Home | History | Annotate | Line # | Download | only in net80211
ieee80211_output.c revision 1.59
      1 /*	$NetBSD: ieee80211_output.c,v 1.59 2017/09/26 07:42:06 knakahara Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 Atsushi Onoe
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * Alternatively, this software may be distributed under the terms of the
     19  * GNU General Public License ("GPL") version 2 as published by the Free
     20  * Software Foundation.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #ifdef __FreeBSD__
     36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
     37 #endif
     38 #ifdef __NetBSD__
     39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.59 2017/09/26 07:42:06 knakahara Exp $");
     40 #endif
     41 
     42 #ifdef _KERNEL_OPT
     43 #include "opt_inet.h"
     44 #endif
     45 
     46 #ifdef __NetBSD__
     47 #endif /* __NetBSD__ */
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/mbuf.h>
     52 #include <sys/kernel.h>
     53 #include <sys/endian.h>
     54 #include <sys/errno.h>
     55 #include <sys/proc.h>
     56 #include <sys/sysctl.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_llc.h>
     60 #include <net/if_media.h>
     61 #include <net/if_arp.h>
     62 #include <net/if_ether.h>
     63 #include <net/if_llc.h>
     64 #include <net/if_vlanvar.h>
     65 
     66 #include <net80211/ieee80211_netbsd.h>
     67 #include <net80211/ieee80211_var.h>
     68 
     69 #include <net/bpf.h>
     70 
     71 #ifdef INET
     72 #include <netinet/in.h>
     73 #include <netinet/in_systm.h>
     74 #include <netinet/in_var.h>
     75 #include <netinet/ip.h>
     76 #include <net/if_ether.h>
     77 #endif
     78 
     79 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
     80 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
     81 
     82 #ifdef IEEE80211_DEBUG
     83 /*
     84  * Decide if an outbound management frame should be
     85  * printed when debugging is enabled.  This filters some
     86  * of the less interesting frames that come frequently
     87  * (e.g. beacons).
     88  */
     89 static __inline int
     90 doprint(struct ieee80211com *ic, int subtype)
     91 {
     92 	switch (subtype) {
     93 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     94 		return (ic->ic_opmode == IEEE80211_M_IBSS);
     95 	}
     96 	return 1;
     97 }
     98 #endif
     99 
    100 /*
    101  * Set the direction field and address fields of an outgoing
    102  * non-QoS frame.  Note this should be called early on in
    103  * constructing a frame as it sets i_fc[1]; other bits can
    104  * then be or'd in.
    105  */
    106 static void
    107 ieee80211_send_setup(struct ieee80211com *ic,
    108 	struct ieee80211_node *ni,
    109 	struct ieee80211_frame *wh,
    110 	int type,
    111 	const u_int8_t sa[IEEE80211_ADDR_LEN],
    112 	const u_int8_t da[IEEE80211_ADDR_LEN],
    113 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
    114 {
    115 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
    116 
    117 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
    118 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
    119 		switch (ic->ic_opmode) {
    120 		case IEEE80211_M_STA:
    121 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    122 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
    123 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    124 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    125 			break;
    126 		case IEEE80211_M_IBSS:
    127 		case IEEE80211_M_AHDEMO:
    128 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    129 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    130 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    131 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    132 			break;
    133 		case IEEE80211_M_HOSTAP:
    134 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    135 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    136 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
    137 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    138 			break;
    139 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
    140 			break;
    141 		}
    142 	} else {
    143 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    144 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
    145 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    146 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    147 	}
    148 	*(u_int16_t *)&wh->i_dur[0] = 0;
    149 	/* NB: use non-QoS tid */
    150 	*(u_int16_t *)&wh->i_seq[0] =
    151 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    152 	ni->ni_txseqs[0]++;
    153 #undef WH4
    154 }
    155 
    156 /*
    157  * Send a management frame to the specified node.  The node pointer
    158  * must have a reference as the pointer will be passed to the driver
    159  * and potentially held for a long time.  If the frame is successfully
    160  * dispatched to the driver, then it is responsible for freeing the
    161  * reference (and potentially free'ing up any associated storage).
    162  */
    163 static int
    164 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
    165     struct mbuf *m, int type, int timer)
    166 {
    167 	struct ifnet *ifp = ic->ic_ifp;
    168 	struct ieee80211_frame *wh;
    169 
    170 	IASSERT(ni != NULL, ("null node"));
    171 
    172 	/*
    173 	 * Yech, hack alert!  We want to pass the node down to the
    174 	 * driver's start routine.  If we don't do so then the start
    175 	 * routine must immediately look it up again and that can
    176 	 * cause a lock order reversal if, for example, this frame
    177 	 * is being sent because the station is being timedout and
    178 	 * the frame being sent is a DEAUTH message.  We could stick
    179 	 * this in an m_tag and tack that on to the mbuf.  However
    180 	 * that's rather expensive to do for every frame so instead
    181 	 * we stuff it in the rcvif field since outbound frames do
    182 	 * not (presently) use this.
    183 	 */
    184 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
    185 	if (m == NULL)
    186 		return ENOMEM;
    187 	M_SETCTX(m, ni);
    188 
    189 	wh = mtod(m, struct ieee80211_frame *);
    190 	ieee80211_send_setup(ic, ni, wh,
    191 		IEEE80211_FC0_TYPE_MGT | type,
    192 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    193 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
    194 		m->m_flags &= ~M_LINK0;
    195 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
    196 			"[%s] encrypting frame (%s)\n",
    197 			ether_sprintf(wh->i_addr1), __func__);
    198 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
    199 	}
    200 #ifdef IEEE80211_DEBUG
    201 	/* avoid printing too many frames */
    202 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
    203 	    ieee80211_msg_dumppkts(ic)) {
    204 		printf("[%s] send %s on channel %u\n",
    205 		    ether_sprintf(wh->i_addr1),
    206 		    ieee80211_mgt_subtype_name[
    207 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
    208 				IEEE80211_FC0_SUBTYPE_SHIFT],
    209 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
    210 	}
    211 #endif
    212 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    213 	IF_ENQUEUE(&ic->ic_mgtq, m);
    214 	if (timer) {
    215 		/*
    216 		 * Set the mgt frame timeout.
    217 		 */
    218 		ic->ic_mgt_timer = timer;
    219 		ifp->if_timer = 1;
    220 	}
    221 	if_start_lock(ifp);
    222 	return 0;
    223 }
    224 
    225 /*
    226  * Send a null data frame to the specified node.
    227  *
    228  * NB: the caller is assumed to have setup a node reference
    229  *     for use; this is necessary to deal with a race condition
    230  *     when probing for inactive stations.
    231  */
    232 int
    233 ieee80211_send_nulldata(struct ieee80211_node *ni)
    234 {
    235 	struct ieee80211com *ic = ni->ni_ic;
    236 	struct ifnet *ifp = ic->ic_ifp;
    237 	struct mbuf *m;
    238 	struct ieee80211_frame *wh;
    239 
    240 	MGETHDR(m, M_NOWAIT, MT_HEADER);
    241 	if (m == NULL) {
    242 		/* XXX debug msg */
    243 		ic->ic_stats.is_tx_nobuf++;
    244 		ieee80211_unref_node(&ni);
    245 		return ENOMEM;
    246 	}
    247 	M_SETCTX(m, ni);
    248 
    249 	wh = mtod(m, struct ieee80211_frame *);
    250 	ieee80211_send_setup(ic, ni, wh,
    251 		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
    252 		ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    253 	/* NB: power management bit is never sent by an AP */
    254 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
    255 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
    256 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
    257 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
    258 
    259 	IEEE80211_NODE_STAT(ni, tx_data);
    260 
    261 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
    262 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
    263 	    ether_sprintf(ni->ni_macaddr),
    264 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
    265 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
    266 
    267 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
    268 	if_start_lock(ifp);
    269 
    270 	return 0;
    271 }
    272 
    273 /*
    274  * Assign priority to a frame based on any vlan tag assigned
    275  * to the station and/or any Diffserv setting in an IP header.
    276  * Finally, if an ACM policy is setup (in station mode) it's
    277  * applied.
    278  */
    279 int
    280 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
    281 {
    282 	int v_wme_ac, d_wme_ac, ac;
    283 #ifdef INET
    284 	struct ether_header *eh;
    285 #endif
    286 
    287 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
    288 		ac = WME_AC_BE;
    289 		goto done;
    290 	}
    291 
    292 	/*
    293 	 * If node has a vlan tag then all traffic
    294 	 * to it must have a matching tag.
    295 	 */
    296 	v_wme_ac = 0;
    297 	if (ni->ni_vlan != 0) {
    298 		/* XXX used to check ec_nvlans. */
    299 		if (!vlan_has_tag(m)) {
    300 			IEEE80211_NODE_STAT(ni, tx_novlantag);
    301 			return 1;
    302 		}
    303 		if (EVL_VLANOFTAG(vlan_get_tag(m)) !=
    304 		    EVL_VLANOFTAG(ni->ni_vlan)) {
    305 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
    306 			return 1;
    307 		}
    308 		/* map vlan priority to AC */
    309 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
    310 		case 1:
    311 		case 2:
    312 			v_wme_ac = WME_AC_BK;
    313 			break;
    314 		case 0:
    315 		case 3:
    316 			v_wme_ac = WME_AC_BE;
    317 			break;
    318 		case 4:
    319 		case 5:
    320 			v_wme_ac = WME_AC_VI;
    321 			break;
    322 		case 6:
    323 		case 7:
    324 			v_wme_ac = WME_AC_VO;
    325 			break;
    326 		}
    327 	}
    328 
    329 #ifdef INET
    330 	eh = mtod(m, struct ether_header *);
    331 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
    332 		const struct ip *ip = (struct ip *)
    333 			(mtod(m, u_int8_t *) + sizeof (*eh));
    334 		/*
    335 		 * IP frame, map the TOS field.
    336 		 */
    337 		switch (ip->ip_tos) {
    338 		case 0x08:
    339 		case 0x20:
    340 			d_wme_ac = WME_AC_BK;	/* background */
    341 			break;
    342 		case 0x28:
    343 		case 0xa0:
    344 			d_wme_ac = WME_AC_VI;	/* video */
    345 			break;
    346 		case 0x30:			/* voice */
    347 		case 0xe0:
    348 		case 0x88:			/* XXX UPSD */
    349 		case 0xb8:
    350 			d_wme_ac = WME_AC_VO;
    351 			break;
    352 		default:
    353 			d_wme_ac = WME_AC_BE;
    354 			break;
    355 		}
    356 	} else {
    357 #endif /* INET */
    358 		d_wme_ac = WME_AC_BE;
    359 #ifdef INET
    360 	}
    361 #endif
    362 	/*
    363 	 * Use highest priority AC.
    364 	 */
    365 	if (v_wme_ac > d_wme_ac)
    366 		ac = v_wme_ac;
    367 	else
    368 		ac = d_wme_ac;
    369 
    370 	/*
    371 	 * Apply ACM policy.
    372 	 */
    373 	if (ic->ic_opmode == IEEE80211_M_STA) {
    374 		static const int acmap[4] = {
    375 			WME_AC_BK,	/* WME_AC_BE */
    376 			WME_AC_BK,	/* WME_AC_BK */
    377 			WME_AC_BE,	/* WME_AC_VI */
    378 			WME_AC_VI,	/* WME_AC_VO */
    379 		};
    380 		while (ac != WME_AC_BK &&
    381 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
    382 			ac = acmap[ac];
    383 	}
    384 done:
    385 	M_WME_SETAC(m, ac);
    386 	return 0;
    387 }
    388 
    389 /*
    390  * Insure there is sufficient contiguous space to encapsulate the
    391  * 802.11 data frame.  If room isn't already there, arrange for it.
    392  * Drivers and cipher modules assume we have done the necessary work
    393  * and fail rudely if they don't find the space they need.
    394  */
    395 static struct mbuf *
    396 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
    397 	struct ieee80211_key *key, struct mbuf *m)
    398 {
    399 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
    400 	int needed_space = hdrsize;
    401 	int wlen = 0;
    402 
    403 	if (key != NULL) {
    404 		/* XXX belongs in crypto code? */
    405 		needed_space += key->wk_cipher->ic_header;
    406 		/* XXX frags */
    407 	}
    408 	/*
    409 	 * We know we are called just before stripping an Ethernet
    410 	 * header and prepending an LLC header.  This means we know
    411 	 * there will be
    412 	 *	sizeof(struct ether_header) - sizeof(struct llc)
    413 	 * bytes recovered to which we need additional space for the
    414 	 * 802.11 header and any crypto header.
    415 	 */
    416 	/* XXX check trailing space and copy instead? */
    417 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
    418 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
    419 		if (n == NULL) {
    420 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    421 			    "%s: cannot expand storage\n", __func__);
    422 			ic->ic_stats.is_tx_nobuf++;
    423 			m_freem(m);
    424 			return NULL;
    425 		}
    426 		IASSERT(needed_space <= MHLEN,
    427 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
    428 		/*
    429 		 * Setup new mbuf to have leading space to prepend the
    430 		 * 802.11 header and any crypto header bits that are
    431 		 * required (the latter are added when the driver calls
    432 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
    433 		 */
    434 		/* NB: must be first 'cuz it clobbers m_data */
    435 		M_MOVE_PKTHDR(n, m);
    436 		n->m_len = 0;			/* NB: m_gethdr does not set */
    437 		n->m_data += needed_space;
    438 		/*
    439 		 * Pull up Ethernet header to create the expected layout.
    440 		 * We could use m_pullup but that's overkill (i.e. we don't
    441 		 * need the actual data) and it cannot fail so do it inline
    442 		 * for speed.
    443 		 */
    444 		/* NB: struct ether_header is known to be contiguous */
    445 		n->m_len += sizeof(struct ether_header);
    446 		m->m_len -= sizeof(struct ether_header);
    447 		m->m_data += sizeof(struct ether_header);
    448 		/*
    449 		 * Replace the head of the chain.
    450 		 */
    451 		n->m_next = m;
    452 		m = n;
    453 	} else {
    454                 /* We will overwrite the ethernet header in the
    455                  * 802.11 encapsulation stage.  Make sure that it
    456                  * is writable.
    457 		 */
    458 		wlen = sizeof(struct ether_header);
    459 	}
    460 
    461 	/*
    462 	 * If we're going to s/w encrypt the mbuf chain make sure it is
    463 	 * writable.
    464 	 */
    465 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
    466 		wlen = M_COPYALL;
    467 
    468 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
    469 		m_freem(m);
    470 		return NULL;
    471 	}
    472 	return m;
    473 #undef TO_BE_RECLAIMED
    474 }
    475 
    476 /*
    477  * Return the transmit key to use in sending a unicast frame.
    478  * If a unicast key is set we use that.  When no unicast key is set
    479  * we fall back to the default transmit key.
    480  */
    481 static __inline struct ieee80211_key *
    482 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    483 {
    484 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
    485 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    486 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    487 			return NULL;
    488 		return &ic->ic_nw_keys[ic->ic_def_txkey];
    489 	} else {
    490 		return &ni->ni_ucastkey;
    491 	}
    492 }
    493 
    494 /*
    495  * Return the transmit key to use in sending a multicast frame.
    496  * Multicast traffic always uses the group key which is installed as
    497  * the default tx key.
    498  */
    499 static __inline struct ieee80211_key *
    500 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
    501     struct ieee80211_node *ni)
    502 {
    503 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    504 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    505 		return NULL;
    506 	return &ic->ic_nw_keys[ic->ic_def_txkey];
    507 }
    508 
    509 /*
    510  * Encapsulate an outbound data frame.  The mbuf chain is updated.
    511  * If an error is encountered NULL is returned.  The caller is required
    512  * to provide a node reference and pullup the ethernet header in the
    513  * first mbuf.
    514  */
    515 struct mbuf *
    516 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
    517 	struct ieee80211_node *ni)
    518 {
    519 	struct ether_header eh;
    520 	struct ieee80211_frame *wh;
    521 	struct ieee80211_key *key;
    522 	struct llc *llc;
    523 	int hdrsize, datalen, addqos, txfrag;
    524 
    525 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
    526 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
    527 
    528 	/*
    529 	 * Insure space for additional headers.  First identify
    530 	 * transmit key to use in calculating any buffer adjustments
    531 	 * required.  This is also used below to do privacy
    532 	 * encapsulation work.  Then calculate the 802.11 header
    533 	 * size and any padding required by the driver.
    534 	 *
    535 	 * Note key may be NULL if we fall back to the default
    536 	 * transmit key and that is not set.  In that case the
    537 	 * buffer may not be expanded as needed by the cipher
    538 	 * routines, but they will/should discard it.
    539 	 */
    540 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
    541 		if (ic->ic_opmode == IEEE80211_M_STA ||
    542 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost))
    543 			key = ieee80211_crypto_getucastkey(ic, ni);
    544 		else
    545 			key = ieee80211_crypto_getmcastkey(ic, ni);
    546 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
    547 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    548 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    549 			    ether_sprintf(eh.ether_dhost), __func__,
    550 			    ic->ic_def_txkey);
    551 			ic->ic_stats.is_tx_nodefkey++;
    552 		}
    553 	} else
    554 		key = NULL;
    555 	/* XXX 4-address format */
    556 	/*
    557 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
    558 	 * frames so suppress use.  This may be an issue if other
    559 	 * ap's require all data frames to be QoS-encapsulated
    560 	 * once negotiated in which case we'll need to make this
    561 	 * configurable.
    562 	 */
    563 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
    564 		 eh.ether_type != htons(ETHERTYPE_PAE);
    565 	if (addqos)
    566 		hdrsize = sizeof(struct ieee80211_qosframe);
    567 	else
    568 		hdrsize = sizeof(struct ieee80211_frame);
    569 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    570 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
    571 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
    572 	if (m == NULL) {
    573 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
    574 		goto bad;
    575 	}
    576 
    577 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
    578 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
    579 	llc = mtod(m, struct llc *);
    580 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
    581 	llc->llc_control = LLC_UI;
    582 	llc->llc_snap.org_code[0] = 0;
    583 	llc->llc_snap.org_code[1] = 0;
    584 	llc->llc_snap.org_code[2] = 0;
    585 	llc->llc_snap.ether_type = eh.ether_type;
    586 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
    587 
    588 	M_PREPEND(m, hdrsize, M_DONTWAIT);
    589 	if (m == NULL) {
    590 		ic->ic_stats.is_tx_nobuf++;
    591 		goto bad;
    592 	}
    593 	wh = mtod(m, struct ieee80211_frame *);
    594 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
    595 	*(u_int16_t *)wh->i_dur = 0;
    596 	switch (ic->ic_opmode) {
    597 	case IEEE80211_M_STA:
    598 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    599 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
    600 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    601 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
    602 		break;
    603 	case IEEE80211_M_IBSS:
    604 	case IEEE80211_M_AHDEMO:
    605 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    606 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    607 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    608 		/*
    609 		 * NB: always use the bssid from ic_bss as the
    610 		 *     neighbor's may be stale after an ibss merge
    611 		 */
    612 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
    613 		break;
    614 	case IEEE80211_M_HOSTAP:
    615 #ifndef IEEE80211_NO_HOSTAP
    616 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    617 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    618 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    619 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
    620 #endif /* !IEEE80211_NO_HOSTAP */
    621 		break;
    622 	case IEEE80211_M_MONITOR:
    623 		goto bad;
    624 	}
    625 	if (m->m_flags & M_MORE_DATA)
    626 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
    627 	if (addqos) {
    628 		struct ieee80211_qosframe *qwh =
    629 			(struct ieee80211_qosframe *) wh;
    630 		int ac, tid;
    631 
    632 		ac = M_WME_GETAC(m);
    633 		/* map from access class/queue to 11e header priorty value */
    634 		tid = WME_AC_TO_TID(ac);
    635 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
    636 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
    637 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
    638 		qwh->i_qos[1] = 0;
    639 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
    640 
    641 		*(u_int16_t *)wh->i_seq =
    642 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
    643 		ni->ni_txseqs[tid]++;
    644 	} else {
    645 		*(u_int16_t *)wh->i_seq =
    646 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    647 		ni->ni_txseqs[0]++;
    648 	}
    649 	/* check if xmit fragmentation is required */
    650 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
    651 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    652 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
    653 	if (key != NULL) {
    654 		/*
    655 		 * IEEE 802.1X: send EAPOL frames always in the clear.
    656 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
    657 		 */
    658 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
    659 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
    660 		     (ic->ic_opmode == IEEE80211_M_STA ?
    661 		      !IEEE80211_KEY_UNDEFINED(*key) :
    662 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
    663 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
    664 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
    665 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    666 				    "[%s] enmic failed, discard frame\n",
    667 				    ether_sprintf(eh.ether_dhost));
    668 				ic->ic_stats.is_crypto_enmicfail++;
    669 				goto bad;
    670 			}
    671 		}
    672 	}
    673 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
    674 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
    675 		goto bad;
    676 
    677 	IEEE80211_NODE_STAT(ni, tx_data);
    678 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
    679 
    680 	return m;
    681 bad:
    682 	if (m != NULL)
    683 		m_freem(m);
    684 	return NULL;
    685 }
    686 
    687 /*
    688  * Arguments in:
    689  *
    690  * paylen:  payload length (no FCS, no WEP header)
    691  *
    692  * hdrlen:  header length
    693  *
    694  * rate:    MSDU speed, units 500kb/s
    695  *
    696  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
    697  *          IEEE80211_F_SHSLOT (use short slot length)
    698  *
    699  * Arguments out:
    700  *
    701  * d:       802.11 Duration field for RTS,
    702  *          802.11 Duration field for data frame,
    703  *          PLCP Length for data frame,
    704  *          residual octets at end of data slot
    705  */
    706 static int
    707 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
    708     struct ieee80211_duration *d)
    709 {
    710 	int pre, ctsrate;
    711 	int ack, bitlen, data_dur, remainder;
    712 
    713 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
    714 	 * DATA reserves medium for SIFS | ACK,
    715 	 *
    716 	 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
    717 	 *
    718 	 * XXXMYC: no ACK on multicast/broadcast or control packets
    719 	 */
    720 
    721 	bitlen = len * 8;
    722 
    723 	pre = IEEE80211_DUR_DS_SIFS;
    724 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
    725 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
    726 	else
    727 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
    728 
    729 	d->d_residue = 0;
    730 	data_dur = (bitlen * 2) / rate;
    731 	remainder = (bitlen * 2) % rate;
    732 	if (remainder != 0) {
    733 		d->d_residue = (rate - remainder) / 16;
    734 		data_dur++;
    735 	}
    736 
    737 	switch (rate) {
    738 	case 2:		/* 1 Mb/s */
    739 	case 4:		/* 2 Mb/s */
    740 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
    741 		ctsrate = 2;
    742 		break;
    743 	case 11:	/* 5.5 Mb/s */
    744 	case 22:	/* 11  Mb/s */
    745 	case 44:	/* 22  Mb/s */
    746 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
    747 		ctsrate = 4;
    748 		break;
    749 	default:
    750 		/* TBD */
    751 		return -1;
    752 	}
    753 
    754 	d->d_plcp_len = data_dur;
    755 
    756 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
    757 
    758 	d->d_rts_dur =
    759 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
    760 	    pre + data_dur +
    761 	    ack;
    762 
    763 	d->d_data_dur = ack;
    764 
    765 	return 0;
    766 }
    767 
    768 /*
    769  * Arguments in:
    770  *
    771  * wh:      802.11 header
    772  *
    773  * paylen:  payload length (no FCS, no WEP header)
    774  *
    775  * rate:    MSDU speed, units 500kb/s
    776  *
    777  * fraglen: fragment length, set to maximum (or higher) for no
    778  *          fragmentation
    779  *
    780  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
    781  *          IEEE80211_F_SHPREAMBLE (use short preamble),
    782  *          IEEE80211_F_SHSLOT (use short slot length)
    783  *
    784  * Arguments out:
    785  *
    786  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    787  *     of first/only fragment
    788  *
    789  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    790  *     of last fragment
    791  *
    792  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
    793  * has already taken place.
    794  */
    795 int
    796 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
    797     const struct ieee80211_key *wk, int len,
    798     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
    799     struct ieee80211_duration *dn, int *npktp, int debug)
    800 {
    801 	int ack, rc;
    802 	int cryptolen,	/* crypto overhead: header+trailer */
    803 	    firstlen,	/* first fragment's payload + overhead length */
    804 	    hdrlen,	/* header length w/o driver padding */
    805 	    lastlen,	/* last fragment's payload length w/ overhead */
    806 	    lastlen0,	/* last fragment's payload length w/o overhead */
    807 	    npkt,	/* number of fragments */
    808 	    overlen,	/* non-802.11 header overhead per fragment */
    809 	    paylen;	/* payload length w/o overhead */
    810 
    811 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
    812 
    813         /* Account for padding required by the driver. */
    814 	if (icflags & IEEE80211_F_DATAPAD)
    815 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
    816 	else
    817 		paylen = len - hdrlen;
    818 
    819 	overlen = IEEE80211_CRC_LEN;
    820 
    821 	if (wk != NULL) {
    822 		cryptolen = wk->wk_cipher->ic_header +
    823 		            wk->wk_cipher->ic_trailer;
    824 		paylen -= cryptolen;
    825 		overlen += cryptolen;
    826 	}
    827 
    828 	npkt = paylen / fraglen;
    829 	lastlen0 = paylen % fraglen;
    830 
    831 	if (npkt == 0)			/* no fragments */
    832 		lastlen = paylen + overlen;
    833 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
    834 		lastlen = lastlen0 + overlen;
    835 		npkt++;
    836 	} else				/* full-length "tail" fragment */
    837 		lastlen = fraglen + overlen;
    838 
    839 	if (npktp != NULL)
    840 		*npktp = npkt;
    841 
    842 	if (npkt > 1)
    843 		firstlen = fraglen + overlen;
    844 	else
    845 		firstlen = paylen + overlen;
    846 
    847 	if (debug) {
    848 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
    849 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
    850 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
    851 		    overlen, len, rate, icflags);
    852 	}
    853 
    854 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    855 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
    856 
    857 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
    858 	    ack, icflags, rate, d0);
    859 	if (rc == -1)
    860 		return rc;
    861 
    862 	if (npkt <= 1) {
    863 		*dn = *d0;
    864 		return 0;
    865 	}
    866 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
    867 	    dn);
    868 }
    869 
    870 /*
    871  * Fragment the frame according to the specified mtu.
    872  * The size of the 802.11 header (w/o padding) is provided
    873  * so we don't need to recalculate it.  We create a new
    874  * mbuf for each fragment and chain it through m_nextpkt;
    875  * we might be able to optimize this by reusing the original
    876  * packet's mbufs but that is significantly more complicated.
    877  */
    878 static int
    879 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
    880 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
    881 {
    882 	struct ieee80211_frame *wh, *whf;
    883 	struct mbuf *m, *prev, *next;
    884 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
    885 
    886 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
    887 	IASSERT(m0->m_pkthdr.len > mtu,
    888 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
    889 
    890 	wh = mtod(m0, struct ieee80211_frame *);
    891 	/* NB: mark the first frag; it will be propagated below */
    892 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
    893 	totalhdrsize = hdrsize + ciphdrsize;
    894 	fragno = 1;
    895 	off = mtu - ciphdrsize;
    896 	remainder = m0->m_pkthdr.len - off;
    897 	prev = m0;
    898 	do {
    899 		fragsize = totalhdrsize + remainder;
    900 		if (fragsize > mtu)
    901 			fragsize = mtu;
    902 		IASSERT(fragsize < MCLBYTES,
    903 			("fragment size %u too big!", fragsize));
    904 		if (fragsize > MHLEN)
    905 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    906 		else
    907 			m = m_gethdr(M_DONTWAIT, MT_DATA);
    908 		if (m == NULL)
    909 			goto bad;
    910 		/* leave room to prepend any cipher header */
    911 		m_align(m, fragsize - ciphdrsize);
    912 
    913 		/*
    914 		 * Form the header in the fragment.  Note that since
    915 		 * we mark the first fragment with the MORE_FRAG bit
    916 		 * it automatically is propagated to each fragment; we
    917 		 * need only clear it on the last fragment (done below).
    918 		 */
    919 		whf = mtod(m, struct ieee80211_frame *);
    920 		memcpy(whf, wh, hdrsize);
    921 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
    922 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
    923 				IEEE80211_SEQ_FRAG_SHIFT);
    924 		fragno++;
    925 
    926 		payload = fragsize - totalhdrsize;
    927 		/* NB: destination is known to be contiguous */
    928 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
    929 		m->m_len = hdrsize + payload;
    930 		m->m_pkthdr.len = hdrsize + payload;
    931 		m->m_flags |= M_FRAG;
    932 
    933 		/* chain up the fragment */
    934 		prev->m_nextpkt = m;
    935 		prev = m;
    936 
    937 		/* deduct fragment just formed */
    938 		remainder -= payload;
    939 		off += payload;
    940 	} while (remainder != 0);
    941 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
    942 
    943 	/* strip first mbuf now that everything has been copied */
    944 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
    945 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
    946 
    947 	ic->ic_stats.is_tx_fragframes++;
    948 	ic->ic_stats.is_tx_frags += fragno-1;
    949 
    950 	return 1;
    951 bad:
    952 	/* reclaim fragments but leave original frame for caller to free */
    953 	for (m = m0->m_nextpkt; m != NULL; m = next) {
    954 		next = m->m_nextpkt;
    955 		m->m_nextpkt = NULL;            /* XXX paranoid */
    956 		m_freem(m);
    957 	}
    958 	m0->m_nextpkt = NULL;
    959 	return 0;
    960 }
    961 
    962 /*
    963  * Add a supported rates element id to a frame.
    964  */
    965 u_int8_t *
    966 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    967 {
    968 	int nrates;
    969 
    970 	*frm++ = IEEE80211_ELEMID_RATES;
    971 	nrates = rs->rs_nrates;
    972 	if (nrates > IEEE80211_RATE_SIZE)
    973 		nrates = IEEE80211_RATE_SIZE;
    974 	*frm++ = nrates;
    975 	memcpy(frm, rs->rs_rates, nrates);
    976 	return frm + nrates;
    977 }
    978 
    979 /*
    980  * Add an extended supported rates element id to a frame.
    981  */
    982 u_int8_t *
    983 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
    984 {
    985 	/*
    986 	 * Add an extended supported rates element if operating in 11g mode.
    987 	 */
    988 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
    989 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
    990 		*frm++ = IEEE80211_ELEMID_XRATES;
    991 		*frm++ = nrates;
    992 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
    993 		frm += nrates;
    994 	}
    995 	return frm;
    996 }
    997 
    998 /*
    999  * Add an ssid elemet to a frame.
   1000  */
   1001 u_int8_t *
   1002 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   1003 {
   1004 	*frm++ = IEEE80211_ELEMID_SSID;
   1005 	*frm++ = len;
   1006 	memcpy(frm, ssid, len);
   1007 	return frm + len;
   1008 }
   1009 
   1010 /*
   1011  * Add an erp element to a frame.
   1012  */
   1013 static u_int8_t *
   1014 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
   1015 {
   1016 	u_int8_t erp;
   1017 
   1018 	*frm++ = IEEE80211_ELEMID_ERP;
   1019 	*frm++ = 1;
   1020 	erp = 0;
   1021 	if (ic->ic_nonerpsta != 0)
   1022 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
   1023 	if (ic->ic_flags & IEEE80211_F_USEPROT)
   1024 		erp |= IEEE80211_ERP_USE_PROTECTION;
   1025 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
   1026 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
   1027 	*frm++ = erp;
   1028 	return frm;
   1029 }
   1030 
   1031 static u_int8_t *
   1032 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
   1033 {
   1034 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
   1035 #define	ADDSHORT(frm, v) do {			\
   1036 	frm[0] = (v) & 0xff;			\
   1037 	frm[1] = (v) >> 8;			\
   1038 	frm += 2;				\
   1039 } while (0)
   1040 #define	ADDSELECTOR(frm, sel) do {		\
   1041 	memcpy(frm, sel, 4);			\
   1042 	frm += 4;				\
   1043 } while (0)
   1044 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
   1045 	static const u_int8_t cipher_suite[][4] = {
   1046 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
   1047 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
   1048 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
   1049 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
   1050 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1051 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
   1052 	};
   1053 	static const u_int8_t wep104_suite[4] =
   1054 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
   1055 	static const u_int8_t key_mgt_unspec[4] =
   1056 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
   1057 	static const u_int8_t key_mgt_psk[4] =
   1058 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
   1059 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1060 	u_int8_t *frm = ie;
   1061 	u_int8_t *selcnt;
   1062 
   1063 	*frm++ = IEEE80211_ELEMID_VENDOR;
   1064 	*frm++ = 0;				/* length filled in below */
   1065 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
   1066 	frm += sizeof(oui);
   1067 	ADDSHORT(frm, WPA_VERSION);
   1068 
   1069 	/* XXX filter out CKIP */
   1070 
   1071 	/* multicast cipher */
   1072 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1073 	    rsn->rsn_mcastkeylen >= 13)
   1074 		ADDSELECTOR(frm, wep104_suite);
   1075 	else
   1076 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1077 
   1078 	/* unicast cipher list */
   1079 	selcnt = frm;
   1080 	ADDSHORT(frm, 0);			/* selector count */
   1081 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1082 		selcnt[0]++;
   1083 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1084 	}
   1085 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1086 		selcnt[0]++;
   1087 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1088 	}
   1089 
   1090 	/* authenticator selector list */
   1091 	selcnt = frm;
   1092 	ADDSHORT(frm, 0);			/* selector count */
   1093 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1094 		selcnt[0]++;
   1095 		ADDSELECTOR(frm, key_mgt_unspec);
   1096 	}
   1097 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1098 		selcnt[0]++;
   1099 		ADDSELECTOR(frm, key_mgt_psk);
   1100 	}
   1101 
   1102 	/* optional capabilities */
   1103 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
   1104 		ADDSHORT(frm, rsn->rsn_caps);
   1105 
   1106 	/* calculate element length */
   1107 	ie[1] = frm - ie - 2;
   1108 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1109 		("WPA IE too big, %u > %zu",
   1110 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1111 	return frm;
   1112 #undef ADDSHORT
   1113 #undef ADDSELECTOR
   1114 #undef WPA_OUI_BYTES
   1115 }
   1116 
   1117 static u_int8_t *
   1118 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
   1119 {
   1120 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
   1121 #define	ADDSHORT(frm, v) do {			\
   1122 	frm[0] = (v) & 0xff;			\
   1123 	frm[1] = (v) >> 8;			\
   1124 	frm += 2;				\
   1125 } while (0)
   1126 #define	ADDSELECTOR(frm, sel) do {		\
   1127 	memcpy(frm, sel, 4);			\
   1128 	frm += 4;				\
   1129 } while (0)
   1130 	static const u_int8_t cipher_suite[][4] = {
   1131 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
   1132 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
   1133 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
   1134 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
   1135 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1136 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
   1137 	};
   1138 	static const u_int8_t wep104_suite[4] =
   1139 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
   1140 	static const u_int8_t key_mgt_unspec[4] =
   1141 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
   1142 	static const u_int8_t key_mgt_psk[4] =
   1143 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
   1144 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1145 	u_int8_t *frm = ie;
   1146 	u_int8_t *selcnt;
   1147 
   1148 	*frm++ = IEEE80211_ELEMID_RSN;
   1149 	*frm++ = 0;				/* length filled in below */
   1150 	ADDSHORT(frm, RSN_VERSION);
   1151 
   1152 	/* XXX filter out CKIP */
   1153 
   1154 	/* multicast cipher */
   1155 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1156 	    rsn->rsn_mcastkeylen >= 13)
   1157 		ADDSELECTOR(frm, wep104_suite);
   1158 	else
   1159 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1160 
   1161 	/* unicast cipher list */
   1162 	selcnt = frm;
   1163 	ADDSHORT(frm, 0);			/* selector count */
   1164 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
   1165 		selcnt[0]++;
   1166 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1167 	}
   1168 	if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
   1169 		selcnt[0]++;
   1170 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1171 	}
   1172 
   1173 	/* authenticator selector list */
   1174 	selcnt = frm;
   1175 	ADDSHORT(frm, 0);			/* selector count */
   1176 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1177 		selcnt[0]++;
   1178 		ADDSELECTOR(frm, key_mgt_unspec);
   1179 	}
   1180 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1181 		selcnt[0]++;
   1182 		ADDSELECTOR(frm, key_mgt_psk);
   1183 	}
   1184 
   1185 	/* optional capabilities */
   1186 	ADDSHORT(frm, rsn->rsn_caps);
   1187 	/* XXX PMKID */
   1188 
   1189 	/* calculate element length */
   1190 	ie[1] = frm - ie - 2;
   1191 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1192 		("RSN IE too big, %u > %zu",
   1193 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1194 	return frm;
   1195 #undef ADDSELECTOR
   1196 #undef ADDSHORT
   1197 #undef RSN_OUI_BYTES
   1198 }
   1199 
   1200 /*
   1201  * Add a WPA/RSN element to a frame.
   1202  */
   1203 u_int8_t *
   1204 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
   1205 {
   1206 
   1207 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
   1208 	if (ic->ic_flags & IEEE80211_F_WPA2)
   1209 		frm = ieee80211_setup_rsn_ie(ic, frm);
   1210 	if (ic->ic_flags & IEEE80211_F_WPA1)
   1211 		frm = ieee80211_setup_wpa_ie(ic, frm);
   1212 	return frm;
   1213 }
   1214 
   1215 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
   1216 /*
   1217  * Add a WME information element to a frame.
   1218  */
   1219 u_int8_t *
   1220 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1221 {
   1222 	static const struct ieee80211_wme_info info = {
   1223 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1224 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
   1225 		.wme_oui	= { WME_OUI_BYTES },
   1226 		.wme_type	= WME_OUI_TYPE,
   1227 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
   1228 		.wme_version	= WME_VERSION,
   1229 		.wme_info	= 0,
   1230 	};
   1231 	memcpy(frm, &info, sizeof(info));
   1232 	return frm + sizeof(info);
   1233 }
   1234 
   1235 /*
   1236  * Add a WME parameters element to a frame.
   1237  */
   1238 static u_int8_t *
   1239 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1240 {
   1241 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
   1242 #define	ADDSHORT(frm, v) do {			\
   1243 	frm[0] = (v) & 0xff;			\
   1244 	frm[1] = (v) >> 8;			\
   1245 	frm += 2;				\
   1246 } while (0)
   1247 	/* NB: this works 'cuz a param has an info at the front */
   1248 	static const struct ieee80211_wme_info param = {
   1249 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1250 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
   1251 		.wme_oui	= { WME_OUI_BYTES },
   1252 		.wme_type	= WME_OUI_TYPE,
   1253 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
   1254 		.wme_version	= WME_VERSION,
   1255 	};
   1256 	int i;
   1257 
   1258 	memcpy(frm, &param, sizeof(param));
   1259 	frm += offsetof(struct ieee80211_wme_info, wme_info);
   1260 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
   1261 	*frm++ = 0;					/* reserved field */
   1262 	for (i = 0; i < WME_NUM_AC; i++) {
   1263 		const struct wmeParams *ac =
   1264 		       &wme->wme_bssChanParams.cap_wmeParams[i];
   1265 		*frm++ = SM(i, WME_PARAM_ACI)
   1266 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
   1267 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
   1268 		       ;
   1269 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
   1270 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
   1271 		       ;
   1272 		ADDSHORT(frm, ac->wmep_txopLimit);
   1273 	}
   1274 	return frm;
   1275 #undef SM
   1276 #undef ADDSHORT
   1277 }
   1278 #undef WME_OUI_BYTES
   1279 
   1280 /*
   1281  * Send a probe request frame with the specified ssid
   1282  * and any optional information element data.
   1283  */
   1284 int
   1285 ieee80211_send_probereq(struct ieee80211_node *ni,
   1286 	const u_int8_t sa[IEEE80211_ADDR_LEN],
   1287 	const u_int8_t da[IEEE80211_ADDR_LEN],
   1288 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
   1289 	const u_int8_t *ssid, size_t ssidlen,
   1290 	const void *optie, size_t optielen)
   1291 {
   1292 	struct ieee80211com *ic = ni->ni_ic;
   1293 	enum ieee80211_phymode mode;
   1294 	struct ieee80211_frame *wh;
   1295 	struct mbuf *m;
   1296 	u_int8_t *frm;
   1297 
   1298 	/*
   1299 	 * Hold a reference on the node so it doesn't go away until after
   1300 	 * the xmit is complete all the way in the driver.  On error we
   1301 	 * will remove our reference.
   1302 	 */
   1303 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1304 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1305 		__func__, __LINE__,
   1306 		ni, ether_sprintf(ni->ni_macaddr),
   1307 		ieee80211_node_refcnt(ni)+1);
   1308 	ieee80211_ref_node(ni);
   1309 
   1310 	/*
   1311 	 * prreq frame format
   1312 	 *	[tlv] ssid
   1313 	 *	[tlv] supported rates
   1314 	 *	[tlv] extended supported rates
   1315 	 *	[tlv] user-specified ie's
   1316 	 */
   1317 	m = ieee80211_getmgtframe(&frm,
   1318 		 2 + IEEE80211_NWID_LEN
   1319 	       + 2 + IEEE80211_RATE_SIZE
   1320 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1321 	       + (optie != NULL ? optielen : 0)
   1322 	);
   1323 	if (m == NULL) {
   1324 		ic->ic_stats.is_tx_nobuf++;
   1325 		ieee80211_free_node(ni);
   1326 		return ENOMEM;
   1327 	}
   1328 
   1329 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
   1330 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
   1331 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
   1332 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
   1333 
   1334 	if (optie != NULL) {
   1335 		memcpy(frm, optie, optielen);
   1336 		frm += optielen;
   1337 	}
   1338 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1339 
   1340 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1341 	if (m == NULL)
   1342 		return ENOMEM;
   1343 	M_SETCTX(m, ni);
   1344 
   1345 	wh = mtod(m, struct ieee80211_frame *);
   1346 	ieee80211_send_setup(ic, ni, wh,
   1347 		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
   1348 		sa, da, bssid);
   1349 	/* XXX power management? */
   1350 
   1351 	IEEE80211_NODE_STAT(ni, tx_probereq);
   1352 	IEEE80211_NODE_STAT(ni, tx_mgmt);
   1353 
   1354 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   1355 	    "[%s] send probe req on channel %u\n",
   1356 	    ether_sprintf(wh->i_addr1),
   1357 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1358 
   1359 	IF_ENQUEUE(&ic->ic_mgtq, m);
   1360 	if_start_lock(ic->ic_ifp);
   1361 	return 0;
   1362 }
   1363 
   1364 /*
   1365  * Send a management frame.  The node is for the destination (or ic_bss
   1366  * when in station mode).  Nodes other than ic_bss have their reference
   1367  * count bumped to reflect our use for an indeterminant time.
   1368  */
   1369 int
   1370 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
   1371 	int type, int arg)
   1372 {
   1373 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
   1374 	struct mbuf *m;
   1375 	u_int8_t *frm;
   1376 	u_int16_t capinfo;
   1377 	int has_challenge, is_shared_key, ret, timer, status;
   1378 
   1379 	IASSERT(ni != NULL, ("null node"));
   1380 
   1381 	/*
   1382 	 * Hold a reference on the node so it doesn't go away until after
   1383 	 * the xmit is complete all the way in the driver.  On error we
   1384 	 * will remove our reference.
   1385 	 */
   1386 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1387 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1388 		__func__, __LINE__,
   1389 		ni, ether_sprintf(ni->ni_macaddr),
   1390 		ieee80211_node_refcnt(ni)+1);
   1391 	ieee80211_ref_node(ni);
   1392 
   1393 	timer = 0;
   1394 	switch (type) {
   1395 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   1396 		/*
   1397 		 * probe response frame format
   1398 		 *	[8] time stamp
   1399 		 *	[2] beacon interval
   1400 		 *	[2] cabability information
   1401 		 *	[tlv] ssid
   1402 		 *	[tlv] supported rates
   1403 		 *	[tlv] parameter set (FH/DS)
   1404 		 *	[tlv] parameter set (IBSS)
   1405 		 *	[tlv] extended rate phy (ERP)
   1406 		 *	[tlv] extended supported rates
   1407 		 *	[tlv] WPA
   1408 		 *	[tlv] WME (optional)
   1409 		 */
   1410 		m = ieee80211_getmgtframe(&frm,
   1411 			 8
   1412 		       + sizeof(u_int16_t)
   1413 		       + sizeof(u_int16_t)
   1414 		       + 2 + IEEE80211_NWID_LEN
   1415 		       + 2 + IEEE80211_RATE_SIZE
   1416 		       + 7	/* max(7,3) */
   1417 		       + 6
   1418 		       + 3
   1419 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1420 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
   1421 		       + (ic->ic_flags & IEEE80211_F_WPA ?
   1422 				2*sizeof(struct ieee80211_ie_wpa) : 0)
   1423 		       + sizeof(struct ieee80211_wme_param)
   1424 		);
   1425 		if (m == NULL)
   1426 			senderr(ENOMEM, is_tx_nobuf);
   1427 
   1428 		memset(frm, 0, 8);	/* timestamp should be filled later */
   1429 		frm += 8;
   1430 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
   1431 		frm += 2;
   1432 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1433 			capinfo = IEEE80211_CAPINFO_IBSS;
   1434 		else
   1435 			capinfo = IEEE80211_CAPINFO_ESS;
   1436 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1437 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1438 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1439 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1440 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1441 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1442 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1443 		*(u_int16_t *)frm = htole16(capinfo);
   1444 		frm += 2;
   1445 
   1446 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
   1447 				ic->ic_bss->ni_esslen);
   1448 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1449 
   1450 		if (ic->ic_phytype == IEEE80211_T_FH) {
   1451                         *frm++ = IEEE80211_ELEMID_FHPARMS;
   1452                         *frm++ = 5;
   1453                         *frm++ = ni->ni_fhdwell & 0x00ff;
   1454                         *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
   1455                         *frm++ = IEEE80211_FH_CHANSET(
   1456 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1457                         *frm++ = IEEE80211_FH_CHANPAT(
   1458 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1459                         *frm++ = ni->ni_fhindex;
   1460 		} else {
   1461 			*frm++ = IEEE80211_ELEMID_DSPARMS;
   1462 			*frm++ = 1;
   1463 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1464 		}
   1465 
   1466 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1467 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1468 			*frm++ = 2;
   1469 			*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1470 		}
   1471 		if (ic->ic_flags & IEEE80211_F_WPA)
   1472 			frm = ieee80211_add_wpa(frm, ic);
   1473 		if (ic->ic_curmode == IEEE80211_MODE_11G)
   1474 			frm = ieee80211_add_erp(frm, ic);
   1475 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1476 		if (ic->ic_flags & IEEE80211_F_WME)
   1477 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1478 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1479 		break;
   1480 
   1481 	case IEEE80211_FC0_SUBTYPE_AUTH:
   1482 		status = arg >> 16;
   1483 		arg &= 0xffff;
   1484 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   1485 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   1486 		    ni->ni_challenge != NULL);
   1487 
   1488 		/*
   1489 		 * Deduce whether we're doing open authentication or
   1490 		 * shared key authentication.  We do the latter if
   1491 		 * we're in the middle of a shared key authentication
   1492 		 * handshake or if we're initiating an authentication
   1493 		 * request and configured to use shared key.
   1494 		 */
   1495 		is_shared_key = has_challenge ||
   1496 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
   1497 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   1498 		      ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
   1499 
   1500 		m = ieee80211_getmgtframe(&frm,
   1501 			  3 * sizeof(u_int16_t)
   1502 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
   1503 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
   1504 		);
   1505 		if (m == NULL)
   1506 			senderr(ENOMEM, is_tx_nobuf);
   1507 
   1508 		((u_int16_t *)frm)[0] =
   1509 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
   1510 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   1511 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
   1512 		((u_int16_t *)frm)[2] = htole16(status);/* status */
   1513 
   1514 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
   1515 			((u_int16_t *)frm)[3] =
   1516 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   1517 			    IEEE80211_ELEMID_CHALLENGE);
   1518 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
   1519 			    IEEE80211_CHALLENGE_LEN);
   1520 			m->m_pkthdr.len = m->m_len =
   1521 				4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
   1522 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   1523 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1524 				    "[%s] request encrypt frame (%s)\n",
   1525 				    ether_sprintf(ni->ni_macaddr), __func__);
   1526 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
   1527 			}
   1528 		} else
   1529 			m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
   1530 
   1531 		/* XXX not right for shared key */
   1532 		if (status == IEEE80211_STATUS_SUCCESS)
   1533 			IEEE80211_NODE_STAT(ni, tx_auth);
   1534 		else
   1535 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   1536 
   1537 		if (ic->ic_opmode == IEEE80211_M_STA)
   1538 			timer = IEEE80211_TRANS_WAIT;
   1539 		break;
   1540 
   1541 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   1542 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1543 			"[%s] send station deauthenticate (reason %d)\n",
   1544 			ether_sprintf(ni->ni_macaddr), arg);
   1545 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1546 		if (m == NULL)
   1547 			senderr(ENOMEM, is_tx_nobuf);
   1548 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1549 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1550 
   1551 		IEEE80211_NODE_STAT(ni, tx_deauth);
   1552 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   1553 
   1554 		ieee80211_node_unauthorize(ni);		/* port closed */
   1555 		break;
   1556 
   1557 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   1558 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   1559 		/*
   1560 		 * asreq frame format
   1561 		 *	[2] capability information
   1562 		 *	[2] listen interval
   1563 		 *	[6*] current AP address (reassoc only)
   1564 		 *	[tlv] ssid
   1565 		 *	[tlv] supported rates
   1566 		 *	[tlv] extended supported rates
   1567 		 *	[tlv] WME
   1568 		 *	[tlv] user-specified ie's
   1569 		 */
   1570 		m = ieee80211_getmgtframe(&frm,
   1571 			 sizeof(u_int16_t)
   1572 		       + sizeof(u_int16_t)
   1573 		       + IEEE80211_ADDR_LEN
   1574 		       + 2 + IEEE80211_NWID_LEN
   1575 		       + 2 + IEEE80211_RATE_SIZE
   1576 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1577 		       + sizeof(struct ieee80211_wme_info)
   1578 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
   1579 		);
   1580 		if (m == NULL)
   1581 			senderr(ENOMEM, is_tx_nobuf);
   1582 
   1583 		capinfo = 0;
   1584 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1585 			capinfo |= IEEE80211_CAPINFO_IBSS;
   1586 		else		/* IEEE80211_M_STA */
   1587 			capinfo |= IEEE80211_CAPINFO_ESS;
   1588 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1589 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1590 		/*
   1591 		 * NB: Some 11a AP's reject the request when
   1592 		 *     short premable is set.
   1593 		 */
   1594 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1595 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1596 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1597 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
   1598 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   1599 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1600 		*(u_int16_t *)frm = htole16(capinfo);
   1601 		frm += 2;
   1602 
   1603 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
   1604 		frm += 2;
   1605 
   1606 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   1607 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
   1608 			frm += IEEE80211_ADDR_LEN;
   1609 		}
   1610 
   1611 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   1612 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1613 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1614 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1615 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   1616 		if (ic->ic_opt_ie != NULL) {
   1617 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
   1618 			frm += ic->ic_opt_ie_len;
   1619 		}
   1620 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1621 
   1622 		timer = IEEE80211_TRANS_WAIT;
   1623 		break;
   1624 
   1625 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   1626 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   1627 		/*
   1628 		 * asreq frame format
   1629 		 *	[2] capability information
   1630 		 *	[2] status
   1631 		 *	[2] association ID
   1632 		 *	[tlv] supported rates
   1633 		 *	[tlv] extended supported rates
   1634 		 *	[tlv] WME (if enabled and STA enabled)
   1635 		 */
   1636 		m = ieee80211_getmgtframe(&frm,
   1637 			 sizeof(u_int16_t)
   1638 		       + sizeof(u_int16_t)
   1639 		       + sizeof(u_int16_t)
   1640 		       + 2 + IEEE80211_RATE_SIZE
   1641 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1642 		       + sizeof(struct ieee80211_wme_param)
   1643 		);
   1644 		if (m == NULL)
   1645 			senderr(ENOMEM, is_tx_nobuf);
   1646 
   1647 		capinfo = IEEE80211_CAPINFO_ESS;
   1648 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1649 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1650 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1651 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1652 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1653 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1654 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1655 		*(u_int16_t *)frm = htole16(capinfo);
   1656 		frm += 2;
   1657 
   1658 		*(u_int16_t *)frm = htole16(arg);	/* status */
   1659 		frm += 2;
   1660 
   1661 		if (arg == IEEE80211_STATUS_SUCCESS) {
   1662 			*(u_int16_t *)frm = htole16(ni->ni_associd);
   1663 			IEEE80211_NODE_STAT(ni, tx_assoc);
   1664 		} else
   1665 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   1666 		frm += 2;
   1667 
   1668 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1669 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1670 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1671 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1672 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1673 		break;
   1674 
   1675 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   1676 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
   1677 			"[%s] send station disassociate (reason %d)\n",
   1678 			ether_sprintf(ni->ni_macaddr), arg);
   1679 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1680 		if (m == NULL)
   1681 			senderr(ENOMEM, is_tx_nobuf);
   1682 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1683 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1684 
   1685 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   1686 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   1687 		break;
   1688 
   1689 	default:
   1690 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1691 			"[%s] invalid mgmt frame type %u\n",
   1692 			ether_sprintf(ni->ni_macaddr), type);
   1693 		senderr(EINVAL, is_tx_unknownmgt);
   1694 		/* NOTREACHED */
   1695 	}
   1696 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
   1697 	if (ret != 0) {
   1698 bad:
   1699 		ieee80211_free_node(ni);
   1700 	}
   1701 	return ret;
   1702 #undef senderr
   1703 }
   1704 
   1705 /*
   1706  * Build a RTS (Request To Send) control frame.
   1707  */
   1708 struct mbuf *
   1709 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
   1710     uint16_t dur)
   1711 {
   1712 	struct ieee80211_frame_rts *rts;
   1713 	struct mbuf *m;
   1714 
   1715 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1716 	if (m == NULL)
   1717 		return NULL;
   1718 
   1719 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
   1720 
   1721 	rts = mtod(m, struct ieee80211_frame_rts *);
   1722 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1723 	    IEEE80211_FC0_SUBTYPE_RTS;
   1724 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1725 	*(uint16_t *)rts->i_dur = htole16(dur);
   1726 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1727 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1728 
   1729 	return m;
   1730 }
   1731 
   1732 /*
   1733  * Build a CTS-to-self (Clear To Send) control frame.
   1734  */
   1735 struct mbuf *
   1736 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
   1737 {
   1738 	struct ieee80211_frame_cts *cts;
   1739 	struct mbuf *m;
   1740 
   1741 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1742 	if (m == NULL)
   1743 		return NULL;
   1744 
   1745 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
   1746 
   1747 	cts = mtod(m, struct ieee80211_frame_cts *);
   1748 	cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1749 	    IEEE80211_FC0_SUBTYPE_CTS;
   1750 	cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1751 	*(uint16_t *)cts->i_dur = htole16(dur);
   1752 	IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
   1753 
   1754 	return m;
   1755 }
   1756 
   1757 /*
   1758  * Allocate a beacon frame and fillin the appropriate bits.
   1759  */
   1760 struct mbuf *
   1761 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
   1762 	struct ieee80211_beacon_offsets *bo)
   1763 {
   1764 	struct ifnet *ifp = ic->ic_ifp;
   1765 	struct ieee80211_frame *wh;
   1766 	struct mbuf *m;
   1767 	int pktlen;
   1768 	u_int8_t *frm, *efrm;
   1769 	u_int16_t capinfo;
   1770 	struct ieee80211_rateset *rs;
   1771 
   1772 	/*
   1773 	 * beacon frame format
   1774 	 *	[8] time stamp
   1775 	 *	[2] beacon interval
   1776 	 *	[2] cabability information
   1777 	 *	[tlv] ssid
   1778 	 *	[tlv] supported rates
   1779 	 *	[3] parameter set (DS)
   1780 	 *	[tlv] parameter set (IBSS/TIM)
   1781 	 *	[tlv] extended rate phy (ERP)
   1782 	 *	[tlv] extended supported rates
   1783 	 *	[tlv] WME parameters
   1784 	 *	[tlv] WPA/RSN parameters
   1785 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   1786 	 * NB: we allocate the max space required for the TIM bitmap.
   1787 	 */
   1788 	rs = &ni->ni_rates;
   1789 	pktlen =   8					/* time stamp */
   1790 		 + sizeof(u_int16_t)			/* beacon interval */
   1791 		 + sizeof(u_int16_t)			/* capabilities */
   1792 		 + 2 + ni->ni_esslen			/* ssid */
   1793 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   1794 	         + 2 + 1				/* DS parameters */
   1795 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
   1796 		 + 2 + 1				/* ERP */
   1797 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1798 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
   1799 			sizeof(struct ieee80211_wme_param) : 0)
   1800 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   1801 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   1802 		 ;
   1803 	m = ieee80211_getmgtframe(&frm, pktlen);
   1804 	if (m == NULL) {
   1805 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1806 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   1807 		ic->ic_stats.is_tx_nobuf++;
   1808 		return NULL;
   1809 	}
   1810 
   1811 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   1812 	frm += 8;
   1813 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1814 	frm += 2;
   1815 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1816 		capinfo = IEEE80211_CAPINFO_IBSS;
   1817 	else
   1818 		capinfo = IEEE80211_CAPINFO_ESS;
   1819 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1820 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1821 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1822 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1823 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1824 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1825 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1826 	bo->bo_caps = (u_int16_t *)frm;
   1827 	*(u_int16_t *)frm = htole16(capinfo);
   1828 	frm += 2;
   1829 	*frm++ = IEEE80211_ELEMID_SSID;
   1830 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
   1831 		*frm++ = ni->ni_esslen;
   1832 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1833 		frm += ni->ni_esslen;
   1834 	} else
   1835 		*frm++ = 0;
   1836 	frm = ieee80211_add_rates(frm, rs);
   1837 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
   1838 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   1839 		*frm++ = 1;
   1840 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1841 	}
   1842 	bo->bo_tim = frm;
   1843 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1844 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1845 		*frm++ = 2;
   1846 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1847 		bo->bo_tim_len = 0;
   1848 	} else {
   1849 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
   1850 
   1851 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   1852 		tie->tim_len = 4;	/* length */
   1853 		tie->tim_count = 0;	/* DTIM count */
   1854 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
   1855 		tie->tim_bitctl = 0;	/* bitmap control */
   1856 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   1857 		frm += sizeof(struct ieee80211_tim_ie);
   1858 		bo->bo_tim_len = 1;
   1859 	}
   1860 	bo->bo_trailer = frm;
   1861 	if (ic->ic_flags & IEEE80211_F_WME) {
   1862 		bo->bo_wme = frm;
   1863 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1864 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1865 	}
   1866 	if (ic->ic_flags & IEEE80211_F_WPA)
   1867 		frm = ieee80211_add_wpa(frm, ic);
   1868 	if (ic->ic_curmode == IEEE80211_MODE_11G)
   1869 		frm = ieee80211_add_erp(frm, ic);
   1870 	efrm = ieee80211_add_xrates(frm, rs);
   1871 	bo->bo_trailer_len = efrm - bo->bo_trailer;
   1872 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
   1873 
   1874 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1875 	IASSERT(m != NULL, ("no space for 802.11 header?"));
   1876 	wh = mtod(m, struct ieee80211_frame *);
   1877 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1878 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1879 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1880 	*(u_int16_t *)wh->i_dur = 0;
   1881 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   1882 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   1883 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   1884 	*(u_int16_t *)wh->i_seq = 0;
   1885 
   1886 	return m;
   1887 }
   1888 
   1889 /*
   1890  * Update the dynamic parts of a beacon frame based on the current state.
   1891  */
   1892 int
   1893 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
   1894     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
   1895 {
   1896 	int len_changed = 0;
   1897 	u_int16_t capinfo;
   1898 
   1899 	IEEE80211_BEACON_LOCK(ic);
   1900 	/* XXX faster to recalculate entirely or just changes? */
   1901 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1902 		capinfo = IEEE80211_CAPINFO_IBSS;
   1903 	else
   1904 		capinfo = IEEE80211_CAPINFO_ESS;
   1905 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1906 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1907 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1908 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1909 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1910 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1911 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1912 	*bo->bo_caps = htole16(capinfo);
   1913 
   1914 	if (ic->ic_flags & IEEE80211_F_WME) {
   1915 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   1916 
   1917 		/*
   1918 		 * Check for agressive mode change.  When there is
   1919 		 * significant high priority traffic in the BSS
   1920 		 * throttle back BE traffic by using conservative
   1921 		 * parameters.  Otherwise BE uses agressive params
   1922 		 * to optimize performance of legacy/non-QoS traffic.
   1923 		 */
   1924 		if (wme->wme_flags & WME_F_AGGRMODE) {
   1925 			if (wme->wme_hipri_traffic >
   1926 			    wme->wme_hipri_switch_thresh) {
   1927 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1928 				    "%s: traffic %u, disable aggressive mode\n",
   1929 				    __func__, wme->wme_hipri_traffic);
   1930 				wme->wme_flags &= ~WME_F_AGGRMODE;
   1931 				ieee80211_wme_updateparams_locked(ic);
   1932 				wme->wme_hipri_traffic =
   1933 					wme->wme_hipri_switch_hysteresis;
   1934 			} else
   1935 				wme->wme_hipri_traffic = 0;
   1936 		} else {
   1937 			if (wme->wme_hipri_traffic <=
   1938 			    wme->wme_hipri_switch_thresh) {
   1939 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   1940 				    "%s: traffic %u, enable aggressive mode\n",
   1941 				    __func__, wme->wme_hipri_traffic);
   1942 				wme->wme_flags |= WME_F_AGGRMODE;
   1943 				ieee80211_wme_updateparams_locked(ic);
   1944 				wme->wme_hipri_traffic = 0;
   1945 			} else
   1946 				wme->wme_hipri_traffic =
   1947 					wme->wme_hipri_switch_hysteresis;
   1948 		}
   1949 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
   1950 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
   1951 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1952 		}
   1953 	}
   1954 
   1955 #ifndef IEEE80211_NO_HOSTAP
   1956 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
   1957 		struct ieee80211_tim_ie *tie =
   1958 			(struct ieee80211_tim_ie *) bo->bo_tim;
   1959 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
   1960 			u_int timlen, timoff, i;
   1961 			/*
   1962 			 * ATIM/DTIM needs updating.  If it fits in the
   1963 			 * current space allocated then just copy in the
   1964 			 * new bits.  Otherwise we need to move any trailing
   1965 			 * data to make room.  Note that we know there is
   1966 			 * contiguous space because ieee80211_beacon_allocate
   1967 			 * insures there is space in the mbuf to write a
   1968 			 * maximal-size virtual bitmap (based on ic_max_aid).
   1969 			 */
   1970 			/*
   1971 			 * Calculate the bitmap size and offset, copy any
   1972 			 * trailer out of the way, and then copy in the
   1973 			 * new bitmap and update the information element.
   1974 			 * Note that the tim bitmap must contain at least
   1975 			 * one byte and any offset must be even.
   1976 			 */
   1977 			if (ic->ic_ps_pending != 0) {
   1978 				timoff = 128;		/* impossibly large */
   1979 				for (i = 0; i < ic->ic_tim_len; i++)
   1980 					if (ic->ic_tim_bitmap[i]) {
   1981 						timoff = i &~ 1;
   1982 						break;
   1983 					}
   1984 				IASSERT(timoff != 128, ("tim bitmap empty!"));
   1985 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
   1986 					if (ic->ic_tim_bitmap[i])
   1987 						break;
   1988 				timlen = 1 + (i - timoff);
   1989 			} else {
   1990 				timoff = 0;
   1991 				timlen = 1;
   1992 			}
   1993 			if (timlen != bo->bo_tim_len) {
   1994 				/* copy up/down trailer */
   1995 				ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
   1996 					bo->bo_trailer_len);
   1997 				bo->bo_trailer = tie->tim_bitmap+timlen;
   1998 				bo->bo_wme = bo->bo_trailer;
   1999 				bo->bo_tim_len = timlen;
   2000 
   2001 				/* update information element */
   2002 				tie->tim_len = 3 + timlen;
   2003 				tie->tim_bitctl = timoff;
   2004 				len_changed = 1;
   2005 			}
   2006 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
   2007 				bo->bo_tim_len);
   2008 
   2009 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
   2010 
   2011 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2012 				"%s: TIM updated, pending %u, off %u, len %u\n",
   2013 				__func__, ic->ic_ps_pending, timoff, timlen);
   2014 		}
   2015 		/* count down DTIM period */
   2016 		if (tie->tim_count == 0)
   2017 			tie->tim_count = tie->tim_period - 1;
   2018 		else
   2019 			tie->tim_count--;
   2020 		/* update state for buffered multicast frames on DTIM */
   2021 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
   2022 			tie->tim_bitctl |= 1;
   2023 		else
   2024 			tie->tim_bitctl &= ~1;
   2025 	}
   2026 #endif /* !IEEE80211_NO_HOSTAP */
   2027 	IEEE80211_BEACON_UNLOCK(ic);
   2028 
   2029 	return len_changed;
   2030 }
   2031 
   2032 /*
   2033  * Save an outbound packet for a node in power-save sleep state.
   2034  * The new packet is placed on the node's saved queue, and the TIM
   2035  * is changed, if necessary.
   2036  */
   2037 void
   2038 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
   2039 		  struct mbuf *m)
   2040 {
   2041 	int qlen, age;
   2042 
   2043 	IEEE80211_NODE_SAVEQ_LOCK(ni);
   2044 	if (IF_QFULL(&ni->ni_savedq)) {
   2045 		IF_DROP(&ni->ni_savedq);
   2046 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2047 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   2048 			"[%s] pwr save q overflow, drops %d (size %d)\n",
   2049 			ether_sprintf(ni->ni_macaddr),
   2050 			ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
   2051 #ifdef IEEE80211_DEBUG
   2052 		if (ieee80211_msg_dumppkts(ic))
   2053 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
   2054 #endif
   2055 		m_freem(m);
   2056 		return;
   2057 	}
   2058 	/*
   2059 	 * Tag the frame with its expiry time and insert
   2060 	 * it in the queue.  The aging interval is 4 times
   2061 	 * the listen interval specified by the station.
   2062 	 * Frames that sit around too long are reclaimed
   2063 	 * using this information.
   2064 	 */
   2065 	/* XXX handle overflow? */
   2066 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
   2067 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
   2068 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2069 
   2070 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2071 		"[%s] save frame with age %d, %u now queued\n",
   2072 		ether_sprintf(ni->ni_macaddr), age, qlen);
   2073 
   2074 	if (qlen == 1)
   2075 		ic->ic_set_tim(ni, 1);
   2076 }
   2077