ieee80211_output.c revision 1.63.2.6 1 /* $NetBSD: ieee80211_output.c,v 1.63.2.6 2020/04/13 08:05:16 martin Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2001 Atsushi Onoe
7 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #ifdef __NetBSD__
33 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.63.2.6 2020/04/13 08:05:16 martin Exp $");
34 #endif
35
36 #ifdef _KERNEL_OPT
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_wlan.h"
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/endian.h>
48
49 #include <sys/socket.h>
50
51 #include <net/bpf.h>
52 #if __FreeBSD__
53 #include <net/ethernet.h>
54 #endif
55 #include <net/if.h>
56 #if __FreeBSD__
57 #include <net/if_var.h>
58 #endif
59 #include <net/if_llc.h>
60 #include <net/if_media.h>
61 #if __FreeBSD__
62 #include <net/if_vlan_var.h>
63 #endif
64 #ifdef __NetBSD__
65 #include <net/if_ether.h>
66 #include <net/route.h>
67 #endif
68
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <net80211/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <net80211/ieee80211_tdma.h>
76 #endif
77 #include <net80211/ieee80211_wds.h>
78 #include <net80211/ieee80211_mesh.h>
79 #include <net80211/ieee80211_vht.h>
80
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #endif
84
85 #ifdef INET
86 #if __FreeBSD__
87 #include <netinet/if_ether.h>
88 #endif
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #endif
92 #ifdef INET6
93 #include <netinet/ip6.h>
94 #endif
95
96 #if __FreeBSD__
97 #include <security/mac/mac_framework.h>
98 #endif
99
100 #ifdef __NetBSD__
101 #undef KASSERT
102 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
103 #endif
104
105 #define ETHER_HEADER_COPY(dst, src) \
106 memcpy(dst, src, sizeof(struct ether_header))
107
108 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
109 u_int hdrsize, u_int ciphdrsize, u_int mtu);
110 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
111
112 #ifdef IEEE80211_DEBUG
113 /*
114 * Decide if an outbound management frame should be
115 * printed when debugging is enabled. This filters some
116 * of the less interesting frames that come frequently
117 * (e.g. beacons).
118 */
119 static __inline int
120 doprint(struct ieee80211vap *vap, int subtype)
121 {
122 switch (subtype) {
123 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
124 return (vap->iv_opmode == IEEE80211_M_IBSS);
125 }
126 return 1;
127 }
128 #endif
129
130 /*
131 * Transmit a frame to the given destination on the given VAP.
132 *
133 * It's up to the caller to figure out the details of who this
134 * is going to and resolving the node.
135 *
136 * This routine takes care of queuing it for power save,
137 * A-MPDU state stuff, fast-frames state stuff, encapsulation
138 * if required, then passing it up to the driver layer.
139 *
140 * This routine (for now) consumes the mbuf and frees the node
141 * reference; it ideally will return a TX status which reflects
142 * whether the mbuf was consumed or not, so the caller can
143 * free the mbuf (if appropriate) and the node reference (again,
144 * if appropriate.)
145 */
146 int
147 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
148 struct ieee80211_node *ni)
149 {
150 struct ieee80211com *ic = vap->iv_ic;
151 struct ifnet *ifp = vap->iv_ifp;
152 int mcast;
153
154 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
155 (m->m_flags & M_PWR_SAV) == 0) {
156 /*
157 * Station in power save mode; pass the frame
158 * to the 802.11 layer and continue. We'll get
159 * the frame back when the time is right.
160 * XXX lose WDS vap linkage?
161 */
162 if (ieee80211_pwrsave(ni, m) != 0)
163 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
164 ieee80211_free_node(ni);
165
166 /*
167 * We queued it fine, so tell the upper layer
168 * that we consumed it.
169 */
170 return (0);
171 }
172 /* calculate priority so drivers can find the tx queue */
173 if (ieee80211_classify(ni, m)) {
174 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
175 ni->ni_macaddr, NULL,
176 "%s", "classification failure");
177 vap->iv_stats.is_tx_classify++;
178 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
179 m_freem(m);
180 ieee80211_free_node(ni);
181
182 /* XXX better status? */
183 return (0);
184 }
185 /*
186 * Stash the node pointer. Note that we do this after
187 * any call to ieee80211_dwds_mcast because that code
188 * uses any existing value for rcvif to identify the
189 * interface it (might have been) received on.
190 */
191 #if __FreeBSD__
192 m->m_pkthdr.rcvif = (void *)ni;
193 #elif __NetBSD__
194 m_set_rcvif(m, (void *)ni);
195 #endif
196 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
197
198 BPF_MTAP(ifp, m); /* 802.3 tx */
199
200 /*
201 * Check if A-MPDU tx aggregation is setup or if we
202 * should try to enable it. The sta must be associated
203 * with HT and A-MPDU enabled for use. When the policy
204 * routine decides we should enable A-MPDU we issue an
205 * ADDBA request and wait for a reply. The frame being
206 * encapsulated will go out w/o using A-MPDU, or possibly
207 * it might be collected by the driver and held/retransmit.
208 * The default ic_ampdu_enable routine handles staggering
209 * ADDBA requests in case the receiver NAK's us or we are
210 * otherwise unable to establish a BA stream.
211 *
212 * Don't treat group-addressed frames as candidates for aggregation;
213 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 * frames will always have sequence numbers allocated from the NON_QOS
215 * TID.
216 */
217 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
218 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
219 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
220 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
221 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
222
223 ieee80211_txampdu_count_packet(tap);
224 if (IEEE80211_AMPDU_RUNNING(tap)) {
225 /*
226 * Operational, mark frame for aggregation.
227 *
228 * XXX do tx aggregation here
229 */
230 m->m_flags |= M_AMPDU_MPDU;
231 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
232 ic->ic_ampdu_enable(ni, tap)) {
233 /*
234 * Not negotiated yet, request service.
235 */
236 ieee80211_ampdu_request(ni, tap);
237 /* XXX hold frame for reply? */
238 }
239 }
240 }
241
242 #ifdef IEEE80211_SUPPORT_SUPERG
243 /*
244 * Check for AMSDU/FF; queue for aggregation
245 *
246 * Note: we don't bother trying to do fast frames or
247 * A-MSDU encapsulation for 802.3 drivers. Now, we
248 * likely could do it for FF (because it's a magic
249 * atheros tunnel LLC type) but I don't think we're going
250 * to really need to. For A-MSDU we'd have to set the
251 * A-MSDU QoS bit in the wifi header, so we just plain
252 * can't do it.
253 *
254 * Strictly speaking, we could actually /do/ A-MSDU / FF
255 * with A-MPDU together which for certain circumstances
256 * is beneficial (eg A-MSDU of TCK ACKs.) However,
257 * I'll ignore that for now so existing behaviour is maintained.
258 * Later on it would be good to make "amsdu + ampdu" configurable.
259 */
260 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
261 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
262 m = ieee80211_amsdu_check(ni, m);
263 if (m == NULL) {
264 /* NB: any ni ref held on stageq */
265 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
266 "%s: amsdu_check queued frame\n",
267 __func__);
268 return (0);
269 }
270 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
271 IEEE80211_NODE_FF)) {
272 m = ieee80211_ff_check(ni, m);
273 if (m == NULL) {
274 /* NB: any ni ref held on stageq */
275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
276 "%s: ff_check queued frame\n",
277 __func__);
278 return (0);
279 }
280 }
281 }
282 #endif /* IEEE80211_SUPPORT_SUPERG */
283
284 /*
285 * Grab the TX lock - serialise the TX process from this
286 * point (where TX state is being checked/modified)
287 * through to driver queue.
288 */
289 IEEE80211_TX_LOCK(ic);
290
291 /*
292 * XXX make the encap and transmit code a separate function
293 * so things like the FF (and later A-MSDU) path can just call
294 * it for flushed frames.
295 */
296 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
297 /*
298 * Encapsulate the packet in prep for transmission.
299 */
300 m = ieee80211_encap(vap, ni, m);
301 if (m == NULL) {
302 /* NB: stat+msg handled in ieee80211_encap */
303 IEEE80211_TX_UNLOCK(ic);
304 ieee80211_free_node(ni);
305 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
306 return (ENOBUFS);
307 }
308 }
309 (void) ieee80211_parent_xmitpkt(ic, m);
310
311 /*
312 * Unlock at this point - no need to hold it across
313 * ieee80211_free_node() (ie, the comlock)
314 */
315 IEEE80211_TX_UNLOCK(ic);
316 ic->ic_lastdata = ticks;
317
318 return (0);
319 }
320
321
322
323 /*
324 * Send the given mbuf through the given vap.
325 *
326 * This consumes the mbuf regardless of whether the transmit
327 * was successful or not.
328 *
329 * This does none of the initial checks that ieee80211_start()
330 * does (eg CAC timeout, interface wakeup) - the caller must
331 * do this first.
332 */
333 static int
334 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
335 {
336 #define IS_DWDS(vap) \
337 (vap->iv_opmode == IEEE80211_M_WDS && \
338 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
339 struct ieee80211com *ic = vap->iv_ic;
340 struct ifnet *ifp = vap->iv_ifp;
341 struct ieee80211_node *ni;
342 struct ether_header *eh;
343
344 /*
345 * Cancel any background scan.
346 */
347 if (ic->ic_flags & IEEE80211_F_SCAN)
348 ieee80211_cancel_anyscan(vap);
349 /*
350 * Find the node for the destination so we can do
351 * things like power save and fast frames aggregation.
352 *
353 * NB: past this point various code assumes the first
354 * mbuf has the 802.3 header present (and contiguous).
355 */
356 ni = NULL;
357 if (m->m_len < sizeof(struct ether_header) &&
358 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
359 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
360 "discard frame, %s\n", "m_pullup failed");
361 vap->iv_stats.is_tx_nobuf++; /* XXX */
362 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
363 return (ENOBUFS);
364 }
365 eh = mtod(m, struct ether_header *);
366 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
367 if (IS_DWDS(vap)) {
368 /*
369 * Only unicast frames from the above go out
370 * DWDS vaps; multicast frames are handled by
371 * dispatching the frame as it comes through
372 * the AP vap (see below).
373 */
374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
375 eh->ether_dhost, "mcast", "%s", "on DWDS");
376 vap->iv_stats.is_dwds_mcast++;
377 m_freem(m);
378 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
379 /* XXX better status? */
380 return (ENOBUFS);
381 }
382 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
383 /*
384 * Spam DWDS vap's w/ multicast traffic.
385 */
386 /* XXX only if dwds in use? */
387 ieee80211_dwds_mcast(vap, m);
388 }
389 }
390 #ifdef IEEE80211_SUPPORT_MESH
391 if (vap->iv_opmode != IEEE80211_M_MBSS) {
392 #endif
393 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
394 if (ni == NULL) {
395 /* NB: ieee80211_find_txnode does stat+msg */
396 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
397 m_freem(m);
398 /* XXX better status? */
399 return (ENOBUFS);
400 }
401 if (ni->ni_associd == 0 &&
402 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
403 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
404 eh->ether_dhost, NULL,
405 "sta not associated (type 0x%04x)",
406 htons(eh->ether_type));
407 vap->iv_stats.is_tx_notassoc++;
408 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 m_freem(m);
410 ieee80211_free_node(ni);
411 /* XXX better status? */
412 return (ENOBUFS);
413 }
414 #ifdef IEEE80211_SUPPORT_MESH
415 } else {
416 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
417 /*
418 * Proxy station only if configured.
419 */
420 if (!ieee80211_mesh_isproxyena(vap)) {
421 IEEE80211_DISCARD_MAC(vap,
422 IEEE80211_MSG_OUTPUT |
423 IEEE80211_MSG_MESH,
424 eh->ether_dhost, NULL,
425 "%s", "proxy not enabled");
426 vap->iv_stats.is_mesh_notproxy++;
427 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
428 m_freem(m);
429 /* XXX better status? */
430 return (ENOBUFS);
431 }
432 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
433 "forward frame from DS SA(%6D), DA(%6D)\n",
434 eh->ether_shost, ":",
435 eh->ether_dhost, ":");
436 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
437 }
438 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
439 if (ni == NULL) {
440 /*
441 * NB: ieee80211_mesh_discover holds/disposes
442 * frame (e.g. queueing on path discovery).
443 */
444 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
445 /* XXX better status? */
446 return (ENOBUFS);
447 }
448 }
449 #endif
450
451 /*
452 * We've resolved the sender, so attempt to transmit it.
453 */
454
455 if (vap->iv_state == IEEE80211_S_SLEEP) {
456 /*
457 * In power save; queue frame and then wakeup device
458 * for transmit.
459 */
460 ic->ic_lastdata = ticks;
461 if (ieee80211_pwrsave(ni, m) != 0)
462 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
463 ieee80211_free_node(ni);
464 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
465 return (0);
466 }
467
468 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
469 return (ENOBUFS);
470 return (0);
471 #undef IS_DWDS
472 }
473
474 /*
475 * Start method for vap's. All packets from the stack come
476 * through here. We handle common processing of the packets
477 * before dispatching them to the underlying device.
478 *
479 * if_transmit() requires that the mbuf be consumed by this call
480 * regardless of the return condition.
481 */
482 int
483 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
484 {
485 struct ieee80211vap *vap = ifp->if_softc;
486 struct ieee80211com *ic = vap->iv_ic;
487
488 /*
489 * No data frames go out unless we're running.
490 * Note in particular this covers CAC and CSA
491 * states (though maybe we should check muting
492 * for CSA).
493 */
494 if (vap->iv_state != IEEE80211_S_RUN &&
495 vap->iv_state != IEEE80211_S_SLEEP) {
496 IEEE80211_LOCK(ic);
497 /* re-check under the com lock to avoid races */
498 if (vap->iv_state != IEEE80211_S_RUN &&
499 vap->iv_state != IEEE80211_S_SLEEP) {
500 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
501 "%s: ignore queue, in %s state\n",
502 __func__, ieee80211_state_name[vap->iv_state]);
503 vap->iv_stats.is_tx_badstate++;
504 IEEE80211_UNLOCK(ic);
505 #if __FreeBSD__
506 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
507 #elif __NetBSD__
508 ifp->if_flags |= IFF_OACTIVE;
509 #endif
510 m_freem(m);
511 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
512 return (ENETDOWN);
513 }
514 IEEE80211_UNLOCK(ic);
515 }
516
517 /*
518 * Sanitize mbuf flags for net80211 use. We cannot
519 * clear M_PWR_SAV or M_MORE_DATA because these may
520 * be set for frames that are re-submitted from the
521 * power save queue.
522 *
523 * NB: This must be done before ieee80211_classify as
524 * it marks EAPOL in frames with M_EAPOL.
525 */
526 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
527
528 /*
529 * Bump to the packet transmission path.
530 * The mbuf will be consumed here.
531 */
532 return (ieee80211_start_pkt(vap, m));
533 }
534
535 void
536 ieee80211_vap_qflush(struct ifnet *ifp)
537 {
538
539 /* Empty for now */
540 }
541
542 /*
543 * 802.11 raw output routine.
544 *
545 * XXX TODO: this (and other send routines) should correctly
546 * XXX keep the pwr mgmt bit set if it decides to call into the
547 * XXX driver to send a frame whilst the state is SLEEP.
548 *
549 * Otherwise the peer may decide that we're awake and flood us
550 * with traffic we are still too asleep to receive!
551 */
552 int
553 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
554 struct mbuf *m, const struct ieee80211_bpf_params *params)
555 {
556 struct ieee80211com *ic = vap->iv_ic;
557 int error;
558
559 /*
560 * Set node - the caller has taken a reference, so ensure
561 * that the mbuf has the same node value that
562 * it would if it were going via the normal path.
563 */
564 #if __FreeBSD__
565 m->m_pkthdr.rcvif = (void *)ni;
566 #elif __NetBSD__
567 m_set_rcvif(m, (void*)ni);
568 #endif
569
570 /*
571 * Attempt to add bpf transmit parameters.
572 *
573 * For now it's ok to fail; the raw_xmit api still takes
574 * them as an option.
575 *
576 * Later on when ic_raw_xmit() has params removed,
577 * they'll have to be added - so fail the transmit if
578 * they can't be.
579 */
580 if (params)
581 (void) ieee80211_add_xmit_params(m, params);
582
583 error = ic->ic_raw_xmit(ni, m, params);
584 if (error) {
585 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
586 ieee80211_free_node(ni);
587 }
588 return (error);
589 }
590
591 static int
592 ieee80211_validate_frame(struct mbuf *m,
593 const struct ieee80211_bpf_params *params)
594 {
595 struct ieee80211_frame *wh;
596 int type;
597
598 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
599 return (EINVAL);
600
601 wh = mtod(m, struct ieee80211_frame *);
602 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
603 IEEE80211_FC0_VERSION_0)
604 return (EINVAL);
605
606 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
607 if (type != IEEE80211_FC0_TYPE_DATA) {
608 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
609 IEEE80211_FC1_DIR_NODS)
610 return (EINVAL);
611
612 if (type != IEEE80211_FC0_TYPE_MGT &&
613 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
614 return (EINVAL);
615
616 /* XXX skip other field checks? */
617 }
618
619 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
620 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
621 int subtype;
622
623 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
624
625 /*
626 * See IEEE Std 802.11-2012,
627 * 8.2.4.1.9 'Protected Frame field'
628 */
629 /* XXX no support for robust management frames yet. */
630 if (!(type == IEEE80211_FC0_TYPE_DATA ||
631 (type == IEEE80211_FC0_TYPE_MGT &&
632 subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
633 return (EINVAL);
634
635 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
636 }
637
638 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
639 return (EINVAL);
640
641 return (0);
642 }
643
644 /*
645 * 802.11 output routine. This is (currently) used only to
646 * connect bpf write calls to the 802.11 layer for injecting
647 * raw 802.11 frames.
648 */
649 #if __FreeBSD__
650 int
651 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
652 const struct sockaddr *dst, struct route *ro)
653 #elif __NetBSD__
654 int
655 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
656 const struct sockaddr *dst, const struct rtentry *ro)
657 #endif
658 {
659 #define senderr(e) do { error = (e); goto bad;} while (0)
660 const struct ieee80211_bpf_params *params = NULL;
661 struct ieee80211_node *ni = NULL;
662 struct ieee80211vap *vap;
663 struct ieee80211_frame *wh;
664 struct ieee80211com *ic = NULL;
665 int error;
666 int ret;
667
668 #if __FreeBSD__
669 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
670 #elif __NetBSD__
671 if (ifp->if_flags & IFF_OACTIVE) {
672 #endif
673 /*
674 * Short-circuit requests if the vap is marked OACTIVE
675 * as this can happen because a packet came down through
676 * ieee80211_start before the vap entered RUN state in
677 * which case it's ok to just drop the frame. This
678 * should not be necessary but callers of if_output don't
679 * check OACTIVE.
680 */
681 senderr(ENETDOWN);
682 }
683 vap = ifp->if_softc;
684 ic = vap->iv_ic;
685 /*
686 * Hand to the 802.3 code if not tagged as
687 * a raw 802.11 frame.
688 */
689 if (dst->sa_family != AF_IEEE80211)
690 return vap->iv_output(ifp, m, dst, ro);
691 #ifdef MAC
692 error = mac_ifnet_check_transmit(ifp, m);
693 if (error)
694 senderr(error);
695 #endif
696 #if __FreeBSD__
697 if (ifp->if_flags & IFF_MONITOR)
698 senderr(ENETDOWN);
699 #endif
700 if (!IFNET_IS_UP_RUNNING(ifp))
701 senderr(ENETDOWN);
702 if (vap->iv_state == IEEE80211_S_CAC) {
703 IEEE80211_DPRINTF(vap,
704 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
705 "block %s frame in CAC state\n", "raw data");
706 vap->iv_stats.is_tx_badstate++;
707 senderr(EIO); /* XXX */
708 } else if (vap->iv_state == IEEE80211_S_SCAN)
709 senderr(EIO);
710 /* XXX bypass bridge, pfil, carp, etc. */
711
712 /*
713 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
714 * present by setting the sa_len field of the sockaddr (yes,
715 * this is a hack).
716 * NB: we assume sa_data is suitably aligned to cast.
717 */
718 if (dst->sa_len != 0)
719 params = (const struct ieee80211_bpf_params *)dst->sa_data;
720
721 error = ieee80211_validate_frame(m, params);
722 if (error != 0)
723 senderr(error);
724
725 wh = mtod(m, struct ieee80211_frame *);
726
727 /* locate destination node */
728 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
729 case IEEE80211_FC1_DIR_NODS:
730 case IEEE80211_FC1_DIR_FROMDS:
731 ni = ieee80211_find_txnode(vap, wh->i_addr1);
732 break;
733 case IEEE80211_FC1_DIR_TODS:
734 case IEEE80211_FC1_DIR_DSTODS:
735 ni = ieee80211_find_txnode(vap, wh->i_addr3);
736 break;
737 default:
738 senderr(EDOOFUS);
739 }
740 if (ni == NULL) {
741 /*
742 * Permit packets w/ bpf params through regardless
743 * (see below about sa_len).
744 */
745 if (dst->sa_len == 0)
746 senderr(EHOSTUNREACH);
747 ni = ieee80211_ref_node(vap->iv_bss);
748 }
749
750 /*
751 * Sanitize mbuf for net80211 flags leaked from above.
752 *
753 * NB: This must be done before ieee80211_classify as
754 * it marks EAPOL in frames with M_EAPOL.
755 */
756 m->m_flags &= ~M_80211_TX;
757 m->m_flags |= M_ENCAP; /* mark encapsulated */
758
759 if (IEEE80211_IS_DATA(wh)) {
760 /* calculate priority so drivers can find the tx queue */
761 if (ieee80211_classify(ni, m))
762 senderr(EIO); /* XXX */
763
764 /* NB: ieee80211_encap does not include 802.11 header */
765 IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
766 m->m_pkthdr.len - ieee80211_hdrsize(wh));
767 } else
768 M_WME_SETAC(m, WME_AC_BE);
769
770 IEEE80211_NODE_STAT(ni, tx_data);
771 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
772 IEEE80211_NODE_STAT(ni, tx_mcast);
773 m->m_flags |= M_MCAST;
774 } else
775 IEEE80211_NODE_STAT(ni, tx_ucast);
776
777 IEEE80211_TX_LOCK(ic);
778 ret = ieee80211_raw_output(vap, ni, m, params);
779 IEEE80211_TX_UNLOCK(ic);
780 return (ret);
781 bad:
782 if (m != NULL)
783 m_freem(m);
784 if (ni != NULL)
785 ieee80211_free_node(ni);
786 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
787 return error;
788 #undef senderr
789 }
790
791 /*
792 * Set the direction field and address fields of an outgoing
793 * frame. Note this should be called early on in constructing
794 * a frame as it sets i_fc[1]; other bits can then be or'd in.
795 */
796 void
797 ieee80211_send_setup(
798 struct ieee80211_node *ni,
799 struct mbuf *m,
800 int type, int tid,
801 const uint8_t sa[IEEE80211_ADDR_LEN],
802 const uint8_t da[IEEE80211_ADDR_LEN],
803 const uint8_t bssid[IEEE80211_ADDR_LEN])
804 {
805 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
806 struct ieee80211vap *vap = ni->ni_vap;
807 struct ieee80211_tx_ampdu *tap;
808 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
809 ieee80211_seq seqno;
810
811 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
812
813 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
814 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
815 switch (vap->iv_opmode) {
816 case IEEE80211_M_STA:
817 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
818 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
819 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
820 IEEE80211_ADDR_COPY(wh->i_addr3, da);
821 break;
822 case IEEE80211_M_IBSS:
823 case IEEE80211_M_AHDEMO:
824 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
825 IEEE80211_ADDR_COPY(wh->i_addr1, da);
826 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
827 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
828 break;
829 case IEEE80211_M_HOSTAP:
830 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
831 IEEE80211_ADDR_COPY(wh->i_addr1, da);
832 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
833 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
834 break;
835 case IEEE80211_M_WDS:
836 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
837 IEEE80211_ADDR_COPY(wh->i_addr1, da);
838 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
839 IEEE80211_ADDR_COPY(wh->i_addr3, da);
840 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
841 break;
842 case IEEE80211_M_MBSS:
843 #ifdef IEEE80211_SUPPORT_MESH
844 if (IEEE80211_IS_MULTICAST(da)) {
845 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
846 /* XXX next hop */
847 IEEE80211_ADDR_COPY(wh->i_addr1, da);
848 IEEE80211_ADDR_COPY(wh->i_addr2,
849 vap->iv_myaddr);
850 } else {
851 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
852 IEEE80211_ADDR_COPY(wh->i_addr1, da);
853 IEEE80211_ADDR_COPY(wh->i_addr2,
854 vap->iv_myaddr);
855 IEEE80211_ADDR_COPY(wh->i_addr3, da);
856 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
857 }
858 #endif
859 break;
860 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
861 break;
862 }
863 } else {
864 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
865 IEEE80211_ADDR_COPY(wh->i_addr1, da);
866 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
867 #ifdef IEEE80211_SUPPORT_MESH
868 if (vap->iv_opmode == IEEE80211_M_MBSS)
869 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
870 else
871 #endif
872 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
873 }
874 *(uint16_t *)&wh->i_dur[0] = 0;
875
876 /*
877 * XXX TODO: this is what the TX lock is for.
878 * Here we're incrementing sequence numbers, and they
879 * need to be in lock-step with what the driver is doing
880 * both in TX ordering and crypto encap (IV increment.)
881 *
882 * If the driver does seqno itself, then we can skip
883 * assigning sequence numbers here, and we can avoid
884 * requiring the TX lock.
885 */
886 tap = &ni->ni_tx_ampdu[tid];
887 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
888 m->m_flags |= M_AMPDU_MPDU;
889
890 /* NB: zero out i_seq field (for s/w encryption etc) */
891 *(uint16_t *)&wh->i_seq[0] = 0;
892 } else {
893 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
894 type & IEEE80211_FC0_SUBTYPE_MASK))
895 /*
896 * 802.11-2012 9.3.2.10 - QoS multicast frames
897 * come out of a different seqno space.
898 */
899 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
900 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
901 } else {
902 seqno = ni->ni_txseqs[tid]++;
903 }
904 else
905 seqno = 0;
906
907 *(uint16_t *)&wh->i_seq[0] =
908 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
909 M_SEQNO_SET(m, seqno);
910 }
911
912 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
913 m->m_flags |= M_MCAST;
914 #undef WH4
915 }
916
917 /*
918 * Send a management frame to the specified node. The node pointer
919 * must have a reference as the pointer will be passed to the driver
920 * and potentially held for a long time. If the frame is successfully
921 * dispatched to the driver, then it is responsible for freeing the
922 * reference (and potentially free'ing up any associated storage);
923 * otherwise deal with reclaiming any reference (on error).
924 */
925 int
926 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
927 struct ieee80211_bpf_params *params)
928 {
929 struct ieee80211vap *vap = ni->ni_vap;
930 struct ieee80211com *ic = ni->ni_ic;
931 struct ieee80211_frame *wh;
932 int ret;
933
934 KASSERT(ni != NULL, ("null node"));
935
936 if (vap->iv_state == IEEE80211_S_CAC) {
937 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
938 ni, "block %s frame in CAC state",
939 ieee80211_mgt_subtype_name(type));
940 vap->iv_stats.is_tx_badstate++;
941 ieee80211_free_node(ni);
942 m_freem(m);
943 return EIO; /* XXX */
944 }
945
946 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
947 if (m == NULL) {
948 ieee80211_free_node(ni);
949 return ENOMEM;
950 }
951
952 IEEE80211_TX_LOCK(ic);
953
954 wh = mtod(m, struct ieee80211_frame *);
955 ieee80211_send_setup(ni, m,
956 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
957 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
958 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
959 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
960 "encrypting frame (%s)", __func__);
961 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
962 }
963 m->m_flags |= M_ENCAP; /* mark encapsulated */
964
965 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
966 M_WME_SETAC(m, params->ibp_pri);
967
968 #ifdef IEEE80211_DEBUG
969 /* avoid printing too many frames */
970 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
971 ieee80211_msg_dumppkts(vap)) {
972 printf("[%s] send %s on channel %u\n",
973 ether_sprintf(wh->i_addr1),
974 ieee80211_mgt_subtype_name(type),
975 ieee80211_chan2ieee(ic, ic->ic_curchan));
976 }
977 #endif
978 IEEE80211_NODE_STAT(ni, tx_mgmt);
979
980 ret = ieee80211_raw_output(vap, ni, m, params);
981 IEEE80211_TX_UNLOCK(ic);
982 return (ret);
983 }
984
985 static void
986 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
987 int status)
988 {
989 struct ieee80211vap *vap = ni->ni_vap;
990
991 wakeup(vap);
992 }
993
994 /*
995 * Send a null data frame to the specified node. If the station
996 * is setup for QoS then a QoS Null Data frame is constructed.
997 * If this is a WDS station then a 4-address frame is constructed.
998 *
999 * NB: the caller is assumed to have setup a node reference
1000 * for use; this is necessary to deal with a race condition
1001 * when probing for inactive stations. Like ieee80211_mgmt_output
1002 * we must cleanup any node reference on error; however we
1003 * can safely just unref it as we know it will never be the
1004 * last reference to the node.
1005 */
1006 int
1007 ieee80211_send_nulldata(struct ieee80211_node *ni)
1008 {
1009 struct ieee80211vap *vap = ni->ni_vap;
1010 struct ieee80211com *ic = ni->ni_ic;
1011 struct mbuf *m;
1012 struct ieee80211_frame *wh;
1013 int hdrlen;
1014 uint8_t *frm;
1015 int ret;
1016
1017 if (vap->iv_state == IEEE80211_S_CAC) {
1018 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1019 ni, "block %s frame in CAC state", "null data");
1020 ieee80211_unref_node(&ni);
1021 vap->iv_stats.is_tx_badstate++;
1022 return EIO; /* XXX */
1023 }
1024
1025 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1026 hdrlen = sizeof(struct ieee80211_qosframe);
1027 else
1028 hdrlen = sizeof(struct ieee80211_frame);
1029 /* NB: only WDS vap's get 4-address frames */
1030 if (vap->iv_opmode == IEEE80211_M_WDS)
1031 hdrlen += IEEE80211_ADDR_LEN;
1032 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1033 hdrlen = roundup(hdrlen, sizeof(uint32_t));
1034
1035 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1036 if (m == NULL) {
1037 /* XXX debug msg */
1038 ieee80211_unref_node(&ni);
1039 vap->iv_stats.is_tx_nobuf++;
1040 return ENOMEM;
1041 }
1042 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1043 ("leading space %zd", M_LEADINGSPACE(m)));
1044 M_PREPEND(m, hdrlen, M_NOWAIT);
1045 if (m == NULL) {
1046 /* NB: cannot happen */
1047 ieee80211_free_node(ni);
1048 return ENOMEM;
1049 }
1050
1051 IEEE80211_TX_LOCK(ic);
1052
1053 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1054 if (ni->ni_flags & IEEE80211_NODE_QOS) {
1055 const int tid = WME_AC_TO_TID(WME_AC_BE);
1056 uint8_t *qos;
1057
1058 ieee80211_send_setup(ni, m,
1059 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1060 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1061
1062 if (vap->iv_opmode == IEEE80211_M_WDS)
1063 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1064 else
1065 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1066 qos[0] = tid & IEEE80211_QOS_TID;
1067 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1068 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1069 qos[1] = 0;
1070 } else {
1071 ieee80211_send_setup(ni, m,
1072 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1073 IEEE80211_NONQOS_TID,
1074 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1075 }
1076 if (vap->iv_opmode != IEEE80211_M_WDS) {
1077 /* NB: power management bit is never sent by an AP */
1078 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1079 vap->iv_opmode != IEEE80211_M_HOSTAP)
1080 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1081 }
1082 if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1083 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1084 ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1085 NULL);
1086 }
1087 m->m_len = m->m_pkthdr.len = hdrlen;
1088 m->m_flags |= M_ENCAP; /* mark encapsulated */
1089
1090 M_WME_SETAC(m, WME_AC_BE);
1091
1092 IEEE80211_NODE_STAT(ni, tx_data);
1093
1094 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1095 "send %snull data frame on channel %u, pwr mgt %s",
1096 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1097 ieee80211_chan2ieee(ic, ic->ic_curchan),
1098 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1099
1100 ret = ieee80211_raw_output(vap, ni, m, NULL);
1101 IEEE80211_TX_UNLOCK(ic);
1102 return (ret);
1103 }
1104
1105 /*
1106 * Assign priority to a frame based on any vlan tag assigned
1107 * to the station and/or any Diffserv setting in an IP header.
1108 * Finally, if an ACM policy is setup (in station mode) it's
1109 * applied.
1110 */
1111 int
1112 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1113 {
1114 const struct ether_header *eh = NULL;
1115 uint16_t ether_type;
1116 int v_wme_ac, d_wme_ac, ac;
1117
1118 if (__predict_false(m->m_flags & M_ENCAP)) {
1119 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1120 struct llc *llc;
1121 int hdrlen, subtype;
1122
1123 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1124 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1125 ac = WME_AC_BE;
1126 goto done;
1127 }
1128
1129 hdrlen = ieee80211_hdrsize(wh);
1130 if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1131 return 1;
1132
1133 llc = (struct llc *)mtodo(m, hdrlen);
1134 if (llc->llc_dsap != LLC_SNAP_LSAP ||
1135 llc->llc_ssap != LLC_SNAP_LSAP ||
1136 llc->llc_control != LLC_UI ||
1137 llc->llc_snap.org_code[0] != 0 ||
1138 llc->llc_snap.org_code[1] != 0 ||
1139 llc->llc_snap.org_code[2] != 0)
1140 return 1;
1141
1142 ether_type = llc->llc_snap.ether_type;
1143 } else {
1144 eh = mtod(m, struct ether_header *);
1145 ether_type = eh->ether_type;
1146 }
1147
1148 /*
1149 * Always promote PAE/EAPOL frames to high priority.
1150 */
1151 if (ether_type == htons(ETHERTYPE_PAE)) {
1152 /* NB: mark so others don't need to check header */
1153 m->m_flags |= M_EAPOL;
1154 ac = WME_AC_VO;
1155 goto done;
1156 }
1157 /*
1158 * Non-qos traffic goes to BE.
1159 */
1160 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1161 ac = WME_AC_BE;
1162 goto done;
1163 }
1164
1165 /*
1166 * If node has a vlan tag then all traffic
1167 * to it must have a matching tag.
1168 */
1169 v_wme_ac = 0;
1170 if (ni->ni_vlan != 0) {
1171 if ((m->m_flags & M_VLANTAG) == 0) {
1172 IEEE80211_NODE_STAT(ni, tx_novlantag);
1173 return 1;
1174 }
1175 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1176 EVL_VLANOFTAG(ni->ni_vlan)) {
1177 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1178 return 1;
1179 }
1180 /* map vlan priority to AC */
1181 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1182 }
1183
1184 /* XXX m_copydata may be too slow for fast path */
1185 #ifdef INET
1186 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1187 uint8_t tos;
1188 /*
1189 * IP frame, map the DSCP bits from the TOS field.
1190 */
1191 /* NB: ip header may not be in first mbuf */
1192 m_copydata(m, sizeof(struct ether_header) +
1193 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1194 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1195 d_wme_ac = TID_TO_WME_AC(tos);
1196 } else {
1197 #endif /* INET */
1198 #ifdef INET6
1199 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1200 uint32_t flow;
1201 uint8_t tos;
1202 /*
1203 * IPv6 frame, map the DSCP bits from the traffic class field.
1204 */
1205 m_copydata(m, sizeof(struct ether_header) +
1206 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1207 (caddr_t) &flow);
1208 tos = (uint8_t)(ntohl(flow) >> 20);
1209 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1210 d_wme_ac = TID_TO_WME_AC(tos);
1211 } else {
1212 #endif /* INET6 */
1213 d_wme_ac = WME_AC_BE;
1214 #ifdef INET6
1215 }
1216 #endif
1217 #ifdef INET
1218 }
1219 #endif
1220 /*
1221 * Use highest priority AC.
1222 */
1223 if (v_wme_ac > d_wme_ac)
1224 ac = v_wme_ac;
1225 else
1226 ac = d_wme_ac;
1227
1228 /*
1229 * Apply ACM policy.
1230 */
1231 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1232 static const int acmap[4] = {
1233 WME_AC_BK, /* WME_AC_BE */
1234 WME_AC_BK, /* WME_AC_BK */
1235 WME_AC_BE, /* WME_AC_VI */
1236 WME_AC_VI, /* WME_AC_VO */
1237 };
1238 struct ieee80211com *ic = ni->ni_ic;
1239
1240 while (ac != WME_AC_BK &&
1241 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1242 ac = acmap[ac];
1243 }
1244 done:
1245 M_WME_SETAC(m, ac);
1246 return 0;
1247 }
1248
1249 /*
1250 * Insure there is sufficient contiguous space to encapsulate the
1251 * 802.11 data frame. If room isn't already there, arrange for it.
1252 * Drivers and cipher modules assume we have done the necessary work
1253 * and fail rudely if they don't find the space they need.
1254 */
1255 struct mbuf *
1256 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1257 struct ieee80211_key *key, struct mbuf *m)
1258 {
1259 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1260 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1261
1262 if (key != NULL) {
1263 /* XXX belongs in crypto code? */
1264 needed_space += key->wk_cipher->ic_header;
1265 /* XXX frags */
1266 /*
1267 * When crypto is being done in the host we must insure
1268 * the data are writable for the cipher routines; clone
1269 * a writable mbuf chain.
1270 * XXX handle SWMIC specially
1271 */
1272 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1273 m = m_unshare(m, M_NOWAIT);
1274 if (m == NULL) {
1275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1276 "%s: cannot get writable mbuf\n", __func__);
1277 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1278 return NULL;
1279 }
1280 }
1281 }
1282 /*
1283 * We know we are called just before stripping an Ethernet
1284 * header and prepending an LLC header. This means we know
1285 * there will be
1286 * sizeof(struct ether_header) - sizeof(struct llc)
1287 * bytes recovered to which we need additional space for the
1288 * 802.11 header and any crypto header.
1289 */
1290 /* XXX check trailing space and copy instead? */
1291 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1292 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1293 if (n == NULL) {
1294 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1295 "%s: cannot expand storage\n", __func__);
1296 vap->iv_stats.is_tx_nobuf++;
1297 m_freem(m);
1298 return NULL;
1299 }
1300 #if __FreeBSD__
1301 KASSERT(needed_space <= MHLEN,
1302 ("not enough room, need %u got %d\n", needed_space, MHLEN));
1303 #elif __NetBSD__
1304 KASSERT(needed_space <= MHLEN,
1305 ("not enough room, need %u got %lu\n", needed_space, (u_long)MHLEN));
1306 #endif
1307
1308 /*
1309 * Setup new mbuf to have leading space to prepend the
1310 * 802.11 header and any crypto header bits that are
1311 * required (the latter are added when the driver calls
1312 * back to ieee80211_crypto_encap to do crypto encapsulation).
1313 */
1314 /* NB: must be first 'cuz it clobbers m_data */
1315 m_move_pkthdr(n, m);
1316 n->m_len = 0; /* NB: m_gethdr does not set */
1317 n->m_data += needed_space;
1318 /*
1319 * Pull up Ethernet header to create the expected layout.
1320 * We could use m_pullup but that's overkill (i.e. we don't
1321 * need the actual data) and it cannot fail so do it inline
1322 * for speed.
1323 */
1324 /* NB: struct ether_header is known to be contiguous */
1325 n->m_len += sizeof(struct ether_header);
1326 m->m_len -= sizeof(struct ether_header);
1327 m->m_data += sizeof(struct ether_header);
1328 /*
1329 * Replace the head of the chain.
1330 */
1331 n->m_next = m;
1332 m = n;
1333 }
1334 return m;
1335 #undef TO_BE_RECLAIMED
1336 }
1337
1338 /*
1339 * Return the transmit key to use in sending a unicast frame.
1340 * If a unicast key is set we use that. When no unicast key is set
1341 * we fall back to the default transmit key.
1342 */
1343 static __inline struct ieee80211_key *
1344 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1345 struct ieee80211_node *ni)
1346 {
1347 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1348 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1349 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1350 return NULL;
1351 return &vap->iv_nw_keys[vap->iv_def_txkey];
1352 } else {
1353 return &ni->ni_ucastkey;
1354 }
1355 }
1356
1357 /*
1358 * Return the transmit key to use in sending a multicast frame.
1359 * Multicast traffic always uses the group key which is installed as
1360 * the default tx key.
1361 */
1362 static __inline struct ieee80211_key *
1363 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1364 struct ieee80211_node *ni)
1365 {
1366 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1367 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1368 return NULL;
1369 return &vap->iv_nw_keys[vap->iv_def_txkey];
1370 }
1371
1372 /*
1373 * Encapsulate an outbound data frame. The mbuf chain is updated.
1374 * If an error is encountered NULL is returned. The caller is required
1375 * to provide a node reference and pullup the ethernet header in the
1376 * first mbuf.
1377 *
1378 * NB: Packet is assumed to be processed by ieee80211_classify which
1379 * marked EAPOL frames w/ M_EAPOL.
1380 */
1381 struct mbuf *
1382 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1383 struct mbuf *m)
1384 {
1385 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1386 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1387 struct ieee80211com *ic = ni->ni_ic;
1388 #ifdef IEEE80211_SUPPORT_MESH
1389 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1390 struct ieee80211_meshcntl_ae10 *mc;
1391 struct ieee80211_mesh_route *rt = NULL;
1392 int dir = -1;
1393 #endif
1394 struct ether_header eh;
1395 struct ieee80211_frame *wh;
1396 struct ieee80211_key *key;
1397 struct llc *llc;
1398 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1399 ieee80211_seq seqno;
1400 int meshhdrsize, meshae;
1401 uint8_t *qos;
1402 int is_amsdu = 0;
1403
1404 IEEE80211_TX_LOCK_ASSERT(ic);
1405
1406 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1407
1408 /*
1409 * Copy existing Ethernet header to a safe place. The
1410 * rest of the code assumes it's ok to strip it when
1411 * reorganizing state for the final encapsulation.
1412 */
1413 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1414 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1415
1416 /*
1417 * Insure space for additional headers. First identify
1418 * transmit key to use in calculating any buffer adjustments
1419 * required. This is also used below to do privacy
1420 * encapsulation work. Then calculate the 802.11 header
1421 * size and any padding required by the driver.
1422 *
1423 * Note key may be NULL if we fall back to the default
1424 * transmit key and that is not set. In that case the
1425 * buffer may not be expanded as needed by the cipher
1426 * routines, but they will/should discard it.
1427 */
1428 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1429 if (vap->iv_opmode == IEEE80211_M_STA ||
1430 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1431 (vap->iv_opmode == IEEE80211_M_WDS &&
1432 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1433 key = ieee80211_crypto_getucastkey(vap, ni);
1434 else
1435 key = ieee80211_crypto_getmcastkey(vap, ni);
1436 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1437 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1438 eh.ether_dhost,
1439 "no default transmit key (%s) deftxkey %u",
1440 __func__, vap->iv_def_txkey);
1441 vap->iv_stats.is_tx_nodefkey++;
1442 goto bad;
1443 }
1444 } else
1445 key = NULL;
1446 /*
1447 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1448 * frames so suppress use. This may be an issue if other
1449 * ap's require all data frames to be QoS-encapsulated
1450 * once negotiated in which case we'll need to make this
1451 * configurable.
1452 *
1453 * Don't send multicast QoS frames.
1454 * Technically multicast frames can be QoS if all stations in the
1455 * BSS are also QoS.
1456 *
1457 * NB: mesh data frames are QoS, including multicast frames.
1458 */
1459 addqos =
1460 (((is_mcast == 0) && (ni->ni_flags &
1461 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1462 (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1463 (m->m_flags & M_EAPOL) == 0;
1464
1465 if (addqos)
1466 hdrsize = sizeof(struct ieee80211_qosframe);
1467 else
1468 hdrsize = sizeof(struct ieee80211_frame);
1469 #ifdef IEEE80211_SUPPORT_MESH
1470 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1471 /*
1472 * Mesh data frames are encapsulated according to the
1473 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1474 * o Group Addressed data (aka multicast) originating
1475 * at the local sta are sent w/ 3-address format and
1476 * address extension mode 00
1477 * o Individually Addressed data (aka unicast) originating
1478 * at the local sta are sent w/ 4-address format and
1479 * address extension mode 00
1480 * o Group Addressed data forwarded from a non-mesh sta are
1481 * sent w/ 3-address format and address extension mode 01
1482 * o Individually Address data from another sta are sent
1483 * w/ 4-address format and address extension mode 10
1484 */
1485 is4addr = 0; /* NB: don't use, disable */
1486 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1487 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1488 KASSERT(rt != NULL, ("route is NULL"));
1489 dir = IEEE80211_FC1_DIR_DSTODS;
1490 hdrsize += IEEE80211_ADDR_LEN;
1491 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1492 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1493 vap->iv_myaddr)) {
1494 IEEE80211_NOTE_MAC(vap,
1495 IEEE80211_MSG_MESH,
1496 eh.ether_dhost,
1497 "%s", "trying to send to ourself");
1498 goto bad;
1499 }
1500 meshae = IEEE80211_MESH_AE_10;
1501 meshhdrsize =
1502 sizeof(struct ieee80211_meshcntl_ae10);
1503 } else {
1504 meshae = IEEE80211_MESH_AE_00;
1505 meshhdrsize =
1506 sizeof(struct ieee80211_meshcntl);
1507 }
1508 } else {
1509 dir = IEEE80211_FC1_DIR_FROMDS;
1510 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1511 /* proxy group */
1512 meshae = IEEE80211_MESH_AE_01;
1513 meshhdrsize =
1514 sizeof(struct ieee80211_meshcntl_ae01);
1515 } else {
1516 /* group */
1517 meshae = IEEE80211_MESH_AE_00;
1518 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1519 }
1520 }
1521 } else {
1522 #endif
1523 /*
1524 * 4-address frames need to be generated for:
1525 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1526 * o packets sent through a vap marked for relaying
1527 * (e.g. a station operating with dynamic WDS)
1528 */
1529 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1530 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1531 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1532 if (is4addr)
1533 hdrsize += IEEE80211_ADDR_LEN;
1534 meshhdrsize = meshae = 0;
1535 #ifdef IEEE80211_SUPPORT_MESH
1536 }
1537 #endif
1538 /*
1539 * Honor driver DATAPAD requirement.
1540 */
1541 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1542 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1543 else
1544 hdrspace = hdrsize;
1545
1546 if (__predict_true((m->m_flags & M_FF) == 0)) {
1547 /*
1548 * Normal frame.
1549 */
1550 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1551 if (m == NULL) {
1552 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1553 goto bad;
1554 }
1555 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1556 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1557 llc = mtod(m, struct llc *);
1558 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1559 llc->llc_control = LLC_UI;
1560 llc->llc_snap.org_code[0] = 0;
1561 llc->llc_snap.org_code[1] = 0;
1562 llc->llc_snap.org_code[2] = 0;
1563 llc->llc_snap.ether_type = eh.ether_type;
1564 } else {
1565 #ifdef IEEE80211_SUPPORT_SUPERG
1566 /*
1567 * Aggregated frame. Check if it's for AMSDU or FF.
1568 *
1569 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1570 * anywhere for some reason. But, since 11n requires
1571 * AMSDU RX, we can just assume "11n" == "AMSDU".
1572 */
1573 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1574 if (ieee80211_amsdu_tx_ok(ni)) {
1575 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1576 is_amsdu = 1;
1577 } else {
1578 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1579 }
1580 if (m == NULL)
1581 #endif
1582 goto bad;
1583 }
1584 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1585
1586 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1587 if (m == NULL) {
1588 vap->iv_stats.is_tx_nobuf++;
1589 goto bad;
1590 }
1591 wh = mtod(m, struct ieee80211_frame *);
1592 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1593 *(uint16_t *)wh->i_dur = 0;
1594 qos = NULL; /* NB: quiet compiler */
1595 if (is4addr) {
1596 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1597 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1598 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1599 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1600 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1601 } else switch (vap->iv_opmode) {
1602 case IEEE80211_M_STA:
1603 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1604 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1605 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1606 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1607 break;
1608 case IEEE80211_M_IBSS:
1609 case IEEE80211_M_AHDEMO:
1610 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1611 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1612 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1613 /*
1614 * NB: always use the bssid from iv_bss as the
1615 * neighbor's may be stale after an ibss merge
1616 */
1617 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1618 break;
1619 case IEEE80211_M_HOSTAP:
1620 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1621 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1622 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1623 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1624 break;
1625 #ifdef IEEE80211_SUPPORT_MESH
1626 case IEEE80211_M_MBSS:
1627 /* NB: offset by hdrspace to deal with DATAPAD */
1628 mc = (struct ieee80211_meshcntl_ae10 *)
1629 (mtod(m, uint8_t *) + hdrspace);
1630 wh->i_fc[1] = dir;
1631 switch (meshae) {
1632 case IEEE80211_MESH_AE_00: /* no proxy */
1633 mc->mc_flags = 0;
1634 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1635 IEEE80211_ADDR_COPY(wh->i_addr1,
1636 ni->ni_macaddr);
1637 IEEE80211_ADDR_COPY(wh->i_addr2,
1638 vap->iv_myaddr);
1639 IEEE80211_ADDR_COPY(wh->i_addr3,
1640 eh.ether_dhost);
1641 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1642 eh.ether_shost);
1643 qos =((struct ieee80211_qosframe_addr4 *)
1644 wh)->i_qos;
1645 } else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1646 /* mcast */
1647 IEEE80211_ADDR_COPY(wh->i_addr1,
1648 eh.ether_dhost);
1649 IEEE80211_ADDR_COPY(wh->i_addr2,
1650 vap->iv_myaddr);
1651 IEEE80211_ADDR_COPY(wh->i_addr3,
1652 eh.ether_shost);
1653 qos = ((struct ieee80211_qosframe *)
1654 wh)->i_qos;
1655 }
1656 break;
1657 case IEEE80211_MESH_AE_01: /* mcast, proxy */
1658 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1659 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1660 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1661 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1662 mc->mc_flags = 1;
1663 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1664 eh.ether_shost);
1665 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1666 break;
1667 case IEEE80211_MESH_AE_10: /* ucast, proxy */
1668 KASSERT(rt != NULL, ("route is NULL"));
1669 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1670 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1671 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1672 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1673 mc->mc_flags = IEEE80211_MESH_AE_10;
1674 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1675 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1676 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1677 break;
1678 default:
1679 KASSERT(0, ("meshae %d", meshae));
1680 break;
1681 }
1682 mc->mc_ttl = ms->ms_ttl;
1683 ms->ms_seq++;
1684 le32enc(mc->mc_seq, ms->ms_seq);
1685 break;
1686 #endif
1687 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1688 default:
1689 goto bad;
1690 }
1691 if (m->m_flags & M_MORE_DATA)
1692 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1693 if (addqos) {
1694 int ac, tid;
1695
1696 if (is4addr) {
1697 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1698 /* NB: mesh case handled earlier */
1699 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1700 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1701 ac = M_WME_GETAC(m);
1702 /* map from access class/queue to 11e header priorty value */
1703 tid = WME_AC_TO_TID(ac);
1704 qos[0] = tid & IEEE80211_QOS_TID;
1705 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1706 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1707 #ifdef IEEE80211_SUPPORT_MESH
1708 if (vap->iv_opmode == IEEE80211_M_MBSS)
1709 qos[1] = IEEE80211_QOS_MC;
1710 else
1711 #endif
1712 qos[1] = 0;
1713 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1714
1715 /*
1716 * If this is an A-MSDU then ensure we set the
1717 * relevant field.
1718 */
1719 if (is_amsdu)
1720 qos[0] |= IEEE80211_QOS_AMSDU;
1721
1722 /*
1723 * XXX TODO TX lock is needed for atomic updates of sequence
1724 * numbers. If the driver does it, then don't do it here;
1725 * and we don't need the TX lock held.
1726 */
1727 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1728 /*
1729 * 802.11-2012 9.3.2.10 -
1730 *
1731 * If this is a multicast frame then we need
1732 * to ensure that the sequence number comes from
1733 * a separate seqno space and not the TID space.
1734 *
1735 * Otherwise multicast frames may actually cause
1736 * holes in the TX blockack window space and
1737 * upset various things.
1738 */
1739 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1740 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1741 else
1742 seqno = ni->ni_txseqs[tid]++;
1743
1744 /*
1745 * NB: don't assign a sequence # to potential
1746 * aggregates; we expect this happens at the
1747 * point the frame comes off any aggregation q
1748 * as otherwise we may introduce holes in the
1749 * BA sequence space and/or make window accouting
1750 * more difficult.
1751 *
1752 * XXX may want to control this with a driver
1753 * capability; this may also change when we pull
1754 * aggregation up into net80211
1755 */
1756 seqno = ni->ni_txseqs[tid]++;
1757 *(uint16_t *)wh->i_seq =
1758 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1759 M_SEQNO_SET(m, seqno);
1760 } else {
1761 /* NB: zero out i_seq field (for s/w encryption etc) */
1762 *(uint16_t *)wh->i_seq = 0;
1763 }
1764 } else {
1765 /*
1766 * XXX TODO TX lock is needed for atomic updates of sequence
1767 * numbers. If the driver does it, then don't do it here;
1768 * and we don't need the TX lock held.
1769 */
1770 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1771 *(uint16_t *)wh->i_seq =
1772 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1773 M_SEQNO_SET(m, seqno);
1774
1775 /*
1776 * XXX TODO: we shouldn't allow EAPOL, etc that would
1777 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1778 */
1779 if (is_amsdu)
1780 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1781 __func__);
1782 }
1783
1784 /*
1785 * Check if xmit fragmentation is required.
1786 *
1787 * If the hardware does fragmentation offload, then don't bother
1788 * doing it here.
1789 */
1790 if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1791 txfrag = 0;
1792 else
1793 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1794 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1795 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1796 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1797
1798 if (key != NULL) {
1799 /*
1800 * IEEE 802.1X: send EAPOL frames always in the clear.
1801 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1802 */
1803 if ((m->m_flags & M_EAPOL) == 0 ||
1804 ((vap->iv_flags & IEEE80211_F_WPA) &&
1805 (vap->iv_opmode == IEEE80211_M_STA ?
1806 !IEEE80211_KEY_UNDEFINED(key) :
1807 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1808 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1809 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1810 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1811 eh.ether_dhost,
1812 "%s", "enmic failed, discard frame");
1813 vap->iv_stats.is_crypto_enmicfail++;
1814 goto bad;
1815 }
1816 }
1817 }
1818 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1819 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1820 goto bad;
1821
1822 m->m_flags |= M_ENCAP; /* mark encapsulated */
1823
1824 IEEE80211_NODE_STAT(ni, tx_data);
1825 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1826 IEEE80211_NODE_STAT(ni, tx_mcast);
1827 m->m_flags |= M_MCAST;
1828 } else
1829 IEEE80211_NODE_STAT(ni, tx_ucast);
1830 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1831
1832 return m;
1833 bad:
1834 if (m != NULL)
1835 m_freem(m);
1836 return NULL;
1837 #undef WH4
1838 #undef MC01
1839 }
1840
1841 void
1842 ieee80211_free_mbuf(struct mbuf *m)
1843 {
1844 struct mbuf *next;
1845
1846 if (m == NULL)
1847 return;
1848
1849 do {
1850 next = m->m_nextpkt;
1851 m->m_nextpkt = NULL;
1852 m_freem(m);
1853 } while ((m = next) != NULL);
1854 }
1855
1856 /*
1857 * Fragment the frame according to the specified mtu.
1858 * The size of the 802.11 header (w/o padding) is provided
1859 * so we don't need to recalculate it. We create a new
1860 * mbuf for each fragment and chain it through m_nextpkt;
1861 * we might be able to optimize this by reusing the original
1862 * packet's mbufs but that is significantly more complicated.
1863 */
1864 static int
1865 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1866 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1867 {
1868 struct ieee80211com *ic = vap->iv_ic;
1869 struct ieee80211_frame *wh, *whf;
1870 struct mbuf *m, *prev;
1871 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1872 u_int hdrspace;
1873
1874 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1875 KASSERT(m0->m_pkthdr.len > mtu,
1876 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1877
1878 /*
1879 * Honor driver DATAPAD requirement.
1880 */
1881 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1882 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1883 else
1884 hdrspace = hdrsize;
1885
1886 wh = mtod(m0, struct ieee80211_frame *);
1887 /* NB: mark the first frag; it will be propagated below */
1888 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1889 totalhdrsize = hdrspace + ciphdrsize;
1890 fragno = 1;
1891 off = mtu - ciphdrsize;
1892 remainder = m0->m_pkthdr.len - off;
1893 prev = m0;
1894 do {
1895 fragsize = MIN(totalhdrsize + remainder, mtu);
1896 #if __FreeBSD__
1897 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1898 #elif __NetBSD__
1899 m = m_get(M_NOWAIT, MT_DATA);
1900 #endif
1901 if (m == NULL)
1902 goto bad;
1903 /* leave room to prepend any cipher header */
1904 m_align(m, fragsize - ciphdrsize);
1905
1906 /*
1907 * Form the header in the fragment. Note that since
1908 * we mark the first fragment with the MORE_FRAG bit
1909 * it automatically is propagated to each fragment; we
1910 * need only clear it on the last fragment (done below).
1911 * NB: frag 1+ dont have Mesh Control field present.
1912 */
1913 whf = mtod(m, struct ieee80211_frame *);
1914 memcpy(whf, wh, hdrsize);
1915 #ifdef IEEE80211_SUPPORT_MESH
1916 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1917 if (IEEE80211_IS_DSTODS(wh))
1918 ((struct ieee80211_qosframe_addr4 *)
1919 whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1920 else
1921 ((struct ieee80211_qosframe *)
1922 whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1923 }
1924 #endif
1925 *(uint16_t *)&whf->i_seq[0] |= htole16(
1926 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1927 IEEE80211_SEQ_FRAG_SHIFT);
1928 fragno++;
1929
1930 payload = fragsize - totalhdrsize;
1931 /* NB: destination is known to be contiguous */
1932
1933 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1934 m->m_len = hdrspace + payload;
1935 m->m_pkthdr.len = hdrspace + payload;
1936 m->m_flags |= M_FRAG;
1937
1938 /* chain up the fragment */
1939 prev->m_nextpkt = m;
1940 prev = m;
1941
1942 /* deduct fragment just formed */
1943 remainder -= payload;
1944 off += payload;
1945 } while (remainder != 0);
1946
1947 /* set the last fragment */
1948 m->m_flags |= M_LASTFRAG;
1949 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1950
1951 /* strip first mbuf now that everything has been copied */
1952 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1953 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1954
1955 vap->iv_stats.is_tx_fragframes++;
1956 vap->iv_stats.is_tx_frags += fragno-1;
1957
1958 return 1;
1959 bad:
1960 /* reclaim fragments but leave original frame for caller to free */
1961 ieee80211_free_mbuf(m0->m_nextpkt);
1962 m0->m_nextpkt = NULL;
1963 return 0;
1964 }
1965
1966 /*
1967 * Add a supported rates element id to a frame.
1968 */
1969 uint8_t *
1970 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1971 {
1972 int nrates;
1973
1974 *frm++ = IEEE80211_ELEMID_RATES;
1975 nrates = rs->rs_nrates;
1976 if (nrates > IEEE80211_RATE_SIZE)
1977 nrates = IEEE80211_RATE_SIZE;
1978 *frm++ = nrates;
1979 memcpy(frm, rs->rs_rates, nrates);
1980 return frm + nrates;
1981 }
1982
1983 /*
1984 * Add an extended supported rates element id to a frame.
1985 */
1986 uint8_t *
1987 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1988 {
1989 /*
1990 * Add an extended supported rates element if operating in 11g mode.
1991 */
1992 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1993 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1994 *frm++ = IEEE80211_ELEMID_XRATES;
1995 *frm++ = nrates;
1996 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1997 frm += nrates;
1998 }
1999 return frm;
2000 }
2001
2002 /*
2003 * Add an ssid element to a frame.
2004 */
2005 uint8_t *
2006 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2007 {
2008 *frm++ = IEEE80211_ELEMID_SSID;
2009 *frm++ = len;
2010 memcpy(frm, ssid, len);
2011 return frm + len;
2012 }
2013
2014 /*
2015 * Add an erp element to a frame.
2016 */
2017 static uint8_t *
2018 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
2019 {
2020 uint8_t erp;
2021
2022 *frm++ = IEEE80211_ELEMID_ERP;
2023 *frm++ = 1;
2024 erp = 0;
2025 if (ic->ic_nonerpsta != 0)
2026 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2027 if (ic->ic_flags & IEEE80211_F_USEPROT)
2028 erp |= IEEE80211_ERP_USE_PROTECTION;
2029 if (ic->ic_flags & IEEE80211_F_USEBARKER)
2030 erp |= IEEE80211_ERP_LONG_PREAMBLE;
2031 *frm++ = erp;
2032 return frm;
2033 }
2034
2035 /*
2036 * Add a CFParams element to a frame.
2037 */
2038 static uint8_t *
2039 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2040 {
2041 #define ADDSHORT(frm, v) do { \
2042 le16enc(frm, v); \
2043 frm += 2; \
2044 } while (0)
2045 *frm++ = IEEE80211_ELEMID_CFPARMS;
2046 *frm++ = 6;
2047 *frm++ = 0; /* CFP count */
2048 *frm++ = 2; /* CFP period */
2049 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2050 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2051 return frm;
2052 #undef ADDSHORT
2053 }
2054
2055 static __inline uint8_t *
2056 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2057 {
2058 memcpy(frm, ie->ie_data, ie->ie_len);
2059 return frm + ie->ie_len;
2060 }
2061
2062 static __inline uint8_t *
2063 add_ie(uint8_t *frm, const uint8_t *ie)
2064 {
2065 memcpy(frm, ie, 2 + ie[1]);
2066 return frm + 2 + ie[1];
2067 }
2068
2069 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
2070 /*
2071 * Add a WME information element to a frame.
2072 */
2073 uint8_t *
2074 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
2075 {
2076 static const struct ieee80211_wme_info info = {
2077 .wme_id = IEEE80211_ELEMID_VENDOR,
2078 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
2079 .wme_oui = { WME_OUI_BYTES },
2080 .wme_type = WME_OUI_TYPE,
2081 .wme_subtype = WME_INFO_OUI_SUBTYPE,
2082 .wme_version = WME_VERSION,
2083 .wme_info = 0,
2084 };
2085 memcpy(frm, &info, sizeof(info));
2086 return frm + sizeof(info);
2087 }
2088
2089 /*
2090 * Add a WME parameters element to a frame.
2091 */
2092 static uint8_t *
2093 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2094 {
2095 #define SM(_v, _f) (((_v) << _f##_S) & _f)
2096 #define ADDSHORT(frm, v) do { \
2097 le16enc(frm, v); \
2098 frm += 2; \
2099 } while (0)
2100 /* NB: this works 'cuz a param has an info at the front */
2101 static const struct ieee80211_wme_info param = {
2102 .wme_id = IEEE80211_ELEMID_VENDOR,
2103 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
2104 .wme_oui = { WME_OUI_BYTES },
2105 .wme_type = WME_OUI_TYPE,
2106 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
2107 .wme_version = WME_VERSION,
2108 };
2109 int i;
2110
2111 memcpy(frm, ¶m, sizeof(param));
2112 frm += __offsetof(struct ieee80211_wme_info, wme_info);
2113 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
2114 *frm++ = 0; /* reserved field */
2115 for (i = 0; i < WME_NUM_AC; i++) {
2116 const struct wmeParams *ac =
2117 &wme->wme_bssChanParams.cap_wmeParams[i];
2118 *frm++ = SM(i, WME_PARAM_ACI)
2119 | SM(ac->wmep_acm, WME_PARAM_ACM)
2120 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2121 ;
2122 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2123 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2124 ;
2125 ADDSHORT(frm, ac->wmep_txopLimit);
2126 }
2127 return frm;
2128 #undef SM
2129 #undef ADDSHORT
2130 }
2131 #undef WME_OUI_BYTES
2132
2133 /*
2134 * Add an 11h Power Constraint element to a frame.
2135 */
2136 static uint8_t *
2137 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2138 {
2139 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2140 /* XXX per-vap tx power limit? */
2141 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2142
2143 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2144 frm[1] = 1;
2145 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2146 return frm + 3;
2147 }
2148
2149 /*
2150 * Add an 11h Power Capability element to a frame.
2151 */
2152 static uint8_t *
2153 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2154 {
2155 frm[0] = IEEE80211_ELEMID_PWRCAP;
2156 frm[1] = 2;
2157 frm[2] = c->ic_minpower;
2158 frm[3] = c->ic_maxpower;
2159 return frm + 4;
2160 }
2161
2162 /*
2163 * Add an 11h Supported Channels element to a frame.
2164 */
2165 static uint8_t *
2166 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2167 {
2168 static const int ielen = 26;
2169
2170 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2171 frm[1] = ielen;
2172 /* XXX not correct */
2173 memcpy(frm+2, ic->ic_chan_avail, ielen);
2174 return frm + 2 + ielen;
2175 }
2176
2177 /*
2178 * Add an 11h Quiet time element to a frame.
2179 */
2180 static uint8_t *
2181 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2182 {
2183 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2184
2185 quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2186 quiet->len = 6;
2187
2188 /*
2189 * Only update every beacon interval - otherwise probe responses
2190 * would update the quiet count value.
2191 */
2192 if (update) {
2193 if (vap->iv_quiet_count_value == 1)
2194 vap->iv_quiet_count_value = vap->iv_quiet_count;
2195 else if (vap->iv_quiet_count_value > 1)
2196 vap->iv_quiet_count_value--;
2197 }
2198
2199 if (vap->iv_quiet_count_value == 0) {
2200 /* value 0 is reserved as per 802.11h standerd */
2201 vap->iv_quiet_count_value = 1;
2202 }
2203
2204 quiet->tbttcount = vap->iv_quiet_count_value;
2205 quiet->period = vap->iv_quiet_period;
2206 quiet->duration = htole16(vap->iv_quiet_duration);
2207 quiet->offset = htole16(vap->iv_quiet_offset);
2208 return frm + sizeof(*quiet);
2209 }
2210
2211 /*
2212 * Add an 11h Channel Switch Announcement element to a frame.
2213 * Note that we use the per-vap CSA count to adjust the global
2214 * counter so we can use this routine to form probe response
2215 * frames and get the current count.
2216 */
2217 static uint8_t *
2218 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2219 {
2220 struct ieee80211com *ic = vap->iv_ic;
2221 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2222
2223 csa->csa_ie = IEEE80211_ELEMID_CSA;
2224 csa->csa_len = 3;
2225 csa->csa_mode = 1; /* XXX force quiet on channel */
2226 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2227 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2228 return frm + sizeof(*csa);
2229 }
2230
2231 /*
2232 * Add an 11h country information element to a frame.
2233 */
2234 static uint8_t *
2235 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2236 {
2237
2238 if (ic->ic_countryie == NULL ||
2239 ic->ic_countryie_chan != ic->ic_bsschan) {
2240 /*
2241 * Handle lazy construction of ie. This is done on
2242 * first use and after a channel change that requires
2243 * re-calculation.
2244 */
2245 if (ic->ic_countryie != NULL)
2246 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2247 ic->ic_countryie = ieee80211_alloc_countryie(ic);
2248 if (ic->ic_countryie == NULL)
2249 return frm;
2250 ic->ic_countryie_chan = ic->ic_bsschan;
2251 }
2252 return add_appie(frm, ic->ic_countryie);
2253 }
2254
2255 uint8_t *
2256 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2257 {
2258 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2259 return (add_ie(frm, vap->iv_wpa_ie));
2260 else {
2261 /* XXX else complain? */
2262 return (frm);
2263 }
2264 }
2265
2266 uint8_t *
2267 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2268 {
2269 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2270 return (add_ie(frm, vap->iv_rsn_ie));
2271 else {
2272 /* XXX else complain? */
2273 return (frm);
2274 }
2275 }
2276
2277 uint8_t *
2278 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2279 {
2280 if (ni->ni_flags & IEEE80211_NODE_QOS) {
2281 *frm++ = IEEE80211_ELEMID_QOS;
2282 *frm++ = 1;
2283 *frm++ = 0;
2284 }
2285
2286 return (frm);
2287 }
2288
2289 /*
2290 * Send a probe request frame with the specified ssid
2291 * and any optional information element data.
2292 */
2293 int
2294 ieee80211_send_probereq(struct ieee80211_node *ni,
2295 const uint8_t sa[IEEE80211_ADDR_LEN],
2296 const uint8_t da[IEEE80211_ADDR_LEN],
2297 const uint8_t bssid[IEEE80211_ADDR_LEN],
2298 const uint8_t *ssid, size_t ssidlen)
2299 {
2300 struct ieee80211vap *vap = ni->ni_vap;
2301 struct ieee80211com *ic = ni->ni_ic;
2302 struct ieee80211_node *bss;
2303 const struct ieee80211_txparam *tp;
2304 struct ieee80211_bpf_params params;
2305 const struct ieee80211_rateset *rs;
2306 struct mbuf *m;
2307 uint8_t *frm;
2308 int ret;
2309
2310 bss = ieee80211_ref_node(vap->iv_bss);
2311
2312 if (vap->iv_state == IEEE80211_S_CAC) {
2313 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2314 "block %s frame in CAC state", "probe request");
2315 vap->iv_stats.is_tx_badstate++;
2316 ieee80211_free_node(bss);
2317 return EIO; /* XXX */
2318 }
2319
2320 /*
2321 * Hold a reference on the node so it doesn't go away until after
2322 * the xmit is complete all the way in the driver. On error we
2323 * will remove our reference.
2324 */
2325 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2326 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2327 __func__, __LINE__,
2328 ni, ether_sprintf(ni->ni_macaddr),
2329 ieee80211_node_refcnt(ni)+1);
2330 ieee80211_ref_node(ni);
2331
2332 /*
2333 * prreq frame format
2334 * [tlv] ssid
2335 * [tlv] supported rates
2336 * [tlv] RSN (optional)
2337 * [tlv] extended supported rates
2338 * [tlv] HT cap (optional)
2339 * [tlv] VHT cap (optional)
2340 * [tlv] WPA (optional)
2341 * [tlv] user-specified ie's
2342 */
2343 m = ieee80211_getmgtframe(&frm,
2344 ic->ic_headroom + sizeof(struct ieee80211_frame),
2345 2 + IEEE80211_NWID_LEN
2346 + 2 + IEEE80211_RATE_SIZE
2347 + sizeof(struct ieee80211_ie_htcap)
2348 + sizeof(struct ieee80211_ie_vhtcap)
2349 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2350 + sizeof(struct ieee80211_ie_wpa)
2351 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2352 + sizeof(struct ieee80211_ie_wpa)
2353 + (vap->iv_appie_probereq != NULL ?
2354 vap->iv_appie_probereq->ie_len : 0)
2355 );
2356 if (m == NULL) {
2357 vap->iv_stats.is_tx_nobuf++;
2358 ieee80211_free_node(ni);
2359 ieee80211_free_node(bss);
2360 return ENOMEM;
2361 }
2362
2363 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2364 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2365 frm = ieee80211_add_rates(frm, rs);
2366 frm = ieee80211_add_rsn(frm, vap);
2367 frm = ieee80211_add_xrates(frm, rs);
2368
2369 /*
2370 * Note: we can't use bss; we don't have one yet.
2371 *
2372 * So, we should announce our capabilities
2373 * in this channel mode (2g/5g), not the
2374 * channel details itself.
2375 */
2376 if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2377 (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2378 struct ieee80211_channel *c;
2379
2380 /*
2381 * Get the HT channel that we should try upgrading to.
2382 * If we can do 40MHz then this'll upgrade it appropriately.
2383 */
2384 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2385 vap->iv_flags_ht);
2386 frm = ieee80211_add_htcap_ch(frm, vap, c);
2387 }
2388
2389 /*
2390 * XXX TODO: need to figure out what/how to update the
2391 * VHT channel.
2392 */
2393 #if 0
2394 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2395 struct ieee80211_channel *c;
2396
2397 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2398 vap->iv_flags_ht);
2399 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2400 frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2401 }
2402 #endif
2403
2404 frm = ieee80211_add_wpa(frm, vap);
2405 if (vap->iv_appie_probereq != NULL)
2406 frm = add_appie(frm, vap->iv_appie_probereq);
2407 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2408
2409 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2410 ("leading space %zd", M_LEADINGSPACE(m)));
2411 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2412 if (m == NULL) {
2413 /* NB: cannot happen */
2414 ieee80211_free_node(ni);
2415 ieee80211_free_node(bss);
2416 return ENOMEM;
2417 }
2418
2419 IEEE80211_TX_LOCK(ic);
2420 ieee80211_send_setup(ni, m,
2421 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2422 IEEE80211_NONQOS_TID, sa, da, bssid);
2423 /* XXX power management? */
2424 m->m_flags |= M_ENCAP; /* mark encapsulated */
2425
2426 M_WME_SETAC(m, WME_AC_BE);
2427
2428 IEEE80211_NODE_STAT(ni, tx_probereq);
2429 IEEE80211_NODE_STAT(ni, tx_mgmt);
2430
2431 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2432 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2433 ieee80211_chan2ieee(ic, ic->ic_curchan),
2434 ether_sprintf(bssid),
2435 sa, ":",
2436 da, ":",
2437 ssidlen, ssid);
2438
2439 memset(¶ms, 0, sizeof(params));
2440 params.ibp_pri = M_WME_GETAC(m);
2441 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2442 params.ibp_rate0 = tp->mgmtrate;
2443 if (IEEE80211_IS_MULTICAST(da)) {
2444 params.ibp_flags |= IEEE80211_BPF_NOACK;
2445 params.ibp_try0 = 1;
2446 } else
2447 params.ibp_try0 = tp->maxretry;
2448 params.ibp_power = ni->ni_txpower;
2449 ret = ieee80211_raw_output(vap, ni, m, ¶ms);
2450 IEEE80211_TX_UNLOCK(ic);
2451 ieee80211_free_node(bss);
2452 return (ret);
2453 }
2454
2455 /*
2456 * Calculate capability information for mgt frames.
2457 */
2458 uint16_t
2459 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2460 {
2461 struct ieee80211com *ic = vap->iv_ic;
2462 uint16_t capinfo;
2463
2464 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2465
2466 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2467 capinfo = IEEE80211_CAPINFO_ESS;
2468 else if (vap->iv_opmode == IEEE80211_M_IBSS)
2469 capinfo = IEEE80211_CAPINFO_IBSS;
2470 else
2471 capinfo = 0;
2472 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2473 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2474 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2475 IEEE80211_IS_CHAN_2GHZ(chan))
2476 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2477 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2478 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2479 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2480 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2481 return capinfo;
2482 }
2483
2484 /*
2485 * Send a management frame. The node is for the destination (or ic_bss
2486 * when in station mode). Nodes other than ic_bss have their reference
2487 * count bumped to reflect our use for an indeterminant time.
2488 */
2489 int
2490 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2491 {
2492 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2493 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2494 struct ieee80211vap *vap = ni->ni_vap;
2495 struct ieee80211com *ic = ni->ni_ic;
2496 struct ieee80211_node *bss = vap->iv_bss;
2497 struct ieee80211_bpf_params params;
2498 struct mbuf *m;
2499 uint8_t *frm;
2500 uint16_t capinfo;
2501 int has_challenge, is_shared_key, ret, status;
2502
2503 KASSERT(ni != NULL, ("null node"));
2504
2505 /*
2506 * Hold a reference on the node so it doesn't go away until after
2507 * the xmit is complete all the way in the driver. On error we
2508 * will remove our reference.
2509 */
2510 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2511 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2512 __func__, __LINE__,
2513 ni, ether_sprintf(ni->ni_macaddr),
2514 ieee80211_node_refcnt(ni)+1);
2515 ieee80211_ref_node(ni);
2516
2517 memset(¶ms, 0, sizeof(params));
2518 switch (type) {
2519
2520 case IEEE80211_FC0_SUBTYPE_AUTH:
2521 status = arg >> 16;
2522 arg &= 0xffff;
2523 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2524 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2525 ni->ni_challenge != NULL);
2526
2527 /*
2528 * Deduce whether we're doing open authentication or
2529 * shared key authentication. We do the latter if
2530 * we're in the middle of a shared key authentication
2531 * handshake or if we're initiating an authentication
2532 * request and configured to use shared key.
2533 */
2534 is_shared_key = has_challenge ||
2535 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2536 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2537 bss->ni_authmode == IEEE80211_AUTH_SHARED);
2538
2539 m = ieee80211_getmgtframe(&frm,
2540 ic->ic_headroom + sizeof(struct ieee80211_frame),
2541 3 * sizeof(uint16_t)
2542 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2543 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2544 );
2545 if (m == NULL)
2546 senderr(ENOMEM, is_tx_nobuf);
2547
2548 ((uint16_t *)frm)[0] =
2549 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2550 : htole16(IEEE80211_AUTH_ALG_OPEN);
2551 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2552 ((uint16_t *)frm)[2] = htole16(status);/* status */
2553
2554 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2555 ((uint16_t *)frm)[3] =
2556 htole16((IEEE80211_CHALLENGE_LEN << 8) |
2557 IEEE80211_ELEMID_CHALLENGE);
2558 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2559 IEEE80211_CHALLENGE_LEN);
2560 m->m_pkthdr.len = m->m_len =
2561 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2562 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2563 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2564 "request encrypt frame (%s)", __func__);
2565 /* mark frame for encryption */
2566 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2567 }
2568 } else
2569 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2570
2571 /* XXX not right for shared key */
2572 if (status == IEEE80211_STATUS_SUCCESS)
2573 IEEE80211_NODE_STAT(ni, tx_auth);
2574 else
2575 IEEE80211_NODE_STAT(ni, tx_auth_fail);
2576
2577 if (vap->iv_opmode == IEEE80211_M_STA)
2578 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2579 (void *) vap->iv_state);
2580 break;
2581
2582 case IEEE80211_FC0_SUBTYPE_DEAUTH:
2583 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2584 "send station deauthenticate (reason: %d (%s))", arg,
2585 ieee80211_reason_to_string(arg));
2586 m = ieee80211_getmgtframe(&frm,
2587 ic->ic_headroom + sizeof(struct ieee80211_frame),
2588 sizeof(uint16_t));
2589 if (m == NULL)
2590 senderr(ENOMEM, is_tx_nobuf);
2591 *(uint16_t *)frm = htole16(arg); /* reason */
2592 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2593
2594 IEEE80211_NODE_STAT(ni, tx_deauth);
2595 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2596
2597 ieee80211_node_unauthorize(ni); /* port closed */
2598 break;
2599
2600 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2601 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2602 /*
2603 * asreq frame format
2604 * [2] capability information
2605 * [2] listen interval
2606 * [6*] current AP address (reassoc only)
2607 * [tlv] ssid
2608 * [tlv] supported rates
2609 * [tlv] extended supported rates
2610 * [4] power capability (optional)
2611 * [28] supported channels (optional)
2612 * [tlv] HT capabilities
2613 * [tlv] VHT capabilities
2614 * [tlv] WME (optional)
2615 * [tlv] Vendor OUI HT capabilities (optional)
2616 * [tlv] Atheros capabilities (if negotiated)
2617 * [tlv] AppIE's (optional)
2618 */
2619 m = ieee80211_getmgtframe(&frm,
2620 ic->ic_headroom + sizeof(struct ieee80211_frame),
2621 sizeof(uint16_t)
2622 + sizeof(uint16_t)
2623 + IEEE80211_ADDR_LEN
2624 + 2 + IEEE80211_NWID_LEN
2625 + 2 + IEEE80211_RATE_SIZE
2626 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2627 + 4
2628 + 2 + 26
2629 + sizeof(struct ieee80211_wme_info)
2630 + sizeof(struct ieee80211_ie_htcap)
2631 + sizeof(struct ieee80211_ie_vhtcap)
2632 + 4 + sizeof(struct ieee80211_ie_htcap)
2633 #ifdef IEEE80211_SUPPORT_SUPERG
2634 + sizeof(struct ieee80211_ath_ie)
2635 #endif
2636 + (vap->iv_appie_wpa != NULL ?
2637 vap->iv_appie_wpa->ie_len : 0)
2638 + (vap->iv_appie_assocreq != NULL ?
2639 vap->iv_appie_assocreq->ie_len : 0)
2640 );
2641 if (m == NULL)
2642 senderr(ENOMEM, is_tx_nobuf);
2643
2644 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2645 ("wrong mode %u", vap->iv_opmode));
2646 capinfo = IEEE80211_CAPINFO_ESS;
2647 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2648 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2649 /*
2650 * NB: Some 11a AP's reject the request when
2651 * short preamble is set.
2652 */
2653 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2654 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2655 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2656 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2657 (ic->ic_caps & IEEE80211_C_SHSLOT))
2658 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2659 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2660 (vap->iv_flags & IEEE80211_F_DOTH))
2661 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2662 *(uint16_t *)frm = htole16(capinfo);
2663 frm += 2;
2664
2665 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2666 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2667 bss->ni_intval));
2668 frm += 2;
2669
2670 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2671 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2672 frm += IEEE80211_ADDR_LEN;
2673 }
2674
2675 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2676 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2677 frm = ieee80211_add_rsn(frm, vap);
2678 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2679 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2680 frm = ieee80211_add_powercapability(frm,
2681 ic->ic_curchan);
2682 frm = ieee80211_add_supportedchannels(frm, ic);
2683 }
2684
2685 /*
2686 * Check the channel - we may be using an 11n NIC with an
2687 * 11n capable station, but we're configured to be an 11b
2688 * channel.
2689 */
2690 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2691 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2692 ni->ni_ies.htcap_ie != NULL &&
2693 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2694 frm = ieee80211_add_htcap(frm, ni);
2695 }
2696
2697 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2698 IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2699 ni->ni_ies.vhtcap_ie != NULL &&
2700 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2701 frm = ieee80211_add_vhtcap(frm, ni);
2702 }
2703
2704 frm = ieee80211_add_wpa(frm, vap);
2705 if ((ic->ic_flags & IEEE80211_F_WME) &&
2706 ni->ni_ies.wme_ie != NULL)
2707 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2708
2709 /*
2710 * Same deal - only send HT info if we're on an 11n
2711 * capable channel.
2712 */
2713 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2714 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2715 ni->ni_ies.htcap_ie != NULL &&
2716 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2717 frm = ieee80211_add_htcap_vendor(frm, ni);
2718 }
2719 #ifdef IEEE80211_SUPPORT_SUPERG
2720 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2721 frm = ieee80211_add_ath(frm,
2722 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2723 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2724 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2725 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2726 }
2727 #endif /* IEEE80211_SUPPORT_SUPERG */
2728 if (vap->iv_appie_assocreq != NULL)
2729 frm = add_appie(frm, vap->iv_appie_assocreq);
2730 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2731
2732 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2733 (void *) vap->iv_state);
2734 break;
2735
2736 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2737 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2738 /*
2739 * asresp frame format
2740 * [2] capability information
2741 * [2] status
2742 * [2] association ID
2743 * [tlv] supported rates
2744 * [tlv] extended supported rates
2745 * [tlv] HT capabilities (standard, if STA enabled)
2746 * [tlv] HT information (standard, if STA enabled)
2747 * [tlv] VHT capabilities (standard, if STA enabled)
2748 * [tlv] VHT information (standard, if STA enabled)
2749 * [tlv] WME (if configured and STA enabled)
2750 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2751 * [tlv] HT information (vendor OUI, if STA enabled)
2752 * [tlv] Atheros capabilities (if STA enabled)
2753 * [tlv] AppIE's (optional)
2754 */
2755 m = ieee80211_getmgtframe(&frm,
2756 ic->ic_headroom + sizeof(struct ieee80211_frame),
2757 sizeof(uint16_t)
2758 + sizeof(uint16_t)
2759 + sizeof(uint16_t)
2760 + 2 + IEEE80211_RATE_SIZE
2761 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2762 + sizeof(struct ieee80211_ie_htcap) + 4
2763 + sizeof(struct ieee80211_ie_htinfo) + 4
2764 + sizeof(struct ieee80211_ie_vhtcap)
2765 + sizeof(struct ieee80211_ie_vht_operation)
2766 + sizeof(struct ieee80211_wme_param)
2767 #ifdef IEEE80211_SUPPORT_SUPERG
2768 + sizeof(struct ieee80211_ath_ie)
2769 #endif
2770 + (vap->iv_appie_assocresp != NULL ?
2771 vap->iv_appie_assocresp->ie_len : 0)
2772 );
2773 if (m == NULL)
2774 senderr(ENOMEM, is_tx_nobuf);
2775
2776 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2777 *(uint16_t *)frm = htole16(capinfo);
2778 frm += 2;
2779
2780 *(uint16_t *)frm = htole16(arg); /* status */
2781 frm += 2;
2782
2783 if (arg == IEEE80211_STATUS_SUCCESS) {
2784 *(uint16_t *)frm = htole16(ni->ni_associd);
2785 IEEE80211_NODE_STAT(ni, tx_assoc);
2786 } else
2787 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2788 frm += 2;
2789
2790 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2791 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2792 /* NB: respond according to what we received */
2793 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2794 frm = ieee80211_add_htcap(frm, ni);
2795 frm = ieee80211_add_htinfo(frm, ni);
2796 }
2797 if ((vap->iv_flags & IEEE80211_F_WME) &&
2798 ni->ni_ies.wme_ie != NULL)
2799 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2800 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2801 frm = ieee80211_add_htcap_vendor(frm, ni);
2802 frm = ieee80211_add_htinfo_vendor(frm, ni);
2803 }
2804 if (ni->ni_flags & IEEE80211_NODE_VHT) {
2805 frm = ieee80211_add_vhtcap(frm, ni);
2806 frm = ieee80211_add_vhtinfo(frm, ni);
2807 }
2808 #ifdef IEEE80211_SUPPORT_SUPERG
2809 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2810 frm = ieee80211_add_ath(frm,
2811 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2812 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2813 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2814 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2815 #endif /* IEEE80211_SUPPORT_SUPERG */
2816 if (vap->iv_appie_assocresp != NULL)
2817 frm = add_appie(frm, vap->iv_appie_assocresp);
2818 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2819 break;
2820
2821 case IEEE80211_FC0_SUBTYPE_DISASSOC:
2822 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2823 "send station disassociate (reason: %d (%s))", arg,
2824 ieee80211_reason_to_string(arg));
2825 m = ieee80211_getmgtframe(&frm,
2826 ic->ic_headroom + sizeof(struct ieee80211_frame),
2827 sizeof(uint16_t));
2828 if (m == NULL)
2829 senderr(ENOMEM, is_tx_nobuf);
2830 *(uint16_t *)frm = htole16(arg); /* reason */
2831 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2832
2833 IEEE80211_NODE_STAT(ni, tx_disassoc);
2834 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2835 break;
2836
2837 default:
2838 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2839 "invalid mgmt frame type %u", type);
2840 senderr(EINVAL, is_tx_unknownmgt);
2841 /* NOTREACHED */
2842 }
2843
2844 /* NB: force non-ProbeResp frames to the highest queue */
2845 params.ibp_pri = WME_AC_VO;
2846 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2847 /* NB: we know all frames are unicast */
2848 params.ibp_try0 = bss->ni_txparms->maxretry;
2849 params.ibp_power = bss->ni_txpower;
2850 return ieee80211_mgmt_output(ni, m, type, ¶ms);
2851 bad:
2852 ieee80211_free_node(ni);
2853 return ret;
2854 #undef senderr
2855 #undef HTFLAGS
2856 }
2857
2858 /*
2859 * Return an mbuf with a probe response frame in it.
2860 * Space is left to prepend and 802.11 header at the
2861 * front but it's left to the caller to fill in.
2862 */
2863 struct mbuf *
2864 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2865 {
2866 struct ieee80211vap *vap = bss->ni_vap;
2867 struct ieee80211com *ic = bss->ni_ic;
2868 const struct ieee80211_rateset *rs;
2869 struct mbuf *m;
2870 uint16_t capinfo;
2871 uint8_t *frm;
2872
2873 /*
2874 * probe response frame format
2875 * [8] time stamp
2876 * [2] beacon interval
2877 * [2] cabability information
2878 * [tlv] ssid
2879 * [tlv] supported rates
2880 * [tlv] parameter set (FH/DS)
2881 * [tlv] parameter set (IBSS)
2882 * [tlv] country (optional)
2883 * [3] power control (optional)
2884 * [5] channel switch announcement (CSA) (optional)
2885 * [tlv] extended rate phy (ERP)
2886 * [tlv] extended supported rates
2887 * [tlv] RSN (optional)
2888 * [tlv] HT capabilities
2889 * [tlv] HT information
2890 * [tlv] VHT capabilities
2891 * [tlv] VHT information
2892 * [tlv] WPA (optional)
2893 * [tlv] WME (optional)
2894 * [tlv] Vendor OUI HT capabilities (optional)
2895 * [tlv] Vendor OUI HT information (optional)
2896 * [tlv] Atheros capabilities
2897 * [tlv] AppIE's (optional)
2898 * [tlv] Mesh ID (MBSS)
2899 * [tlv] Mesh Conf (MBSS)
2900 */
2901 m = ieee80211_getmgtframe(&frm,
2902 ic->ic_headroom + sizeof(struct ieee80211_frame),
2903 8
2904 + sizeof(uint16_t)
2905 + sizeof(uint16_t)
2906 + 2 + IEEE80211_NWID_LEN
2907 + 2 + IEEE80211_RATE_SIZE
2908 + 7 /* max(7,3) */
2909 + IEEE80211_COUNTRY_MAX_SIZE
2910 + 3
2911 + sizeof(struct ieee80211_csa_ie)
2912 + sizeof(struct ieee80211_quiet_ie)
2913 + 3
2914 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2915 + sizeof(struct ieee80211_ie_wpa)
2916 + sizeof(struct ieee80211_ie_htcap)
2917 + sizeof(struct ieee80211_ie_htinfo)
2918 + sizeof(struct ieee80211_ie_wpa)
2919 + sizeof(struct ieee80211_wme_param)
2920 + 4 + sizeof(struct ieee80211_ie_htcap)
2921 + 4 + sizeof(struct ieee80211_ie_htinfo)
2922 + sizeof(struct ieee80211_ie_vhtcap)
2923 + sizeof(struct ieee80211_ie_vht_operation)
2924 #ifdef IEEE80211_SUPPORT_SUPERG
2925 + sizeof(struct ieee80211_ath_ie)
2926 #endif
2927 #ifdef IEEE80211_SUPPORT_MESH
2928 + 2 + IEEE80211_MESHID_LEN
2929 + sizeof(struct ieee80211_meshconf_ie)
2930 #endif
2931 + (vap->iv_appie_proberesp != NULL ?
2932 vap->iv_appie_proberesp->ie_len : 0)
2933 );
2934 if (m == NULL) {
2935 vap->iv_stats.is_tx_nobuf++;
2936 return NULL;
2937 }
2938
2939 memset(frm, 0, 8); /* timestamp should be filled later */
2940 frm += 8;
2941 *(uint16_t *)frm = htole16(bss->ni_intval);
2942 frm += 2;
2943 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2944 *(uint16_t *)frm = htole16(capinfo);
2945 frm += 2;
2946
2947 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2948 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2949 frm = ieee80211_add_rates(frm, rs);
2950
2951 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2952 *frm++ = IEEE80211_ELEMID_FHPARMS;
2953 *frm++ = 5;
2954 *frm++ = bss->ni_fhdwell & 0x00ff;
2955 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2956 *frm++ = IEEE80211_FH_CHANSET(
2957 ieee80211_chan2ieee(ic, bss->ni_chan));
2958 *frm++ = IEEE80211_FH_CHANPAT(
2959 ieee80211_chan2ieee(ic, bss->ni_chan));
2960 *frm++ = bss->ni_fhindex;
2961 } else {
2962 *frm++ = IEEE80211_ELEMID_DSPARMS;
2963 *frm++ = 1;
2964 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2965 }
2966
2967 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2968 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2969 *frm++ = 2;
2970 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2971 }
2972 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2973 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2974 frm = ieee80211_add_countryie(frm, ic);
2975 if (vap->iv_flags & IEEE80211_F_DOTH) {
2976 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2977 frm = ieee80211_add_powerconstraint(frm, vap);
2978 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2979 frm = ieee80211_add_csa(frm, vap);
2980 }
2981 if (vap->iv_flags & IEEE80211_F_DOTH) {
2982 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2983 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2984 if (vap->iv_quiet)
2985 frm = ieee80211_add_quiet(frm, vap, 0);
2986 }
2987 }
2988 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2989 frm = ieee80211_add_erp(frm, ic);
2990 frm = ieee80211_add_xrates(frm, rs);
2991 frm = ieee80211_add_rsn(frm, vap);
2992 /*
2993 * NB: legacy 11b clients do not get certain ie's.
2994 * The caller identifies such clients by passing
2995 * a token in legacy to us. Could expand this to be
2996 * any legacy client for stuff like HT ie's.
2997 */
2998 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2999 legacy != IEEE80211_SEND_LEGACY_11B) {
3000 frm = ieee80211_add_htcap(frm, bss);
3001 frm = ieee80211_add_htinfo(frm, bss);
3002 }
3003 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3004 legacy != IEEE80211_SEND_LEGACY_11B) {
3005 frm = ieee80211_add_vhtcap(frm, bss);
3006 frm = ieee80211_add_vhtinfo(frm, bss);
3007 }
3008 frm = ieee80211_add_wpa(frm, vap);
3009 if (vap->iv_flags & IEEE80211_F_WME)
3010 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3011 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3012 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3013 legacy != IEEE80211_SEND_LEGACY_11B) {
3014 frm = ieee80211_add_htcap_vendor(frm, bss);
3015 frm = ieee80211_add_htinfo_vendor(frm, bss);
3016 }
3017 #ifdef IEEE80211_SUPPORT_SUPERG
3018 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3019 legacy != IEEE80211_SEND_LEGACY_11B)
3020 frm = ieee80211_add_athcaps(frm, bss);
3021 #endif
3022 if (vap->iv_appie_proberesp != NULL)
3023 frm = add_appie(frm, vap->iv_appie_proberesp);
3024 #ifdef IEEE80211_SUPPORT_MESH
3025 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3026 frm = ieee80211_add_meshid(frm, vap);
3027 frm = ieee80211_add_meshconf(frm, vap);
3028 }
3029 #endif
3030 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3031
3032 return m;
3033 }
3034
3035 /*
3036 * Send a probe response frame to the specified mac address.
3037 * This does not go through the normal mgt frame api so we
3038 * can specify the destination address and re-use the bss node
3039 * for the sta reference.
3040 */
3041 int
3042 ieee80211_send_proberesp(struct ieee80211vap *vap,
3043 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3044 {
3045 struct ieee80211_node *bss = vap->iv_bss;
3046 struct ieee80211com *ic = vap->iv_ic;
3047 struct mbuf *m;
3048 int ret;
3049
3050 if (vap->iv_state == IEEE80211_S_CAC) {
3051 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3052 "block %s frame in CAC state", "probe response");
3053 vap->iv_stats.is_tx_badstate++;
3054 return EIO; /* XXX */
3055 }
3056
3057 /*
3058 * Hold a reference on the node so it doesn't go away until after
3059 * the xmit is complete all the way in the driver. On error we
3060 * will remove our reference.
3061 */
3062 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3063 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3064 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3065 ieee80211_node_refcnt(bss)+1);
3066 ieee80211_ref_node(bss);
3067
3068 m = ieee80211_alloc_proberesp(bss, legacy);
3069 if (m == NULL) {
3070 ieee80211_free_node(bss);
3071 return ENOMEM;
3072 }
3073
3074 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3075 KASSERT(m != NULL, ("no room for header"));
3076
3077 IEEE80211_TX_LOCK(ic);
3078 ieee80211_send_setup(bss, m,
3079 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3080 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3081 /* XXX power management? */
3082 m->m_flags |= M_ENCAP; /* mark encapsulated */
3083
3084 M_WME_SETAC(m, WME_AC_BE);
3085
3086 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3087 "send probe resp on channel %u to %s%s\n",
3088 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3089 legacy ? " <legacy>" : "");
3090 IEEE80211_NODE_STAT(bss, tx_mgmt);
3091
3092 ret = ieee80211_raw_output(vap, bss, m, NULL);
3093 IEEE80211_TX_UNLOCK(ic);
3094 return (ret);
3095 }
3096
3097 /*
3098 * Allocate and build a RTS (Request To Send) control frame.
3099 */
3100 struct mbuf *
3101 ieee80211_alloc_rts(struct ieee80211com *ic,
3102 const uint8_t ra[IEEE80211_ADDR_LEN],
3103 const uint8_t ta[IEEE80211_ADDR_LEN],
3104 uint16_t dur)
3105 {
3106 struct ieee80211_frame_rts *rts;
3107 struct mbuf *m;
3108
3109 /* XXX honor ic_headroom */
3110 m = m_gethdr(M_NOWAIT, MT_DATA);
3111 if (m != NULL) {
3112 rts = mtod(m, struct ieee80211_frame_rts *);
3113 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3114 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3115 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3116 *(u_int16_t *)rts->i_dur = htole16(dur);
3117 IEEE80211_ADDR_COPY(rts->i_ra, ra);
3118 IEEE80211_ADDR_COPY(rts->i_ta, ta);
3119
3120 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3121 }
3122 return m;
3123 }
3124
3125 /*
3126 * Allocate and build a CTS (Clear To Send) control frame.
3127 */
3128 struct mbuf *
3129 ieee80211_alloc_cts(struct ieee80211com *ic,
3130 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3131 {
3132 struct ieee80211_frame_cts *cts;
3133 struct mbuf *m;
3134
3135 /* XXX honor ic_headroom */
3136 m = m_gethdr(M_NOWAIT, MT_DATA);
3137 if (m != NULL) {
3138 cts = mtod(m, struct ieee80211_frame_cts *);
3139 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3140 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3141 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3142 *(u_int16_t *)cts->i_dur = htole16(dur);
3143 IEEE80211_ADDR_COPY(cts->i_ra, ra);
3144
3145 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3146 }
3147 return m;
3148 }
3149
3150 /*
3151 * Wrapper for CTS/RTS frame allocation.
3152 */
3153 struct mbuf *
3154 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3155 uint8_t rate, int prot)
3156 {
3157 struct ieee80211com *ic = ni->ni_ic;
3158 const struct ieee80211_frame *wh;
3159 struct mbuf *mprot;
3160 uint16_t dur;
3161 int pktlen, isshort;
3162
3163 KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3164 prot == IEEE80211_PROT_CTSONLY,
3165 ("wrong protection type %d", prot));
3166
3167 wh = mtod(m, const struct ieee80211_frame *);
3168 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3169 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3170 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3171 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3172
3173 if (prot == IEEE80211_PROT_RTSCTS) {
3174 /* NB: CTS is the same size as an ACK */
3175 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3176 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3177 } else
3178 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3179
3180 return (mprot);
3181 }
3182
3183 static void
3184 ieee80211_tx_mgt_timeout(void *arg)
3185 {
3186 struct ieee80211vap *vap = arg;
3187
3188 IEEE80211_LOCK(vap->iv_ic);
3189 if (vap->iv_state != IEEE80211_S_INIT &&
3190 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3191 /*
3192 * NB: it's safe to specify a timeout as the reason here;
3193 * it'll only be used in the right state.
3194 */
3195 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3196 IEEE80211_SCAN_FAIL_TIMEOUT);
3197 }
3198 IEEE80211_UNLOCK(vap->iv_ic);
3199 }
3200
3201 /*
3202 * This is the callback set on net80211-sourced transmitted
3203 * authentication request frames.
3204 *
3205 * This does a couple of things:
3206 *
3207 * + If the frame transmitted was a success, it schedules a future
3208 * event which will transition the interface to scan.
3209 * If a state transition _then_ occurs before that event occurs,
3210 * said state transition will cancel this callout.
3211 *
3212 * + If the frame transmit was a failure, it immediately schedules
3213 * the transition back to scan.
3214 */
3215 static void
3216 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3217 {
3218 struct ieee80211vap *vap = ni->ni_vap;
3219 enum ieee80211_state ostate = (enum ieee80211_state) arg;
3220
3221 /*
3222 * Frame transmit completed; arrange timer callback. If
3223 * transmit was successfully we wait for response. Otherwise
3224 * we arrange an immediate callback instead of doing the
3225 * callback directly since we don't know what state the driver
3226 * is in (e.g. what locks it is holding). This work should
3227 * not be too time-critical and not happen too often so the
3228 * added overhead is acceptable.
3229 *
3230 * XXX what happens if !acked but response shows up before callback?
3231 */
3232 if (vap->iv_state == ostate) {
3233 callout_reset(&vap->iv_mgtsend,
3234 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3235 ieee80211_tx_mgt_timeout, vap);
3236 }
3237 }
3238
3239 static void
3240 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3241 struct ieee80211_node *ni)
3242 {
3243 struct ieee80211vap *vap = ni->ni_vap;
3244 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3245 struct ieee80211com *ic = ni->ni_ic;
3246 struct ieee80211_rateset *rs = &ni->ni_rates;
3247 uint16_t capinfo;
3248
3249 /*
3250 * beacon frame format
3251 *
3252 * TODO: update to 802.11-2012; a lot of stuff has changed;
3253 * vendor extensions should be at the end, etc.
3254 *
3255 * [8] time stamp
3256 * [2] beacon interval
3257 * [2] cabability information
3258 * [tlv] ssid
3259 * [tlv] supported rates
3260 * [3] parameter set (DS)
3261 * [8] CF parameter set (optional)
3262 * [tlv] parameter set (IBSS/TIM)
3263 * [tlv] country (optional)
3264 * [3] power control (optional)
3265 * [5] channel switch announcement (CSA) (optional)
3266 * XXX TODO: Quiet
3267 * XXX TODO: IBSS DFS
3268 * XXX TODO: TPC report
3269 * [tlv] extended rate phy (ERP)
3270 * [tlv] extended supported rates
3271 * [tlv] RSN parameters
3272 * XXX TODO: BSSLOAD
3273 * (XXX EDCA parameter set, QoS capability?)
3274 * XXX TODO: AP channel report
3275 *
3276 * [tlv] HT capabilities
3277 * [tlv] HT information
3278 * XXX TODO: 20/40 BSS coexistence
3279 * Mesh:
3280 * XXX TODO: Meshid
3281 * XXX TODO: mesh config
3282 * XXX TODO: mesh awake window
3283 * XXX TODO: beacon timing (mesh, etc)
3284 * XXX TODO: MCCAOP Advertisement Overview
3285 * XXX TODO: MCCAOP Advertisement
3286 * XXX TODO: Mesh channel switch parameters
3287 * VHT:
3288 * XXX TODO: VHT capabilities
3289 * XXX TODO: VHT operation
3290 * XXX TODO: VHT transmit power envelope
3291 * XXX TODO: channel switch wrapper element
3292 * XXX TODO: extended BSS load element
3293 *
3294 * XXX Vendor-specific OIDs (e.g. Atheros)
3295 * [tlv] WPA parameters
3296 * [tlv] WME parameters
3297 * [tlv] Vendor OUI HT capabilities (optional)
3298 * [tlv] Vendor OUI HT information (optional)
3299 * [tlv] Atheros capabilities (optional)
3300 * [tlv] TDMA parameters (optional)
3301 * [tlv] Mesh ID (MBSS)
3302 * [tlv] Mesh Conf (MBSS)
3303 * [tlv] application data (optional)
3304 */
3305
3306 memset(bo, 0, sizeof(*bo));
3307
3308 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3309 frm += 8;
3310 *(uint16_t *)frm = htole16(ni->ni_intval);
3311 frm += 2;
3312 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3313 bo->bo_caps = (uint16_t *)frm;
3314 *(uint16_t *)frm = htole16(capinfo);
3315 frm += 2;
3316 *frm++ = IEEE80211_ELEMID_SSID;
3317 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3318 *frm++ = ni->ni_esslen;
3319 memcpy(frm, ni->ni_essid, ni->ni_esslen);
3320 frm += ni->ni_esslen;
3321 } else
3322 *frm++ = 0;
3323 frm = ieee80211_add_rates(frm, rs);
3324 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3325 *frm++ = IEEE80211_ELEMID_DSPARMS;
3326 *frm++ = 1;
3327 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3328 }
3329 if (ic->ic_flags & IEEE80211_F_PCF) {
3330 bo->bo_cfp = frm;
3331 frm = ieee80211_add_cfparms(frm, ic);
3332 }
3333 bo->bo_tim = frm;
3334 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3335 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3336 *frm++ = 2;
3337 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3338 bo->bo_tim_len = 0;
3339 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3340 vap->iv_opmode == IEEE80211_M_MBSS) {
3341 /* TIM IE is the same for Mesh and Hostap */
3342 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3343
3344 tie->tim_ie = IEEE80211_ELEMID_TIM;
3345 tie->tim_len = 4; /* length */
3346 tie->tim_count = 0; /* DTIM count */
3347 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3348 tie->tim_bitctl = 0; /* bitmap control */
3349 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3350 frm += sizeof(struct ieee80211_tim_ie);
3351 bo->bo_tim_len = 1;
3352 }
3353 bo->bo_tim_trailer = frm;
3354 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3355 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3356 frm = ieee80211_add_countryie(frm, ic);
3357 if (vap->iv_flags & IEEE80211_F_DOTH) {
3358 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3359 frm = ieee80211_add_powerconstraint(frm, vap);
3360 bo->bo_csa = frm;
3361 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3362 frm = ieee80211_add_csa(frm, vap);
3363 } else
3364 bo->bo_csa = frm;
3365
3366 bo->bo_quiet = NULL;
3367 if (vap->iv_flags & IEEE80211_F_DOTH) {
3368 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3369 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3370 (vap->iv_quiet == 1)) {
3371 /*
3372 * We only insert the quiet IE offset if
3373 * the quiet IE is enabled. Otherwise don't
3374 * put it here or we'll just overwrite
3375 * some other beacon contents.
3376 */
3377 if (vap->iv_quiet) {
3378 bo->bo_quiet = frm;
3379 frm = ieee80211_add_quiet(frm,vap, 0);
3380 }
3381 }
3382 }
3383
3384 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3385 bo->bo_erp = frm;
3386 frm = ieee80211_add_erp(frm, ic);
3387 }
3388 frm = ieee80211_add_xrates(frm, rs);
3389 frm = ieee80211_add_rsn(frm, vap);
3390 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3391 frm = ieee80211_add_htcap(frm, ni);
3392 bo->bo_htinfo = frm;
3393 frm = ieee80211_add_htinfo(frm, ni);
3394 }
3395
3396 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3397 frm = ieee80211_add_vhtcap(frm, ni);
3398 bo->bo_vhtinfo = frm;
3399 frm = ieee80211_add_vhtinfo(frm, ni);
3400 /* Transmit power envelope */
3401 /* Channel switch wrapper element */
3402 /* Extended bss load element */
3403 }
3404
3405 frm = ieee80211_add_wpa(frm, vap);
3406 if (vap->iv_flags & IEEE80211_F_WME) {
3407 bo->bo_wme = frm;
3408 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3409 }
3410 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3411 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3412 frm = ieee80211_add_htcap_vendor(frm, ni);
3413 frm = ieee80211_add_htinfo_vendor(frm, ni);
3414 }
3415
3416 #ifdef IEEE80211_SUPPORT_SUPERG
3417 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3418 bo->bo_ath = frm;
3419 frm = ieee80211_add_athcaps(frm, ni);
3420 }
3421 #endif
3422 #ifdef IEEE80211_SUPPORT_TDMA
3423 if (vap->iv_caps & IEEE80211_C_TDMA) {
3424 bo->bo_tdma = frm;
3425 frm = ieee80211_add_tdma(frm, vap);
3426 }
3427 #endif
3428 if (vap->iv_appie_beacon != NULL) {
3429 bo->bo_appie = frm;
3430 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3431 frm = add_appie(frm, vap->iv_appie_beacon);
3432 }
3433
3434 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3435 #ifdef IEEE80211_SUPPORT_MESH
3436 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3437 frm = ieee80211_add_meshid(frm, vap);
3438 bo->bo_meshconf = frm;
3439 frm = ieee80211_add_meshconf(frm, vap);
3440 }
3441 #endif
3442 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3443 bo->bo_csa_trailer_len = frm - bo->bo_csa;
3444 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3445 }
3446
3447 /*
3448 * Allocate a beacon frame and fillin the appropriate bits.
3449 */
3450 struct mbuf *
3451 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3452 {
3453 struct ieee80211vap *vap = ni->ni_vap;
3454 struct ieee80211com *ic = ni->ni_ic;
3455 struct ifnet *ifp = vap->iv_ifp;
3456 struct ieee80211_frame *wh;
3457 struct mbuf *m;
3458 int pktlen;
3459 uint8_t *frm;
3460
3461 /*
3462 * Update the "We're putting the quiet IE in the beacon" state.
3463 */
3464 if (vap->iv_quiet == 1)
3465 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3466 else if (vap->iv_quiet == 0)
3467 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3468
3469 /*
3470 * beacon frame format
3471 *
3472 * Note: This needs updating for 802.11-2012.
3473 *
3474 * [8] time stamp
3475 * [2] beacon interval
3476 * [2] cabability information
3477 * [tlv] ssid
3478 * [tlv] supported rates
3479 * [3] parameter set (DS)
3480 * [8] CF parameter set (optional)
3481 * [tlv] parameter set (IBSS/TIM)
3482 * [tlv] country (optional)
3483 * [3] power control (optional)
3484 * [5] channel switch announcement (CSA) (optional)
3485 * [tlv] extended rate phy (ERP)
3486 * [tlv] extended supported rates
3487 * [tlv] RSN parameters
3488 * [tlv] HT capabilities
3489 * [tlv] HT information
3490 * [tlv] VHT capabilities
3491 * [tlv] VHT operation
3492 * [tlv] Vendor OUI HT capabilities (optional)
3493 * [tlv] Vendor OUI HT information (optional)
3494 * XXX Vendor-specific OIDs (e.g. Atheros)
3495 * [tlv] WPA parameters
3496 * [tlv] WME parameters
3497 * [tlv] TDMA parameters (optional)
3498 * [tlv] Mesh ID (MBSS)
3499 * [tlv] Mesh Conf (MBSS)
3500 * [tlv] application data (optional)
3501 * NB: we allocate the max space required for the TIM bitmap.
3502 * XXX how big is this?
3503 */
3504 pktlen = 8 /* time stamp */
3505 + sizeof(uint16_t) /* beacon interval */
3506 + sizeof(uint16_t) /* capabilities */
3507 + 2 + ni->ni_esslen /* ssid */
3508 + 2 + IEEE80211_RATE_SIZE /* supported rates */
3509 + 2 + 1 /* DS parameters */
3510 + 2 + 6 /* CF parameters */
3511 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3512 + IEEE80211_COUNTRY_MAX_SIZE /* country */
3513 + 2 + 1 /* power control */
3514 + sizeof(struct ieee80211_csa_ie) /* CSA */
3515 + sizeof(struct ieee80211_quiet_ie) /* Quiet */
3516 + 2 + 1 /* ERP */
3517 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3518 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3519 2*sizeof(struct ieee80211_ie_wpa) : 0)
3520 /* XXX conditional? */
3521 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3522 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3523 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3524 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3525 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3526 sizeof(struct ieee80211_wme_param) : 0)
3527 #ifdef IEEE80211_SUPPORT_SUPERG
3528 + sizeof(struct ieee80211_ath_ie) /* ATH */
3529 #endif
3530 #ifdef IEEE80211_SUPPORT_TDMA
3531 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3532 sizeof(struct ieee80211_tdma_param) : 0)
3533 #endif
3534 #ifdef IEEE80211_SUPPORT_MESH
3535 + 2 + ni->ni_meshidlen
3536 + sizeof(struct ieee80211_meshconf_ie)
3537 #endif
3538 + IEEE80211_MAX_APPIE
3539 ;
3540 m = ieee80211_getmgtframe(&frm,
3541 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3542 if (m == NULL) {
3543 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3544 "%s: cannot get buf; size %u\n", __func__, pktlen);
3545 vap->iv_stats.is_tx_nobuf++;
3546 return NULL;
3547 }
3548 ieee80211_beacon_construct(m, frm, ni);
3549
3550 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3551 KASSERT(m != NULL, ("no space for 802.11 header?"));
3552 wh = mtod(m, struct ieee80211_frame *);
3553 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3554 IEEE80211_FC0_SUBTYPE_BEACON;
3555 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3556 *(uint16_t *)wh->i_dur = 0;
3557 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3558 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3559 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3560 *(uint16_t *)wh->i_seq = 0;
3561
3562 return m;
3563 }
3564
3565 /*
3566 * Update the dynamic parts of a beacon frame based on the current state.
3567 */
3568 int
3569 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3570 {
3571 struct ieee80211vap *vap = ni->ni_vap;
3572 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3573 struct ieee80211com *ic = ni->ni_ic;
3574 int len_changed = 0;
3575 uint16_t capinfo;
3576 struct ieee80211_frame *wh;
3577 ieee80211_seq seqno;
3578
3579 IEEE80211_LOCK(ic);
3580 /*
3581 * Handle 11h channel change when we've reached the count.
3582 * We must recalculate the beacon frame contents to account
3583 * for the new channel. Note we do this only for the first
3584 * vap that reaches this point; subsequent vaps just update
3585 * their beacon state to reflect the recalculated channel.
3586 */
3587 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3588 vap->iv_csa_count == ic->ic_csa_count) {
3589 vap->iv_csa_count = 0;
3590 /*
3591 * Effect channel change before reconstructing the beacon
3592 * frame contents as many places reference ni_chan.
3593 */
3594 if (ic->ic_csa_newchan != NULL)
3595 ieee80211_csa_completeswitch(ic);
3596 /*
3597 * NB: ieee80211_beacon_construct clears all pending
3598 * updates in bo_flags so we don't need to explicitly
3599 * clear IEEE80211_BEACON_CSA.
3600 */
3601 ieee80211_beacon_construct(m,
3602 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3603
3604 /* XXX do WME aggressive mode processing? */
3605 IEEE80211_UNLOCK(ic);
3606 return 1; /* just assume length changed */
3607 }
3608
3609 /*
3610 * Handle the quiet time element being added and removed.
3611 * Again, for now we just cheat and reconstruct the whole
3612 * beacon - that way the gap is provided as appropriate.
3613 *
3614 * So, track whether we have already added the IE versus
3615 * whether we want to be adding the IE.
3616 */
3617 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3618 (vap->iv_quiet == 0)) {
3619 /*
3620 * Quiet time beacon IE enabled, but it's disabled;
3621 * recalc
3622 */
3623 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3624 ieee80211_beacon_construct(m,
3625 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3626 /* XXX do WME aggressive mode processing? */
3627 IEEE80211_UNLOCK(ic);
3628 return 1; /* just assume length changed */
3629 }
3630
3631 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3632 (vap->iv_quiet == 1)) {
3633 /*
3634 * Quiet time beacon IE disabled, but it's now enabled;
3635 * recalc
3636 */
3637 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3638 ieee80211_beacon_construct(m,
3639 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3640 /* XXX do WME aggressive mode processing? */
3641 IEEE80211_UNLOCK(ic);
3642 return 1; /* just assume length changed */
3643 }
3644
3645 wh = mtod(m, struct ieee80211_frame *);
3646
3647 /*
3648 * XXX TODO Strictly speaking this should be incremented with the TX
3649 * lock held so as to serialise access to the non-qos TID sequence
3650 * number space.
3651 *
3652 * If the driver identifies it does its own TX seqno management then
3653 * we can skip this (and still not do the TX seqno.)
3654 */
3655 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3656 *(uint16_t *)&wh->i_seq[0] =
3657 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3658 M_SEQNO_SET(m, seqno);
3659
3660 /* XXX faster to recalculate entirely or just changes? */
3661 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3662 *bo->bo_caps = htole16(capinfo);
3663
3664 if (vap->iv_flags & IEEE80211_F_WME) {
3665 struct ieee80211_wme_state *wme = &ic->ic_wme;
3666
3667 /*
3668 * Check for aggressive mode change. When there is
3669 * significant high priority traffic in the BSS
3670 * throttle back BE traffic by using conservative
3671 * parameters. Otherwise BE uses aggressive params
3672 * to optimize performance of legacy/non-QoS traffic.
3673 */
3674 if (wme->wme_flags & WME_F_AGGRMODE) {
3675 if (wme->wme_hipri_traffic >
3676 wme->wme_hipri_switch_thresh) {
3677 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3678 "%s: traffic %u, disable aggressive mode\n",
3679 __func__, wme->wme_hipri_traffic);
3680 wme->wme_flags &= ~WME_F_AGGRMODE;
3681 ieee80211_wme_updateparams_locked(vap);
3682 wme->wme_hipri_traffic =
3683 wme->wme_hipri_switch_hysteresis;
3684 } else
3685 wme->wme_hipri_traffic = 0;
3686 } else {
3687 if (wme->wme_hipri_traffic <=
3688 wme->wme_hipri_switch_thresh) {
3689 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3690 "%s: traffic %u, enable aggressive mode\n",
3691 __func__, wme->wme_hipri_traffic);
3692 wme->wme_flags |= WME_F_AGGRMODE;
3693 ieee80211_wme_updateparams_locked(vap);
3694 wme->wme_hipri_traffic = 0;
3695 } else
3696 wme->wme_hipri_traffic =
3697 wme->wme_hipri_switch_hysteresis;
3698 }
3699 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3700 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
3701 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3702 }
3703 }
3704
3705 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3706 ieee80211_ht_update_beacon(vap, bo);
3707 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3708 }
3709 #ifdef IEEE80211_SUPPORT_TDMA
3710 if (vap->iv_caps & IEEE80211_C_TDMA) {
3711 /*
3712 * NB: the beacon is potentially updated every TBTT.
3713 */
3714 ieee80211_tdma_update_beacon(vap, bo);
3715 }
3716 #endif
3717 #ifdef IEEE80211_SUPPORT_MESH
3718 if (vap->iv_opmode == IEEE80211_M_MBSS)
3719 ieee80211_mesh_update_beacon(vap, bo);
3720 #endif
3721
3722 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3723 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3724 struct ieee80211_tim_ie *tie =
3725 (struct ieee80211_tim_ie *) bo->bo_tim;
3726 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3727 u_int timlen, timoff, i;
3728 /*
3729 * ATIM/DTIM needs updating. If it fits in the
3730 * current space allocated then just copy in the
3731 * new bits. Otherwise we need to move any trailing
3732 * data to make room. Note that we know there is
3733 * contiguous space because ieee80211_beacon_allocate
3734 * insures there is space in the mbuf to write a
3735 * maximal-size virtual bitmap (based on iv_max_aid).
3736 */
3737 /*
3738 * Calculate the bitmap size and offset, copy any
3739 * trailer out of the way, and then copy in the
3740 * new bitmap and update the information element.
3741 * Note that the tim bitmap must contain at least
3742 * one byte and any offset must be even.
3743 */
3744 if (vap->iv_ps_pending != 0) {
3745 timoff = 128; /* impossibly large */
3746 for (i = 0; i < vap->iv_tim_len; i++)
3747 if (vap->iv_tim_bitmap[i]) {
3748 timoff = i &~ 1;
3749 break;
3750 }
3751 KASSERT(timoff != 128, ("tim bitmap empty!"));
3752 for (i = vap->iv_tim_len-1; i >= timoff; i--)
3753 if (vap->iv_tim_bitmap[i])
3754 break;
3755 timlen = 1 + (i - timoff);
3756 } else {
3757 timoff = 0;
3758 timlen = 1;
3759 }
3760
3761 /*
3762 * TODO: validate this!
3763 */
3764 if (timlen != bo->bo_tim_len) {
3765 /* copy up/down trailer */
3766 int adjust = tie->tim_bitmap+timlen
3767 - bo->bo_tim_trailer;
3768 ovbcopy(bo->bo_tim_trailer,
3769 bo->bo_tim_trailer+adjust,
3770 bo->bo_tim_trailer_len);
3771 bo->bo_tim_trailer += adjust;
3772 bo->bo_erp += adjust;
3773 bo->bo_htinfo += adjust;
3774 bo->bo_vhtinfo += adjust;
3775 #ifdef IEEE80211_SUPPORT_SUPERG
3776 bo->bo_ath += adjust;
3777 #endif
3778 #ifdef IEEE80211_SUPPORT_TDMA
3779 bo->bo_tdma += adjust;
3780 #endif
3781 #ifdef IEEE80211_SUPPORT_MESH
3782 bo->bo_meshconf += adjust;
3783 #endif
3784 bo->bo_appie += adjust;
3785 bo->bo_wme += adjust;
3786 bo->bo_csa += adjust;
3787 bo->bo_quiet += adjust;
3788 bo->bo_tim_len = timlen;
3789
3790 /* update information element */
3791 tie->tim_len = 3 + timlen;
3792 tie->tim_bitctl = timoff;
3793 len_changed = 1;
3794 }
3795 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3796 bo->bo_tim_len);
3797
3798 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3799
3800 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3801 "%s: TIM updated, pending %u, off %u, len %u\n",
3802 __func__, vap->iv_ps_pending, timoff, timlen);
3803 }
3804 /* count down DTIM period */
3805 if (tie->tim_count == 0)
3806 tie->tim_count = tie->tim_period - 1;
3807 else
3808 tie->tim_count--;
3809 /* update state for buffered multicast frames on DTIM */
3810 if (mcast && tie->tim_count == 0)
3811 tie->tim_bitctl |= 1;
3812 else
3813 tie->tim_bitctl &= ~1;
3814 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3815 struct ieee80211_csa_ie *csa =
3816 (struct ieee80211_csa_ie *) bo->bo_csa;
3817
3818 /*
3819 * Insert or update CSA ie. If we're just starting
3820 * to count down to the channel switch then we need
3821 * to insert the CSA ie. Otherwise we just need to
3822 * drop the count. The actual change happens above
3823 * when the vap's count reaches the target count.
3824 */
3825 if (vap->iv_csa_count == 0) {
3826 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3827 bo->bo_erp += sizeof(*csa);
3828 bo->bo_htinfo += sizeof(*csa);
3829 bo->bo_vhtinfo += sizeof(*csa);
3830 bo->bo_wme += sizeof(*csa);
3831 #ifdef IEEE80211_SUPPORT_SUPERG
3832 bo->bo_ath += sizeof(*csa);
3833 #endif
3834 #ifdef IEEE80211_SUPPORT_TDMA
3835 bo->bo_tdma += sizeof(*csa);
3836 #endif
3837 #ifdef IEEE80211_SUPPORT_MESH
3838 bo->bo_meshconf += sizeof(*csa);
3839 #endif
3840 bo->bo_appie += sizeof(*csa);
3841 bo->bo_csa_trailer_len += sizeof(*csa);
3842 bo->bo_quiet += sizeof(*csa);
3843 bo->bo_tim_trailer_len += sizeof(*csa);
3844 m->m_len += sizeof(*csa);
3845 m->m_pkthdr.len += sizeof(*csa);
3846
3847 ieee80211_add_csa(bo->bo_csa, vap);
3848 } else
3849 csa->csa_count--;
3850 vap->iv_csa_count++;
3851 /* NB: don't clear IEEE80211_BEACON_CSA */
3852 }
3853
3854 /*
3855 * Only add the quiet time IE if we've enabled it
3856 * as appropriate.
3857 */
3858 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3859 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3860 if (vap->iv_quiet &&
3861 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3862 ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3863 }
3864 }
3865 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3866 /*
3867 * ERP element needs updating.
3868 */
3869 (void) ieee80211_add_erp(bo->bo_erp, ic);
3870 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3871 }
3872 #ifdef IEEE80211_SUPPORT_SUPERG
3873 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
3874 ieee80211_add_athcaps(bo->bo_ath, ni);
3875 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3876 }
3877 #endif
3878 }
3879 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3880 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3881 int aielen;
3882 uint8_t *frm;
3883
3884 aielen = 0;
3885 if (aie != NULL)
3886 aielen += aie->ie_len;
3887 if (aielen != bo->bo_appie_len) {
3888 /* copy up/down trailer */
3889 int adjust = aielen - bo->bo_appie_len;
3890 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3891 bo->bo_tim_trailer_len);
3892 bo->bo_tim_trailer += adjust;
3893 bo->bo_appie += adjust;
3894 bo->bo_appie_len = aielen;
3895
3896 len_changed = 1;
3897 }
3898 frm = bo->bo_appie;
3899 if (aie != NULL)
3900 frm = add_appie(frm, aie);
3901 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3902 }
3903 IEEE80211_UNLOCK(ic);
3904
3905 return len_changed;
3906 }
3907
3908 /*
3909 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3910 * tunnel encapsulation. The frame is assumed to have an Ethernet
3911 * header at the front that must be stripped before prepending the
3912 * LLC followed by the Ethernet header passed in (with an Ethernet
3913 * type that specifies the payload size).
3914 */
3915 struct mbuf *
3916 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3917 const struct ether_header *eh)
3918 {
3919 struct llc *llc;
3920 uint16_t payload;
3921
3922 /* XXX optimize by combining m_adj+M_PREPEND */
3923 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3924 llc = mtod(m, struct llc *);
3925 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3926 llc->llc_control = LLC_UI;
3927 llc->llc_snap.org_code[0] = 0;
3928 llc->llc_snap.org_code[1] = 0;
3929 llc->llc_snap.org_code[2] = 0;
3930 llc->llc_snap.ether_type = eh->ether_type;
3931 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
3932
3933 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3934 if (m == NULL) { /* XXX cannot happen */
3935 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3936 "%s: no space for ether_header\n", __func__);
3937 vap->iv_stats.is_tx_nobuf++;
3938 return NULL;
3939 }
3940 ETHER_HEADER_COPY(mtod(m, void *), eh);
3941 mtod(m, struct ether_header *)->ether_type = htons(payload);
3942 return m;
3943 }
3944
3945 /*
3946 * Complete an mbuf transmission.
3947 *
3948 * For now, this simply processes a completed frame after the
3949 * driver has completed it's transmission and/or retransmission.
3950 * It assumes the frame is an 802.11 encapsulated frame.
3951 *
3952 * Later on it will grow to become the exit path for a given frame
3953 * from the driver and, depending upon how it's been encapsulated
3954 * and already transmitted, it may end up doing A-MPDU retransmission,
3955 * power save requeuing, etc.
3956 *
3957 * In order for the above to work, the driver entry point to this
3958 * must not hold any driver locks. Thus, the driver needs to delay
3959 * any actual mbuf completion until it can release said locks.
3960 *
3961 * This frees the mbuf and if the mbuf has a node reference,
3962 * the node reference will be freed.
3963 */
3964 void
3965 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3966 {
3967
3968 if (ni != NULL) {
3969 struct ifnet *ifp = ni->ni_vap->iv_ifp;
3970
3971 if (status == 0) {
3972 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3973 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3974 if (m->m_flags & M_MCAST)
3975 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3976 } else
3977 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3978 if (m->m_flags & M_TXCB)
3979 ieee80211_process_callback(ni, m, status);
3980 ieee80211_free_node(ni);
3981 }
3982 m_freem(m);
3983 }
3984