ieee80211_output.c revision 1.63.2.5 1 /* $NetBSD: ieee80211_output.c,v 1.63.2.5 2019/06/10 22:09:46 christos Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2001 Atsushi Onoe
7 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #ifdef __NetBSD__
33 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.63.2.5 2019/06/10 22:09:46 christos Exp $");
34 #endif
35
36 #ifdef _KERNEL_OPT
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_wlan.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/endian.h>
48
49 #include <sys/socket.h>
50
51 #include <net/bpf.h>
52 #if __FreeBSD__
53 #include <net/ethernet.h>
54 #endif
55 #include <net/if.h>
56 #if __FreeBSD__
57 #include <net/if_var.h>
58 #endif
59 #include <net/if_llc.h>
60 #include <net/if_media.h>
61 #if __FreeBSD__
62 #include <net/if_vlan_var.h>
63 #endif
64 #ifdef __NetBSD__
65 #include <net/if_ether.h>
66 #include <net/route.h>
67 #endif
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <net80211/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <net80211/ieee80211_tdma.h>
76 #endif
77 #include <net80211/ieee80211_wds.h>
78 #include <net80211/ieee80211_mesh.h>
79 #include <net80211/ieee80211_vht.h>
80
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #endif
84
85 #ifdef INET
86 #if __FreeBSD__
87 #include <netinet/if_ether.h>
88 #endif
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #endif
92 #ifdef INET6
93 #include <netinet/ip6.h>
94 #endif
95
96 #if __FreeBSD__
97 #include <security/mac/mac_framework.h>
98 #endif
99
100 #ifdef __NetBSD__
101 #undef KASSERT
102 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
103 #endif
104
105 #define ETHER_HEADER_COPY(dst, src) \
106 memcpy(dst, src, sizeof(struct ether_header))
107
108 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
109 u_int hdrsize, u_int ciphdrsize, u_int mtu);
110 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
111
112 #ifdef IEEE80211_DEBUG
113 /*
114 * Decide if an outbound management frame should be
115 * printed when debugging is enabled. This filters some
116 * of the less interesting frames that come frequently
117 * (e.g. beacons).
118 */
119 static __inline int
120 doprint(struct ieee80211vap *vap, int subtype)
121 {
122 switch (subtype) {
123 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
124 return (vap->iv_opmode == IEEE80211_M_IBSS);
125 }
126 return 1;
127 }
128 #endif
129
130 /*
131 * Transmit a frame to the given destination on the given VAP.
132 *
133 * It's up to the caller to figure out the details of who this
134 * is going to and resolving the node.
135 *
136 * This routine takes care of queuing it for power save,
137 * A-MPDU state stuff, fast-frames state stuff, encapsulation
138 * if required, then passing it up to the driver layer.
139 *
140 * This routine (for now) consumes the mbuf and frees the node
141 * reference; it ideally will return a TX status which reflects
142 * whether the mbuf was consumed or not, so the caller can
143 * free the mbuf (if appropriate) and the node reference (again,
144 * if appropriate.)
145 */
146 int
147 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
148 struct ieee80211_node *ni)
149 {
150 struct ieee80211com *ic = vap->iv_ic;
151 struct ifnet *ifp = vap->iv_ifp;
152 int mcast;
153
154 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
155 (m->m_flags & M_PWR_SAV) == 0) {
156 /*
157 * Station in power save mode; pass the frame
158 * to the 802.11 layer and continue. We'll get
159 * the frame back when the time is right.
160 * XXX lose WDS vap linkage?
161 */
162 if (ieee80211_pwrsave(ni, m) != 0)
163 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
164 ieee80211_free_node(ni);
165
166 /*
167 * We queued it fine, so tell the upper layer
168 * that we consumed it.
169 */
170 return (0);
171 }
172 /* calculate priority so drivers can find the tx queue */
173 if (ieee80211_classify(ni, m)) {
174 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
175 ni->ni_macaddr, NULL,
176 "%s", "classification failure");
177 vap->iv_stats.is_tx_classify++;
178 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
179 m_freem(m);
180 ieee80211_free_node(ni);
181
182 /* XXX better status? */
183 return (0);
184 }
185 /*
186 * Stash the node pointer. Note that we do this after
187 * any call to ieee80211_dwds_mcast because that code
188 * uses any existing value for rcvif to identify the
189 * interface it (might have been) received on.
190 */
191 #if __FreeBSD__
192 m->m_pkthdr.rcvif = (void *)ni;
193 #elif __NetBSD__
194 m_set_rcvif(m, (void *)ni);
195 #endif
196 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
197
198 BPF_MTAP(ifp, m); /* 802.3 tx */
199
200 /*
201 * Check if A-MPDU tx aggregation is setup or if we
202 * should try to enable it. The sta must be associated
203 * with HT and A-MPDU enabled for use. When the policy
204 * routine decides we should enable A-MPDU we issue an
205 * ADDBA request and wait for a reply. The frame being
206 * encapsulated will go out w/o using A-MPDU, or possibly
207 * it might be collected by the driver and held/retransmit.
208 * The default ic_ampdu_enable routine handles staggering
209 * ADDBA requests in case the receiver NAK's us or we are
210 * otherwise unable to establish a BA stream.
211 *
212 * Don't treat group-addressed frames as candidates for aggregation;
213 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 * frames will always have sequence numbers allocated from the NON_QOS
215 * TID.
216 */
217 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
218 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
219 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
220 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
221 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
222
223 ieee80211_txampdu_count_packet(tap);
224 if (IEEE80211_AMPDU_RUNNING(tap)) {
225 /*
226 * Operational, mark frame for aggregation.
227 *
228 * XXX do tx aggregation here
229 */
230 m->m_flags |= M_AMPDU_MPDU;
231 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
232 ic->ic_ampdu_enable(ni, tap)) {
233 /*
234 * Not negotiated yet, request service.
235 */
236 ieee80211_ampdu_request(ni, tap);
237 /* XXX hold frame for reply? */
238 }
239 }
240 }
241
242 #ifdef IEEE80211_SUPPORT_SUPERG
243 /*
244 * Check for AMSDU/FF; queue for aggregation
245 *
246 * Note: we don't bother trying to do fast frames or
247 * A-MSDU encapsulation for 802.3 drivers. Now, we
248 * likely could do it for FF (because it's a magic
249 * atheros tunnel LLC type) but I don't think we're going
250 * to really need to. For A-MSDU we'd have to set the
251 * A-MSDU QoS bit in the wifi header, so we just plain
252 * can't do it.
253 *
254 * Strictly speaking, we could actually /do/ A-MSDU / FF
255 * with A-MPDU together which for certain circumstances
256 * is beneficial (eg A-MSDU of TCK ACKs.) However,
257 * I'll ignore that for now so existing behaviour is maintained.
258 * Later on it would be good to make "amsdu + ampdu" configurable.
259 */
260 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
261 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
262 m = ieee80211_amsdu_check(ni, m);
263 if (m == NULL) {
264 /* NB: any ni ref held on stageq */
265 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
266 "%s: amsdu_check queued frame\n",
267 __func__);
268 return (0);
269 }
270 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
271 IEEE80211_NODE_FF)) {
272 m = ieee80211_ff_check(ni, m);
273 if (m == NULL) {
274 /* NB: any ni ref held on stageq */
275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
276 "%s: ff_check queued frame\n",
277 __func__);
278 return (0);
279 }
280 }
281 }
282 #endif /* IEEE80211_SUPPORT_SUPERG */
283
284 /*
285 * Grab the TX lock - serialise the TX process from this
286 * point (where TX state is being checked/modified)
287 * through to driver queue.
288 */
289 IEEE80211_TX_LOCK(ic);
290
291 /*
292 * XXX make the encap and transmit code a separate function
293 * so things like the FF (and later A-MSDU) path can just call
294 * it for flushed frames.
295 */
296 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
297 /*
298 * Encapsulate the packet in prep for transmission.
299 */
300 m = ieee80211_encap(vap, ni, m);
301 if (m == NULL) {
302 /* NB: stat+msg handled in ieee80211_encap */
303 IEEE80211_TX_UNLOCK(ic);
304 ieee80211_free_node(ni);
305 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
306 return (ENOBUFS);
307 }
308 }
309 (void) ieee80211_parent_xmitpkt(ic, m);
310
311 /*
312 * Unlock at this point - no need to hold it across
313 * ieee80211_free_node() (ie, the comlock)
314 */
315 IEEE80211_TX_UNLOCK(ic);
316 ic->ic_lastdata = ticks;
317
318 return (0);
319 }
320
321
322
323 /*
324 * Send the given mbuf through the given vap.
325 *
326 * This consumes the mbuf regardless of whether the transmit
327 * was successful or not.
328 *
329 * This does none of the initial checks that ieee80211_start()
330 * does (eg CAC timeout, interface wakeup) - the caller must
331 * do this first.
332 */
333 static int
334 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
335 {
336 #define IS_DWDS(vap) \
337 (vap->iv_opmode == IEEE80211_M_WDS && \
338 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
339 struct ieee80211com *ic = vap->iv_ic;
340 struct ifnet *ifp = vap->iv_ifp;
341 struct ieee80211_node *ni;
342 struct ether_header *eh;
343
344 /*
345 * Cancel any background scan.
346 */
347 if (ic->ic_flags & IEEE80211_F_SCAN)
348 ieee80211_cancel_anyscan(vap);
349 /*
350 * Find the node for the destination so we can do
351 * things like power save and fast frames aggregation.
352 *
353 * NB: past this point various code assumes the first
354 * mbuf has the 802.3 header present (and contiguous).
355 */
356 ni = NULL;
357 if (m->m_len < sizeof(struct ether_header) &&
358 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
359 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
360 "discard frame, %s\n", "m_pullup failed");
361 vap->iv_stats.is_tx_nobuf++; /* XXX */
362 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
363 return (ENOBUFS);
364 }
365 eh = mtod(m, struct ether_header *);
366 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
367 if (IS_DWDS(vap)) {
368 /*
369 * Only unicast frames from the above go out
370 * DWDS vaps; multicast frames are handled by
371 * dispatching the frame as it comes through
372 * the AP vap (see below).
373 */
374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
375 eh->ether_dhost, "mcast", "%s", "on DWDS");
376 vap->iv_stats.is_dwds_mcast++;
377 m_freem(m);
378 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
379 /* XXX better status? */
380 return (ENOBUFS);
381 }
382 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
383 /*
384 * Spam DWDS vap's w/ multicast traffic.
385 */
386 /* XXX only if dwds in use? */
387 ieee80211_dwds_mcast(vap, m);
388 }
389 }
390 #ifdef IEEE80211_SUPPORT_MESH
391 if (vap->iv_opmode != IEEE80211_M_MBSS) {
392 #endif
393 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
394 if (ni == NULL) {
395 /* NB: ieee80211_find_txnode does stat+msg */
396 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
397 m_freem(m);
398 /* XXX better status? */
399 return (ENOBUFS);
400 }
401 if (ni->ni_associd == 0 &&
402 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
403 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
404 eh->ether_dhost, NULL,
405 "sta not associated (type 0x%04x)",
406 htons(eh->ether_type));
407 vap->iv_stats.is_tx_notassoc++;
408 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 m_freem(m);
410 ieee80211_free_node(ni);
411 /* XXX better status? */
412 return (ENOBUFS);
413 }
414 #ifdef IEEE80211_SUPPORT_MESH
415 } else {
416 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
417 /*
418 * Proxy station only if configured.
419 */
420 if (!ieee80211_mesh_isproxyena(vap)) {
421 IEEE80211_DISCARD_MAC(vap,
422 IEEE80211_MSG_OUTPUT |
423 IEEE80211_MSG_MESH,
424 eh->ether_dhost, NULL,
425 "%s", "proxy not enabled");
426 vap->iv_stats.is_mesh_notproxy++;
427 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
428 m_freem(m);
429 /* XXX better status? */
430 return (ENOBUFS);
431 }
432 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
433 "forward frame from DS SA(%6D), DA(%6D)\n",
434 eh->ether_shost, ":",
435 eh->ether_dhost, ":");
436 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
437 }
438 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
439 if (ni == NULL) {
440 /*
441 * NB: ieee80211_mesh_discover holds/disposes
442 * frame (e.g. queueing on path discovery).
443 */
444 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
445 /* XXX better status? */
446 return (ENOBUFS);
447 }
448 }
449 #endif
450
451 /*
452 * We've resolved the sender, so attempt to transmit it.
453 */
454
455 if (vap->iv_state == IEEE80211_S_SLEEP) {
456 /*
457 * In power save; queue frame and then wakeup device
458 * for transmit.
459 */
460 ic->ic_lastdata = ticks;
461 if (ieee80211_pwrsave(ni, m) != 0)
462 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
463 ieee80211_free_node(ni);
464 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
465 return (0);
466 }
467
468 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
469 return (ENOBUFS);
470 return (0);
471 #undef IS_DWDS
472 }
473
474 /*
475 * Start method for vap's. All packets from the stack come
476 * through here. We handle common processing of the packets
477 * before dispatching them to the underlying device.
478 *
479 * if_transmit() requires that the mbuf be consumed by this call
480 * regardless of the return condition.
481 */
482 int
483 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
484 {
485 struct ieee80211vap *vap = ifp->if_softc;
486 struct ieee80211com *ic = vap->iv_ic;
487
488 /*
489 * No data frames go out unless we're running.
490 * Note in particular this covers CAC and CSA
491 * states (though maybe we should check muting
492 * for CSA).
493 */
494 if (vap->iv_state != IEEE80211_S_RUN &&
495 vap->iv_state != IEEE80211_S_SLEEP) {
496 IEEE80211_LOCK(ic);
497 /* re-check under the com lock to avoid races */
498 if (vap->iv_state != IEEE80211_S_RUN &&
499 vap->iv_state != IEEE80211_S_SLEEP) {
500 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
501 "%s: ignore queue, in %s state\n",
502 __func__, ieee80211_state_name[vap->iv_state]);
503 vap->iv_stats.is_tx_badstate++;
504 IEEE80211_UNLOCK(ic);
505 #if __FreeBSD__
506 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
507 #elif __NetBSD__
508 ifp->if_flags |= IFF_OACTIVE;
509 #endif
510 m_freem(m);
511 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
512 return (ENETDOWN);
513 }
514 IEEE80211_UNLOCK(ic);
515 }
516
517 /*
518 * Sanitize mbuf flags for net80211 use. We cannot
519 * clear M_PWR_SAV or M_MORE_DATA because these may
520 * be set for frames that are re-submitted from the
521 * power save queue.
522 *
523 * NB: This must be done before ieee80211_classify as
524 * it marks EAPOL in frames with M_EAPOL.
525 */
526 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
527
528 /*
529 * Bump to the packet transmission path.
530 * The mbuf will be consumed here.
531 */
532 return (ieee80211_start_pkt(vap, m));
533 }
534
535 void
536 ieee80211_vap_qflush(struct ifnet *ifp)
537 {
538
539 /* Empty for now */
540 }
541
542 /*
543 * 802.11 raw output routine.
544 *
545 * XXX TODO: this (and other send routines) should correctly
546 * XXX keep the pwr mgmt bit set if it decides to call into the
547 * XXX driver to send a frame whilst the state is SLEEP.
548 *
549 * Otherwise the peer may decide that we're awake and flood us
550 * with traffic we are still too asleep to receive!
551 */
552 int
553 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
554 struct mbuf *m, const struct ieee80211_bpf_params *params)
555 {
556 struct ieee80211com *ic = vap->iv_ic;
557 int error;
558
559 /*
560 * Set node - the caller has taken a reference, so ensure
561 * that the mbuf has the same node value that
562 * it would if it were going via the normal path.
563 */
564 #if __FreeBSD__
565 m->m_pkthdr.rcvif = (void *)ni;
566 #elif __NetBSD__
567 m_set_rcvif(m, (void*)ni);
568 #endif
569
570 /*
571 * Attempt to add bpf transmit parameters.
572 *
573 * For now it's ok to fail; the raw_xmit api still takes
574 * them as an option.
575 *
576 * Later on when ic_raw_xmit() has params removed,
577 * they'll have to be added - so fail the transmit if
578 * they can't be.
579 */
580 if (params)
581 (void) ieee80211_add_xmit_params(m, params);
582
583 error = ic->ic_raw_xmit(ni, m, params);
584 if (error) {
585 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
586 ieee80211_free_node(ni);
587 }
588 return (error);
589 }
590
591 static int
592 ieee80211_validate_frame(struct mbuf *m,
593 const struct ieee80211_bpf_params *params)
594 {
595 struct ieee80211_frame *wh;
596 int type;
597
598 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
599 return (EINVAL);
600
601 wh = mtod(m, struct ieee80211_frame *);
602 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
603 IEEE80211_FC0_VERSION_0)
604 return (EINVAL);
605
606 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
607 if (type != IEEE80211_FC0_TYPE_DATA) {
608 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
609 IEEE80211_FC1_DIR_NODS)
610 return (EINVAL);
611
612 if (type != IEEE80211_FC0_TYPE_MGT &&
613 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
614 return (EINVAL);
615
616 /* XXX skip other field checks? */
617 }
618
619 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
620 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
621 int subtype;
622
623 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
624
625 /*
626 * See IEEE Std 802.11-2012,
627 * 8.2.4.1.9 'Protected Frame field'
628 */
629 /* XXX no support for robust management frames yet. */
630 if (!(type == IEEE80211_FC0_TYPE_DATA ||
631 (type == IEEE80211_FC0_TYPE_MGT &&
632 subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
633 return (EINVAL);
634
635 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
636 }
637
638 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
639 return (EINVAL);
640
641 return (0);
642 }
643
644 /*
645 * 802.11 output routine. This is (currently) used only to
646 * connect bpf write calls to the 802.11 layer for injecting
647 * raw 802.11 frames.
648 */
649 #if __FreeBSD__
650 int
651 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
652 const struct sockaddr *dst, struct route *ro)
653 #elif __NetBSD__
654 int
655 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
656 const struct sockaddr *dst, const struct rtentry *ro)
657 #endif
658 {
659 #define senderr(e) do { error = (e); goto bad;} while (0)
660 const struct ieee80211_bpf_params *params = NULL;
661 struct ieee80211_node *ni = NULL;
662 struct ieee80211vap *vap;
663 struct ieee80211_frame *wh;
664 struct ieee80211com *ic = NULL;
665 int error;
666 int ret;
667
668 #if __FreeBSD__
669 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
670 #elif __NetBSD__
671 if (ifp->if_flags & IFF_OACTIVE) {
672 #endif
673 /*
674 * Short-circuit requests if the vap is marked OACTIVE
675 * as this can happen because a packet came down through
676 * ieee80211_start before the vap entered RUN state in
677 * which case it's ok to just drop the frame. This
678 * should not be necessary but callers of if_output don't
679 * check OACTIVE.
680 */
681 senderr(ENETDOWN);
682 }
683 vap = ifp->if_softc;
684 ic = vap->iv_ic;
685 /*
686 * Hand to the 802.3 code if not tagged as
687 * a raw 802.11 frame.
688 */
689 if (dst->sa_family != AF_IEEE80211)
690 return vap->iv_output(ifp, m, dst, ro);
691 #ifdef MAC
692 error = mac_ifnet_check_transmit(ifp, m);
693 if (error)
694 senderr(error);
695 #endif
696 #if __FreeBSD__
697 if (ifp->if_flags & IFF_MONITOR)
698 senderr(ENETDOWN);
699 #endif
700 if (!IFNET_IS_UP_RUNNING(ifp))
701 senderr(ENETDOWN);
702 if (vap->iv_state == IEEE80211_S_CAC) {
703 IEEE80211_DPRINTF(vap,
704 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
705 "block %s frame in CAC state\n", "raw data");
706 vap->iv_stats.is_tx_badstate++;
707 senderr(EIO); /* XXX */
708 } else if (vap->iv_state == IEEE80211_S_SCAN)
709 senderr(EIO);
710 /* XXX bypass bridge, pfil, carp, etc. */
711
712 /*
713 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
714 * present by setting the sa_len field of the sockaddr (yes,
715 * this is a hack).
716 * NB: we assume sa_data is suitably aligned to cast.
717 */
718 if (dst->sa_len != 0)
719 params = (const struct ieee80211_bpf_params *)dst->sa_data;
720
721 error = ieee80211_validate_frame(m, params);
722 if (error != 0)
723 senderr(error);
724
725 wh = mtod(m, struct ieee80211_frame *);
726
727 /* locate destination node */
728 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
729 case IEEE80211_FC1_DIR_NODS:
730 case IEEE80211_FC1_DIR_FROMDS:
731 ni = ieee80211_find_txnode(vap, wh->i_addr1);
732 break;
733 case IEEE80211_FC1_DIR_TODS:
734 case IEEE80211_FC1_DIR_DSTODS:
735 ni = ieee80211_find_txnode(vap, wh->i_addr3);
736 break;
737 default:
738 senderr(EDOOFUS);
739 }
740 if (ni == NULL) {
741 /*
742 * Permit packets w/ bpf params through regardless
743 * (see below about sa_len).
744 */
745 if (dst->sa_len == 0)
746 senderr(EHOSTUNREACH);
747 ni = ieee80211_ref_node(vap->iv_bss);
748 }
749
750 /*
751 * Sanitize mbuf for net80211 flags leaked from above.
752 *
753 * NB: This must be done before ieee80211_classify as
754 * it marks EAPOL in frames with M_EAPOL.
755 */
756 m->m_flags &= ~M_80211_TX;
757 m->m_flags |= M_ENCAP; /* mark encapsulated */
758
759 if (IEEE80211_IS_DATA(wh)) {
760 /* calculate priority so drivers can find the tx queue */
761 if (ieee80211_classify(ni, m))
762 senderr(EIO); /* XXX */
763
764 /* NB: ieee80211_encap does not include 802.11 header */
765 IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
766 m->m_pkthdr.len - ieee80211_hdrsize(wh));
767 } else
768 M_WME_SETAC(m, WME_AC_BE);
769
770 IEEE80211_NODE_STAT(ni, tx_data);
771 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
772 IEEE80211_NODE_STAT(ni, tx_mcast);
773 m->m_flags |= M_MCAST;
774 } else
775 IEEE80211_NODE_STAT(ni, tx_ucast);
776
777 IEEE80211_TX_LOCK(ic);
778 ret = ieee80211_raw_output(vap, ni, m, params);
779 IEEE80211_TX_UNLOCK(ic);
780 return (ret);
781 bad:
782 if (m != NULL)
783 m_freem(m);
784 if (ni != NULL)
785 ieee80211_free_node(ni);
786 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
787 return error;
788 #undef senderr
789 }
790
791 /*
792 * Set the direction field and address fields of an outgoing
793 * frame. Note this should be called early on in constructing
794 * a frame as it sets i_fc[1]; other bits can then be or'd in.
795 */
796 void
797 ieee80211_send_setup(
798 struct ieee80211_node *ni,
799 struct mbuf *m,
800 int type, int tid,
801 const uint8_t sa[IEEE80211_ADDR_LEN],
802 const uint8_t da[IEEE80211_ADDR_LEN],
803 const uint8_t bssid[IEEE80211_ADDR_LEN])
804 {
805 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
806 struct ieee80211vap *vap = ni->ni_vap;
807 struct ieee80211_tx_ampdu *tap;
808 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
809 ieee80211_seq seqno;
810
811 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
812
813 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
814 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
815 switch (vap->iv_opmode) {
816 case IEEE80211_M_STA:
817 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
818 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
819 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
820 IEEE80211_ADDR_COPY(wh->i_addr3, da);
821 break;
822 case IEEE80211_M_IBSS:
823 case IEEE80211_M_AHDEMO:
824 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
825 IEEE80211_ADDR_COPY(wh->i_addr1, da);
826 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
827 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
828 break;
829 case IEEE80211_M_HOSTAP:
830 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
831 IEEE80211_ADDR_COPY(wh->i_addr1, da);
832 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
833 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
834 break;
835 case IEEE80211_M_WDS:
836 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
837 IEEE80211_ADDR_COPY(wh->i_addr1, da);
838 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
839 IEEE80211_ADDR_COPY(wh->i_addr3, da);
840 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
841 break;
842 case IEEE80211_M_MBSS:
843 #ifdef IEEE80211_SUPPORT_MESH
844 if (IEEE80211_IS_MULTICAST(da)) {
845 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
846 /* XXX next hop */
847 IEEE80211_ADDR_COPY(wh->i_addr1, da);
848 IEEE80211_ADDR_COPY(wh->i_addr2,
849 vap->iv_myaddr);
850 } else {
851 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
852 IEEE80211_ADDR_COPY(wh->i_addr1, da);
853 IEEE80211_ADDR_COPY(wh->i_addr2,
854 vap->iv_myaddr);
855 IEEE80211_ADDR_COPY(wh->i_addr3, da);
856 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
857 }
858 #endif
859 break;
860 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
861 break;
862 }
863 } else {
864 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
865 IEEE80211_ADDR_COPY(wh->i_addr1, da);
866 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
867 #ifdef IEEE80211_SUPPORT_MESH
868 if (vap->iv_opmode == IEEE80211_M_MBSS)
869 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
870 else
871 #endif
872 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
873 }
874 *(uint16_t *)&wh->i_dur[0] = 0;
875
876 /*
877 * XXX TODO: this is what the TX lock is for.
878 * Here we're incrementing sequence numbers, and they
879 * need to be in lock-step with what the driver is doing
880 * both in TX ordering and crypto encap (IV increment.)
881 *
882 * If the driver does seqno itself, then we can skip
883 * assigning sequence numbers here, and we can avoid
884 * requiring the TX lock.
885 */
886 tap = &ni->ni_tx_ampdu[tid];
887 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
888 m->m_flags |= M_AMPDU_MPDU;
889
890 /* NB: zero out i_seq field (for s/w encryption etc) */
891 *(uint16_t *)&wh->i_seq[0] = 0;
892 } else {
893 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
894 type & IEEE80211_FC0_SUBTYPE_MASK))
895 /*
896 * 802.11-2012 9.3.2.10 - QoS multicast frames
897 * come out of a different seqno space.
898 */
899 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
900 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
901 } else {
902 seqno = ni->ni_txseqs[tid]++;
903 }
904 else
905 seqno = 0;
906
907 *(uint16_t *)&wh->i_seq[0] =
908 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
909 M_SEQNO_SET(m, seqno);
910 }
911
912 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
913 m->m_flags |= M_MCAST;
914 #undef WH4
915 }
916
917 /*
918 * Send a management frame to the specified node. The node pointer
919 * must have a reference as the pointer will be passed to the driver
920 * and potentially held for a long time. If the frame is successfully
921 * dispatched to the driver, then it is responsible for freeing the
922 * reference (and potentially free'ing up any associated storage);
923 * otherwise deal with reclaiming any reference (on error).
924 */
925 int
926 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
927 struct ieee80211_bpf_params *params)
928 {
929 struct ieee80211vap *vap = ni->ni_vap;
930 struct ieee80211com *ic = ni->ni_ic;
931 struct ieee80211_frame *wh;
932 int ret;
933
934 KASSERT(ni != NULL, ("null node"));
935
936 if (vap->iv_state == IEEE80211_S_CAC) {
937 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
938 ni, "block %s frame in CAC state",
939 ieee80211_mgt_subtype_name(type));
940 vap->iv_stats.is_tx_badstate++;
941 ieee80211_free_node(ni);
942 m_freem(m);
943 return EIO; /* XXX */
944 }
945
946 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
947 if (m == NULL) {
948 ieee80211_free_node(ni);
949 return ENOMEM;
950 }
951
952 IEEE80211_TX_LOCK(ic);
953
954 wh = mtod(m, struct ieee80211_frame *);
955 ieee80211_send_setup(ni, m,
956 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
957 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
958 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
959 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
960 "encrypting frame (%s)", __func__);
961 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
962 }
963 m->m_flags |= M_ENCAP; /* mark encapsulated */
964
965 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
966 M_WME_SETAC(m, params->ibp_pri);
967
968 #ifdef IEEE80211_DEBUG
969 /* avoid printing too many frames */
970 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
971 ieee80211_msg_dumppkts(vap)) {
972 printf("[%s] send %s on channel %u\n",
973 ether_sprintf(wh->i_addr1),
974 ieee80211_mgt_subtype_name(type),
975 ieee80211_chan2ieee(ic, ic->ic_curchan));
976 }
977 #endif
978 IEEE80211_NODE_STAT(ni, tx_mgmt);
979
980 ret = ieee80211_raw_output(vap, ni, m, params);
981 IEEE80211_TX_UNLOCK(ic);
982 return (ret);
983 }
984
985 static void
986 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
987 int status)
988 {
989 struct ieee80211vap *vap = ni->ni_vap;
990
991 wakeup(vap);
992 }
993
994 /*
995 * Send a null data frame to the specified node. If the station
996 * is setup for QoS then a QoS Null Data frame is constructed.
997 * If this is a WDS station then a 4-address frame is constructed.
998 *
999 * NB: the caller is assumed to have setup a node reference
1000 * for use; this is necessary to deal with a race condition
1001 * when probing for inactive stations. Like ieee80211_mgmt_output
1002 * we must cleanup any node reference on error; however we
1003 * can safely just unref it as we know it will never be the
1004 * last reference to the node.
1005 */
1006 int
1007 ieee80211_send_nulldata(struct ieee80211_node *ni)
1008 {
1009 struct ieee80211vap *vap = ni->ni_vap;
1010 struct ieee80211com *ic = ni->ni_ic;
1011 struct mbuf *m;
1012 struct ieee80211_frame *wh;
1013 int hdrlen;
1014 uint8_t *frm;
1015 int ret;
1016
1017 if (vap->iv_state == IEEE80211_S_CAC) {
1018 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1019 ni, "block %s frame in CAC state", "null data");
1020 ieee80211_unref_node(&ni);
1021 vap->iv_stats.is_tx_badstate++;
1022 return EIO; /* XXX */
1023 }
1024
1025 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1026 hdrlen = sizeof(struct ieee80211_qosframe);
1027 else
1028 hdrlen = sizeof(struct ieee80211_frame);
1029 /* NB: only WDS vap's get 4-address frames */
1030 if (vap->iv_opmode == IEEE80211_M_WDS)
1031 hdrlen += IEEE80211_ADDR_LEN;
1032 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1033 hdrlen = roundup(hdrlen, sizeof(uint32_t));
1034
1035 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1036 if (m == NULL) {
1037 /* XXX debug msg */
1038 ieee80211_unref_node(&ni);
1039 vap->iv_stats.is_tx_nobuf++;
1040 return ENOMEM;
1041 }
1042 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1043 ("leading space %zd", M_LEADINGSPACE(m)));
1044 M_PREPEND(m, hdrlen, M_NOWAIT);
1045 if (m == NULL) {
1046 /* NB: cannot happen */
1047 ieee80211_free_node(ni);
1048 return ENOMEM;
1049 }
1050
1051 IEEE80211_TX_LOCK(ic);
1052
1053 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1054 if (ni->ni_flags & IEEE80211_NODE_QOS) {
1055 const int tid = WME_AC_TO_TID(WME_AC_BE);
1056 uint8_t *qos;
1057
1058 ieee80211_send_setup(ni, m,
1059 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1060 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1061
1062 if (vap->iv_opmode == IEEE80211_M_WDS)
1063 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1064 else
1065 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1066 qos[0] = tid & IEEE80211_QOS_TID;
1067 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1068 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1069 qos[1] = 0;
1070 } else {
1071 ieee80211_send_setup(ni, m,
1072 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1073 IEEE80211_NONQOS_TID,
1074 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1075 }
1076 if (vap->iv_opmode != IEEE80211_M_WDS) {
1077 /* NB: power management bit is never sent by an AP */
1078 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1079 vap->iv_opmode != IEEE80211_M_HOSTAP)
1080 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1081 }
1082 if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1083 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1084 ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1085 NULL);
1086 }
1087 m->m_len = m->m_pkthdr.len = hdrlen;
1088 m->m_flags |= M_ENCAP; /* mark encapsulated */
1089
1090 M_WME_SETAC(m, WME_AC_BE);
1091
1092 IEEE80211_NODE_STAT(ni, tx_data);
1093
1094 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1095 "send %snull data frame on channel %u, pwr mgt %s",
1096 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1097 ieee80211_chan2ieee(ic, ic->ic_curchan),
1098 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1099
1100 ret = ieee80211_raw_output(vap, ni, m, NULL);
1101 IEEE80211_TX_UNLOCK(ic);
1102 return (ret);
1103 }
1104
1105 /*
1106 * Assign priority to a frame based on any vlan tag assigned
1107 * to the station and/or any Diffserv setting in an IP header.
1108 * Finally, if an ACM policy is setup (in station mode) it's
1109 * applied.
1110 */
1111 int
1112 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1113 {
1114 const struct ether_header *eh = NULL;
1115 uint16_t ether_type;
1116 int v_wme_ac, d_wme_ac, ac;
1117
1118 if (__predict_false(m->m_flags & M_ENCAP)) {
1119 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1120 struct llc *llc;
1121 int hdrlen, subtype;
1122
1123 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1124 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1125 ac = WME_AC_BE;
1126 goto done;
1127 }
1128
1129 hdrlen = ieee80211_hdrsize(wh);
1130 if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1131 return 1;
1132
1133 llc = (struct llc *)mtodo(m, hdrlen);
1134 if (llc->llc_dsap != LLC_SNAP_LSAP ||
1135 llc->llc_ssap != LLC_SNAP_LSAP ||
1136 llc->llc_control != LLC_UI ||
1137 llc->llc_snap.org_code[0] != 0 ||
1138 llc->llc_snap.org_code[1] != 0 ||
1139 llc->llc_snap.org_code[2] != 0)
1140 return 1;
1141
1142 ether_type = llc->llc_snap.ether_type;
1143 } else {
1144 eh = mtod(m, struct ether_header *);
1145 ether_type = eh->ether_type;
1146 }
1147
1148 /*
1149 * Always promote PAE/EAPOL frames to high priority.
1150 */
1151 if (ether_type == htons(ETHERTYPE_PAE)) {
1152 /* NB: mark so others don't need to check header */
1153 m->m_flags |= M_EAPOL;
1154 ac = WME_AC_VO;
1155 goto done;
1156 }
1157 /*
1158 * Non-qos traffic goes to BE.
1159 */
1160 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1161 ac = WME_AC_BE;
1162 goto done;
1163 }
1164
1165 /*
1166 * If node has a vlan tag then all traffic
1167 * to it must have a matching tag.
1168 */
1169 v_wme_ac = 0;
1170 if (ni->ni_vlan != 0) {
1171 if ((m->m_flags & M_VLANTAG) == 0) {
1172 IEEE80211_NODE_STAT(ni, tx_novlantag);
1173 return 1;
1174 }
1175 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1176 EVL_VLANOFTAG(ni->ni_vlan)) {
1177 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1178 return 1;
1179 }
1180 /* map vlan priority to AC */
1181 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1182 }
1183
1184 /* XXX m_copydata may be too slow for fast path */
1185 #ifdef INET
1186 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1187 uint8_t tos;
1188 /*
1189 * IP frame, map the DSCP bits from the TOS field.
1190 */
1191 /* NB: ip header may not be in first mbuf */
1192 m_copydata(m, sizeof(struct ether_header) +
1193 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1194 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1195 d_wme_ac = TID_TO_WME_AC(tos);
1196 } else {
1197 #endif /* INET */
1198 #ifdef INET6
1199 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1200 uint32_t flow;
1201 uint8_t tos;
1202 /*
1203 * IPv6 frame, map the DSCP bits from the traffic class field.
1204 */
1205 m_copydata(m, sizeof(struct ether_header) +
1206 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1207 (caddr_t) &flow);
1208 tos = (uint8_t)(ntohl(flow) >> 20);
1209 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1210 d_wme_ac = TID_TO_WME_AC(tos);
1211 } else {
1212 #endif /* INET6 */
1213 d_wme_ac = WME_AC_BE;
1214 #ifdef INET6
1215 }
1216 #endif
1217 #ifdef INET
1218 }
1219 #endif
1220 /*
1221 * Use highest priority AC.
1222 */
1223 if (v_wme_ac > d_wme_ac)
1224 ac = v_wme_ac;
1225 else
1226 ac = d_wme_ac;
1227
1228 /*
1229 * Apply ACM policy.
1230 */
1231 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1232 static const int acmap[4] = {
1233 WME_AC_BK, /* WME_AC_BE */
1234 WME_AC_BK, /* WME_AC_BK */
1235 WME_AC_BE, /* WME_AC_VI */
1236 WME_AC_VI, /* WME_AC_VO */
1237 };
1238 struct ieee80211com *ic = ni->ni_ic;
1239
1240 while (ac != WME_AC_BK &&
1241 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1242 ac = acmap[ac];
1243 }
1244 done:
1245 M_WME_SETAC(m, ac);
1246 return 0;
1247 }
1248
1249 /*
1250 * Insure there is sufficient contiguous space to encapsulate the
1251 * 802.11 data frame. If room isn't already there, arrange for it.
1252 * Drivers and cipher modules assume we have done the necessary work
1253 * and fail rudely if they don't find the space they need.
1254 */
1255 struct mbuf *
1256 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1257 struct ieee80211_key *key, struct mbuf *m)
1258 {
1259 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1260 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1261
1262 if (key != NULL) {
1263 /* XXX belongs in crypto code? */
1264 needed_space += key->wk_cipher->ic_header;
1265 /* XXX frags */
1266 /*
1267 * When crypto is being done in the host we must insure
1268 * the data are writable for the cipher routines; clone
1269 * a writable mbuf chain.
1270 * XXX handle SWMIC specially
1271 */
1272 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1273 m = m_unshare(m, M_NOWAIT);
1274 if (m == NULL) {
1275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1276 "%s: cannot get writable mbuf\n", __func__);
1277 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1278 return NULL;
1279 }
1280 }
1281 }
1282 /*
1283 * We know we are called just before stripping an Ethernet
1284 * header and prepending an LLC header. This means we know
1285 * there will be
1286 * sizeof(struct ether_header) - sizeof(struct llc)
1287 * bytes recovered to which we need additional space for the
1288 * 802.11 header and any crypto header.
1289 */
1290 /* XXX check trailing space and copy instead? */
1291 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1292 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1293 if (n == NULL) {
1294 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1295 "%s: cannot expand storage\n", __func__);
1296 vap->iv_stats.is_tx_nobuf++;
1297 m_freem(m);
1298 return NULL;
1299 }
1300 #if __FreeBSD__
1301 KASSERT(needed_space <= MHLEN,
1302 ("not enough room, need %u got %d\n", needed_space, MHLEN));
1303 #elif __NetBSD__
1304 KASSERT(needed_space <= MHLEN,
1305 ("not enough room, need %u got %lu\n", needed_space, MHLEN));
1306 #endif
1307 /*
1308 * Setup new mbuf to have leading space to prepend the
1309 * 802.11 header and any crypto header bits that are
1310 * required (the latter are added when the driver calls
1311 * back to ieee80211_crypto_encap to do crypto encapsulation).
1312 */
1313 /* NB: must be first 'cuz it clobbers m_data */
1314 m_move_pkthdr(n, m);
1315 n->m_len = 0; /* NB: m_gethdr does not set */
1316 n->m_data += needed_space;
1317 /*
1318 * Pull up Ethernet header to create the expected layout.
1319 * We could use m_pullup but that's overkill (i.e. we don't
1320 * need the actual data) and it cannot fail so do it inline
1321 * for speed.
1322 */
1323 /* NB: struct ether_header is known to be contiguous */
1324 n->m_len += sizeof(struct ether_header);
1325 m->m_len -= sizeof(struct ether_header);
1326 m->m_data += sizeof(struct ether_header);
1327 /*
1328 * Replace the head of the chain.
1329 */
1330 n->m_next = m;
1331 m = n;
1332 }
1333 return m;
1334 #undef TO_BE_RECLAIMED
1335 }
1336
1337 /*
1338 * Return the transmit key to use in sending a unicast frame.
1339 * If a unicast key is set we use that. When no unicast key is set
1340 * we fall back to the default transmit key.
1341 */
1342 static __inline struct ieee80211_key *
1343 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1344 struct ieee80211_node *ni)
1345 {
1346 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1347 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1348 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1349 return NULL;
1350 return &vap->iv_nw_keys[vap->iv_def_txkey];
1351 } else {
1352 return &ni->ni_ucastkey;
1353 }
1354 }
1355
1356 /*
1357 * Return the transmit key to use in sending a multicast frame.
1358 * Multicast traffic always uses the group key which is installed as
1359 * the default tx key.
1360 */
1361 static __inline struct ieee80211_key *
1362 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1363 struct ieee80211_node *ni)
1364 {
1365 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1366 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1367 return NULL;
1368 return &vap->iv_nw_keys[vap->iv_def_txkey];
1369 }
1370
1371 /*
1372 * Encapsulate an outbound data frame. The mbuf chain is updated.
1373 * If an error is encountered NULL is returned. The caller is required
1374 * to provide a node reference and pullup the ethernet header in the
1375 * first mbuf.
1376 *
1377 * NB: Packet is assumed to be processed by ieee80211_classify which
1378 * marked EAPOL frames w/ M_EAPOL.
1379 */
1380 struct mbuf *
1381 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1382 struct mbuf *m)
1383 {
1384 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1385 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1386 struct ieee80211com *ic = ni->ni_ic;
1387 #ifdef IEEE80211_SUPPORT_MESH
1388 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1389 struct ieee80211_meshcntl_ae10 *mc;
1390 struct ieee80211_mesh_route *rt = NULL;
1391 int dir = -1;
1392 #endif
1393 struct ether_header eh;
1394 struct ieee80211_frame *wh;
1395 struct ieee80211_key *key;
1396 struct llc *llc;
1397 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1398 ieee80211_seq seqno;
1399 int meshhdrsize, meshae;
1400 uint8_t *qos;
1401 int is_amsdu = 0;
1402
1403 IEEE80211_TX_LOCK_ASSERT(ic);
1404
1405 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1406
1407 /*
1408 * Copy existing Ethernet header to a safe place. The
1409 * rest of the code assumes it's ok to strip it when
1410 * reorganizing state for the final encapsulation.
1411 */
1412 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1413 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1414
1415 /*
1416 * Insure space for additional headers. First identify
1417 * transmit key to use in calculating any buffer adjustments
1418 * required. This is also used below to do privacy
1419 * encapsulation work. Then calculate the 802.11 header
1420 * size and any padding required by the driver.
1421 *
1422 * Note key may be NULL if we fall back to the default
1423 * transmit key and that is not set. In that case the
1424 * buffer may not be expanded as needed by the cipher
1425 * routines, but they will/should discard it.
1426 */
1427 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1428 if (vap->iv_opmode == IEEE80211_M_STA ||
1429 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1430 (vap->iv_opmode == IEEE80211_M_WDS &&
1431 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1432 key = ieee80211_crypto_getucastkey(vap, ni);
1433 else
1434 key = ieee80211_crypto_getmcastkey(vap, ni);
1435 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1436 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1437 eh.ether_dhost,
1438 "no default transmit key (%s) deftxkey %u",
1439 __func__, vap->iv_def_txkey);
1440 vap->iv_stats.is_tx_nodefkey++;
1441 goto bad;
1442 }
1443 } else
1444 key = NULL;
1445 /*
1446 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1447 * frames so suppress use. This may be an issue if other
1448 * ap's require all data frames to be QoS-encapsulated
1449 * once negotiated in which case we'll need to make this
1450 * configurable.
1451 *
1452 * Don't send multicast QoS frames.
1453 * Technically multicast frames can be QoS if all stations in the
1454 * BSS are also QoS.
1455 *
1456 * NB: mesh data frames are QoS, including multicast frames.
1457 */
1458 addqos =
1459 (((is_mcast == 0) && (ni->ni_flags &
1460 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1461 (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1462 (m->m_flags & M_EAPOL) == 0;
1463
1464 if (addqos)
1465 hdrsize = sizeof(struct ieee80211_qosframe);
1466 else
1467 hdrsize = sizeof(struct ieee80211_frame);
1468 #ifdef IEEE80211_SUPPORT_MESH
1469 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1470 /*
1471 * Mesh data frames are encapsulated according to the
1472 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1473 * o Group Addressed data (aka multicast) originating
1474 * at the local sta are sent w/ 3-address format and
1475 * address extension mode 00
1476 * o Individually Addressed data (aka unicast) originating
1477 * at the local sta are sent w/ 4-address format and
1478 * address extension mode 00
1479 * o Group Addressed data forwarded from a non-mesh sta are
1480 * sent w/ 3-address format and address extension mode 01
1481 * o Individually Address data from another sta are sent
1482 * w/ 4-address format and address extension mode 10
1483 */
1484 is4addr = 0; /* NB: don't use, disable */
1485 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1486 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1487 KASSERT(rt != NULL, ("route is NULL"));
1488 dir = IEEE80211_FC1_DIR_DSTODS;
1489 hdrsize += IEEE80211_ADDR_LEN;
1490 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1491 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1492 vap->iv_myaddr)) {
1493 IEEE80211_NOTE_MAC(vap,
1494 IEEE80211_MSG_MESH,
1495 eh.ether_dhost,
1496 "%s", "trying to send to ourself");
1497 goto bad;
1498 }
1499 meshae = IEEE80211_MESH_AE_10;
1500 meshhdrsize =
1501 sizeof(struct ieee80211_meshcntl_ae10);
1502 } else {
1503 meshae = IEEE80211_MESH_AE_00;
1504 meshhdrsize =
1505 sizeof(struct ieee80211_meshcntl);
1506 }
1507 } else {
1508 dir = IEEE80211_FC1_DIR_FROMDS;
1509 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1510 /* proxy group */
1511 meshae = IEEE80211_MESH_AE_01;
1512 meshhdrsize =
1513 sizeof(struct ieee80211_meshcntl_ae01);
1514 } else {
1515 /* group */
1516 meshae = IEEE80211_MESH_AE_00;
1517 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1518 }
1519 }
1520 } else {
1521 #endif
1522 /*
1523 * 4-address frames need to be generated for:
1524 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1525 * o packets sent through a vap marked for relaying
1526 * (e.g. a station operating with dynamic WDS)
1527 */
1528 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1529 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1530 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1531 if (is4addr)
1532 hdrsize += IEEE80211_ADDR_LEN;
1533 meshhdrsize = meshae = 0;
1534 #ifdef IEEE80211_SUPPORT_MESH
1535 }
1536 #endif
1537 /*
1538 * Honor driver DATAPAD requirement.
1539 */
1540 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1541 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1542 else
1543 hdrspace = hdrsize;
1544
1545 if (__predict_true((m->m_flags & M_FF) == 0)) {
1546 /*
1547 * Normal frame.
1548 */
1549 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1550 if (m == NULL) {
1551 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1552 goto bad;
1553 }
1554 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1555 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1556 llc = mtod(m, struct llc *);
1557 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1558 llc->llc_control = LLC_UI;
1559 llc->llc_snap.org_code[0] = 0;
1560 llc->llc_snap.org_code[1] = 0;
1561 llc->llc_snap.org_code[2] = 0;
1562 llc->llc_snap.ether_type = eh.ether_type;
1563 } else {
1564 #ifdef IEEE80211_SUPPORT_SUPERG
1565 /*
1566 * Aggregated frame. Check if it's for AMSDU or FF.
1567 *
1568 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1569 * anywhere for some reason. But, since 11n requires
1570 * AMSDU RX, we can just assume "11n" == "AMSDU".
1571 */
1572 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1573 if (ieee80211_amsdu_tx_ok(ni)) {
1574 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1575 is_amsdu = 1;
1576 } else {
1577 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1578 }
1579 if (m == NULL)
1580 #endif
1581 goto bad;
1582 }
1583 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1584
1585 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1586 if (m == NULL) {
1587 vap->iv_stats.is_tx_nobuf++;
1588 goto bad;
1589 }
1590 wh = mtod(m, struct ieee80211_frame *);
1591 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1592 *(uint16_t *)wh->i_dur = 0;
1593 qos = NULL; /* NB: quiet compiler */
1594 if (is4addr) {
1595 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1596 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1597 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1598 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1599 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1600 } else switch (vap->iv_opmode) {
1601 case IEEE80211_M_STA:
1602 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1603 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1604 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1605 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1606 break;
1607 case IEEE80211_M_IBSS:
1608 case IEEE80211_M_AHDEMO:
1609 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1610 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1611 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1612 /*
1613 * NB: always use the bssid from iv_bss as the
1614 * neighbor's may be stale after an ibss merge
1615 */
1616 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1617 break;
1618 case IEEE80211_M_HOSTAP:
1619 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1620 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1621 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1622 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1623 break;
1624 #ifdef IEEE80211_SUPPORT_MESH
1625 case IEEE80211_M_MBSS:
1626 /* NB: offset by hdrspace to deal with DATAPAD */
1627 mc = (struct ieee80211_meshcntl_ae10 *)
1628 (mtod(m, uint8_t *) + hdrspace);
1629 wh->i_fc[1] = dir;
1630 switch (meshae) {
1631 case IEEE80211_MESH_AE_00: /* no proxy */
1632 mc->mc_flags = 0;
1633 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1634 IEEE80211_ADDR_COPY(wh->i_addr1,
1635 ni->ni_macaddr);
1636 IEEE80211_ADDR_COPY(wh->i_addr2,
1637 vap->iv_myaddr);
1638 IEEE80211_ADDR_COPY(wh->i_addr3,
1639 eh.ether_dhost);
1640 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1641 eh.ether_shost);
1642 qos =((struct ieee80211_qosframe_addr4 *)
1643 wh)->i_qos;
1644 } else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1645 /* mcast */
1646 IEEE80211_ADDR_COPY(wh->i_addr1,
1647 eh.ether_dhost);
1648 IEEE80211_ADDR_COPY(wh->i_addr2,
1649 vap->iv_myaddr);
1650 IEEE80211_ADDR_COPY(wh->i_addr3,
1651 eh.ether_shost);
1652 qos = ((struct ieee80211_qosframe *)
1653 wh)->i_qos;
1654 }
1655 break;
1656 case IEEE80211_MESH_AE_01: /* mcast, proxy */
1657 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1658 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1659 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1660 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1661 mc->mc_flags = 1;
1662 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1663 eh.ether_shost);
1664 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1665 break;
1666 case IEEE80211_MESH_AE_10: /* ucast, proxy */
1667 KASSERT(rt != NULL, ("route is NULL"));
1668 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1669 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1670 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1671 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1672 mc->mc_flags = IEEE80211_MESH_AE_10;
1673 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1674 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1675 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1676 break;
1677 default:
1678 KASSERT(0, ("meshae %d", meshae));
1679 break;
1680 }
1681 mc->mc_ttl = ms->ms_ttl;
1682 ms->ms_seq++;
1683 le32enc(mc->mc_seq, ms->ms_seq);
1684 break;
1685 #endif
1686 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1687 default:
1688 goto bad;
1689 }
1690 if (m->m_flags & M_MORE_DATA)
1691 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1692 if (addqos) {
1693 int ac, tid;
1694
1695 if (is4addr) {
1696 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1697 /* NB: mesh case handled earlier */
1698 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1699 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1700 ac = M_WME_GETAC(m);
1701 /* map from access class/queue to 11e header priorty value */
1702 tid = WME_AC_TO_TID(ac);
1703 qos[0] = tid & IEEE80211_QOS_TID;
1704 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1705 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1706 #ifdef IEEE80211_SUPPORT_MESH
1707 if (vap->iv_opmode == IEEE80211_M_MBSS)
1708 qos[1] = IEEE80211_QOS_MC;
1709 else
1710 #endif
1711 qos[1] = 0;
1712 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1713
1714 /*
1715 * If this is an A-MSDU then ensure we set the
1716 * relevant field.
1717 */
1718 if (is_amsdu)
1719 qos[0] |= IEEE80211_QOS_AMSDU;
1720
1721 /*
1722 * XXX TODO TX lock is needed for atomic updates of sequence
1723 * numbers. If the driver does it, then don't do it here;
1724 * and we don't need the TX lock held.
1725 */
1726 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1727 /*
1728 * 802.11-2012 9.3.2.10 -
1729 *
1730 * If this is a multicast frame then we need
1731 * to ensure that the sequence number comes from
1732 * a separate seqno space and not the TID space.
1733 *
1734 * Otherwise multicast frames may actually cause
1735 * holes in the TX blockack window space and
1736 * upset various things.
1737 */
1738 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1739 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1740 else
1741 seqno = ni->ni_txseqs[tid]++;
1742
1743 /*
1744 * NB: don't assign a sequence # to potential
1745 * aggregates; we expect this happens at the
1746 * point the frame comes off any aggregation q
1747 * as otherwise we may introduce holes in the
1748 * BA sequence space and/or make window accouting
1749 * more difficult.
1750 *
1751 * XXX may want to control this with a driver
1752 * capability; this may also change when we pull
1753 * aggregation up into net80211
1754 */
1755 seqno = ni->ni_txseqs[tid]++;
1756 *(uint16_t *)wh->i_seq =
1757 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1758 M_SEQNO_SET(m, seqno);
1759 } else {
1760 /* NB: zero out i_seq field (for s/w encryption etc) */
1761 *(uint16_t *)wh->i_seq = 0;
1762 }
1763 } else {
1764 /*
1765 * XXX TODO TX lock is needed for atomic updates of sequence
1766 * numbers. If the driver does it, then don't do it here;
1767 * and we don't need the TX lock held.
1768 */
1769 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1770 *(uint16_t *)wh->i_seq =
1771 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1772 M_SEQNO_SET(m, seqno);
1773
1774 /*
1775 * XXX TODO: we shouldn't allow EAPOL, etc that would
1776 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1777 */
1778 if (is_amsdu)
1779 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1780 __func__);
1781 }
1782
1783 /*
1784 * Check if xmit fragmentation is required.
1785 *
1786 * If the hardware does fragmentation offload, then don't bother
1787 * doing it here.
1788 */
1789 if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1790 txfrag = 0;
1791 else
1792 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1793 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1794 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1795 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1796
1797 if (key != NULL) {
1798 /*
1799 * IEEE 802.1X: send EAPOL frames always in the clear.
1800 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1801 */
1802 if ((m->m_flags & M_EAPOL) == 0 ||
1803 ((vap->iv_flags & IEEE80211_F_WPA) &&
1804 (vap->iv_opmode == IEEE80211_M_STA ?
1805 !IEEE80211_KEY_UNDEFINED(key) :
1806 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1807 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1808 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1809 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1810 eh.ether_dhost,
1811 "%s", "enmic failed, discard frame");
1812 vap->iv_stats.is_crypto_enmicfail++;
1813 goto bad;
1814 }
1815 }
1816 }
1817 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1818 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1819 goto bad;
1820
1821 m->m_flags |= M_ENCAP; /* mark encapsulated */
1822
1823 IEEE80211_NODE_STAT(ni, tx_data);
1824 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1825 IEEE80211_NODE_STAT(ni, tx_mcast);
1826 m->m_flags |= M_MCAST;
1827 } else
1828 IEEE80211_NODE_STAT(ni, tx_ucast);
1829 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1830
1831 return m;
1832 bad:
1833 if (m != NULL)
1834 m_freem(m);
1835 return NULL;
1836 #undef WH4
1837 #undef MC01
1838 }
1839
1840 void
1841 ieee80211_free_mbuf(struct mbuf *m)
1842 {
1843 struct mbuf *next;
1844
1845 if (m == NULL)
1846 return;
1847
1848 do {
1849 next = m->m_nextpkt;
1850 m->m_nextpkt = NULL;
1851 m_freem(m);
1852 } while ((m = next) != NULL);
1853 }
1854
1855 /*
1856 * Fragment the frame according to the specified mtu.
1857 * The size of the 802.11 header (w/o padding) is provided
1858 * so we don't need to recalculate it. We create a new
1859 * mbuf for each fragment and chain it through m_nextpkt;
1860 * we might be able to optimize this by reusing the original
1861 * packet's mbufs but that is significantly more complicated.
1862 */
1863 static int
1864 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1865 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1866 {
1867 struct ieee80211com *ic = vap->iv_ic;
1868 struct ieee80211_frame *wh, *whf;
1869 struct mbuf *m, *prev;
1870 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1871 u_int hdrspace;
1872
1873 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1874 KASSERT(m0->m_pkthdr.len > mtu,
1875 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1876
1877 /*
1878 * Honor driver DATAPAD requirement.
1879 */
1880 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1881 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1882 else
1883 hdrspace = hdrsize;
1884
1885 wh = mtod(m0, struct ieee80211_frame *);
1886 /* NB: mark the first frag; it will be propagated below */
1887 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1888 totalhdrsize = hdrspace + ciphdrsize;
1889 fragno = 1;
1890 off = mtu - ciphdrsize;
1891 remainder = m0->m_pkthdr.len - off;
1892 prev = m0;
1893 do {
1894 fragsize = MIN(totalhdrsize + remainder, mtu);
1895 #if __FreeBSD__
1896 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1897 #elif __NetBSD__
1898 m = m_get(M_NOWAIT, MT_DATA);
1899 #endif
1900 if (m == NULL)
1901 goto bad;
1902 /* leave room to prepend any cipher header */
1903 m_align(m, fragsize - ciphdrsize);
1904
1905 /*
1906 * Form the header in the fragment. Note that since
1907 * we mark the first fragment with the MORE_FRAG bit
1908 * it automatically is propagated to each fragment; we
1909 * need only clear it on the last fragment (done below).
1910 * NB: frag 1+ dont have Mesh Control field present.
1911 */
1912 whf = mtod(m, struct ieee80211_frame *);
1913 memcpy(whf, wh, hdrsize);
1914 #ifdef IEEE80211_SUPPORT_MESH
1915 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1916 if (IEEE80211_IS_DSTODS(wh))
1917 ((struct ieee80211_qosframe_addr4 *)
1918 whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1919 else
1920 ((struct ieee80211_qosframe *)
1921 whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1922 }
1923 #endif
1924 *(uint16_t *)&whf->i_seq[0] |= htole16(
1925 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1926 IEEE80211_SEQ_FRAG_SHIFT);
1927 fragno++;
1928
1929 payload = fragsize - totalhdrsize;
1930 /* NB: destination is known to be contiguous */
1931
1932 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1933 m->m_len = hdrspace + payload;
1934 m->m_pkthdr.len = hdrspace + payload;
1935 m->m_flags |= M_FRAG;
1936
1937 /* chain up the fragment */
1938 prev->m_nextpkt = m;
1939 prev = m;
1940
1941 /* deduct fragment just formed */
1942 remainder -= payload;
1943 off += payload;
1944 } while (remainder != 0);
1945
1946 /* set the last fragment */
1947 m->m_flags |= M_LASTFRAG;
1948 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1949
1950 /* strip first mbuf now that everything has been copied */
1951 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1952 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1953
1954 vap->iv_stats.is_tx_fragframes++;
1955 vap->iv_stats.is_tx_frags += fragno-1;
1956
1957 return 1;
1958 bad:
1959 /* reclaim fragments but leave original frame for caller to free */
1960 ieee80211_free_mbuf(m0->m_nextpkt);
1961 m0->m_nextpkt = NULL;
1962 return 0;
1963 }
1964
1965 /*
1966 * Add a supported rates element id to a frame.
1967 */
1968 uint8_t *
1969 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1970 {
1971 int nrates;
1972
1973 *frm++ = IEEE80211_ELEMID_RATES;
1974 nrates = rs->rs_nrates;
1975 if (nrates > IEEE80211_RATE_SIZE)
1976 nrates = IEEE80211_RATE_SIZE;
1977 *frm++ = nrates;
1978 memcpy(frm, rs->rs_rates, nrates);
1979 return frm + nrates;
1980 }
1981
1982 /*
1983 * Add an extended supported rates element id to a frame.
1984 */
1985 uint8_t *
1986 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1987 {
1988 /*
1989 * Add an extended supported rates element if operating in 11g mode.
1990 */
1991 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1992 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1993 *frm++ = IEEE80211_ELEMID_XRATES;
1994 *frm++ = nrates;
1995 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1996 frm += nrates;
1997 }
1998 return frm;
1999 }
2000
2001 /*
2002 * Add an ssid element to a frame.
2003 */
2004 uint8_t *
2005 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2006 {
2007 *frm++ = IEEE80211_ELEMID_SSID;
2008 *frm++ = len;
2009 memcpy(frm, ssid, len);
2010 return frm + len;
2011 }
2012
2013 /*
2014 * Add an erp element to a frame.
2015 */
2016 static uint8_t *
2017 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
2018 {
2019 uint8_t erp;
2020
2021 *frm++ = IEEE80211_ELEMID_ERP;
2022 *frm++ = 1;
2023 erp = 0;
2024 if (ic->ic_nonerpsta != 0)
2025 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2026 if (ic->ic_flags & IEEE80211_F_USEPROT)
2027 erp |= IEEE80211_ERP_USE_PROTECTION;
2028 if (ic->ic_flags & IEEE80211_F_USEBARKER)
2029 erp |= IEEE80211_ERP_LONG_PREAMBLE;
2030 *frm++ = erp;
2031 return frm;
2032 }
2033
2034 /*
2035 * Add a CFParams element to a frame.
2036 */
2037 static uint8_t *
2038 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2039 {
2040 #define ADDSHORT(frm, v) do { \
2041 le16enc(frm, v); \
2042 frm += 2; \
2043 } while (0)
2044 *frm++ = IEEE80211_ELEMID_CFPARMS;
2045 *frm++ = 6;
2046 *frm++ = 0; /* CFP count */
2047 *frm++ = 2; /* CFP period */
2048 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2049 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2050 return frm;
2051 #undef ADDSHORT
2052 }
2053
2054 static __inline uint8_t *
2055 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2056 {
2057 memcpy(frm, ie->ie_data, ie->ie_len);
2058 return frm + ie->ie_len;
2059 }
2060
2061 static __inline uint8_t *
2062 add_ie(uint8_t *frm, const uint8_t *ie)
2063 {
2064 memcpy(frm, ie, 2 + ie[1]);
2065 return frm + 2 + ie[1];
2066 }
2067
2068 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
2069 /*
2070 * Add a WME information element to a frame.
2071 */
2072 uint8_t *
2073 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
2074 {
2075 static const struct ieee80211_wme_info info = {
2076 .wme_id = IEEE80211_ELEMID_VENDOR,
2077 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
2078 .wme_oui = { WME_OUI_BYTES },
2079 .wme_type = WME_OUI_TYPE,
2080 .wme_subtype = WME_INFO_OUI_SUBTYPE,
2081 .wme_version = WME_VERSION,
2082 .wme_info = 0,
2083 };
2084 memcpy(frm, &info, sizeof(info));
2085 return frm + sizeof(info);
2086 }
2087
2088 /*
2089 * Add a WME parameters element to a frame.
2090 */
2091 static uint8_t *
2092 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2093 {
2094 #define SM(_v, _f) (((_v) << _f##_S) & _f)
2095 #define ADDSHORT(frm, v) do { \
2096 le16enc(frm, v); \
2097 frm += 2; \
2098 } while (0)
2099 /* NB: this works 'cuz a param has an info at the front */
2100 static const struct ieee80211_wme_info param = {
2101 .wme_id = IEEE80211_ELEMID_VENDOR,
2102 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
2103 .wme_oui = { WME_OUI_BYTES },
2104 .wme_type = WME_OUI_TYPE,
2105 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
2106 .wme_version = WME_VERSION,
2107 };
2108 int i;
2109
2110 memcpy(frm, ¶m, sizeof(param));
2111 frm += __offsetof(struct ieee80211_wme_info, wme_info);
2112 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
2113 *frm++ = 0; /* reserved field */
2114 for (i = 0; i < WME_NUM_AC; i++) {
2115 const struct wmeParams *ac =
2116 &wme->wme_bssChanParams.cap_wmeParams[i];
2117 *frm++ = SM(i, WME_PARAM_ACI)
2118 | SM(ac->wmep_acm, WME_PARAM_ACM)
2119 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2120 ;
2121 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2122 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2123 ;
2124 ADDSHORT(frm, ac->wmep_txopLimit);
2125 }
2126 return frm;
2127 #undef SM
2128 #undef ADDSHORT
2129 }
2130 #undef WME_OUI_BYTES
2131
2132 /*
2133 * Add an 11h Power Constraint element to a frame.
2134 */
2135 static uint8_t *
2136 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2137 {
2138 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2139 /* XXX per-vap tx power limit? */
2140 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2141
2142 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2143 frm[1] = 1;
2144 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2145 return frm + 3;
2146 }
2147
2148 /*
2149 * Add an 11h Power Capability element to a frame.
2150 */
2151 static uint8_t *
2152 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2153 {
2154 frm[0] = IEEE80211_ELEMID_PWRCAP;
2155 frm[1] = 2;
2156 frm[2] = c->ic_minpower;
2157 frm[3] = c->ic_maxpower;
2158 return frm + 4;
2159 }
2160
2161 /*
2162 * Add an 11h Supported Channels element to a frame.
2163 */
2164 static uint8_t *
2165 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2166 {
2167 static const int ielen = 26;
2168
2169 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2170 frm[1] = ielen;
2171 /* XXX not correct */
2172 memcpy(frm+2, ic->ic_chan_avail, ielen);
2173 return frm + 2 + ielen;
2174 }
2175
2176 /*
2177 * Add an 11h Quiet time element to a frame.
2178 */
2179 static uint8_t *
2180 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2181 {
2182 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2183
2184 quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2185 quiet->len = 6;
2186
2187 /*
2188 * Only update every beacon interval - otherwise probe responses
2189 * would update the quiet count value.
2190 */
2191 if (update) {
2192 if (vap->iv_quiet_count_value == 1)
2193 vap->iv_quiet_count_value = vap->iv_quiet_count;
2194 else if (vap->iv_quiet_count_value > 1)
2195 vap->iv_quiet_count_value--;
2196 }
2197
2198 if (vap->iv_quiet_count_value == 0) {
2199 /* value 0 is reserved as per 802.11h standerd */
2200 vap->iv_quiet_count_value = 1;
2201 }
2202
2203 quiet->tbttcount = vap->iv_quiet_count_value;
2204 quiet->period = vap->iv_quiet_period;
2205 quiet->duration = htole16(vap->iv_quiet_duration);
2206 quiet->offset = htole16(vap->iv_quiet_offset);
2207 return frm + sizeof(*quiet);
2208 }
2209
2210 /*
2211 * Add an 11h Channel Switch Announcement element to a frame.
2212 * Note that we use the per-vap CSA count to adjust the global
2213 * counter so we can use this routine to form probe response
2214 * frames and get the current count.
2215 */
2216 static uint8_t *
2217 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2218 {
2219 struct ieee80211com *ic = vap->iv_ic;
2220 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2221
2222 csa->csa_ie = IEEE80211_ELEMID_CSA;
2223 csa->csa_len = 3;
2224 csa->csa_mode = 1; /* XXX force quiet on channel */
2225 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2226 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2227 return frm + sizeof(*csa);
2228 }
2229
2230 /*
2231 * Add an 11h country information element to a frame.
2232 */
2233 static uint8_t *
2234 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2235 {
2236
2237 if (ic->ic_countryie == NULL ||
2238 ic->ic_countryie_chan != ic->ic_bsschan) {
2239 /*
2240 * Handle lazy construction of ie. This is done on
2241 * first use and after a channel change that requires
2242 * re-calculation.
2243 */
2244 if (ic->ic_countryie != NULL)
2245 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2246 ic->ic_countryie = ieee80211_alloc_countryie(ic);
2247 if (ic->ic_countryie == NULL)
2248 return frm;
2249 ic->ic_countryie_chan = ic->ic_bsschan;
2250 }
2251 return add_appie(frm, ic->ic_countryie);
2252 }
2253
2254 uint8_t *
2255 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2256 {
2257 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2258 return (add_ie(frm, vap->iv_wpa_ie));
2259 else {
2260 /* XXX else complain? */
2261 return (frm);
2262 }
2263 }
2264
2265 uint8_t *
2266 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2267 {
2268 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2269 return (add_ie(frm, vap->iv_rsn_ie));
2270 else {
2271 /* XXX else complain? */
2272 return (frm);
2273 }
2274 }
2275
2276 uint8_t *
2277 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2278 {
2279 if (ni->ni_flags & IEEE80211_NODE_QOS) {
2280 *frm++ = IEEE80211_ELEMID_QOS;
2281 *frm++ = 1;
2282 *frm++ = 0;
2283 }
2284
2285 return (frm);
2286 }
2287
2288 /*
2289 * Send a probe request frame with the specified ssid
2290 * and any optional information element data.
2291 */
2292 int
2293 ieee80211_send_probereq(struct ieee80211_node *ni,
2294 const uint8_t sa[IEEE80211_ADDR_LEN],
2295 const uint8_t da[IEEE80211_ADDR_LEN],
2296 const uint8_t bssid[IEEE80211_ADDR_LEN],
2297 const uint8_t *ssid, size_t ssidlen)
2298 {
2299 struct ieee80211vap *vap = ni->ni_vap;
2300 struct ieee80211com *ic = ni->ni_ic;
2301 struct ieee80211_node *bss;
2302 const struct ieee80211_txparam *tp;
2303 struct ieee80211_bpf_params params;
2304 const struct ieee80211_rateset *rs;
2305 struct mbuf *m;
2306 uint8_t *frm;
2307 int ret;
2308
2309 bss = ieee80211_ref_node(vap->iv_bss);
2310
2311 if (vap->iv_state == IEEE80211_S_CAC) {
2312 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2313 "block %s frame in CAC state", "probe request");
2314 vap->iv_stats.is_tx_badstate++;
2315 ieee80211_free_node(bss);
2316 return EIO; /* XXX */
2317 }
2318
2319 /*
2320 * Hold a reference on the node so it doesn't go away until after
2321 * the xmit is complete all the way in the driver. On error we
2322 * will remove our reference.
2323 */
2324 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2325 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2326 __func__, __LINE__,
2327 ni, ether_sprintf(ni->ni_macaddr),
2328 ieee80211_node_refcnt(ni)+1);
2329 ieee80211_ref_node(ni);
2330
2331 /*
2332 * prreq frame format
2333 * [tlv] ssid
2334 * [tlv] supported rates
2335 * [tlv] RSN (optional)
2336 * [tlv] extended supported rates
2337 * [tlv] HT cap (optional)
2338 * [tlv] VHT cap (optional)
2339 * [tlv] WPA (optional)
2340 * [tlv] user-specified ie's
2341 */
2342 m = ieee80211_getmgtframe(&frm,
2343 ic->ic_headroom + sizeof(struct ieee80211_frame),
2344 2 + IEEE80211_NWID_LEN
2345 + 2 + IEEE80211_RATE_SIZE
2346 + sizeof(struct ieee80211_ie_htcap)
2347 + sizeof(struct ieee80211_ie_vhtcap)
2348 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2349 + sizeof(struct ieee80211_ie_wpa)
2350 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2351 + sizeof(struct ieee80211_ie_wpa)
2352 + (vap->iv_appie_probereq != NULL ?
2353 vap->iv_appie_probereq->ie_len : 0)
2354 );
2355 if (m == NULL) {
2356 vap->iv_stats.is_tx_nobuf++;
2357 ieee80211_free_node(ni);
2358 ieee80211_free_node(bss);
2359 return ENOMEM;
2360 }
2361
2362 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2363 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2364 frm = ieee80211_add_rates(frm, rs);
2365 frm = ieee80211_add_rsn(frm, vap);
2366 frm = ieee80211_add_xrates(frm, rs);
2367
2368 /*
2369 * Note: we can't use bss; we don't have one yet.
2370 *
2371 * So, we should announce our capabilities
2372 * in this channel mode (2g/5g), not the
2373 * channel details itself.
2374 */
2375 if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2376 (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2377 struct ieee80211_channel *c;
2378
2379 /*
2380 * Get the HT channel that we should try upgrading to.
2381 * If we can do 40MHz then this'll upgrade it appropriately.
2382 */
2383 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2384 vap->iv_flags_ht);
2385 frm = ieee80211_add_htcap_ch(frm, vap, c);
2386 }
2387
2388 /*
2389 * XXX TODO: need to figure out what/how to update the
2390 * VHT channel.
2391 */
2392 #if 0
2393 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2394 struct ieee80211_channel *c;
2395
2396 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2397 vap->iv_flags_ht);
2398 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2399 frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2400 }
2401 #endif
2402
2403 frm = ieee80211_add_wpa(frm, vap);
2404 if (vap->iv_appie_probereq != NULL)
2405 frm = add_appie(frm, vap->iv_appie_probereq);
2406 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2407
2408 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2409 ("leading space %zd", M_LEADINGSPACE(m)));
2410 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2411 if (m == NULL) {
2412 /* NB: cannot happen */
2413 ieee80211_free_node(ni);
2414 ieee80211_free_node(bss);
2415 return ENOMEM;
2416 }
2417
2418 IEEE80211_TX_LOCK(ic);
2419 ieee80211_send_setup(ni, m,
2420 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2421 IEEE80211_NONQOS_TID, sa, da, bssid);
2422 /* XXX power management? */
2423 m->m_flags |= M_ENCAP; /* mark encapsulated */
2424
2425 M_WME_SETAC(m, WME_AC_BE);
2426
2427 IEEE80211_NODE_STAT(ni, tx_probereq);
2428 IEEE80211_NODE_STAT(ni, tx_mgmt);
2429
2430 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2431 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2432 ieee80211_chan2ieee(ic, ic->ic_curchan),
2433 ether_sprintf(bssid),
2434 sa, ":",
2435 da, ":",
2436 ssidlen, ssid);
2437
2438 memset(¶ms, 0, sizeof(params));
2439 params.ibp_pri = M_WME_GETAC(m);
2440 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2441 params.ibp_rate0 = tp->mgmtrate;
2442 if (IEEE80211_IS_MULTICAST(da)) {
2443 params.ibp_flags |= IEEE80211_BPF_NOACK;
2444 params.ibp_try0 = 1;
2445 } else
2446 params.ibp_try0 = tp->maxretry;
2447 params.ibp_power = ni->ni_txpower;
2448 ret = ieee80211_raw_output(vap, ni, m, ¶ms);
2449 IEEE80211_TX_UNLOCK(ic);
2450 ieee80211_free_node(bss);
2451 return (ret);
2452 }
2453
2454 /*
2455 * Calculate capability information for mgt frames.
2456 */
2457 uint16_t
2458 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2459 {
2460 struct ieee80211com *ic = vap->iv_ic;
2461 uint16_t capinfo;
2462
2463 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2464
2465 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2466 capinfo = IEEE80211_CAPINFO_ESS;
2467 else if (vap->iv_opmode == IEEE80211_M_IBSS)
2468 capinfo = IEEE80211_CAPINFO_IBSS;
2469 else
2470 capinfo = 0;
2471 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2472 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2473 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2474 IEEE80211_IS_CHAN_2GHZ(chan))
2475 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2476 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2477 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2478 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2479 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2480 return capinfo;
2481 }
2482
2483 /*
2484 * Send a management frame. The node is for the destination (or ic_bss
2485 * when in station mode). Nodes other than ic_bss have their reference
2486 * count bumped to reflect our use for an indeterminant time.
2487 */
2488 int
2489 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2490 {
2491 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2492 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2493 struct ieee80211vap *vap = ni->ni_vap;
2494 struct ieee80211com *ic = ni->ni_ic;
2495 struct ieee80211_node *bss = vap->iv_bss;
2496 struct ieee80211_bpf_params params;
2497 struct mbuf *m;
2498 uint8_t *frm;
2499 uint16_t capinfo;
2500 int has_challenge, is_shared_key, ret, status;
2501
2502 KASSERT(ni != NULL, ("null node"));
2503
2504 /*
2505 * Hold a reference on the node so it doesn't go away until after
2506 * the xmit is complete all the way in the driver. On error we
2507 * will remove our reference.
2508 */
2509 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2510 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2511 __func__, __LINE__,
2512 ni, ether_sprintf(ni->ni_macaddr),
2513 ieee80211_node_refcnt(ni)+1);
2514 ieee80211_ref_node(ni);
2515
2516 memset(¶ms, 0, sizeof(params));
2517 switch (type) {
2518
2519 case IEEE80211_FC0_SUBTYPE_AUTH:
2520 status = arg >> 16;
2521 arg &= 0xffff;
2522 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2523 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2524 ni->ni_challenge != NULL);
2525
2526 /*
2527 * Deduce whether we're doing open authentication or
2528 * shared key authentication. We do the latter if
2529 * we're in the middle of a shared key authentication
2530 * handshake or if we're initiating an authentication
2531 * request and configured to use shared key.
2532 */
2533 is_shared_key = has_challenge ||
2534 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2535 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2536 bss->ni_authmode == IEEE80211_AUTH_SHARED);
2537
2538 m = ieee80211_getmgtframe(&frm,
2539 ic->ic_headroom + sizeof(struct ieee80211_frame),
2540 3 * sizeof(uint16_t)
2541 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2542 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2543 );
2544 if (m == NULL)
2545 senderr(ENOMEM, is_tx_nobuf);
2546
2547 ((uint16_t *)frm)[0] =
2548 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2549 : htole16(IEEE80211_AUTH_ALG_OPEN);
2550 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2551 ((uint16_t *)frm)[2] = htole16(status);/* status */
2552
2553 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2554 ((uint16_t *)frm)[3] =
2555 htole16((IEEE80211_CHALLENGE_LEN << 8) |
2556 IEEE80211_ELEMID_CHALLENGE);
2557 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2558 IEEE80211_CHALLENGE_LEN);
2559 m->m_pkthdr.len = m->m_len =
2560 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2561 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2562 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2563 "request encrypt frame (%s)", __func__);
2564 /* mark frame for encryption */
2565 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2566 }
2567 } else
2568 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2569
2570 /* XXX not right for shared key */
2571 if (status == IEEE80211_STATUS_SUCCESS)
2572 IEEE80211_NODE_STAT(ni, tx_auth);
2573 else
2574 IEEE80211_NODE_STAT(ni, tx_auth_fail);
2575
2576 if (vap->iv_opmode == IEEE80211_M_STA)
2577 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2578 (void *) vap->iv_state);
2579 break;
2580
2581 case IEEE80211_FC0_SUBTYPE_DEAUTH:
2582 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2583 "send station deauthenticate (reason: %d (%s))", arg,
2584 ieee80211_reason_to_string(arg));
2585 m = ieee80211_getmgtframe(&frm,
2586 ic->ic_headroom + sizeof(struct ieee80211_frame),
2587 sizeof(uint16_t));
2588 if (m == NULL)
2589 senderr(ENOMEM, is_tx_nobuf);
2590 *(uint16_t *)frm = htole16(arg); /* reason */
2591 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2592
2593 IEEE80211_NODE_STAT(ni, tx_deauth);
2594 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2595
2596 ieee80211_node_unauthorize(ni); /* port closed */
2597 break;
2598
2599 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2600 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2601 /*
2602 * asreq frame format
2603 * [2] capability information
2604 * [2] listen interval
2605 * [6*] current AP address (reassoc only)
2606 * [tlv] ssid
2607 * [tlv] supported rates
2608 * [tlv] extended supported rates
2609 * [4] power capability (optional)
2610 * [28] supported channels (optional)
2611 * [tlv] HT capabilities
2612 * [tlv] VHT capabilities
2613 * [tlv] WME (optional)
2614 * [tlv] Vendor OUI HT capabilities (optional)
2615 * [tlv] Atheros capabilities (if negotiated)
2616 * [tlv] AppIE's (optional)
2617 */
2618 m = ieee80211_getmgtframe(&frm,
2619 ic->ic_headroom + sizeof(struct ieee80211_frame),
2620 sizeof(uint16_t)
2621 + sizeof(uint16_t)
2622 + IEEE80211_ADDR_LEN
2623 + 2 + IEEE80211_NWID_LEN
2624 + 2 + IEEE80211_RATE_SIZE
2625 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2626 + 4
2627 + 2 + 26
2628 + sizeof(struct ieee80211_wme_info)
2629 + sizeof(struct ieee80211_ie_htcap)
2630 + sizeof(struct ieee80211_ie_vhtcap)
2631 + 4 + sizeof(struct ieee80211_ie_htcap)
2632 #ifdef IEEE80211_SUPPORT_SUPERG
2633 + sizeof(struct ieee80211_ath_ie)
2634 #endif
2635 + (vap->iv_appie_wpa != NULL ?
2636 vap->iv_appie_wpa->ie_len : 0)
2637 + (vap->iv_appie_assocreq != NULL ?
2638 vap->iv_appie_assocreq->ie_len : 0)
2639 );
2640 if (m == NULL)
2641 senderr(ENOMEM, is_tx_nobuf);
2642
2643 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2644 ("wrong mode %u", vap->iv_opmode));
2645 capinfo = IEEE80211_CAPINFO_ESS;
2646 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2647 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2648 /*
2649 * NB: Some 11a AP's reject the request when
2650 * short preamble is set.
2651 */
2652 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2653 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2654 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2655 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2656 (ic->ic_caps & IEEE80211_C_SHSLOT))
2657 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2658 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2659 (vap->iv_flags & IEEE80211_F_DOTH))
2660 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2661 *(uint16_t *)frm = htole16(capinfo);
2662 frm += 2;
2663
2664 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2665 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2666 bss->ni_intval));
2667 frm += 2;
2668
2669 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2670 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2671 frm += IEEE80211_ADDR_LEN;
2672 }
2673
2674 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2675 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2676 frm = ieee80211_add_rsn(frm, vap);
2677 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2678 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2679 frm = ieee80211_add_powercapability(frm,
2680 ic->ic_curchan);
2681 frm = ieee80211_add_supportedchannels(frm, ic);
2682 }
2683
2684 /*
2685 * Check the channel - we may be using an 11n NIC with an
2686 * 11n capable station, but we're configured to be an 11b
2687 * channel.
2688 */
2689 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2690 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2691 ni->ni_ies.htcap_ie != NULL &&
2692 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2693 frm = ieee80211_add_htcap(frm, ni);
2694 }
2695
2696 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2697 IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2698 ni->ni_ies.vhtcap_ie != NULL &&
2699 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2700 frm = ieee80211_add_vhtcap(frm, ni);
2701 }
2702
2703 frm = ieee80211_add_wpa(frm, vap);
2704 if ((ic->ic_flags & IEEE80211_F_WME) &&
2705 ni->ni_ies.wme_ie != NULL)
2706 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2707
2708 /*
2709 * Same deal - only send HT info if we're on an 11n
2710 * capable channel.
2711 */
2712 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2713 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2714 ni->ni_ies.htcap_ie != NULL &&
2715 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2716 frm = ieee80211_add_htcap_vendor(frm, ni);
2717 }
2718 #ifdef IEEE80211_SUPPORT_SUPERG
2719 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2720 frm = ieee80211_add_ath(frm,
2721 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2722 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2723 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2724 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2725 }
2726 #endif /* IEEE80211_SUPPORT_SUPERG */
2727 if (vap->iv_appie_assocreq != NULL)
2728 frm = add_appie(frm, vap->iv_appie_assocreq);
2729 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2730
2731 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2732 (void *) vap->iv_state);
2733 break;
2734
2735 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2736 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2737 /*
2738 * asresp frame format
2739 * [2] capability information
2740 * [2] status
2741 * [2] association ID
2742 * [tlv] supported rates
2743 * [tlv] extended supported rates
2744 * [tlv] HT capabilities (standard, if STA enabled)
2745 * [tlv] HT information (standard, if STA enabled)
2746 * [tlv] VHT capabilities (standard, if STA enabled)
2747 * [tlv] VHT information (standard, if STA enabled)
2748 * [tlv] WME (if configured and STA enabled)
2749 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2750 * [tlv] HT information (vendor OUI, if STA enabled)
2751 * [tlv] Atheros capabilities (if STA enabled)
2752 * [tlv] AppIE's (optional)
2753 */
2754 m = ieee80211_getmgtframe(&frm,
2755 ic->ic_headroom + sizeof(struct ieee80211_frame),
2756 sizeof(uint16_t)
2757 + sizeof(uint16_t)
2758 + sizeof(uint16_t)
2759 + 2 + IEEE80211_RATE_SIZE
2760 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2761 + sizeof(struct ieee80211_ie_htcap) + 4
2762 + sizeof(struct ieee80211_ie_htinfo) + 4
2763 + sizeof(struct ieee80211_ie_vhtcap)
2764 + sizeof(struct ieee80211_ie_vht_operation)
2765 + sizeof(struct ieee80211_wme_param)
2766 #ifdef IEEE80211_SUPPORT_SUPERG
2767 + sizeof(struct ieee80211_ath_ie)
2768 #endif
2769 + (vap->iv_appie_assocresp != NULL ?
2770 vap->iv_appie_assocresp->ie_len : 0)
2771 );
2772 if (m == NULL)
2773 senderr(ENOMEM, is_tx_nobuf);
2774
2775 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2776 *(uint16_t *)frm = htole16(capinfo);
2777 frm += 2;
2778
2779 *(uint16_t *)frm = htole16(arg); /* status */
2780 frm += 2;
2781
2782 if (arg == IEEE80211_STATUS_SUCCESS) {
2783 *(uint16_t *)frm = htole16(ni->ni_associd);
2784 IEEE80211_NODE_STAT(ni, tx_assoc);
2785 } else
2786 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2787 frm += 2;
2788
2789 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2790 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2791 /* NB: respond according to what we received */
2792 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2793 frm = ieee80211_add_htcap(frm, ni);
2794 frm = ieee80211_add_htinfo(frm, ni);
2795 }
2796 if ((vap->iv_flags & IEEE80211_F_WME) &&
2797 ni->ni_ies.wme_ie != NULL)
2798 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2799 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2800 frm = ieee80211_add_htcap_vendor(frm, ni);
2801 frm = ieee80211_add_htinfo_vendor(frm, ni);
2802 }
2803 if (ni->ni_flags & IEEE80211_NODE_VHT) {
2804 frm = ieee80211_add_vhtcap(frm, ni);
2805 frm = ieee80211_add_vhtinfo(frm, ni);
2806 }
2807 #ifdef IEEE80211_SUPPORT_SUPERG
2808 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2809 frm = ieee80211_add_ath(frm,
2810 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2811 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2812 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2813 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2814 #endif /* IEEE80211_SUPPORT_SUPERG */
2815 if (vap->iv_appie_assocresp != NULL)
2816 frm = add_appie(frm, vap->iv_appie_assocresp);
2817 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2818 break;
2819
2820 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2821 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2822 "send station disassociate (reason: %d (%s))", arg,
2823 ieee80211_reason_to_string(arg));
2824 m = ieee80211_getmgtframe(&frm,
2825 ic->ic_headroom + sizeof(struct ieee80211_frame),
2826 sizeof(uint16_t));
2827 if (m == NULL)
2828 senderr(ENOMEM, is_tx_nobuf);
2829 *(uint16_t *)frm = htole16(arg); /* reason */
2830 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2831
2832 IEEE80211_NODE_STAT(ni, tx_disassoc);
2833 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2834 break;
2835
2836 default:
2837 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2838 "invalid mgmt frame type %u", type);
2839 senderr(EINVAL, is_tx_unknownmgt);
2840 /* NOTREACHED */
2841 }
2842
2843 /* NB: force non-ProbeResp frames to the highest queue */
2844 params.ibp_pri = WME_AC_VO;
2845 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2846 /* NB: we know all frames are unicast */
2847 params.ibp_try0 = bss->ni_txparms->maxretry;
2848 params.ibp_power = bss->ni_txpower;
2849 return ieee80211_mgmt_output(ni, m, type, ¶ms);
2850 bad:
2851 ieee80211_free_node(ni);
2852 return ret;
2853 #undef senderr
2854 #undef HTFLAGS
2855 }
2856
2857 /*
2858 * Return an mbuf with a probe response frame in it.
2859 * Space is left to prepend and 802.11 header at the
2860 * front but it's left to the caller to fill in.
2861 */
2862 struct mbuf *
2863 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2864 {
2865 struct ieee80211vap *vap = bss->ni_vap;
2866 struct ieee80211com *ic = bss->ni_ic;
2867 const struct ieee80211_rateset *rs;
2868 struct mbuf *m;
2869 uint16_t capinfo;
2870 uint8_t *frm;
2871
2872 /*
2873 * probe response frame format
2874 * [8] time stamp
2875 * [2] beacon interval
2876 * [2] cabability information
2877 * [tlv] ssid
2878 * [tlv] supported rates
2879 * [tlv] parameter set (FH/DS)
2880 * [tlv] parameter set (IBSS)
2881 * [tlv] country (optional)
2882 * [3] power control (optional)
2883 * [5] channel switch announcement (CSA) (optional)
2884 * [tlv] extended rate phy (ERP)
2885 * [tlv] extended supported rates
2886 * [tlv] RSN (optional)
2887 * [tlv] HT capabilities
2888 * [tlv] HT information
2889 * [tlv] VHT capabilities
2890 * [tlv] VHT information
2891 * [tlv] WPA (optional)
2892 * [tlv] WME (optional)
2893 * [tlv] Vendor OUI HT capabilities (optional)
2894 * [tlv] Vendor OUI HT information (optional)
2895 * [tlv] Atheros capabilities
2896 * [tlv] AppIE's (optional)
2897 * [tlv] Mesh ID (MBSS)
2898 * [tlv] Mesh Conf (MBSS)
2899 */
2900 m = ieee80211_getmgtframe(&frm,
2901 ic->ic_headroom + sizeof(struct ieee80211_frame),
2902 8
2903 + sizeof(uint16_t)
2904 + sizeof(uint16_t)
2905 + 2 + IEEE80211_NWID_LEN
2906 + 2 + IEEE80211_RATE_SIZE
2907 + 7 /* max(7,3) */
2908 + IEEE80211_COUNTRY_MAX_SIZE
2909 + 3
2910 + sizeof(struct ieee80211_csa_ie)
2911 + sizeof(struct ieee80211_quiet_ie)
2912 + 3
2913 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2914 + sizeof(struct ieee80211_ie_wpa)
2915 + sizeof(struct ieee80211_ie_htcap)
2916 + sizeof(struct ieee80211_ie_htinfo)
2917 + sizeof(struct ieee80211_ie_wpa)
2918 + sizeof(struct ieee80211_wme_param)
2919 + 4 + sizeof(struct ieee80211_ie_htcap)
2920 + 4 + sizeof(struct ieee80211_ie_htinfo)
2921 + sizeof(struct ieee80211_ie_vhtcap)
2922 + sizeof(struct ieee80211_ie_vht_operation)
2923 #ifdef IEEE80211_SUPPORT_SUPERG
2924 + sizeof(struct ieee80211_ath_ie)
2925 #endif
2926 #ifdef IEEE80211_SUPPORT_MESH
2927 + 2 + IEEE80211_MESHID_LEN
2928 + sizeof(struct ieee80211_meshconf_ie)
2929 #endif
2930 + (vap->iv_appie_proberesp != NULL ?
2931 vap->iv_appie_proberesp->ie_len : 0)
2932 );
2933 if (m == NULL) {
2934 vap->iv_stats.is_tx_nobuf++;
2935 return NULL;
2936 }
2937
2938 memset(frm, 0, 8); /* timestamp should be filled later */
2939 frm += 8;
2940 *(uint16_t *)frm = htole16(bss->ni_intval);
2941 frm += 2;
2942 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2943 *(uint16_t *)frm = htole16(capinfo);
2944 frm += 2;
2945
2946 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2947 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2948 frm = ieee80211_add_rates(frm, rs);
2949
2950 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2951 *frm++ = IEEE80211_ELEMID_FHPARMS;
2952 *frm++ = 5;
2953 *frm++ = bss->ni_fhdwell & 0x00ff;
2954 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2955 *frm++ = IEEE80211_FH_CHANSET(
2956 ieee80211_chan2ieee(ic, bss->ni_chan));
2957 *frm++ = IEEE80211_FH_CHANPAT(
2958 ieee80211_chan2ieee(ic, bss->ni_chan));
2959 *frm++ = bss->ni_fhindex;
2960 } else {
2961 *frm++ = IEEE80211_ELEMID_DSPARMS;
2962 *frm++ = 1;
2963 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2964 }
2965
2966 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2967 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2968 *frm++ = 2;
2969 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2970 }
2971 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2972 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2973 frm = ieee80211_add_countryie(frm, ic);
2974 if (vap->iv_flags & IEEE80211_F_DOTH) {
2975 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2976 frm = ieee80211_add_powerconstraint(frm, vap);
2977 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2978 frm = ieee80211_add_csa(frm, vap);
2979 }
2980 if (vap->iv_flags & IEEE80211_F_DOTH) {
2981 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2982 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2983 if (vap->iv_quiet)
2984 frm = ieee80211_add_quiet(frm, vap, 0);
2985 }
2986 }
2987 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2988 frm = ieee80211_add_erp(frm, ic);
2989 frm = ieee80211_add_xrates(frm, rs);
2990 frm = ieee80211_add_rsn(frm, vap);
2991 /*
2992 * NB: legacy 11b clients do not get certain ie's.
2993 * The caller identifies such clients by passing
2994 * a token in legacy to us. Could expand this to be
2995 * any legacy client for stuff like HT ie's.
2996 */
2997 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2998 legacy != IEEE80211_SEND_LEGACY_11B) {
2999 frm = ieee80211_add_htcap(frm, bss);
3000 frm = ieee80211_add_htinfo(frm, bss);
3001 }
3002 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3003 legacy != IEEE80211_SEND_LEGACY_11B) {
3004 frm = ieee80211_add_vhtcap(frm, bss);
3005 frm = ieee80211_add_vhtinfo(frm, bss);
3006 }
3007 frm = ieee80211_add_wpa(frm, vap);
3008 if (vap->iv_flags & IEEE80211_F_WME)
3009 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3010 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3011 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3012 legacy != IEEE80211_SEND_LEGACY_11B) {
3013 frm = ieee80211_add_htcap_vendor(frm, bss);
3014 frm = ieee80211_add_htinfo_vendor(frm, bss);
3015 }
3016 #ifdef IEEE80211_SUPPORT_SUPERG
3017 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3018 legacy != IEEE80211_SEND_LEGACY_11B)
3019 frm = ieee80211_add_athcaps(frm, bss);
3020 #endif
3021 if (vap->iv_appie_proberesp != NULL)
3022 frm = add_appie(frm, vap->iv_appie_proberesp);
3023 #ifdef IEEE80211_SUPPORT_MESH
3024 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3025 frm = ieee80211_add_meshid(frm, vap);
3026 frm = ieee80211_add_meshconf(frm, vap);
3027 }
3028 #endif
3029 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3030
3031 return m;
3032 }
3033
3034 /*
3035 * Send a probe response frame to the specified mac address.
3036 * This does not go through the normal mgt frame api so we
3037 * can specify the destination address and re-use the bss node
3038 * for the sta reference.
3039 */
3040 int
3041 ieee80211_send_proberesp(struct ieee80211vap *vap,
3042 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3043 {
3044 struct ieee80211_node *bss = vap->iv_bss;
3045 struct ieee80211com *ic = vap->iv_ic;
3046 struct mbuf *m;
3047 int ret;
3048
3049 if (vap->iv_state == IEEE80211_S_CAC) {
3050 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3051 "block %s frame in CAC state", "probe response");
3052 vap->iv_stats.is_tx_badstate++;
3053 return EIO; /* XXX */
3054 }
3055
3056 /*
3057 * Hold a reference on the node so it doesn't go away until after
3058 * the xmit is complete all the way in the driver. On error we
3059 * will remove our reference.
3060 */
3061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3062 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3063 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3064 ieee80211_node_refcnt(bss)+1);
3065 ieee80211_ref_node(bss);
3066
3067 m = ieee80211_alloc_proberesp(bss, legacy);
3068 if (m == NULL) {
3069 ieee80211_free_node(bss);
3070 return ENOMEM;
3071 }
3072
3073 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3074 KASSERT(m != NULL, ("no room for header"));
3075
3076 IEEE80211_TX_LOCK(ic);
3077 ieee80211_send_setup(bss, m,
3078 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3079 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3080 /* XXX power management? */
3081 m->m_flags |= M_ENCAP; /* mark encapsulated */
3082
3083 M_WME_SETAC(m, WME_AC_BE);
3084
3085 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3086 "send probe resp on channel %u to %s%s\n",
3087 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3088 legacy ? " <legacy>" : "");
3089 IEEE80211_NODE_STAT(bss, tx_mgmt);
3090
3091 ret = ieee80211_raw_output(vap, bss, m, NULL);
3092 IEEE80211_TX_UNLOCK(ic);
3093 return (ret);
3094 }
3095
3096 /*
3097 * Allocate and build a RTS (Request To Send) control frame.
3098 */
3099 struct mbuf *
3100 ieee80211_alloc_rts(struct ieee80211com *ic,
3101 const uint8_t ra[IEEE80211_ADDR_LEN],
3102 const uint8_t ta[IEEE80211_ADDR_LEN],
3103 uint16_t dur)
3104 {
3105 struct ieee80211_frame_rts *rts;
3106 struct mbuf *m;
3107
3108 /* XXX honor ic_headroom */
3109 m = m_gethdr(M_NOWAIT, MT_DATA);
3110 if (m != NULL) {
3111 rts = mtod(m, struct ieee80211_frame_rts *);
3112 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3113 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3114 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3115 *(u_int16_t *)rts->i_dur = htole16(dur);
3116 IEEE80211_ADDR_COPY(rts->i_ra, ra);
3117 IEEE80211_ADDR_COPY(rts->i_ta, ta);
3118
3119 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3120 }
3121 return m;
3122 }
3123
3124 /*
3125 * Allocate and build a CTS (Clear To Send) control frame.
3126 */
3127 struct mbuf *
3128 ieee80211_alloc_cts(struct ieee80211com *ic,
3129 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3130 {
3131 struct ieee80211_frame_cts *cts;
3132 struct mbuf *m;
3133
3134 /* XXX honor ic_headroom */
3135 m = m_gethdr(M_NOWAIT, MT_DATA);
3136 if (m != NULL) {
3137 cts = mtod(m, struct ieee80211_frame_cts *);
3138 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3139 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3140 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3141 *(u_int16_t *)cts->i_dur = htole16(dur);
3142 IEEE80211_ADDR_COPY(cts->i_ra, ra);
3143
3144 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3145 }
3146 return m;
3147 }
3148
3149 /*
3150 * Wrapper for CTS/RTS frame allocation.
3151 */
3152 struct mbuf *
3153 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3154 uint8_t rate, int prot)
3155 {
3156 struct ieee80211com *ic = ni->ni_ic;
3157 const struct ieee80211_frame *wh;
3158 struct mbuf *mprot;
3159 uint16_t dur;
3160 int pktlen, isshort;
3161
3162 KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3163 prot == IEEE80211_PROT_CTSONLY,
3164 ("wrong protection type %d", prot));
3165
3166 wh = mtod(m, const struct ieee80211_frame *);
3167 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3168 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3169 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3170 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3171
3172 if (prot == IEEE80211_PROT_RTSCTS) {
3173 /* NB: CTS is the same size as an ACK */
3174 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3175 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3176 } else
3177 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3178
3179 return (mprot);
3180 }
3181
3182 static void
3183 ieee80211_tx_mgt_timeout(void *arg)
3184 {
3185 struct ieee80211vap *vap = arg;
3186
3187 IEEE80211_LOCK(vap->iv_ic);
3188 if (vap->iv_state != IEEE80211_S_INIT &&
3189 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3190 /*
3191 * NB: it's safe to specify a timeout as the reason here;
3192 * it'll only be used in the right state.
3193 */
3194 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3195 IEEE80211_SCAN_FAIL_TIMEOUT);
3196 }
3197 IEEE80211_UNLOCK(vap->iv_ic);
3198 }
3199
3200 /*
3201 * This is the callback set on net80211-sourced transmitted
3202 * authentication request frames.
3203 *
3204 * This does a couple of things:
3205 *
3206 * + If the frame transmitted was a success, it schedules a future
3207 * event which will transition the interface to scan.
3208 * If a state transition _then_ occurs before that event occurs,
3209 * said state transition will cancel this callout.
3210 *
3211 * + If the frame transmit was a failure, it immediately schedules
3212 * the transition back to scan.
3213 */
3214 static void
3215 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3216 {
3217 struct ieee80211vap *vap = ni->ni_vap;
3218 enum ieee80211_state ostate = (enum ieee80211_state) arg;
3219
3220 /*
3221 * Frame transmit completed; arrange timer callback. If
3222 * transmit was successfully we wait for response. Otherwise
3223 * we arrange an immediate callback instead of doing the
3224 * callback directly since we don't know what state the driver
3225 * is in (e.g. what locks it is holding). This work should
3226 * not be too time-critical and not happen too often so the
3227 * added overhead is acceptable.
3228 *
3229 * XXX what happens if !acked but response shows up before callback?
3230 */
3231 if (vap->iv_state == ostate) {
3232 callout_reset(&vap->iv_mgtsend,
3233 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3234 ieee80211_tx_mgt_timeout, vap);
3235 }
3236 }
3237
3238 static void
3239 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3240 struct ieee80211_node *ni)
3241 {
3242 struct ieee80211vap *vap = ni->ni_vap;
3243 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3244 struct ieee80211com *ic = ni->ni_ic;
3245 struct ieee80211_rateset *rs = &ni->ni_rates;
3246 uint16_t capinfo;
3247
3248 /*
3249 * beacon frame format
3250 *
3251 * TODO: update to 802.11-2012; a lot of stuff has changed;
3252 * vendor extensions should be at the end, etc.
3253 *
3254 * [8] time stamp
3255 * [2] beacon interval
3256 * [2] cabability information
3257 * [tlv] ssid
3258 * [tlv] supported rates
3259 * [3] parameter set (DS)
3260 * [8] CF parameter set (optional)
3261 * [tlv] parameter set (IBSS/TIM)
3262 * [tlv] country (optional)
3263 * [3] power control (optional)
3264 * [5] channel switch announcement (CSA) (optional)
3265 * XXX TODO: Quiet
3266 * XXX TODO: IBSS DFS
3267 * XXX TODO: TPC report
3268 * [tlv] extended rate phy (ERP)
3269 * [tlv] extended supported rates
3270 * [tlv] RSN parameters
3271 * XXX TODO: BSSLOAD
3272 * (XXX EDCA parameter set, QoS capability?)
3273 * XXX TODO: AP channel report
3274 *
3275 * [tlv] HT capabilities
3276 * [tlv] HT information
3277 * XXX TODO: 20/40 BSS coexistence
3278 * Mesh:
3279 * XXX TODO: Meshid
3280 * XXX TODO: mesh config
3281 * XXX TODO: mesh awake window
3282 * XXX TODO: beacon timing (mesh, etc)
3283 * XXX TODO: MCCAOP Advertisement Overview
3284 * XXX TODO: MCCAOP Advertisement
3285 * XXX TODO: Mesh channel switch parameters
3286 * VHT:
3287 * XXX TODO: VHT capabilities
3288 * XXX TODO: VHT operation
3289 * XXX TODO: VHT transmit power envelope
3290 * XXX TODO: channel switch wrapper element
3291 * XXX TODO: extended BSS load element
3292 *
3293 * XXX Vendor-specific OIDs (e.g. Atheros)
3294 * [tlv] WPA parameters
3295 * [tlv] WME parameters
3296 * [tlv] Vendor OUI HT capabilities (optional)
3297 * [tlv] Vendor OUI HT information (optional)
3298 * [tlv] Atheros capabilities (optional)
3299 * [tlv] TDMA parameters (optional)
3300 * [tlv] Mesh ID (MBSS)
3301 * [tlv] Mesh Conf (MBSS)
3302 * [tlv] application data (optional)
3303 */
3304
3305 memset(bo, 0, sizeof(*bo));
3306
3307 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3308 frm += 8;
3309 *(uint16_t *)frm = htole16(ni->ni_intval);
3310 frm += 2;
3311 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3312 bo->bo_caps = (uint16_t *)frm;
3313 *(uint16_t *)frm = htole16(capinfo);
3314 frm += 2;
3315 *frm++ = IEEE80211_ELEMID_SSID;
3316 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3317 *frm++ = ni->ni_esslen;
3318 memcpy(frm, ni->ni_essid, ni->ni_esslen);
3319 frm += ni->ni_esslen;
3320 } else
3321 *frm++ = 0;
3322 frm = ieee80211_add_rates(frm, rs);
3323 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3324 *frm++ = IEEE80211_ELEMID_DSPARMS;
3325 *frm++ = 1;
3326 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3327 }
3328 if (ic->ic_flags & IEEE80211_F_PCF) {
3329 bo->bo_cfp = frm;
3330 frm = ieee80211_add_cfparms(frm, ic);
3331 }
3332 bo->bo_tim = frm;
3333 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3334 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3335 *frm++ = 2;
3336 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3337 bo->bo_tim_len = 0;
3338 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3339 vap->iv_opmode == IEEE80211_M_MBSS) {
3340 /* TIM IE is the same for Mesh and Hostap */
3341 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3342
3343 tie->tim_ie = IEEE80211_ELEMID_TIM;
3344 tie->tim_len = 4; /* length */
3345 tie->tim_count = 0; /* DTIM count */
3346 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3347 tie->tim_bitctl = 0; /* bitmap control */
3348 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3349 frm += sizeof(struct ieee80211_tim_ie);
3350 bo->bo_tim_len = 1;
3351 }
3352 bo->bo_tim_trailer = frm;
3353 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3354 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3355 frm = ieee80211_add_countryie(frm, ic);
3356 if (vap->iv_flags & IEEE80211_F_DOTH) {
3357 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3358 frm = ieee80211_add_powerconstraint(frm, vap);
3359 bo->bo_csa = frm;
3360 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3361 frm = ieee80211_add_csa(frm, vap);
3362 } else
3363 bo->bo_csa = frm;
3364
3365 bo->bo_quiet = NULL;
3366 if (vap->iv_flags & IEEE80211_F_DOTH) {
3367 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3368 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3369 (vap->iv_quiet == 1)) {
3370 /*
3371 * We only insert the quiet IE offset if
3372 * the quiet IE is enabled. Otherwise don't
3373 * put it here or we'll just overwrite
3374 * some other beacon contents.
3375 */
3376 if (vap->iv_quiet) {
3377 bo->bo_quiet = frm;
3378 frm = ieee80211_add_quiet(frm,vap, 0);
3379 }
3380 }
3381 }
3382
3383 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3384 bo->bo_erp = frm;
3385 frm = ieee80211_add_erp(frm, ic);
3386 }
3387 frm = ieee80211_add_xrates(frm, rs);
3388 frm = ieee80211_add_rsn(frm, vap);
3389 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3390 frm = ieee80211_add_htcap(frm, ni);
3391 bo->bo_htinfo = frm;
3392 frm = ieee80211_add_htinfo(frm, ni);
3393 }
3394
3395 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3396 frm = ieee80211_add_vhtcap(frm, ni);
3397 bo->bo_vhtinfo = frm;
3398 frm = ieee80211_add_vhtinfo(frm, ni);
3399 /* Transmit power envelope */
3400 /* Channel switch wrapper element */
3401 /* Extended bss load element */
3402 }
3403
3404 frm = ieee80211_add_wpa(frm, vap);
3405 if (vap->iv_flags & IEEE80211_F_WME) {
3406 bo->bo_wme = frm;
3407 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3408 }
3409 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3410 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3411 frm = ieee80211_add_htcap_vendor(frm, ni);
3412 frm = ieee80211_add_htinfo_vendor(frm, ni);
3413 }
3414
3415 #ifdef IEEE80211_SUPPORT_SUPERG
3416 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3417 bo->bo_ath = frm;
3418 frm = ieee80211_add_athcaps(frm, ni);
3419 }
3420 #endif
3421 #ifdef IEEE80211_SUPPORT_TDMA
3422 if (vap->iv_caps & IEEE80211_C_TDMA) {
3423 bo->bo_tdma = frm;
3424 frm = ieee80211_add_tdma(frm, vap);
3425 }
3426 #endif
3427 if (vap->iv_appie_beacon != NULL) {
3428 bo->bo_appie = frm;
3429 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3430 frm = add_appie(frm, vap->iv_appie_beacon);
3431 }
3432
3433 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3434 #ifdef IEEE80211_SUPPORT_MESH
3435 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3436 frm = ieee80211_add_meshid(frm, vap);
3437 bo->bo_meshconf = frm;
3438 frm = ieee80211_add_meshconf(frm, vap);
3439 }
3440 #endif
3441 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3442 bo->bo_csa_trailer_len = frm - bo->bo_csa;
3443 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3444 }
3445
3446 /*
3447 * Allocate a beacon frame and fillin the appropriate bits.
3448 */
3449 struct mbuf *
3450 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3451 {
3452 struct ieee80211vap *vap = ni->ni_vap;
3453 struct ieee80211com *ic = ni->ni_ic;
3454 struct ifnet *ifp = vap->iv_ifp;
3455 struct ieee80211_frame *wh;
3456 struct mbuf *m;
3457 int pktlen;
3458 uint8_t *frm;
3459
3460 /*
3461 * Update the "We're putting the quiet IE in the beacon" state.
3462 */
3463 if (vap->iv_quiet == 1)
3464 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3465 else if (vap->iv_quiet == 0)
3466 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3467
3468 /*
3469 * beacon frame format
3470 *
3471 * Note: This needs updating for 802.11-2012.
3472 *
3473 * [8] time stamp
3474 * [2] beacon interval
3475 * [2] cabability information
3476 * [tlv] ssid
3477 * [tlv] supported rates
3478 * [3] parameter set (DS)
3479 * [8] CF parameter set (optional)
3480 * [tlv] parameter set (IBSS/TIM)
3481 * [tlv] country (optional)
3482 * [3] power control (optional)
3483 * [5] channel switch announcement (CSA) (optional)
3484 * [tlv] extended rate phy (ERP)
3485 * [tlv] extended supported rates
3486 * [tlv] RSN parameters
3487 * [tlv] HT capabilities
3488 * [tlv] HT information
3489 * [tlv] VHT capabilities
3490 * [tlv] VHT operation
3491 * [tlv] Vendor OUI HT capabilities (optional)
3492 * [tlv] Vendor OUI HT information (optional)
3493 * XXX Vendor-specific OIDs (e.g. Atheros)
3494 * [tlv] WPA parameters
3495 * [tlv] WME parameters
3496 * [tlv] TDMA parameters (optional)
3497 * [tlv] Mesh ID (MBSS)
3498 * [tlv] Mesh Conf (MBSS)
3499 * [tlv] application data (optional)
3500 * NB: we allocate the max space required for the TIM bitmap.
3501 * XXX how big is this?
3502 */
3503 pktlen = 8 /* time stamp */
3504 + sizeof(uint16_t) /* beacon interval */
3505 + sizeof(uint16_t) /* capabilities */
3506 + 2 + ni->ni_esslen /* ssid */
3507 + 2 + IEEE80211_RATE_SIZE /* supported rates */
3508 + 2 + 1 /* DS parameters */
3509 + 2 + 6 /* CF parameters */
3510 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3511 + IEEE80211_COUNTRY_MAX_SIZE /* country */
3512 + 2 + 1 /* power control */
3513 + sizeof(struct ieee80211_csa_ie) /* CSA */
3514 + sizeof(struct ieee80211_quiet_ie) /* Quiet */
3515 + 2 + 1 /* ERP */
3516 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3517 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3518 2*sizeof(struct ieee80211_ie_wpa) : 0)
3519 /* XXX conditional? */
3520 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3521 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3522 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3523 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3524 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3525 sizeof(struct ieee80211_wme_param) : 0)
3526 #ifdef IEEE80211_SUPPORT_SUPERG
3527 + sizeof(struct ieee80211_ath_ie) /* ATH */
3528 #endif
3529 #ifdef IEEE80211_SUPPORT_TDMA
3530 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3531 sizeof(struct ieee80211_tdma_param) : 0)
3532 #endif
3533 #ifdef IEEE80211_SUPPORT_MESH
3534 + 2 + ni->ni_meshidlen
3535 + sizeof(struct ieee80211_meshconf_ie)
3536 #endif
3537 + IEEE80211_MAX_APPIE
3538 ;
3539 m = ieee80211_getmgtframe(&frm,
3540 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3541 if (m == NULL) {
3542 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3543 "%s: cannot get buf; size %u\n", __func__, pktlen);
3544 vap->iv_stats.is_tx_nobuf++;
3545 return NULL;
3546 }
3547 ieee80211_beacon_construct(m, frm, ni);
3548
3549 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3550 KASSERT(m != NULL, ("no space for 802.11 header?"));
3551 wh = mtod(m, struct ieee80211_frame *);
3552 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3553 IEEE80211_FC0_SUBTYPE_BEACON;
3554 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3555 *(uint16_t *)wh->i_dur = 0;
3556 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3557 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3558 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3559 *(uint16_t *)wh->i_seq = 0;
3560
3561 return m;
3562 }
3563
3564 /*
3565 * Update the dynamic parts of a beacon frame based on the current state.
3566 */
3567 int
3568 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3569 {
3570 struct ieee80211vap *vap = ni->ni_vap;
3571 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3572 struct ieee80211com *ic = ni->ni_ic;
3573 int len_changed = 0;
3574 uint16_t capinfo;
3575 struct ieee80211_frame *wh;
3576 ieee80211_seq seqno;
3577
3578 IEEE80211_LOCK(ic);
3579 /*
3580 * Handle 11h channel change when we've reached the count.
3581 * We must recalculate the beacon frame contents to account
3582 * for the new channel. Note we do this only for the first
3583 * vap that reaches this point; subsequent vaps just update
3584 * their beacon state to reflect the recalculated channel.
3585 */
3586 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3587 vap->iv_csa_count == ic->ic_csa_count) {
3588 vap->iv_csa_count = 0;
3589 /*
3590 * Effect channel change before reconstructing the beacon
3591 * frame contents as many places reference ni_chan.
3592 */
3593 if (ic->ic_csa_newchan != NULL)
3594 ieee80211_csa_completeswitch(ic);
3595 /*
3596 * NB: ieee80211_beacon_construct clears all pending
3597 * updates in bo_flags so we don't need to explicitly
3598 * clear IEEE80211_BEACON_CSA.
3599 */
3600 ieee80211_beacon_construct(m,
3601 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3602
3603 /* XXX do WME aggressive mode processing? */
3604 IEEE80211_UNLOCK(ic);
3605 return 1; /* just assume length changed */
3606 }
3607
3608 /*
3609 * Handle the quiet time element being added and removed.
3610 * Again, for now we just cheat and reconstruct the whole
3611 * beacon - that way the gap is provided as appropriate.
3612 *
3613 * So, track whether we have already added the IE versus
3614 * whether we want to be adding the IE.
3615 */
3616 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3617 (vap->iv_quiet == 0)) {
3618 /*
3619 * Quiet time beacon IE enabled, but it's disabled;
3620 * recalc
3621 */
3622 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3623 ieee80211_beacon_construct(m,
3624 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3625 /* XXX do WME aggressive mode processing? */
3626 IEEE80211_UNLOCK(ic);
3627 return 1; /* just assume length changed */
3628 }
3629
3630 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3631 (vap->iv_quiet == 1)) {
3632 /*
3633 * Quiet time beacon IE disabled, but it's now enabled;
3634 * recalc
3635 */
3636 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3637 ieee80211_beacon_construct(m,
3638 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3639 /* XXX do WME aggressive mode processing? */
3640 IEEE80211_UNLOCK(ic);
3641 return 1; /* just assume length changed */
3642 }
3643
3644 wh = mtod(m, struct ieee80211_frame *);
3645
3646 /*
3647 * XXX TODO Strictly speaking this should be incremented with the TX
3648 * lock held so as to serialise access to the non-qos TID sequence
3649 * number space.
3650 *
3651 * If the driver identifies it does its own TX seqno management then
3652 * we can skip this (and still not do the TX seqno.)
3653 */
3654 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3655 *(uint16_t *)&wh->i_seq[0] =
3656 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3657 M_SEQNO_SET(m, seqno);
3658
3659 /* XXX faster to recalculate entirely or just changes? */
3660 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3661 *bo->bo_caps = htole16(capinfo);
3662
3663 if (vap->iv_flags & IEEE80211_F_WME) {
3664 struct ieee80211_wme_state *wme = &ic->ic_wme;
3665
3666 /*
3667 * Check for aggressive mode change. When there is
3668 * significant high priority traffic in the BSS
3669 * throttle back BE traffic by using conservative
3670 * parameters. Otherwise BE uses aggressive params
3671 * to optimize performance of legacy/non-QoS traffic.
3672 */
3673 if (wme->wme_flags & WME_F_AGGRMODE) {
3674 if (wme->wme_hipri_traffic >
3675 wme->wme_hipri_switch_thresh) {
3676 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3677 "%s: traffic %u, disable aggressive mode\n",
3678 __func__, wme->wme_hipri_traffic);
3679 wme->wme_flags &= ~WME_F_AGGRMODE;
3680 ieee80211_wme_updateparams_locked(vap);
3681 wme->wme_hipri_traffic =
3682 wme->wme_hipri_switch_hysteresis;
3683 } else
3684 wme->wme_hipri_traffic = 0;
3685 } else {
3686 if (wme->wme_hipri_traffic <=
3687 wme->wme_hipri_switch_thresh) {
3688 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3689 "%s: traffic %u, enable aggressive mode\n",
3690 __func__, wme->wme_hipri_traffic);
3691 wme->wme_flags |= WME_F_AGGRMODE;
3692 ieee80211_wme_updateparams_locked(vap);
3693 wme->wme_hipri_traffic = 0;
3694 } else
3695 wme->wme_hipri_traffic =
3696 wme->wme_hipri_switch_hysteresis;
3697 }
3698 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3699 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
3700 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3701 }
3702 }
3703
3704 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3705 ieee80211_ht_update_beacon(vap, bo);
3706 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3707 }
3708 #ifdef IEEE80211_SUPPORT_TDMA
3709 if (vap->iv_caps & IEEE80211_C_TDMA) {
3710 /*
3711 * NB: the beacon is potentially updated every TBTT.
3712 */
3713 ieee80211_tdma_update_beacon(vap, bo);
3714 }
3715 #endif
3716 #ifdef IEEE80211_SUPPORT_MESH
3717 if (vap->iv_opmode == IEEE80211_M_MBSS)
3718 ieee80211_mesh_update_beacon(vap, bo);
3719 #endif
3720
3721 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3722 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3723 struct ieee80211_tim_ie *tie =
3724 (struct ieee80211_tim_ie *) bo->bo_tim;
3725 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3726 u_int timlen, timoff, i;
3727 /*
3728 * ATIM/DTIM needs updating. If it fits in the
3729 * current space allocated then just copy in the
3730 * new bits. Otherwise we need to move any trailing
3731 * data to make room. Note that we know there is
3732 * contiguous space because ieee80211_beacon_allocate
3733 * insures there is space in the mbuf to write a
3734 * maximal-size virtual bitmap (based on iv_max_aid).
3735 */
3736 /*
3737 * Calculate the bitmap size and offset, copy any
3738 * trailer out of the way, and then copy in the
3739 * new bitmap and update the information element.
3740 * Note that the tim bitmap must contain at least
3741 * one byte and any offset must be even.
3742 */
3743 if (vap->iv_ps_pending != 0) {
3744 timoff = 128; /* impossibly large */
3745 for (i = 0; i < vap->iv_tim_len; i++)
3746 if (vap->iv_tim_bitmap[i]) {
3747 timoff = i &~ 1;
3748 break;
3749 }
3750 KASSERT(timoff != 128, ("tim bitmap empty!"));
3751 for (i = vap->iv_tim_len-1; i >= timoff; i--)
3752 if (vap->iv_tim_bitmap[i])
3753 break;
3754 timlen = 1 + (i - timoff);
3755 } else {
3756 timoff = 0;
3757 timlen = 1;
3758 }
3759
3760 /*
3761 * TODO: validate this!
3762 */
3763 if (timlen != bo->bo_tim_len) {
3764 /* copy up/down trailer */
3765 int adjust = tie->tim_bitmap+timlen
3766 - bo->bo_tim_trailer;
3767 ovbcopy(bo->bo_tim_trailer,
3768 bo->bo_tim_trailer+adjust,
3769 bo->bo_tim_trailer_len);
3770 bo->bo_tim_trailer += adjust;
3771 bo->bo_erp += adjust;
3772 bo->bo_htinfo += adjust;
3773 bo->bo_vhtinfo += adjust;
3774 #ifdef IEEE80211_SUPPORT_SUPERG
3775 bo->bo_ath += adjust;
3776 #endif
3777 #ifdef IEEE80211_SUPPORT_TDMA
3778 bo->bo_tdma += adjust;
3779 #endif
3780 #ifdef IEEE80211_SUPPORT_MESH
3781 bo->bo_meshconf += adjust;
3782 #endif
3783 bo->bo_appie += adjust;
3784 bo->bo_wme += adjust;
3785 bo->bo_csa += adjust;
3786 bo->bo_quiet += adjust;
3787 bo->bo_tim_len = timlen;
3788
3789 /* update information element */
3790 tie->tim_len = 3 + timlen;
3791 tie->tim_bitctl = timoff;
3792 len_changed = 1;
3793 }
3794 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3795 bo->bo_tim_len);
3796
3797 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3798
3799 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3800 "%s: TIM updated, pending %u, off %u, len %u\n",
3801 __func__, vap->iv_ps_pending, timoff, timlen);
3802 }
3803 /* count down DTIM period */
3804 if (tie->tim_count == 0)
3805 tie->tim_count = tie->tim_period - 1;
3806 else
3807 tie->tim_count--;
3808 /* update state for buffered multicast frames on DTIM */
3809 if (mcast && tie->tim_count == 0)
3810 tie->tim_bitctl |= 1;
3811 else
3812 tie->tim_bitctl &= ~1;
3813 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3814 struct ieee80211_csa_ie *csa =
3815 (struct ieee80211_csa_ie *) bo->bo_csa;
3816
3817 /*
3818 * Insert or update CSA ie. If we're just starting
3819 * to count down to the channel switch then we need
3820 * to insert the CSA ie. Otherwise we just need to
3821 * drop the count. The actual change happens above
3822 * when the vap's count reaches the target count.
3823 */
3824 if (vap->iv_csa_count == 0) {
3825 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3826 bo->bo_erp += sizeof(*csa);
3827 bo->bo_htinfo += sizeof(*csa);
3828 bo->bo_vhtinfo += sizeof(*csa);
3829 bo->bo_wme += sizeof(*csa);
3830 #ifdef IEEE80211_SUPPORT_SUPERG
3831 bo->bo_ath += sizeof(*csa);
3832 #endif
3833 #ifdef IEEE80211_SUPPORT_TDMA
3834 bo->bo_tdma += sizeof(*csa);
3835 #endif
3836 #ifdef IEEE80211_SUPPORT_MESH
3837 bo->bo_meshconf += sizeof(*csa);
3838 #endif
3839 bo->bo_appie += sizeof(*csa);
3840 bo->bo_csa_trailer_len += sizeof(*csa);
3841 bo->bo_quiet += sizeof(*csa);
3842 bo->bo_tim_trailer_len += sizeof(*csa);
3843 m->m_len += sizeof(*csa);
3844 m->m_pkthdr.len += sizeof(*csa);
3845
3846 ieee80211_add_csa(bo->bo_csa, vap);
3847 } else
3848 csa->csa_count--;
3849 vap->iv_csa_count++;
3850 /* NB: don't clear IEEE80211_BEACON_CSA */
3851 }
3852
3853 /*
3854 * Only add the quiet time IE if we've enabled it
3855 * as appropriate.
3856 */
3857 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3858 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3859 if (vap->iv_quiet &&
3860 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3861 ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3862 }
3863 }
3864 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3865 /*
3866 * ERP element needs updating.
3867 */
3868 (void) ieee80211_add_erp(bo->bo_erp, ic);
3869 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3870 }
3871 #ifdef IEEE80211_SUPPORT_SUPERG
3872 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
3873 ieee80211_add_athcaps(bo->bo_ath, ni);
3874 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3875 }
3876 #endif
3877 }
3878 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3879 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3880 int aielen;
3881 uint8_t *frm;
3882
3883 aielen = 0;
3884 if (aie != NULL)
3885 aielen += aie->ie_len;
3886 if (aielen != bo->bo_appie_len) {
3887 /* copy up/down trailer */
3888 int adjust = aielen - bo->bo_appie_len;
3889 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3890 bo->bo_tim_trailer_len);
3891 bo->bo_tim_trailer += adjust;
3892 bo->bo_appie += adjust;
3893 bo->bo_appie_len = aielen;
3894
3895 len_changed = 1;
3896 }
3897 frm = bo->bo_appie;
3898 if (aie != NULL)
3899 frm = add_appie(frm, aie);
3900 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3901 }
3902 IEEE80211_UNLOCK(ic);
3903
3904 return len_changed;
3905 }
3906
3907 /*
3908 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3909 * tunnel encapsulation. The frame is assumed to have an Ethernet
3910 * header at the front that must be stripped before prepending the
3911 * LLC followed by the Ethernet header passed in (with an Ethernet
3912 * type that specifies the payload size).
3913 */
3914 struct mbuf *
3915 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3916 const struct ether_header *eh)
3917 {
3918 struct llc *llc;
3919 uint16_t payload;
3920
3921 /* XXX optimize by combining m_adj+M_PREPEND */
3922 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3923 llc = mtod(m, struct llc *);
3924 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3925 llc->llc_control = LLC_UI;
3926 llc->llc_snap.org_code[0] = 0;
3927 llc->llc_snap.org_code[1] = 0;
3928 llc->llc_snap.org_code[2] = 0;
3929 llc->llc_snap.ether_type = eh->ether_type;
3930 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
3931
3932 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3933 if (m == NULL) { /* XXX cannot happen */
3934 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3935 "%s: no space for ether_header\n", __func__);
3936 vap->iv_stats.is_tx_nobuf++;
3937 return NULL;
3938 }
3939 ETHER_HEADER_COPY(mtod(m, void *), eh);
3940 mtod(m, struct ether_header *)->ether_type = htons(payload);
3941 return m;
3942 }
3943
3944 /*
3945 * Complete an mbuf transmission.
3946 *
3947 * For now, this simply processes a completed frame after the
3948 * driver has completed it's transmission and/or retransmission.
3949 * It assumes the frame is an 802.11 encapsulated frame.
3950 *
3951 * Later on it will grow to become the exit path for a given frame
3952 * from the driver and, depending upon how it's been encapsulated
3953 * and already transmitted, it may end up doing A-MPDU retransmission,
3954 * power save requeuing, etc.
3955 *
3956 * In order for the above to work, the driver entry point to this
3957 * must not hold any driver locks. Thus, the driver needs to delay
3958 * any actual mbuf completion until it can release said locks.
3959 *
3960 * This frees the mbuf and if the mbuf has a node reference,
3961 * the node reference will be freed.
3962 */
3963 void
3964 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3965 {
3966
3967 if (ni != NULL) {
3968 struct ifnet *ifp = ni->ni_vap->iv_ifp;
3969
3970 if (status == 0) {
3971 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3972 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3973 if (m->m_flags & M_MCAST)
3974 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3975 } else
3976 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3977 if (m->m_flags & M_TXCB)
3978 ieee80211_process_callback(ni, m, status);
3979 ieee80211_free_node(ni);
3980 }
3981 m_freem(m);
3982 }
3983