Home | History | Annotate | Line # | Download | only in net80211
ieee80211_output.c revision 1.53
      1 /*	$NetBSD: ieee80211_output.c,v 1.53 2015/08/24 22:21:26 pooka Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 Atsushi Onoe
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * Alternatively, this software may be distributed under the terms of the
     19  * GNU General Public License ("GPL") version 2 as published by the Free
     20  * Software Foundation.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #ifdef __FreeBSD__
     36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
     37 #endif
     38 #ifdef __NetBSD__
     39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.53 2015/08/24 22:21:26 pooka Exp $");
     40 #endif
     41 
     42 #ifdef _KERNEL_OPT
     43 #include "opt_inet.h"
     44 #endif
     45 
     46 #ifdef __NetBSD__
     47 #endif /* __NetBSD__ */
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/kernel.h>
     53 #include <sys/endian.h>
     54 #include <sys/errno.h>
     55 #include <sys/proc.h>
     56 #include <sys/sysctl.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_llc.h>
     60 #include <net/if_media.h>
     61 #include <net/if_arp.h>
     62 #include <net/if_ether.h>
     63 #include <net/if_llc.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net80211/ieee80211_netbsd.h>
     67 #include <net80211/ieee80211_var.h>
     68 
     69 #include <net/bpf.h>
     70 
     71 #ifdef INET
     72 #include <netinet/in.h>
     73 #include <netinet/in_systm.h>
     74 #include <netinet/in_var.h>
     75 #include <netinet/ip.h>
     76 #include <net/if_ether.h>
     77 #endif
     78 
     79 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
     80 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
     81 
     82 #ifdef IEEE80211_DEBUG
     83 /*
     84  * Decide if an outbound management frame should be
     85  * printed when debugging is enabled.  This filters some
     86  * of the less interesting frames that come frequently
     87  * (e.g. beacons).
     88  */
     89 static __inline int
     90 doprint(struct ieee80211com *ic, int subtype)
     91 {
     92 	switch (subtype) {
     93 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     94 		return (ic->ic_opmode == IEEE80211_M_IBSS);
     95 	}
     96 	return 1;
     97 }
     98 #endif
     99 
    100 /*
    101  * Set the direction field and address fields of an outgoing
    102  * non-QoS frame.  Note this should be called early on in
    103  * constructing a frame as it sets i_fc[1]; other bits can
    104  * then be or'd in.
    105  */
    106 static void
    107 ieee80211_send_setup(struct ieee80211com *ic,
    108 	struct ieee80211_node *ni,
    109 	struct ieee80211_frame *wh,
    110 	int type,
    111 	const u_int8_t sa[IEEE80211_ADDR_LEN],
    112 	const u_int8_t da[IEEE80211_ADDR_LEN],
    113 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
    114 {
    115 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
    116 
    117 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
    118 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
    119 		switch (ic->ic_opmode) {
    120 		case IEEE80211_M_STA:
    121 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    122 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
    123 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    124 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    125 			break;
    126 		case IEEE80211_M_IBSS:
    127 		case IEEE80211_M_AHDEMO:
    128 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    129 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    130 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    131 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    132 			break;
    133 		case IEEE80211_M_HOSTAP:
    134 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    135 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    136 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
    137 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    138 			break;
    139 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
    140 			break;
    141 		}
    142 	} else {
    143 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    144 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
    145 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    146 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    147 	}
    148 	*(u_int16_t *)&wh->i_dur[0] = 0;
    149 	/* NB: use non-QoS tid */
    150 	*(u_int16_t *)&wh->i_seq[0] =
    151 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    152 	ni->ni_txseqs[0]++;
    153 #undef WH4
    154 }
    155 
    156 /*
    157  * Send a management frame to the specified node.  The node pointer
    158  * must have a reference as the pointer will be passed to the driver
    159  * and potentially held for a long time.  If the frame is successfully
    160  * dispatched to the driver, then it is responsible for freeing the
    161  * reference (and potentially free'ing up any associated storage).
    162  */
    163 static int
    164 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
    165     struct mbuf *m, int type, int timer)
    166 {
    167 	struct ifnet *ifp = ic->ic_ifp;
    168 	struct ieee80211_frame *wh;
    169 
    170 	IASSERT(ni != NULL, ("null node"));
    171 
    172 	/*
    173 	 * Yech, hack alert!  We want to pass the node down to the
    174 	 * driver's start routine.  If we don't do so then the start
    175 	 * routine must immediately look it up again and that can
    176 	 * cause a lock order reversal if, for example, this frame
    177 	 * is being sent because the station is being timedout and
    178 	 * the frame being sent is a DEAUTH message.  We could stick
    179 	 * this in an m_tag and tack that on to the mbuf.  However
    180 	 * that's rather expensive to do for every frame so instead
    181 	 * we stuff it in the rcvif field since outbound frames do
    182 	 * not (presently) use this.
    183 	 */
    184 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
    185 	if (m == NULL)
    186 		return ENOMEM;
    187 #ifdef __FreeBSD__
    188 	KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
    189 #endif
    190 	m->m_pkthdr.rcvif = (void *)ni;
    191 
    192 	wh = mtod(m, struct ieee80211_frame *);
    193 	ieee80211_send_setup(ic, ni, wh,
    194 		IEEE80211_FC0_TYPE_MGT | type,
    195 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    196 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
    197 		m->m_flags &= ~M_LINK0;
    198 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
    199 			"[%s] encrypting frame (%s)\n",
    200 			ether_sprintf(wh->i_addr1), __func__);
    201 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
    202 	}
    203 #ifdef IEEE80211_DEBUG
    204 	/* avoid printing too many frames */
    205 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
    206 	    ieee80211_msg_dumppkts(ic)) {
    207 		printf("[%s] send %s on channel %u\n",
    208 		    ether_sprintf(wh->i_addr1),
    209 		    ieee80211_mgt_subtype_name[
    210 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
    211 				IEEE80211_FC0_SUBTYPE_SHIFT],
    212 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
    213 	}
    214 #endif
    215 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    216 	IF_ENQUEUE(&ic->ic_mgtq, m);
    217 	if (timer) {
    218 		/*
    219 		 * Set the mgt frame timeout.
    220 		 */
    221 		ic->ic_mgt_timer = timer;
    222 		ifp->if_timer = 1;
    223 	}
    224 	(*ifp->if_start)(ifp);
    225 	return 0;
    226 }
    227 
    228 /*
    229  * Send a null data frame to the specified node.
    230  *
    231  * NB: the caller is assumed to have setup a node reference
    232  *     for use; this is necessary to deal with a race condition
    233  *     when probing for inactive stations.
    234  */
    235 int
    236 ieee80211_send_nulldata(struct ieee80211_node *ni)
    237 {
    238 	struct ieee80211com *ic = ni->ni_ic;
    239 	struct ifnet *ifp = ic->ic_ifp;
    240 	struct mbuf *m;
    241 	struct ieee80211_frame *wh;
    242 
    243 	MGETHDR(m, M_NOWAIT, MT_HEADER);
    244 	if (m == NULL) {
    245 		/* XXX debug msg */
    246 		ic->ic_stats.is_tx_nobuf++;
    247 		ieee80211_unref_node(&ni);
    248 		return ENOMEM;
    249 	}
    250 	m->m_pkthdr.rcvif = (void *) ni;
    251 
    252 	wh = mtod(m, struct ieee80211_frame *);
    253 	ieee80211_send_setup(ic, ni, wh,
    254 		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
    255 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    256 	/* NB: power management bit is never sent by an AP */
    257 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
    258 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
    259 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
    260 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
    261 
    262 	IEEE80211_NODE_STAT(ni, tx_data);
    263 
    264 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
    265 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
    266 	    ether_sprintf(ni->ni_macaddr),
    267 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
    268 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
    269 
    270 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
    271 	(*ifp->if_start)(ifp);
    272 
    273 	return 0;
    274 }
    275 
    276 /*
    277  * Assign priority to a frame based on any vlan tag assigned
    278  * to the station and/or any Diffserv setting in an IP header.
    279  * Finally, if an ACM policy is setup (in station mode) it's
    280  * applied.
    281  */
    282 int
    283 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
    284 {
    285 	int v_wme_ac, d_wme_ac, ac;
    286 #ifdef INET
    287 	struct ether_header *eh;
    288 #endif
    289 
    290 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
    291 		ac = WME_AC_BE;
    292 		goto done;
    293 	}
    294 
    295 	/*
    296 	 * If node has a vlan tag then all traffic
    297 	 * to it must have a matching tag.
    298 	 */
    299 	v_wme_ac = 0;
    300 	if (ni->ni_vlan != 0) {
    301 		/* XXX used to check ec_nvlans. */
    302 		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
    303 		if (mtag == NULL) {
    304 			IEEE80211_NODE_STAT(ni, tx_novlantag);
    305 			return 1;
    306 		}
    307 		if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
    308 		    EVL_VLANOFTAG(ni->ni_vlan)) {
    309 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
    310 			return 1;
    311 		}
    312 		/* map vlan priority to AC */
    313 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
    314 		case 1:
    315 		case 2:
    316 			v_wme_ac = WME_AC_BK;
    317 			break;
    318 		case 0:
    319 		case 3:
    320 			v_wme_ac = WME_AC_BE;
    321 			break;
    322 		case 4:
    323 		case 5:
    324 			v_wme_ac = WME_AC_VI;
    325 			break;
    326 		case 6:
    327 		case 7:
    328 			v_wme_ac = WME_AC_VO;
    329 			break;
    330 		}
    331 	}
    332 
    333 #ifdef INET
    334 	eh = mtod(m, struct ether_header *);
    335 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
    336 		const struct ip *ip = (struct ip *)
    337 			(mtod(m, u_int8_t *) + sizeof (*eh));
    338 		/*
    339 		 * IP frame, map the TOS field.
    340 		 */
    341 		switch (ip->ip_tos) {
    342 		case 0x08:
    343 		case 0x20:
    344 			d_wme_ac = WME_AC_BK;	/* background */
    345 			break;
    346 		case 0x28:
    347 		case 0xa0:
    348 			d_wme_ac = WME_AC_VI;	/* video */
    349 			break;
    350 		case 0x30:			/* voice */
    351 		case 0xe0:
    352 		case 0x88:			/* XXX UPSD */
    353 		case 0xb8:
    354 			d_wme_ac = WME_AC_VO;
    355 			break;
    356 		default:
    357 			d_wme_ac = WME_AC_BE;
    358 			break;
    359 		}
    360 	} else {
    361 #endif /* INET */
    362 		d_wme_ac = WME_AC_BE;
    363 #ifdef INET
    364 	}
    365 #endif
    366 	/*
    367 	 * Use highest priority AC.
    368 	 */
    369 	if (v_wme_ac > d_wme_ac)
    370 		ac = v_wme_ac;
    371 	else
    372 		ac = d_wme_ac;
    373 
    374 	/*
    375 	 * Apply ACM policy.
    376 	 */
    377 	if (ic->ic_opmode == IEEE80211_M_STA) {
    378 		static const int acmap[4] = {
    379 			WME_AC_BK,	/* WME_AC_BE */
    380 			WME_AC_BK,	/* WME_AC_BK */
    381 			WME_AC_BE,	/* WME_AC_VI */
    382 			WME_AC_VI,	/* WME_AC_VO */
    383 		};
    384 		while (ac != WME_AC_BK &&
    385 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
    386 			ac = acmap[ac];
    387 	}
    388 done:
    389 	M_WME_SETAC(m, ac);
    390 	return 0;
    391 }
    392 
    393 /*
    394  * Insure there is sufficient contiguous space to encapsulate the
    395  * 802.11 data frame.  If room isn't already there, arrange for it.
    396  * Drivers and cipher modules assume we have done the necessary work
    397  * and fail rudely if they don't find the space they need.
    398  */
    399 static struct mbuf *
    400 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
    401 	struct ieee80211_key *key, struct mbuf *m)
    402 {
    403 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
    404 	int needed_space = hdrsize;
    405 	int wlen = 0;
    406 
    407 	if (key != NULL) {
    408 		/* XXX belongs in crypto code? */
    409 		needed_space += key->wk_cipher->ic_header;
    410 		/* XXX frags */
    411 	}
    412 	/*
    413 	 * We know we are called just before stripping an Ethernet
    414 	 * header and prepending an LLC header.  This means we know
    415 	 * there will be
    416 	 *	sizeof(struct ether_header) - sizeof(struct llc)
    417 	 * bytes recovered to which we need additional space for the
    418 	 * 802.11 header and any crypto header.
    419 	 */
    420 	/* XXX check trailing space and copy instead? */
    421 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
    422 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
    423 		if (n == NULL) {
    424 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    425 			    "%s: cannot expand storage\n", __func__);
    426 			ic->ic_stats.is_tx_nobuf++;
    427 			m_freem(m);
    428 			return NULL;
    429 		}
    430 		IASSERT(needed_space <= MHLEN,
    431 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
    432 		/*
    433 		 * Setup new mbuf to have leading space to prepend the
    434 		 * 802.11 header and any crypto header bits that are
    435 		 * required (the latter are added when the driver calls
    436 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
    437 		 */
    438 		/* NB: must be first 'cuz it clobbers m_data */
    439 		M_MOVE_PKTHDR(n, m);
    440 		n->m_len = 0;			/* NB: m_gethdr does not set */
    441 		n->m_data += needed_space;
    442 		/*
    443 		 * Pull up Ethernet header to create the expected layout.
    444 		 * We could use m_pullup but that's overkill (i.e. we don't
    445 		 * need the actual data) and it cannot fail so do it inline
    446 		 * for speed.
    447 		 */
    448 		/* NB: struct ether_header is known to be contiguous */
    449 		n->m_len += sizeof(struct ether_header);
    450 		m->m_len -= sizeof(struct ether_header);
    451 		m->m_data += sizeof(struct ether_header);
    452 		/*
    453 		 * Replace the head of the chain.
    454 		 */
    455 		n->m_next = m;
    456 		m = n;
    457 	} else {
    458                 /* We will overwrite the ethernet header in the
    459                  * 802.11 encapsulation stage.  Make sure that it
    460                  * is writable.
    461 		 */
    462 		wlen = sizeof(struct ether_header);
    463 	}
    464 
    465 	/*
    466 	 * If we're going to s/w encrypt the mbuf chain make sure it is
    467 	 * writable.
    468 	 */
    469 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
    470 		wlen = M_COPYALL;
    471 
    472 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
    473 		m_freem(m);
    474 		return NULL;
    475 	}
    476 	return m;
    477 #undef TO_BE_RECLAIMED
    478 }
    479 
    480 /*
    481  * Return the transmit key to use in sending a unicast frame.
    482  * If a unicast key is set we use that.  When no unicast key is set
    483  * we fall back to the default transmit key.
    484  */
    485 static __inline struct ieee80211_key *
    486 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    487 {
    488 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
    489 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    490 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    491 			return NULL;
    492 		return &ic->ic_nw_keys[ic->ic_def_txkey];
    493 	} else {
    494 		return &ni->ni_ucastkey;
    495 	}
    496 }
    497 
    498 /*
    499  * Return the transmit key to use in sending a multicast frame.
    500  * Multicast traffic always uses the group key which is installed as
    501  * the default tx key.
    502  */
    503 static __inline struct ieee80211_key *
    504 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
    505     struct ieee80211_node *ni)
    506 {
    507 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    508 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    509 		return NULL;
    510 	return &ic->ic_nw_keys[ic->ic_def_txkey];
    511 }
    512 
    513 /*
    514  * Encapsulate an outbound data frame.  The mbuf chain is updated.
    515  * If an error is encountered NULL is returned.  The caller is required
    516  * to provide a node reference and pullup the ethernet header in the
    517  * first mbuf.
    518  */
    519 struct mbuf *
    520 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
    521 	struct ieee80211_node *ni)
    522 {
    523 	struct ether_header eh;
    524 	struct ieee80211_frame *wh;
    525 	struct ieee80211_key *key;
    526 	struct llc *llc;
    527 	int hdrsize, datalen, addqos, txfrag;
    528 
    529 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
    530 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
    531 
    532 	/*
    533 	 * Insure space for additional headers.  First identify
    534 	 * transmit key to use in calculating any buffer adjustments
    535 	 * required.  This is also used below to do privacy
    536 	 * encapsulation work.  Then calculate the 802.11 header
    537 	 * size and any padding required by the driver.
    538 	 *
    539 	 * Note key may be NULL if we fall back to the default
    540 	 * transmit key and that is not set.  In that case the
    541 	 * buffer may not be expanded as needed by the cipher
    542 	 * routines, but they will/should discard it.
    543 	 */
    544 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
    545 		if (ic->ic_opmode == IEEE80211_M_STA ||
    546 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
    547 			key = ieee80211_crypto_getucastkey(ic, ni);
    548 		else
    549 			key = ieee80211_crypto_getmcastkey(ic, ni);
    550 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
    551 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    552 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    553 			    ether_sprintf(eh.ether_dhost), __func__,
    554 			    ic->ic_def_txkey);
    555 			ic->ic_stats.is_tx_nodefkey++;
    556 		}
    557 	} else
    558 		key = NULL;
    559 	/* XXX 4-address format */
    560 	/*
    561 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
    562 	 * frames so suppress use.  This may be an issue if other
    563 	 * ap's require all data frames to be QoS-encapsulated
    564 	 * once negotiated in which case we'll need to make this
    565 	 * configurable.
    566 	 */
    567 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
    568 		 eh.ether_type != htons(ETHERTYPE_PAE);
    569 	if (addqos)
    570 		hdrsize = sizeof(struct ieee80211_qosframe);
    571 	else
    572 		hdrsize = sizeof(struct ieee80211_frame);
    573 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    574 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
    575 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
    576 	if (m == NULL) {
    577 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
    578 		goto bad;
    579 	}
    580 
    581 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
    582 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
    583 	llc = mtod(m, struct llc *);
    584 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
    585 	llc->llc_control = LLC_UI;
    586 	llc->llc_snap.org_code[0] = 0;
    587 	llc->llc_snap.org_code[1] = 0;
    588 	llc->llc_snap.org_code[2] = 0;
    589 	llc->llc_snap.ether_type = eh.ether_type;
    590 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
    591 
    592 	M_PREPEND(m, hdrsize, M_DONTWAIT);
    593 	if (m == NULL) {
    594 		ic->ic_stats.is_tx_nobuf++;
    595 		goto bad;
    596 	}
    597 	wh = mtod(m, struct ieee80211_frame *);
    598 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
    599 	*(u_int16_t *)wh->i_dur = 0;
    600 	switch (ic->ic_opmode) {
    601 	case IEEE80211_M_STA:
    602 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    603 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
    604 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    605 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
    606 		break;
    607 	case IEEE80211_M_IBSS:
    608 	case IEEE80211_M_AHDEMO:
    609 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    610 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    611 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    612 		/*
    613 		 * NB: always use the bssid from ic_bss as the
    614 		 *     neighbor's may be stale after an ibss merge
    615 		 */
    616 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
    617 		break;
    618 	case IEEE80211_M_HOSTAP:
    619 #ifndef IEEE80211_NO_HOSTAP
    620 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    621 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    622 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    623 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
    624 #endif /* !IEEE80211_NO_HOSTAP */
    625 		break;
    626 	case IEEE80211_M_MONITOR:
    627 		goto bad;
    628 	}
    629 	if (m->m_flags & M_MORE_DATA)
    630 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
    631 	if (addqos) {
    632 		struct ieee80211_qosframe *qwh =
    633 			(struct ieee80211_qosframe *) wh;
    634 		int ac, tid;
    635 
    636 		ac = M_WME_GETAC(m);
    637 		/* map from access class/queue to 11e header priorty value */
    638 		tid = WME_AC_TO_TID(ac);
    639 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
    640 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
    641 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
    642 		qwh->i_qos[1] = 0;
    643 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
    644 
    645 		*(u_int16_t *)wh->i_seq =
    646 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
    647 		ni->ni_txseqs[tid]++;
    648 	} else {
    649 		*(u_int16_t *)wh->i_seq =
    650 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    651 		ni->ni_txseqs[0]++;
    652 	}
    653 	/* check if xmit fragmentation is required */
    654 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
    655 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    656 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
    657 	if (key != NULL) {
    658 		/*
    659 		 * IEEE 802.1X: send EAPOL frames always in the clear.
    660 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
    661 		 */
    662 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
    663 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
    664 		     (ic->ic_opmode == IEEE80211_M_STA ?
    665 		      !IEEE80211_KEY_UNDEFINED(*key) :
    666 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
    667 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
    668 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
    669 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    670 				    "[%s] enmic failed, discard frame\n",
    671 				    ether_sprintf(eh.ether_dhost));
    672 				ic->ic_stats.is_crypto_enmicfail++;
    673 				goto bad;
    674 			}
    675 		}
    676 	}
    677 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
    678 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
    679 		goto bad;
    680 
    681 	IEEE80211_NODE_STAT(ni, tx_data);
    682 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
    683 
    684 	return m;
    685 bad:
    686 	if (m != NULL)
    687 		m_freem(m);
    688 	return NULL;
    689 }
    690 
    691 /*
    692  * Arguments in:
    693  *
    694  * paylen:  payload length (no FCS, no WEP header)
    695  *
    696  * hdrlen:  header length
    697  *
    698  * rate:    MSDU speed, units 500kb/s
    699  *
    700  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
    701  *          IEEE80211_F_SHSLOT (use short slot length)
    702  *
    703  * Arguments out:
    704  *
    705  * d:       802.11 Duration field for RTS,
    706  *          802.11 Duration field for data frame,
    707  *          PLCP Length for data frame,
    708  *          residual octets at end of data slot
    709  */
    710 static int
    711 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
    712     struct ieee80211_duration *d)
    713 {
    714 	int pre, ctsrate;
    715 	int ack, bitlen, data_dur, remainder;
    716 
    717 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
    718 	 * DATA reserves medium for SIFS | ACK,
    719 	 *
    720 	 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
    721 	 *
    722 	 * XXXMYC: no ACK on multicast/broadcast or control packets
    723 	 */
    724 
    725 	bitlen = len * 8;
    726 
    727 	pre = IEEE80211_DUR_DS_SIFS;
    728 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
    729 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
    730 	else
    731 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
    732 
    733 	d->d_residue = 0;
    734 	data_dur = (bitlen * 2) / rate;
    735 	remainder = (bitlen * 2) % rate;
    736 	if (remainder != 0) {
    737 		d->d_residue = (rate - remainder) / 16;
    738 		data_dur++;
    739 	}
    740 
    741 	switch (rate) {
    742 	case 2:		/* 1 Mb/s */
    743 	case 4:		/* 2 Mb/s */
    744 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
    745 		ctsrate = 2;
    746 		break;
    747 	case 11:	/* 5.5 Mb/s */
    748 	case 22:	/* 11  Mb/s */
    749 	case 44:	/* 22  Mb/s */
    750 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
    751 		ctsrate = 4;
    752 		break;
    753 	default:
    754 		/* TBD */
    755 		return -1;
    756 	}
    757 
    758 	d->d_plcp_len = data_dur;
    759 
    760 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
    761 
    762 	d->d_rts_dur =
    763 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
    764 	    pre + data_dur +
    765 	    ack;
    766 
    767 	d->d_data_dur = ack;
    768 
    769 	return 0;
    770 }
    771 
    772 /*
    773  * Arguments in:
    774  *
    775  * wh:      802.11 header
    776  *
    777  * paylen:  payload length (no FCS, no WEP header)
    778  *
    779  * rate:    MSDU speed, units 500kb/s
    780  *
    781  * fraglen: fragment length, set to maximum (or higher) for no
    782  *          fragmentation
    783  *
    784  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
    785  *          IEEE80211_F_SHPREAMBLE (use short preamble),
    786  *          IEEE80211_F_SHSLOT (use short slot length)
    787  *
    788  * Arguments out:
    789  *
    790  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    791  *     of first/only fragment
    792  *
    793  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    794  *     of last fragment
    795  *
    796  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
    797  * has already taken place.
    798  */
    799 int
    800 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
    801     const struct ieee80211_key *wk, int len,
    802     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
    803     struct ieee80211_duration *dn, int *npktp, int debug)
    804 {
    805 	int ack, rc;
    806 	int cryptolen,	/* crypto overhead: header+trailer */
    807 	    firstlen,	/* first fragment's payload + overhead length */
    808 	    hdrlen,	/* header length w/o driver padding */
    809 	    lastlen,	/* last fragment's payload length w/ overhead */
    810 	    lastlen0,	/* last fragment's payload length w/o overhead */
    811 	    npkt,	/* number of fragments */
    812 	    overlen,	/* non-802.11 header overhead per fragment */
    813 	    paylen;	/* payload length w/o overhead */
    814 
    815 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
    816 
    817         /* Account for padding required by the driver. */
    818 	if (icflags & IEEE80211_F_DATAPAD)
    819 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
    820 	else
    821 		paylen = len - hdrlen;
    822 
    823 	overlen = IEEE80211_CRC_LEN;
    824 
    825 	if (wk != NULL) {
    826 		cryptolen = wk->wk_cipher->ic_header +
    827 		            wk->wk_cipher->ic_trailer;
    828 		paylen -= cryptolen;
    829 		overlen += cryptolen;
    830 	}
    831 
    832 	npkt = paylen / fraglen;
    833 	lastlen0 = paylen % fraglen;
    834 
    835 	if (npkt == 0)			/* no fragments */
    836 		lastlen = paylen + overlen;
    837 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
    838 		lastlen = lastlen0 + overlen;
    839 		npkt++;
    840 	} else				/* full-length "tail" fragment */
    841 		lastlen = fraglen + overlen;
    842 
    843 	if (npktp != NULL)
    844 		*npktp = npkt;
    845 
    846 	if (npkt > 1)
    847 		firstlen = fraglen + overlen;
    848 	else
    849 		firstlen = paylen + overlen;
    850 
    851 	if (debug) {
    852 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
    853 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
    854 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
    855 		    overlen, len, rate, icflags);
    856 	}
    857 
    858 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    859 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
    860 
    861 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
    862 	    ack, icflags, rate, d0);
    863 	if (rc == -1)
    864 		return rc;
    865 
    866 	if (npkt <= 1) {
    867 		*dn = *d0;
    868 		return 0;
    869 	}
    870 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
    871 	    dn);
    872 }
    873 
    874 /*
    875  * Fragment the frame according to the specified mtu.
    876  * The size of the 802.11 header (w/o padding) is provided
    877  * so we don't need to recalculate it.  We create a new
    878  * mbuf for each fragment and chain it through m_nextpkt;
    879  * we might be able to optimize this by reusing the original
    880  * packet's mbufs but that is significantly more complicated.
    881  */
    882 static int
    883 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
    884 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
    885 {
    886 	struct ieee80211_frame *wh, *whf;
    887 	struct mbuf *m, *prev, *next;
    888 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
    889 
    890 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
    891 	IASSERT(m0->m_pkthdr.len > mtu,
    892 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
    893 
    894 	wh = mtod(m0, struct ieee80211_frame *);
    895 	/* NB: mark the first frag; it will be propagated below */
    896 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
    897 	totalhdrsize = hdrsize + ciphdrsize;
    898 	fragno = 1;
    899 	off = mtu - ciphdrsize;
    900 	remainder = m0->m_pkthdr.len - off;
    901 	prev = m0;
    902 	do {
    903 		fragsize = totalhdrsize + remainder;
    904 		if (fragsize > mtu)
    905 			fragsize = mtu;
    906 		IASSERT(fragsize < MCLBYTES,
    907 			("fragment size %u too big!", fragsize));
    908 		if (fragsize > MHLEN)
    909 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    910 		else
    911 			m = m_gethdr(M_DONTWAIT, MT_DATA);
    912 		if (m == NULL)
    913 			goto bad;
    914 		/* leave room to prepend any cipher header */
    915 		m_align(m, fragsize - ciphdrsize);
    916 
    917 		/*
    918 		 * Form the header in the fragment.  Note that since
    919 		 * we mark the first fragment with the MORE_FRAG bit
    920 		 * it automatically is propagated to each fragment; we
    921 		 * need only clear it on the last fragment (done below).
    922 		 */
    923 		whf = mtod(m, struct ieee80211_frame *);
    924 		memcpy(whf, wh, hdrsize);
    925 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
    926 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
    927 				IEEE80211_SEQ_FRAG_SHIFT);
    928 		fragno++;
    929 
    930 		payload = fragsize - totalhdrsize;
    931 		/* NB: destination is known to be contiguous */
    932 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
    933 		m->m_len = hdrsize + payload;
    934 		m->m_pkthdr.len = hdrsize + payload;
    935 		m->m_flags |= M_FRAG;
    936 
    937 		/* chain up the fragment */
    938 		prev->m_nextpkt = m;
    939 		prev = m;
    940 
    941 		/* deduct fragment just formed */
    942 		remainder -= payload;
    943 		off += payload;
    944 	} while (remainder != 0);
    945 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
    946 
    947 	/* strip first mbuf now that everything has been copied */
    948 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
    949 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
    950 
    951 	ic->ic_stats.is_tx_fragframes++;
    952 	ic->ic_stats.is_tx_frags += fragno-1;
    953 
    954 	return 1;
    955 bad:
    956 	/* reclaim fragments but leave original frame for caller to free */
    957 	for (m = m0->m_nextpkt; m != NULL; m = next) {
    958 		next = m->m_nextpkt;
    959 		m->m_nextpkt = NULL;            /* XXX paranoid */
    960 		m_freem(m);
    961 	}
    962 	m0->m_nextpkt = NULL;
    963 	return 0;
    964 }
    965 
    966 /*
    967  * Add a supported rates element id to a frame.
    968  */
    969 static u_int8_t *
    970 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    971 {
    972 	int nrates;
    973 
    974 	*frm++ = IEEE80211_ELEMID_RATES;
    975 	nrates = rs->rs_nrates;
    976 	if (nrates > IEEE80211_RATE_SIZE)
    977 		nrates = IEEE80211_RATE_SIZE;
    978 	*frm++ = nrates;
    979 	memcpy(frm, rs->rs_rates, nrates);
    980 	return frm + nrates;
    981 }
    982 
    983 /*
    984  * Add an extended supported rates element id to a frame.
    985  */
    986 static u_int8_t *
    987 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    988 {
    989 	/*
    990 	 * Add an extended supported rates element if operating in 11g mode.
    991 	 */
    992 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
    993 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
    994 		*frm++ = IEEE80211_ELEMID_XRATES;
    995 		*frm++ = nrates;
    996 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
    997 		frm += nrates;
    998 	}
    999 	return frm;
   1000 }
   1001 
   1002 /*
   1003  * Add an ssid elemet to a frame.
   1004  */
   1005 static u_int8_t *
   1006 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   1007 {
   1008 	*frm++ = IEEE80211_ELEMID_SSID;
   1009 	*frm++ = len;
   1010 	memcpy(frm, ssid, len);
   1011 	return frm + len;
   1012 }
   1013 
   1014 /*
   1015  * Add an erp element to a frame.
   1016  */
   1017 static u_int8_t *
   1018 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
   1019 {
   1020 	u_int8_t erp;
   1021 
   1022 	*frm++ = IEEE80211_ELEMID_ERP;
   1023 	*frm++ = 1;
   1024 	erp = 0;
   1025 	if (ic->ic_nonerpsta != 0)
   1026 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
   1027 	if (ic->ic_flags & IEEE80211_F_USEPROT)
   1028 		erp |= IEEE80211_ERP_USE_PROTECTION;
   1029 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
   1030 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
   1031 	*frm++ = erp;
   1032 	return frm;
   1033 }
   1034 
   1035 static u_int8_t *
   1036 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
   1037 {
   1038 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
   1039 #define	ADDSHORT(frm, v) do {			\
   1040 	frm[0] = (v) & 0xff;			\
   1041 	frm[1] = (v) >> 8;			\
   1042 	frm += 2;				\
   1043 } while (0)
   1044 #define	ADDSELECTOR(frm, sel) do {		\
   1045 	memcpy(frm, sel, 4);			\
   1046 	frm += 4;				\
   1047 } while (0)
   1048 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
   1049 	static const u_int8_t cipher_suite[][4] = {
   1050 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
   1051 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
   1052 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
   1053 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
   1054 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1055 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
   1056 	};
   1057 	static const u_int8_t wep104_suite[4] =
   1058 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
   1059 	static const u_int8_t key_mgt_unspec[4] =
   1060 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
   1061 	static const u_int8_t key_mgt_psk[4] =
   1062 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
   1063 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1064 	u_int8_t *frm = ie;
   1065 	u_int8_t *selcnt;
   1066 
   1067 	*frm++ = IEEE80211_ELEMID_VENDOR;
   1068 	*frm++ = 0;				/* length filled in below */
   1069 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
   1070 	frm += sizeof(oui);
   1071 	ADDSHORT(frm, WPA_VERSION);
   1072 
   1073 	/* XXX filter out CKIP */
   1074 
   1075 	/* multicast cipher */
   1076 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1077 	    rsn->rsn_mcastkeylen >= 13)
   1078 		ADDSELECTOR(frm, wep104_suite);
   1079 	else
   1080 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1081 
   1082 	/* unicast cipher list */
   1083 	selcnt = frm;
   1084 	ADDSHORT(frm, 0);			/* selector count */
   1085 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1086 		selcnt[0]++;
   1087 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1088 	}
   1089 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1090 		selcnt[0]++;
   1091 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1092 	}
   1093 
   1094 	/* authenticator selector list */
   1095 	selcnt = frm;
   1096 	ADDSHORT(frm, 0);			/* selector count */
   1097 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1098 		selcnt[0]++;
   1099 		ADDSELECTOR(frm, key_mgt_unspec);
   1100 	}
   1101 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1102 		selcnt[0]++;
   1103 		ADDSELECTOR(frm, key_mgt_psk);
   1104 	}
   1105 
   1106 	/* optional capabilities */
   1107 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
   1108 		ADDSHORT(frm, rsn->rsn_caps);
   1109 
   1110 	/* calculate element length */
   1111 	ie[1] = frm - ie - 2;
   1112 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1113 		("WPA IE too big, %u > %zu",
   1114 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1115 	return frm;
   1116 #undef ADDSHORT
   1117 #undef ADDSELECTOR
   1118 #undef WPA_OUI_BYTES
   1119 }
   1120 
   1121 static u_int8_t *
   1122 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
   1123 {
   1124 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
   1125 #define	ADDSHORT(frm, v) do {			\
   1126 	frm[0] = (v) & 0xff;			\
   1127 	frm[1] = (v) >> 8;			\
   1128 	frm += 2;				\
   1129 } while (0)
   1130 #define	ADDSELECTOR(frm, sel) do {		\
   1131 	memcpy(frm, sel, 4);			\
   1132 	frm += 4;				\
   1133 } while (0)
   1134 	static const u_int8_t cipher_suite[][4] = {
   1135 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
   1136 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
   1137 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
   1138 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
   1139 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1140 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
   1141 	};
   1142 	static const u_int8_t wep104_suite[4] =
   1143 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
   1144 	static const u_int8_t key_mgt_unspec[4] =
   1145 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
   1146 	static const u_int8_t key_mgt_psk[4] =
   1147 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
   1148 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1149 	u_int8_t *frm = ie;
   1150 	u_int8_t *selcnt;
   1151 
   1152 	*frm++ = IEEE80211_ELEMID_RSN;
   1153 	*frm++ = 0;				/* length filled in below */
   1154 	ADDSHORT(frm, RSN_VERSION);
   1155 
   1156 	/* XXX filter out CKIP */
   1157 
   1158 	/* multicast cipher */
   1159 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1160 	    rsn->rsn_mcastkeylen >= 13)
   1161 		ADDSELECTOR(frm, wep104_suite);
   1162 	else
   1163 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1164 
   1165 	/* unicast cipher list */
   1166 	selcnt = frm;
   1167 	ADDSHORT(frm, 0);			/* selector count */
   1168 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1169 		selcnt[0]++;
   1170 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1171 	}
   1172 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1173 		selcnt[0]++;
   1174 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1175 	}
   1176 
   1177 	/* authenticator selector list */
   1178 	selcnt = frm;
   1179 	ADDSHORT(frm, 0);			/* selector count */
   1180 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1181 		selcnt[0]++;
   1182 		ADDSELECTOR(frm, key_mgt_unspec);
   1183 	}
   1184 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1185 		selcnt[0]++;
   1186 		ADDSELECTOR(frm, key_mgt_psk);
   1187 	}
   1188 
   1189 	/* optional capabilities */
   1190 	ADDSHORT(frm, rsn->rsn_caps);
   1191 	/* XXX PMKID */
   1192 
   1193 	/* calculate element length */
   1194 	ie[1] = frm - ie - 2;
   1195 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1196 		("RSN IE too big, %u > %zu",
   1197 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1198 	return frm;
   1199 #undef ADDSELECTOR
   1200 #undef ADDSHORT
   1201 #undef RSN_OUI_BYTES
   1202 }
   1203 
   1204 /*
   1205  * Add a WPA/RSN element to a frame.
   1206  */
   1207 static u_int8_t *
   1208 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
   1209 {
   1210 
   1211 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
   1212 	if (ic->ic_flags & IEEE80211_F_WPA2)
   1213 		frm = ieee80211_setup_rsn_ie(ic, frm);
   1214 	if (ic->ic_flags & IEEE80211_F_WPA1)
   1215 		frm = ieee80211_setup_wpa_ie(ic, frm);
   1216 	return frm;
   1217 }
   1218 
   1219 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
   1220 /*
   1221  * Add a WME information element to a frame.
   1222  */
   1223 static u_int8_t *
   1224 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1225 {
   1226 	static const struct ieee80211_wme_info info = {
   1227 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1228 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
   1229 		.wme_oui	= { WME_OUI_BYTES },
   1230 		.wme_type	= WME_OUI_TYPE,
   1231 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
   1232 		.wme_version	= WME_VERSION,
   1233 		.wme_info	= 0,
   1234 	};
   1235 	memcpy(frm, &info, sizeof(info));
   1236 	return frm + sizeof(info);
   1237 }
   1238 
   1239 /*
   1240  * Add a WME parameters element to a frame.
   1241  */
   1242 static u_int8_t *
   1243 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1244 {
   1245 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
   1246 #define	ADDSHORT(frm, v) do {			\
   1247 	frm[0] = (v) & 0xff;			\
   1248 	frm[1] = (v) >> 8;			\
   1249 	frm += 2;				\
   1250 } while (0)
   1251 	/* NB: this works 'cuz a param has an info at the front */
   1252 	static const struct ieee80211_wme_info param = {
   1253 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1254 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
   1255 		.wme_oui	= { WME_OUI_BYTES },
   1256 		.wme_type	= WME_OUI_TYPE,
   1257 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
   1258 		.wme_version	= WME_VERSION,
   1259 	};
   1260 	int i;
   1261 
   1262 	memcpy(frm, &param, sizeof(param));
   1263 	frm += offsetof(struct ieee80211_wme_info, wme_info);
   1264 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
   1265 	*frm++ = 0;					/* reserved field */
   1266 	for (i = 0; i < WME_NUM_AC; i++) {
   1267 		const struct wmeParams *ac =
   1268 		       &wme->wme_bssChanParams.cap_wmeParams[i];
   1269 		*frm++ = SM(i, WME_PARAM_ACI)
   1270 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
   1271 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
   1272 		       ;
   1273 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
   1274 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
   1275 		       ;
   1276 		ADDSHORT(frm, ac->wmep_txopLimit);
   1277 	}
   1278 	return frm;
   1279 #undef SM
   1280 #undef ADDSHORT
   1281 }
   1282 #undef WME_OUI_BYTES
   1283 
   1284 /*
   1285  * Send a probe request frame with the specified ssid
   1286  * and any optional information element data.
   1287  */
   1288 int
   1289 ieee80211_send_probereq(struct ieee80211_node *ni,
   1290 	const u_int8_t sa[IEEE80211_ADDR_LEN],
   1291 	const u_int8_t da[IEEE80211_ADDR_LEN],
   1292 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
   1293 	const u_int8_t *ssid, size_t ssidlen,
   1294 	const void *optie, size_t optielen)
   1295 {
   1296 	struct ieee80211com *ic = ni->ni_ic;
   1297 	enum ieee80211_phymode mode;
   1298 	struct ieee80211_frame *wh;
   1299 	struct mbuf *m;
   1300 	u_int8_t *frm;
   1301 
   1302 	/*
   1303 	 * Hold a reference on the node so it doesn't go away until after
   1304 	 * the xmit is complete all the way in the driver.  On error we
   1305 	 * will remove our reference.
   1306 	 */
   1307 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1308 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1309 		__func__, __LINE__,
   1310 		ni, ether_sprintf(ni->ni_macaddr),
   1311 		ieee80211_node_refcnt(ni)+1);
   1312 	ieee80211_ref_node(ni);
   1313 
   1314 	/*
   1315 	 * prreq frame format
   1316 	 *	[tlv] ssid
   1317 	 *	[tlv] supported rates
   1318 	 *	[tlv] extended supported rates
   1319 	 *	[tlv] user-specified ie's
   1320 	 */
   1321 	m = ieee80211_getmgtframe(&frm,
   1322 		 2 + IEEE80211_NWID_LEN
   1323 	       + 2 + IEEE80211_RATE_SIZE
   1324 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1325 	       + (optie != NULL ? optielen : 0)
   1326 	);
   1327 	if (m == NULL) {
   1328 		ic->ic_stats.is_tx_nobuf++;
   1329 		ieee80211_free_node(ni);
   1330 		return ENOMEM;
   1331 	}
   1332 
   1333 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
   1334 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
   1335 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
   1336 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
   1337 
   1338 	if (optie != NULL) {
   1339 		memcpy(frm, optie, optielen);
   1340 		frm += optielen;
   1341 	}
   1342 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1343 
   1344 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1345 	if (m == NULL)
   1346 		return ENOMEM;
   1347 	IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
   1348 	m->m_pkthdr.rcvif = (void *)ni;
   1349 
   1350 	wh = mtod(m, struct ieee80211_frame *);
   1351 	ieee80211_send_setup(ic, ni, wh,
   1352 		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
   1353 		sa, da, bssid);
   1354 	/* XXX power management? */
   1355 
   1356 	IEEE80211_NODE_STAT(ni, tx_probereq);
   1357 	IEEE80211_NODE_STAT(ni, tx_mgmt);
   1358 
   1359 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   1360 	    "[%s] send probe req on channel %u\n",
   1361 	    ether_sprintf(wh->i_addr1),
   1362 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1363 
   1364 	IF_ENQUEUE(&ic->ic_mgtq, m);
   1365 	(*ic->ic_ifp->if_start)(ic->ic_ifp);
   1366 	return 0;
   1367 }
   1368 
   1369 /*
   1370  * Send a management frame.  The node is for the destination (or ic_bss
   1371  * when in station mode).  Nodes other than ic_bss have their reference
   1372  * count bumped to reflect our use for an indeterminant time.
   1373  */
   1374 int
   1375 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
   1376 	int type, int arg)
   1377 {
   1378 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
   1379 	struct mbuf *m;
   1380 	u_int8_t *frm;
   1381 	u_int16_t capinfo;
   1382 	int has_challenge, is_shared_key, ret, timer, status;
   1383 
   1384 	IASSERT(ni != NULL, ("null node"));
   1385 
   1386 	/*
   1387 	 * Hold a reference on the node so it doesn't go away until after
   1388 	 * the xmit is complete all the way in the driver.  On error we
   1389 	 * will remove our reference.
   1390 	 */
   1391 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1392 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1393 		__func__, __LINE__,
   1394 		ni, ether_sprintf(ni->ni_macaddr),
   1395 		ieee80211_node_refcnt(ni)+1);
   1396 	ieee80211_ref_node(ni);
   1397 
   1398 	timer = 0;
   1399 	switch (type) {
   1400 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   1401 		/*
   1402 		 * probe response frame format
   1403 		 *	[8] time stamp
   1404 		 *	[2] beacon interval
   1405 		 *	[2] cabability information
   1406 		 *	[tlv] ssid
   1407 		 *	[tlv] supported rates
   1408 		 *	[tlv] parameter set (FH/DS)
   1409 		 *	[tlv] parameter set (IBSS)
   1410 		 *	[tlv] extended rate phy (ERP)
   1411 		 *	[tlv] extended supported rates
   1412 		 *	[tlv] WPA
   1413 		 *	[tlv] WME (optional)
   1414 		 */
   1415 		m = ieee80211_getmgtframe(&frm,
   1416 			 8
   1417 		       + sizeof(u_int16_t)
   1418 		       + sizeof(u_int16_t)
   1419 		       + 2 + IEEE80211_NWID_LEN
   1420 		       + 2 + IEEE80211_RATE_SIZE
   1421 		       + 7	/* max(7,3) */
   1422 		       + 6
   1423 		       + 3
   1424 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1425 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
   1426 		       + (ic->ic_flags & IEEE80211_F_WPA ?
   1427 				2*sizeof(struct ieee80211_ie_wpa) : 0)
   1428 		       + sizeof(struct ieee80211_wme_param)
   1429 		);
   1430 		if (m == NULL)
   1431 			senderr(ENOMEM, is_tx_nobuf);
   1432 
   1433 		memset(frm, 0, 8);	/* timestamp should be filled later */
   1434 		frm += 8;
   1435 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
   1436 		frm += 2;
   1437 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1438 			capinfo = IEEE80211_CAPINFO_IBSS;
   1439 		else
   1440 			capinfo = IEEE80211_CAPINFO_ESS;
   1441 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1442 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1443 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1444 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1445 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1446 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1447 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1448 		*(u_int16_t *)frm = htole16(capinfo);
   1449 		frm += 2;
   1450 
   1451 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
   1452 				ic->ic_bss->ni_esslen);
   1453 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1454 
   1455 		if (ic->ic_phytype == IEEE80211_T_FH) {
   1456                         *frm++ = IEEE80211_ELEMID_FHPARMS;
   1457                         *frm++ = 5;
   1458                         *frm++ = ni->ni_fhdwell & 0x00ff;
   1459                         *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
   1460                         *frm++ = IEEE80211_FH_CHANSET(
   1461 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1462                         *frm++ = IEEE80211_FH_CHANPAT(
   1463 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1464                         *frm++ = ni->ni_fhindex;
   1465 		} else {
   1466 			*frm++ = IEEE80211_ELEMID_DSPARMS;
   1467 			*frm++ = 1;
   1468 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1469 		}
   1470 
   1471 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1472 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1473 			*frm++ = 2;
   1474 			*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1475 		}
   1476 		if (ic->ic_flags & IEEE80211_F_WPA)
   1477 			frm = ieee80211_add_wpa(frm, ic);
   1478 		if (ic->ic_curmode == IEEE80211_MODE_11G)
   1479 			frm = ieee80211_add_erp(frm, ic);
   1480 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1481 		if (ic->ic_flags & IEEE80211_F_WME)
   1482 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1483 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1484 		break;
   1485 
   1486 	case IEEE80211_FC0_SUBTYPE_AUTH:
   1487 		status = arg >> 16;
   1488 		arg &= 0xffff;
   1489 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   1490 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   1491 		    ni->ni_challenge != NULL);
   1492 
   1493 		/*
   1494 		 * Deduce whether we're doing open authentication or
   1495 		 * shared key authentication.  We do the latter if
   1496 		 * we're in the middle of a shared key authentication
   1497 		 * handshake or if we're initiating an authentication
   1498 		 * request and configured to use shared key.
   1499 		 */
   1500 		is_shared_key = has_challenge ||
   1501 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
   1502 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   1503 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
   1504 
   1505 		m = ieee80211_getmgtframe(&frm,
   1506 			  3 * sizeof(u_int16_t)
   1507 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
   1508 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
   1509 		);
   1510 		if (m == NULL)
   1511 			senderr(ENOMEM, is_tx_nobuf);
   1512 
   1513 		((u_int16_t *)frm)[0] =
   1514 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
   1515 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   1516 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
   1517 		((u_int16_t *)frm)[2] = htole16(status);/* status */
   1518 
   1519 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
   1520 			((u_int16_t *)frm)[3] =
   1521 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   1522 			    IEEE80211_ELEMID_CHALLENGE);
   1523 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
   1524 			    IEEE80211_CHALLENGE_LEN);
   1525 			m->m_pkthdr.len = m->m_len =
   1526 				4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
   1527 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   1528 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1529 				    "[%s] request encrypt frame (%s)\n",
   1530 				    ether_sprintf(ni->ni_macaddr), __func__);
   1531 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
   1532 			}
   1533 		} else
   1534 			m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
   1535 
   1536 		/* XXX not right for shared key */
   1537 		if (status == IEEE80211_STATUS_SUCCESS)
   1538 			IEEE80211_NODE_STAT(ni, tx_auth);
   1539 		else
   1540 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   1541 
   1542 		if (ic->ic_opmode == IEEE80211_M_STA)
   1543 			timer = IEEE80211_TRANS_WAIT;
   1544 		break;
   1545 
   1546 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   1547 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1548 			"[%s] send station deauthenticate (reason %d)\n",
   1549 			ether_sprintf(ni->ni_macaddr), arg);
   1550 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1551 		if (m == NULL)
   1552 			senderr(ENOMEM, is_tx_nobuf);
   1553 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1554 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1555 
   1556 		IEEE80211_NODE_STAT(ni, tx_deauth);
   1557 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   1558 
   1559 		ieee80211_node_unauthorize(ni);		/* port closed */
   1560 		break;
   1561 
   1562 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   1563 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   1564 		/*
   1565 		 * asreq frame format
   1566 		 *	[2] capability information
   1567 		 *	[2] listen interval
   1568 		 *	[6*] current AP address (reassoc only)
   1569 		 *	[tlv] ssid
   1570 		 *	[tlv] supported rates
   1571 		 *	[tlv] extended supported rates
   1572 		 *	[tlv] WME
   1573 		 *	[tlv] user-specified ie's
   1574 		 */
   1575 		m = ieee80211_getmgtframe(&frm,
   1576 			 sizeof(u_int16_t)
   1577 		       + sizeof(u_int16_t)
   1578 		       + IEEE80211_ADDR_LEN
   1579 		       + 2 + IEEE80211_NWID_LEN
   1580 		       + 2 + IEEE80211_RATE_SIZE
   1581 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1582 		       + sizeof(struct ieee80211_wme_info)
   1583 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
   1584 		);
   1585 		if (m == NULL)
   1586 			senderr(ENOMEM, is_tx_nobuf);
   1587 
   1588 		capinfo = 0;
   1589 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1590 			capinfo |= IEEE80211_CAPINFO_IBSS;
   1591 		else		/* IEEE80211_M_STA */
   1592 			capinfo |= IEEE80211_CAPINFO_ESS;
   1593 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1594 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1595 		/*
   1596 		 * NB: Some 11a AP's reject the request when
   1597 		 *     short premable is set.
   1598 		 */
   1599 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1600 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1601 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1602 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
   1603 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   1604 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1605 		*(u_int16_t *)frm = htole16(capinfo);
   1606 		frm += 2;
   1607 
   1608 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
   1609 		frm += 2;
   1610 
   1611 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   1612 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
   1613 			frm += IEEE80211_ADDR_LEN;
   1614 		}
   1615 
   1616 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   1617 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1618 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1619 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1620 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   1621 		if (ic->ic_opt_ie != NULL) {
   1622 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
   1623 			frm += ic->ic_opt_ie_len;
   1624 		}
   1625 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1626 
   1627 		timer = IEEE80211_TRANS_WAIT;
   1628 		break;
   1629 
   1630 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   1631 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   1632 		/*
   1633 		 * asreq frame format
   1634 		 *	[2] capability information
   1635 		 *	[2] status
   1636 		 *	[2] association ID
   1637 		 *	[tlv] supported rates
   1638 		 *	[tlv] extended supported rates
   1639 		 *	[tlv] WME (if enabled and STA enabled)
   1640 		 */
   1641 		m = ieee80211_getmgtframe(&frm,
   1642 			 sizeof(u_int16_t)
   1643 		       + sizeof(u_int16_t)
   1644 		       + sizeof(u_int16_t)
   1645 		       + 2 + IEEE80211_RATE_SIZE
   1646 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1647 		       + sizeof(struct ieee80211_wme_param)
   1648 		);
   1649 		if (m == NULL)
   1650 			senderr(ENOMEM, is_tx_nobuf);
   1651 
   1652 		capinfo = IEEE80211_CAPINFO_ESS;
   1653 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1654 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1655 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1656 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1657 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1658 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1659 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1660 		*(u_int16_t *)frm = htole16(capinfo);
   1661 		frm += 2;
   1662 
   1663 		*(u_int16_t *)frm = htole16(arg);	/* status */
   1664 		frm += 2;
   1665 
   1666 		if (arg == IEEE80211_STATUS_SUCCESS) {
   1667 			*(u_int16_t *)frm = htole16(ni->ni_associd);
   1668 			IEEE80211_NODE_STAT(ni, tx_assoc);
   1669 		} else
   1670 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   1671 		frm += 2;
   1672 
   1673 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1674 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1675 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1676 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1677 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1678 		break;
   1679 
   1680 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   1681 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
   1682 			"[%s] send station disassociate (reason %d)\n",
   1683 			ether_sprintf(ni->ni_macaddr), arg);
   1684 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1685 		if (m == NULL)
   1686 			senderr(ENOMEM, is_tx_nobuf);
   1687 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1688 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1689 
   1690 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   1691 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   1692 		break;
   1693 
   1694 	default:
   1695 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1696 			"[%s] invalid mgmt frame type %u\n",
   1697 			ether_sprintf(ni->ni_macaddr), type);
   1698 		senderr(EINVAL, is_tx_unknownmgt);
   1699 		/* NOTREACHED */
   1700 	}
   1701 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
   1702 	if (ret != 0) {
   1703 bad:
   1704 		ieee80211_free_node(ni);
   1705 	}
   1706 	return ret;
   1707 #undef senderr
   1708 }
   1709 
   1710 /*
   1711  * Build a RTS (Request To Send) control frame.
   1712  */
   1713 struct mbuf *
   1714 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
   1715     uint16_t dur)
   1716 {
   1717 	struct ieee80211_frame_rts *rts;
   1718 	struct mbuf *m;
   1719 
   1720 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1721 	if (m == NULL)
   1722 		return NULL;
   1723 
   1724 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
   1725 
   1726 	rts = mtod(m, struct ieee80211_frame_rts *);
   1727 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1728 	    IEEE80211_FC0_SUBTYPE_RTS;
   1729 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1730 	*(uint16_t *)rts->i_dur = htole16(dur);
   1731 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1732 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1733 
   1734 	return m;
   1735 }
   1736 
   1737 /*
   1738  * Build a CTS-to-self (Clear To Send) control frame.
   1739  */
   1740 struct mbuf *
   1741 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
   1742 {
   1743 	struct ieee80211_frame_cts *cts;
   1744 	struct mbuf *m;
   1745 
   1746 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1747 	if (m == NULL)
   1748 		return NULL;
   1749 
   1750 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
   1751 
   1752 	cts = mtod(m, struct ieee80211_frame_cts *);
   1753 	cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1754 	    IEEE80211_FC0_SUBTYPE_CTS;
   1755 	cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1756 	*(uint16_t *)cts->i_dur = htole16(dur);
   1757 	IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
   1758 
   1759 	return m;
   1760 }
   1761 
   1762 /*
   1763  * Allocate a beacon frame and fillin the appropriate bits.
   1764  */
   1765 struct mbuf *
   1766 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
   1767 	struct ieee80211_beacon_offsets *bo)
   1768 {
   1769 	struct ifnet *ifp = ic->ic_ifp;
   1770 	struct ieee80211_frame *wh;
   1771 	struct mbuf *m;
   1772 	int pktlen;
   1773 	u_int8_t *frm, *efrm;
   1774 	u_int16_t capinfo;
   1775 	struct ieee80211_rateset *rs;
   1776 
   1777 	/*
   1778 	 * beacon frame format
   1779 	 *	[8] time stamp
   1780 	 *	[2] beacon interval
   1781 	 *	[2] cabability information
   1782 	 *	[tlv] ssid
   1783 	 *	[tlv] supported rates
   1784 	 *	[3] parameter set (DS)
   1785 	 *	[tlv] parameter set (IBSS/TIM)
   1786 	 *	[tlv] extended rate phy (ERP)
   1787 	 *	[tlv] extended supported rates
   1788 	 *	[tlv] WME parameters
   1789 	 *	[tlv] WPA/RSN parameters
   1790 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   1791 	 * NB: we allocate the max space required for the TIM bitmap.
   1792 	 */
   1793 	rs = &ni->ni_rates;
   1794 	pktlen =   8					/* time stamp */
   1795 		 + sizeof(u_int16_t)			/* beacon interval */
   1796 		 + sizeof(u_int16_t)			/* capabilities */
   1797 		 + 2 + ni->ni_esslen			/* ssid */
   1798 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   1799 	         + 2 + 1				/* DS parameters */
   1800 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
   1801 		 + 2 + 1				/* ERP */
   1802 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1803 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
   1804 			sizeof(struct ieee80211_wme_param) : 0)
   1805 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   1806 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   1807 		 ;
   1808 	m = ieee80211_getmgtframe(&frm, pktlen);
   1809 	if (m == NULL) {
   1810 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1811 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   1812 		ic->ic_stats.is_tx_nobuf++;
   1813 		return NULL;
   1814 	}
   1815 
   1816 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   1817 	frm += 8;
   1818 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1819 	frm += 2;
   1820 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1821 		capinfo = IEEE80211_CAPINFO_IBSS;
   1822 	else
   1823 		capinfo = IEEE80211_CAPINFO_ESS;
   1824 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1825 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1826 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1827 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1828 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1829 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1830 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1831 	bo->bo_caps = (u_int16_t *)frm;
   1832 	*(u_int16_t *)frm = htole16(capinfo);
   1833 	frm += 2;
   1834 	*frm++ = IEEE80211_ELEMID_SSID;
   1835 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
   1836 		*frm++ = ni->ni_esslen;
   1837 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1838 		frm += ni->ni_esslen;
   1839 	} else
   1840 		*frm++ = 0;
   1841 	frm = ieee80211_add_rates(frm, rs);
   1842 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
   1843 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   1844 		*frm++ = 1;
   1845 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1846 	}
   1847 	bo->bo_tim = frm;
   1848 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1849 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1850 		*frm++ = 2;
   1851 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1852 		bo->bo_tim_len = 0;
   1853 	} else {
   1854 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
   1855 
   1856 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   1857 		tie->tim_len = 4;	/* length */
   1858 		tie->tim_count = 0;	/* DTIM count */
   1859 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
   1860 		tie->tim_bitctl = 0;	/* bitmap control */
   1861 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   1862 		frm += sizeof(struct ieee80211_tim_ie);
   1863 		bo->bo_tim_len = 1;
   1864 	}
   1865 	bo->bo_trailer = frm;
   1866 	if (ic->ic_flags & IEEE80211_F_WME) {
   1867 		bo->bo_wme = frm;
   1868 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1869 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1870 	}
   1871 	if (ic->ic_flags & IEEE80211_F_WPA)
   1872 		frm = ieee80211_add_wpa(frm, ic);
   1873 	if (ic->ic_curmode == IEEE80211_MODE_11G)
   1874 		frm = ieee80211_add_erp(frm, ic);
   1875 	efrm = ieee80211_add_xrates(frm, rs);
   1876 	bo->bo_trailer_len = efrm - bo->bo_trailer;
   1877 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
   1878 
   1879 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1880 	IASSERT(m != NULL, ("no space for 802.11 header?"));
   1881 	wh = mtod(m, struct ieee80211_frame *);
   1882 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1883 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1884 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1885 	*(u_int16_t *)wh->i_dur = 0;
   1886 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   1887 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   1888 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   1889 	*(u_int16_t *)wh->i_seq = 0;
   1890 
   1891 	return m;
   1892 }
   1893 
   1894 /*
   1895  * Update the dynamic parts of a beacon frame based on the current state.
   1896  */
   1897 int
   1898 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
   1899     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
   1900 {
   1901 	int len_changed = 0;
   1902 	u_int16_t capinfo;
   1903 
   1904 	IEEE80211_BEACON_LOCK(ic);
   1905 	/* XXX faster to recalculate entirely or just changes? */
   1906 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1907 		capinfo = IEEE80211_CAPINFO_IBSS;
   1908 	else
   1909 		capinfo = IEEE80211_CAPINFO_ESS;
   1910 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1911 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1912 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1913 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1914 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1915 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1916 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1917 	*bo->bo_caps = htole16(capinfo);
   1918 
   1919 	if (ic->ic_flags & IEEE80211_F_WME) {
   1920 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   1921 
   1922 		/*
   1923 		 * Check for agressive mode change.  When there is
   1924 		 * significant high priority traffic in the BSS
   1925 		 * throttle back BE traffic by using conservative
   1926 		 * parameters.  Otherwise BE uses agressive params
   1927 		 * to optimize performance of legacy/non-QoS traffic.
   1928 		 */
   1929 		if (wme->wme_flags & WME_F_AGGRMODE) {
   1930 			if (wme->wme_hipri_traffic >
   1931 			    wme->wme_hipri_switch_thresh) {
   1932 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1933 				    "%s: traffic %u, disable aggressive mode\n",
   1934 				    __func__, wme->wme_hipri_traffic);
   1935 				wme->wme_flags &= ~WME_F_AGGRMODE;
   1936 				ieee80211_wme_updateparams_locked(ic);
   1937 				wme->wme_hipri_traffic =
   1938 					wme->wme_hipri_switch_hysteresis;
   1939 			} else
   1940 				wme->wme_hipri_traffic = 0;
   1941 		} else {
   1942 			if (wme->wme_hipri_traffic <=
   1943 			    wme->wme_hipri_switch_thresh) {
   1944 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1945 				    "%s: traffic %u, enable aggressive mode\n",
   1946 				    __func__, wme->wme_hipri_traffic);
   1947 				wme->wme_flags |= WME_F_AGGRMODE;
   1948 				ieee80211_wme_updateparams_locked(ic);
   1949 				wme->wme_hipri_traffic = 0;
   1950 			} else
   1951 				wme->wme_hipri_traffic =
   1952 					wme->wme_hipri_switch_hysteresis;
   1953 		}
   1954 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
   1955 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
   1956 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1957 		}
   1958 	}
   1959 
   1960 #ifndef IEEE80211_NO_HOSTAP
   1961 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
   1962 		struct ieee80211_tim_ie *tie =
   1963 			(struct ieee80211_tim_ie *) bo->bo_tim;
   1964 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
   1965 			u_int timlen, timoff, i;
   1966 			/*
   1967 			 * ATIM/DTIM needs updating.  If it fits in the
   1968 			 * current space allocated then just copy in the
   1969 			 * new bits.  Otherwise we need to move any trailing
   1970 			 * data to make room.  Note that we know there is
   1971 			 * contiguous space because ieee80211_beacon_allocate
   1972 			 * insures there is space in the mbuf to write a
   1973 			 * maximal-size virtual bitmap (based on ic_max_aid).
   1974 			 */
   1975 			/*
   1976 			 * Calculate the bitmap size and offset, copy any
   1977 			 * trailer out of the way, and then copy in the
   1978 			 * new bitmap and update the information element.
   1979 			 * Note that the tim bitmap must contain at least
   1980 			 * one byte and any offset must be even.
   1981 			 */
   1982 			if (ic->ic_ps_pending != 0) {
   1983 				timoff = 128;		/* impossibly large */
   1984 				for (i = 0; i < ic->ic_tim_len; i++)
   1985 					if (ic->ic_tim_bitmap[i]) {
   1986 						timoff = i &~ 1;
   1987 						break;
   1988 					}
   1989 				IASSERT(timoff != 128, ("tim bitmap empty!"));
   1990 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
   1991 					if (ic->ic_tim_bitmap[i])
   1992 						break;
   1993 				timlen = 1 + (i - timoff);
   1994 			} else {
   1995 				timoff = 0;
   1996 				timlen = 1;
   1997 			}
   1998 			if (timlen != bo->bo_tim_len) {
   1999 				/* copy up/down trailer */
   2000 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
   2001 					bo->bo_trailer_len);
   2002 				bo->bo_trailer = tie->tim_bitmap+timlen;
   2003 				bo->bo_wme = bo->bo_trailer;
   2004 				bo->bo_tim_len = timlen;
   2005 
   2006 				/* update information element */
   2007 				tie->tim_len = 3 + timlen;
   2008 				tie->tim_bitctl = timoff;
   2009 				len_changed = 1;
   2010 			}
   2011 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
   2012 				bo->bo_tim_len);
   2013 
   2014 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
   2015 
   2016 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2017 				"%s: TIM updated, pending %u, off %u, len %u\n",
   2018 				__func__, ic->ic_ps_pending, timoff, timlen);
   2019 		}
   2020 		/* count down DTIM period */
   2021 		if (tie->tim_count == 0)
   2022 			tie->tim_count = tie->tim_period - 1;
   2023 		else
   2024 			tie->tim_count--;
   2025 		/* update state for buffered multicast frames on DTIM */
   2026 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
   2027 			tie->tim_bitctl |= 1;
   2028 		else
   2029 			tie->tim_bitctl &= ~1;
   2030 	}
   2031 #endif /* !IEEE80211_NO_HOSTAP */
   2032 	IEEE80211_BEACON_UNLOCK(ic);
   2033 
   2034 	return len_changed;
   2035 }
   2036 
   2037 /*
   2038  * Save an outbound packet for a node in power-save sleep state.
   2039  * The new packet is placed on the node's saved queue, and the TIM
   2040  * is changed, if necessary.
   2041  */
   2042 void
   2043 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
   2044 		  struct mbuf *m)
   2045 {
   2046 	int qlen, age;
   2047 
   2048 	IEEE80211_NODE_SAVEQ_LOCK(ni);
   2049 	if (IF_QFULL(&ni->ni_savedq)) {
   2050 		IF_DROP(&ni->ni_savedq);
   2051 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2052 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   2053 			"[%s] pwr save q overflow, drops %d (size %d)\n",
   2054 			ether_sprintf(ni->ni_macaddr),
   2055 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
   2056 #ifdef IEEE80211_DEBUG
   2057 		if (ieee80211_msg_dumppkts(ic))
   2058 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
   2059 #endif
   2060 		m_freem(m);
   2061 		return;
   2062 	}
   2063 	/*
   2064 	 * Tag the frame with its expiry time and insert
   2065 	 * it in the queue.  The aging interval is 4 times
   2066 	 * the listen interval specified by the station.
   2067 	 * Frames that sit around too long are reclaimed
   2068 	 * using this information.
   2069 	 */
   2070 	/* XXX handle overflow? */
   2071 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
   2072 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
   2073 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2074 
   2075 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2076 		"[%s] save frame with age %d, %u now queued\n",
   2077 		ether_sprintf(ni->ni_macaddr), age, qlen);
   2078 
   2079 	if (qlen == 1)
   2080 		ic->ic_set_tim(ni, 1);
   2081 }
   2082