Home | History | Annotate | Line # | Download | only in net80211
ieee80211_output.c revision 1.63.2.1
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      3  *
      4  * Copyright (c) 2001 Atsushi Onoe
      5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __FBSDID("$FreeBSD$");
     31 
     32 #include "opt_inet.h"
     33 #include "opt_inet6.h"
     34 #include "opt_wlan.h"
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/kernel.h>
     39 #include <sys/malloc.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/endian.h>
     42 
     43 #include <sys/socket.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/ethernet.h>
     47 #include <net/if.h>
     48 #include <net/if_var.h>
     49 #include <net/if_llc.h>
     50 #include <net/if_media.h>
     51 #include <net/if_vlan_var.h>
     52 
     53 #include <net80211/ieee80211_var.h>
     54 #include <net80211/ieee80211_regdomain.h>
     55 #ifdef IEEE80211_SUPPORT_SUPERG
     56 #include <net80211/ieee80211_superg.h>
     57 #endif
     58 #ifdef IEEE80211_SUPPORT_TDMA
     59 #include <net80211/ieee80211_tdma.h>
     60 #endif
     61 #include <net80211/ieee80211_wds.h>
     62 #include <net80211/ieee80211_mesh.h>
     63 #include <net80211/ieee80211_vht.h>
     64 
     65 #if defined(INET) || defined(INET6)
     66 #include <netinet/in.h>
     67 #endif
     68 
     69 #ifdef INET
     70 #include <netinet/if_ether.h>
     71 #include <netinet/in_systm.h>
     72 #include <netinet/ip.h>
     73 #endif
     74 #ifdef INET6
     75 #include <netinet/ip6.h>
     76 #endif
     77 
     78 #include <security/mac/mac_framework.h>
     79 
     80 #define	ETHER_HEADER_COPY(dst, src) \
     81 	memcpy(dst, src, sizeof(struct ether_header))
     82 
     83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
     84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
     85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
     86 
     87 #ifdef IEEE80211_DEBUG
     88 /*
     89  * Decide if an outbound management frame should be
     90  * printed when debugging is enabled.  This filters some
     91  * of the less interesting frames that come frequently
     92  * (e.g. beacons).
     93  */
     94 static __inline int
     95 doprint(struct ieee80211vap *vap, int subtype)
     96 {
     97 	switch (subtype) {
     98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
    100 	}
    101 	return 1;
    102 }
    103 #endif
    104 
    105 /*
    106  * Transmit a frame to the given destination on the given VAP.
    107  *
    108  * It's up to the caller to figure out the details of who this
    109  * is going to and resolving the node.
    110  *
    111  * This routine takes care of queuing it for power save,
    112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
    113  * if required, then passing it up to the driver layer.
    114  *
    115  * This routine (for now) consumes the mbuf and frees the node
    116  * reference; it ideally will return a TX status which reflects
    117  * whether the mbuf was consumed or not, so the caller can
    118  * free the mbuf (if appropriate) and the node reference (again,
    119  * if appropriate.)
    120  */
    121 int
    122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
    123     struct ieee80211_node *ni)
    124 {
    125 	struct ieee80211com *ic = vap->iv_ic;
    126 	struct ifnet *ifp = vap->iv_ifp;
    127 	int mcast;
    128 
    129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
    130 	    (m->m_flags & M_PWR_SAV) == 0) {
    131 		/*
    132 		 * Station in power save mode; pass the frame
    133 		 * to the 802.11 layer and continue.  We'll get
    134 		 * the frame back when the time is right.
    135 		 * XXX lose WDS vap linkage?
    136 		 */
    137 		if (ieee80211_pwrsave(ni, m) != 0)
    138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    139 		ieee80211_free_node(ni);
    140 
    141 		/*
    142 		 * We queued it fine, so tell the upper layer
    143 		 * that we consumed it.
    144 		 */
    145 		return (0);
    146 	}
    147 	/* calculate priority so drivers can find the tx queue */
    148 	if (ieee80211_classify(ni, m)) {
    149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
    150 		    ni->ni_macaddr, NULL,
    151 		    "%s", "classification failure");
    152 		vap->iv_stats.is_tx_classify++;
    153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    154 		m_freem(m);
    155 		ieee80211_free_node(ni);
    156 
    157 		/* XXX better status? */
    158 		return (0);
    159 	}
    160 	/*
    161 	 * Stash the node pointer.  Note that we do this after
    162 	 * any call to ieee80211_dwds_mcast because that code
    163 	 * uses any existing value for rcvif to identify the
    164 	 * interface it (might have been) received on.
    165 	 */
    166 	m->m_pkthdr.rcvif = (void *)ni;
    167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
    168 
    169 	BPF_MTAP(ifp, m);		/* 802.3 tx */
    170 
    171 	/*
    172 	 * Check if A-MPDU tx aggregation is setup or if we
    173 	 * should try to enable it.  The sta must be associated
    174 	 * with HT and A-MPDU enabled for use.  When the policy
    175 	 * routine decides we should enable A-MPDU we issue an
    176 	 * ADDBA request and wait for a reply.  The frame being
    177 	 * encapsulated will go out w/o using A-MPDU, or possibly
    178 	 * it might be collected by the driver and held/retransmit.
    179 	 * The default ic_ampdu_enable routine handles staggering
    180 	 * ADDBA requests in case the receiver NAK's us or we are
    181 	 * otherwise unable to establish a BA stream.
    182 	 *
    183 	 * Don't treat group-addressed frames as candidates for aggregation;
    184 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
    185 	 * frames will always have sequence numbers allocated from the NON_QOS
    186 	 * TID.
    187 	 */
    188 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
    189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
    190 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
    191 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
    192 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
    193 
    194 			ieee80211_txampdu_count_packet(tap);
    195 			if (IEEE80211_AMPDU_RUNNING(tap)) {
    196 				/*
    197 				 * Operational, mark frame for aggregation.
    198 				 *
    199 				 * XXX do tx aggregation here
    200 				 */
    201 				m->m_flags |= M_AMPDU_MPDU;
    202 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
    203 			    ic->ic_ampdu_enable(ni, tap)) {
    204 				/*
    205 				 * Not negotiated yet, request service.
    206 				 */
    207 				ieee80211_ampdu_request(ni, tap);
    208 				/* XXX hold frame for reply? */
    209 			}
    210 		}
    211 	}
    212 
    213 #ifdef IEEE80211_SUPPORT_SUPERG
    214 	/*
    215 	 * Check for AMSDU/FF; queue for aggregation
    216 	 *
    217 	 * Note: we don't bother trying to do fast frames or
    218 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
    219 	 * likely could do it for FF (because it's a magic
    220 	 * atheros tunnel LLC type) but I don't think we're going
    221 	 * to really need to.  For A-MSDU we'd have to set the
    222 	 * A-MSDU QoS bit in the wifi header, so we just plain
    223 	 * can't do it.
    224 	 *
    225 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
    226 	 * with A-MPDU together which for certain circumstances
    227 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
    228 	 * I'll ignore that for now so existing behaviour is maintained.
    229 	 * Later on it would be good to make "amsdu + ampdu" configurable.
    230 	 */
    231 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
    232 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
    233 			m = ieee80211_amsdu_check(ni, m);
    234 			if (m == NULL) {
    235 				/* NB: any ni ref held on stageq */
    236 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
    237 				    "%s: amsdu_check queued frame\n",
    238 				    __func__);
    239 				return (0);
    240 			}
    241 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
    242 		    IEEE80211_NODE_FF)) {
    243 			m = ieee80211_ff_check(ni, m);
    244 			if (m == NULL) {
    245 				/* NB: any ni ref held on stageq */
    246 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
    247 				    "%s: ff_check queued frame\n",
    248 				    __func__);
    249 				return (0);
    250 			}
    251 		}
    252 	}
    253 #endif /* IEEE80211_SUPPORT_SUPERG */
    254 
    255 	/*
    256 	 * Grab the TX lock - serialise the TX process from this
    257 	 * point (where TX state is being checked/modified)
    258 	 * through to driver queue.
    259 	 */
    260 	IEEE80211_TX_LOCK(ic);
    261 
    262 	/*
    263 	 * XXX make the encap and transmit code a separate function
    264 	 * so things like the FF (and later A-MSDU) path can just call
    265 	 * it for flushed frames.
    266 	 */
    267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
    268 		/*
    269 		 * Encapsulate the packet in prep for transmission.
    270 		 */
    271 		m = ieee80211_encap(vap, ni, m);
    272 		if (m == NULL) {
    273 			/* NB: stat+msg handled in ieee80211_encap */
    274 			IEEE80211_TX_UNLOCK(ic);
    275 			ieee80211_free_node(ni);
    276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    277 			return (ENOBUFS);
    278 		}
    279 	}
    280 	(void) ieee80211_parent_xmitpkt(ic, m);
    281 
    282 	/*
    283 	 * Unlock at this point - no need to hold it across
    284 	 * ieee80211_free_node() (ie, the comlock)
    285 	 */
    286 	IEEE80211_TX_UNLOCK(ic);
    287 	ic->ic_lastdata = ticks;
    288 
    289 	return (0);
    290 }
    291 
    292 
    293 
    294 /*
    295  * Send the given mbuf through the given vap.
    296  *
    297  * This consumes the mbuf regardless of whether the transmit
    298  * was successful or not.
    299  *
    300  * This does none of the initial checks that ieee80211_start()
    301  * does (eg CAC timeout, interface wakeup) - the caller must
    302  * do this first.
    303  */
    304 static int
    305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
    306 {
    307 #define	IS_DWDS(vap) \
    308 	(vap->iv_opmode == IEEE80211_M_WDS && \
    309 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
    310 	struct ieee80211com *ic = vap->iv_ic;
    311 	struct ifnet *ifp = vap->iv_ifp;
    312 	struct ieee80211_node *ni;
    313 	struct ether_header *eh;
    314 
    315 	/*
    316 	 * Cancel any background scan.
    317 	 */
    318 	if (ic->ic_flags & IEEE80211_F_SCAN)
    319 		ieee80211_cancel_anyscan(vap);
    320 	/*
    321 	 * Find the node for the destination so we can do
    322 	 * things like power save and fast frames aggregation.
    323 	 *
    324 	 * NB: past this point various code assumes the first
    325 	 *     mbuf has the 802.3 header present (and contiguous).
    326 	 */
    327 	ni = NULL;
    328 	if (m->m_len < sizeof(struct ether_header) &&
    329 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
    330 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
    331 		    "discard frame, %s\n", "m_pullup failed");
    332 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
    333 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    334 		return (ENOBUFS);
    335 	}
    336 	eh = mtod(m, struct ether_header *);
    337 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
    338 		if (IS_DWDS(vap)) {
    339 			/*
    340 			 * Only unicast frames from the above go out
    341 			 * DWDS vaps; multicast frames are handled by
    342 			 * dispatching the frame as it comes through
    343 			 * the AP vap (see below).
    344 			 */
    345 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
    346 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
    347 			vap->iv_stats.is_dwds_mcast++;
    348 			m_freem(m);
    349 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    350 			/* XXX better status? */
    351 			return (ENOBUFS);
    352 		}
    353 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
    354 			/*
    355 			 * Spam DWDS vap's w/ multicast traffic.
    356 			 */
    357 			/* XXX only if dwds in use? */
    358 			ieee80211_dwds_mcast(vap, m);
    359 		}
    360 	}
    361 #ifdef IEEE80211_SUPPORT_MESH
    362 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
    363 #endif
    364 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
    365 		if (ni == NULL) {
    366 			/* NB: ieee80211_find_txnode does stat+msg */
    367 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    368 			m_freem(m);
    369 			/* XXX better status? */
    370 			return (ENOBUFS);
    371 		}
    372 		if (ni->ni_associd == 0 &&
    373 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
    374 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
    375 			    eh->ether_dhost, NULL,
    376 			    "sta not associated (type 0x%04x)",
    377 			    htons(eh->ether_type));
    378 			vap->iv_stats.is_tx_notassoc++;
    379 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    380 			m_freem(m);
    381 			ieee80211_free_node(ni);
    382 			/* XXX better status? */
    383 			return (ENOBUFS);
    384 		}
    385 #ifdef IEEE80211_SUPPORT_MESH
    386 	} else {
    387 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
    388 			/*
    389 			 * Proxy station only if configured.
    390 			 */
    391 			if (!ieee80211_mesh_isproxyena(vap)) {
    392 				IEEE80211_DISCARD_MAC(vap,
    393 				    IEEE80211_MSG_OUTPUT |
    394 				    IEEE80211_MSG_MESH,
    395 				    eh->ether_dhost, NULL,
    396 				    "%s", "proxy not enabled");
    397 				vap->iv_stats.is_mesh_notproxy++;
    398 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    399 				m_freem(m);
    400 				/* XXX better status? */
    401 				return (ENOBUFS);
    402 			}
    403 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
    404 			    "forward frame from DS SA(%6D), DA(%6D)\n",
    405 			    eh->ether_shost, ":",
    406 			    eh->ether_dhost, ":");
    407 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
    408 		}
    409 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
    410 		if (ni == NULL) {
    411 			/*
    412 			 * NB: ieee80211_mesh_discover holds/disposes
    413 			 * frame (e.g. queueing on path discovery).
    414 			 */
    415 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    416 			/* XXX better status? */
    417 			return (ENOBUFS);
    418 		}
    419 	}
    420 #endif
    421 
    422 	/*
    423 	 * We've resolved the sender, so attempt to transmit it.
    424 	 */
    425 
    426 	if (vap->iv_state == IEEE80211_S_SLEEP) {
    427 		/*
    428 		 * In power save; queue frame and then  wakeup device
    429 		 * for transmit.
    430 		 */
    431 		ic->ic_lastdata = ticks;
    432 		if (ieee80211_pwrsave(ni, m) != 0)
    433 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    434 		ieee80211_free_node(ni);
    435 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
    436 		return (0);
    437 	}
    438 
    439 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
    440 		return (ENOBUFS);
    441 	return (0);
    442 #undef	IS_DWDS
    443 }
    444 
    445 /*
    446  * Start method for vap's.  All packets from the stack come
    447  * through here.  We handle common processing of the packets
    448  * before dispatching them to the underlying device.
    449  *
    450  * if_transmit() requires that the mbuf be consumed by this call
    451  * regardless of the return condition.
    452  */
    453 int
    454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
    455 {
    456 	struct ieee80211vap *vap = ifp->if_softc;
    457 	struct ieee80211com *ic = vap->iv_ic;
    458 
    459 	/*
    460 	 * No data frames go out unless we're running.
    461 	 * Note in particular this covers CAC and CSA
    462 	 * states (though maybe we should check muting
    463 	 * for CSA).
    464 	 */
    465 	if (vap->iv_state != IEEE80211_S_RUN &&
    466 	    vap->iv_state != IEEE80211_S_SLEEP) {
    467 		IEEE80211_LOCK(ic);
    468 		/* re-check under the com lock to avoid races */
    469 		if (vap->iv_state != IEEE80211_S_RUN &&
    470 		    vap->iv_state != IEEE80211_S_SLEEP) {
    471 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
    472 			    "%s: ignore queue, in %s state\n",
    473 			    __func__, ieee80211_state_name[vap->iv_state]);
    474 			vap->iv_stats.is_tx_badstate++;
    475 			IEEE80211_UNLOCK(ic);
    476 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
    477 			m_freem(m);
    478 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    479 			return (ENETDOWN);
    480 		}
    481 		IEEE80211_UNLOCK(ic);
    482 	}
    483 
    484 	/*
    485 	 * Sanitize mbuf flags for net80211 use.  We cannot
    486 	 * clear M_PWR_SAV or M_MORE_DATA because these may
    487 	 * be set for frames that are re-submitted from the
    488 	 * power save queue.
    489 	 *
    490 	 * NB: This must be done before ieee80211_classify as
    491 	 *     it marks EAPOL in frames with M_EAPOL.
    492 	 */
    493 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
    494 
    495 	/*
    496 	 * Bump to the packet transmission path.
    497 	 * The mbuf will be consumed here.
    498 	 */
    499 	return (ieee80211_start_pkt(vap, m));
    500 }
    501 
    502 void
    503 ieee80211_vap_qflush(struct ifnet *ifp)
    504 {
    505 
    506 	/* Empty for now */
    507 }
    508 
    509 /*
    510  * 802.11 raw output routine.
    511  *
    512  * XXX TODO: this (and other send routines) should correctly
    513  * XXX keep the pwr mgmt bit set if it decides to call into the
    514  * XXX driver to send a frame whilst the state is SLEEP.
    515  *
    516  * Otherwise the peer may decide that we're awake and flood us
    517  * with traffic we are still too asleep to receive!
    518  */
    519 int
    520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
    521     struct mbuf *m, const struct ieee80211_bpf_params *params)
    522 {
    523 	struct ieee80211com *ic = vap->iv_ic;
    524 	int error;
    525 
    526 	/*
    527 	 * Set node - the caller has taken a reference, so ensure
    528 	 * that the mbuf has the same node value that
    529 	 * it would if it were going via the normal path.
    530 	 */
    531 	m->m_pkthdr.rcvif = (void *)ni;
    532 
    533 	/*
    534 	 * Attempt to add bpf transmit parameters.
    535 	 *
    536 	 * For now it's ok to fail; the raw_xmit api still takes
    537 	 * them as an option.
    538 	 *
    539 	 * Later on when ic_raw_xmit() has params removed,
    540 	 * they'll have to be added - so fail the transmit if
    541 	 * they can't be.
    542 	 */
    543 	if (params)
    544 		(void) ieee80211_add_xmit_params(m, params);
    545 
    546 	error = ic->ic_raw_xmit(ni, m, params);
    547 	if (error) {
    548 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
    549 		ieee80211_free_node(ni);
    550 	}
    551 	return (error);
    552 }
    553 
    554 static int
    555 ieee80211_validate_frame(struct mbuf *m,
    556     const struct ieee80211_bpf_params *params)
    557 {
    558 	struct ieee80211_frame *wh;
    559 	int type;
    560 
    561 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
    562 		return (EINVAL);
    563 
    564 	wh = mtod(m, struct ieee80211_frame *);
    565 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
    566 	    IEEE80211_FC0_VERSION_0)
    567 		return (EINVAL);
    568 
    569 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
    570 	if (type != IEEE80211_FC0_TYPE_DATA) {
    571 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
    572 		    IEEE80211_FC1_DIR_NODS)
    573 			return (EINVAL);
    574 
    575 		if (type != IEEE80211_FC0_TYPE_MGT &&
    576 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
    577 			return (EINVAL);
    578 
    579 		/* XXX skip other field checks? */
    580 	}
    581 
    582 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
    583 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
    584 		int subtype;
    585 
    586 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    587 
    588 		/*
    589 		 * See IEEE Std 802.11-2012,
    590 		 * 8.2.4.1.9 'Protected Frame field'
    591 		 */
    592 		/* XXX no support for robust management frames yet. */
    593 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
    594 		    (type == IEEE80211_FC0_TYPE_MGT &&
    595 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
    596 			return (EINVAL);
    597 
    598 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
    599 	}
    600 
    601 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
    602 		return (EINVAL);
    603 
    604 	return (0);
    605 }
    606 
    607 /*
    608  * 802.11 output routine. This is (currently) used only to
    609  * connect bpf write calls to the 802.11 layer for injecting
    610  * raw 802.11 frames.
    611  */
    612 int
    613 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
    614 	const struct sockaddr *dst, struct route *ro)
    615 {
    616 #define senderr(e) do { error = (e); goto bad;} while (0)
    617 	const struct ieee80211_bpf_params *params = NULL;
    618 	struct ieee80211_node *ni = NULL;
    619 	struct ieee80211vap *vap;
    620 	struct ieee80211_frame *wh;
    621 	struct ieee80211com *ic = NULL;
    622 	int error;
    623 	int ret;
    624 
    625 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
    626 		/*
    627 		 * Short-circuit requests if the vap is marked OACTIVE
    628 		 * as this can happen because a packet came down through
    629 		 * ieee80211_start before the vap entered RUN state in
    630 		 * which case it's ok to just drop the frame.  This
    631 		 * should not be necessary but callers of if_output don't
    632 		 * check OACTIVE.
    633 		 */
    634 		senderr(ENETDOWN);
    635 	}
    636 	vap = ifp->if_softc;
    637 	ic = vap->iv_ic;
    638 	/*
    639 	 * Hand to the 802.3 code if not tagged as
    640 	 * a raw 802.11 frame.
    641 	 */
    642 	if (dst->sa_family != AF_IEEE80211)
    643 		return vap->iv_output(ifp, m, dst, ro);
    644 #ifdef MAC
    645 	error = mac_ifnet_check_transmit(ifp, m);
    646 	if (error)
    647 		senderr(error);
    648 #endif
    649 	if (ifp->if_flags & IFF_MONITOR)
    650 		senderr(ENETDOWN);
    651 	if (!IFNET_IS_UP_RUNNING(ifp))
    652 		senderr(ENETDOWN);
    653 	if (vap->iv_state == IEEE80211_S_CAC) {
    654 		IEEE80211_DPRINTF(vap,
    655 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
    656 		    "block %s frame in CAC state\n", "raw data");
    657 		vap->iv_stats.is_tx_badstate++;
    658 		senderr(EIO);		/* XXX */
    659 	} else if (vap->iv_state == IEEE80211_S_SCAN)
    660 		senderr(EIO);
    661 	/* XXX bypass bridge, pfil, carp, etc. */
    662 
    663 	/*
    664 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
    665 	 * present by setting the sa_len field of the sockaddr (yes,
    666 	 * this is a hack).
    667 	 * NB: we assume sa_data is suitably aligned to cast.
    668 	 */
    669 	if (dst->sa_len != 0)
    670 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
    671 
    672 	error = ieee80211_validate_frame(m, params);
    673 	if (error != 0)
    674 		senderr(error);
    675 
    676 	wh = mtod(m, struct ieee80211_frame *);
    677 
    678 	/* locate destination node */
    679 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
    680 	case IEEE80211_FC1_DIR_NODS:
    681 	case IEEE80211_FC1_DIR_FROMDS:
    682 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
    683 		break;
    684 	case IEEE80211_FC1_DIR_TODS:
    685 	case IEEE80211_FC1_DIR_DSTODS:
    686 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
    687 		break;
    688 	default:
    689 		senderr(EDOOFUS);
    690 	}
    691 	if (ni == NULL) {
    692 		/*
    693 		 * Permit packets w/ bpf params through regardless
    694 		 * (see below about sa_len).
    695 		 */
    696 		if (dst->sa_len == 0)
    697 			senderr(EHOSTUNREACH);
    698 		ni = ieee80211_ref_node(vap->iv_bss);
    699 	}
    700 
    701 	/*
    702 	 * Sanitize mbuf for net80211 flags leaked from above.
    703 	 *
    704 	 * NB: This must be done before ieee80211_classify as
    705 	 *     it marks EAPOL in frames with M_EAPOL.
    706 	 */
    707 	m->m_flags &= ~M_80211_TX;
    708 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
    709 
    710 	if (IEEE80211_IS_DATA(wh)) {
    711 		/* calculate priority so drivers can find the tx queue */
    712 		if (ieee80211_classify(ni, m))
    713 			senderr(EIO);		/* XXX */
    714 
    715 		/* NB: ieee80211_encap does not include 802.11 header */
    716 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
    717 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
    718 	} else
    719 		M_WME_SETAC(m, WME_AC_BE);
    720 
    721 	IEEE80211_NODE_STAT(ni, tx_data);
    722 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
    723 		IEEE80211_NODE_STAT(ni, tx_mcast);
    724 		m->m_flags |= M_MCAST;
    725 	} else
    726 		IEEE80211_NODE_STAT(ni, tx_ucast);
    727 
    728 	IEEE80211_TX_LOCK(ic);
    729 	ret = ieee80211_raw_output(vap, ni, m, params);
    730 	IEEE80211_TX_UNLOCK(ic);
    731 	return (ret);
    732 bad:
    733 	if (m != NULL)
    734 		m_freem(m);
    735 	if (ni != NULL)
    736 		ieee80211_free_node(ni);
    737 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
    738 	return error;
    739 #undef senderr
    740 }
    741 
    742 /*
    743  * Set the direction field and address fields of an outgoing
    744  * frame.  Note this should be called early on in constructing
    745  * a frame as it sets i_fc[1]; other bits can then be or'd in.
    746  */
    747 void
    748 ieee80211_send_setup(
    749 	struct ieee80211_node *ni,
    750 	struct mbuf *m,
    751 	int type, int tid,
    752 	const uint8_t sa[IEEE80211_ADDR_LEN],
    753 	const uint8_t da[IEEE80211_ADDR_LEN],
    754 	const uint8_t bssid[IEEE80211_ADDR_LEN])
    755 {
    756 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
    757 	struct ieee80211vap *vap = ni->ni_vap;
    758 	struct ieee80211_tx_ampdu *tap;
    759 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
    760 	ieee80211_seq seqno;
    761 
    762 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
    763 
    764 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
    765 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
    766 		switch (vap->iv_opmode) {
    767 		case IEEE80211_M_STA:
    768 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    769 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
    770 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    771 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    772 			break;
    773 		case IEEE80211_M_IBSS:
    774 		case IEEE80211_M_AHDEMO:
    775 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    776 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    777 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    778 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    779 			break;
    780 		case IEEE80211_M_HOSTAP:
    781 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    782 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    783 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
    784 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    785 			break;
    786 		case IEEE80211_M_WDS:
    787 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
    788 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    789 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
    790 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    791 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
    792 			break;
    793 		case IEEE80211_M_MBSS:
    794 #ifdef IEEE80211_SUPPORT_MESH
    795 			if (IEEE80211_IS_MULTICAST(da)) {
    796 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    797 				/* XXX next hop */
    798 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
    799 				IEEE80211_ADDR_COPY(wh->i_addr2,
    800 				    vap->iv_myaddr);
    801 			} else {
    802 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
    803 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
    804 				IEEE80211_ADDR_COPY(wh->i_addr2,
    805 				    vap->iv_myaddr);
    806 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
    807 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
    808 			}
    809 #endif
    810 			break;
    811 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
    812 			break;
    813 		}
    814 	} else {
    815 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    816 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
    817 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    818 #ifdef IEEE80211_SUPPORT_MESH
    819 		if (vap->iv_opmode == IEEE80211_M_MBSS)
    820 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    821 		else
    822 #endif
    823 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    824 	}
    825 	*(uint16_t *)&wh->i_dur[0] = 0;
    826 
    827 	/*
    828 	 * XXX TODO: this is what the TX lock is for.
    829 	 * Here we're incrementing sequence numbers, and they
    830 	 * need to be in lock-step with what the driver is doing
    831 	 * both in TX ordering and crypto encap (IV increment.)
    832 	 *
    833 	 * If the driver does seqno itself, then we can skip
    834 	 * assigning sequence numbers here, and we can avoid
    835 	 * requiring the TX lock.
    836 	 */
    837 	tap = &ni->ni_tx_ampdu[tid];
    838 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
    839 		m->m_flags |= M_AMPDU_MPDU;
    840 
    841 		/* NB: zero out i_seq field (for s/w encryption etc) */
    842 		*(uint16_t *)&wh->i_seq[0] = 0;
    843 	} else {
    844 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
    845 				      type & IEEE80211_FC0_SUBTYPE_MASK))
    846 			/*
    847 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
    848 			 * come out of a different seqno space.
    849 			 */
    850 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
    851 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
    852 			} else {
    853 				seqno = ni->ni_txseqs[tid]++;
    854 			}
    855 		else
    856 			seqno = 0;
    857 
    858 		*(uint16_t *)&wh->i_seq[0] =
    859 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
    860 		M_SEQNO_SET(m, seqno);
    861 	}
    862 
    863 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
    864 		m->m_flags |= M_MCAST;
    865 #undef WH4
    866 }
    867 
    868 /*
    869  * Send a management frame to the specified node.  The node pointer
    870  * must have a reference as the pointer will be passed to the driver
    871  * and potentially held for a long time.  If the frame is successfully
    872  * dispatched to the driver, then it is responsible for freeing the
    873  * reference (and potentially free'ing up any associated storage);
    874  * otherwise deal with reclaiming any reference (on error).
    875  */
    876 int
    877 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
    878 	struct ieee80211_bpf_params *params)
    879 {
    880 	struct ieee80211vap *vap = ni->ni_vap;
    881 	struct ieee80211com *ic = ni->ni_ic;
    882 	struct ieee80211_frame *wh;
    883 	int ret;
    884 
    885 	KASSERT(ni != NULL, ("null node"));
    886 
    887 	if (vap->iv_state == IEEE80211_S_CAC) {
    888 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
    889 		    ni, "block %s frame in CAC state",
    890 			ieee80211_mgt_subtype_name(type));
    891 		vap->iv_stats.is_tx_badstate++;
    892 		ieee80211_free_node(ni);
    893 		m_freem(m);
    894 		return EIO;		/* XXX */
    895 	}
    896 
    897 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
    898 	if (m == NULL) {
    899 		ieee80211_free_node(ni);
    900 		return ENOMEM;
    901 	}
    902 
    903 	IEEE80211_TX_LOCK(ic);
    904 
    905 	wh = mtod(m, struct ieee80211_frame *);
    906 	ieee80211_send_setup(ni, m,
    907 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
    908 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
    909 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
    910 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
    911 		    "encrypting frame (%s)", __func__);
    912 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
    913 	}
    914 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
    915 
    916 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
    917 	M_WME_SETAC(m, params->ibp_pri);
    918 
    919 #ifdef IEEE80211_DEBUG
    920 	/* avoid printing too many frames */
    921 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
    922 	    ieee80211_msg_dumppkts(vap)) {
    923 		printf("[%s] send %s on channel %u\n",
    924 		    ether_sprintf(wh->i_addr1),
    925 		    ieee80211_mgt_subtype_name(type),
    926 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
    927 	}
    928 #endif
    929 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    930 
    931 	ret = ieee80211_raw_output(vap, ni, m, params);
    932 	IEEE80211_TX_UNLOCK(ic);
    933 	return (ret);
    934 }
    935 
    936 static void
    937 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
    938     int status)
    939 {
    940 	struct ieee80211vap *vap = ni->ni_vap;
    941 
    942 	wakeup(vap);
    943 }
    944 
    945 /*
    946  * Send a null data frame to the specified node.  If the station
    947  * is setup for QoS then a QoS Null Data frame is constructed.
    948  * If this is a WDS station then a 4-address frame is constructed.
    949  *
    950  * NB: the caller is assumed to have setup a node reference
    951  *     for use; this is necessary to deal with a race condition
    952  *     when probing for inactive stations.  Like ieee80211_mgmt_output
    953  *     we must cleanup any node reference on error;  however we
    954  *     can safely just unref it as we know it will never be the
    955  *     last reference to the node.
    956  */
    957 int
    958 ieee80211_send_nulldata(struct ieee80211_node *ni)
    959 {
    960 	struct ieee80211vap *vap = ni->ni_vap;
    961 	struct ieee80211com *ic = ni->ni_ic;
    962 	struct mbuf *m;
    963 	struct ieee80211_frame *wh;
    964 	int hdrlen;
    965 	uint8_t *frm;
    966 	int ret;
    967 
    968 	if (vap->iv_state == IEEE80211_S_CAC) {
    969 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
    970 		    ni, "block %s frame in CAC state", "null data");
    971 		ieee80211_unref_node(&ni);
    972 		vap->iv_stats.is_tx_badstate++;
    973 		return EIO;		/* XXX */
    974 	}
    975 
    976 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
    977 		hdrlen = sizeof(struct ieee80211_qosframe);
    978 	else
    979 		hdrlen = sizeof(struct ieee80211_frame);
    980 	/* NB: only WDS vap's get 4-address frames */
    981 	if (vap->iv_opmode == IEEE80211_M_WDS)
    982 		hdrlen += IEEE80211_ADDR_LEN;
    983 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    984 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
    985 
    986 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
    987 	if (m == NULL) {
    988 		/* XXX debug msg */
    989 		ieee80211_unref_node(&ni);
    990 		vap->iv_stats.is_tx_nobuf++;
    991 		return ENOMEM;
    992 	}
    993 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
    994 	    ("leading space %zd", M_LEADINGSPACE(m)));
    995 	M_PREPEND(m, hdrlen, M_NOWAIT);
    996 	if (m == NULL) {
    997 		/* NB: cannot happen */
    998 		ieee80211_free_node(ni);
    999 		return ENOMEM;
   1000 	}
   1001 
   1002 	IEEE80211_TX_LOCK(ic);
   1003 
   1004 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
   1005 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
   1006 		const int tid = WME_AC_TO_TID(WME_AC_BE);
   1007 		uint8_t *qos;
   1008 
   1009 		ieee80211_send_setup(ni, m,
   1010 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
   1011 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
   1012 
   1013 		if (vap->iv_opmode == IEEE80211_M_WDS)
   1014 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
   1015 		else
   1016 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
   1017 		qos[0] = tid & IEEE80211_QOS_TID;
   1018 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
   1019 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
   1020 		qos[1] = 0;
   1021 	} else {
   1022 		ieee80211_send_setup(ni, m,
   1023 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
   1024 		    IEEE80211_NONQOS_TID,
   1025 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
   1026 	}
   1027 	if (vap->iv_opmode != IEEE80211_M_WDS) {
   1028 		/* NB: power management bit is never sent by an AP */
   1029 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1030 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
   1031 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
   1032 	}
   1033 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
   1034 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
   1035 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
   1036 		    NULL);
   1037 	}
   1038 	m->m_len = m->m_pkthdr.len = hdrlen;
   1039 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
   1040 
   1041 	M_WME_SETAC(m, WME_AC_BE);
   1042 
   1043 	IEEE80211_NODE_STAT(ni, tx_data);
   1044 
   1045 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
   1046 	    "send %snull data frame on channel %u, pwr mgt %s",
   1047 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
   1048 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
   1049 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
   1050 
   1051 	ret = ieee80211_raw_output(vap, ni, m, NULL);
   1052 	IEEE80211_TX_UNLOCK(ic);
   1053 	return (ret);
   1054 }
   1055 
   1056 /*
   1057  * Assign priority to a frame based on any vlan tag assigned
   1058  * to the station and/or any Diffserv setting in an IP header.
   1059  * Finally, if an ACM policy is setup (in station mode) it's
   1060  * applied.
   1061  */
   1062 int
   1063 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
   1064 {
   1065 	const struct ether_header *eh = NULL;
   1066 	uint16_t ether_type;
   1067 	int v_wme_ac, d_wme_ac, ac;
   1068 
   1069 	if (__predict_false(m->m_flags & M_ENCAP)) {
   1070 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
   1071 		struct llc *llc;
   1072 		int hdrlen, subtype;
   1073 
   1074 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   1075 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
   1076 			ac = WME_AC_BE;
   1077 			goto done;
   1078 		}
   1079 
   1080 		hdrlen = ieee80211_hdrsize(wh);
   1081 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
   1082 			return 1;
   1083 
   1084 		llc = (struct llc *)mtodo(m, hdrlen);
   1085 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
   1086 		    llc->llc_ssap != LLC_SNAP_LSAP ||
   1087 		    llc->llc_control != LLC_UI ||
   1088 		    llc->llc_snap.org_code[0] != 0 ||
   1089 		    llc->llc_snap.org_code[1] != 0 ||
   1090 		    llc->llc_snap.org_code[2] != 0)
   1091 			return 1;
   1092 
   1093 		ether_type = llc->llc_snap.ether_type;
   1094 	} else {
   1095 		eh = mtod(m, struct ether_header *);
   1096 		ether_type = eh->ether_type;
   1097 	}
   1098 
   1099 	/*
   1100 	 * Always promote PAE/EAPOL frames to high priority.
   1101 	 */
   1102 	if (ether_type == htons(ETHERTYPE_PAE)) {
   1103 		/* NB: mark so others don't need to check header */
   1104 		m->m_flags |= M_EAPOL;
   1105 		ac = WME_AC_VO;
   1106 		goto done;
   1107 	}
   1108 	/*
   1109 	 * Non-qos traffic goes to BE.
   1110 	 */
   1111 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
   1112 		ac = WME_AC_BE;
   1113 		goto done;
   1114 	}
   1115 
   1116 	/*
   1117 	 * If node has a vlan tag then all traffic
   1118 	 * to it must have a matching tag.
   1119 	 */
   1120 	v_wme_ac = 0;
   1121 	if (ni->ni_vlan != 0) {
   1122 		 if ((m->m_flags & M_VLANTAG) == 0) {
   1123 			IEEE80211_NODE_STAT(ni, tx_novlantag);
   1124 			return 1;
   1125 		}
   1126 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
   1127 		    EVL_VLANOFTAG(ni->ni_vlan)) {
   1128 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
   1129 			return 1;
   1130 		}
   1131 		/* map vlan priority to AC */
   1132 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
   1133 	}
   1134 
   1135 	/* XXX m_copydata may be too slow for fast path */
   1136 #ifdef INET
   1137 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
   1138 		uint8_t tos;
   1139 		/*
   1140 		 * IP frame, map the DSCP bits from the TOS field.
   1141 		 */
   1142 		/* NB: ip header may not be in first mbuf */
   1143 		m_copydata(m, sizeof(struct ether_header) +
   1144 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
   1145 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
   1146 		d_wme_ac = TID_TO_WME_AC(tos);
   1147 	} else {
   1148 #endif /* INET */
   1149 #ifdef INET6
   1150 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
   1151 		uint32_t flow;
   1152 		uint8_t tos;
   1153 		/*
   1154 		 * IPv6 frame, map the DSCP bits from the traffic class field.
   1155 		 */
   1156 		m_copydata(m, sizeof(struct ether_header) +
   1157 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
   1158 		    (caddr_t) &flow);
   1159 		tos = (uint8_t)(ntohl(flow) >> 20);
   1160 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
   1161 		d_wme_ac = TID_TO_WME_AC(tos);
   1162 	} else {
   1163 #endif /* INET6 */
   1164 		d_wme_ac = WME_AC_BE;
   1165 #ifdef INET6
   1166 	}
   1167 #endif
   1168 #ifdef INET
   1169 	}
   1170 #endif
   1171 	/*
   1172 	 * Use highest priority AC.
   1173 	 */
   1174 	if (v_wme_ac > d_wme_ac)
   1175 		ac = v_wme_ac;
   1176 	else
   1177 		ac = d_wme_ac;
   1178 
   1179 	/*
   1180 	 * Apply ACM policy.
   1181 	 */
   1182 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
   1183 		static const int acmap[4] = {
   1184 			WME_AC_BK,	/* WME_AC_BE */
   1185 			WME_AC_BK,	/* WME_AC_BK */
   1186 			WME_AC_BE,	/* WME_AC_VI */
   1187 			WME_AC_VI,	/* WME_AC_VO */
   1188 		};
   1189 		struct ieee80211com *ic = ni->ni_ic;
   1190 
   1191 		while (ac != WME_AC_BK &&
   1192 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
   1193 			ac = acmap[ac];
   1194 	}
   1195 done:
   1196 	M_WME_SETAC(m, ac);
   1197 	return 0;
   1198 }
   1199 
   1200 /*
   1201  * Insure there is sufficient contiguous space to encapsulate the
   1202  * 802.11 data frame.  If room isn't already there, arrange for it.
   1203  * Drivers and cipher modules assume we have done the necessary work
   1204  * and fail rudely if they don't find the space they need.
   1205  */
   1206 struct mbuf *
   1207 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
   1208 	struct ieee80211_key *key, struct mbuf *m)
   1209 {
   1210 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
   1211 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
   1212 
   1213 	if (key != NULL) {
   1214 		/* XXX belongs in crypto code? */
   1215 		needed_space += key->wk_cipher->ic_header;
   1216 		/* XXX frags */
   1217 		/*
   1218 		 * When crypto is being done in the host we must insure
   1219 		 * the data are writable for the cipher routines; clone
   1220 		 * a writable mbuf chain.
   1221 		 * XXX handle SWMIC specially
   1222 		 */
   1223 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
   1224 			m = m_unshare(m, M_NOWAIT);
   1225 			if (m == NULL) {
   1226 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
   1227 				    "%s: cannot get writable mbuf\n", __func__);
   1228 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
   1229 				return NULL;
   1230 			}
   1231 		}
   1232 	}
   1233 	/*
   1234 	 * We know we are called just before stripping an Ethernet
   1235 	 * header and prepending an LLC header.  This means we know
   1236 	 * there will be
   1237 	 *	sizeof(struct ether_header) - sizeof(struct llc)
   1238 	 * bytes recovered to which we need additional space for the
   1239 	 * 802.11 header and any crypto header.
   1240 	 */
   1241 	/* XXX check trailing space and copy instead? */
   1242 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
   1243 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
   1244 		if (n == NULL) {
   1245 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
   1246 			    "%s: cannot expand storage\n", __func__);
   1247 			vap->iv_stats.is_tx_nobuf++;
   1248 			m_freem(m);
   1249 			return NULL;
   1250 		}
   1251 		KASSERT(needed_space <= MHLEN,
   1252 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
   1253 		/*
   1254 		 * Setup new mbuf to have leading space to prepend the
   1255 		 * 802.11 header and any crypto header bits that are
   1256 		 * required (the latter are added when the driver calls
   1257 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
   1258 		 */
   1259 		/* NB: must be first 'cuz it clobbers m_data */
   1260 		m_move_pkthdr(n, m);
   1261 		n->m_len = 0;			/* NB: m_gethdr does not set */
   1262 		n->m_data += needed_space;
   1263 		/*
   1264 		 * Pull up Ethernet header to create the expected layout.
   1265 		 * We could use m_pullup but that's overkill (i.e. we don't
   1266 		 * need the actual data) and it cannot fail so do it inline
   1267 		 * for speed.
   1268 		 */
   1269 		/* NB: struct ether_header is known to be contiguous */
   1270 		n->m_len += sizeof(struct ether_header);
   1271 		m->m_len -= sizeof(struct ether_header);
   1272 		m->m_data += sizeof(struct ether_header);
   1273 		/*
   1274 		 * Replace the head of the chain.
   1275 		 */
   1276 		n->m_next = m;
   1277 		m = n;
   1278 	}
   1279 	return m;
   1280 #undef TO_BE_RECLAIMED
   1281 }
   1282 
   1283 /*
   1284  * Return the transmit key to use in sending a unicast frame.
   1285  * If a unicast key is set we use that.  When no unicast key is set
   1286  * we fall back to the default transmit key.
   1287  */
   1288 static __inline struct ieee80211_key *
   1289 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
   1290 	struct ieee80211_node *ni)
   1291 {
   1292 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
   1293 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
   1294 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
   1295 			return NULL;
   1296 		return &vap->iv_nw_keys[vap->iv_def_txkey];
   1297 	} else {
   1298 		return &ni->ni_ucastkey;
   1299 	}
   1300 }
   1301 
   1302 /*
   1303  * Return the transmit key to use in sending a multicast frame.
   1304  * Multicast traffic always uses the group key which is installed as
   1305  * the default tx key.
   1306  */
   1307 static __inline struct ieee80211_key *
   1308 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
   1309 	struct ieee80211_node *ni)
   1310 {
   1311 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
   1312 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
   1313 		return NULL;
   1314 	return &vap->iv_nw_keys[vap->iv_def_txkey];
   1315 }
   1316 
   1317 /*
   1318  * Encapsulate an outbound data frame.  The mbuf chain is updated.
   1319  * If an error is encountered NULL is returned.  The caller is required
   1320  * to provide a node reference and pullup the ethernet header in the
   1321  * first mbuf.
   1322  *
   1323  * NB: Packet is assumed to be processed by ieee80211_classify which
   1324  *     marked EAPOL frames w/ M_EAPOL.
   1325  */
   1326 struct mbuf *
   1327 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
   1328     struct mbuf *m)
   1329 {
   1330 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
   1331 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
   1332 	struct ieee80211com *ic = ni->ni_ic;
   1333 #ifdef IEEE80211_SUPPORT_MESH
   1334 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
   1335 	struct ieee80211_meshcntl_ae10 *mc;
   1336 	struct ieee80211_mesh_route *rt = NULL;
   1337 	int dir = -1;
   1338 #endif
   1339 	struct ether_header eh;
   1340 	struct ieee80211_frame *wh;
   1341 	struct ieee80211_key *key;
   1342 	struct llc *llc;
   1343 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
   1344 	ieee80211_seq seqno;
   1345 	int meshhdrsize, meshae;
   1346 	uint8_t *qos;
   1347 	int is_amsdu = 0;
   1348 
   1349 	IEEE80211_TX_LOCK_ASSERT(ic);
   1350 
   1351 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
   1352 
   1353 	/*
   1354 	 * Copy existing Ethernet header to a safe place.  The
   1355 	 * rest of the code assumes it's ok to strip it when
   1356 	 * reorganizing state for the final encapsulation.
   1357 	 */
   1358 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
   1359 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
   1360 
   1361 	/*
   1362 	 * Insure space for additional headers.  First identify
   1363 	 * transmit key to use in calculating any buffer adjustments
   1364 	 * required.  This is also used below to do privacy
   1365 	 * encapsulation work.  Then calculate the 802.11 header
   1366 	 * size and any padding required by the driver.
   1367 	 *
   1368 	 * Note key may be NULL if we fall back to the default
   1369 	 * transmit key and that is not set.  In that case the
   1370 	 * buffer may not be expanded as needed by the cipher
   1371 	 * routines, but they will/should discard it.
   1372 	 */
   1373 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
   1374 		if (vap->iv_opmode == IEEE80211_M_STA ||
   1375 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
   1376 		    (vap->iv_opmode == IEEE80211_M_WDS &&
   1377 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
   1378 			key = ieee80211_crypto_getucastkey(vap, ni);
   1379 		else
   1380 			key = ieee80211_crypto_getmcastkey(vap, ni);
   1381 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
   1382 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
   1383 			    eh.ether_dhost,
   1384 			    "no default transmit key (%s) deftxkey %u",
   1385 			    __func__, vap->iv_def_txkey);
   1386 			vap->iv_stats.is_tx_nodefkey++;
   1387 			goto bad;
   1388 		}
   1389 	} else
   1390 		key = NULL;
   1391 	/*
   1392 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
   1393 	 * frames so suppress use.  This may be an issue if other
   1394 	 * ap's require all data frames to be QoS-encapsulated
   1395 	 * once negotiated in which case we'll need to make this
   1396 	 * configurable.
   1397 	 *
   1398 	 * Don't send multicast QoS frames.
   1399 	 * Technically multicast frames can be QoS if all stations in the
   1400 	 * BSS are also QoS.
   1401 	 *
   1402 	 * NB: mesh data frames are QoS, including multicast frames.
   1403 	 */
   1404 	addqos =
   1405 	    (((is_mcast == 0) && (ni->ni_flags &
   1406 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
   1407 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
   1408 	    (m->m_flags & M_EAPOL) == 0;
   1409 
   1410 	if (addqos)
   1411 		hdrsize = sizeof(struct ieee80211_qosframe);
   1412 	else
   1413 		hdrsize = sizeof(struct ieee80211_frame);
   1414 #ifdef IEEE80211_SUPPORT_MESH
   1415 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
   1416 		/*
   1417 		 * Mesh data frames are encapsulated according to the
   1418 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
   1419 		 * o Group Addressed data (aka multicast) originating
   1420 		 *   at the local sta are sent w/ 3-address format and
   1421 		 *   address extension mode 00
   1422 		 * o Individually Addressed data (aka unicast) originating
   1423 		 *   at the local sta are sent w/ 4-address format and
   1424 		 *   address extension mode 00
   1425 		 * o Group Addressed data forwarded from a non-mesh sta are
   1426 		 *   sent w/ 3-address format and address extension mode 01
   1427 		 * o Individually Address data from another sta are sent
   1428 		 *   w/ 4-address format and address extension mode 10
   1429 		 */
   1430 		is4addr = 0;		/* NB: don't use, disable */
   1431 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
   1432 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
   1433 			KASSERT(rt != NULL, ("route is NULL"));
   1434 			dir = IEEE80211_FC1_DIR_DSTODS;
   1435 			hdrsize += IEEE80211_ADDR_LEN;
   1436 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
   1437 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
   1438 				    vap->iv_myaddr)) {
   1439 					IEEE80211_NOTE_MAC(vap,
   1440 					    IEEE80211_MSG_MESH,
   1441 					    eh.ether_dhost,
   1442 					    "%s", "trying to send to ourself");
   1443 					goto bad;
   1444 				}
   1445 				meshae = IEEE80211_MESH_AE_10;
   1446 				meshhdrsize =
   1447 				    sizeof(struct ieee80211_meshcntl_ae10);
   1448 			} else {
   1449 				meshae = IEEE80211_MESH_AE_00;
   1450 				meshhdrsize =
   1451 				    sizeof(struct ieee80211_meshcntl);
   1452 			}
   1453 		} else {
   1454 			dir = IEEE80211_FC1_DIR_FROMDS;
   1455 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
   1456 				/* proxy group */
   1457 				meshae = IEEE80211_MESH_AE_01;
   1458 				meshhdrsize =
   1459 				    sizeof(struct ieee80211_meshcntl_ae01);
   1460 			} else {
   1461 				/* group */
   1462 				meshae = IEEE80211_MESH_AE_00;
   1463 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
   1464 			}
   1465 		}
   1466 	} else {
   1467 #endif
   1468 		/*
   1469 		 * 4-address frames need to be generated for:
   1470 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
   1471 		 * o packets sent through a vap marked for relaying
   1472 		 *   (e.g. a station operating with dynamic WDS)
   1473 		 */
   1474 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
   1475 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
   1476 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
   1477 		if (is4addr)
   1478 			hdrsize += IEEE80211_ADDR_LEN;
   1479 		meshhdrsize = meshae = 0;
   1480 #ifdef IEEE80211_SUPPORT_MESH
   1481 	}
   1482 #endif
   1483 	/*
   1484 	 * Honor driver DATAPAD requirement.
   1485 	 */
   1486 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
   1487 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
   1488 	else
   1489 		hdrspace = hdrsize;
   1490 
   1491 	if (__predict_true((m->m_flags & M_FF) == 0)) {
   1492 		/*
   1493 		 * Normal frame.
   1494 		 */
   1495 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
   1496 		if (m == NULL) {
   1497 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
   1498 			goto bad;
   1499 		}
   1500 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
   1501 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
   1502 		llc = mtod(m, struct llc *);
   1503 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
   1504 		llc->llc_control = LLC_UI;
   1505 		llc->llc_snap.org_code[0] = 0;
   1506 		llc->llc_snap.org_code[1] = 0;
   1507 		llc->llc_snap.org_code[2] = 0;
   1508 		llc->llc_snap.ether_type = eh.ether_type;
   1509 	} else {
   1510 #ifdef IEEE80211_SUPPORT_SUPERG
   1511 		/*
   1512 		 * Aggregated frame.  Check if it's for AMSDU or FF.
   1513 		 *
   1514 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
   1515 		 * anywhere for some reason.  But, since 11n requires
   1516 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
   1517 		 */
   1518 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
   1519 		if (ieee80211_amsdu_tx_ok(ni)) {
   1520 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
   1521 			is_amsdu = 1;
   1522 		} else {
   1523 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
   1524 		}
   1525 		if (m == NULL)
   1526 #endif
   1527 			goto bad;
   1528 	}
   1529 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
   1530 
   1531 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
   1532 	if (m == NULL) {
   1533 		vap->iv_stats.is_tx_nobuf++;
   1534 		goto bad;
   1535 	}
   1536 	wh = mtod(m, struct ieee80211_frame *);
   1537 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
   1538 	*(uint16_t *)wh->i_dur = 0;
   1539 	qos = NULL;	/* NB: quiet compiler */
   1540 	if (is4addr) {
   1541 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
   1542 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
   1543 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
   1544 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
   1545 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
   1546 	} else switch (vap->iv_opmode) {
   1547 	case IEEE80211_M_STA:
   1548 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
   1549 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
   1550 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
   1551 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
   1552 		break;
   1553 	case IEEE80211_M_IBSS:
   1554 	case IEEE80211_M_AHDEMO:
   1555 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1556 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
   1557 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
   1558 		/*
   1559 		 * NB: always use the bssid from iv_bss as the
   1560 		 *     neighbor's may be stale after an ibss merge
   1561 		 */
   1562 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
   1563 		break;
   1564 	case IEEE80211_M_HOSTAP:
   1565 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
   1566 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
   1567 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
   1568 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
   1569 		break;
   1570 #ifdef IEEE80211_SUPPORT_MESH
   1571 	case IEEE80211_M_MBSS:
   1572 		/* NB: offset by hdrspace to deal with DATAPAD */
   1573 		mc = (struct ieee80211_meshcntl_ae10 *)
   1574 		     (mtod(m, uint8_t *) + hdrspace);
   1575 		wh->i_fc[1] = dir;
   1576 		switch (meshae) {
   1577 		case IEEE80211_MESH_AE_00:	/* no proxy */
   1578 			mc->mc_flags = 0;
   1579 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
   1580 				IEEE80211_ADDR_COPY(wh->i_addr1,
   1581 				    ni->ni_macaddr);
   1582 				IEEE80211_ADDR_COPY(wh->i_addr2,
   1583 				    vap->iv_myaddr);
   1584 				IEEE80211_ADDR_COPY(wh->i_addr3,
   1585 				    eh.ether_dhost);
   1586 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
   1587 				    eh.ether_shost);
   1588 				qos =((struct ieee80211_qosframe_addr4 *)
   1589 				    wh)->i_qos;
   1590 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
   1591 				 /* mcast */
   1592 				IEEE80211_ADDR_COPY(wh->i_addr1,
   1593 				    eh.ether_dhost);
   1594 				IEEE80211_ADDR_COPY(wh->i_addr2,
   1595 				    vap->iv_myaddr);
   1596 				IEEE80211_ADDR_COPY(wh->i_addr3,
   1597 				    eh.ether_shost);
   1598 				qos = ((struct ieee80211_qosframe *)
   1599 				    wh)->i_qos;
   1600 			}
   1601 			break;
   1602 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
   1603 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
   1604 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
   1605 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
   1606 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
   1607 			mc->mc_flags = 1;
   1608 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
   1609 			    eh.ether_shost);
   1610 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
   1611 			break;
   1612 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
   1613 			KASSERT(rt != NULL, ("route is NULL"));
   1614 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
   1615 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
   1616 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
   1617 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
   1618 			mc->mc_flags = IEEE80211_MESH_AE_10;
   1619 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
   1620 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
   1621 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
   1622 			break;
   1623 		default:
   1624 			KASSERT(0, ("meshae %d", meshae));
   1625 			break;
   1626 		}
   1627 		mc->mc_ttl = ms->ms_ttl;
   1628 		ms->ms_seq++;
   1629 		le32enc(mc->mc_seq, ms->ms_seq);
   1630 		break;
   1631 #endif
   1632 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
   1633 	default:
   1634 		goto bad;
   1635 	}
   1636 	if (m->m_flags & M_MORE_DATA)
   1637 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
   1638 	if (addqos) {
   1639 		int ac, tid;
   1640 
   1641 		if (is4addr) {
   1642 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
   1643 		/* NB: mesh case handled earlier */
   1644 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
   1645 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
   1646 		ac = M_WME_GETAC(m);
   1647 		/* map from access class/queue to 11e header priorty value */
   1648 		tid = WME_AC_TO_TID(ac);
   1649 		qos[0] = tid & IEEE80211_QOS_TID;
   1650 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
   1651 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
   1652 #ifdef IEEE80211_SUPPORT_MESH
   1653 		if (vap->iv_opmode == IEEE80211_M_MBSS)
   1654 			qos[1] = IEEE80211_QOS_MC;
   1655 		else
   1656 #endif
   1657 			qos[1] = 0;
   1658 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
   1659 
   1660 		/*
   1661 		 * If this is an A-MSDU then ensure we set the
   1662 		 * relevant field.
   1663 		 */
   1664 		if (is_amsdu)
   1665 			qos[0] |= IEEE80211_QOS_AMSDU;
   1666 
   1667 		/*
   1668 		 * XXX TODO TX lock is needed for atomic updates of sequence
   1669 		 * numbers.  If the driver does it, then don't do it here;
   1670 		 * and we don't need the TX lock held.
   1671 		 */
   1672 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
   1673 			/*
   1674 			 * 802.11-2012 9.3.2.10 -
   1675 			 *
   1676 			 * If this is a multicast frame then we need
   1677 			 * to ensure that the sequence number comes from
   1678 			 * a separate seqno space and not the TID space.
   1679 			 *
   1680 			 * Otherwise multicast frames may actually cause
   1681 			 * holes in the TX blockack window space and
   1682 			 * upset various things.
   1683 			 */
   1684 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
   1685 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
   1686 			else
   1687 				seqno = ni->ni_txseqs[tid]++;
   1688 
   1689 			/*
   1690 			 * NB: don't assign a sequence # to potential
   1691 			 * aggregates; we expect this happens at the
   1692 			 * point the frame comes off any aggregation q
   1693 			 * as otherwise we may introduce holes in the
   1694 			 * BA sequence space and/or make window accouting
   1695 			 * more difficult.
   1696 			 *
   1697 			 * XXX may want to control this with a driver
   1698 			 * capability; this may also change when we pull
   1699 			 * aggregation up into net80211
   1700 			 */
   1701 			seqno = ni->ni_txseqs[tid]++;
   1702 			*(uint16_t *)wh->i_seq =
   1703 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
   1704 			M_SEQNO_SET(m, seqno);
   1705 		} else {
   1706 			/* NB: zero out i_seq field (for s/w encryption etc) */
   1707 			*(uint16_t *)wh->i_seq = 0;
   1708 		}
   1709 	} else {
   1710 		/*
   1711 		 * XXX TODO TX lock is needed for atomic updates of sequence
   1712 		 * numbers.  If the driver does it, then don't do it here;
   1713 		 * and we don't need the TX lock held.
   1714 		 */
   1715 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
   1716 		*(uint16_t *)wh->i_seq =
   1717 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
   1718 		M_SEQNO_SET(m, seqno);
   1719 
   1720 		/*
   1721 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
   1722 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
   1723 		 */
   1724 		if (is_amsdu)
   1725 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
   1726 			    __func__);
   1727 	}
   1728 
   1729 	/*
   1730 	 * Check if xmit fragmentation is required.
   1731 	 *
   1732 	 * If the hardware does fragmentation offload, then don't bother
   1733 	 * doing it here.
   1734 	 */
   1735 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
   1736 		txfrag = 0;
   1737 	else
   1738 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
   1739 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1740 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
   1741 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
   1742 
   1743 	if (key != NULL) {
   1744 		/*
   1745 		 * IEEE 802.1X: send EAPOL frames always in the clear.
   1746 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
   1747 		 */
   1748 		if ((m->m_flags & M_EAPOL) == 0 ||
   1749 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
   1750 		     (vap->iv_opmode == IEEE80211_M_STA ?
   1751 		      !IEEE80211_KEY_UNDEFINED(key) :
   1752 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
   1753 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
   1754 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
   1755 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
   1756 				    eh.ether_dhost,
   1757 				    "%s", "enmic failed, discard frame");
   1758 				vap->iv_stats.is_crypto_enmicfail++;
   1759 				goto bad;
   1760 			}
   1761 		}
   1762 	}
   1763 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
   1764 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
   1765 		goto bad;
   1766 
   1767 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
   1768 
   1769 	IEEE80211_NODE_STAT(ni, tx_data);
   1770 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1771 		IEEE80211_NODE_STAT(ni, tx_mcast);
   1772 		m->m_flags |= M_MCAST;
   1773 	} else
   1774 		IEEE80211_NODE_STAT(ni, tx_ucast);
   1775 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
   1776 
   1777 	return m;
   1778 bad:
   1779 	if (m != NULL)
   1780 		m_freem(m);
   1781 	return NULL;
   1782 #undef WH4
   1783 #undef MC01
   1784 }
   1785 
   1786 void
   1787 ieee80211_free_mbuf(struct mbuf *m)
   1788 {
   1789 	struct mbuf *next;
   1790 
   1791 	if (m == NULL)
   1792 		return;
   1793 
   1794 	do {
   1795 		next = m->m_nextpkt;
   1796 		m->m_nextpkt = NULL;
   1797 		m_freem(m);
   1798 	} while ((m = next) != NULL);
   1799 }
   1800 
   1801 /*
   1802  * Fragment the frame according to the specified mtu.
   1803  * The size of the 802.11 header (w/o padding) is provided
   1804  * so we don't need to recalculate it.  We create a new
   1805  * mbuf for each fragment and chain it through m_nextpkt;
   1806  * we might be able to optimize this by reusing the original
   1807  * packet's mbufs but that is significantly more complicated.
   1808  */
   1809 static int
   1810 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
   1811 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
   1812 {
   1813 	struct ieee80211com *ic = vap->iv_ic;
   1814 	struct ieee80211_frame *wh, *whf;
   1815 	struct mbuf *m, *prev;
   1816 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
   1817 	u_int hdrspace;
   1818 
   1819 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
   1820 	KASSERT(m0->m_pkthdr.len > mtu,
   1821 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
   1822 
   1823 	/*
   1824 	 * Honor driver DATAPAD requirement.
   1825 	 */
   1826 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
   1827 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
   1828 	else
   1829 		hdrspace = hdrsize;
   1830 
   1831 	wh = mtod(m0, struct ieee80211_frame *);
   1832 	/* NB: mark the first frag; it will be propagated below */
   1833 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
   1834 	totalhdrsize = hdrspace + ciphdrsize;
   1835 	fragno = 1;
   1836 	off = mtu - ciphdrsize;
   1837 	remainder = m0->m_pkthdr.len - off;
   1838 	prev = m0;
   1839 	do {
   1840 		fragsize = MIN(totalhdrsize + remainder, mtu);
   1841 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
   1842 		if (m == NULL)
   1843 			goto bad;
   1844 		/* leave room to prepend any cipher header */
   1845 		m_align(m, fragsize - ciphdrsize);
   1846 
   1847 		/*
   1848 		 * Form the header in the fragment.  Note that since
   1849 		 * we mark the first fragment with the MORE_FRAG bit
   1850 		 * it automatically is propagated to each fragment; we
   1851 		 * need only clear it on the last fragment (done below).
   1852 		 * NB: frag 1+ dont have Mesh Control field present.
   1853 		 */
   1854 		whf = mtod(m, struct ieee80211_frame *);
   1855 		memcpy(whf, wh, hdrsize);
   1856 #ifdef IEEE80211_SUPPORT_MESH
   1857 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
   1858 			if (IEEE80211_IS_DSTODS(wh))
   1859 				((struct ieee80211_qosframe_addr4 *)
   1860 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
   1861 			else
   1862 				((struct ieee80211_qosframe *)
   1863 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
   1864 		}
   1865 #endif
   1866 		*(uint16_t *)&whf->i_seq[0] |= htole16(
   1867 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
   1868 				IEEE80211_SEQ_FRAG_SHIFT);
   1869 		fragno++;
   1870 
   1871 		payload = fragsize - totalhdrsize;
   1872 		/* NB: destination is known to be contiguous */
   1873 
   1874 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
   1875 		m->m_len = hdrspace + payload;
   1876 		m->m_pkthdr.len = hdrspace + payload;
   1877 		m->m_flags |= M_FRAG;
   1878 
   1879 		/* chain up the fragment */
   1880 		prev->m_nextpkt = m;
   1881 		prev = m;
   1882 
   1883 		/* deduct fragment just formed */
   1884 		remainder -= payload;
   1885 		off += payload;
   1886 	} while (remainder != 0);
   1887 
   1888 	/* set the last fragment */
   1889 	m->m_flags |= M_LASTFRAG;
   1890 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
   1891 
   1892 	/* strip first mbuf now that everything has been copied */
   1893 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
   1894 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
   1895 
   1896 	vap->iv_stats.is_tx_fragframes++;
   1897 	vap->iv_stats.is_tx_frags += fragno-1;
   1898 
   1899 	return 1;
   1900 bad:
   1901 	/* reclaim fragments but leave original frame for caller to free */
   1902 	ieee80211_free_mbuf(m0->m_nextpkt);
   1903 	m0->m_nextpkt = NULL;
   1904 	return 0;
   1905 }
   1906 
   1907 /*
   1908  * Add a supported rates element id to a frame.
   1909  */
   1910 uint8_t *
   1911 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
   1912 {
   1913 	int nrates;
   1914 
   1915 	*frm++ = IEEE80211_ELEMID_RATES;
   1916 	nrates = rs->rs_nrates;
   1917 	if (nrates > IEEE80211_RATE_SIZE)
   1918 		nrates = IEEE80211_RATE_SIZE;
   1919 	*frm++ = nrates;
   1920 	memcpy(frm, rs->rs_rates, nrates);
   1921 	return frm + nrates;
   1922 }
   1923 
   1924 /*
   1925  * Add an extended supported rates element id to a frame.
   1926  */
   1927 uint8_t *
   1928 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
   1929 {
   1930 	/*
   1931 	 * Add an extended supported rates element if operating in 11g mode.
   1932 	 */
   1933 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   1934 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   1935 		*frm++ = IEEE80211_ELEMID_XRATES;
   1936 		*frm++ = nrates;
   1937 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   1938 		frm += nrates;
   1939 	}
   1940 	return frm;
   1941 }
   1942 
   1943 /*
   1944  * Add an ssid element to a frame.
   1945  */
   1946 uint8_t *
   1947 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
   1948 {
   1949 	*frm++ = IEEE80211_ELEMID_SSID;
   1950 	*frm++ = len;
   1951 	memcpy(frm, ssid, len);
   1952 	return frm + len;
   1953 }
   1954 
   1955 /*
   1956  * Add an erp element to a frame.
   1957  */
   1958 static uint8_t *
   1959 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
   1960 {
   1961 	uint8_t erp;
   1962 
   1963 	*frm++ = IEEE80211_ELEMID_ERP;
   1964 	*frm++ = 1;
   1965 	erp = 0;
   1966 	if (ic->ic_nonerpsta != 0)
   1967 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
   1968 	if (ic->ic_flags & IEEE80211_F_USEPROT)
   1969 		erp |= IEEE80211_ERP_USE_PROTECTION;
   1970 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
   1971 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
   1972 	*frm++ = erp;
   1973 	return frm;
   1974 }
   1975 
   1976 /*
   1977  * Add a CFParams element to a frame.
   1978  */
   1979 static uint8_t *
   1980 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
   1981 {
   1982 #define	ADDSHORT(frm, v) do {	\
   1983 	le16enc(frm, v);	\
   1984 	frm += 2;		\
   1985 } while (0)
   1986 	*frm++ = IEEE80211_ELEMID_CFPARMS;
   1987 	*frm++ = 6;
   1988 	*frm++ = 0;		/* CFP count */
   1989 	*frm++ = 2;		/* CFP period */
   1990 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
   1991 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
   1992 	return frm;
   1993 #undef ADDSHORT
   1994 }
   1995 
   1996 static __inline uint8_t *
   1997 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
   1998 {
   1999 	memcpy(frm, ie->ie_data, ie->ie_len);
   2000 	return frm + ie->ie_len;
   2001 }
   2002 
   2003 static __inline uint8_t *
   2004 add_ie(uint8_t *frm, const uint8_t *ie)
   2005 {
   2006 	memcpy(frm, ie, 2 + ie[1]);
   2007 	return frm + 2 + ie[1];
   2008 }
   2009 
   2010 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
   2011 /*
   2012  * Add a WME information element to a frame.
   2013  */
   2014 uint8_t *
   2015 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
   2016 {
   2017 	static const struct ieee80211_wme_info info = {
   2018 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   2019 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
   2020 		.wme_oui	= { WME_OUI_BYTES },
   2021 		.wme_type	= WME_OUI_TYPE,
   2022 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
   2023 		.wme_version	= WME_VERSION,
   2024 		.wme_info	= 0,
   2025 	};
   2026 	memcpy(frm, &info, sizeof(info));
   2027 	return frm + sizeof(info);
   2028 }
   2029 
   2030 /*
   2031  * Add a WME parameters element to a frame.
   2032  */
   2033 static uint8_t *
   2034 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
   2035 {
   2036 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
   2037 #define	ADDSHORT(frm, v) do {	\
   2038 	le16enc(frm, v);	\
   2039 	frm += 2;		\
   2040 } while (0)
   2041 	/* NB: this works 'cuz a param has an info at the front */
   2042 	static const struct ieee80211_wme_info param = {
   2043 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   2044 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
   2045 		.wme_oui	= { WME_OUI_BYTES },
   2046 		.wme_type	= WME_OUI_TYPE,
   2047 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
   2048 		.wme_version	= WME_VERSION,
   2049 	};
   2050 	int i;
   2051 
   2052 	memcpy(frm, &param, sizeof(param));
   2053 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
   2054 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
   2055 	*frm++ = 0;					/* reserved field */
   2056 	for (i = 0; i < WME_NUM_AC; i++) {
   2057 		const struct wmeParams *ac =
   2058 		       &wme->wme_bssChanParams.cap_wmeParams[i];
   2059 		*frm++ = SM(i, WME_PARAM_ACI)
   2060 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
   2061 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
   2062 		       ;
   2063 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
   2064 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
   2065 		       ;
   2066 		ADDSHORT(frm, ac->wmep_txopLimit);
   2067 	}
   2068 	return frm;
   2069 #undef SM
   2070 #undef ADDSHORT
   2071 }
   2072 #undef WME_OUI_BYTES
   2073 
   2074 /*
   2075  * Add an 11h Power Constraint element to a frame.
   2076  */
   2077 static uint8_t *
   2078 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
   2079 {
   2080 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
   2081 	/* XXX per-vap tx power limit? */
   2082 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
   2083 
   2084 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
   2085 	frm[1] = 1;
   2086 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
   2087 	return frm + 3;
   2088 }
   2089 
   2090 /*
   2091  * Add an 11h Power Capability element to a frame.
   2092  */
   2093 static uint8_t *
   2094 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
   2095 {
   2096 	frm[0] = IEEE80211_ELEMID_PWRCAP;
   2097 	frm[1] = 2;
   2098 	frm[2] = c->ic_minpower;
   2099 	frm[3] = c->ic_maxpower;
   2100 	return frm + 4;
   2101 }
   2102 
   2103 /*
   2104  * Add an 11h Supported Channels element to a frame.
   2105  */
   2106 static uint8_t *
   2107 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
   2108 {
   2109 	static const int ielen = 26;
   2110 
   2111 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
   2112 	frm[1] = ielen;
   2113 	/* XXX not correct */
   2114 	memcpy(frm+2, ic->ic_chan_avail, ielen);
   2115 	return frm + 2 + ielen;
   2116 }
   2117 
   2118 /*
   2119  * Add an 11h Quiet time element to a frame.
   2120  */
   2121 static uint8_t *
   2122 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
   2123 {
   2124 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
   2125 
   2126 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
   2127 	quiet->len = 6;
   2128 
   2129 	/*
   2130 	 * Only update every beacon interval - otherwise probe responses
   2131 	 * would update the quiet count value.
   2132 	 */
   2133 	if (update) {
   2134 		if (vap->iv_quiet_count_value == 1)
   2135 			vap->iv_quiet_count_value = vap->iv_quiet_count;
   2136 		else if (vap->iv_quiet_count_value > 1)
   2137 			vap->iv_quiet_count_value--;
   2138 	}
   2139 
   2140 	if (vap->iv_quiet_count_value == 0) {
   2141 		/* value 0 is reserved as per 802.11h standerd */
   2142 		vap->iv_quiet_count_value = 1;
   2143 	}
   2144 
   2145 	quiet->tbttcount = vap->iv_quiet_count_value;
   2146 	quiet->period = vap->iv_quiet_period;
   2147 	quiet->duration = htole16(vap->iv_quiet_duration);
   2148 	quiet->offset = htole16(vap->iv_quiet_offset);
   2149 	return frm + sizeof(*quiet);
   2150 }
   2151 
   2152 /*
   2153  * Add an 11h Channel Switch Announcement element to a frame.
   2154  * Note that we use the per-vap CSA count to adjust the global
   2155  * counter so we can use this routine to form probe response
   2156  * frames and get the current count.
   2157  */
   2158 static uint8_t *
   2159 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
   2160 {
   2161 	struct ieee80211com *ic = vap->iv_ic;
   2162 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
   2163 
   2164 	csa->csa_ie = IEEE80211_ELEMID_CSA;
   2165 	csa->csa_len = 3;
   2166 	csa->csa_mode = 1;		/* XXX force quiet on channel */
   2167 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
   2168 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
   2169 	return frm + sizeof(*csa);
   2170 }
   2171 
   2172 /*
   2173  * Add an 11h country information element to a frame.
   2174  */
   2175 static uint8_t *
   2176 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
   2177 {
   2178 
   2179 	if (ic->ic_countryie == NULL ||
   2180 	    ic->ic_countryie_chan != ic->ic_bsschan) {
   2181 		/*
   2182 		 * Handle lazy construction of ie.  This is done on
   2183 		 * first use and after a channel change that requires
   2184 		 * re-calculation.
   2185 		 */
   2186 		if (ic->ic_countryie != NULL)
   2187 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
   2188 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
   2189 		if (ic->ic_countryie == NULL)
   2190 			return frm;
   2191 		ic->ic_countryie_chan = ic->ic_bsschan;
   2192 	}
   2193 	return add_appie(frm, ic->ic_countryie);
   2194 }
   2195 
   2196 uint8_t *
   2197 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
   2198 {
   2199 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
   2200 		return (add_ie(frm, vap->iv_wpa_ie));
   2201 	else {
   2202 		/* XXX else complain? */
   2203 		return (frm);
   2204 	}
   2205 }
   2206 
   2207 uint8_t *
   2208 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
   2209 {
   2210 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
   2211 		return (add_ie(frm, vap->iv_rsn_ie));
   2212 	else {
   2213 		/* XXX else complain? */
   2214 		return (frm);
   2215 	}
   2216 }
   2217 
   2218 uint8_t *
   2219 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
   2220 {
   2221 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
   2222 		*frm++ = IEEE80211_ELEMID_QOS;
   2223 		*frm++ = 1;
   2224 		*frm++ = 0;
   2225 	}
   2226 
   2227 	return (frm);
   2228 }
   2229 
   2230 /*
   2231  * Send a probe request frame with the specified ssid
   2232  * and any optional information element data.
   2233  */
   2234 int
   2235 ieee80211_send_probereq(struct ieee80211_node *ni,
   2236 	const uint8_t sa[IEEE80211_ADDR_LEN],
   2237 	const uint8_t da[IEEE80211_ADDR_LEN],
   2238 	const uint8_t bssid[IEEE80211_ADDR_LEN],
   2239 	const uint8_t *ssid, size_t ssidlen)
   2240 {
   2241 	struct ieee80211vap *vap = ni->ni_vap;
   2242 	struct ieee80211com *ic = ni->ni_ic;
   2243 	struct ieee80211_node *bss;
   2244 	const struct ieee80211_txparam *tp;
   2245 	struct ieee80211_bpf_params params;
   2246 	const struct ieee80211_rateset *rs;
   2247 	struct mbuf *m;
   2248 	uint8_t *frm;
   2249 	int ret;
   2250 
   2251 	bss = ieee80211_ref_node(vap->iv_bss);
   2252 
   2253 	if (vap->iv_state == IEEE80211_S_CAC) {
   2254 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
   2255 		    "block %s frame in CAC state", "probe request");
   2256 		vap->iv_stats.is_tx_badstate++;
   2257 		ieee80211_free_node(bss);
   2258 		return EIO;		/* XXX */
   2259 	}
   2260 
   2261 	/*
   2262 	 * Hold a reference on the node so it doesn't go away until after
   2263 	 * the xmit is complete all the way in the driver.  On error we
   2264 	 * will remove our reference.
   2265 	 */
   2266 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
   2267 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   2268 		__func__, __LINE__,
   2269 		ni, ether_sprintf(ni->ni_macaddr),
   2270 		ieee80211_node_refcnt(ni)+1);
   2271 	ieee80211_ref_node(ni);
   2272 
   2273 	/*
   2274 	 * prreq frame format
   2275 	 *	[tlv] ssid
   2276 	 *	[tlv] supported rates
   2277 	 *	[tlv] RSN (optional)
   2278 	 *	[tlv] extended supported rates
   2279 	 *	[tlv] HT cap (optional)
   2280 	 *	[tlv] VHT cap (optional)
   2281 	 *	[tlv] WPA (optional)
   2282 	 *	[tlv] user-specified ie's
   2283 	 */
   2284 	m = ieee80211_getmgtframe(&frm,
   2285 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
   2286 	       	 2 + IEEE80211_NWID_LEN
   2287 	       + 2 + IEEE80211_RATE_SIZE
   2288 	       + sizeof(struct ieee80211_ie_htcap)
   2289 	       + sizeof(struct ieee80211_ie_vhtcap)
   2290 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
   2291 	       + sizeof(struct ieee80211_ie_wpa)
   2292 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   2293 	       + sizeof(struct ieee80211_ie_wpa)
   2294 	       + (vap->iv_appie_probereq != NULL ?
   2295 		   vap->iv_appie_probereq->ie_len : 0)
   2296 	);
   2297 	if (m == NULL) {
   2298 		vap->iv_stats.is_tx_nobuf++;
   2299 		ieee80211_free_node(ni);
   2300 		ieee80211_free_node(bss);
   2301 		return ENOMEM;
   2302 	}
   2303 
   2304 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
   2305 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
   2306 	frm = ieee80211_add_rates(frm, rs);
   2307 	frm = ieee80211_add_rsn(frm, vap);
   2308 	frm = ieee80211_add_xrates(frm, rs);
   2309 
   2310 	/*
   2311 	 * Note: we can't use bss; we don't have one yet.
   2312 	 *
   2313 	 * So, we should announce our capabilities
   2314 	 * in this channel mode (2g/5g), not the
   2315 	 * channel details itself.
   2316 	 */
   2317 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
   2318 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
   2319 		struct ieee80211_channel *c;
   2320 
   2321 		/*
   2322 		 * Get the HT channel that we should try upgrading to.
   2323 		 * If we can do 40MHz then this'll upgrade it appropriately.
   2324 		 */
   2325 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
   2326 		    vap->iv_flags_ht);
   2327 		frm = ieee80211_add_htcap_ch(frm, vap, c);
   2328 	}
   2329 
   2330 	/*
   2331 	 * XXX TODO: need to figure out what/how to update the
   2332 	 * VHT channel.
   2333 	 */
   2334 #if 0
   2335 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
   2336 		struct ieee80211_channel *c;
   2337 
   2338 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
   2339 		    vap->iv_flags_ht);
   2340 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
   2341 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
   2342 	}
   2343 #endif
   2344 
   2345 	frm = ieee80211_add_wpa(frm, vap);
   2346 	if (vap->iv_appie_probereq != NULL)
   2347 		frm = add_appie(frm, vap->iv_appie_probereq);
   2348 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
   2349 
   2350 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
   2351 	    ("leading space %zd", M_LEADINGSPACE(m)));
   2352 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
   2353 	if (m == NULL) {
   2354 		/* NB: cannot happen */
   2355 		ieee80211_free_node(ni);
   2356 		ieee80211_free_node(bss);
   2357 		return ENOMEM;
   2358 	}
   2359 
   2360 	IEEE80211_TX_LOCK(ic);
   2361 	ieee80211_send_setup(ni, m,
   2362 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
   2363 	     IEEE80211_NONQOS_TID, sa, da, bssid);
   2364 	/* XXX power management? */
   2365 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
   2366 
   2367 	M_WME_SETAC(m, WME_AC_BE);
   2368 
   2369 	IEEE80211_NODE_STAT(ni, tx_probereq);
   2370 	IEEE80211_NODE_STAT(ni, tx_mgmt);
   2371 
   2372 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   2373 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
   2374 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
   2375 	    ether_sprintf(bssid),
   2376 	    sa, ":",
   2377 	    da, ":",
   2378 	    ssidlen, ssid);
   2379 
   2380 	memset(&params, 0, sizeof(params));
   2381 	params.ibp_pri = M_WME_GETAC(m);
   2382 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
   2383 	params.ibp_rate0 = tp->mgmtrate;
   2384 	if (IEEE80211_IS_MULTICAST(da)) {
   2385 		params.ibp_flags |= IEEE80211_BPF_NOACK;
   2386 		params.ibp_try0 = 1;
   2387 	} else
   2388 		params.ibp_try0 = tp->maxretry;
   2389 	params.ibp_power = ni->ni_txpower;
   2390 	ret = ieee80211_raw_output(vap, ni, m, &params);
   2391 	IEEE80211_TX_UNLOCK(ic);
   2392 	ieee80211_free_node(bss);
   2393 	return (ret);
   2394 }
   2395 
   2396 /*
   2397  * Calculate capability information for mgt frames.
   2398  */
   2399 uint16_t
   2400 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
   2401 {
   2402 	struct ieee80211com *ic = vap->iv_ic;
   2403 	uint16_t capinfo;
   2404 
   2405 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
   2406 
   2407 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
   2408 		capinfo = IEEE80211_CAPINFO_ESS;
   2409 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
   2410 		capinfo = IEEE80211_CAPINFO_IBSS;
   2411 	else
   2412 		capinfo = 0;
   2413 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
   2414 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2415 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   2416 	    IEEE80211_IS_CHAN_2GHZ(chan))
   2417 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2418 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2419 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   2420 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
   2421 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
   2422 	return capinfo;
   2423 }
   2424 
   2425 /*
   2426  * Send a management frame.  The node is for the destination (or ic_bss
   2427  * when in station mode).  Nodes other than ic_bss have their reference
   2428  * count bumped to reflect our use for an indeterminant time.
   2429  */
   2430 int
   2431 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
   2432 {
   2433 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
   2434 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
   2435 	struct ieee80211vap *vap = ni->ni_vap;
   2436 	struct ieee80211com *ic = ni->ni_ic;
   2437 	struct ieee80211_node *bss = vap->iv_bss;
   2438 	struct ieee80211_bpf_params params;
   2439 	struct mbuf *m;
   2440 	uint8_t *frm;
   2441 	uint16_t capinfo;
   2442 	int has_challenge, is_shared_key, ret, status;
   2443 
   2444 	KASSERT(ni != NULL, ("null node"));
   2445 
   2446 	/*
   2447 	 * Hold a reference on the node so it doesn't go away until after
   2448 	 * the xmit is complete all the way in the driver.  On error we
   2449 	 * will remove our reference.
   2450 	 */
   2451 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
   2452 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   2453 		__func__, __LINE__,
   2454 		ni, ether_sprintf(ni->ni_macaddr),
   2455 		ieee80211_node_refcnt(ni)+1);
   2456 	ieee80211_ref_node(ni);
   2457 
   2458 	memset(&params, 0, sizeof(params));
   2459 	switch (type) {
   2460 
   2461 	case IEEE80211_FC0_SUBTYPE_AUTH:
   2462 		status = arg >> 16;
   2463 		arg &= 0xffff;
   2464 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   2465 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   2466 		    ni->ni_challenge != NULL);
   2467 
   2468 		/*
   2469 		 * Deduce whether we're doing open authentication or
   2470 		 * shared key authentication.  We do the latter if
   2471 		 * we're in the middle of a shared key authentication
   2472 		 * handshake or if we're initiating an authentication
   2473 		 * request and configured to use shared key.
   2474 		 */
   2475 		is_shared_key = has_challenge ||
   2476 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
   2477 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   2478 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
   2479 
   2480 		m = ieee80211_getmgtframe(&frm,
   2481 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
   2482 			  3 * sizeof(uint16_t)
   2483 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
   2484 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
   2485 		);
   2486 		if (m == NULL)
   2487 			senderr(ENOMEM, is_tx_nobuf);
   2488 
   2489 		((uint16_t *)frm)[0] =
   2490 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
   2491 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   2492 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
   2493 		((uint16_t *)frm)[2] = htole16(status);/* status */
   2494 
   2495 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
   2496 			((uint16_t *)frm)[3] =
   2497 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   2498 			    IEEE80211_ELEMID_CHALLENGE);
   2499 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
   2500 			    IEEE80211_CHALLENGE_LEN);
   2501 			m->m_pkthdr.len = m->m_len =
   2502 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
   2503 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   2504 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
   2505 				    "request encrypt frame (%s)", __func__);
   2506 				/* mark frame for encryption */
   2507 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
   2508 			}
   2509 		} else
   2510 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
   2511 
   2512 		/* XXX not right for shared key */
   2513 		if (status == IEEE80211_STATUS_SUCCESS)
   2514 			IEEE80211_NODE_STAT(ni, tx_auth);
   2515 		else
   2516 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   2517 
   2518 		if (vap->iv_opmode == IEEE80211_M_STA)
   2519 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
   2520 				(void *) vap->iv_state);
   2521 		break;
   2522 
   2523 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   2524 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
   2525 		    "send station deauthenticate (reason: %d (%s))", arg,
   2526 		    ieee80211_reason_to_string(arg));
   2527 		m = ieee80211_getmgtframe(&frm,
   2528 			ic->ic_headroom + sizeof(struct ieee80211_frame),
   2529 			sizeof(uint16_t));
   2530 		if (m == NULL)
   2531 			senderr(ENOMEM, is_tx_nobuf);
   2532 		*(uint16_t *)frm = htole16(arg);	/* reason */
   2533 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
   2534 
   2535 		IEEE80211_NODE_STAT(ni, tx_deauth);
   2536 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   2537 
   2538 		ieee80211_node_unauthorize(ni);		/* port closed */
   2539 		break;
   2540 
   2541 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   2542 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   2543 		/*
   2544 		 * asreq frame format
   2545 		 *	[2] capability information
   2546 		 *	[2] listen interval
   2547 		 *	[6*] current AP address (reassoc only)
   2548 		 *	[tlv] ssid
   2549 		 *	[tlv] supported rates
   2550 		 *	[tlv] extended supported rates
   2551 		 *	[4] power capability (optional)
   2552 		 *	[28] supported channels (optional)
   2553 		 *	[tlv] HT capabilities
   2554 		 *	[tlv] VHT capabilities
   2555 		 *	[tlv] WME (optional)
   2556 		 *	[tlv] Vendor OUI HT capabilities (optional)
   2557 		 *	[tlv] Atheros capabilities (if negotiated)
   2558 		 *	[tlv] AppIE's (optional)
   2559 		 */
   2560 		m = ieee80211_getmgtframe(&frm,
   2561 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
   2562 			 sizeof(uint16_t)
   2563 		       + sizeof(uint16_t)
   2564 		       + IEEE80211_ADDR_LEN
   2565 		       + 2 + IEEE80211_NWID_LEN
   2566 		       + 2 + IEEE80211_RATE_SIZE
   2567 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   2568 		       + 4
   2569 		       + 2 + 26
   2570 		       + sizeof(struct ieee80211_wme_info)
   2571 		       + sizeof(struct ieee80211_ie_htcap)
   2572 		       + sizeof(struct ieee80211_ie_vhtcap)
   2573 		       + 4 + sizeof(struct ieee80211_ie_htcap)
   2574 #ifdef IEEE80211_SUPPORT_SUPERG
   2575 		       + sizeof(struct ieee80211_ath_ie)
   2576 #endif
   2577 		       + (vap->iv_appie_wpa != NULL ?
   2578 				vap->iv_appie_wpa->ie_len : 0)
   2579 		       + (vap->iv_appie_assocreq != NULL ?
   2580 				vap->iv_appie_assocreq->ie_len : 0)
   2581 		);
   2582 		if (m == NULL)
   2583 			senderr(ENOMEM, is_tx_nobuf);
   2584 
   2585 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
   2586 		    ("wrong mode %u", vap->iv_opmode));
   2587 		capinfo = IEEE80211_CAPINFO_ESS;
   2588 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
   2589 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   2590 		/*
   2591 		 * NB: Some 11a AP's reject the request when
   2592 		 *     short preamble is set.
   2593 		 */
   2594 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   2595 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   2596 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   2597 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
   2598 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   2599 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   2600 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
   2601 		    (vap->iv_flags & IEEE80211_F_DOTH))
   2602 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
   2603 		*(uint16_t *)frm = htole16(capinfo);
   2604 		frm += 2;
   2605 
   2606 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
   2607 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
   2608 						    bss->ni_intval));
   2609 		frm += 2;
   2610 
   2611 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   2612 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
   2613 			frm += IEEE80211_ADDR_LEN;
   2614 		}
   2615 
   2616 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   2617 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   2618 		frm = ieee80211_add_rsn(frm, vap);
   2619 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   2620 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
   2621 			frm = ieee80211_add_powercapability(frm,
   2622 			    ic->ic_curchan);
   2623 			frm = ieee80211_add_supportedchannels(frm, ic);
   2624 		}
   2625 
   2626 		/*
   2627 		 * Check the channel - we may be using an 11n NIC with an
   2628 		 * 11n capable station, but we're configured to be an 11b
   2629 		 * channel.
   2630 		 */
   2631 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
   2632 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
   2633 		    ni->ni_ies.htcap_ie != NULL &&
   2634 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
   2635 			frm = ieee80211_add_htcap(frm, ni);
   2636 		}
   2637 
   2638 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
   2639 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
   2640 		    ni->ni_ies.vhtcap_ie != NULL &&
   2641 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
   2642 			frm = ieee80211_add_vhtcap(frm, ni);
   2643 		}
   2644 
   2645 		frm = ieee80211_add_wpa(frm, vap);
   2646 		if ((ic->ic_flags & IEEE80211_F_WME) &&
   2647 		    ni->ni_ies.wme_ie != NULL)
   2648 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   2649 
   2650 		/*
   2651 		 * Same deal - only send HT info if we're on an 11n
   2652 		 * capable channel.
   2653 		 */
   2654 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
   2655 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
   2656 		    ni->ni_ies.htcap_ie != NULL &&
   2657 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
   2658 			frm = ieee80211_add_htcap_vendor(frm, ni);
   2659 		}
   2660 #ifdef IEEE80211_SUPPORT_SUPERG
   2661 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
   2662 			frm = ieee80211_add_ath(frm,
   2663 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
   2664 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
   2665 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
   2666 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
   2667 		}
   2668 #endif /* IEEE80211_SUPPORT_SUPERG */
   2669 		if (vap->iv_appie_assocreq != NULL)
   2670 			frm = add_appie(frm, vap->iv_appie_assocreq);
   2671 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
   2672 
   2673 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
   2674 			(void *) vap->iv_state);
   2675 		break;
   2676 
   2677 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   2678 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   2679 		/*
   2680 		 * asresp frame format
   2681 		 *	[2] capability information
   2682 		 *	[2] status
   2683 		 *	[2] association ID
   2684 		 *	[tlv] supported rates
   2685 		 *	[tlv] extended supported rates
   2686 		 *	[tlv] HT capabilities (standard, if STA enabled)
   2687 		 *	[tlv] HT information (standard, if STA enabled)
   2688 		 *	[tlv] VHT capabilities (standard, if STA enabled)
   2689 		 *	[tlv] VHT information (standard, if STA enabled)
   2690 		 *	[tlv] WME (if configured and STA enabled)
   2691 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
   2692 		 *	[tlv] HT information (vendor OUI, if STA enabled)
   2693 		 *	[tlv] Atheros capabilities (if STA enabled)
   2694 		 *	[tlv] AppIE's (optional)
   2695 		 */
   2696 		m = ieee80211_getmgtframe(&frm,
   2697 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
   2698 			 sizeof(uint16_t)
   2699 		       + sizeof(uint16_t)
   2700 		       + sizeof(uint16_t)
   2701 		       + 2 + IEEE80211_RATE_SIZE
   2702 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   2703 		       + sizeof(struct ieee80211_ie_htcap) + 4
   2704 		       + sizeof(struct ieee80211_ie_htinfo) + 4
   2705 		       + sizeof(struct ieee80211_ie_vhtcap)
   2706 		       + sizeof(struct ieee80211_ie_vht_operation)
   2707 		       + sizeof(struct ieee80211_wme_param)
   2708 #ifdef IEEE80211_SUPPORT_SUPERG
   2709 		       + sizeof(struct ieee80211_ath_ie)
   2710 #endif
   2711 		       + (vap->iv_appie_assocresp != NULL ?
   2712 				vap->iv_appie_assocresp->ie_len : 0)
   2713 		);
   2714 		if (m == NULL)
   2715 			senderr(ENOMEM, is_tx_nobuf);
   2716 
   2717 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
   2718 		*(uint16_t *)frm = htole16(capinfo);
   2719 		frm += 2;
   2720 
   2721 		*(uint16_t *)frm = htole16(arg);	/* status */
   2722 		frm += 2;
   2723 
   2724 		if (arg == IEEE80211_STATUS_SUCCESS) {
   2725 			*(uint16_t *)frm = htole16(ni->ni_associd);
   2726 			IEEE80211_NODE_STAT(ni, tx_assoc);
   2727 		} else
   2728 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   2729 		frm += 2;
   2730 
   2731 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   2732 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   2733 		/* NB: respond according to what we received */
   2734 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
   2735 			frm = ieee80211_add_htcap(frm, ni);
   2736 			frm = ieee80211_add_htinfo(frm, ni);
   2737 		}
   2738 		if ((vap->iv_flags & IEEE80211_F_WME) &&
   2739 		    ni->ni_ies.wme_ie != NULL)
   2740 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   2741 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
   2742 			frm = ieee80211_add_htcap_vendor(frm, ni);
   2743 			frm = ieee80211_add_htinfo_vendor(frm, ni);
   2744 		}
   2745 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
   2746 			frm = ieee80211_add_vhtcap(frm, ni);
   2747 			frm = ieee80211_add_vhtinfo(frm, ni);
   2748 		}
   2749 #ifdef IEEE80211_SUPPORT_SUPERG
   2750 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
   2751 			frm = ieee80211_add_ath(frm,
   2752 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
   2753 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
   2754 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
   2755 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
   2756 #endif /* IEEE80211_SUPPORT_SUPERG */
   2757 		if (vap->iv_appie_assocresp != NULL)
   2758 			frm = add_appie(frm, vap->iv_appie_assocresp);
   2759 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
   2760 		break;
   2761 
   2762 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   2763 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
   2764 		    "send station disassociate (reason: %d (%s))", arg,
   2765 		    ieee80211_reason_to_string(arg));
   2766 		m = ieee80211_getmgtframe(&frm,
   2767 			ic->ic_headroom + sizeof(struct ieee80211_frame),
   2768 			sizeof(uint16_t));
   2769 		if (m == NULL)
   2770 			senderr(ENOMEM, is_tx_nobuf);
   2771 		*(uint16_t *)frm = htole16(arg);	/* reason */
   2772 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
   2773 
   2774 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   2775 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   2776 		break;
   2777 
   2778 	default:
   2779 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
   2780 		    "invalid mgmt frame type %u", type);
   2781 		senderr(EINVAL, is_tx_unknownmgt);
   2782 		/* NOTREACHED */
   2783 	}
   2784 
   2785 	/* NB: force non-ProbeResp frames to the highest queue */
   2786 	params.ibp_pri = WME_AC_VO;
   2787 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
   2788 	/* NB: we know all frames are unicast */
   2789 	params.ibp_try0 = bss->ni_txparms->maxretry;
   2790 	params.ibp_power = bss->ni_txpower;
   2791 	return ieee80211_mgmt_output(ni, m, type, &params);
   2792 bad:
   2793 	ieee80211_free_node(ni);
   2794 	return ret;
   2795 #undef senderr
   2796 #undef HTFLAGS
   2797 }
   2798 
   2799 /*
   2800  * Return an mbuf with a probe response frame in it.
   2801  * Space is left to prepend and 802.11 header at the
   2802  * front but it's left to the caller to fill in.
   2803  */
   2804 struct mbuf *
   2805 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
   2806 {
   2807 	struct ieee80211vap *vap = bss->ni_vap;
   2808 	struct ieee80211com *ic = bss->ni_ic;
   2809 	const struct ieee80211_rateset *rs;
   2810 	struct mbuf *m;
   2811 	uint16_t capinfo;
   2812 	uint8_t *frm;
   2813 
   2814 	/*
   2815 	 * probe response frame format
   2816 	 *	[8] time stamp
   2817 	 *	[2] beacon interval
   2818 	 *	[2] cabability information
   2819 	 *	[tlv] ssid
   2820 	 *	[tlv] supported rates
   2821 	 *	[tlv] parameter set (FH/DS)
   2822 	 *	[tlv] parameter set (IBSS)
   2823 	 *	[tlv] country (optional)
   2824 	 *	[3] power control (optional)
   2825 	 *	[5] channel switch announcement (CSA) (optional)
   2826 	 *	[tlv] extended rate phy (ERP)
   2827 	 *	[tlv] extended supported rates
   2828 	 *	[tlv] RSN (optional)
   2829 	 *	[tlv] HT capabilities
   2830 	 *	[tlv] HT information
   2831 	 *	[tlv] VHT capabilities
   2832 	 *	[tlv] VHT information
   2833 	 *	[tlv] WPA (optional)
   2834 	 *	[tlv] WME (optional)
   2835 	 *	[tlv] Vendor OUI HT capabilities (optional)
   2836 	 *	[tlv] Vendor OUI HT information (optional)
   2837 	 *	[tlv] Atheros capabilities
   2838 	 *	[tlv] AppIE's (optional)
   2839 	 *	[tlv] Mesh ID (MBSS)
   2840 	 *	[tlv] Mesh Conf (MBSS)
   2841 	 */
   2842 	m = ieee80211_getmgtframe(&frm,
   2843 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
   2844 		 8
   2845 	       + sizeof(uint16_t)
   2846 	       + sizeof(uint16_t)
   2847 	       + 2 + IEEE80211_NWID_LEN
   2848 	       + 2 + IEEE80211_RATE_SIZE
   2849 	       + 7	/* max(7,3) */
   2850 	       + IEEE80211_COUNTRY_MAX_SIZE
   2851 	       + 3
   2852 	       + sizeof(struct ieee80211_csa_ie)
   2853 	       + sizeof(struct ieee80211_quiet_ie)
   2854 	       + 3
   2855 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   2856 	       + sizeof(struct ieee80211_ie_wpa)
   2857 	       + sizeof(struct ieee80211_ie_htcap)
   2858 	       + sizeof(struct ieee80211_ie_htinfo)
   2859 	       + sizeof(struct ieee80211_ie_wpa)
   2860 	       + sizeof(struct ieee80211_wme_param)
   2861 	       + 4 + sizeof(struct ieee80211_ie_htcap)
   2862 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
   2863 	       +  sizeof(struct ieee80211_ie_vhtcap)
   2864 	       +  sizeof(struct ieee80211_ie_vht_operation)
   2865 #ifdef IEEE80211_SUPPORT_SUPERG
   2866 	       + sizeof(struct ieee80211_ath_ie)
   2867 #endif
   2868 #ifdef IEEE80211_SUPPORT_MESH
   2869 	       + 2 + IEEE80211_MESHID_LEN
   2870 	       + sizeof(struct ieee80211_meshconf_ie)
   2871 #endif
   2872 	       + (vap->iv_appie_proberesp != NULL ?
   2873 			vap->iv_appie_proberesp->ie_len : 0)
   2874 	);
   2875 	if (m == NULL) {
   2876 		vap->iv_stats.is_tx_nobuf++;
   2877 		return NULL;
   2878 	}
   2879 
   2880 	memset(frm, 0, 8);	/* timestamp should be filled later */
   2881 	frm += 8;
   2882 	*(uint16_t *)frm = htole16(bss->ni_intval);
   2883 	frm += 2;
   2884 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
   2885 	*(uint16_t *)frm = htole16(capinfo);
   2886 	frm += 2;
   2887 
   2888 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
   2889 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
   2890 	frm = ieee80211_add_rates(frm, rs);
   2891 
   2892 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
   2893 		*frm++ = IEEE80211_ELEMID_FHPARMS;
   2894 		*frm++ = 5;
   2895 		*frm++ = bss->ni_fhdwell & 0x00ff;
   2896 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
   2897 		*frm++ = IEEE80211_FH_CHANSET(
   2898 		    ieee80211_chan2ieee(ic, bss->ni_chan));
   2899 		*frm++ = IEEE80211_FH_CHANPAT(
   2900 		    ieee80211_chan2ieee(ic, bss->ni_chan));
   2901 		*frm++ = bss->ni_fhindex;
   2902 	} else {
   2903 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   2904 		*frm++ = 1;
   2905 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
   2906 	}
   2907 
   2908 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
   2909 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   2910 		*frm++ = 2;
   2911 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   2912 	}
   2913 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
   2914 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
   2915 		frm = ieee80211_add_countryie(frm, ic);
   2916 	if (vap->iv_flags & IEEE80211_F_DOTH) {
   2917 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
   2918 			frm = ieee80211_add_powerconstraint(frm, vap);
   2919 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
   2920 			frm = ieee80211_add_csa(frm, vap);
   2921 	}
   2922 	if (vap->iv_flags & IEEE80211_F_DOTH) {
   2923 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   2924 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
   2925 			if (vap->iv_quiet)
   2926 				frm = ieee80211_add_quiet(frm, vap, 0);
   2927 		}
   2928 	}
   2929 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
   2930 		frm = ieee80211_add_erp(frm, ic);
   2931 	frm = ieee80211_add_xrates(frm, rs);
   2932 	frm = ieee80211_add_rsn(frm, vap);
   2933 	/*
   2934 	 * NB: legacy 11b clients do not get certain ie's.
   2935 	 *     The caller identifies such clients by passing
   2936 	 *     a token in legacy to us.  Could expand this to be
   2937 	 *     any legacy client for stuff like HT ie's.
   2938 	 */
   2939 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
   2940 	    legacy != IEEE80211_SEND_LEGACY_11B) {
   2941 		frm = ieee80211_add_htcap(frm, bss);
   2942 		frm = ieee80211_add_htinfo(frm, bss);
   2943 	}
   2944 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
   2945 	    legacy != IEEE80211_SEND_LEGACY_11B) {
   2946 		frm = ieee80211_add_vhtcap(frm, bss);
   2947 		frm = ieee80211_add_vhtinfo(frm, bss);
   2948 	}
   2949 	frm = ieee80211_add_wpa(frm, vap);
   2950 	if (vap->iv_flags & IEEE80211_F_WME)
   2951 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   2952 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
   2953 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
   2954 	    legacy != IEEE80211_SEND_LEGACY_11B) {
   2955 		frm = ieee80211_add_htcap_vendor(frm, bss);
   2956 		frm = ieee80211_add_htinfo_vendor(frm, bss);
   2957 	}
   2958 #ifdef IEEE80211_SUPPORT_SUPERG
   2959 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
   2960 	    legacy != IEEE80211_SEND_LEGACY_11B)
   2961 		frm = ieee80211_add_athcaps(frm, bss);
   2962 #endif
   2963 	if (vap->iv_appie_proberesp != NULL)
   2964 		frm = add_appie(frm, vap->iv_appie_proberesp);
   2965 #ifdef IEEE80211_SUPPORT_MESH
   2966 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
   2967 		frm = ieee80211_add_meshid(frm, vap);
   2968 		frm = ieee80211_add_meshconf(frm, vap);
   2969 	}
   2970 #endif
   2971 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
   2972 
   2973 	return m;
   2974 }
   2975 
   2976 /*
   2977  * Send a probe response frame to the specified mac address.
   2978  * This does not go through the normal mgt frame api so we
   2979  * can specify the destination address and re-use the bss node
   2980  * for the sta reference.
   2981  */
   2982 int
   2983 ieee80211_send_proberesp(struct ieee80211vap *vap,
   2984 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
   2985 {
   2986 	struct ieee80211_node *bss = vap->iv_bss;
   2987 	struct ieee80211com *ic = vap->iv_ic;
   2988 	struct mbuf *m;
   2989 	int ret;
   2990 
   2991 	if (vap->iv_state == IEEE80211_S_CAC) {
   2992 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
   2993 		    "block %s frame in CAC state", "probe response");
   2994 		vap->iv_stats.is_tx_badstate++;
   2995 		return EIO;		/* XXX */
   2996 	}
   2997 
   2998 	/*
   2999 	 * Hold a reference on the node so it doesn't go away until after
   3000 	 * the xmit is complete all the way in the driver.  On error we
   3001 	 * will remove our reference.
   3002 	 */
   3003 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
   3004 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   3005 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
   3006 	    ieee80211_node_refcnt(bss)+1);
   3007 	ieee80211_ref_node(bss);
   3008 
   3009 	m = ieee80211_alloc_proberesp(bss, legacy);
   3010 	if (m == NULL) {
   3011 		ieee80211_free_node(bss);
   3012 		return ENOMEM;
   3013 	}
   3014 
   3015 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
   3016 	KASSERT(m != NULL, ("no room for header"));
   3017 
   3018 	IEEE80211_TX_LOCK(ic);
   3019 	ieee80211_send_setup(bss, m,
   3020 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
   3021 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
   3022 	/* XXX power management? */
   3023 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
   3024 
   3025 	M_WME_SETAC(m, WME_AC_BE);
   3026 
   3027 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   3028 	    "send probe resp on channel %u to %s%s\n",
   3029 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
   3030 	    legacy ? " <legacy>" : "");
   3031 	IEEE80211_NODE_STAT(bss, tx_mgmt);
   3032 
   3033 	ret = ieee80211_raw_output(vap, bss, m, NULL);
   3034 	IEEE80211_TX_UNLOCK(ic);
   3035 	return (ret);
   3036 }
   3037 
   3038 /*
   3039  * Allocate and build a RTS (Request To Send) control frame.
   3040  */
   3041 struct mbuf *
   3042 ieee80211_alloc_rts(struct ieee80211com *ic,
   3043 	const uint8_t ra[IEEE80211_ADDR_LEN],
   3044 	const uint8_t ta[IEEE80211_ADDR_LEN],
   3045 	uint16_t dur)
   3046 {
   3047 	struct ieee80211_frame_rts *rts;
   3048 	struct mbuf *m;
   3049 
   3050 	/* XXX honor ic_headroom */
   3051 	m = m_gethdr(M_NOWAIT, MT_DATA);
   3052 	if (m != NULL) {
   3053 		rts = mtod(m, struct ieee80211_frame_rts *);
   3054 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
   3055 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
   3056 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   3057 		*(u_int16_t *)rts->i_dur = htole16(dur);
   3058 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
   3059 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
   3060 
   3061 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
   3062 	}
   3063 	return m;
   3064 }
   3065 
   3066 /*
   3067  * Allocate and build a CTS (Clear To Send) control frame.
   3068  */
   3069 struct mbuf *
   3070 ieee80211_alloc_cts(struct ieee80211com *ic,
   3071 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
   3072 {
   3073 	struct ieee80211_frame_cts *cts;
   3074 	struct mbuf *m;
   3075 
   3076 	/* XXX honor ic_headroom */
   3077 	m = m_gethdr(M_NOWAIT, MT_DATA);
   3078 	if (m != NULL) {
   3079 		cts = mtod(m, struct ieee80211_frame_cts *);
   3080 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
   3081 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
   3082 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   3083 		*(u_int16_t *)cts->i_dur = htole16(dur);
   3084 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
   3085 
   3086 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
   3087 	}
   3088 	return m;
   3089 }
   3090 
   3091 /*
   3092  * Wrapper for CTS/RTS frame allocation.
   3093  */
   3094 struct mbuf *
   3095 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
   3096     uint8_t rate, int prot)
   3097 {
   3098 	struct ieee80211com *ic = ni->ni_ic;
   3099 	const struct ieee80211_frame *wh;
   3100 	struct mbuf *mprot;
   3101 	uint16_t dur;
   3102 	int pktlen, isshort;
   3103 
   3104 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
   3105 	    prot == IEEE80211_PROT_CTSONLY,
   3106 	    ("wrong protection type %d", prot));
   3107 
   3108 	wh = mtod(m, const struct ieee80211_frame *);
   3109 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   3110 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
   3111 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
   3112 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
   3113 
   3114 	if (prot == IEEE80211_PROT_RTSCTS) {
   3115 		/* NB: CTS is the same size as an ACK */
   3116 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
   3117 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
   3118 	} else
   3119 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
   3120 
   3121 	return (mprot);
   3122 }
   3123 
   3124 static void
   3125 ieee80211_tx_mgt_timeout(void *arg)
   3126 {
   3127 	struct ieee80211vap *vap = arg;
   3128 
   3129 	IEEE80211_LOCK(vap->iv_ic);
   3130 	if (vap->iv_state != IEEE80211_S_INIT &&
   3131 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
   3132 		/*
   3133 		 * NB: it's safe to specify a timeout as the reason here;
   3134 		 *     it'll only be used in the right state.
   3135 		 */
   3136 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
   3137 			IEEE80211_SCAN_FAIL_TIMEOUT);
   3138 	}
   3139 	IEEE80211_UNLOCK(vap->iv_ic);
   3140 }
   3141 
   3142 /*
   3143  * This is the callback set on net80211-sourced transmitted
   3144  * authentication request frames.
   3145  *
   3146  * This does a couple of things:
   3147  *
   3148  * + If the frame transmitted was a success, it schedules a future
   3149  *   event which will transition the interface to scan.
   3150  *   If a state transition _then_ occurs before that event occurs,
   3151  *   said state transition will cancel this callout.
   3152  *
   3153  * + If the frame transmit was a failure, it immediately schedules
   3154  *   the transition back to scan.
   3155  */
   3156 static void
   3157 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
   3158 {
   3159 	struct ieee80211vap *vap = ni->ni_vap;
   3160 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
   3161 
   3162 	/*
   3163 	 * Frame transmit completed; arrange timer callback.  If
   3164 	 * transmit was successfully we wait for response.  Otherwise
   3165 	 * we arrange an immediate callback instead of doing the
   3166 	 * callback directly since we don't know what state the driver
   3167 	 * is in (e.g. what locks it is holding).  This work should
   3168 	 * not be too time-critical and not happen too often so the
   3169 	 * added overhead is acceptable.
   3170 	 *
   3171 	 * XXX what happens if !acked but response shows up before callback?
   3172 	 */
   3173 	if (vap->iv_state == ostate) {
   3174 		callout_reset(&vap->iv_mgtsend,
   3175 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
   3176 			ieee80211_tx_mgt_timeout, vap);
   3177 	}
   3178 }
   3179 
   3180 static void
   3181 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
   3182 	struct ieee80211_node *ni)
   3183 {
   3184 	struct ieee80211vap *vap = ni->ni_vap;
   3185 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
   3186 	struct ieee80211com *ic = ni->ni_ic;
   3187 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3188 	uint16_t capinfo;
   3189 
   3190 	/*
   3191 	 * beacon frame format
   3192 	 *
   3193 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
   3194 	 * vendor extensions should be at the end, etc.
   3195 	 *
   3196 	 *	[8] time stamp
   3197 	 *	[2] beacon interval
   3198 	 *	[2] cabability information
   3199 	 *	[tlv] ssid
   3200 	 *	[tlv] supported rates
   3201 	 *	[3] parameter set (DS)
   3202 	 *	[8] CF parameter set (optional)
   3203 	 *	[tlv] parameter set (IBSS/TIM)
   3204 	 *	[tlv] country (optional)
   3205 	 *	[3] power control (optional)
   3206 	 *	[5] channel switch announcement (CSA) (optional)
   3207 	 * XXX TODO: Quiet
   3208 	 * XXX TODO: IBSS DFS
   3209 	 * XXX TODO: TPC report
   3210 	 *	[tlv] extended rate phy (ERP)
   3211 	 *	[tlv] extended supported rates
   3212 	 *	[tlv] RSN parameters
   3213 	 * XXX TODO: BSSLOAD
   3214 	 * (XXX EDCA parameter set, QoS capability?)
   3215 	 * XXX TODO: AP channel report
   3216 	 *
   3217 	 *	[tlv] HT capabilities
   3218 	 *	[tlv] HT information
   3219 	 *	XXX TODO: 20/40 BSS coexistence
   3220 	 * Mesh:
   3221 	 * XXX TODO: Meshid
   3222 	 * XXX TODO: mesh config
   3223 	 * XXX TODO: mesh awake window
   3224 	 * XXX TODO: beacon timing (mesh, etc)
   3225 	 * XXX TODO: MCCAOP Advertisement Overview
   3226 	 * XXX TODO: MCCAOP Advertisement
   3227 	 * XXX TODO: Mesh channel switch parameters
   3228 	 * VHT:
   3229 	 * XXX TODO: VHT capabilities
   3230 	 * XXX TODO: VHT operation
   3231 	 * XXX TODO: VHT transmit power envelope
   3232 	 * XXX TODO: channel switch wrapper element
   3233 	 * XXX TODO: extended BSS load element
   3234 	 *
   3235 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   3236 	 *	[tlv] WPA parameters
   3237 	 *	[tlv] WME parameters
   3238 	 *	[tlv] Vendor OUI HT capabilities (optional)
   3239 	 *	[tlv] Vendor OUI HT information (optional)
   3240 	 *	[tlv] Atheros capabilities (optional)
   3241 	 *	[tlv] TDMA parameters (optional)
   3242 	 *	[tlv] Mesh ID (MBSS)
   3243 	 *	[tlv] Mesh Conf (MBSS)
   3244 	 *	[tlv] application data (optional)
   3245 	 */
   3246 
   3247 	memset(bo, 0, sizeof(*bo));
   3248 
   3249 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   3250 	frm += 8;
   3251 	*(uint16_t *)frm = htole16(ni->ni_intval);
   3252 	frm += 2;
   3253 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
   3254 	bo->bo_caps = (uint16_t *)frm;
   3255 	*(uint16_t *)frm = htole16(capinfo);
   3256 	frm += 2;
   3257 	*frm++ = IEEE80211_ELEMID_SSID;
   3258 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
   3259 		*frm++ = ni->ni_esslen;
   3260 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   3261 		frm += ni->ni_esslen;
   3262 	} else
   3263 		*frm++ = 0;
   3264 	frm = ieee80211_add_rates(frm, rs);
   3265 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
   3266 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   3267 		*frm++ = 1;
   3268 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   3269 	}
   3270 	if (ic->ic_flags & IEEE80211_F_PCF) {
   3271 		bo->bo_cfp = frm;
   3272 		frm = ieee80211_add_cfparms(frm, ic);
   3273 	}
   3274 	bo->bo_tim = frm;
   3275 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
   3276 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   3277 		*frm++ = 2;
   3278 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   3279 		bo->bo_tim_len = 0;
   3280 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
   3281 	    vap->iv_opmode == IEEE80211_M_MBSS) {
   3282 		/* TIM IE is the same for Mesh and Hostap */
   3283 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
   3284 
   3285 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   3286 		tie->tim_len = 4;	/* length */
   3287 		tie->tim_count = 0;	/* DTIM count */
   3288 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
   3289 		tie->tim_bitctl = 0;	/* bitmap control */
   3290 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   3291 		frm += sizeof(struct ieee80211_tim_ie);
   3292 		bo->bo_tim_len = 1;
   3293 	}
   3294 	bo->bo_tim_trailer = frm;
   3295 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
   3296 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
   3297 		frm = ieee80211_add_countryie(frm, ic);
   3298 	if (vap->iv_flags & IEEE80211_F_DOTH) {
   3299 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
   3300 			frm = ieee80211_add_powerconstraint(frm, vap);
   3301 		bo->bo_csa = frm;
   3302 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
   3303 			frm = ieee80211_add_csa(frm, vap);
   3304 	} else
   3305 		bo->bo_csa = frm;
   3306 
   3307 	bo->bo_quiet = NULL;
   3308 	if (vap->iv_flags & IEEE80211_F_DOTH) {
   3309 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   3310 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
   3311 		    (vap->iv_quiet == 1)) {
   3312 			/*
   3313 			 * We only insert the quiet IE offset if
   3314 			 * the quiet IE is enabled.  Otherwise don't
   3315 			 * put it here or we'll just overwrite
   3316 			 * some other beacon contents.
   3317 			 */
   3318 			if (vap->iv_quiet) {
   3319 				bo->bo_quiet = frm;
   3320 				frm = ieee80211_add_quiet(frm,vap, 0);
   3321 			}
   3322 		}
   3323 	}
   3324 
   3325 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
   3326 		bo->bo_erp = frm;
   3327 		frm = ieee80211_add_erp(frm, ic);
   3328 	}
   3329 	frm = ieee80211_add_xrates(frm, rs);
   3330 	frm = ieee80211_add_rsn(frm, vap);
   3331 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
   3332 		frm = ieee80211_add_htcap(frm, ni);
   3333 		bo->bo_htinfo = frm;
   3334 		frm = ieee80211_add_htinfo(frm, ni);
   3335 	}
   3336 
   3337 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
   3338 		frm = ieee80211_add_vhtcap(frm, ni);
   3339 		bo->bo_vhtinfo = frm;
   3340 		frm = ieee80211_add_vhtinfo(frm, ni);
   3341 		/* Transmit power envelope */
   3342 		/* Channel switch wrapper element */
   3343 		/* Extended bss load element */
   3344 	}
   3345 
   3346 	frm = ieee80211_add_wpa(frm, vap);
   3347 	if (vap->iv_flags & IEEE80211_F_WME) {
   3348 		bo->bo_wme = frm;
   3349 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   3350 	}
   3351 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
   3352 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
   3353 		frm = ieee80211_add_htcap_vendor(frm, ni);
   3354 		frm = ieee80211_add_htinfo_vendor(frm, ni);
   3355 	}
   3356 
   3357 #ifdef IEEE80211_SUPPORT_SUPERG
   3358 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
   3359 		bo->bo_ath = frm;
   3360 		frm = ieee80211_add_athcaps(frm, ni);
   3361 	}
   3362 #endif
   3363 #ifdef IEEE80211_SUPPORT_TDMA
   3364 	if (vap->iv_caps & IEEE80211_C_TDMA) {
   3365 		bo->bo_tdma = frm;
   3366 		frm = ieee80211_add_tdma(frm, vap);
   3367 	}
   3368 #endif
   3369 	if (vap->iv_appie_beacon != NULL) {
   3370 		bo->bo_appie = frm;
   3371 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
   3372 		frm = add_appie(frm, vap->iv_appie_beacon);
   3373 	}
   3374 
   3375 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
   3376 #ifdef IEEE80211_SUPPORT_MESH
   3377 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
   3378 		frm = ieee80211_add_meshid(frm, vap);
   3379 		bo->bo_meshconf = frm;
   3380 		frm = ieee80211_add_meshconf(frm, vap);
   3381 	}
   3382 #endif
   3383 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
   3384 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
   3385 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
   3386 }
   3387 
   3388 /*
   3389  * Allocate a beacon frame and fillin the appropriate bits.
   3390  */
   3391 struct mbuf *
   3392 ieee80211_beacon_alloc(struct ieee80211_node *ni)
   3393 {
   3394 	struct ieee80211vap *vap = ni->ni_vap;
   3395 	struct ieee80211com *ic = ni->ni_ic;
   3396 	struct ifnet *ifp = vap->iv_ifp;
   3397 	struct ieee80211_frame *wh;
   3398 	struct mbuf *m;
   3399 	int pktlen;
   3400 	uint8_t *frm;
   3401 
   3402 	/*
   3403 	 * Update the "We're putting the quiet IE in the beacon" state.
   3404 	 */
   3405 	if (vap->iv_quiet == 1)
   3406 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
   3407 	else if (vap->iv_quiet == 0)
   3408 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
   3409 
   3410 	/*
   3411 	 * beacon frame format
   3412 	 *
   3413 	 * Note: This needs updating for 802.11-2012.
   3414 	 *
   3415 	 *	[8] time stamp
   3416 	 *	[2] beacon interval
   3417 	 *	[2] cabability information
   3418 	 *	[tlv] ssid
   3419 	 *	[tlv] supported rates
   3420 	 *	[3] parameter set (DS)
   3421 	 *	[8] CF parameter set (optional)
   3422 	 *	[tlv] parameter set (IBSS/TIM)
   3423 	 *	[tlv] country (optional)
   3424 	 *	[3] power control (optional)
   3425 	 *	[5] channel switch announcement (CSA) (optional)
   3426 	 *	[tlv] extended rate phy (ERP)
   3427 	 *	[tlv] extended supported rates
   3428 	 *	[tlv] RSN parameters
   3429 	 *	[tlv] HT capabilities
   3430 	 *	[tlv] HT information
   3431 	 *	[tlv] VHT capabilities
   3432 	 *	[tlv] VHT operation
   3433 	 *	[tlv] Vendor OUI HT capabilities (optional)
   3434 	 *	[tlv] Vendor OUI HT information (optional)
   3435 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   3436 	 *	[tlv] WPA parameters
   3437 	 *	[tlv] WME parameters
   3438 	 *	[tlv] TDMA parameters (optional)
   3439 	 *	[tlv] Mesh ID (MBSS)
   3440 	 *	[tlv] Mesh Conf (MBSS)
   3441 	 *	[tlv] application data (optional)
   3442 	 * NB: we allocate the max space required for the TIM bitmap.
   3443 	 * XXX how big is this?
   3444 	 */
   3445 	pktlen =   8					/* time stamp */
   3446 		 + sizeof(uint16_t)			/* beacon interval */
   3447 		 + sizeof(uint16_t)			/* capabilities */
   3448 		 + 2 + ni->ni_esslen			/* ssid */
   3449 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   3450 	         + 2 + 1				/* DS parameters */
   3451 		 + 2 + 6				/* CF parameters */
   3452 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
   3453 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
   3454 		 + 2 + 1				/* power control */
   3455 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
   3456 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
   3457 		 + 2 + 1				/* ERP */
   3458 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   3459 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   3460 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   3461 		 /* XXX conditional? */
   3462 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
   3463 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
   3464 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
   3465 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
   3466 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
   3467 			sizeof(struct ieee80211_wme_param) : 0)
   3468 #ifdef IEEE80211_SUPPORT_SUPERG
   3469 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
   3470 #endif
   3471 #ifdef IEEE80211_SUPPORT_TDMA
   3472 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
   3473 			sizeof(struct ieee80211_tdma_param) : 0)
   3474 #endif
   3475 #ifdef IEEE80211_SUPPORT_MESH
   3476 		 + 2 + ni->ni_meshidlen
   3477 		 + sizeof(struct ieee80211_meshconf_ie)
   3478 #endif
   3479 		 + IEEE80211_MAX_APPIE
   3480 		 ;
   3481 	m = ieee80211_getmgtframe(&frm,
   3482 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
   3483 	if (m == NULL) {
   3484 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
   3485 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   3486 		vap->iv_stats.is_tx_nobuf++;
   3487 		return NULL;
   3488 	}
   3489 	ieee80211_beacon_construct(m, frm, ni);
   3490 
   3491 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
   3492 	KASSERT(m != NULL, ("no space for 802.11 header?"));
   3493 	wh = mtod(m, struct ieee80211_frame *);
   3494 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   3495 	    IEEE80211_FC0_SUBTYPE_BEACON;
   3496 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   3497 	*(uint16_t *)wh->i_dur = 0;
   3498 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   3499 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
   3500 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   3501 	*(uint16_t *)wh->i_seq = 0;
   3502 
   3503 	return m;
   3504 }
   3505 
   3506 /*
   3507  * Update the dynamic parts of a beacon frame based on the current state.
   3508  */
   3509 int
   3510 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
   3511 {
   3512 	struct ieee80211vap *vap = ni->ni_vap;
   3513 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
   3514 	struct ieee80211com *ic = ni->ni_ic;
   3515 	int len_changed = 0;
   3516 	uint16_t capinfo;
   3517 	struct ieee80211_frame *wh;
   3518 	ieee80211_seq seqno;
   3519 
   3520 	IEEE80211_LOCK(ic);
   3521 	/*
   3522 	 * Handle 11h channel change when we've reached the count.
   3523 	 * We must recalculate the beacon frame contents to account
   3524 	 * for the new channel.  Note we do this only for the first
   3525 	 * vap that reaches this point; subsequent vaps just update
   3526 	 * their beacon state to reflect the recalculated channel.
   3527 	 */
   3528 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
   3529 	    vap->iv_csa_count == ic->ic_csa_count) {
   3530 		vap->iv_csa_count = 0;
   3531 		/*
   3532 		 * Effect channel change before reconstructing the beacon
   3533 		 * frame contents as many places reference ni_chan.
   3534 		 */
   3535 		if (ic->ic_csa_newchan != NULL)
   3536 			ieee80211_csa_completeswitch(ic);
   3537 		/*
   3538 		 * NB: ieee80211_beacon_construct clears all pending
   3539 		 * updates in bo_flags so we don't need to explicitly
   3540 		 * clear IEEE80211_BEACON_CSA.
   3541 		 */
   3542 		ieee80211_beacon_construct(m,
   3543 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
   3544 
   3545 		/* XXX do WME aggressive mode processing? */
   3546 		IEEE80211_UNLOCK(ic);
   3547 		return 1;		/* just assume length changed */
   3548 	}
   3549 
   3550 	/*
   3551 	 * Handle the quiet time element being added and removed.
   3552 	 * Again, for now we just cheat and reconstruct the whole
   3553 	 * beacon - that way the gap is provided as appropriate.
   3554 	 *
   3555 	 * So, track whether we have already added the IE versus
   3556 	 * whether we want to be adding the IE.
   3557 	 */
   3558 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
   3559 	    (vap->iv_quiet == 0)) {
   3560 		/*
   3561 		 * Quiet time beacon IE enabled, but it's disabled;
   3562 		 * recalc
   3563 		 */
   3564 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
   3565 		ieee80211_beacon_construct(m,
   3566 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
   3567 		/* XXX do WME aggressive mode processing? */
   3568 		IEEE80211_UNLOCK(ic);
   3569 		return 1;		/* just assume length changed */
   3570 	}
   3571 
   3572 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
   3573 	    (vap->iv_quiet == 1)) {
   3574 		/*
   3575 		 * Quiet time beacon IE disabled, but it's now enabled;
   3576 		 * recalc
   3577 		 */
   3578 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
   3579 		ieee80211_beacon_construct(m,
   3580 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
   3581 		/* XXX do WME aggressive mode processing? */
   3582 		IEEE80211_UNLOCK(ic);
   3583 		return 1;		/* just assume length changed */
   3584 	}
   3585 
   3586 	wh = mtod(m, struct ieee80211_frame *);
   3587 
   3588 	/*
   3589 	 * XXX TODO Strictly speaking this should be incremented with the TX
   3590 	 * lock held so as to serialise access to the non-qos TID sequence
   3591 	 * number space.
   3592 	 *
   3593 	 * If the driver identifies it does its own TX seqno management then
   3594 	 * we can skip this (and still not do the TX seqno.)
   3595 	 */
   3596 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
   3597 	*(uint16_t *)&wh->i_seq[0] =
   3598 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
   3599 	M_SEQNO_SET(m, seqno);
   3600 
   3601 	/* XXX faster to recalculate entirely or just changes? */
   3602 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
   3603 	*bo->bo_caps = htole16(capinfo);
   3604 
   3605 	if (vap->iv_flags & IEEE80211_F_WME) {
   3606 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   3607 
   3608 		/*
   3609 		 * Check for aggressive mode change.  When there is
   3610 		 * significant high priority traffic in the BSS
   3611 		 * throttle back BE traffic by using conservative
   3612 		 * parameters.  Otherwise BE uses aggressive params
   3613 		 * to optimize performance of legacy/non-QoS traffic.
   3614 		 */
   3615 		if (wme->wme_flags & WME_F_AGGRMODE) {
   3616 			if (wme->wme_hipri_traffic >
   3617 			    wme->wme_hipri_switch_thresh) {
   3618 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   3619 				    "%s: traffic %u, disable aggressive mode\n",
   3620 				    __func__, wme->wme_hipri_traffic);
   3621 				wme->wme_flags &= ~WME_F_AGGRMODE;
   3622 				ieee80211_wme_updateparams_locked(vap);
   3623 				wme->wme_hipri_traffic =
   3624 					wme->wme_hipri_switch_hysteresis;
   3625 			} else
   3626 				wme->wme_hipri_traffic = 0;
   3627 		} else {
   3628 			if (wme->wme_hipri_traffic <=
   3629 			    wme->wme_hipri_switch_thresh) {
   3630 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   3631 				    "%s: traffic %u, enable aggressive mode\n",
   3632 				    __func__, wme->wme_hipri_traffic);
   3633 				wme->wme_flags |= WME_F_AGGRMODE;
   3634 				ieee80211_wme_updateparams_locked(vap);
   3635 				wme->wme_hipri_traffic = 0;
   3636 			} else
   3637 				wme->wme_hipri_traffic =
   3638 					wme->wme_hipri_switch_hysteresis;
   3639 		}
   3640 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
   3641 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
   3642 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
   3643 		}
   3644 	}
   3645 
   3646 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
   3647 		ieee80211_ht_update_beacon(vap, bo);
   3648 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
   3649 	}
   3650 #ifdef IEEE80211_SUPPORT_TDMA
   3651 	if (vap->iv_caps & IEEE80211_C_TDMA) {
   3652 		/*
   3653 		 * NB: the beacon is potentially updated every TBTT.
   3654 		 */
   3655 		ieee80211_tdma_update_beacon(vap, bo);
   3656 	}
   3657 #endif
   3658 #ifdef IEEE80211_SUPPORT_MESH
   3659 	if (vap->iv_opmode == IEEE80211_M_MBSS)
   3660 		ieee80211_mesh_update_beacon(vap, bo);
   3661 #endif
   3662 
   3663 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
   3664 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
   3665 		struct ieee80211_tim_ie *tie =
   3666 			(struct ieee80211_tim_ie *) bo->bo_tim;
   3667 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
   3668 			u_int timlen, timoff, i;
   3669 			/*
   3670 			 * ATIM/DTIM needs updating.  If it fits in the
   3671 			 * current space allocated then just copy in the
   3672 			 * new bits.  Otherwise we need to move any trailing
   3673 			 * data to make room.  Note that we know there is
   3674 			 * contiguous space because ieee80211_beacon_allocate
   3675 			 * insures there is space in the mbuf to write a
   3676 			 * maximal-size virtual bitmap (based on iv_max_aid).
   3677 			 */
   3678 			/*
   3679 			 * Calculate the bitmap size and offset, copy any
   3680 			 * trailer out of the way, and then copy in the
   3681 			 * new bitmap and update the information element.
   3682 			 * Note that the tim bitmap must contain at least
   3683 			 * one byte and any offset must be even.
   3684 			 */
   3685 			if (vap->iv_ps_pending != 0) {
   3686 				timoff = 128;		/* impossibly large */
   3687 				for (i = 0; i < vap->iv_tim_len; i++)
   3688 					if (vap->iv_tim_bitmap[i]) {
   3689 						timoff = i &~ 1;
   3690 						break;
   3691 					}
   3692 				KASSERT(timoff != 128, ("tim bitmap empty!"));
   3693 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
   3694 					if (vap->iv_tim_bitmap[i])
   3695 						break;
   3696 				timlen = 1 + (i - timoff);
   3697 			} else {
   3698 				timoff = 0;
   3699 				timlen = 1;
   3700 			}
   3701 
   3702 			/*
   3703 			 * TODO: validate this!
   3704 			 */
   3705 			if (timlen != bo->bo_tim_len) {
   3706 				/* copy up/down trailer */
   3707 				int adjust = tie->tim_bitmap+timlen
   3708 					   - bo->bo_tim_trailer;
   3709 				ovbcopy(bo->bo_tim_trailer,
   3710 				    bo->bo_tim_trailer+adjust,
   3711 				    bo->bo_tim_trailer_len);
   3712 				bo->bo_tim_trailer += adjust;
   3713 				bo->bo_erp += adjust;
   3714 				bo->bo_htinfo += adjust;
   3715 				bo->bo_vhtinfo += adjust;
   3716 #ifdef IEEE80211_SUPPORT_SUPERG
   3717 				bo->bo_ath += adjust;
   3718 #endif
   3719 #ifdef IEEE80211_SUPPORT_TDMA
   3720 				bo->bo_tdma += adjust;
   3721 #endif
   3722 #ifdef IEEE80211_SUPPORT_MESH
   3723 				bo->bo_meshconf += adjust;
   3724 #endif
   3725 				bo->bo_appie += adjust;
   3726 				bo->bo_wme += adjust;
   3727 				bo->bo_csa += adjust;
   3728 				bo->bo_quiet += adjust;
   3729 				bo->bo_tim_len = timlen;
   3730 
   3731 				/* update information element */
   3732 				tie->tim_len = 3 + timlen;
   3733 				tie->tim_bitctl = timoff;
   3734 				len_changed = 1;
   3735 			}
   3736 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
   3737 				bo->bo_tim_len);
   3738 
   3739 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
   3740 
   3741 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
   3742 				"%s: TIM updated, pending %u, off %u, len %u\n",
   3743 				__func__, vap->iv_ps_pending, timoff, timlen);
   3744 		}
   3745 		/* count down DTIM period */
   3746 		if (tie->tim_count == 0)
   3747 			tie->tim_count = tie->tim_period - 1;
   3748 		else
   3749 			tie->tim_count--;
   3750 		/* update state for buffered multicast frames on DTIM */
   3751 		if (mcast && tie->tim_count == 0)
   3752 			tie->tim_bitctl |= 1;
   3753 		else
   3754 			tie->tim_bitctl &= ~1;
   3755 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
   3756 			struct ieee80211_csa_ie *csa =
   3757 			    (struct ieee80211_csa_ie *) bo->bo_csa;
   3758 
   3759 			/*
   3760 			 * Insert or update CSA ie.  If we're just starting
   3761 			 * to count down to the channel switch then we need
   3762 			 * to insert the CSA ie.  Otherwise we just need to
   3763 			 * drop the count.  The actual change happens above
   3764 			 * when the vap's count reaches the target count.
   3765 			 */
   3766 			if (vap->iv_csa_count == 0) {
   3767 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
   3768 				bo->bo_erp += sizeof(*csa);
   3769 				bo->bo_htinfo += sizeof(*csa);
   3770 				bo->bo_vhtinfo += sizeof(*csa);
   3771 				bo->bo_wme += sizeof(*csa);
   3772 #ifdef IEEE80211_SUPPORT_SUPERG
   3773 				bo->bo_ath += sizeof(*csa);
   3774 #endif
   3775 #ifdef IEEE80211_SUPPORT_TDMA
   3776 				bo->bo_tdma += sizeof(*csa);
   3777 #endif
   3778 #ifdef IEEE80211_SUPPORT_MESH
   3779 				bo->bo_meshconf += sizeof(*csa);
   3780 #endif
   3781 				bo->bo_appie += sizeof(*csa);
   3782 				bo->bo_csa_trailer_len += sizeof(*csa);
   3783 				bo->bo_quiet += sizeof(*csa);
   3784 				bo->bo_tim_trailer_len += sizeof(*csa);
   3785 				m->m_len += sizeof(*csa);
   3786 				m->m_pkthdr.len += sizeof(*csa);
   3787 
   3788 				ieee80211_add_csa(bo->bo_csa, vap);
   3789 			} else
   3790 				csa->csa_count--;
   3791 			vap->iv_csa_count++;
   3792 			/* NB: don't clear IEEE80211_BEACON_CSA */
   3793 		}
   3794 
   3795 		/*
   3796 		 * Only add the quiet time IE if we've enabled it
   3797 		 * as appropriate.
   3798 		 */
   3799 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   3800 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
   3801 			if (vap->iv_quiet &&
   3802 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
   3803 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
   3804 			}
   3805 		}
   3806 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
   3807 			/*
   3808 			 * ERP element needs updating.
   3809 			 */
   3810 			(void) ieee80211_add_erp(bo->bo_erp, ic);
   3811 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
   3812 		}
   3813 #ifdef IEEE80211_SUPPORT_SUPERG
   3814 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
   3815 			ieee80211_add_athcaps(bo->bo_ath, ni);
   3816 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
   3817 		}
   3818 #endif
   3819 	}
   3820 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
   3821 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
   3822 		int aielen;
   3823 		uint8_t *frm;
   3824 
   3825 		aielen = 0;
   3826 		if (aie != NULL)
   3827 			aielen += aie->ie_len;
   3828 		if (aielen != bo->bo_appie_len) {
   3829 			/* copy up/down trailer */
   3830 			int adjust = aielen - bo->bo_appie_len;
   3831 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
   3832 				bo->bo_tim_trailer_len);
   3833 			bo->bo_tim_trailer += adjust;
   3834 			bo->bo_appie += adjust;
   3835 			bo->bo_appie_len = aielen;
   3836 
   3837 			len_changed = 1;
   3838 		}
   3839 		frm = bo->bo_appie;
   3840 		if (aie != NULL)
   3841 			frm  = add_appie(frm, aie);
   3842 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
   3843 	}
   3844 	IEEE80211_UNLOCK(ic);
   3845 
   3846 	return len_changed;
   3847 }
   3848 
   3849 /*
   3850  * Do Ethernet-LLC encapsulation for each payload in a fast frame
   3851  * tunnel encapsulation.  The frame is assumed to have an Ethernet
   3852  * header at the front that must be stripped before prepending the
   3853  * LLC followed by the Ethernet header passed in (with an Ethernet
   3854  * type that specifies the payload size).
   3855  */
   3856 struct mbuf *
   3857 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
   3858 	const struct ether_header *eh)
   3859 {
   3860 	struct llc *llc;
   3861 	uint16_t payload;
   3862 
   3863 	/* XXX optimize by combining m_adj+M_PREPEND */
   3864 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
   3865 	llc = mtod(m, struct llc *);
   3866 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
   3867 	llc->llc_control = LLC_UI;
   3868 	llc->llc_snap.org_code[0] = 0;
   3869 	llc->llc_snap.org_code[1] = 0;
   3870 	llc->llc_snap.org_code[2] = 0;
   3871 	llc->llc_snap.ether_type = eh->ether_type;
   3872 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
   3873 
   3874 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
   3875 	if (m == NULL) {		/* XXX cannot happen */
   3876 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
   3877 			"%s: no space for ether_header\n", __func__);
   3878 		vap->iv_stats.is_tx_nobuf++;
   3879 		return NULL;
   3880 	}
   3881 	ETHER_HEADER_COPY(mtod(m, void *), eh);
   3882 	mtod(m, struct ether_header *)->ether_type = htons(payload);
   3883 	return m;
   3884 }
   3885 
   3886 /*
   3887  * Complete an mbuf transmission.
   3888  *
   3889  * For now, this simply processes a completed frame after the
   3890  * driver has completed it's transmission and/or retransmission.
   3891  * It assumes the frame is an 802.11 encapsulated frame.
   3892  *
   3893  * Later on it will grow to become the exit path for a given frame
   3894  * from the driver and, depending upon how it's been encapsulated
   3895  * and already transmitted, it may end up doing A-MPDU retransmission,
   3896  * power save requeuing, etc.
   3897  *
   3898  * In order for the above to work, the driver entry point to this
   3899  * must not hold any driver locks.  Thus, the driver needs to delay
   3900  * any actual mbuf completion until it can release said locks.
   3901  *
   3902  * This frees the mbuf and if the mbuf has a node reference,
   3903  * the node reference will be freed.
   3904  */
   3905 void
   3906 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
   3907 {
   3908 
   3909 	if (ni != NULL) {
   3910 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
   3911 
   3912 		if (status == 0) {
   3913 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
   3914 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
   3915 			if (m->m_flags & M_MCAST)
   3916 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
   3917 		} else
   3918 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
   3919 		if (m->m_flags & M_TXCB)
   3920 			ieee80211_process_callback(ni, m, status);
   3921 		ieee80211_free_node(ni);
   3922 	}
   3923 	m_freem(m);
   3924 }
   3925