod(m0, struct ieee80211_frame *);
1237 /* NB: mark the first frag; it will be propagated below */
1238 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1239 totalhdrsize = hdrsize + ciphdrsize;
1240 fragno = 1;
1241 off = mtu - ciphdrsize;
1242 remainder = m0->m_pkthdr.len - off;
1243 prev = m0;
1244 do {
1245 fragsize = totalhdrsize + remainder;
1246 if (fragsize > mtu)
1247 fragsize = mtu;
1248 IASSERT(fragsize < MCLBYTES,
1249 ("fragment size %u too big!", fragsize));
1250 if (fragsize > MHLEN)
1251 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1252 else
1253 m = m_gethdr(M_DONTWAIT, MT_DATA);
1254 if (m == NULL)
1255 goto bad;
1256 /* leave room to prepend any cipher header */
1257 m_align(m, fragsize - ciphdrsize);
1258
1259 /*
1260 * Form the header in the fragment. Note that since
1261 * we mark the first fragment with the MORE_FRAG bit
1262 * it automatically is propagated to each fragment; we
1263 * need only clear it on the last fragment (done below).
1264 */
1265 whf = mtod(m, struct ieee80211_frame *);
1266 memcpy(whf, wh, hdrsize);
1267 *(u_int16_t *)&whf->i_seq[0] |= htole16(
1268 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1269 IEEE80211_SEQ_FRAG_SHIFT);
1270 fragno++;
1271
1272 payload = fragsize - totalhdrsize;
1273 /* NB: destination is known to be contiguous */
1274 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
1275 m->m_len = hdrsize + payload;
1276 m->m_pkthdr.len = hdrsize + payload;
1277 m->m_flags |= M_FRAG;
1278
1279 /* chain up the fragment */
1280 prev->m_nextpkt = m;
1281 prev = m;
1282
1283 /* deduct fragment just formed */
1284 remainder -= payload;
1285 off += payload;
1286 } while (remainder != 0);
1287 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1288
1289 /* strip first mbuf now that everything has been copied */
1290 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1291 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1292
1293 ic->ic_stats.is_tx_fragframes++;
1294 ic->ic_stats.is_tx_frags += fragno-1;
1295
1296 return 1;
1297 bad:
1298 /* reclaim fragments but leave original frame for caller to free */
1299 for (m = m0->m_nextpkt; m != NULL; m = next) {
1300 next = m->m_nextpkt;
1301 m->m_nextpkt = NULL; /* XXX paranoid */
1302 m_freem(m);
1303 }
1304 m0->m_nextpkt = NULL;
1305 return 0;
1306 }
1307
1308 /*
1309 * Add a supported rates element id to a frame.
1310 */
1311 static uint8_t *
1312 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1313 {
1314 int nrates;
1315
1316 *frm++ = IEEE80211_ELEMID_RATES;
1317 nrates = rs->rs_nrates;
1318 if (nrates > IEEE80211_RATE_SIZE)
1319 nrates = IEEE80211_RATE_SIZE;
1320 *frm++ = nrates;
1321 memcpy(frm, rs->rs_rates, nrates);
1322 return frm + nrates;
1323 }
1324
1325 /*
1326 * Add an extended supported rates element id to a frame.
1327 */
1328 static uint8_t *
1329 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1330 {
1331 /*
1332 * Add an extended supported rates element if operating in 11g mode.
1333 */
1334 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1335 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1336 *frm++ = IEEE80211_ELEMID_XRATES;
1337 *frm++ = nrates;
1338 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1339 frm += nrates;
1340 }
1341 return frm;
1342 }
1343
1344 /*
1345 * Add an ssid elemet to a frame.
1346 */
1347 static uint8_t *
1348 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1349 {
1350 *frm++ = IEEE80211_ELEMID_SSID;
1351 *frm++ = len;
1352 memcpy(frm, ssid, len);
1353 return frm + len;
1354 }
1355
1356 /*
1357 * Add an erp element to a frame.
1358 */
1359 static uint8_t *
1360 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1361 {
1362 uint8_t erp;
1363
1364 *frm++ = IEEE80211_ELEMID_ERP;
1365 *frm++ = 1;
1366 erp = 0;
1367 if (ic->ic_nonerpsta != 0)
1368 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1369 if (ic->ic_flags & IEEE80211_F_USEPROT)
1370 erp |= IEEE80211_ERP_USE_PROTECTION;
1371 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1372 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1373 *frm++ = erp;
1374 return frm;
1375 }
1376
1377 static uint8_t *
1378 ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie)
1379 {
1380 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2
1381 #define ADDSHORT(frm, v) do { \
1382 frm[0] = (v) & 0xff; \
1383 frm[1] = (v) >> 8; \
1384 frm += 2; \
1385 } while (0)
1386 #define ADDSELECTOR(frm, sel) do { \
1387 memcpy(frm, sel, 4); \
1388 frm += 4; \
1389 } while (0)
1390 static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1391 static const uint8_t cipher_suite[][4] = {
1392 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
1393 { WPA_OUI_BYTES, WPA_CSE_TKIP },
1394 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
1395 { WPA_OUI_BYTES, WPA_CSE_CCMP },
1396 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1397 { WPA_OUI_BYTES, WPA_CSE_NULL },
1398 };
1399 static const uint8_t wep104_suite[4] =
1400 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
1401 static const uint8_t key_mgt_unspec[4] =
1402 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1403 static const uint8_t key_mgt_psk[4] =
1404 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1405 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1406 uint8_t *frm = ie;
1407 uint8_t *selcnt;
1408
1409 *frm++ = IEEE80211_ELEMID_VENDOR;
1410 *frm++ = 0; /* length filled in below */
1411 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
1412 frm += sizeof(oui);
1413 ADDSHORT(frm, WPA_VERSION);
1414
1415 /* XXX filter out CKIP */
1416
1417 /* multicast cipher */
1418 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1419 rsn->rsn_mcastkeylen >= 13)
1420 ADDSELECTOR(frm, wep104_suite);
1421 else
1422 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1423
1424 /* unicast cipher list */
1425 selcnt = frm;
1426 ADDSHORT(frm, 0); /* selector count */
1427 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1428 selcnt[0]++;
1429 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1430 }
1431 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1432 selcnt[0]++;
1433 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1434 }
1435
1436 /* authenticator selector list */
1437 selcnt = frm;
1438 ADDSHORT(frm, 0); /* selector count */
1439 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1440 selcnt[0]++;
1441 ADDSELECTOR(frm, key_mgt_unspec);
1442 }
1443 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1444 selcnt[0]++;
1445 ADDSELECTOR(frm, key_mgt_psk);
1446 }
1447
1448 /* optional capabilities */
1449 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1450 ADDSHORT(frm, rsn->rsn_caps);
1451
1452 /* calculate element length */
1453 ie[1] = frm - ie - 2;
1454 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1455 ("WPA IE too big, %u > %zu",
1456 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1457 return frm;
1458 #undef ADDSHORT
1459 #undef ADDSELECTOR
1460 #undef WPA_OUI_BYTES
1461 }
1462
1463 static uint8_t *
1464 ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie)
1465 {
1466 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac
1467 #define ADDSHORT(frm, v) do { \
1468 frm[0] = (v) & 0xff; \
1469 frm[1] = (v) >> 8; \
1470 frm += 2; \
1471 } while (0)
1472 #define ADDSELECTOR(frm, sel) do { \
1473 memcpy(frm, sel, 4); \
1474 frm += 4; \
1475 } while (0)
1476 static const uint8_t cipher_suite[][4] = {
1477 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
1478 { RSN_OUI_BYTES, RSN_CSE_TKIP },
1479 { RSN_OUI_BYTES, RSN_CSE_WRAP },
1480 { RSN_OUI_BYTES, RSN_CSE_CCMP },
1481 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1482 { RSN_OUI_BYTES, RSN_CSE_NULL },
1483 };
1484 static const uint8_t wep104_suite[4] =
1485 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
1486 static const uint8_t key_mgt_unspec[4] =
1487 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1488 static const uint8_t key_mgt_psk[4] =
1489 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1490 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1491 uint8_t *frm = ie;
1492 uint8_t *selcnt;
1493
1494 *frm++ = IEEE80211_ELEMID_RSN;
1495 *frm++ = 0; /* length filled in below */
1496 ADDSHORT(frm, RSN_VERSION);
1497
1498 /* XXX filter out CKIP */
1499
1500 /* multicast cipher */
1501 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1502 rsn->rsn_mcastkeylen >= 13)
1503 ADDSELECTOR(frm, wep104_suite);
1504 else
1505 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1506
1507 /* unicast cipher list */
1508 selcnt = frm;
1509 ADDSHORT(frm, 0); /* selector count */
1510 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1511 selcnt[0]++;
1512 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1513 }
1514 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1515 selcnt[0]++;
1516 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1517 }
1518
1519 /* authenticator selector list */
1520 selcnt = frm;
1521 ADDSHORT(frm, 0); /* selector count */
1522 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1523 selcnt[0]++;
1524 ADDSELECTOR(frm, key_mgt_unspec);
1525 }
1526 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1527 selcnt[0]++;
1528 ADDSELECTOR(frm, key_mgt_psk);
1529 }
1530
1531 /* optional capabilities */
1532 ADDSHORT(frm, rsn->rsn_caps);
1533 /* XXX PMKID */
1534
1535 /* calculate element length */
1536 ie[1] = frm - ie - 2;
1537 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1538 ("RSN IE too big, %u > %zu",
1539 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1540 return frm;
1541 #undef ADDSELECTOR
1542 #undef ADDSHORT
1543 #undef RSN_OUI_BYTES
1544 }
1545
1546 /*
1547 * Add a WPA/RSN element to a frame.
1548 */
1549 static uint8_t *
1550 ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic)
1551 {
1552
1553 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1554 if (ic->ic_flags & IEEE80211_F_WPA2)
1555 frm = ieee80211_setup_rsn_ie(ic, frm);
1556 if (ic->ic_flags & IEEE80211_F_WPA1)
1557 frm = ieee80211_setup_wpa_ie(ic, frm);
1558 return frm;
1559 }
1560
1561 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
1562 /*
1563 * Add a WME information element to a frame.
1564 */
1565 static uint8_t *
1566 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1567 {
1568 static const struct ieee80211_wme_info info = {
1569 .wme_id = IEEE80211_ELEMID_VENDOR,
1570 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1571 .wme_oui = { WME_OUI_BYTES },
1572 .wme_type = WME_OUI_TYPE,
1573 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1574 .wme_version = WME_VERSION,
1575 .wme_info = 0,
1576 };
1577 memcpy(frm, &info, sizeof(info));
1578 return frm + sizeof(info);
1579 }
1580
1581 /*
1582 * Add a WME parameters element to a frame.
1583 */
1584 static uint8_t *
1585 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1586 {
1587 #define SM(_v, _f) (((_v) << _f##_S) & _f)
1588 #define ADDSHORT(frm, v) do { \
1589 frm[0] = (v) & 0xff; \
1590 frm[1] = (v) >> 8; \
1591 frm += 2; \
1592 } while (0)
1593 /* NB: this works 'cuz a param has an info at the front */
1594 static const struct ieee80211_wme_info param = {
1595 .wme_id = IEEE80211_ELEMID_VENDOR,
1596 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1597 .wme_oui = { WME_OUI_BYTES },
1598 .wme_type = WME_OUI_TYPE,
1599 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1600 .wme_version = WME_VERSION,
1601 };
1602 int i;
1603
1604 memcpy(frm, ¶m, sizeof(param));
1605 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1606 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1607 *frm++ = 0; /* reserved field */
1608 for (i = 0; i < WME_NUM_AC; i++) {
1609 const struct wmeParams *ac =
1610 &wme->wme_bssChanParams.cap_wmeParams[i];
1611 *frm++ = SM(i, WME_PARAM_ACI)
1612 | SM(ac->wmep_acm, WME_PARAM_ACM)
1613 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1614 ;
1615 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1616 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1617 ;
1618 ADDSHORT(frm, ac->wmep_txopLimit);
1619 }
1620 return frm;
1621 #undef SM
1622 #undef ADDSHORT
1623 }
1624 #undef WME_OUI_BYTES
1625
1626 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f
1627 /*
1628 * Add a WME information element to a frame.
1629 */
1630 static uint8_t *
1631 ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1632 {
1633 static const struct ieee80211_ath_ie info = {
1634 .ath_id = IEEE80211_ELEMID_VENDOR,
1635 .ath_len = sizeof(struct ieee80211_ath_ie) - 2,
1636 .ath_oui = { ATH_OUI_BYTES },
1637 .ath_oui_type = ATH_OUI_TYPE,
1638 .ath_oui_subtype= ATH_OUI_SUBTYPE,
1639 .ath_version = ATH_OUI_VERSION,
1640 };
1641 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1642
1643 memcpy(frm, &info, sizeof(info));
1644 ath->ath_capability = caps;
1645 ath->ath_defkeyix[0] = (defkeyix & 0xff);
1646 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1647 return frm + sizeof(info);
1648 }
1649 #undef ATH_OUI_BYTES
1650
1651 /*
1652 * Send a probe request frame with the specified ssid
1653 * and any optional information element data.
1654 */
1655 int
1656 ieee80211_send_probereq(struct ieee80211_node *ni,
1657 const uint8_t sa[IEEE80211_ADDR_LEN],
1658 const uint8_t da[IEEE80211_ADDR_LEN],
1659 const uint8_t bssid[IEEE80211_ADDR_LEN],
1660 const uint8_t *ssid, size_t ssidlen,
1661 const void *optie, size_t optielen)
1662 {
1663 struct ieee80211com *ic = ni->ni_ic;
1664 struct ieee80211_frame *wh;
1665 const struct ieee80211_rateset *rs;
1666 struct mbuf *m;
1667 uint8_t *frm;
1668
1669 /*
1670 * Hold a reference on the node so it doesn't go away until after
1671 * the xmit is complete all the way in the driver. On error we
1672 * will remove our reference.
1673 */
1674 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1675 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1676 __func__, __LINE__,
1677 ni, ether_sprintf(ni->ni_macaddr),
1678 ieee80211_node_refcnt(ni)+1);
1679 ieee80211_ref_node(ni);
1680
1681 /*
1682 * prreq frame format
1683 * [tlv] ssid
1684 * [tlv] supported rates
1685 * [tlv] extended supported rates
1686 * [tlv] user-specified ie's
1687 */
1688 m = ieee80211_getmgtframe(&frm,
1689 ic->ic_headroom + sizeof(struct ieee80211_frame),
1690 2 + IEEE80211_NWID_LEN
1691 + 2 + IEEE80211_RATE_SIZE
1692 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1693 + (optie != NULL ? optielen : 0)
1694 );
1695 if (m == NULL) {
1696 ic->ic_stats.is_tx_nobuf++;
1697 ieee80211_free_node(ni);
1698 return ENOMEM;
1699 }
1700
1701 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1702 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1703 frm = ieee80211_add_rates(frm, rs);
1704 frm = ieee80211_add_xrates(frm, rs);
1705
1706 if (optie != NULL) {
1707 memcpy(frm, optie, optielen);
1708 frm += optielen;
1709 }
1710 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1711
1712 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1713 if (m == NULL)
1714 return ENOMEM;
1715 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1716 m->m_pkthdr.rcvif = (void *)ni;
1717
1718 wh = mtod(m, struct ieee80211_frame *);
1719 ieee80211_send_setup(ic, ni, wh,
1720 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1721 sa, da, bssid);
1722 /* XXX power management? */
1723
1724 IEEE80211_NODE_STAT(ni, tx_probereq);
1725 IEEE80211_NODE_STAT(ni, tx_mgmt);
1726
1727 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1728 "[%s] send probe req on channel %u\n",
1729 ether_sprintf(wh->i_addr1),
1730 ieee80211_chan2ieee(ic, ic->ic_curchan));
1731
1732 IF_ENQUEUE(&ic->ic_mgtq, m);
1733 (*ic->ic_ifp->if_start)(ic->ic_ifp);
1734 return 0;
1735 }
1736
1737 /*
1738 * Calculate capability information for mgt frames.
1739 */
1740 static uint16_t
1741 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan)
1742 {
1743 uint16_t capinfo;
1744
1745 IASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode"));
1746
1747 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1748 capinfo = IEEE80211_CAPINFO_ESS;
1749 else if (ic->ic_opmode == IEEE80211_M_IBSS)
1750 capinfo = IEEE80211_CAPINFO_IBSS;
1751 else
1752 capinfo = 0;
1753 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1754 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1755 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1756 IEEE80211_IS_CHAN_2GHZ(chan))
1757 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1758 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1759 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1760 return capinfo;
1761 }
1762
1763 /*
1764 * Send a management frame. The node is for the destination (or ic_bss
1765 * when in station mode). Nodes other than ic_bss have their reference
1766 * count bumped to reflect our use for an indeterminant time.
1767 */
1768 int
1769 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1770 int type, int arg)
1771 {
1772 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1773 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1774 const struct ieee80211_rateset *rs;
1775 struct mbuf *m;
1776 uint8_t *frm;
1777 uint16_t capinfo;
1778 int has_challenge, is_shared_key, ret, status;
1779
1780 IASSERT(ni != NULL, ("null node"));
1781
1782 /*
1783 * Hold a reference on the node so it doesn't go away until after
1784 * the xmit is complete all the way in the driver. On error we
1785 * will remove our reference.
1786 */
1787 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1788 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1789 __func__, __LINE__,
1790 ni, ether_sprintf(ni->ni_macaddr),
1791 ieee80211_node_refcnt(ni)+1);
1792 ieee80211_ref_node(ni);
1793
1794 switch (type) {
1795 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1796 /*
1797 * probe response frame format
1798 * [8] time stamp
1799 * [2] beacon interval
1800 * [2] cabability information
1801 * [tlv] ssid
1802 * [tlv] supported rates
1803 * [tlv] parameter set (FH/DS)
1804 * [tlv] parameter set (IBSS)
1805 * [tlv] extended rate phy (ERP)
1806 * [tlv] extended supported rates
1807 * [tlv] WPA
1808 * [tlv] WME (optional)
1809 * [tlv] HT capabilities
1810 * [tlv] HT information
1811 * [tlv] Vendor OUI HT capabilities (optional)
1812 * [tlv] Vendor OUI HT information (optional)
1813 * [tlv] Atheros capabilities
1814 */
1815 m = ieee80211_getmgtframe(&frm,
1816 ic->ic_headroom + sizeof(struct ieee80211_frame),
1817 8
1818 + sizeof(uint16_t)
1819 + sizeof(uint16_t)
1820 + 2 + IEEE80211_NWID_LEN
1821 + 2 + IEEE80211_RATE_SIZE
1822 + 7 /* max(7,3) */
1823 + 6
1824 + 3
1825 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1826 /* XXX !WPA1+WPA2 fits w/o a cluster */
1827 + (ic->ic_flags & IEEE80211_F_WPA ?
1828 2*sizeof(struct ieee80211_ie_wpa) : 0)
1829 + sizeof(struct ieee80211_wme_param)
1830 /* XXX check for cluster requirement */
1831 + 2*sizeof(struct ieee80211_ie_htcap) + 4
1832 + 2*sizeof(struct ieee80211_ie_htinfo) + 4
1833 + sizeof(struct ieee80211_ath_ie)
1834 );
1835 if (m == NULL)
1836 senderr(ENOMEM, is_tx_nobuf);
1837
1838 memset(frm, 0, 8); /* timestamp should be filled later */
1839 frm += 8;
1840 *(uint16_t *)frm = htole16(ic->ic_bss->ni_intval);
1841 frm += 2;
1842 capinfo = getcapinfo(ic, ic->ic_curchan);
1843 *(uint16_t *)frm = htole16(capinfo);
1844 frm += 2;
1845
1846 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1847 ic->ic_bss->ni_esslen);
1848 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1849 frm = ieee80211_add_rates(frm, rs);
1850
1851 if (IEEE80211_IS_CHAN_FHSS(ic->ic_curchan)) {
1852 *frm++ = IEEE80211_ELEMID_FHPARMS;
1853 *frm++ = 5;
1854 *frm++ = ni->ni_fhdwell & 0x00ff;
1855 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1856 *frm++ = IEEE80211_FH_CHANSET(
1857 ieee80211_chan2ieee(ic, ic->ic_curchan));
1858 *frm++ = IEEE80211_FH_CHANPAT(
1859 ieee80211_chan2ieee(ic, ic->ic_curchan));
1860 *frm++ = ni->ni_fhindex;
1861 } else {
1862 *frm++ = IEEE80211_ELEMID_DSPARMS;
1863 *frm++ = 1;
1864 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1865 }
1866
1867 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1868 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1869 *frm++ = 2;
1870 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1871 }
1872 if (ic->ic_flags & IEEE80211_F_WPA)
1873 frm = ieee80211_add_wpa(frm, ic);
1874 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
1875 frm = ieee80211_add_erp(frm, ic);
1876 frm = ieee80211_add_xrates(frm, rs);
1877 /*
1878 * NB: legacy 11b clients do not get certain ie's.
1879 * The caller identifies such clients by passing
1880 * a token in arg to us. Could expand this to be
1881 * any legacy client for stuff like HT ie's.
1882 */
1883 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan) &&
1884 arg != IEEE80211_SEND_LEGACY_11B) {
1885 frm = ieee80211_add_htcap(frm, ni);
1886 frm = ieee80211_add_htinfo(frm, ni);
1887 }
1888 if (ic->ic_flags & IEEE80211_F_WME)
1889 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1890 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan) &&
1891 (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
1892 arg != IEEE80211_SEND_LEGACY_11B) {
1893 frm = ieee80211_add_htcap_vendor(frm, ni);
1894 frm = ieee80211_add_htinfo_vendor(frm, ni);
1895 }
1896 if (ni->ni_ath_ie != NULL)
1897 frm = ieee80211_add_ath(frm, ni->ni_ath_flags,
1898 ni->ni_ath_defkeyix);
1899 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1900 break;
1901
1902 case IEEE80211_FC0_SUBTYPE_AUTH:
1903 status = arg >> 16;
1904 arg &= 0xffff;
1905 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1906 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1907 ni->ni_challenge != NULL);
1908
1909 /*
1910 * Deduce whether we're doing open authentication or
1911 * shared key authentication. We do the latter if
1912 * we're in the middle of a shared key authentication
1913 * handshake or if we're initiating an authentication
1914 * request and configured to use shared key.
1915 */
1916 is_shared_key = has_challenge ||
1917 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1918 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1919 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1920
1921 m = ieee80211_getmgtframe(&frm,
1922 ic->ic_headroom + sizeof(struct ieee80211_frame),
1923 3 * sizeof(uint16_t)
1924 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1925 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1926 );
1927 if (m == NULL)
1928 senderr(ENOMEM, is_tx_nobuf);
1929
1930 ((uint16_t *)frm)[0] =
1931 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1932 : htole16(IEEE80211_AUTH_ALG_OPEN);
1933 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
1934 ((uint16_t *)frm)[2] = htole16(status);/* status */
1935
1936 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1937 ((uint16_t *)frm)[3] =
1938 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1939 IEEE80211_ELEMID_CHALLENGE);
1940 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1941 IEEE80211_CHALLENGE_LEN);
1942 m->m_pkthdr.len = m->m_len =
1943 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1944 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1945 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1946 "[%s] request encrypt frame (%s)\n",
1947 ether_sprintf(ni->ni_macaddr), __func__);
1948 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1949 }
1950 } else
1951 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1952
1953 /* XXX not right for shared key */
1954 if (status == IEEE80211_STATUS_SUCCESS)
1955 IEEE80211_NODE_STAT(ni, tx_auth);
1956 else
1957 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1958
1959 if (ic->ic_opmode == IEEE80211_M_STA)
1960 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1961 (void *) ic->ic_state);
1962 break;
1963
1964 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1965 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1966 "[%s] send station deauthenticate (reason %d)\n",
1967 ether_sprintf(ni->ni_macaddr), arg);
1968 m = ieee80211_getmgtframe(&frm,
1969 ic->ic_headroom + sizeof(struct ieee80211_frame),
1970 sizeof(uint16_t));
1971 if (m == NULL)
1972 senderr(ENOMEM, is_tx_nobuf);
1973 *(uint16_t *)frm = htole16(arg); /* reason */
1974 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1975
1976 IEEE80211_NODE_STAT(ni, tx_deauth);
1977 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1978
1979 ieee80211_node_unauthorize(ni); /* port closed */
1980 break;
1981
1982 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1983 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1984 /*
1985 * asreq frame format
1986 * [2] capability information
1987 * [2] listen interval
1988 * [6*] current AP address (reassoc only)
1989 * [tlv] ssid
1990 * [tlv] supported rates
1991 * [tlv] extended supported rates
1992 * [tlv] WME
1993 * [tlv] HT capabilities
1994 * [tlv] Vendor OUI HT capabilities (optional)
1995 * [tlv] Atheros capabilities (if negotiated)
1996 * [tlv] user-specified ie's
1997 */
1998 m = ieee80211_getmgtframe(&frm,
1999 ic->ic_headroom + sizeof(struct ieee80211_frame),
2000 sizeof(uint16_t)
2001 + sizeof(uint16_t)
2002 + IEEE80211_ADDR_LEN
2003 + 2 + IEEE80211_NWID_LEN
2004 + 2 + IEEE80211_RATE_SIZE
2005 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2006 + sizeof(struct ieee80211_wme_info)
2007 + 2*sizeof(struct ieee80211_ie_htcap) + 4
2008 + sizeof(struct ieee80211_ath_ie)
2009 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
2010 );
2011 if (m == NULL)
2012 senderr(ENOMEM, is_tx_nobuf);
2013
2014 IASSERT(ic->ic_opmode == IEEE80211_M_STA,
2015 ("wrong mode %u", ic->ic_opmode));
2016 capinfo = IEEE80211_CAPINFO_ESS;
2017 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2018 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2019 /*
2020 * NB: Some 11a AP's reject the request when
2021 * short premable is set.
2022 */
2023 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2024 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2025 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2026 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2027 (ic->ic_caps & IEEE80211_C_SHSLOT))
2028 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2029 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2030 (ic->ic_flags & IEEE80211_F_DOTH))
2031 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2032 *(uint16_t *)frm = htole16(capinfo);
2033 frm += 2;
2034
2035 IASSERT(ic->ic_bss->ni_intval != 0,
2036 ("beacon interval is zero!"));
2037 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2038 ic->ic_bss->ni_intval));
2039 frm += 2;
2040
2041 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2042 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
2043 frm += IEEE80211_ADDR_LEN;
2044 }
2045
2046 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2047 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2048 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2049 if ((ic->ic_flags_ext & IEEE80211_FEXT_HT) &&
2050 ni->ni_htcap_ie != NULL &&
2051 ni->ni_htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2052 frm = ieee80211_add_htcap(frm, ni);
2053 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
2054 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2055 if ((ic->ic_flags_ext & IEEE80211_FEXT_HT) &&
2056 ni->ni_htcap_ie != NULL &&
2057 ni->ni_htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2058 frm = ieee80211_add_htcap_vendor(frm, ni);
2059 if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS))
2060 frm = ieee80211_add_ath(frm,
2061 IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS),
2062 (ic->ic_flags & IEEE80211_F_WPA) == 0 &&
2063 ni->ni_authmode != IEEE80211_AUTH_8021X &&
2064 ic->ic_def_txkey != IEEE80211_KEYIX_NONE ?
2065 ic->ic_def_txkey : 0x7fff);
2066 if (ic->ic_opt_ie != NULL) {
2067 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2068 frm += ic->ic_opt_ie_len;
2069 }
2070 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2071
2072 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2073 (void *) ic->ic_state);
2074 break;
2075
2076 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2077 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2078 /*
2079 * asresp frame format
2080 * [2] capability information
2081 * [2] status
2082 * [2] association ID
2083 * [tlv] supported rates
2084 * [tlv] extended supported rates
2085 * [tlv] WME (if enabled and STA enabled)
2086 * [tlv] HT capabilities (standard or vendor OUI)
2087 * [tlv] HT information (standard or vendor OUI)
2088 * [tlv] Atheros capabilities (if enabled and STA enabled)
2089 */
2090 m = ieee80211_getmgtframe(&frm,
2091 ic->ic_headroom + sizeof(struct ieee80211_frame),
2092 sizeof(uint16_t)
2093 + sizeof(uint16_t)
2094 + sizeof(uint16_t)
2095 + 2 + IEEE80211_RATE_SIZE
2096 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2097 + sizeof(struct ieee80211_wme_param)
2098 + sizeof(struct ieee80211_ie_htcap) + 4
2099 + sizeof(struct ieee80211_ie_htinfo) + 4
2100 + sizeof(struct ieee80211_ath_ie)
2101 );
2102 if (m == NULL)
2103 senderr(ENOMEM, is_tx_nobuf);
2104
2105 capinfo = getcapinfo(ic, ic->ic_curchan);
2106 *(uint16_t *)frm = htole16(capinfo);
2107 frm += 2;
2108
2109 *(uint16_t *)frm = htole16(arg); /* status */
2110 frm += 2;
2111
2112 if (arg == IEEE80211_STATUS_SUCCESS) {
2113 *(uint16_t *)frm = htole16(ni->ni_associd);
2114 IEEE80211_NODE_STAT(ni, tx_assoc);
2115 } else
2116 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2117 frm += 2;
2118
2119 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2120 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2121 /* NB: respond according to what we received */
2122 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2123 frm = ieee80211_add_htcap(frm, ni);
2124 frm = ieee80211_add_htinfo(frm, ni);
2125 }
2126 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
2127 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2128 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2129 frm = ieee80211_add_htcap_vendor(frm, ni);
2130 frm = ieee80211_add_htinfo_vendor(frm, ni);
2131 }
2132 if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS))
2133 frm = ieee80211_add_ath(frm,
2134 IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS),
2135 ni->ni_ath_defkeyix);
2136 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2137 break;
2138
2139 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2140 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
2141 "[%s] send station disassociate (reason %d)\n",
2142 ether_sprintf(ni->ni_macaddr), arg);
2143 m = ieee80211_getmgtframe(&frm,
2144 ic->ic_headroom + sizeof(struct ieee80211_frame),
2145 sizeof(uint16_t));
2146 if (m == NULL)
2147 senderr(ENOMEM, is_tx_nobuf);
2148 *(uint16_t *)frm = htole16(arg); /* reason */
2149 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2150
2151 IEEE80211_NODE_STAT(ni, tx_disassoc);
2152 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2153 break;
2154
2155 default:
2156 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2157 "[%s] invalid mgmt frame type %u\n",
2158 ether_sprintf(ni->ni_macaddr), type);
2159 senderr(EINVAL, is_tx_unknownmgt);
2160 /* NOTREACHED */
2161 }
2162
2163 ret = ieee80211_mgmt_output(ic, ni, m, type);
2164 if (ret != 0)
2165 goto bad;
2166 return 0;
2167 bad:
2168 ieee80211_free_node(ni);
2169 return ret;
2170 #undef senderr
2171 #undef HTFLAGS
2172 }
2173
2174 static void
2175 ieee80211_tx_mgt_timeout(void *arg)
2176 {
2177 struct ieee80211_node *ni = arg;
2178 struct ieee80211com *ic = ni->ni_ic;
2179
2180 if (ic->ic_state != IEEE80211_S_INIT &&
2181 (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2182 /*
2183 * NB: it's safe to specify a timeout as the reason here;
2184 * it'll only be used in the right state.
2185 */
2186 ieee80211_new_state(ic, IEEE80211_S_SCAN,
2187 IEEE80211_SCAN_FAIL_TIMEOUT);
2188 }
2189 }
2190
2191 static void
2192 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2193 {
2194 struct ieee80211com *ic = ni->ni_ic;
2195 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2196
2197 /*
2198 * Frame transmit completed; arrange timer callback. If
2199 * transmit was successfuly we wait for response. Otherwise
2200 * we arrange an immediate callback instead of doing the
2201 * callback directly since we don't know what state the driver
2202 * is in (e.g. what locks it is holding). This work should
2203 * not be too time-critical and not happen too often so the
2204 * added overhead is acceptable.
2205 *
2206 * XXX what happens if !acked but response shows up before callback?
2207 */
2208 if (ic->ic_state == ostate)
2209 callout_reset(&ic->ic_mgtsend,
2210 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2211 ieee80211_tx_mgt_timeout, ni);
2212 }
2213
2214 /*
2215 * Allocate a beacon frame and fillin the appropriate bits.
2216 */
2217 struct mbuf *
2218 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2219 struct ieee80211_beacon_offsets *bo)
2220 {
2221 struct ieee80211com *ic = ni->ni_ic;
2222 struct ifnet *ifp = ic->ic_ifp;
2223 struct ieee80211_frame *wh;
2224 struct mbuf *m;
2225 int pktlen;
2226 uint8_t *frm;
2227 uint16_t capinfo;
2228 struct ieee80211_rateset *rs;
2229
2230 /*
2231 * beacon frame format
2232 * [8] time stamp
2233 * [2] beacon interval
2234 * [2] cabability information
2235 * [tlv] ssid
2236 * [tlv] supported rates
2237 * [3] parameter set (DS)
2238 * [tlv] parameter set (IBSS/TIM)
2239 * [tlv] country code
2240 * [tlv] extended rate phy (ERP)
2241 * [tlv] extended supported rates
2242 * [tlv] WME parameters
2243 * [tlv] WPA/RSN parameters
2244 * [tlv] HT capabilities
2245 * [tlv] HT information
2246 * [tlv] Vendor OUI HT capabilities (optional)
2247 * [tlv] Vendor OUI HT information (optional)
2248 * XXX Vendor-specific OIDs (e.g. Atheros)
2249 * NB: we allocate the max space required for the TIM bitmap.
2250 */
2251 rs = &ni->ni_rates;
2252 pktlen = 8 /* time stamp */
2253 + sizeof(uint16_t) /* beacon interval */
2254 + sizeof(uint16_t) /* capabilities */
2255 + 2 + ni->ni_esslen /* ssid */
2256 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2257 + 2 + 1 /* DS parameters */
2258 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
2259 + sizeof(struct ieee80211_country_ie) /* country code */
2260 + 2 + 1 /* ERP */
2261 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2262 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
2263 sizeof(struct ieee80211_wme_param) : 0)
2264 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2265 2*sizeof(struct ieee80211_ie_wpa) : 0)
2266 /* XXX conditional? */
2267 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2268 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2269 ;
2270 m = ieee80211_getmgtframe(&frm,
2271 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2272 if (m == NULL) {
2273 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2274 "%s: cannot get buf; size %u\n", __func__, pktlen);
2275 ic->ic_stats.is_tx_nobuf++;
2276 return NULL;
2277 }
2278
2279 memset(bo, 0, sizeof(*bo));
2280
2281 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2282 frm += 8;
2283 *(uint16_t *)frm = htole16(ni->ni_intval);
2284 frm += 2;
2285 capinfo = getcapinfo(ic, ni->ni_chan);
2286 bo->bo_caps = (uint16_t *)frm;
2287 *(uint16_t *)frm = htole16(capinfo);
2288 frm += 2;
2289 *frm++ = IEEE80211_ELEMID_SSID;
2290 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
2291 *frm++ = ni->ni_esslen;
2292 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2293 frm += ni->ni_esslen;
2294 } else
2295 *frm++ = 0;
2296 frm = ieee80211_add_rates(frm, rs);
2297 if (!IEEE80211_IS_CHAN_FHSS(ic->ic_bsschan)) {
2298 *frm++ = IEEE80211_ELEMID_DSPARMS;
2299 *frm++ = 1;
2300 *frm++ = ieee80211_chan2ieee(ic, ic->ic_bsschan);
2301 }
2302 bo->bo_tim = frm;
2303 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2304 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2305 *frm++ = 2;
2306 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2307 bo->bo_tim_len = 0;
2308 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2309 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2310
2311 tie->tim_ie = IEEE80211_ELEMID_TIM;
2312 tie->tim_len = 4; /* length */
2313 tie->tim_count = 0; /* DTIM count */
2314 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
2315 tie->tim_bitctl = 0; /* bitmap control */
2316 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2317 frm += sizeof(struct ieee80211_tim_ie);
2318 bo->bo_tim_len = 1;
2319 }
2320 bo->bo_tim_trailer = frm;
2321 if (ic->ic_flags & IEEE80211_F_DOTH)
2322 frm = ieee80211_add_countryie(frm, ic,
2323 ic->ic_countrycode, ic->ic_location);
2324 if (ic->ic_flags & IEEE80211_F_WPA)
2325 frm = ieee80211_add_wpa(frm, ic);
2326 if (IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) {
2327 bo->bo_erp = frm;
2328 frm = ieee80211_add_erp(frm, ic);
2329 }
2330 frm = ieee80211_add_xrates(frm, rs);
2331 if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) {
2332 frm = ieee80211_add_htcap(frm, ni);
2333 bo->bo_htinfo = frm;
2334 frm = ieee80211_add_htinfo(frm, ni);
2335 }
2336 if (ic->ic_flags & IEEE80211_F_WME) {
2337 bo->bo_wme = frm;
2338 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2339 }
2340 if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan) &&
2341 (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2342 frm = ieee80211_add_htcap_vendor(frm, ni);
2343 frm = ieee80211_add_htinfo_vendor(frm, ni);
2344 }
2345 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2346 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2347
2348 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2349 IASSERT(m != NULL, ("no space for 802.11 header?"));
2350 wh = mtod(m, struct ieee80211_frame *);
2351 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2352 IEEE80211_FC0_SUBTYPE_BEACON;
2353 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2354 *(uint16_t *)wh->i_dur = 0;
2355 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2356 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2357 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2358 *(uint16_t *)wh->i_seq = 0;
2359
2360 return m;
2361 }
2362
2363 /*
2364 * Update the dynamic parts of a beacon frame based on the current state.
2365 */
2366 int
2367 ieee80211_beacon_update(struct ieee80211_node *ni,
2368 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2369 {
2370 struct ieee80211com *ic = ni->ni_ic;
2371 int len_changed = 0;
2372 uint16_t capinfo;
2373
2374 IEEE80211_BEACON_LOCK(ic);
2375 /* XXX faster to recalculate entirely or just changes? */
2376 capinfo = getcapinfo(ic, ni->ni_chan);
2377 *bo->bo_caps = htole16(capinfo);
2378
2379 if (ic->ic_flags & IEEE80211_F_WME) {
2380 struct ieee80211_wme_state *wme = &ic->ic_wme;
2381
2382 /*
2383 * Check for agressive mode change. When there is
2384 * significant high priority traffic in the BSS
2385 * throttle back BE traffic by using conservative
2386 * parameters. Otherwise BE uses agressive params
2387 * to optimize performance of legacy/non-QoS traffic.
2388 */
2389 if (wme->wme_flags & WME_F_AGGRMODE) {
2390 if (wme->wme_hipri_traffic >
2391 wme->wme_hipri_switch_thresh) {
2392 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
2393 "%s: traffic %u, disable aggressive mode\n",
2394 __func__, wme->wme_hipri_traffic);
2395 wme->wme_flags &= ~WME_F_AGGRMODE;
2396 ieee80211_wme_updateparams_locked(ic);
2397 wme->wme_hipri_traffic =
2398 wme->wme_hipri_switch_hysteresis;
2399 } else
2400 wme->wme_hipri_traffic = 0;
2401 } else {
2402 if (wme->wme_hipri_traffic <=
2403 wme->wme_hipri_switch_thresh) {
2404 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
2405 "%s: traffic %u, enable aggressive mode\n",
2406 __func__, wme->wme_hipri_traffic);
2407 wme->wme_flags |= WME_F_AGGRMODE;
2408 ieee80211_wme_updateparams_locked(ic);
2409 wme->wme_hipri_traffic = 0;
2410 } else
2411 wme->wme_hipri_traffic =
2412 wme->wme_hipri_switch_hysteresis;
2413 }
2414 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2415 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2416 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2417 }
2418 }
2419
2420 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2421 ieee80211_ht_update_beacon(ic, bo);
2422 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2423 }
2424
2425 #ifndef IEEE80211_NO_HOSTAP
2426 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2427 struct ieee80211_tim_ie *tie =
2428 (struct ieee80211_tim_ie *) bo->bo_tim;
2429 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2430 u_int timlen, timoff, i;
2431 /*
2432 * ATIM/DTIM needs updating. If it fits in the
2433 * current space allocated then just copy in the
2434 * new bits. Otherwise we need to move any trailing
2435 * data to make room. Note that we know there is
2436 * contiguous space because ieee80211_beacon_allocate
2437 * insures there is space in the mbuf to write a
2438 * maximal-size virtual bitmap (based on ic_max_aid).
2439 */
2440 /*
2441 * Calculate the bitmap size and offset, copy any
2442 * trailer out of the way, and then copy in the
2443 * new bitmap and update the information element.
2444 * Note that the tim bitmap must contain at least
2445 * one byte and any offset must be even.
2446 */
2447 if (ic->ic_ps_pending != 0) {
2448 timoff = 128; /* impossibly large */
2449 for (i = 0; i < ic->ic_tim_len; i++)
2450 if (ic->ic_tim_bitmap[i]) {
2451 timoff = i &~ 1;
2452 break;
2453 }
2454 IASSERT(timoff != 128, ("tim bitmap empty!"));
2455 for (i = ic->ic_tim_len-1; i >= timoff; i--)
2456 if (ic->ic_tim_bitmap[i])
2457 break;
2458 timlen = 1 + (i - timoff);
2459 } else {
2460 timoff = 0;
2461 timlen = 1;
2462 }
2463 if (timlen != bo->bo_tim_len) {
2464 /* copy up/down trailer */
2465 int adjust = tie->tim_bitmap+timlen
2466 - bo->bo_tim_trailer;
2467 ovbcopy(bo->bo_tim_trailer,
2468 bo->bo_tim_trailer+adjust,
2469 bo->bo_tim_trailer_len);
2470 bo->bo_tim_trailer += adjust;
2471 bo->bo_wme += adjust;
2472 bo->bo_erp += adjust;
2473 bo->bo_htinfo += adjust;
2474 bo->bo_tim_len = timlen;
2475
2476 /* update information element */
2477 tie->tim_len = 3 + timlen;
2478 tie->tim_bitctl = timoff;
2479 len_changed = 1;
2480 }
2481 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
2482 bo->bo_tim_len);
2483
2484 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2485
2486 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2487 "%s: TIM updated, pending %u, off %u, len %u\n",
2488 __func__, ic->ic_ps_pending, timoff, timlen);
2489 }
2490 /* count down DTIM period */
2491 if (tie->tim_count == 0)
2492 tie->tim_count = tie->tim_period - 1;
2493 else
2494 tie->tim_count--;
2495 /* update state for buffered multicast frames on DTIM */
2496 if (mcast && tie->tim_count == 0)
2497 tie->tim_bitctl |= 1;
2498 else
2499 tie->tim_bitctl &= ~1;
2500 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2501 /*
2502 * ERP element needs updating.
2503 */
2504 (void) ieee80211_add_erp(bo->bo_erp, ic);
2505 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2506 }
2507 }
2508 #endif /* !IEEE80211_NO_HOSTAP */
2509 IEEE80211_BEACON_UNLOCK(ic);
2510
2511 return len_changed;
2512 }
2513