ieee80211_output.c revision 1.60 1 /* $NetBSD: ieee80211_output.c,v 1.60 2018/01/18 13:24:01 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #ifdef __FreeBSD__
37 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
38 #endif
39 #ifdef __NetBSD__
40 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.60 2018/01/18 13:24:01 maxv Exp $");
41 #endif
42
43 #ifdef _KERNEL_OPT
44 #include "opt_inet.h"
45 #endif
46
47 #ifdef __NetBSD__
48 #endif /* __NetBSD__ */
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/kernel.h>
54 #include <sys/endian.h>
55 #include <sys/errno.h>
56 #include <sys/proc.h>
57 #include <sys/sysctl.h>
58
59 #include <net/if.h>
60 #include <net/if_llc.h>
61 #include <net/if_media.h>
62 #include <net/if_arp.h>
63 #include <net/if_ether.h>
64 #include <net/if_llc.h>
65 #include <net/if_vlanvar.h>
66
67 #include <net80211/ieee80211_netbsd.h>
68 #include <net80211/ieee80211_var.h>
69
70 #include <net/bpf.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <net/if_ether.h>
78 #endif
79
80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
81 u_int hdrsize, u_int ciphdrsize, u_int mtu);
82
83 #ifdef IEEE80211_DEBUG
84 /*
85 * Decide if an outbound management frame should be
86 * printed when debugging is enabled. This filters some
87 * of the less interesting frames that come frequently
88 * (e.g. beacons).
89 */
90 static __inline int
91 doprint(struct ieee80211com *ic, int subtype)
92 {
93 switch (subtype) {
94 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
95 return (ic->ic_opmode == IEEE80211_M_IBSS);
96 }
97 return 1;
98 }
99 #endif
100
101 /*
102 * Set the direction field and address fields of an outgoing
103 * non-QoS frame. Note this should be called early on in
104 * constructing a frame as it sets i_fc[1]; other bits can
105 * then be or'd in.
106 */
107 static void
108 ieee80211_send_setup(struct ieee80211com *ic,
109 struct ieee80211_node *ni,
110 struct ieee80211_frame *wh,
111 int type,
112 const u_int8_t sa[IEEE80211_ADDR_LEN],
113 const u_int8_t da[IEEE80211_ADDR_LEN],
114 const u_int8_t bssid[IEEE80211_ADDR_LEN])
115 {
116 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
117
118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
119
120 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
121 switch (ic->ic_opmode) {
122 case IEEE80211_M_STA:
123 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
124 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
125 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
126 IEEE80211_ADDR_COPY(wh->i_addr3, da);
127 break;
128
129 case IEEE80211_M_IBSS:
130 case IEEE80211_M_AHDEMO:
131 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
132 IEEE80211_ADDR_COPY(wh->i_addr1, da);
133 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
134 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
135 break;
136
137 case IEEE80211_M_HOSTAP:
138 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
139 IEEE80211_ADDR_COPY(wh->i_addr1, da);
140 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
141 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
142 break;
143
144 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
145 break;
146 }
147 } else {
148 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
149 IEEE80211_ADDR_COPY(wh->i_addr1, da);
150 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
151 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
152 }
153
154 *(u_int16_t *)&wh->i_dur[0] = 0;
155 /* NB: use non-QoS tid */
156 *(u_int16_t *)&wh->i_seq[0] =
157 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
158 ni->ni_txseqs[0]++;
159 #undef WH4
160 }
161
162 /*
163 * Send a management frame to the specified node. The node pointer
164 * must have a reference as the pointer will be passed to the driver
165 * and potentially held for a long time. If the frame is successfully
166 * dispatched to the driver, then it is responsible for freeing the
167 * reference (and potentially free'ing up any associated storage).
168 */
169 static int
170 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
171 struct mbuf *m, int type, int timer)
172 {
173 struct ifnet *ifp = ic->ic_ifp;
174 struct ieee80211_frame *wh;
175
176 IASSERT(ni != NULL, ("null node"));
177
178 /*
179 * Yech, hack alert! We want to pass the node down to the
180 * driver's start routine. If we don't do so then the start
181 * routine must immediately look it up again and that can
182 * cause a lock order reversal if, for example, this frame
183 * is being sent because the station is being timedout and
184 * the frame being sent is a DEAUTH message. We could stick
185 * this in an m_tag and tack that on to the mbuf. However
186 * that's rather expensive to do for every frame so instead
187 * we stuff it in the rcvif field since outbound frames do
188 * not (presently) use this.
189 */
190 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
191 if (m == NULL)
192 return ENOMEM;
193 M_SETCTX(m, ni);
194
195 wh = mtod(m, struct ieee80211_frame *);
196 ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type,
197 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
198
199 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
200 m->m_flags &= ~M_LINK0;
201 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
202 "[%s] encrypting frame (%s)\n",
203 ether_sprintf(wh->i_addr1), __func__);
204 wh->i_fc[1] |= IEEE80211_FC1_WEP;
205 }
206
207 #ifdef IEEE80211_DEBUG
208 /* avoid printing too many frames */
209 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
210 ieee80211_msg_dumppkts(ic)) {
211 printf("[%s] send %s on channel %u\n",
212 ether_sprintf(wh->i_addr1),
213 ieee80211_mgt_subtype_name[
214 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
215 IEEE80211_FC0_SUBTYPE_SHIFT],
216 ieee80211_chan2ieee(ic, ic->ic_curchan));
217 }
218 #endif
219
220 IEEE80211_NODE_STAT(ni, tx_mgmt);
221 IF_ENQUEUE(&ic->ic_mgtq, m);
222 if (timer) {
223 /*
224 * Set the mgt frame timeout.
225 */
226 ic->ic_mgt_timer = timer;
227 ifp->if_timer = 1;
228 }
229 if_start_lock(ifp);
230 return 0;
231 }
232
233 /*
234 * Send a null data frame to the specified node.
235 *
236 * NB: the caller is assumed to have setup a node reference
237 * for use; this is necessary to deal with a race condition
238 * when probing for inactive stations.
239 */
240 int
241 ieee80211_send_nulldata(struct ieee80211_node *ni)
242 {
243 struct ieee80211com *ic = ni->ni_ic;
244 struct ifnet *ifp = ic->ic_ifp;
245 struct mbuf *m;
246 struct ieee80211_frame *wh;
247
248 MGETHDR(m, M_NOWAIT, MT_HEADER);
249 if (m == NULL) {
250 /* XXX debug msg */
251 ic->ic_stats.is_tx_nobuf++;
252 ieee80211_unref_node(&ni);
253 return ENOMEM;
254 }
255 M_SETCTX(m, ni);
256
257 wh = mtod(m, struct ieee80211_frame *);
258
259 ieee80211_send_setup(ic, ni, wh,
260 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
261 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
262
263 /* NB: power management bit is never sent by an AP */
264 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
265 ic->ic_opmode != IEEE80211_M_HOSTAP) {
266 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
267 }
268
269 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
270
271 IEEE80211_NODE_STAT(ni, tx_data);
272
273 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
274 "[%s] send null data frame on channel %u, pwr mgt %s\n",
275 ether_sprintf(ni->ni_macaddr),
276 ieee80211_chan2ieee(ic, ic->ic_curchan),
277 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
278
279 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
280 if_start_lock(ifp);
281
282 return 0;
283 }
284
285 /*
286 * Assign priority to a frame based on any vlan tag assigned
287 * to the station and/or any Diffserv setting in an IP header.
288 * Finally, if an ACM policy is setup (in station mode) it's
289 * applied.
290 */
291 int
292 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m,
293 struct ieee80211_node *ni)
294 {
295 int v_wme_ac, d_wme_ac, ac;
296 #ifdef INET
297 struct ether_header *eh;
298 #endif
299
300 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
301 ac = WME_AC_BE;
302 goto done;
303 }
304
305 /*
306 * If node has a vlan tag then all traffic
307 * to it must have a matching tag.
308 */
309 v_wme_ac = 0;
310 if (ni->ni_vlan != 0) {
311 /* XXX used to check ec_nvlans. */
312 if (!vlan_has_tag(m)) {
313 IEEE80211_NODE_STAT(ni, tx_novlantag);
314 return 1;
315 }
316 if (EVL_VLANOFTAG(vlan_get_tag(m)) !=
317 EVL_VLANOFTAG(ni->ni_vlan)) {
318 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
319 return 1;
320 }
321 /* map vlan priority to AC */
322 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
323 case 1:
324 case 2:
325 v_wme_ac = WME_AC_BK;
326 break;
327 case 0:
328 case 3:
329 v_wme_ac = WME_AC_BE;
330 break;
331 case 4:
332 case 5:
333 v_wme_ac = WME_AC_VI;
334 break;
335 case 6:
336 case 7:
337 v_wme_ac = WME_AC_VO;
338 break;
339 }
340 }
341
342 #ifdef INET
343 eh = mtod(m, struct ether_header *);
344 if (eh->ether_type == htons(ETHERTYPE_IP)) {
345 const struct ip *ip = (struct ip *)
346 (mtod(m, u_int8_t *) + sizeof (*eh));
347 /*
348 * IP frame, map the TOS field.
349 */
350 switch (ip->ip_tos) {
351 case 0x08:
352 case 0x20:
353 d_wme_ac = WME_AC_BK; /* background */
354 break;
355 case 0x28:
356 case 0xa0:
357 d_wme_ac = WME_AC_VI; /* video */
358 break;
359 case 0x30: /* voice */
360 case 0xe0:
361 case 0x88: /* XXX UPSD */
362 case 0xb8:
363 d_wme_ac = WME_AC_VO;
364 break;
365 default:
366 d_wme_ac = WME_AC_BE;
367 break;
368 }
369 } else {
370 #endif /* INET */
371 d_wme_ac = WME_AC_BE;
372 #ifdef INET
373 }
374 #endif
375 /*
376 * Use highest priority AC.
377 */
378 if (v_wme_ac > d_wme_ac)
379 ac = v_wme_ac;
380 else
381 ac = d_wme_ac;
382
383 /*
384 * Apply ACM policy.
385 */
386 if (ic->ic_opmode == IEEE80211_M_STA) {
387 static const int acmap[4] = {
388 WME_AC_BK, /* WME_AC_BE */
389 WME_AC_BK, /* WME_AC_BK */
390 WME_AC_BE, /* WME_AC_VI */
391 WME_AC_VI, /* WME_AC_VO */
392 };
393 while (ac != WME_AC_BK &&
394 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
395 ac = acmap[ac];
396 }
397 done:
398 M_WME_SETAC(m, ac);
399 return 0;
400 }
401
402 /*
403 * Insure there is sufficient contiguous space to encapsulate the
404 * 802.11 data frame. If room isn't already there, arrange for it.
405 * Drivers and cipher modules assume we have done the necessary work
406 * and fail rudely if they don't find the space they need.
407 */
408 static struct mbuf *
409 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
410 struct ieee80211_key *key, struct mbuf *m)
411 {
412 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
413 int needed_space = hdrsize;
414 int wlen = 0;
415
416 if (key != NULL) {
417 /* XXX belongs in crypto code? */
418 needed_space += key->wk_cipher->ic_header;
419 /* XXX frags */
420 }
421
422 /*
423 * We know we are called just before stripping an Ethernet
424 * header and prepending an LLC header. This means we know
425 * there will be
426 * sizeof(struct ether_header) - sizeof(struct llc)
427 * bytes recovered to which we need additional space for the
428 * 802.11 header and any crypto header.
429 */
430 /* XXX check trailing space and copy instead? */
431 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
432 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
433 if (n == NULL) {
434 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
435 "%s: cannot expand storage\n", __func__);
436 ic->ic_stats.is_tx_nobuf++;
437 m_freem(m);
438 return NULL;
439 }
440
441 IASSERT(needed_space <= MHLEN,
442 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
443
444 /*
445 * Setup new mbuf to have leading space to prepend the
446 * 802.11 header and any crypto header bits that are
447 * required (the latter are added when the driver calls
448 * back to ieee80211_crypto_encap to do crypto encapsulation).
449 */
450 /* NB: must be first 'cuz it clobbers m_data */
451 M_MOVE_PKTHDR(n, m);
452 n->m_len = 0; /* NB: m_gethdr does not set */
453 n->m_data += needed_space;
454 /*
455 * Pull up Ethernet header to create the expected layout.
456 * We could use m_pullup but that's overkill (i.e. we don't
457 * need the actual data) and it cannot fail so do it inline
458 * for speed.
459 */
460 /* NB: struct ether_header is known to be contiguous */
461 n->m_len += sizeof(struct ether_header);
462 m->m_len -= sizeof(struct ether_header);
463 m->m_data += sizeof(struct ether_header);
464 /*
465 * Replace the head of the chain.
466 */
467 n->m_next = m;
468 m = n;
469 } else {
470 /*
471 * We will overwrite the ethernet header in the
472 * 802.11 encapsulation stage. Make sure that it
473 * is writable.
474 */
475 wlen = sizeof(struct ether_header);
476 }
477
478 /*
479 * If we're going to s/w encrypt the mbuf chain make sure it is
480 * writable.
481 */
482 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
483 wlen = M_COPYALL;
484
485 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
486 m_freem(m);
487 return NULL;
488 }
489 return m;
490 #undef TO_BE_RECLAIMED
491 }
492
493 /*
494 * Return the transmit key to use in sending a unicast frame.
495 * If a unicast key is set we use that. When no unicast key is set
496 * we fall back to the default transmit key.
497 */
498 static __inline struct ieee80211_key *
499 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
500 {
501 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
502 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
503 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
504 return NULL;
505 return &ic->ic_nw_keys[ic->ic_def_txkey];
506 } else {
507 return &ni->ni_ucastkey;
508 }
509 }
510
511 /*
512 * Return the transmit key to use in sending a multicast frame.
513 * Multicast traffic always uses the group key which is installed as
514 * the default tx key.
515 */
516 static __inline struct ieee80211_key *
517 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
518 struct ieee80211_node *ni)
519 {
520 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
521 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
522 return NULL;
523 return &ic->ic_nw_keys[ic->ic_def_txkey];
524 }
525
526 /*
527 * Encapsulate an outbound data frame. The mbuf chain is updated.
528 * If an error is encountered NULL is returned. The caller is required
529 * to provide a node reference and pullup the ethernet header in the
530 * first mbuf.
531 */
532 struct mbuf *
533 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
534 struct ieee80211_node *ni)
535 {
536 struct ether_header eh;
537 struct ieee80211_frame *wh;
538 struct ieee80211_key *key;
539 struct llc *llc;
540 int hdrsize, datalen, addqos, txfrag;
541
542 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
543 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
544
545 /*
546 * Insure space for additional headers. First identify
547 * transmit key to use in calculating any buffer adjustments
548 * required. This is also used below to do privacy
549 * encapsulation work. Then calculate the 802.11 header
550 * size and any padding required by the driver.
551 *
552 * Note key may be NULL if we fall back to the default
553 * transmit key and that is not set. In that case the
554 * buffer may not be expanded as needed by the cipher
555 * routines, but they will/should discard it.
556 */
557 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
558 if (ic->ic_opmode == IEEE80211_M_STA ||
559 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
560 key = ieee80211_crypto_getucastkey(ic, ni);
561 } else {
562 key = ieee80211_crypto_getmcastkey(ic, ni);
563 }
564 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
565 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
566 "[%s] no default transmit key (%s) deftxkey %u\n",
567 ether_sprintf(eh.ether_dhost), __func__,
568 ic->ic_def_txkey);
569 ic->ic_stats.is_tx_nodefkey++;
570 }
571 } else {
572 key = NULL;
573 }
574
575 /*
576 * XXX 4-address format.
577 *
578 * XXX Some ap's don't handle QoS-encapsulated EAPOL
579 * frames so suppress use. This may be an issue if other
580 * ap's require all data frames to be QoS-encapsulated
581 * once negotiated in which case we'll need to make this
582 * configurable.
583 */
584 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
585 eh.ether_type != htons(ETHERTYPE_PAE);
586 if (addqos)
587 hdrsize = sizeof(struct ieee80211_qosframe);
588 else
589 hdrsize = sizeof(struct ieee80211_frame);
590 if (ic->ic_flags & IEEE80211_F_DATAPAD)
591 hdrsize = roundup(hdrsize, sizeof(u_int32_t));
592
593 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
594 if (m == NULL) {
595 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
596 goto bad;
597 }
598
599 /* NB: this could be optimized because of ieee80211_mbuf_adjust */
600 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
601 llc = mtod(m, struct llc *);
602 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
603 llc->llc_control = LLC_UI;
604 llc->llc_snap.org_code[0] = 0;
605 llc->llc_snap.org_code[1] = 0;
606 llc->llc_snap.org_code[2] = 0;
607 llc->llc_snap.ether_type = eh.ether_type;
608 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
609
610 M_PREPEND(m, hdrsize, M_DONTWAIT);
611 if (m == NULL) {
612 ic->ic_stats.is_tx_nobuf++;
613 goto bad;
614 }
615
616 wh = mtod(m, struct ieee80211_frame *);
617 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
618 *(u_int16_t *)wh->i_dur = 0;
619
620 switch (ic->ic_opmode) {
621 case IEEE80211_M_STA:
622 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
623 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
624 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
625 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
626 break;
627
628 case IEEE80211_M_IBSS:
629 case IEEE80211_M_AHDEMO:
630 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
631 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
632 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
633 /*
634 * NB: always use the bssid from ic_bss as the
635 * neighbor's may be stale after an ibss merge
636 */
637 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
638 break;
639
640 case IEEE80211_M_HOSTAP:
641 #ifndef IEEE80211_NO_HOSTAP
642 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
643 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
644 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
645 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
646 #endif
647 break;
648
649 case IEEE80211_M_MONITOR:
650 goto bad;
651 }
652
653 if (m->m_flags & M_MORE_DATA)
654 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
655
656 if (addqos) {
657 struct ieee80211_qosframe *qwh =
658 (struct ieee80211_qosframe *)wh;
659 int ac, tid;
660
661 ac = M_WME_GETAC(m);
662 /* map from access class/queue to 11e header priorty value */
663 tid = WME_AC_TO_TID(ac);
664 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
665 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
666 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
667 qwh->i_qos[1] = 0;
668 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
669
670 *(u_int16_t *)wh->i_seq =
671 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
672 ni->ni_txseqs[tid]++;
673 } else {
674 *(u_int16_t *)wh->i_seq =
675 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
676 ni->ni_txseqs[0]++;
677 }
678
679 /* check if xmit fragmentation is required */
680 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
681 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
682 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */
683
684 if (key != NULL) {
685 /*
686 * IEEE 802.1X: send EAPOL frames always in the clear.
687 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
688 */
689 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
690 ((ic->ic_flags & IEEE80211_F_WPA) &&
691 (ic->ic_opmode == IEEE80211_M_STA ?
692 !IEEE80211_KEY_UNDEFINED(*key) :
693 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
694 wh->i_fc[1] |= IEEE80211_FC1_WEP;
695 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
696 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
697 "[%s] enmic failed, discard frame\n",
698 ether_sprintf(eh.ether_dhost));
699 ic->ic_stats.is_crypto_enmicfail++;
700 goto bad;
701 }
702 }
703 }
704
705 if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
706 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
707 goto bad;
708
709 IEEE80211_NODE_STAT(ni, tx_data);
710 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
711
712 return m;
713
714 bad:
715 if (m != NULL)
716 m_freem(m);
717 return NULL;
718 }
719
720 /*
721 * Arguments in:
722 *
723 * paylen: payload length (no FCS, no WEP header)
724 *
725 * hdrlen: header length
726 *
727 * rate: MSDU speed, units 500kb/s
728 *
729 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
730 * IEEE80211_F_SHSLOT (use short slot length)
731 *
732 * Arguments out:
733 *
734 * d: 802.11 Duration field for RTS,
735 * 802.11 Duration field for data frame,
736 * PLCP Length for data frame,
737 * residual octets at end of data slot
738 */
739 static int
740 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
741 struct ieee80211_duration *d)
742 {
743 int pre, ctsrate;
744 int ack, bitlen, data_dur, remainder;
745
746 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
747 * DATA reserves medium for SIFS | ACK,
748 *
749 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
750 *
751 * XXXMYC: no ACK on multicast/broadcast or control packets
752 */
753
754 bitlen = len * 8;
755
756 pre = IEEE80211_DUR_DS_SIFS;
757 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
758 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
759 else
760 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
761
762 d->d_residue = 0;
763 data_dur = (bitlen * 2) / rate;
764 remainder = (bitlen * 2) % rate;
765 if (remainder != 0) {
766 d->d_residue = (rate - remainder) / 16;
767 data_dur++;
768 }
769
770 switch (rate) {
771 case 2: /* 1 Mb/s */
772 case 4: /* 2 Mb/s */
773 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
774 ctsrate = 2;
775 break;
776 case 11: /* 5.5 Mb/s */
777 case 22: /* 11 Mb/s */
778 case 44: /* 22 Mb/s */
779 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
780 ctsrate = 4;
781 break;
782 default:
783 /* TBD */
784 return -1;
785 }
786
787 d->d_plcp_len = data_dur;
788
789 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
790
791 d->d_rts_dur =
792 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
793 pre + data_dur +
794 ack;
795
796 d->d_data_dur = ack;
797
798 return 0;
799 }
800
801 /*
802 * Arguments in:
803 *
804 * wh: 802.11 header
805 *
806 * paylen: payload length (no FCS, no WEP header)
807 *
808 * rate: MSDU speed, units 500kb/s
809 *
810 * fraglen: fragment length, set to maximum (or higher) for no
811 * fragmentation
812 *
813 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
814 * IEEE80211_F_SHPREAMBLE (use short preamble),
815 * IEEE80211_F_SHSLOT (use short slot length)
816 *
817 * Arguments out:
818 *
819 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
820 * of first/only fragment
821 *
822 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
823 * of last fragment
824 *
825 * ieee80211_compute_duration assumes crypto-encapsulation, if any,
826 * has already taken place.
827 */
828 int
829 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
830 const struct ieee80211_key *wk, int len,
831 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
832 struct ieee80211_duration *dn, int *npktp, int debug)
833 {
834 int ack, rc;
835 int cryptolen, /* crypto overhead: header+trailer */
836 firstlen, /* first fragment's payload + overhead length */
837 hdrlen, /* header length w/o driver padding */
838 lastlen, /* last fragment's payload length w/ overhead */
839 lastlen0, /* last fragment's payload length w/o overhead */
840 npkt, /* number of fragments */
841 overlen, /* non-802.11 header overhead per fragment */
842 paylen; /* payload length w/o overhead */
843
844 hdrlen = ieee80211_anyhdrsize((const void *)wh);
845
846 /* Account for padding required by the driver. */
847 if (icflags & IEEE80211_F_DATAPAD)
848 paylen = len - roundup(hdrlen, sizeof(u_int32_t));
849 else
850 paylen = len - hdrlen;
851
852 overlen = IEEE80211_CRC_LEN;
853
854 if (wk != NULL) {
855 cryptolen = wk->wk_cipher->ic_header +
856 wk->wk_cipher->ic_trailer;
857 paylen -= cryptolen;
858 overlen += cryptolen;
859 }
860
861 npkt = paylen / fraglen;
862 lastlen0 = paylen % fraglen;
863
864 if (npkt == 0) /* no fragments */
865 lastlen = paylen + overlen;
866 else if (lastlen0 != 0) { /* a short "tail" fragment */
867 lastlen = lastlen0 + overlen;
868 npkt++;
869 } else /* full-length "tail" fragment */
870 lastlen = fraglen + overlen;
871
872 if (npktp != NULL)
873 *npktp = npkt;
874
875 if (npkt > 1)
876 firstlen = fraglen + overlen;
877 else
878 firstlen = paylen + overlen;
879
880 if (debug) {
881 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
882 "fraglen %d overlen %d len %d rate %d icflags %08x\n",
883 __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
884 overlen, len, rate, icflags);
885 }
886
887 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
888 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
889
890 rc = ieee80211_compute_duration1(firstlen + hdrlen,
891 ack, icflags, rate, d0);
892 if (rc == -1)
893 return rc;
894
895 if (npkt <= 1) {
896 *dn = *d0;
897 return 0;
898 }
899 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
900 dn);
901 }
902
903 /*
904 * Fragment the frame according to the specified mtu.
905 * The size of the 802.11 header (w/o padding) is provided
906 * so we don't need to recalculate it. We create a new
907 * mbuf for each fragment and chain it through m_nextpkt;
908 * we might be able to optimize this by reusing the original
909 * packet's mbufs but that is significantly more complicated.
910 */
911 static int
912 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
913 u_int hdrsize, u_int ciphdrsize, u_int mtu)
914 {
915 struct ieee80211_frame *wh, *whf;
916 struct mbuf *m, *prev, *next;
917 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
918
919 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
920 IASSERT(m0->m_pkthdr.len > mtu,
921 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
922
923 wh = mtod(m0, struct ieee80211_frame *);
924 /* NB: mark the first frag; it will be propagated below */
925 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
926 totalhdrsize = hdrsize + ciphdrsize;
927 fragno = 1;
928 off = mtu - ciphdrsize;
929 remainder = m0->m_pkthdr.len - off;
930 prev = m0;
931 do {
932 fragsize = totalhdrsize + remainder;
933 if (fragsize > mtu)
934 fragsize = mtu;
935 IASSERT(fragsize < MCLBYTES,
936 ("fragment size %u too big!", fragsize));
937 if (fragsize > MHLEN)
938 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
939 else
940 m = m_gethdr(M_DONTWAIT, MT_DATA);
941 if (m == NULL)
942 goto bad;
943 /* leave room to prepend any cipher header */
944 m_align(m, fragsize - ciphdrsize);
945
946 /*
947 * Form the header in the fragment. Note that since
948 * we mark the first fragment with the MORE_FRAG bit
949 * it automatically is propagated to each fragment; we
950 * need only clear it on the last fragment (done below).
951 */
952 whf = mtod(m, struct ieee80211_frame *);
953 memcpy(whf, wh, hdrsize);
954 *(u_int16_t *)&whf->i_seq[0] |= htole16(
955 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
956 IEEE80211_SEQ_FRAG_SHIFT);
957 fragno++;
958
959 payload = fragsize - totalhdrsize;
960 /* NB: destination is known to be contiguous */
961 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
962 m->m_len = hdrsize + payload;
963 m->m_pkthdr.len = hdrsize + payload;
964 m->m_flags |= M_FRAG;
965
966 /* chain up the fragment */
967 prev->m_nextpkt = m;
968 prev = m;
969
970 /* deduct fragment just formed */
971 remainder -= payload;
972 off += payload;
973 } while (remainder != 0);
974 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
975
976 /* strip first mbuf now that everything has been copied */
977 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
978 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
979
980 ic->ic_stats.is_tx_fragframes++;
981 ic->ic_stats.is_tx_frags += fragno-1;
982
983 return 1;
984 bad:
985 /* reclaim fragments but leave original frame for caller to free */
986 for (m = m0->m_nextpkt; m != NULL; m = next) {
987 next = m->m_nextpkt;
988 m->m_nextpkt = NULL; /* XXX paranoid */
989 m_freem(m);
990 }
991 m0->m_nextpkt = NULL;
992 return 0;
993 }
994
995 /*
996 * Add a supported rates element id to a frame.
997 */
998 u_int8_t *
999 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
1000 {
1001 int nrates;
1002
1003 *frm++ = IEEE80211_ELEMID_RATES;
1004 nrates = rs->rs_nrates;
1005 if (nrates > IEEE80211_RATE_SIZE)
1006 nrates = IEEE80211_RATE_SIZE;
1007 *frm++ = nrates;
1008 memcpy(frm, rs->rs_rates, nrates);
1009 return frm + nrates;
1010 }
1011
1012 /*
1013 * Add an extended supported rates element id to a frame.
1014 */
1015 u_int8_t *
1016 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
1017 {
1018 /*
1019 * Add an extended supported rates element if operating in 11g mode.
1020 */
1021 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1022 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1023 *frm++ = IEEE80211_ELEMID_XRATES;
1024 *frm++ = nrates;
1025 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1026 frm += nrates;
1027 }
1028 return frm;
1029 }
1030
1031 /*
1032 * Add an ssid elemet to a frame.
1033 */
1034 u_int8_t *
1035 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1036 {
1037 *frm++ = IEEE80211_ELEMID_SSID;
1038 *frm++ = len;
1039 memcpy(frm, ssid, len);
1040 return frm + len;
1041 }
1042
1043 /*
1044 * Add an erp element to a frame.
1045 */
1046 static u_int8_t *
1047 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1048 {
1049 u_int8_t erp;
1050
1051 *frm++ = IEEE80211_ELEMID_ERP;
1052 *frm++ = 1;
1053 erp = 0;
1054 if (ic->ic_nonerpsta != 0)
1055 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1056 if (ic->ic_flags & IEEE80211_F_USEPROT)
1057 erp |= IEEE80211_ERP_USE_PROTECTION;
1058 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1059 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1060 *frm++ = erp;
1061 return frm;
1062 }
1063
1064 static u_int8_t *
1065 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1066 {
1067 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2
1068 #define ADDSHORT(frm, v) do { \
1069 frm[0] = (v) & 0xff; \
1070 frm[1] = (v) >> 8; \
1071 frm += 2; \
1072 } while (0)
1073 #define ADDSELECTOR(frm, sel) do { \
1074 memcpy(frm, sel, 4); \
1075 frm += 4; \
1076 } while (0)
1077 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1078 static const u_int8_t cipher_suite[][4] = {
1079 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
1080 { WPA_OUI_BYTES, WPA_CSE_TKIP },
1081 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
1082 { WPA_OUI_BYTES, WPA_CSE_CCMP },
1083 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1084 { WPA_OUI_BYTES, WPA_CSE_NULL },
1085 };
1086 static const u_int8_t wep104_suite[4] =
1087 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
1088 static const u_int8_t key_mgt_unspec[4] =
1089 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1090 static const u_int8_t key_mgt_psk[4] =
1091 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1092 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1093 u_int8_t *frm = ie;
1094 u_int8_t *selcnt;
1095
1096 *frm++ = IEEE80211_ELEMID_VENDOR;
1097 *frm++ = 0; /* length filled in below */
1098 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
1099 frm += sizeof(oui);
1100 ADDSHORT(frm, WPA_VERSION);
1101
1102 /* XXX filter out CKIP */
1103
1104 /* multicast cipher */
1105 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1106 rsn->rsn_mcastkeylen >= 13)
1107 ADDSELECTOR(frm, wep104_suite);
1108 else
1109 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1110
1111 /* unicast cipher list */
1112 selcnt = frm;
1113 ADDSHORT(frm, 0); /* selector count */
1114 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1115 selcnt[0]++;
1116 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1117 }
1118 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1119 selcnt[0]++;
1120 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1121 }
1122
1123 /* authenticator selector list */
1124 selcnt = frm;
1125 ADDSHORT(frm, 0); /* selector count */
1126 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1127 selcnt[0]++;
1128 ADDSELECTOR(frm, key_mgt_unspec);
1129 }
1130 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1131 selcnt[0]++;
1132 ADDSELECTOR(frm, key_mgt_psk);
1133 }
1134
1135 /* optional capabilities */
1136 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1137 ADDSHORT(frm, rsn->rsn_caps);
1138
1139 /* calculate element length */
1140 ie[1] = frm - ie - 2;
1141 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1142 ("WPA IE too big, %u > %zu",
1143 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1144 return frm;
1145 #undef ADDSHORT
1146 #undef ADDSELECTOR
1147 #undef WPA_OUI_BYTES
1148 }
1149
1150 static u_int8_t *
1151 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1152 {
1153 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac
1154 #define ADDSHORT(frm, v) do { \
1155 frm[0] = (v) & 0xff; \
1156 frm[1] = (v) >> 8; \
1157 frm += 2; \
1158 } while (0)
1159 #define ADDSELECTOR(frm, sel) do { \
1160 memcpy(frm, sel, 4); \
1161 frm += 4; \
1162 } while (0)
1163 static const u_int8_t cipher_suite[][4] = {
1164 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
1165 { RSN_OUI_BYTES, RSN_CSE_TKIP },
1166 { RSN_OUI_BYTES, RSN_CSE_WRAP },
1167 { RSN_OUI_BYTES, RSN_CSE_CCMP },
1168 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1169 { RSN_OUI_BYTES, RSN_CSE_NULL },
1170 };
1171 static const u_int8_t wep104_suite[4] =
1172 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
1173 static const u_int8_t key_mgt_unspec[4] =
1174 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1175 static const u_int8_t key_mgt_psk[4] =
1176 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1177 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1178 u_int8_t *frm = ie;
1179 u_int8_t *selcnt;
1180
1181 *frm++ = IEEE80211_ELEMID_RSN;
1182 *frm++ = 0; /* length filled in below */
1183 ADDSHORT(frm, RSN_VERSION);
1184
1185 /* XXX filter out CKIP */
1186
1187 /* multicast cipher */
1188 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1189 rsn->rsn_mcastkeylen >= 13)
1190 ADDSELECTOR(frm, wep104_suite);
1191 else
1192 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1193
1194 /* unicast cipher list */
1195 selcnt = frm;
1196 ADDSHORT(frm, 0); /* selector count */
1197 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1198 selcnt[0]++;
1199 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1200 }
1201 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1202 selcnt[0]++;
1203 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1204 }
1205
1206 /* authenticator selector list */
1207 selcnt = frm;
1208 ADDSHORT(frm, 0); /* selector count */
1209 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1210 selcnt[0]++;
1211 ADDSELECTOR(frm, key_mgt_unspec);
1212 }
1213 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1214 selcnt[0]++;
1215 ADDSELECTOR(frm, key_mgt_psk);
1216 }
1217
1218 /* optional capabilities */
1219 ADDSHORT(frm, rsn->rsn_caps);
1220 /* XXX PMKID */
1221
1222 /* calculate element length */
1223 ie[1] = frm - ie - 2;
1224 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1225 ("RSN IE too big, %u > %zu",
1226 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1227 return frm;
1228 #undef ADDSELECTOR
1229 #undef ADDSHORT
1230 #undef RSN_OUI_BYTES
1231 }
1232
1233 /*
1234 * Add a WPA/RSN element to a frame.
1235 */
1236 u_int8_t *
1237 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1238 {
1239
1240 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1241 if (ic->ic_flags & IEEE80211_F_WPA2)
1242 frm = ieee80211_setup_rsn_ie(ic, frm);
1243 if (ic->ic_flags & IEEE80211_F_WPA1)
1244 frm = ieee80211_setup_wpa_ie(ic, frm);
1245 return frm;
1246 }
1247
1248 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
1249 /*
1250 * Add a WME information element to a frame.
1251 */
1252 u_int8_t *
1253 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1254 {
1255 static const struct ieee80211_wme_info info = {
1256 .wme_id = IEEE80211_ELEMID_VENDOR,
1257 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1258 .wme_oui = { WME_OUI_BYTES },
1259 .wme_type = WME_OUI_TYPE,
1260 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1261 .wme_version = WME_VERSION,
1262 .wme_info = 0,
1263 };
1264 memcpy(frm, &info, sizeof(info));
1265 return frm + sizeof(info);
1266 }
1267
1268 /*
1269 * Add a WME parameters element to a frame.
1270 */
1271 static u_int8_t *
1272 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1273 {
1274 #define SM(_v, _f) (((_v) << _f##_S) & _f)
1275 #define ADDSHORT(frm, v) do { \
1276 frm[0] = (v) & 0xff; \
1277 frm[1] = (v) >> 8; \
1278 frm += 2; \
1279 } while (0)
1280 /* NB: this works 'cuz a param has an info at the front */
1281 static const struct ieee80211_wme_info param = {
1282 .wme_id = IEEE80211_ELEMID_VENDOR,
1283 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1284 .wme_oui = { WME_OUI_BYTES },
1285 .wme_type = WME_OUI_TYPE,
1286 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1287 .wme_version = WME_VERSION,
1288 };
1289 int i;
1290
1291 memcpy(frm, ¶m, sizeof(param));
1292 frm += offsetof(struct ieee80211_wme_info, wme_info);
1293 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1294 *frm++ = 0; /* reserved field */
1295 for (i = 0; i < WME_NUM_AC; i++) {
1296 const struct wmeParams *ac =
1297 &wme->wme_bssChanParams.cap_wmeParams[i];
1298 *frm++ = SM(i, WME_PARAM_ACI)
1299 | SM(ac->wmep_acm, WME_PARAM_ACM)
1300 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1301 ;
1302 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1303 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1304 ;
1305 ADDSHORT(frm, ac->wmep_txopLimit);
1306 }
1307 return frm;
1308 #undef SM
1309 #undef ADDSHORT
1310 }
1311 #undef WME_OUI_BYTES
1312
1313 /*
1314 * Send a probe request frame with the specified ssid
1315 * and any optional information element data.
1316 */
1317 int
1318 ieee80211_send_probereq(struct ieee80211_node *ni,
1319 const u_int8_t sa[IEEE80211_ADDR_LEN],
1320 const u_int8_t da[IEEE80211_ADDR_LEN],
1321 const u_int8_t bssid[IEEE80211_ADDR_LEN],
1322 const u_int8_t *ssid, size_t ssidlen,
1323 const void *optie, size_t optielen)
1324 {
1325 struct ieee80211com *ic = ni->ni_ic;
1326 enum ieee80211_phymode mode;
1327 struct ieee80211_frame *wh;
1328 struct mbuf *m;
1329 u_int8_t *frm;
1330
1331 /*
1332 * Hold a reference on the node so it doesn't go away until after
1333 * the xmit is complete all the way in the driver. On error we
1334 * will remove our reference.
1335 */
1336 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1337 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1338 __func__, __LINE__,
1339 ni, ether_sprintf(ni->ni_macaddr),
1340 ieee80211_node_refcnt(ni)+1);
1341 ieee80211_ref_node(ni);
1342
1343 /*
1344 * prreq frame format
1345 * [tlv] ssid
1346 * [tlv] supported rates
1347 * [tlv] extended supported rates
1348 * [tlv] user-specified ie's
1349 */
1350 m = ieee80211_getmgtframe(&frm,
1351 2 + IEEE80211_NWID_LEN
1352 + 2 + IEEE80211_RATE_SIZE
1353 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1354 + (optie != NULL ? optielen : 0)
1355 );
1356 if (m == NULL) {
1357 ic->ic_stats.is_tx_nobuf++;
1358 ieee80211_free_node(ni);
1359 return ENOMEM;
1360 }
1361
1362 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1363 mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1364 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1365 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1366
1367 if (optie != NULL) {
1368 memcpy(frm, optie, optielen);
1369 frm += optielen;
1370 }
1371 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1372
1373 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1374 if (m == NULL) {
1375 ic->ic_stats.is_tx_nobuf++;
1376 ieee80211_free_node(ni);
1377 return ENOMEM;
1378 }
1379 M_SETCTX(m, ni);
1380
1381 wh = mtod(m, struct ieee80211_frame *);
1382 ieee80211_send_setup(ic, ni, wh,
1383 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1384 sa, da, bssid);
1385 /* XXX power management? */
1386
1387 IEEE80211_NODE_STAT(ni, tx_probereq);
1388 IEEE80211_NODE_STAT(ni, tx_mgmt);
1389
1390 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1391 "[%s] send probe req on channel %u\n",
1392 ether_sprintf(wh->i_addr1),
1393 ieee80211_chan2ieee(ic, ic->ic_curchan));
1394
1395 IF_ENQUEUE(&ic->ic_mgtq, m);
1396 if_start_lock(ic->ic_ifp);
1397 return 0;
1398 }
1399
1400 /*
1401 * Send a management frame. The node is for the destination (or ic_bss
1402 * when in station mode). Nodes other than ic_bss have their reference
1403 * count bumped to reflect our use for an indeterminant time.
1404 */
1405 int
1406 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1407 int type, int arg)
1408 {
1409 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1410 struct mbuf *m;
1411 u_int8_t *frm;
1412 u_int16_t capinfo;
1413 int ret, timer, status;
1414
1415 IASSERT(ni != NULL, ("null node"));
1416
1417 /*
1418 * Hold a reference on the node so it doesn't go away until after
1419 * the xmit is complete all the way in the driver. On error we
1420 * will remove our reference.
1421 */
1422 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1423 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1424 __func__, __LINE__,
1425 ni, ether_sprintf(ni->ni_macaddr),
1426 ieee80211_node_refcnt(ni)+1);
1427 ieee80211_ref_node(ni);
1428
1429 timer = 0;
1430 switch (type) {
1431 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: {
1432 const bool has_wpa = (ic->ic_flags & IEEE80211_F_WPA) != 0;
1433
1434 /*
1435 * probe response frame format
1436 * [8] time stamp
1437 * [2] beacon interval
1438 * [2] cabability information
1439 * [tlv] ssid
1440 * [tlv] supported rates
1441 * [tlv] parameter set (FH/DS)
1442 * [tlv] parameter set (IBSS)
1443 * [tlv] extended rate phy (ERP)
1444 * [tlv] extended supported rates
1445 * [tlv] WPA
1446 * [tlv] WME (optional)
1447 */
1448 m = ieee80211_getmgtframe(&frm,
1449 8 /* timestamp */
1450 + sizeof(u_int16_t) /* interval */
1451 + sizeof(u_int16_t) /* capinfo */
1452 + 2 + IEEE80211_NWID_LEN /* ssid */
1453 + 2 + IEEE80211_RATE_SIZE /* rates */
1454 + 7 /* max(7,3) */
1455 + 6 /* ibss (XXX could be 4?) */
1456 + 3 /* erp */
1457 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1458 /* XXX !WPA1+WPA2 fits w/o a cluster */
1459 + (has_wpa ? (2 * sizeof(struct ieee80211_ie_wpa)) : 0)
1460 + sizeof(struct ieee80211_wme_param)
1461 );
1462 if (m == NULL)
1463 senderr(ENOMEM, is_tx_nobuf);
1464
1465 /* timestamp (should be filled later) */
1466 memset(frm, 0, 8);
1467 frm += 8;
1468
1469 /* interval */
1470 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1471 frm += 2;
1472
1473 /* capinfo */
1474 if (ic->ic_opmode == IEEE80211_M_IBSS)
1475 capinfo = IEEE80211_CAPINFO_IBSS;
1476 else
1477 capinfo = IEEE80211_CAPINFO_ESS;
1478 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1479 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1480 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1481 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1482 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1483 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1484 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1485 *(u_int16_t *)frm = htole16(capinfo);
1486 frm += 2;
1487
1488 /* ssid */
1489 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1490 ic->ic_bss->ni_esslen);
1491
1492 /* rates */
1493 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1494
1495 /* variable */
1496 if (ic->ic_phytype == IEEE80211_T_FH) {
1497 *frm++ = IEEE80211_ELEMID_FHPARMS;
1498 *frm++ = 5;
1499 *frm++ = ni->ni_fhdwell & 0x00ff;
1500 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1501 *frm++ = IEEE80211_FH_CHANSET(
1502 ieee80211_chan2ieee(ic, ic->ic_curchan));
1503 *frm++ = IEEE80211_FH_CHANPAT(
1504 ieee80211_chan2ieee(ic, ic->ic_curchan));
1505 *frm++ = ni->ni_fhindex;
1506 } else {
1507 *frm++ = IEEE80211_ELEMID_DSPARMS;
1508 *frm++ = 1;
1509 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1510 }
1511
1512 /* ibss */
1513 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1514 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1515 *frm++ = 2;
1516 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1517 }
1518
1519 /* wpa */
1520 if (has_wpa)
1521 frm = ieee80211_add_wpa(frm, ic);
1522
1523 /* erp */
1524 if (ic->ic_curmode == IEEE80211_MODE_11G)
1525 frm = ieee80211_add_erp(frm, ic);
1526
1527 /* xrates */
1528 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1529
1530 /* wme */
1531 if (ic->ic_flags & IEEE80211_F_WME)
1532 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1533
1534 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1535 break;
1536 }
1537
1538 case IEEE80211_FC0_SUBTYPE_AUTH: {
1539 status = arg >> 16;
1540 arg &= 0xffff;
1541 const bool has_challenge =
1542 (arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1543 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1544 ni->ni_challenge != NULL;
1545
1546 /*
1547 * Deduce whether we're doing open authentication or
1548 * shared key authentication. We do the latter if
1549 * we're in the middle of a shared key authentication
1550 * handshake or if we're initiating an authentication
1551 * request and configured to use shared key.
1552 */
1553 const bool is_shared_key = has_challenge ||
1554 (arg >= IEEE80211_AUTH_SHARED_RESPONSE) ||
1555 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1556 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1557
1558 const bool need_challenge =
1559 has_challenge && (status == IEEE80211_STATUS_SUCCESS);
1560
1561 const int frm_size = 3 * sizeof(u_int16_t)
1562 + (need_challenge ?
1563 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0);
1564
1565 m = ieee80211_getmgtframe(&frm, frm_size);
1566 if (m == NULL)
1567 senderr(ENOMEM, is_tx_nobuf);
1568
1569 ((u_int16_t *)frm)[0] =
1570 is_shared_key ? htole16(IEEE80211_AUTH_ALG_SHARED)
1571 : htole16(IEEE80211_AUTH_ALG_OPEN);
1572 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */
1573 ((u_int16_t *)frm)[2] = htole16(status);/* status */
1574
1575 if (need_challenge) {
1576 ((u_int16_t *)frm)[3] =
1577 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1578 IEEE80211_ELEMID_CHALLENGE);
1579 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1580 IEEE80211_CHALLENGE_LEN);
1581
1582 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1583 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1584 "[%s] request encrypt frame (%s)\n",
1585 ether_sprintf(ni->ni_macaddr), __func__);
1586 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1587 }
1588 }
1589
1590 m->m_pkthdr.len = m->m_len = frm_size;
1591
1592 /* XXX not right for shared key */
1593 if (status == IEEE80211_STATUS_SUCCESS)
1594 IEEE80211_NODE_STAT(ni, tx_auth);
1595 else
1596 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1597
1598 if (ic->ic_opmode == IEEE80211_M_STA)
1599 timer = IEEE80211_TRANS_WAIT;
1600 break;
1601 }
1602
1603 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1604 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1605 "[%s] send station deauthenticate (reason %d)\n",
1606 ether_sprintf(ni->ni_macaddr), arg);
1607 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1608 if (m == NULL)
1609 senderr(ENOMEM, is_tx_nobuf);
1610 *(u_int16_t *)frm = htole16(arg); /* reason */
1611 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1612
1613 IEEE80211_NODE_STAT(ni, tx_deauth);
1614 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1615
1616 ieee80211_node_unauthorize(ni); /* port closed */
1617 break;
1618
1619 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1620 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1621 /*
1622 * asreq frame format
1623 * [2] capability information
1624 * [2] listen interval
1625 * [6*] current AP address (reassoc only)
1626 * [tlv] ssid
1627 * [tlv] supported rates
1628 * [tlv] extended supported rates
1629 * [tlv] WME
1630 * [tlv] user-specified ie's
1631 */
1632 m = ieee80211_getmgtframe(&frm,
1633 sizeof(u_int16_t)
1634 + sizeof(u_int16_t)
1635 + IEEE80211_ADDR_LEN
1636 + 2 + IEEE80211_NWID_LEN
1637 + 2 + IEEE80211_RATE_SIZE
1638 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1639 + sizeof(struct ieee80211_wme_info)
1640 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1641 );
1642 if (m == NULL)
1643 senderr(ENOMEM, is_tx_nobuf);
1644
1645 capinfo = 0;
1646 if (ic->ic_opmode == IEEE80211_M_IBSS)
1647 capinfo |= IEEE80211_CAPINFO_IBSS;
1648 else /* IEEE80211_M_STA */
1649 capinfo |= IEEE80211_CAPINFO_ESS;
1650 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1651 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1652 /*
1653 * NB: Some 11a AP's reject the request when
1654 * short premable is set.
1655 */
1656 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1657 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1658 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1659 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1660 (ic->ic_caps & IEEE80211_C_SHSLOT))
1661 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1662 *(u_int16_t *)frm = htole16(capinfo);
1663 frm += 2;
1664
1665 *(u_int16_t *)frm = htole16(ic->ic_lintval);
1666 frm += 2;
1667
1668 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1669 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1670 frm += IEEE80211_ADDR_LEN;
1671 }
1672
1673 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1674 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1675 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1676 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1677 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1678 if (ic->ic_opt_ie != NULL) {
1679 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1680 frm += ic->ic_opt_ie_len;
1681 }
1682 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1683
1684 timer = IEEE80211_TRANS_WAIT;
1685 break;
1686
1687 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1688 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1689 /*
1690 * asreq frame format
1691 * [2] capability information
1692 * [2] status
1693 * [2] association ID
1694 * [tlv] supported rates
1695 * [tlv] extended supported rates
1696 * [tlv] WME (if enabled and STA enabled)
1697 */
1698 m = ieee80211_getmgtframe(&frm,
1699 sizeof(u_int16_t)
1700 + sizeof(u_int16_t)
1701 + sizeof(u_int16_t)
1702 + 2 + IEEE80211_RATE_SIZE
1703 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1704 + sizeof(struct ieee80211_wme_param)
1705 );
1706 if (m == NULL)
1707 senderr(ENOMEM, is_tx_nobuf);
1708
1709 capinfo = IEEE80211_CAPINFO_ESS;
1710 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1711 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1712 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1713 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1714 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1715 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1716 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1717 *(u_int16_t *)frm = htole16(capinfo);
1718 frm += 2;
1719
1720 *(u_int16_t *)frm = htole16(arg); /* status */
1721 frm += 2;
1722
1723 if (arg == IEEE80211_STATUS_SUCCESS) {
1724 *(u_int16_t *)frm = htole16(ni->ni_associd);
1725 IEEE80211_NODE_STAT(ni, tx_assoc);
1726 } else {
1727 *(u_int16_t *)frm = 0;
1728 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1729 }
1730 frm += 2;
1731
1732 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1733 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1734 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1735 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1736 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1737 break;
1738
1739 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1740 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1741 "[%s] send station disassociate (reason %d)\n",
1742 ether_sprintf(ni->ni_macaddr), arg);
1743 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1744 if (m == NULL)
1745 senderr(ENOMEM, is_tx_nobuf);
1746 *(u_int16_t *)frm = htole16(arg); /* reason */
1747 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1748
1749 IEEE80211_NODE_STAT(ni, tx_disassoc);
1750 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1751 break;
1752
1753 default:
1754 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1755 "[%s] invalid mgmt frame type %u\n",
1756 ether_sprintf(ni->ni_macaddr), type);
1757 senderr(EINVAL, is_tx_unknownmgt);
1758 /* NOTREACHED */
1759 }
1760 ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1761 if (ret != 0) {
1762 bad:
1763 ieee80211_free_node(ni);
1764 }
1765 return ret;
1766 #undef senderr
1767 }
1768
1769 /*
1770 * Build a RTS (Request To Send) control frame.
1771 */
1772 struct mbuf *
1773 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
1774 uint16_t dur)
1775 {
1776 struct ieee80211_frame_rts *rts;
1777 struct mbuf *m;
1778
1779 MGETHDR(m, M_DONTWAIT, MT_DATA);
1780 if (m == NULL)
1781 return NULL;
1782
1783 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1784
1785 rts = mtod(m, struct ieee80211_frame_rts *);
1786 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1787 IEEE80211_FC0_SUBTYPE_RTS;
1788 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1789 *(uint16_t *)rts->i_dur = htole16(dur);
1790 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1791 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1792
1793 return m;
1794 }
1795
1796 /*
1797 * Build a CTS-to-self (Clear To Send) control frame.
1798 */
1799 struct mbuf *
1800 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
1801 {
1802 struct ieee80211_frame_cts *cts;
1803 struct mbuf *m;
1804
1805 MGETHDR(m, M_DONTWAIT, MT_DATA);
1806 if (m == NULL)
1807 return NULL;
1808
1809 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
1810
1811 cts = mtod(m, struct ieee80211_frame_cts *);
1812 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1813 IEEE80211_FC0_SUBTYPE_CTS;
1814 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1815 *(uint16_t *)cts->i_dur = htole16(dur);
1816 IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
1817
1818 return m;
1819 }
1820
1821 /*
1822 * Allocate a beacon frame and fillin the appropriate bits.
1823 */
1824 struct mbuf *
1825 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1826 struct ieee80211_beacon_offsets *bo)
1827 {
1828 struct ifnet *ifp = ic->ic_ifp;
1829 struct ieee80211_frame *wh;
1830 struct mbuf *m;
1831 int pktlen;
1832 u_int8_t *frm, *efrm;
1833 u_int16_t capinfo;
1834 struct ieee80211_rateset *rs;
1835
1836 /*
1837 * beacon frame format
1838 * [8] time stamp
1839 * [2] beacon interval
1840 * [2] cabability information
1841 * [tlv] ssid
1842 * [tlv] supported rates
1843 * [3] parameter set (DS)
1844 * [tlv] parameter set (IBSS/TIM)
1845 * [tlv] extended rate phy (ERP)
1846 * [tlv] extended supported rates
1847 * [tlv] WME parameters
1848 * [tlv] WPA/RSN parameters
1849 * XXX Vendor-specific OIDs (e.g. Atheros)
1850 * NB: we allocate the max space required for the TIM bitmap.
1851 */
1852 rs = &ni->ni_rates;
1853 pktlen = 8 /* time stamp */
1854 + sizeof(u_int16_t) /* beacon interval */
1855 + sizeof(u_int16_t) /* capabilities */
1856 + 2 + ni->ni_esslen /* ssid */
1857 + 2 + IEEE80211_RATE_SIZE /* supported rates */
1858 + 2 + 1 /* DS parameters */
1859 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
1860 + 2 + 1 /* ERP */
1861 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1862 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
1863 sizeof(struct ieee80211_wme_param) : 0)
1864 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
1865 2*sizeof(struct ieee80211_ie_wpa) : 0)
1866 ;
1867 m = ieee80211_getmgtframe(&frm, pktlen);
1868 if (m == NULL) {
1869 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1870 "%s: cannot get buf; size %u\n", __func__, pktlen);
1871 ic->ic_stats.is_tx_nobuf++;
1872 return NULL;
1873 }
1874
1875 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
1876 frm += 8;
1877 *(u_int16_t *)frm = htole16(ni->ni_intval);
1878 frm += 2;
1879 if (ic->ic_opmode == IEEE80211_M_IBSS)
1880 capinfo = IEEE80211_CAPINFO_IBSS;
1881 else
1882 capinfo = IEEE80211_CAPINFO_ESS;
1883 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1884 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1885 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1886 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1887 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1888 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1889 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1890 bo->bo_caps = (u_int16_t *)frm;
1891 *(u_int16_t *)frm = htole16(capinfo);
1892 frm += 2;
1893 *frm++ = IEEE80211_ELEMID_SSID;
1894 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1895 *frm++ = ni->ni_esslen;
1896 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1897 frm += ni->ni_esslen;
1898 } else
1899 *frm++ = 0;
1900 frm = ieee80211_add_rates(frm, rs);
1901 if (ic->ic_curmode != IEEE80211_MODE_FH) {
1902 *frm++ = IEEE80211_ELEMID_DSPARMS;
1903 *frm++ = 1;
1904 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1905 }
1906 bo->bo_tim = frm;
1907 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1908 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1909 *frm++ = 2;
1910 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1911 bo->bo_tim_len = 0;
1912 } else {
1913 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1914
1915 tie->tim_ie = IEEE80211_ELEMID_TIM;
1916 tie->tim_len = 4; /* length */
1917 tie->tim_count = 0; /* DTIM count */
1918 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
1919 tie->tim_bitctl = 0; /* bitmap control */
1920 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1921 frm += sizeof(struct ieee80211_tim_ie);
1922 bo->bo_tim_len = 1;
1923 }
1924 bo->bo_trailer = frm;
1925 if (ic->ic_flags & IEEE80211_F_WME) {
1926 bo->bo_wme = frm;
1927 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1928 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1929 }
1930 if (ic->ic_flags & IEEE80211_F_WPA)
1931 frm = ieee80211_add_wpa(frm, ic);
1932 if (ic->ic_curmode == IEEE80211_MODE_11G)
1933 frm = ieee80211_add_erp(frm, ic);
1934 efrm = ieee80211_add_xrates(frm, rs);
1935 bo->bo_trailer_len = efrm - bo->bo_trailer;
1936 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1937
1938 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1939 IASSERT(m != NULL, ("no space for 802.11 header?"));
1940 wh = mtod(m, struct ieee80211_frame *);
1941 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1942 IEEE80211_FC0_SUBTYPE_BEACON;
1943 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1944 *(u_int16_t *)wh->i_dur = 0;
1945 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1946 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1947 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1948 *(u_int16_t *)wh->i_seq = 0;
1949
1950 return m;
1951 }
1952
1953 /*
1954 * Update the dynamic parts of a beacon frame based on the current state.
1955 */
1956 int
1957 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1958 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1959 {
1960 int len_changed = 0;
1961 u_int16_t capinfo;
1962
1963 IEEE80211_BEACON_LOCK(ic);
1964 /* XXX faster to recalculate entirely or just changes? */
1965 if (ic->ic_opmode == IEEE80211_M_IBSS)
1966 capinfo = IEEE80211_CAPINFO_IBSS;
1967 else
1968 capinfo = IEEE80211_CAPINFO_ESS;
1969 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1970 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1971 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1972 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1973 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1974 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1975 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1976 *bo->bo_caps = htole16(capinfo);
1977
1978 if (ic->ic_flags & IEEE80211_F_WME) {
1979 struct ieee80211_wme_state *wme = &ic->ic_wme;
1980
1981 /*
1982 * Check for agressive mode change. When there is
1983 * significant high priority traffic in the BSS
1984 * throttle back BE traffic by using conservative
1985 * parameters. Otherwise BE uses agressive params
1986 * to optimize performance of legacy/non-QoS traffic.
1987 */
1988 if (wme->wme_flags & WME_F_AGGRMODE) {
1989 if (wme->wme_hipri_traffic >
1990 wme->wme_hipri_switch_thresh) {
1991 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1992 "%s: traffic %u, disable aggressive mode\n",
1993 __func__, wme->wme_hipri_traffic);
1994 wme->wme_flags &= ~WME_F_AGGRMODE;
1995 ieee80211_wme_updateparams_locked(ic);
1996 wme->wme_hipri_traffic =
1997 wme->wme_hipri_switch_hysteresis;
1998 } else
1999 wme->wme_hipri_traffic = 0;
2000 } else {
2001 if (wme->wme_hipri_traffic <=
2002 wme->wme_hipri_switch_thresh) {
2003 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
2004 "%s: traffic %u, enable aggressive mode\n",
2005 __func__, wme->wme_hipri_traffic);
2006 wme->wme_flags |= WME_F_AGGRMODE;
2007 ieee80211_wme_updateparams_locked(ic);
2008 wme->wme_hipri_traffic = 0;
2009 } else
2010 wme->wme_hipri_traffic =
2011 wme->wme_hipri_switch_hysteresis;
2012 }
2013 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
2014 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
2015 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
2016 }
2017 }
2018
2019 #ifndef IEEE80211_NO_HOSTAP
2020 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
2021 struct ieee80211_tim_ie *tie =
2022 (struct ieee80211_tim_ie *) bo->bo_tim;
2023 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
2024 u_int timlen, timoff, i;
2025 /*
2026 * ATIM/DTIM needs updating. If it fits in the
2027 * current space allocated then just copy in the
2028 * new bits. Otherwise we need to move any trailing
2029 * data to make room. Note that we know there is
2030 * contiguous space because ieee80211_beacon_allocate
2031 * insures there is space in the mbuf to write a
2032 * maximal-size virtual bitmap (based on ic_max_aid).
2033 */
2034 /*
2035 * Calculate the bitmap size and offset, copy any
2036 * trailer out of the way, and then copy in the
2037 * new bitmap and update the information element.
2038 * Note that the tim bitmap must contain at least
2039 * one byte and any offset must be even.
2040 */
2041 if (ic->ic_ps_pending != 0) {
2042 timoff = 128; /* impossibly large */
2043 for (i = 0; i < ic->ic_tim_len; i++)
2044 if (ic->ic_tim_bitmap[i]) {
2045 timoff = i &~ 1;
2046 break;
2047 }
2048 IASSERT(timoff != 128, ("tim bitmap empty!"));
2049 for (i = ic->ic_tim_len-1; i >= timoff; i--)
2050 if (ic->ic_tim_bitmap[i])
2051 break;
2052 timlen = 1 + (i - timoff);
2053 } else {
2054 timoff = 0;
2055 timlen = 1;
2056 }
2057 if (timlen != bo->bo_tim_len) {
2058 /* copy up/down trailer */
2059 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
2060 bo->bo_trailer_len);
2061 bo->bo_trailer = tie->tim_bitmap+timlen;
2062 bo->bo_wme = bo->bo_trailer;
2063 bo->bo_tim_len = timlen;
2064
2065 /* update information element */
2066 tie->tim_len = 3 + timlen;
2067 tie->tim_bitctl = timoff;
2068 len_changed = 1;
2069 }
2070 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
2071 bo->bo_tim_len);
2072
2073 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
2074
2075 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2076 "%s: TIM updated, pending %u, off %u, len %u\n",
2077 __func__, ic->ic_ps_pending, timoff, timlen);
2078 }
2079 /* count down DTIM period */
2080 if (tie->tim_count == 0)
2081 tie->tim_count = tie->tim_period - 1;
2082 else
2083 tie->tim_count--;
2084 /* update state for buffered multicast frames on DTIM */
2085 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
2086 tie->tim_bitctl |= 1;
2087 else
2088 tie->tim_bitctl &= ~1;
2089 }
2090 #endif /* !IEEE80211_NO_HOSTAP */
2091 IEEE80211_BEACON_UNLOCK(ic);
2092
2093 return len_changed;
2094 }
2095
2096 /*
2097 * Save an outbound packet for a node in power-save sleep state.
2098 * The new packet is placed on the node's saved queue, and the TIM
2099 * is changed, if necessary.
2100 */
2101 void
2102 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
2103 struct mbuf *m)
2104 {
2105 int qlen, age;
2106
2107 IEEE80211_NODE_SAVEQ_LOCK(ni);
2108 if (IF_QFULL(&ni->ni_savedq)) {
2109 IF_DROP(&ni->ni_savedq);
2110 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2111 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2112 "[%s] pwr save q overflow, drops %d (size %d)\n",
2113 ether_sprintf(ni->ni_macaddr),
2114 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2115 #ifdef IEEE80211_DEBUG
2116 if (ieee80211_msg_dumppkts(ic))
2117 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2118 #endif
2119 m_freem(m);
2120 return;
2121 }
2122 /*
2123 * Tag the frame with its expiry time and insert
2124 * it in the queue. The aging interval is 4 times
2125 * the listen interval specified by the station.
2126 * Frames that sit around too long are reclaimed
2127 * using this information.
2128 */
2129 /* XXX handle overflow? */
2130 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2131 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2132 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2133
2134 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2135 "[%s] save frame with age %d, %u now queued\n",
2136 ether_sprintf(ni->ni_macaddr), age, qlen);
2137
2138 if (qlen == 1)
2139 ic->ic_set_tim(ni, 1);
2140 }
2141