Home | History | Annotate | Line # | Download | only in net80211
ieee80211_proto.c revision 1.34.14.1
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      3  *
      4  * Copyright (c) 2001 Atsushi Onoe
      5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      6  * Copyright (c) 2012 IEEE
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __FBSDID("$FreeBSD$");
     32 
     33 /*
     34  * IEEE 802.11 protocol support.
     35  */
     36 
     37 #include "opt_inet.h"
     38 #include "opt_wlan.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/malloc.h>
     44 
     45 #include <sys/socket.h>
     46 #include <sys/sockio.h>
     47 
     48 #include <net/if.h>
     49 #include <net/if_var.h>
     50 #include <net/if_media.h>
     51 #include <net/ethernet.h>		/* XXX for ether_sprintf */
     52 
     53 #include <net80211/ieee80211_var.h>
     54 #include <net80211/ieee80211_adhoc.h>
     55 #include <net80211/ieee80211_sta.h>
     56 #include <net80211/ieee80211_hostap.h>
     57 #include <net80211/ieee80211_wds.h>
     58 #ifdef IEEE80211_SUPPORT_MESH
     59 #include <net80211/ieee80211_mesh.h>
     60 #endif
     61 #include <net80211/ieee80211_monitor.h>
     62 #include <net80211/ieee80211_input.h>
     63 
     64 /* XXX tunables */
     65 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
     66 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
     67 
     68 const char *mgt_subtype_name[] = {
     69 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
     70 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
     71 	"beacon",	"atim",		"disassoc",	"auth",
     72 	"deauth",	"action",	"action_noack",	"reserved#15"
     73 };
     74 const char *ctl_subtype_name[] = {
     75 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
     76 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
     77 	"bar",		"ba",		"ps_poll",	"rts",
     78 	"cts",		"ack",		"cf_end",	"cf_end_ack"
     79 };
     80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
     81 	"IBSS",		/* IEEE80211_M_IBSS */
     82 	"STA",		/* IEEE80211_M_STA */
     83 	"WDS",		/* IEEE80211_M_WDS */
     84 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
     85 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
     86 	"MONITOR",	/* IEEE80211_M_MONITOR */
     87 	"MBSS"		/* IEEE80211_M_MBSS */
     88 };
     89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
     90 	"INIT",		/* IEEE80211_S_INIT */
     91 	"SCAN",		/* IEEE80211_S_SCAN */
     92 	"AUTH",		/* IEEE80211_S_AUTH */
     93 	"ASSOC",	/* IEEE80211_S_ASSOC */
     94 	"CAC",		/* IEEE80211_S_CAC */
     95 	"RUN",		/* IEEE80211_S_RUN */
     96 	"CSA",		/* IEEE80211_S_CSA */
     97 	"SLEEP",	/* IEEE80211_S_SLEEP */
     98 };
     99 const char *ieee80211_wme_acnames[] = {
    100 	"WME_AC_BE",
    101 	"WME_AC_BK",
    102 	"WME_AC_VI",
    103 	"WME_AC_VO",
    104 	"WME_UPSD",
    105 };
    106 
    107 
    108 /*
    109  * Reason code descriptions were (mostly) obtained from
    110  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
    111  */
    112 const char *
    113 ieee80211_reason_to_string(uint16_t reason)
    114 {
    115 	switch (reason) {
    116 	case IEEE80211_REASON_UNSPECIFIED:
    117 		return ("unspecified");
    118 	case IEEE80211_REASON_AUTH_EXPIRE:
    119 		return ("previous authentication is expired");
    120 	case IEEE80211_REASON_AUTH_LEAVE:
    121 		return ("sending STA is leaving/has left IBSS or ESS");
    122 	case IEEE80211_REASON_ASSOC_EXPIRE:
    123 		return ("disassociated due to inactivity");
    124 	case IEEE80211_REASON_ASSOC_TOOMANY:
    125 		return ("too many associated STAs");
    126 	case IEEE80211_REASON_NOT_AUTHED:
    127 		return ("class 2 frame received from nonauthenticated STA");
    128 	case IEEE80211_REASON_NOT_ASSOCED:
    129 		return ("class 3 frame received from nonassociated STA");
    130 	case IEEE80211_REASON_ASSOC_LEAVE:
    131 		return ("sending STA is leaving/has left BSS");
    132 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
    133 		return ("STA requesting (re)association is not authenticated");
    134 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
    135 		return ("information in the Power Capability element is "
    136 			"unacceptable");
    137 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
    138 		return ("information in the Supported Channels element is "
    139 			"unacceptable");
    140 	case IEEE80211_REASON_IE_INVALID:
    141 		return ("invalid element");
    142 	case IEEE80211_REASON_MIC_FAILURE:
    143 		return ("MIC failure");
    144 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
    145 		return ("4-Way handshake timeout");
    146 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
    147 		return ("group key update timeout");
    148 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
    149 		return ("element in 4-Way handshake different from "
    150 			"(re)association request/probe response/beacon frame");
    151 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
    152 		return ("invalid group cipher");
    153 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
    154 		return ("invalid pairwise cipher");
    155 	case IEEE80211_REASON_AKMP_INVALID:
    156 		return ("invalid AKMP");
    157 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
    158 		return ("unsupported version in RSN IE");
    159 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
    160 		return ("invalid capabilities in RSN IE");
    161 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
    162 		return ("IEEE 802.1X authentication failed");
    163 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
    164 		return ("cipher suite rejected because of the security "
    165 			"policy");
    166 	case IEEE80211_REASON_UNSPECIFIED_QOS:
    167 		return ("unspecified (QoS-related)");
    168 	case IEEE80211_REASON_INSUFFICIENT_BW:
    169 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
    170 	case IEEE80211_REASON_TOOMANY_FRAMES:
    171 		return ("too many frames need to be acknowledged");
    172 	case IEEE80211_REASON_OUTSIDE_TXOP:
    173 		return ("STA is transmitting outside the limits of its TXOPs");
    174 	case IEEE80211_REASON_LEAVING_QBSS:
    175 		return ("requested from peer STA (the STA is "
    176 			"resetting/leaving the BSS)");
    177 	case IEEE80211_REASON_BAD_MECHANISM:
    178 		return ("requested from peer STA (it does not want to use "
    179 			"the mechanism)");
    180 	case IEEE80211_REASON_SETUP_NEEDED:
    181 		return ("requested from peer STA (setup is required for the "
    182 			"used mechanism)");
    183 	case IEEE80211_REASON_TIMEOUT:
    184 		return ("requested from peer STA (timeout)");
    185 	case IEEE80211_REASON_PEER_LINK_CANCELED:
    186 		return ("SME cancels the mesh peering instance (not related "
    187 			"to the maximum number of peer mesh STAs)");
    188 	case IEEE80211_REASON_MESH_MAX_PEERS:
    189 		return ("maximum number of peer mesh STAs was reached");
    190 	case IEEE80211_REASON_MESH_CPVIOLATION:
    191 		return ("the received information violates the Mesh "
    192 			"Configuration policy configured in the mesh STA "
    193 			"profile");
    194 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
    195 		return ("the mesh STA has received a Mesh Peering Close "
    196 			"message requesting to close the mesh peering");
    197 	case IEEE80211_REASON_MESH_MAX_RETRIES:
    198 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
    199 			"Peering Open messages, without receiving a Mesh "
    200 			"Peering Confirm message");
    201 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
    202 		return ("the confirmTimer for the mesh peering instance times "
    203 			"out");
    204 	case IEEE80211_REASON_MESH_INVALID_GTK:
    205 		return ("the mesh STA fails to unwrap the GTK or the values "
    206 			"in the wrapped contents do not match");
    207 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
    208 		return ("the mesh STA receives inconsistent information about "
    209 			"the mesh parameters between Mesh Peering Management "
    210 			"frames");
    211 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
    212 		return ("the mesh STA fails the authenticated mesh peering "
    213 			"exchange because due to failure in selecting "
    214 			"pairwise/group ciphersuite");
    215 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
    216 		return ("the mesh STA does not have proxy information for "
    217 			"this external destination");
    218 	case IEEE80211_REASON_MESH_PERR_NO_FI:
    219 		return ("the mesh STA does not have forwarding information "
    220 			"for this destination");
    221 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
    222 		return ("the mesh STA determines that the link to the next "
    223 			"hop of an active path in its forwarding information "
    224 			"is no longer usable");
    225 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
    226 		return ("the MAC address of the STA already exists in the "
    227 			"mesh BSS");
    228 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
    229 		return ("the mesh STA performs channel switch to meet "
    230 			"regulatory requirements");
    231 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
    232 		return ("the mesh STA performs channel switch with "
    233 			"unspecified reason");
    234 	default:
    235 		return ("reserved/unknown");
    236 	}
    237 }
    238 
    239 static void beacon_miss(void *, int);
    240 static void beacon_swmiss(void *, int);
    241 static void parent_updown(void *, int);
    242 static void update_mcast(void *, int);
    243 static void update_promisc(void *, int);
    244 static void update_channel(void *, int);
    245 static void update_chw(void *, int);
    246 static void vap_update_wme(void *, int);
    247 static void restart_vaps(void *, int);
    248 static void ieee80211_newstate_cb(void *, int);
    249 
    250 static int
    251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
    252 	const struct ieee80211_bpf_params *params)
    253 {
    254 
    255 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
    256 	m_freem(m);
    257 	return ENETDOWN;
    258 }
    259 
    260 void
    261 ieee80211_proto_attach(struct ieee80211com *ic)
    262 {
    263 	uint8_t hdrlen;
    264 
    265 	/* override the 802.3 setting */
    266 	hdrlen = ic->ic_headroom
    267 		+ sizeof(struct ieee80211_qosframe_addr4)
    268 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    269 		+ IEEE80211_WEP_EXTIVLEN;
    270 	/* XXX no way to recalculate on ifdetach */
    271 	if (ALIGN(hdrlen) > max_linkhdr) {
    272 		/* XXX sanity check... */
    273 		max_linkhdr = ALIGN(hdrlen);
    274 		max_hdr = max_linkhdr + max_protohdr;
    275 		max_datalen = MHLEN - max_hdr;
    276 	}
    277 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
    278 
    279 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
    280 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
    281 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
    282 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
    283 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
    284 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
    285 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
    286 
    287 	ic->ic_wme.wme_hipri_switch_hysteresis =
    288 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
    289 
    290 	/* initialize management frame handlers */
    291 	ic->ic_send_mgmt = ieee80211_send_mgmt;
    292 	ic->ic_raw_xmit = null_raw_xmit;
    293 
    294 	ieee80211_adhoc_attach(ic);
    295 	ieee80211_sta_attach(ic);
    296 	ieee80211_wds_attach(ic);
    297 	ieee80211_hostap_attach(ic);
    298 #ifdef IEEE80211_SUPPORT_MESH
    299 	ieee80211_mesh_attach(ic);
    300 #endif
    301 	ieee80211_monitor_attach(ic);
    302 }
    303 
    304 void
    305 ieee80211_proto_detach(struct ieee80211com *ic)
    306 {
    307 	ieee80211_monitor_detach(ic);
    308 #ifdef IEEE80211_SUPPORT_MESH
    309 	ieee80211_mesh_detach(ic);
    310 #endif
    311 	ieee80211_hostap_detach(ic);
    312 	ieee80211_wds_detach(ic);
    313 	ieee80211_adhoc_detach(ic);
    314 	ieee80211_sta_detach(ic);
    315 }
    316 
    317 static void
    318 null_update_beacon(struct ieee80211vap *vap, int item)
    319 {
    320 }
    321 
    322 void
    323 ieee80211_proto_vattach(struct ieee80211vap *vap)
    324 {
    325 	struct ieee80211com *ic = vap->iv_ic;
    326 	struct ifnet *ifp = vap->iv_ifp;
    327 	int i;
    328 
    329 	/* override the 802.3 setting */
    330 	ifp->if_hdrlen = ic->ic_headroom
    331                 + sizeof(struct ieee80211_qosframe_addr4)
    332                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    333                 + IEEE80211_WEP_EXTIVLEN;
    334 
    335 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
    336 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
    337 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
    338 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
    339 	callout_init(&vap->iv_mgtsend, 1);
    340 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
    341 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
    342 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
    343 	/*
    344 	 * Install default tx rate handling: no fixed rate, lowest
    345 	 * supported rate for mgmt and multicast frames.  Default
    346 	 * max retry count.  These settings can be changed by the
    347 	 * driver and/or user applications.
    348 	 */
    349 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
    350 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
    351 
    352 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
    353 
    354 		/*
    355 		 * Setting the management rate to MCS 0 assumes that the
    356 		 * BSS Basic rate set is empty and the BSS Basic MCS set
    357 		 * is not.
    358 		 *
    359 		 * Since we're not checking this, default to the lowest
    360 		 * defined rate for this mode.
    361 		 *
    362 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
    363 		 * some MCS management traffic (eg BA response frames.)
    364 		 *
    365 		 * See also: 9.6.0 of the 802.11n-2009 specification.
    366 		 */
    367 #ifdef	NOTYET
    368 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
    369 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
    370 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
    371 		} else {
    372 			vap->iv_txparms[i].mgmtrate =
    373 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    374 			vap->iv_txparms[i].mcastrate =
    375 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    376 		}
    377 #endif
    378 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    379 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    380 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
    381 	}
    382 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
    383 
    384 	vap->iv_update_beacon = null_update_beacon;
    385 	vap->iv_deliver_data = ieee80211_deliver_data;
    386 
    387 	/* attach support for operating mode */
    388 	ic->ic_vattach[vap->iv_opmode](vap);
    389 }
    390 
    391 void
    392 ieee80211_proto_vdetach(struct ieee80211vap *vap)
    393 {
    394 #define	FREEAPPIE(ie) do { \
    395 	if (ie != NULL) \
    396 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
    397 } while (0)
    398 	/*
    399 	 * Detach operating mode module.
    400 	 */
    401 	if (vap->iv_opdetach != NULL)
    402 		vap->iv_opdetach(vap);
    403 	/*
    404 	 * This should not be needed as we detach when reseting
    405 	 * the state but be conservative here since the
    406 	 * authenticator may do things like spawn kernel threads.
    407 	 */
    408 	if (vap->iv_auth->ia_detach != NULL)
    409 		vap->iv_auth->ia_detach(vap);
    410 	/*
    411 	 * Detach any ACL'ator.
    412 	 */
    413 	if (vap->iv_acl != NULL)
    414 		vap->iv_acl->iac_detach(vap);
    415 
    416 	FREEAPPIE(vap->iv_appie_beacon);
    417 	FREEAPPIE(vap->iv_appie_probereq);
    418 	FREEAPPIE(vap->iv_appie_proberesp);
    419 	FREEAPPIE(vap->iv_appie_assocreq);
    420 	FREEAPPIE(vap->iv_appie_assocresp);
    421 	FREEAPPIE(vap->iv_appie_wpa);
    422 #undef FREEAPPIE
    423 }
    424 
    425 /*
    426  * Simple-minded authenticator module support.
    427  */
    428 
    429 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
    430 /* XXX well-known names */
    431 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
    432 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
    433 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
    434 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
    435 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
    436 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
    437 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
    438 };
    439 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
    440 
    441 static const struct ieee80211_authenticator auth_internal = {
    442 	.ia_name		= "wlan_internal",
    443 	.ia_attach		= NULL,
    444 	.ia_detach		= NULL,
    445 	.ia_node_join		= NULL,
    446 	.ia_node_leave		= NULL,
    447 };
    448 
    449 /*
    450  * Setup internal authenticators once; they are never unregistered.
    451  */
    452 static void
    453 ieee80211_auth_setup(void)
    454 {
    455 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
    456 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
    457 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
    458 }
    459 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
    460 
    461 const struct ieee80211_authenticator *
    462 ieee80211_authenticator_get(int auth)
    463 {
    464 	if (auth >= IEEE80211_AUTH_MAX)
    465 		return NULL;
    466 	if (authenticators[auth] == NULL)
    467 		ieee80211_load_module(auth_modnames[auth]);
    468 	return authenticators[auth];
    469 }
    470 
    471 void
    472 ieee80211_authenticator_register(int type,
    473 	const struct ieee80211_authenticator *auth)
    474 {
    475 	if (type >= IEEE80211_AUTH_MAX)
    476 		return;
    477 	authenticators[type] = auth;
    478 }
    479 
    480 void
    481 ieee80211_authenticator_unregister(int type)
    482 {
    483 
    484 	if (type >= IEEE80211_AUTH_MAX)
    485 		return;
    486 	authenticators[type] = NULL;
    487 }
    488 
    489 /*
    490  * Very simple-minded ACL module support.
    491  */
    492 /* XXX just one for now */
    493 static	const struct ieee80211_aclator *acl = NULL;
    494 
    495 void
    496 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
    497 {
    498 	printf("wlan: %s acl policy registered\n", iac->iac_name);
    499 	acl = iac;
    500 }
    501 
    502 void
    503 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
    504 {
    505 	if (acl == iac)
    506 		acl = NULL;
    507 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
    508 }
    509 
    510 const struct ieee80211_aclator *
    511 ieee80211_aclator_get(const char *name)
    512 {
    513 	if (acl == NULL)
    514 		ieee80211_load_module("wlan_acl");
    515 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
    516 }
    517 
    518 void
    519 ieee80211_print_essid(const uint8_t *essid, int len)
    520 {
    521 	const uint8_t *p;
    522 	int i;
    523 
    524 	if (len > IEEE80211_NWID_LEN)
    525 		len = IEEE80211_NWID_LEN;
    526 	/* determine printable or not */
    527 	for (i = 0, p = essid; i < len; i++, p++) {
    528 		if (*p < ' ' || *p > 0x7e)
    529 			break;
    530 	}
    531 	if (i == len) {
    532 		printf("\"");
    533 		for (i = 0, p = essid; i < len; i++, p++)
    534 			printf("%c", *p);
    535 		printf("\"");
    536 	} else {
    537 		printf("0x");
    538 		for (i = 0, p = essid; i < len; i++, p++)
    539 			printf("%02x", *p);
    540 	}
    541 }
    542 
    543 void
    544 ieee80211_dump_pkt(struct ieee80211com *ic,
    545 	const uint8_t *buf, int len, int rate, int rssi)
    546 {
    547 	const struct ieee80211_frame *wh;
    548 	int i;
    549 
    550 	wh = (const struct ieee80211_frame *)buf;
    551 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
    552 	case IEEE80211_FC1_DIR_NODS:
    553 		printf("NODS %s", ether_sprintf(wh->i_addr2));
    554 		printf("->%s", ether_sprintf(wh->i_addr1));
    555 		printf("(%s)", ether_sprintf(wh->i_addr3));
    556 		break;
    557 	case IEEE80211_FC1_DIR_TODS:
    558 		printf("TODS %s", ether_sprintf(wh->i_addr2));
    559 		printf("->%s", ether_sprintf(wh->i_addr3));
    560 		printf("(%s)", ether_sprintf(wh->i_addr1));
    561 		break;
    562 	case IEEE80211_FC1_DIR_FROMDS:
    563 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
    564 		printf("->%s", ether_sprintf(wh->i_addr1));
    565 		printf("(%s)", ether_sprintf(wh->i_addr2));
    566 		break;
    567 	case IEEE80211_FC1_DIR_DSTODS:
    568 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
    569 		printf("->%s", ether_sprintf(wh->i_addr3));
    570 		printf("(%s", ether_sprintf(wh->i_addr2));
    571 		printf("->%s)", ether_sprintf(wh->i_addr1));
    572 		break;
    573 	}
    574 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
    575 	case IEEE80211_FC0_TYPE_DATA:
    576 		printf(" data");
    577 		break;
    578 	case IEEE80211_FC0_TYPE_MGT:
    579 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
    580 		break;
    581 	default:
    582 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
    583 		break;
    584 	}
    585 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
    586 		const struct ieee80211_qosframe *qwh =
    587 			(const struct ieee80211_qosframe *)buf;
    588 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
    589 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
    590 	}
    591 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
    592 		int off;
    593 
    594 		off = ieee80211_anyhdrspace(ic, wh);
    595 		printf(" WEP [IV %.02x %.02x %.02x",
    596 			buf[off+0], buf[off+1], buf[off+2]);
    597 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
    598 			printf(" %.02x %.02x %.02x",
    599 				buf[off+4], buf[off+5], buf[off+6]);
    600 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
    601 	}
    602 	if (rate >= 0)
    603 		printf(" %dM", rate / 2);
    604 	if (rssi >= 0)
    605 		printf(" +%d", rssi);
    606 	printf("\n");
    607 	if (len > 0) {
    608 		for (i = 0; i < len; i++) {
    609 			if ((i & 1) == 0)
    610 				printf(" ");
    611 			printf("%02x", buf[i]);
    612 		}
    613 		printf("\n");
    614 	}
    615 }
    616 
    617 static __inline int
    618 findrix(const struct ieee80211_rateset *rs, int r)
    619 {
    620 	int i;
    621 
    622 	for (i = 0; i < rs->rs_nrates; i++)
    623 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
    624 			return i;
    625 	return -1;
    626 }
    627 
    628 int
    629 ieee80211_fix_rate(struct ieee80211_node *ni,
    630 	struct ieee80211_rateset *nrs, int flags)
    631 {
    632 	struct ieee80211vap *vap = ni->ni_vap;
    633 	struct ieee80211com *ic = ni->ni_ic;
    634 	int i, j, rix, error;
    635 	int okrate, badrate, fixedrate, ucastrate;
    636 	const struct ieee80211_rateset *srs;
    637 	uint8_t r;
    638 
    639 	error = 0;
    640 	okrate = badrate = 0;
    641 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
    642 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
    643 		/*
    644 		 * Workaround awkwardness with fixed rate.  We are called
    645 		 * to check both the legacy rate set and the HT rate set
    646 		 * but we must apply any legacy fixed rate check only to the
    647 		 * legacy rate set and vice versa.  We cannot tell what type
    648 		 * of rate set we've been given (legacy or HT) but we can
    649 		 * distinguish the fixed rate type (MCS have 0x80 set).
    650 		 * So to deal with this the caller communicates whether to
    651 		 * check MCS or legacy rate using the flags and we use the
    652 		 * type of any fixed rate to avoid applying an MCS to a
    653 		 * legacy rate and vice versa.
    654 		 */
    655 		if (ucastrate & 0x80) {
    656 			if (flags & IEEE80211_F_DOFRATE)
    657 				flags &= ~IEEE80211_F_DOFRATE;
    658 		} else if ((ucastrate & 0x80) == 0) {
    659 			if (flags & IEEE80211_F_DOFMCS)
    660 				flags &= ~IEEE80211_F_DOFMCS;
    661 		}
    662 		/* NB: required to make MCS match below work */
    663 		ucastrate &= IEEE80211_RATE_VAL;
    664 	}
    665 	fixedrate = IEEE80211_FIXED_RATE_NONE;
    666 	/*
    667 	 * XXX we are called to process both MCS and legacy rates;
    668 	 * we must use the appropriate basic rate set or chaos will
    669 	 * ensue; for now callers that want MCS must supply
    670 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
    671 	 * function so there are two variants, one for MCS and one
    672 	 * for legacy rates.
    673 	 */
    674 	if (flags & IEEE80211_F_DOBRS)
    675 		srs = (const struct ieee80211_rateset *)
    676 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
    677 	else
    678 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
    679 	for (i = 0; i < nrs->rs_nrates; ) {
    680 		if (flags & IEEE80211_F_DOSORT) {
    681 			/*
    682 			 * Sort rates.
    683 			 */
    684 			for (j = i + 1; j < nrs->rs_nrates; j++) {
    685 				if (IEEE80211_RV(nrs->rs_rates[i]) >
    686 				    IEEE80211_RV(nrs->rs_rates[j])) {
    687 					r = nrs->rs_rates[i];
    688 					nrs->rs_rates[i] = nrs->rs_rates[j];
    689 					nrs->rs_rates[j] = r;
    690 				}
    691 			}
    692 		}
    693 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
    694 		badrate = r;
    695 		/*
    696 		 * Check for fixed rate.
    697 		 */
    698 		if (r == ucastrate)
    699 			fixedrate = r;
    700 		/*
    701 		 * Check against supported rates.
    702 		 */
    703 		rix = findrix(srs, r);
    704 		if (flags & IEEE80211_F_DONEGO) {
    705 			if (rix < 0) {
    706 				/*
    707 				 * A rate in the node's rate set is not
    708 				 * supported.  If this is a basic rate and we
    709 				 * are operating as a STA then this is an error.
    710 				 * Otherwise we just discard/ignore the rate.
    711 				 */
    712 				if ((flags & IEEE80211_F_JOIN) &&
    713 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
    714 					error++;
    715 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
    716 				/*
    717 				 * Overwrite with the supported rate
    718 				 * value so any basic rate bit is set.
    719 				 */
    720 				nrs->rs_rates[i] = srs->rs_rates[rix];
    721 			}
    722 		}
    723 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
    724 			/*
    725 			 * Delete unacceptable rates.
    726 			 */
    727 			nrs->rs_nrates--;
    728 			for (j = i; j < nrs->rs_nrates; j++)
    729 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
    730 			nrs->rs_rates[j] = 0;
    731 			continue;
    732 		}
    733 		if (rix >= 0)
    734 			okrate = nrs->rs_rates[i];
    735 		i++;
    736 	}
    737 	if (okrate == 0 || error != 0 ||
    738 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
    739 	     fixedrate != ucastrate)) {
    740 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
    741 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
    742 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
    743 		return badrate | IEEE80211_RATE_BASIC;
    744 	} else
    745 		return IEEE80211_RV(okrate);
    746 }
    747 
    748 /*
    749  * Reset 11g-related state.
    750  */
    751 void
    752 ieee80211_reset_erp(struct ieee80211com *ic)
    753 {
    754 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
    755 	ic->ic_nonerpsta = 0;
    756 	ic->ic_longslotsta = 0;
    757 	/*
    758 	 * Short slot time is enabled only when operating in 11g
    759 	 * and not in an IBSS.  We must also honor whether or not
    760 	 * the driver is capable of doing it.
    761 	 */
    762 	ieee80211_set_shortslottime(ic,
    763 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    764 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
    765 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
    766 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
    767 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
    768 	/*
    769 	 * Set short preamble and ERP barker-preamble flags.
    770 	 */
    771 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    772 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
    773 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
    774 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
    775 	} else {
    776 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
    777 		ic->ic_flags |= IEEE80211_F_USEBARKER;
    778 	}
    779 }
    780 
    781 /*
    782  * Set the short slot time state and notify the driver.
    783  */
    784 void
    785 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
    786 {
    787 	if (onoff)
    788 		ic->ic_flags |= IEEE80211_F_SHSLOT;
    789 	else
    790 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
    791 	/* notify driver */
    792 	if (ic->ic_updateslot != NULL)
    793 		ic->ic_updateslot(ic);
    794 }
    795 
    796 /*
    797  * Check if the specified rate set supports ERP.
    798  * NB: the rate set is assumed to be sorted.
    799  */
    800 int
    801 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
    802 {
    803 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
    804 	int i, j;
    805 
    806 	if (rs->rs_nrates < nitems(rates))
    807 		return 0;
    808 	for (i = 0; i < nitems(rates); i++) {
    809 		for (j = 0; j < rs->rs_nrates; j++) {
    810 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
    811 			if (rates[i] == r)
    812 				goto next;
    813 			if (r > rates[i])
    814 				return 0;
    815 		}
    816 		return 0;
    817 	next:
    818 		;
    819 	}
    820 	return 1;
    821 }
    822 
    823 /*
    824  * Mark the basic rates for the rate table based on the
    825  * operating mode.  For real 11g we mark all the 11b rates
    826  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
    827  * 11b rates.  There's also a pseudo 11a-mode used to mark only
    828  * the basic OFDM rates.
    829  */
    830 static void
    831 setbasicrates(struct ieee80211_rateset *rs,
    832     enum ieee80211_phymode mode, int add)
    833 {
    834 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
    835 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
    836 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
    837 					    /* NB: mixed b/g */
    838 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
    839 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
    840 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
    841 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
    842 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
    843 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
    844 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
    845 					    /* NB: mixed b/g */
    846 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
    847 					    /* NB: mixed b/g */
    848 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
    849 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
    850 	};
    851 	int i, j;
    852 
    853 	for (i = 0; i < rs->rs_nrates; i++) {
    854 		if (!add)
    855 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
    856 		for (j = 0; j < basic[mode].rs_nrates; j++)
    857 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
    858 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
    859 				break;
    860 			}
    861 	}
    862 }
    863 
    864 /*
    865  * Set the basic rates in a rate set.
    866  */
    867 void
    868 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
    869     enum ieee80211_phymode mode)
    870 {
    871 	setbasicrates(rs, mode, 0);
    872 }
    873 
    874 /*
    875  * Add basic rates to a rate set.
    876  */
    877 void
    878 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
    879     enum ieee80211_phymode mode)
    880 {
    881 	setbasicrates(rs, mode, 1);
    882 }
    883 
    884 /*
    885  * WME protocol support.
    886  *
    887  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
    888  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
    889  * Draft 2.0 Test Plan (Appendix D).
    890  *
    891  * Static/Dynamic Turbo mode settings come from Atheros.
    892  */
    893 typedef struct phyParamType {
    894 	uint8_t		aifsn;
    895 	uint8_t		logcwmin;
    896 	uint8_t		logcwmax;
    897 	uint16_t	txopLimit;
    898 	uint8_t 	acm;
    899 } paramType;
    900 
    901 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
    902 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
    903 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
    904 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
    905 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
    906 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
    907 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
    908 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
    909 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
    910 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
    911 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
    912 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
    913 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
    914 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
    915 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
    916 };
    917 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
    918 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
    919 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
    920 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
    921 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
    922 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
    923 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
    924 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
    925 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
    926 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
    927 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
    928 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
    929 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
    930 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
    931 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
    932 };
    933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
    934 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
    935 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
    936 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
    937 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
    938 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
    939 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
    940 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
    941 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
    942 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
    943 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
    944 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
    945 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
    946 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
    947 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
    948 };
    949 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
    950 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
    951 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
    952 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
    953 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
    954 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
    955 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
    956 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
    957 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
    958 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
    959 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
    960 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
    961 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
    962 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
    963 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
    964 };
    965 
    966 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
    967 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
    968 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
    969 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
    970 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
    971 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
    972 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
    973 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
    974 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
    975 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
    976 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
    977 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
    978 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
    979 };
    980 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
    981 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
    982 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
    983 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
    984 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
    985 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
    986 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
    987 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
    988 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
    989 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
    990 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
    991 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
    992 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
    993 };
    994 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
    995 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
    996 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
    997 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
    998 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
    999 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
   1000 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
   1001 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
   1002 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
   1003 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
   1004 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
   1005 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
   1006 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
   1007 };
   1008 
   1009 static void
   1010 _setifsparams(struct wmeParams *wmep, const paramType *phy)
   1011 {
   1012 	wmep->wmep_aifsn = phy->aifsn;
   1013 	wmep->wmep_logcwmin = phy->logcwmin;
   1014 	wmep->wmep_logcwmax = phy->logcwmax;
   1015 	wmep->wmep_txopLimit = phy->txopLimit;
   1016 }
   1017 
   1018 static void
   1019 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
   1020 	struct wmeParams *wmep, const paramType *phy)
   1021 {
   1022 	wmep->wmep_acm = phy->acm;
   1023 	_setifsparams(wmep, phy);
   1024 
   1025 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1026 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
   1027 	    ieee80211_wme_acnames[ac], type,
   1028 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
   1029 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
   1030 }
   1031 
   1032 static void
   1033 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
   1034 {
   1035 	struct ieee80211com *ic = vap->iv_ic;
   1036 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1037 	const paramType *pPhyParam, *pBssPhyParam;
   1038 	struct wmeParams *wmep;
   1039 	enum ieee80211_phymode mode;
   1040 	int i;
   1041 
   1042 	IEEE80211_LOCK_ASSERT(ic);
   1043 
   1044 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
   1045 		return;
   1046 
   1047 	/*
   1048 	 * Clear the wme cap_info field so a qoscount from a previous
   1049 	 * vap doesn't confuse later code which only parses the beacon
   1050 	 * field and updates hardware when said field changes.
   1051 	 * Otherwise the hardware is programmed with defaults, not what
   1052 	 * the beacon actually announces.
   1053 	 */
   1054 	wme->wme_wmeChanParams.cap_info = 0;
   1055 
   1056 	/*
   1057 	 * Select mode; we can be called early in which case we
   1058 	 * always use auto mode.  We know we'll be called when
   1059 	 * entering the RUN state with bsschan setup properly
   1060 	 * so state will eventually get set correctly
   1061 	 */
   1062 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1063 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1064 	else
   1065 		mode = IEEE80211_MODE_AUTO;
   1066 	for (i = 0; i < WME_NUM_AC; i++) {
   1067 		switch (i) {
   1068 		case WME_AC_BK:
   1069 			pPhyParam = &phyParamForAC_BK[mode];
   1070 			pBssPhyParam = &phyParamForAC_BK[mode];
   1071 			break;
   1072 		case WME_AC_VI:
   1073 			pPhyParam = &phyParamForAC_VI[mode];
   1074 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
   1075 			break;
   1076 		case WME_AC_VO:
   1077 			pPhyParam = &phyParamForAC_VO[mode];
   1078 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
   1079 			break;
   1080 		case WME_AC_BE:
   1081 		default:
   1082 			pPhyParam = &phyParamForAC_BE[mode];
   1083 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
   1084 			break;
   1085 		}
   1086 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1087 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1088 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
   1089 		} else {
   1090 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
   1091 		}
   1092 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1093 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
   1094 	}
   1095 	/* NB: check ic_bss to avoid NULL deref on initial attach */
   1096 	if (vap->iv_bss != NULL) {
   1097 		/*
   1098 		 * Calculate aggressive mode switching threshold based
   1099 		 * on beacon interval.  This doesn't need locking since
   1100 		 * we're only called before entering the RUN state at
   1101 		 * which point we start sending beacon frames.
   1102 		 */
   1103 		wme->wme_hipri_switch_thresh =
   1104 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
   1105 		wme->wme_flags &= ~WME_F_AGGRMODE;
   1106 		ieee80211_wme_updateparams(vap);
   1107 	}
   1108 }
   1109 
   1110 void
   1111 ieee80211_wme_initparams(struct ieee80211vap *vap)
   1112 {
   1113 	struct ieee80211com *ic = vap->iv_ic;
   1114 
   1115 	IEEE80211_LOCK(ic);
   1116 	ieee80211_wme_initparams_locked(vap);
   1117 	IEEE80211_UNLOCK(ic);
   1118 }
   1119 
   1120 /*
   1121  * Update WME parameters for ourself and the BSS.
   1122  */
   1123 void
   1124 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
   1125 {
   1126 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
   1127 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
   1128 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
   1129 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
   1130 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
   1131 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
   1132 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
   1133 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
   1134 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
   1135 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
   1136 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
   1137 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1138 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1139 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1140 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1141 	};
   1142 	struct ieee80211com *ic = vap->iv_ic;
   1143 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1144 	const struct wmeParams *wmep;
   1145 	struct wmeParams *chanp, *bssp;
   1146 	enum ieee80211_phymode mode;
   1147 	int i;
   1148 	int do_aggrmode = 0;
   1149 
   1150        	/*
   1151 	 * Set up the channel access parameters for the physical
   1152 	 * device.  First populate the configured settings.
   1153 	 */
   1154 	for (i = 0; i < WME_NUM_AC; i++) {
   1155 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
   1156 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1157 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1158 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1159 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1160 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1161 
   1162 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
   1163 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1164 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1165 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1166 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1167 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1168 	}
   1169 
   1170 	/*
   1171 	 * Select mode; we can be called early in which case we
   1172 	 * always use auto mode.  We know we'll be called when
   1173 	 * entering the RUN state with bsschan setup properly
   1174 	 * so state will eventually get set correctly
   1175 	 */
   1176 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1177 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1178 	else
   1179 		mode = IEEE80211_MODE_AUTO;
   1180 
   1181 	/*
   1182 	 * This implements aggressive mode as found in certain
   1183 	 * vendors' AP's.  When there is significant high
   1184 	 * priority (VI/VO) traffic in the BSS throttle back BE
   1185 	 * traffic by using conservative parameters.  Otherwise
   1186 	 * BE uses aggressive params to optimize performance of
   1187 	 * legacy/non-QoS traffic.
   1188 	 */
   1189 
   1190 	/* Hostap? Only if aggressive mode is enabled */
   1191         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1192 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
   1193 		do_aggrmode = 1;
   1194 
   1195 	/*
   1196 	 * Station? Only if we're in a non-QoS BSS.
   1197 	 */
   1198 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
   1199 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
   1200 		do_aggrmode = 1;
   1201 
   1202 	/*
   1203 	 * IBSS? Only if we we have WME enabled.
   1204 	 */
   1205 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
   1206 	    (vap->iv_flags & IEEE80211_F_WME))
   1207 		do_aggrmode = 1;
   1208 
   1209 	/*
   1210 	 * If WME is disabled on this VAP, default to aggressive mode
   1211 	 * regardless of the configuration.
   1212 	 */
   1213 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
   1214 		do_aggrmode = 1;
   1215 
   1216 	/* XXX WDS? */
   1217 
   1218 	/* XXX MBSS? */
   1219 
   1220 	if (do_aggrmode) {
   1221 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1222 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1223 
   1224 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
   1225 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
   1226 		    aggrParam[mode].logcwmin;
   1227 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
   1228 		    aggrParam[mode].logcwmax;
   1229 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
   1230 		    (vap->iv_flags & IEEE80211_F_BURST) ?
   1231 			aggrParam[mode].txopLimit : 0;
   1232 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1233 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
   1234 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
   1235 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
   1236 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
   1237 	}
   1238 
   1239 
   1240 	/*
   1241 	 * Change the contention window based on the number of associated
   1242 	 * stations.  If the number of associated stations is 1 and
   1243 	 * aggressive mode is enabled, lower the contention window even
   1244 	 * further.
   1245 	 */
   1246 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1247 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
   1248 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
   1249 		    [IEEE80211_MODE_AUTO]	= 3,
   1250 		    [IEEE80211_MODE_11A]	= 3,
   1251 		    [IEEE80211_MODE_11B]	= 4,
   1252 		    [IEEE80211_MODE_11G]	= 3,
   1253 		    [IEEE80211_MODE_FH]		= 4,
   1254 		    [IEEE80211_MODE_TURBO_A]	= 3,
   1255 		    [IEEE80211_MODE_TURBO_G]	= 3,
   1256 		    [IEEE80211_MODE_STURBO_A]	= 3,
   1257 		    [IEEE80211_MODE_HALF]	= 3,
   1258 		    [IEEE80211_MODE_QUARTER]	= 3,
   1259 		    [IEEE80211_MODE_11NA]	= 3,
   1260 		    [IEEE80211_MODE_11NG]	= 3,
   1261 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
   1262 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
   1263 		};
   1264 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1265 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1266 
   1267 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
   1268 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1269 		    "update %s (chan+bss) logcwmin %u\n",
   1270 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
   1271 	}
   1272 
   1273 	/*
   1274 	 * Arrange for the beacon update.
   1275 	 *
   1276 	 * XXX what about MBSS, WDS?
   1277 	 */
   1278 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
   1279 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
   1280 		/*
   1281 		 * Arrange for a beacon update and bump the parameter
   1282 		 * set number so associated stations load the new values.
   1283 		 */
   1284 		wme->wme_bssChanParams.cap_info =
   1285 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
   1286 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
   1287 	}
   1288 
   1289 	/* schedule the deferred WME update */
   1290 	ieee80211_runtask(ic, &vap->iv_wme_task);
   1291 
   1292 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1293 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
   1294 	    vap->iv_opmode == IEEE80211_M_STA ?
   1295 		wme->wme_wmeChanParams.cap_info :
   1296 		wme->wme_bssChanParams.cap_info);
   1297 }
   1298 
   1299 void
   1300 ieee80211_wme_updateparams(struct ieee80211vap *vap)
   1301 {
   1302 	struct ieee80211com *ic = vap->iv_ic;
   1303 
   1304 	if (ic->ic_caps & IEEE80211_C_WME) {
   1305 		IEEE80211_LOCK(ic);
   1306 		ieee80211_wme_updateparams_locked(vap);
   1307 		IEEE80211_UNLOCK(ic);
   1308 	}
   1309 }
   1310 
   1311 /*
   1312  * Fetch the WME parameters for the given VAP.
   1313  *
   1314  * When net80211 grows p2p, etc support, this may return different
   1315  * parameters for each VAP.
   1316  */
   1317 void
   1318 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
   1319 {
   1320 
   1321 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
   1322 }
   1323 
   1324 /*
   1325  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
   1326  * there may be different VAP WME parameters but only one is "active".
   1327  * This returns the "NIC" WME parameters for the currently active
   1328  * context.
   1329  */
   1330 void
   1331 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
   1332 {
   1333 
   1334 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
   1335 }
   1336 
   1337 /*
   1338  * Return whether to use QoS on a given WME queue.
   1339  *
   1340  * This is intended to be called from the transmit path of softmac drivers
   1341  * which are setting NoAck bits in transmit descriptors.
   1342  *
   1343  * Ideally this would be set in some transmit field before the packet is
   1344  * queued to the driver but net80211 isn't quite there yet.
   1345  */
   1346 int
   1347 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
   1348 {
   1349 	/* Bounds/sanity check */
   1350 	if (ac < 0 || ac >= WME_NUM_AC)
   1351 		return (0);
   1352 
   1353 	/* Again, there's only one global context for now */
   1354 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
   1355 }
   1356 
   1357 static void
   1358 parent_updown(void *arg, int npending)
   1359 {
   1360 	struct ieee80211com *ic = arg;
   1361 
   1362 	ic->ic_parent(ic);
   1363 }
   1364 
   1365 static void
   1366 update_mcast(void *arg, int npending)
   1367 {
   1368 	struct ieee80211com *ic = arg;
   1369 
   1370 	ic->ic_update_mcast(ic);
   1371 }
   1372 
   1373 static void
   1374 update_promisc(void *arg, int npending)
   1375 {
   1376 	struct ieee80211com *ic = arg;
   1377 
   1378 	ic->ic_update_promisc(ic);
   1379 }
   1380 
   1381 static void
   1382 update_channel(void *arg, int npending)
   1383 {
   1384 	struct ieee80211com *ic = arg;
   1385 
   1386 	ic->ic_set_channel(ic);
   1387 	ieee80211_radiotap_chan_change(ic);
   1388 }
   1389 
   1390 static void
   1391 update_chw(void *arg, int npending)
   1392 {
   1393 	struct ieee80211com *ic = arg;
   1394 
   1395 	/*
   1396 	 * XXX should we defer the channel width _config_ update until now?
   1397 	 */
   1398 	ic->ic_update_chw(ic);
   1399 }
   1400 
   1401 /*
   1402  * Deferred WME update.
   1403  *
   1404  * In preparation for per-VAP WME configuration, call the VAP
   1405  * method if the VAP requires it.  Otherwise, just call the
   1406  * older global method.  There isn't a per-VAP WME configuration
   1407  * just yet so for now just use the global configuration.
   1408  */
   1409 static void
   1410 vap_update_wme(void *arg, int npending)
   1411 {
   1412 	struct ieee80211vap *vap = arg;
   1413 	struct ieee80211com *ic = vap->iv_ic;
   1414 
   1415 	if (vap->iv_wme_update != NULL)
   1416 		vap->iv_wme_update(vap,
   1417 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
   1418 	else
   1419 		ic->ic_wme.wme_update(ic);
   1420 }
   1421 
   1422 static void
   1423 restart_vaps(void *arg, int npending)
   1424 {
   1425 	struct ieee80211com *ic = arg;
   1426 
   1427 	ieee80211_suspend_all(ic);
   1428 	ieee80211_resume_all(ic);
   1429 }
   1430 
   1431 /*
   1432  * Block until the parent is in a known state.  This is
   1433  * used after any operations that dispatch a task (e.g.
   1434  * to auto-configure the parent device up/down).
   1435  */
   1436 void
   1437 ieee80211_waitfor_parent(struct ieee80211com *ic)
   1438 {
   1439 	taskqueue_block(ic->ic_tq);
   1440 	ieee80211_draintask(ic, &ic->ic_parent_task);
   1441 	ieee80211_draintask(ic, &ic->ic_mcast_task);
   1442 	ieee80211_draintask(ic, &ic->ic_promisc_task);
   1443 	ieee80211_draintask(ic, &ic->ic_chan_task);
   1444 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
   1445 	ieee80211_draintask(ic, &ic->ic_chw_task);
   1446 	taskqueue_unblock(ic->ic_tq);
   1447 }
   1448 
   1449 /*
   1450  * Check to see whether the current channel needs reset.
   1451  *
   1452  * Some devices don't handle being given an invalid channel
   1453  * in their operating mode very well (eg wpi(4) will throw a
   1454  * firmware exception.)
   1455  *
   1456  * Return 0 if we're ok, 1 if the channel needs to be reset.
   1457  *
   1458  * See PR kern/202502.
   1459  */
   1460 static int
   1461 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
   1462 {
   1463 	struct ieee80211com *ic = vap->iv_ic;
   1464 
   1465 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
   1466 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
   1467 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1468 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
   1469 		return (1);
   1470 	return (0);
   1471 }
   1472 
   1473 /*
   1474  * Reset the curchan to a known good state.
   1475  */
   1476 static void
   1477 ieee80211_start_reset_chan(struct ieee80211vap *vap)
   1478 {
   1479 	struct ieee80211com *ic = vap->iv_ic;
   1480 
   1481 	ic->ic_curchan = &ic->ic_channels[0];
   1482 }
   1483 
   1484 /*
   1485  * Start a vap running.  If this is the first vap to be
   1486  * set running on the underlying device then we
   1487  * automatically bring the device up.
   1488  */
   1489 void
   1490 ieee80211_start_locked(struct ieee80211vap *vap)
   1491 {
   1492 	struct ifnet *ifp = vap->iv_ifp;
   1493 	struct ieee80211com *ic = vap->iv_ic;
   1494 
   1495 	IEEE80211_LOCK_ASSERT(ic);
   1496 
   1497 	IEEE80211_DPRINTF(vap,
   1498 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1499 		"start running, %d vaps running\n", ic->ic_nrunning);
   1500 
   1501 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
   1502 		/*
   1503 		 * Mark us running.  Note that it's ok to do this first;
   1504 		 * if we need to bring the parent device up we defer that
   1505 		 * to avoid dropping the com lock.  We expect the device
   1506 		 * to respond to being marked up by calling back into us
   1507 		 * through ieee80211_start_all at which point we'll come
   1508 		 * back in here and complete the work.
   1509 		 */
   1510 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
   1511 		/*
   1512 		 * We are not running; if this we are the first vap
   1513 		 * to be brought up auto-up the parent if necessary.
   1514 		 */
   1515 		if (ic->ic_nrunning++ == 0) {
   1516 
   1517 			/* reset the channel to a known good channel */
   1518 			if (ieee80211_start_check_reset_chan(vap))
   1519 				ieee80211_start_reset_chan(vap);
   1520 
   1521 			IEEE80211_DPRINTF(vap,
   1522 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1523 			    "%s: up parent %s\n", __func__, ic->ic_name);
   1524 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1525 			return;
   1526 		}
   1527 	}
   1528 	/*
   1529 	 * If the parent is up and running, then kick the
   1530 	 * 802.11 state machine as appropriate.
   1531 	 */
   1532 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
   1533 		if (vap->iv_opmode == IEEE80211_M_STA) {
   1534 #if 0
   1535 			/* XXX bypasses scan too easily; disable for now */
   1536 			/*
   1537 			 * Try to be intelligent about clocking the state
   1538 			 * machine.  If we're currently in RUN state then
   1539 			 * we should be able to apply any new state/parameters
   1540 			 * simply by re-associating.  Otherwise we need to
   1541 			 * re-scan to select an appropriate ap.
   1542 			 */
   1543 			if (vap->iv_state >= IEEE80211_S_RUN)
   1544 				ieee80211_new_state_locked(vap,
   1545 				    IEEE80211_S_ASSOC, 1);
   1546 			else
   1547 #endif
   1548 				ieee80211_new_state_locked(vap,
   1549 				    IEEE80211_S_SCAN, 0);
   1550 		} else {
   1551 			/*
   1552 			 * For monitor+wds mode there's nothing to do but
   1553 			 * start running.  Otherwise if this is the first
   1554 			 * vap to be brought up, start a scan which may be
   1555 			 * preempted if the station is locked to a particular
   1556 			 * channel.
   1557 			 */
   1558 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
   1559 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
   1560 			    vap->iv_opmode == IEEE80211_M_WDS)
   1561 				ieee80211_new_state_locked(vap,
   1562 				    IEEE80211_S_RUN, -1);
   1563 			else
   1564 				ieee80211_new_state_locked(vap,
   1565 				    IEEE80211_S_SCAN, 0);
   1566 		}
   1567 	}
   1568 }
   1569 
   1570 /*
   1571  * Start a single vap.
   1572  */
   1573 void
   1574 ieee80211_init(void *arg)
   1575 {
   1576 	struct ieee80211vap *vap = arg;
   1577 
   1578 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1579 	    "%s\n", __func__);
   1580 
   1581 	IEEE80211_LOCK(vap->iv_ic);
   1582 	ieee80211_start_locked(vap);
   1583 	IEEE80211_UNLOCK(vap->iv_ic);
   1584 }
   1585 
   1586 /*
   1587  * Start all runnable vap's on a device.
   1588  */
   1589 void
   1590 ieee80211_start_all(struct ieee80211com *ic)
   1591 {
   1592 	struct ieee80211vap *vap;
   1593 
   1594 	IEEE80211_LOCK(ic);
   1595 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1596 		struct ifnet *ifp = vap->iv_ifp;
   1597 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1598 			ieee80211_start_locked(vap);
   1599 	}
   1600 	IEEE80211_UNLOCK(ic);
   1601 }
   1602 
   1603 /*
   1604  * Stop a vap.  We force it down using the state machine
   1605  * then mark it's ifnet not running.  If this is the last
   1606  * vap running on the underlying device then we close it
   1607  * too to insure it will be properly initialized when the
   1608  * next vap is brought up.
   1609  */
   1610 void
   1611 ieee80211_stop_locked(struct ieee80211vap *vap)
   1612 {
   1613 	struct ieee80211com *ic = vap->iv_ic;
   1614 	struct ifnet *ifp = vap->iv_ifp;
   1615 
   1616 	IEEE80211_LOCK_ASSERT(ic);
   1617 
   1618 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1619 	    "stop running, %d vaps running\n", ic->ic_nrunning);
   1620 
   1621 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
   1622 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
   1623 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
   1624 		if (--ic->ic_nrunning == 0) {
   1625 			IEEE80211_DPRINTF(vap,
   1626 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1627 			    "down parent %s\n", ic->ic_name);
   1628 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1629 		}
   1630 	}
   1631 }
   1632 
   1633 void
   1634 ieee80211_stop(struct ieee80211vap *vap)
   1635 {
   1636 	struct ieee80211com *ic = vap->iv_ic;
   1637 
   1638 	IEEE80211_LOCK(ic);
   1639 	ieee80211_stop_locked(vap);
   1640 	IEEE80211_UNLOCK(ic);
   1641 }
   1642 
   1643 /*
   1644  * Stop all vap's running on a device.
   1645  */
   1646 void
   1647 ieee80211_stop_all(struct ieee80211com *ic)
   1648 {
   1649 	struct ieee80211vap *vap;
   1650 
   1651 	IEEE80211_LOCK(ic);
   1652 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1653 		struct ifnet *ifp = vap->iv_ifp;
   1654 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1655 			ieee80211_stop_locked(vap);
   1656 	}
   1657 	IEEE80211_UNLOCK(ic);
   1658 
   1659 	ieee80211_waitfor_parent(ic);
   1660 }
   1661 
   1662 /*
   1663  * Stop all vap's running on a device and arrange
   1664  * for those that were running to be resumed.
   1665  */
   1666 void
   1667 ieee80211_suspend_all(struct ieee80211com *ic)
   1668 {
   1669 	struct ieee80211vap *vap;
   1670 
   1671 	IEEE80211_LOCK(ic);
   1672 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1673 		struct ifnet *ifp = vap->iv_ifp;
   1674 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
   1675 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
   1676 			ieee80211_stop_locked(vap);
   1677 		}
   1678 	}
   1679 	IEEE80211_UNLOCK(ic);
   1680 
   1681 	ieee80211_waitfor_parent(ic);
   1682 }
   1683 
   1684 /*
   1685  * Start all vap's marked for resume.
   1686  */
   1687 void
   1688 ieee80211_resume_all(struct ieee80211com *ic)
   1689 {
   1690 	struct ieee80211vap *vap;
   1691 
   1692 	IEEE80211_LOCK(ic);
   1693 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1694 		struct ifnet *ifp = vap->iv_ifp;
   1695 		if (!IFNET_IS_UP_RUNNING(ifp) &&
   1696 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
   1697 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
   1698 			ieee80211_start_locked(vap);
   1699 		}
   1700 	}
   1701 	IEEE80211_UNLOCK(ic);
   1702 }
   1703 
   1704 /*
   1705  * Restart all vap's running on a device.
   1706  */
   1707 void
   1708 ieee80211_restart_all(struct ieee80211com *ic)
   1709 {
   1710 	/*
   1711 	 * NB: do not use ieee80211_runtask here, we will
   1712 	 * block & drain net80211 taskqueue.
   1713 	 */
   1714 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
   1715 }
   1716 
   1717 void
   1718 ieee80211_beacon_miss(struct ieee80211com *ic)
   1719 {
   1720 	IEEE80211_LOCK(ic);
   1721 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
   1722 		/* Process in a taskq, the handler may reenter the driver */
   1723 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
   1724 	}
   1725 	IEEE80211_UNLOCK(ic);
   1726 }
   1727 
   1728 static void
   1729 beacon_miss(void *arg, int npending)
   1730 {
   1731 	struct ieee80211com *ic = arg;
   1732 	struct ieee80211vap *vap;
   1733 
   1734 	IEEE80211_LOCK(ic);
   1735 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1736 		/*
   1737 		 * We only pass events through for sta vap's in RUN+ state;
   1738 		 * may be too restrictive but for now this saves all the
   1739 		 * handlers duplicating these checks.
   1740 		 */
   1741 		if (vap->iv_opmode == IEEE80211_M_STA &&
   1742 		    vap->iv_state >= IEEE80211_S_RUN &&
   1743 		    vap->iv_bmiss != NULL)
   1744 			vap->iv_bmiss(vap);
   1745 	}
   1746 	IEEE80211_UNLOCK(ic);
   1747 }
   1748 
   1749 static void
   1750 beacon_swmiss(void *arg, int npending)
   1751 {
   1752 	struct ieee80211vap *vap = arg;
   1753 	struct ieee80211com *ic = vap->iv_ic;
   1754 
   1755 	IEEE80211_LOCK(ic);
   1756 	if (vap->iv_state >= IEEE80211_S_RUN) {
   1757 		/* XXX Call multiple times if npending > zero? */
   1758 		vap->iv_bmiss(vap);
   1759 	}
   1760 	IEEE80211_UNLOCK(ic);
   1761 }
   1762 
   1763 /*
   1764  * Software beacon miss handling.  Check if any beacons
   1765  * were received in the last period.  If not post a
   1766  * beacon miss; otherwise reset the counter.
   1767  */
   1768 void
   1769 ieee80211_swbmiss(void *arg)
   1770 {
   1771 	struct ieee80211vap *vap = arg;
   1772 	struct ieee80211com *ic = vap->iv_ic;
   1773 
   1774 	IEEE80211_LOCK_ASSERT(ic);
   1775 
   1776 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
   1777 	    ("wrong state %d", vap->iv_state));
   1778 
   1779 	if (ic->ic_flags & IEEE80211_F_SCAN) {
   1780 		/*
   1781 		 * If scanning just ignore and reset state.  If we get a
   1782 		 * bmiss after coming out of scan because we haven't had
   1783 		 * time to receive a beacon then we should probe the AP
   1784 		 * before posting a real bmiss (unless iv_bmiss_max has
   1785 		 * been artifiically lowered).  A cleaner solution might
   1786 		 * be to disable the timer on scan start/end but to handle
   1787 		 * case of multiple sta vap's we'd need to disable the
   1788 		 * timers of all affected vap's.
   1789 		 */
   1790 		vap->iv_swbmiss_count = 0;
   1791 	} else if (vap->iv_swbmiss_count == 0) {
   1792 		if (vap->iv_bmiss != NULL)
   1793 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
   1794 	} else
   1795 		vap->iv_swbmiss_count = 0;
   1796 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
   1797 		ieee80211_swbmiss, vap);
   1798 }
   1799 
   1800 /*
   1801  * Start an 802.11h channel switch.  We record the parameters,
   1802  * mark the operation pending, notify each vap through the
   1803  * beacon update mechanism so it can update the beacon frame
   1804  * contents, and then switch vap's to CSA state to block outbound
   1805  * traffic.  Devices that handle CSA directly can use the state
   1806  * switch to do the right thing so long as they call
   1807  * ieee80211_csa_completeswitch when it's time to complete the
   1808  * channel change.  Devices that depend on the net80211 layer can
   1809  * use ieee80211_beacon_update to handle the countdown and the
   1810  * channel switch.
   1811  */
   1812 void
   1813 ieee80211_csa_startswitch(struct ieee80211com *ic,
   1814 	struct ieee80211_channel *c, int mode, int count)
   1815 {
   1816 	struct ieee80211vap *vap;
   1817 
   1818 	IEEE80211_LOCK_ASSERT(ic);
   1819 
   1820 	ic->ic_csa_newchan = c;
   1821 	ic->ic_csa_mode = mode;
   1822 	ic->ic_csa_count = count;
   1823 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
   1824 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1825 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
   1826 		    vap->iv_opmode == IEEE80211_M_IBSS ||
   1827 		    vap->iv_opmode == IEEE80211_M_MBSS)
   1828 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
   1829 		/* switch to CSA state to block outbound traffic */
   1830 		if (vap->iv_state == IEEE80211_S_RUN)
   1831 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
   1832 	}
   1833 	ieee80211_notify_csa(ic, c, mode, count);
   1834 }
   1835 
   1836 /*
   1837  * Complete the channel switch by transitioning all CSA VAPs to RUN.
   1838  * This is called by both the completion and cancellation functions
   1839  * so each VAP is placed back in the RUN state and can thus transmit.
   1840  */
   1841 static void
   1842 csa_completeswitch(struct ieee80211com *ic)
   1843 {
   1844 	struct ieee80211vap *vap;
   1845 
   1846 	ic->ic_csa_newchan = NULL;
   1847 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
   1848 
   1849 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1850 		if (vap->iv_state == IEEE80211_S_CSA)
   1851 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   1852 }
   1853 
   1854 /*
   1855  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
   1856  * We clear state and move all vap's in CSA state to RUN state
   1857  * so they can again transmit.
   1858  *
   1859  * Although this may not be completely correct, update the BSS channel
   1860  * for each VAP to the newly configured channel. The setcurchan sets
   1861  * the current operating channel for the interface (so the radio does
   1862  * switch over) but the VAP BSS isn't updated, leading to incorrectly
   1863  * reported information via ioctl.
   1864  */
   1865 void
   1866 ieee80211_csa_completeswitch(struct ieee80211com *ic)
   1867 {
   1868 	struct ieee80211vap *vap;
   1869 
   1870 	IEEE80211_LOCK_ASSERT(ic);
   1871 
   1872 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
   1873 
   1874 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
   1875 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1876 		if (vap->iv_state == IEEE80211_S_CSA)
   1877 			vap->iv_bss->ni_chan = ic->ic_curchan;
   1878 
   1879 	csa_completeswitch(ic);
   1880 }
   1881 
   1882 /*
   1883  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
   1884  * We clear state and move all vap's in CSA state to RUN state
   1885  * so they can again transmit.
   1886  */
   1887 void
   1888 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
   1889 {
   1890 	IEEE80211_LOCK_ASSERT(ic);
   1891 
   1892 	csa_completeswitch(ic);
   1893 }
   1894 
   1895 /*
   1896  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
   1897  * We clear state and move all vap's in CAC state to RUN state.
   1898  */
   1899 void
   1900 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
   1901 {
   1902 	struct ieee80211com *ic = vap0->iv_ic;
   1903 	struct ieee80211vap *vap;
   1904 
   1905 	IEEE80211_LOCK(ic);
   1906 	/*
   1907 	 * Complete CAC state change for lead vap first; then
   1908 	 * clock all the other vap's waiting.
   1909 	 */
   1910 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
   1911 	    ("wrong state %d", vap0->iv_state));
   1912 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
   1913 
   1914 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1915 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
   1916 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   1917 	IEEE80211_UNLOCK(ic);
   1918 }
   1919 
   1920 /*
   1921  * Force all vap's other than the specified vap to the INIT state
   1922  * and mark them as waiting for a scan to complete.  These vaps
   1923  * will be brought up when the scan completes and the scanning vap
   1924  * reaches RUN state by wakeupwaiting.
   1925  */
   1926 static void
   1927 markwaiting(struct ieee80211vap *vap0)
   1928 {
   1929 	struct ieee80211com *ic = vap0->iv_ic;
   1930 	struct ieee80211vap *vap;
   1931 
   1932 	IEEE80211_LOCK_ASSERT(ic);
   1933 
   1934 	/*
   1935 	 * A vap list entry can not disappear since we are running on the
   1936 	 * taskqueue and a vap destroy will queue and drain another state
   1937 	 * change task.
   1938 	 */
   1939 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1940 		if (vap == vap0)
   1941 			continue;
   1942 		if (vap->iv_state != IEEE80211_S_INIT) {
   1943 			/* NB: iv_newstate may drop the lock */
   1944 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
   1945 			IEEE80211_LOCK_ASSERT(ic);
   1946 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   1947 		}
   1948 	}
   1949 }
   1950 
   1951 /*
   1952  * Wakeup all vap's waiting for a scan to complete.  This is the
   1953  * companion to markwaiting (above) and is used to coordinate
   1954  * multiple vaps scanning.
   1955  * This is called from the state taskqueue.
   1956  */
   1957 static void
   1958 wakeupwaiting(struct ieee80211vap *vap0)
   1959 {
   1960 	struct ieee80211com *ic = vap0->iv_ic;
   1961 	struct ieee80211vap *vap;
   1962 
   1963 	IEEE80211_LOCK_ASSERT(ic);
   1964 
   1965 	/*
   1966 	 * A vap list entry can not disappear since we are running on the
   1967 	 * taskqueue and a vap destroy will queue and drain another state
   1968 	 * change task.
   1969 	 */
   1970 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1971 		if (vap == vap0)
   1972 			continue;
   1973 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
   1974 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   1975 			/* NB: sta's cannot go INIT->RUN */
   1976 			/* NB: iv_newstate may drop the lock */
   1977 			vap->iv_newstate(vap,
   1978 			    vap->iv_opmode == IEEE80211_M_STA ?
   1979 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
   1980 			IEEE80211_LOCK_ASSERT(ic);
   1981 		}
   1982 	}
   1983 }
   1984 
   1985 /*
   1986  * Handle post state change work common to all operating modes.
   1987  */
   1988 static void
   1989 ieee80211_newstate_cb(void *xvap, int npending)
   1990 {
   1991 	struct ieee80211vap *vap = xvap;
   1992 	struct ieee80211com *ic = vap->iv_ic;
   1993 	enum ieee80211_state nstate, ostate;
   1994 	int arg, rc;
   1995 
   1996 	IEEE80211_LOCK(ic);
   1997 	nstate = vap->iv_nstate;
   1998 	arg = vap->iv_nstate_arg;
   1999 
   2000 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
   2001 		/*
   2002 		 * We have been requested to drop back to the INIT before
   2003 		 * proceeding to the new state.
   2004 		 */
   2005 		/* Deny any state changes while we are here. */
   2006 		vap->iv_nstate = IEEE80211_S_INIT;
   2007 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2008 		    "%s: %s -> %s arg %d\n", __func__,
   2009 		    ieee80211_state_name[vap->iv_state],
   2010 		    ieee80211_state_name[vap->iv_nstate], arg);
   2011 		vap->iv_newstate(vap, vap->iv_nstate, 0);
   2012 		IEEE80211_LOCK_ASSERT(ic);
   2013 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
   2014 		    IEEE80211_FEXT_STATEWAIT);
   2015 		/* enqueue new state transition after cancel_scan() task */
   2016 		ieee80211_new_state_locked(vap, nstate, arg);
   2017 		goto done;
   2018 	}
   2019 
   2020 	ostate = vap->iv_state;
   2021 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
   2022 		/*
   2023 		 * SCAN was forced; e.g. on beacon miss.  Force other running
   2024 		 * vap's to INIT state and mark them as waiting for the scan to
   2025 		 * complete.  This insures they don't interfere with our
   2026 		 * scanning.  Since we are single threaded the vaps can not
   2027 		 * transition again while we are executing.
   2028 		 *
   2029 		 * XXX not always right, assumes ap follows sta
   2030 		 */
   2031 		markwaiting(vap);
   2032 	}
   2033 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2034 	    "%s: %s -> %s arg %d\n", __func__,
   2035 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
   2036 
   2037 	rc = vap->iv_newstate(vap, nstate, arg);
   2038 	IEEE80211_LOCK_ASSERT(ic);
   2039 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
   2040 	if (rc != 0) {
   2041 		/* State transition failed */
   2042 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
   2043 		KASSERT(nstate != IEEE80211_S_INIT,
   2044 		    ("INIT state change failed"));
   2045 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2046 		    "%s: %s returned error %d\n", __func__,
   2047 		    ieee80211_state_name[nstate], rc);
   2048 		goto done;
   2049 	}
   2050 
   2051 	/* No actual transition, skip post processing */
   2052 	if (ostate == nstate)
   2053 		goto done;
   2054 
   2055 	if (nstate == IEEE80211_S_RUN) {
   2056 		/*
   2057 		 * OACTIVE may be set on the vap if the upper layer
   2058 		 * tried to transmit (e.g. IPv6 NDP) before we reach
   2059 		 * RUN state.  Clear it and restart xmit.
   2060 		 *
   2061 		 * Note this can also happen as a result of SLEEP->RUN
   2062 		 * (i.e. coming out of power save mode).
   2063 		 */
   2064 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   2065 
   2066 		/*
   2067 		 * XXX TODO Kick-start a VAP queue - this should be a method!
   2068 		 */
   2069 
   2070 		/* bring up any vaps waiting on us */
   2071 		wakeupwaiting(vap);
   2072 	} else if (nstate == IEEE80211_S_INIT) {
   2073 		/*
   2074 		 * Flush the scan cache if we did the last scan (XXX?)
   2075 		 * and flush any frames on send queues from this vap.
   2076 		 * Note the mgt q is used only for legacy drivers and
   2077 		 * will go away shortly.
   2078 		 */
   2079 		ieee80211_scan_flush(vap);
   2080 
   2081 		/*
   2082 		 * XXX TODO: ic/vap queue flush
   2083 		 */
   2084 	}
   2085 done:
   2086 	IEEE80211_UNLOCK(ic);
   2087 }
   2088 
   2089 /*
   2090  * Public interface for initiating a state machine change.
   2091  * This routine single-threads the request and coordinates
   2092  * the scheduling of multiple vaps for the purpose of selecting
   2093  * an operating channel.  Specifically the following scenarios
   2094  * are handled:
   2095  * o only one vap can be selecting a channel so on transition to
   2096  *   SCAN state if another vap is already scanning then
   2097  *   mark the caller for later processing and return without
   2098  *   doing anything (XXX? expectations by caller of synchronous operation)
   2099  * o only one vap can be doing CAC of a channel so on transition to
   2100  *   CAC state if another vap is already scanning for radar then
   2101  *   mark the caller for later processing and return without
   2102  *   doing anything (XXX? expectations by caller of synchronous operation)
   2103  * o if another vap is already running when a request is made
   2104  *   to SCAN then an operating channel has been chosen; bypass
   2105  *   the scan and just join the channel
   2106  *
   2107  * Note that the state change call is done through the iv_newstate
   2108  * method pointer so any driver routine gets invoked.  The driver
   2109  * will normally call back into operating mode-specific
   2110  * ieee80211_newstate routines (below) unless it needs to completely
   2111  * bypass the state machine (e.g. because the firmware has it's
   2112  * own idea how things should work).  Bypassing the net80211 layer
   2113  * is usually a mistake and indicates lack of proper integration
   2114  * with the net80211 layer.
   2115  */
   2116 int
   2117 ieee80211_new_state_locked(struct ieee80211vap *vap,
   2118 	enum ieee80211_state nstate, int arg)
   2119 {
   2120 	struct ieee80211com *ic = vap->iv_ic;
   2121 	struct ieee80211vap *vp;
   2122 	enum ieee80211_state ostate;
   2123 	int nrunning, nscanning;
   2124 
   2125 	IEEE80211_LOCK_ASSERT(ic);
   2126 
   2127 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
   2128 		if (vap->iv_nstate == IEEE80211_S_INIT ||
   2129 		    ((vap->iv_state == IEEE80211_S_INIT ||
   2130 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
   2131 		    vap->iv_nstate == IEEE80211_S_SCAN &&
   2132 		    nstate > IEEE80211_S_SCAN)) {
   2133 			/*
   2134 			 * XXX The vap is being stopped/started,
   2135 			 * do not allow any other state changes
   2136 			 * until this is completed.
   2137 			 */
   2138 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2139 			    "%s: %s -> %s (%s) transition discarded\n",
   2140 			    __func__,
   2141 			    ieee80211_state_name[vap->iv_state],
   2142 			    ieee80211_state_name[nstate],
   2143 			    ieee80211_state_name[vap->iv_nstate]);
   2144 			return -1;
   2145 		} else if (vap->iv_state != vap->iv_nstate) {
   2146 #if 0
   2147 			/* Warn if the previous state hasn't completed. */
   2148 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2149 			    "%s: pending %s -> %s transition lost\n", __func__,
   2150 			    ieee80211_state_name[vap->iv_state],
   2151 			    ieee80211_state_name[vap->iv_nstate]);
   2152 #else
   2153 			/* XXX temporarily enable to identify issues */
   2154 			if_printf(vap->iv_ifp,
   2155 			    "%s: pending %s -> %s transition lost\n",
   2156 			    __func__, ieee80211_state_name[vap->iv_state],
   2157 			    ieee80211_state_name[vap->iv_nstate]);
   2158 #endif
   2159 		}
   2160 	}
   2161 
   2162 	nrunning = nscanning = 0;
   2163 	/* XXX can track this state instead of calculating */
   2164 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
   2165 		if (vp != vap) {
   2166 			if (vp->iv_state >= IEEE80211_S_RUN)
   2167 				nrunning++;
   2168 			/* XXX doesn't handle bg scan */
   2169 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
   2170 			else if (vp->iv_state > IEEE80211_S_INIT)
   2171 				nscanning++;
   2172 		}
   2173 	}
   2174 	ostate = vap->iv_state;
   2175 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2176 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
   2177 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
   2178 	    nrunning, nscanning);
   2179 	switch (nstate) {
   2180 	case IEEE80211_S_SCAN:
   2181 		if (ostate == IEEE80211_S_INIT) {
   2182 			/*
   2183 			 * INIT -> SCAN happens on initial bringup.
   2184 			 */
   2185 			KASSERT(!(nscanning && nrunning),
   2186 			    ("%d scanning and %d running", nscanning, nrunning));
   2187 			if (nscanning) {
   2188 				/*
   2189 				 * Someone is scanning, defer our state
   2190 				 * change until the work has completed.
   2191 				 */
   2192 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2193 				    "%s: defer %s -> %s\n",
   2194 				    __func__, ieee80211_state_name[ostate],
   2195 				    ieee80211_state_name[nstate]);
   2196 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2197 				return 0;
   2198 			}
   2199 			if (nrunning) {
   2200 				/*
   2201 				 * Someone is operating; just join the channel
   2202 				 * they have chosen.
   2203 				 */
   2204 				/* XXX kill arg? */
   2205 				/* XXX check each opmode, adhoc? */
   2206 				if (vap->iv_opmode == IEEE80211_M_STA)
   2207 					nstate = IEEE80211_S_SCAN;
   2208 				else
   2209 					nstate = IEEE80211_S_RUN;
   2210 #ifdef IEEE80211_DEBUG
   2211 				if (nstate != IEEE80211_S_SCAN) {
   2212 					IEEE80211_DPRINTF(vap,
   2213 					    IEEE80211_MSG_STATE,
   2214 					    "%s: override, now %s -> %s\n",
   2215 					    __func__,
   2216 					    ieee80211_state_name[ostate],
   2217 					    ieee80211_state_name[nstate]);
   2218 				}
   2219 #endif
   2220 			}
   2221 		}
   2222 		break;
   2223 	case IEEE80211_S_RUN:
   2224 		if (vap->iv_opmode == IEEE80211_M_WDS &&
   2225 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
   2226 		    nscanning) {
   2227 			/*
   2228 			 * Legacy WDS with someone else scanning; don't
   2229 			 * go online until that completes as we should
   2230 			 * follow the other vap to the channel they choose.
   2231 			 */
   2232 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2233 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
   2234 			     ieee80211_state_name[ostate],
   2235 			     ieee80211_state_name[nstate]);
   2236 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2237 			return 0;
   2238 		}
   2239 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   2240 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   2241 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
   2242 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
   2243 			/*
   2244 			 * This is a DFS channel, transition to CAC state
   2245 			 * instead of RUN.  This allows us to initiate
   2246 			 * Channel Availability Check (CAC) as specified
   2247 			 * by 11h/DFS.
   2248 			 */
   2249 			nstate = IEEE80211_S_CAC;
   2250 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2251 			     "%s: override %s -> %s (DFS)\n", __func__,
   2252 			     ieee80211_state_name[ostate],
   2253 			     ieee80211_state_name[nstate]);
   2254 		}
   2255 		break;
   2256 	case IEEE80211_S_INIT:
   2257 		/* cancel any scan in progress */
   2258 		ieee80211_cancel_scan(vap);
   2259 		if (ostate == IEEE80211_S_INIT ) {
   2260 			/* XXX don't believe this */
   2261 			/* INIT -> INIT. nothing to do */
   2262 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   2263 		}
   2264 		/* fall thru... */
   2265 	default:
   2266 		break;
   2267 	}
   2268 	/* defer the state change to a thread */
   2269 	vap->iv_nstate = nstate;
   2270 	vap->iv_nstate_arg = arg;
   2271 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
   2272 	ieee80211_runtask(ic, &vap->iv_nstate_task);
   2273 	return EINPROGRESS;
   2274 }
   2275 
   2276 int
   2277 ieee80211_new_state(struct ieee80211vap *vap,
   2278 	enum ieee80211_state nstate, int arg)
   2279 {
   2280 	struct ieee80211com *ic = vap->iv_ic;
   2281 	int rc;
   2282 
   2283 	IEEE80211_LOCK(ic);
   2284 	rc = ieee80211_new_state_locked(vap, nstate, arg);
   2285 	IEEE80211_UNLOCK(ic);
   2286 	return rc;
   2287 }
   2288