ieee80211_proto.c revision 1.34.14.2 1 /* $NetBSD: ieee80211_proto.c,v 1.34.14.2 2018/07/12 16:35:34 phil Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2001 Atsushi Onoe
7 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
8 * Copyright (c) 2012 IEEE
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #if __FreeBSD__
34 __FBSDID("$FreeBSD$");
35 #endif
36
37 /*
38 * IEEE 802.11 protocol support.
39 */
40
41 #include "opt_inet.h"
42 #include "opt_wlan.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #ifdef __NetBSD__
49 #include <sys/mbuf.h>
50 #endif
51
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54
55 #include <net/if.h>
56 #if __FreeBSD__
57 #include <net/if_var.h>
58 #endif
59 #include <net/if_media.h>
60 #if __FreeBSD__
61 #include <net/ethernet.h> /* XXX for ether_sprintf */
62 #endif
63 #ifdef __NetBSD__
64 #include <net/if_ether.h>
65 #include <net/route.h>
66 #endif
67
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_adhoc.h>
70 #include <net80211/ieee80211_sta.h>
71 #include <net80211/ieee80211_hostap.h>
72 #include <net80211/ieee80211_wds.h>
73 #ifdef IEEE80211_SUPPORT_MESH
74 #include <net80211/ieee80211_mesh.h>
75 #endif
76 #include <net80211/ieee80211_monitor.h>
77 #include <net80211/ieee80211_input.h>
78
79 #ifdef __NetBSD__
80 #undef KASSERT
81 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
82 #endif
83
84 /* XXX tunables */
85 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
86 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
87
88 const char *mgt_subtype_name[] = {
89 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
90 "probe_req", "probe_resp", "timing_adv", "reserved#7",
91 "beacon", "atim", "disassoc", "auth",
92 "deauth", "action", "action_noack", "reserved#15"
93 };
94 const char *ctl_subtype_name[] = {
95 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
96 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
97 "bar", "ba", "ps_poll", "rts",
98 "cts", "ack", "cf_end", "cf_end_ack"
99 };
100 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
101 "IBSS", /* IEEE80211_M_IBSS */
102 "STA", /* IEEE80211_M_STA */
103 "WDS", /* IEEE80211_M_WDS */
104 "AHDEMO", /* IEEE80211_M_AHDEMO */
105 "HOSTAP", /* IEEE80211_M_HOSTAP */
106 "MONITOR", /* IEEE80211_M_MONITOR */
107 "MBSS" /* IEEE80211_M_MBSS */
108 };
109 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
110 "INIT", /* IEEE80211_S_INIT */
111 "SCAN", /* IEEE80211_S_SCAN */
112 "AUTH", /* IEEE80211_S_AUTH */
113 "ASSOC", /* IEEE80211_S_ASSOC */
114 "CAC", /* IEEE80211_S_CAC */
115 "RUN", /* IEEE80211_S_RUN */
116 "CSA", /* IEEE80211_S_CSA */
117 "SLEEP", /* IEEE80211_S_SLEEP */
118 };
119 const char *ieee80211_wme_acnames[] = {
120 "WME_AC_BE",
121 "WME_AC_BK",
122 "WME_AC_VI",
123 "WME_AC_VO",
124 "WME_UPSD",
125 };
126
127
128 /*
129 * Reason code descriptions were (mostly) obtained from
130 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
131 */
132 const char *
133 ieee80211_reason_to_string(uint16_t reason)
134 {
135 switch (reason) {
136 case IEEE80211_REASON_UNSPECIFIED:
137 return ("unspecified");
138 case IEEE80211_REASON_AUTH_EXPIRE:
139 return ("previous authentication is expired");
140 case IEEE80211_REASON_AUTH_LEAVE:
141 return ("sending STA is leaving/has left IBSS or ESS");
142 case IEEE80211_REASON_ASSOC_EXPIRE:
143 return ("disassociated due to inactivity");
144 case IEEE80211_REASON_ASSOC_TOOMANY:
145 return ("too many associated STAs");
146 case IEEE80211_REASON_NOT_AUTHED:
147 return ("class 2 frame received from nonauthenticated STA");
148 case IEEE80211_REASON_NOT_ASSOCED:
149 return ("class 3 frame received from nonassociated STA");
150 case IEEE80211_REASON_ASSOC_LEAVE:
151 return ("sending STA is leaving/has left BSS");
152 case IEEE80211_REASON_ASSOC_NOT_AUTHED:
153 return ("STA requesting (re)association is not authenticated");
154 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
155 return ("information in the Power Capability element is "
156 "unacceptable");
157 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
158 return ("information in the Supported Channels element is "
159 "unacceptable");
160 case IEEE80211_REASON_IE_INVALID:
161 return ("invalid element");
162 case IEEE80211_REASON_MIC_FAILURE:
163 return ("MIC failure");
164 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
165 return ("4-Way handshake timeout");
166 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
167 return ("group key update timeout");
168 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
169 return ("element in 4-Way handshake different from "
170 "(re)association request/probe response/beacon frame");
171 case IEEE80211_REASON_GROUP_CIPHER_INVALID:
172 return ("invalid group cipher");
173 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
174 return ("invalid pairwise cipher");
175 case IEEE80211_REASON_AKMP_INVALID:
176 return ("invalid AKMP");
177 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
178 return ("unsupported version in RSN IE");
179 case IEEE80211_REASON_INVALID_RSN_IE_CAP:
180 return ("invalid capabilities in RSN IE");
181 case IEEE80211_REASON_802_1X_AUTH_FAILED:
182 return ("IEEE 802.1X authentication failed");
183 case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
184 return ("cipher suite rejected because of the security "
185 "policy");
186 case IEEE80211_REASON_UNSPECIFIED_QOS:
187 return ("unspecified (QoS-related)");
188 case IEEE80211_REASON_INSUFFICIENT_BW:
189 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
190 case IEEE80211_REASON_TOOMANY_FRAMES:
191 return ("too many frames need to be acknowledged");
192 case IEEE80211_REASON_OUTSIDE_TXOP:
193 return ("STA is transmitting outside the limits of its TXOPs");
194 case IEEE80211_REASON_LEAVING_QBSS:
195 return ("requested from peer STA (the STA is "
196 "resetting/leaving the BSS)");
197 case IEEE80211_REASON_BAD_MECHANISM:
198 return ("requested from peer STA (it does not want to use "
199 "the mechanism)");
200 case IEEE80211_REASON_SETUP_NEEDED:
201 return ("requested from peer STA (setup is required for the "
202 "used mechanism)");
203 case IEEE80211_REASON_TIMEOUT:
204 return ("requested from peer STA (timeout)");
205 case IEEE80211_REASON_PEER_LINK_CANCELED:
206 return ("SME cancels the mesh peering instance (not related "
207 "to the maximum number of peer mesh STAs)");
208 case IEEE80211_REASON_MESH_MAX_PEERS:
209 return ("maximum number of peer mesh STAs was reached");
210 case IEEE80211_REASON_MESH_CPVIOLATION:
211 return ("the received information violates the Mesh "
212 "Configuration policy configured in the mesh STA "
213 "profile");
214 case IEEE80211_REASON_MESH_CLOSE_RCVD:
215 return ("the mesh STA has received a Mesh Peering Close "
216 "message requesting to close the mesh peering");
217 case IEEE80211_REASON_MESH_MAX_RETRIES:
218 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
219 "Peering Open messages, without receiving a Mesh "
220 "Peering Confirm message");
221 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
222 return ("the confirmTimer for the mesh peering instance times "
223 "out");
224 case IEEE80211_REASON_MESH_INVALID_GTK:
225 return ("the mesh STA fails to unwrap the GTK or the values "
226 "in the wrapped contents do not match");
227 case IEEE80211_REASON_MESH_INCONS_PARAMS:
228 return ("the mesh STA receives inconsistent information about "
229 "the mesh parameters between Mesh Peering Management "
230 "frames");
231 case IEEE80211_REASON_MESH_INVALID_SECURITY:
232 return ("the mesh STA fails the authenticated mesh peering "
233 "exchange because due to failure in selecting "
234 "pairwise/group ciphersuite");
235 case IEEE80211_REASON_MESH_PERR_NO_PROXY:
236 return ("the mesh STA does not have proxy information for "
237 "this external destination");
238 case IEEE80211_REASON_MESH_PERR_NO_FI:
239 return ("the mesh STA does not have forwarding information "
240 "for this destination");
241 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
242 return ("the mesh STA determines that the link to the next "
243 "hop of an active path in its forwarding information "
244 "is no longer usable");
245 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
246 return ("the MAC address of the STA already exists in the "
247 "mesh BSS");
248 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
249 return ("the mesh STA performs channel switch to meet "
250 "regulatory requirements");
251 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
252 return ("the mesh STA performs channel switch with "
253 "unspecified reason");
254 default:
255 return ("reserved/unknown");
256 }
257 }
258
259 static void beacon_miss(void *, int);
260 static void beacon_swmiss(void *, int);
261 static void parent_updown(void *, int);
262 static void update_mcast(void *, int);
263 static void update_promisc(void *, int);
264 static void update_channel(void *, int);
265 static void update_chw(void *, int);
266 static void vap_update_wme(void *, int);
267 static void restart_vaps(void *, int);
268 static void ieee80211_newstate_cb(void *, int);
269
270 static int
271 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
272 const struct ieee80211_bpf_params *params)
273 {
274
275 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
276 m_freem(m);
277 return ENETDOWN;
278 }
279
280 void
281 ieee80211_proto_attach(struct ieee80211com *ic)
282 {
283 uint8_t hdrlen;
284
285 /* override the 802.3 setting */
286 hdrlen = ic->ic_headroom
287 + sizeof(struct ieee80211_qosframe_addr4)
288 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
289 + IEEE80211_WEP_EXTIVLEN;
290 /* XXX no way to recalculate on ifdetach */
291 if (ALIGN(hdrlen) > max_linkhdr) {
292 /* XXX sanity check... */
293 max_linkhdr = ALIGN(hdrlen);
294 max_hdr = max_linkhdr + max_protohdr;
295 max_datalen = MHLEN - max_hdr;
296 }
297 ic->ic_protmode = IEEE80211_PROT_CTSONLY;
298
299 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
300 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
301 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
302 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
303 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
304 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
305 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
306
307 ic->ic_wme.wme_hipri_switch_hysteresis =
308 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
309
310 /* initialize management frame handlers */
311 ic->ic_send_mgmt = ieee80211_send_mgmt;
312 ic->ic_raw_xmit = null_raw_xmit;
313
314 ieee80211_adhoc_attach(ic);
315 ieee80211_sta_attach(ic);
316 ieee80211_wds_attach(ic);
317 ieee80211_hostap_attach(ic);
318 #ifdef IEEE80211_SUPPORT_MESH
319 ieee80211_mesh_attach(ic);
320 #endif
321 ieee80211_monitor_attach(ic);
322 }
323
324 void
325 ieee80211_proto_detach(struct ieee80211com *ic)
326 {
327 ieee80211_monitor_detach(ic);
328 #ifdef IEEE80211_SUPPORT_MESH
329 ieee80211_mesh_detach(ic);
330 #endif
331 ieee80211_hostap_detach(ic);
332 ieee80211_wds_detach(ic);
333 ieee80211_adhoc_detach(ic);
334 ieee80211_sta_detach(ic);
335 }
336
337 static void
338 null_update_beacon(struct ieee80211vap *vap, int item)
339 {
340 }
341
342 void
343 ieee80211_proto_vattach(struct ieee80211vap *vap)
344 {
345 struct ieee80211com *ic = vap->iv_ic;
346 struct ifnet *ifp = vap->iv_ifp;
347 int i;
348
349 /* override the 802.3 setting */
350 ifp->if_hdrlen = ic->ic_headroom
351 + sizeof(struct ieee80211_qosframe_addr4)
352 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
353 + IEEE80211_WEP_EXTIVLEN;
354
355 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
356 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
357 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
358 #if __FreeBSD__
359 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
360 #endif
361 callout_init(&vap->iv_mgtsend, 1);
362 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
363 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
364 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
365 /*
366 * Install default tx rate handling: no fixed rate, lowest
367 * supported rate for mgmt and multicast frames. Default
368 * max retry count. These settings can be changed by the
369 * driver and/or user applications.
370 */
371 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
372 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
373
374 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
375
376 /*
377 * Setting the management rate to MCS 0 assumes that the
378 * BSS Basic rate set is empty and the BSS Basic MCS set
379 * is not.
380 *
381 * Since we're not checking this, default to the lowest
382 * defined rate for this mode.
383 *
384 * At least one 11n AP (DLINK DIR-825) is reported to drop
385 * some MCS management traffic (eg BA response frames.)
386 *
387 * See also: 9.6.0 of the 802.11n-2009 specification.
388 */
389 #ifdef NOTYET
390 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
391 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
392 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
393 } else {
394 vap->iv_txparms[i].mgmtrate =
395 rs->rs_rates[0] & IEEE80211_RATE_VAL;
396 vap->iv_txparms[i].mcastrate =
397 rs->rs_rates[0] & IEEE80211_RATE_VAL;
398 }
399 #endif
400 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
401 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
402 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
403 }
404 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
405
406 vap->iv_update_beacon = null_update_beacon;
407 vap->iv_deliver_data = ieee80211_deliver_data;
408
409 /* attach support for operating mode */
410 ic->ic_vattach[vap->iv_opmode](vap);
411 }
412
413 void
414 ieee80211_proto_vdetach(struct ieee80211vap *vap)
415 {
416 #define FREEAPPIE(ie) do { \
417 if (ie != NULL) \
418 IEEE80211_FREE(ie, M_80211_NODE_IE); \
419 } while (0)
420 /*
421 * Detach operating mode module.
422 */
423 if (vap->iv_opdetach != NULL)
424 vap->iv_opdetach(vap);
425 /*
426 * This should not be needed as we detach when reseting
427 * the state but be conservative here since the
428 * authenticator may do things like spawn kernel threads.
429 */
430 if (vap->iv_auth->ia_detach != NULL)
431 vap->iv_auth->ia_detach(vap);
432 /*
433 * Detach any ACL'ator.
434 */
435 if (vap->iv_acl != NULL)
436 vap->iv_acl->iac_detach(vap);
437
438 FREEAPPIE(vap->iv_appie_beacon);
439 FREEAPPIE(vap->iv_appie_probereq);
440 FREEAPPIE(vap->iv_appie_proberesp);
441 FREEAPPIE(vap->iv_appie_assocreq);
442 FREEAPPIE(vap->iv_appie_assocresp);
443 FREEAPPIE(vap->iv_appie_wpa);
444 #undef FREEAPPIE
445 }
446
447 /*
448 * Simple-minded authenticator module support.
449 */
450
451 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
452 /* XXX well-known names */
453 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
454 "wlan_internal", /* IEEE80211_AUTH_NONE */
455 "wlan_internal", /* IEEE80211_AUTH_OPEN */
456 "wlan_internal", /* IEEE80211_AUTH_SHARED */
457 "wlan_xauth", /* IEEE80211_AUTH_8021X */
458 "wlan_internal", /* IEEE80211_AUTH_AUTO */
459 "wlan_xauth", /* IEEE80211_AUTH_WPA */
460 };
461 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
462
463 static const struct ieee80211_authenticator auth_internal = {
464 .ia_name = "wlan_internal",
465 .ia_attach = NULL,
466 .ia_detach = NULL,
467 .ia_node_join = NULL,
468 .ia_node_leave = NULL,
469 };
470
471 /*
472 * Setup internal authenticators once; they are never unregistered.
473 */
474 static __unused void
475 ieee80211_auth_setup(void)
476 {
477 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
478 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
479 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
480 }
481 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
482
483 const struct ieee80211_authenticator *
484 ieee80211_authenticator_get(int auth)
485 {
486 if (auth >= IEEE80211_AUTH_MAX)
487 return NULL;
488 if (authenticators[auth] == NULL)
489 ieee80211_load_module(auth_modnames[auth]);
490 return authenticators[auth];
491 }
492
493 void
494 ieee80211_authenticator_register(int type,
495 const struct ieee80211_authenticator *auth)
496 {
497 if (type >= IEEE80211_AUTH_MAX)
498 return;
499 authenticators[type] = auth;
500 }
501
502 void
503 ieee80211_authenticator_unregister(int type)
504 {
505
506 if (type >= IEEE80211_AUTH_MAX)
507 return;
508 authenticators[type] = NULL;
509 }
510
511 /*
512 * Very simple-minded ACL module support.
513 */
514 /* XXX just one for now */
515 static const struct ieee80211_aclator *acl = NULL;
516
517 void
518 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
519 {
520 printf("wlan: %s acl policy registered\n", iac->iac_name);
521 acl = iac;
522 }
523
524 void
525 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
526 {
527 if (acl == iac)
528 acl = NULL;
529 printf("wlan: %s acl policy unregistered\n", iac->iac_name);
530 }
531
532 const struct ieee80211_aclator *
533 ieee80211_aclator_get(const char *name)
534 {
535 if (acl == NULL)
536 ieee80211_load_module("wlan_acl");
537 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
538 }
539
540 void
541 ieee80211_print_essid(const uint8_t *essid, int len)
542 {
543 const uint8_t *p;
544 int i;
545
546 if (len > IEEE80211_NWID_LEN)
547 len = IEEE80211_NWID_LEN;
548 /* determine printable or not */
549 for (i = 0, p = essid; i < len; i++, p++) {
550 if (*p < ' ' || *p > 0x7e)
551 break;
552 }
553 if (i == len) {
554 printf("\"");
555 for (i = 0, p = essid; i < len; i++, p++)
556 printf("%c", *p);
557 printf("\"");
558 } else {
559 printf("0x");
560 for (i = 0, p = essid; i < len; i++, p++)
561 printf("%02x", *p);
562 }
563 }
564
565 void
566 ieee80211_dump_pkt(struct ieee80211com *ic,
567 const uint8_t *buf, int len, int rate, int rssi)
568 {
569 const struct ieee80211_frame *wh;
570 int i;
571
572 wh = (const struct ieee80211_frame *)buf;
573 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
574 case IEEE80211_FC1_DIR_NODS:
575 printf("NODS %s", ether_sprintf(wh->i_addr2));
576 printf("->%s", ether_sprintf(wh->i_addr1));
577 printf("(%s)", ether_sprintf(wh->i_addr3));
578 break;
579 case IEEE80211_FC1_DIR_TODS:
580 printf("TODS %s", ether_sprintf(wh->i_addr2));
581 printf("->%s", ether_sprintf(wh->i_addr3));
582 printf("(%s)", ether_sprintf(wh->i_addr1));
583 break;
584 case IEEE80211_FC1_DIR_FROMDS:
585 printf("FRDS %s", ether_sprintf(wh->i_addr3));
586 printf("->%s", ether_sprintf(wh->i_addr1));
587 printf("(%s)", ether_sprintf(wh->i_addr2));
588 break;
589 case IEEE80211_FC1_DIR_DSTODS:
590 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
591 printf("->%s", ether_sprintf(wh->i_addr3));
592 printf("(%s", ether_sprintf(wh->i_addr2));
593 printf("->%s)", ether_sprintf(wh->i_addr1));
594 break;
595 }
596 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
597 case IEEE80211_FC0_TYPE_DATA:
598 printf(" data");
599 break;
600 case IEEE80211_FC0_TYPE_MGT:
601 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
602 break;
603 default:
604 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
605 break;
606 }
607 if (IEEE80211_QOS_HAS_SEQ(wh)) {
608 const struct ieee80211_qosframe *qwh =
609 (const struct ieee80211_qosframe *)buf;
610 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
611 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
612 }
613 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
614 int off;
615
616 off = ieee80211_anyhdrspace(ic, wh);
617 printf(" WEP [IV %.02x %.02x %.02x",
618 buf[off+0], buf[off+1], buf[off+2]);
619 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
620 printf(" %.02x %.02x %.02x",
621 buf[off+4], buf[off+5], buf[off+6]);
622 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
623 }
624 if (rate >= 0)
625 printf(" %dM", rate / 2);
626 if (rssi >= 0)
627 printf(" +%d", rssi);
628 printf("\n");
629 if (len > 0) {
630 for (i = 0; i < len; i++) {
631 if ((i & 1) == 0)
632 printf(" ");
633 printf("%02x", buf[i]);
634 }
635 printf("\n");
636 }
637 }
638
639 static __inline int
640 findrix(const struct ieee80211_rateset *rs, int r)
641 {
642 int i;
643
644 for (i = 0; i < rs->rs_nrates; i++)
645 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
646 return i;
647 return -1;
648 }
649
650 int
651 ieee80211_fix_rate(struct ieee80211_node *ni,
652 struct ieee80211_rateset *nrs, int flags)
653 {
654 struct ieee80211vap *vap = ni->ni_vap;
655 struct ieee80211com *ic = ni->ni_ic;
656 int i, j, rix, error;
657 int okrate, badrate, fixedrate, ucastrate;
658 const struct ieee80211_rateset *srs;
659 uint8_t r;
660
661 error = 0;
662 okrate = badrate = 0;
663 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
664 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
665 /*
666 * Workaround awkwardness with fixed rate. We are called
667 * to check both the legacy rate set and the HT rate set
668 * but we must apply any legacy fixed rate check only to the
669 * legacy rate set and vice versa. We cannot tell what type
670 * of rate set we've been given (legacy or HT) but we can
671 * distinguish the fixed rate type (MCS have 0x80 set).
672 * So to deal with this the caller communicates whether to
673 * check MCS or legacy rate using the flags and we use the
674 * type of any fixed rate to avoid applying an MCS to a
675 * legacy rate and vice versa.
676 */
677 if (ucastrate & 0x80) {
678 if (flags & IEEE80211_F_DOFRATE)
679 flags &= ~IEEE80211_F_DOFRATE;
680 } else if ((ucastrate & 0x80) == 0) {
681 if (flags & IEEE80211_F_DOFMCS)
682 flags &= ~IEEE80211_F_DOFMCS;
683 }
684 /* NB: required to make MCS match below work */
685 ucastrate &= IEEE80211_RATE_VAL;
686 }
687 fixedrate = IEEE80211_FIXED_RATE_NONE;
688 /*
689 * XXX we are called to process both MCS and legacy rates;
690 * we must use the appropriate basic rate set or chaos will
691 * ensue; for now callers that want MCS must supply
692 * IEEE80211_F_DOBRS; at some point we'll need to split this
693 * function so there are two variants, one for MCS and one
694 * for legacy rates.
695 */
696 if (flags & IEEE80211_F_DOBRS)
697 srs = (const struct ieee80211_rateset *)
698 ieee80211_get_suphtrates(ic, ni->ni_chan);
699 else
700 srs = ieee80211_get_suprates(ic, ni->ni_chan);
701 for (i = 0; i < nrs->rs_nrates; ) {
702 if (flags & IEEE80211_F_DOSORT) {
703 /*
704 * Sort rates.
705 */
706 for (j = i + 1; j < nrs->rs_nrates; j++) {
707 if (IEEE80211_RV(nrs->rs_rates[i]) >
708 IEEE80211_RV(nrs->rs_rates[j])) {
709 r = nrs->rs_rates[i];
710 nrs->rs_rates[i] = nrs->rs_rates[j];
711 nrs->rs_rates[j] = r;
712 }
713 }
714 }
715 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
716 badrate = r;
717 /*
718 * Check for fixed rate.
719 */
720 if (r == ucastrate)
721 fixedrate = r;
722 /*
723 * Check against supported rates.
724 */
725 rix = findrix(srs, r);
726 if (flags & IEEE80211_F_DONEGO) {
727 if (rix < 0) {
728 /*
729 * A rate in the node's rate set is not
730 * supported. If this is a basic rate and we
731 * are operating as a STA then this is an error.
732 * Otherwise we just discard/ignore the rate.
733 */
734 if ((flags & IEEE80211_F_JOIN) &&
735 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
736 error++;
737 } else if ((flags & IEEE80211_F_JOIN) == 0) {
738 /*
739 * Overwrite with the supported rate
740 * value so any basic rate bit is set.
741 */
742 nrs->rs_rates[i] = srs->rs_rates[rix];
743 }
744 }
745 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
746 /*
747 * Delete unacceptable rates.
748 */
749 nrs->rs_nrates--;
750 for (j = i; j < nrs->rs_nrates; j++)
751 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
752 nrs->rs_rates[j] = 0;
753 continue;
754 }
755 if (rix >= 0)
756 okrate = nrs->rs_rates[i];
757 i++;
758 }
759 if (okrate == 0 || error != 0 ||
760 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
761 fixedrate != ucastrate)) {
762 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
763 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
764 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
765 return badrate | IEEE80211_RATE_BASIC;
766 } else
767 return IEEE80211_RV(okrate);
768 }
769
770 /*
771 * Reset 11g-related state.
772 */
773 void
774 ieee80211_reset_erp(struct ieee80211com *ic)
775 {
776 ic->ic_flags &= ~IEEE80211_F_USEPROT;
777 ic->ic_nonerpsta = 0;
778 ic->ic_longslotsta = 0;
779 /*
780 * Short slot time is enabled only when operating in 11g
781 * and not in an IBSS. We must also honor whether or not
782 * the driver is capable of doing it.
783 */
784 ieee80211_set_shortslottime(ic,
785 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
786 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
787 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
788 ic->ic_opmode == IEEE80211_M_HOSTAP &&
789 (ic->ic_caps & IEEE80211_C_SHSLOT)));
790 /*
791 * Set short preamble and ERP barker-preamble flags.
792 */
793 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
794 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
795 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
796 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
797 } else {
798 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
799 ic->ic_flags |= IEEE80211_F_USEBARKER;
800 }
801 }
802
803 /*
804 * Set the short slot time state and notify the driver.
805 */
806 void
807 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
808 {
809 if (onoff)
810 ic->ic_flags |= IEEE80211_F_SHSLOT;
811 else
812 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
813 /* notify driver */
814 if (ic->ic_updateslot != NULL)
815 ic->ic_updateslot(ic);
816 }
817
818 /*
819 * Check if the specified rate set supports ERP.
820 * NB: the rate set is assumed to be sorted.
821 */
822 int
823 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
824 {
825 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
826 int i, j;
827
828 if (rs->rs_nrates < nitems(rates))
829 return 0;
830 for (i = 0; i < nitems(rates); i++) {
831 for (j = 0; j < rs->rs_nrates; j++) {
832 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
833 if (rates[i] == r)
834 goto next;
835 if (r > rates[i])
836 return 0;
837 }
838 return 0;
839 next:
840 ;
841 }
842 return 1;
843 }
844
845 /*
846 * Mark the basic rates for the rate table based on the
847 * operating mode. For real 11g we mark all the 11b rates
848 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
849 * 11b rates. There's also a pseudo 11a-mode used to mark only
850 * the basic OFDM rates.
851 */
852 static void
853 setbasicrates(struct ieee80211_rateset *rs,
854 enum ieee80211_phymode mode, int add)
855 {
856 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
857 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
858 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
859 /* NB: mixed b/g */
860 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
861 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
862 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
863 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
864 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
865 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
866 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
867 /* NB: mixed b/g */
868 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
869 /* NB: mixed b/g */
870 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
871 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
872 };
873 int i, j;
874
875 for (i = 0; i < rs->rs_nrates; i++) {
876 if (!add)
877 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
878 for (j = 0; j < basic[mode].rs_nrates; j++)
879 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
880 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
881 break;
882 }
883 }
884 }
885
886 /*
887 * Set the basic rates in a rate set.
888 */
889 void
890 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
891 enum ieee80211_phymode mode)
892 {
893 setbasicrates(rs, mode, 0);
894 }
895
896 /*
897 * Add basic rates to a rate set.
898 */
899 void
900 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
901 enum ieee80211_phymode mode)
902 {
903 setbasicrates(rs, mode, 1);
904 }
905
906 /*
907 * WME protocol support.
908 *
909 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
910 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
911 * Draft 2.0 Test Plan (Appendix D).
912 *
913 * Static/Dynamic Turbo mode settings come from Atheros.
914 */
915 typedef struct phyParamType {
916 uint8_t aifsn;
917 uint8_t logcwmin;
918 uint8_t logcwmax;
919 uint16_t txopLimit;
920 uint8_t acm;
921 } paramType;
922
923 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
924 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
925 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
926 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
927 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
928 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
929 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
930 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
931 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
932 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
933 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
934 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
935 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
936 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
937 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
938 };
939 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
940 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
941 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
942 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
943 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
944 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
945 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
946 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
947 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
948 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
949 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
950 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
951 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
952 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
953 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
954 };
955 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
956 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
957 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
958 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
959 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
960 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
961 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
962 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
963 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
964 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
965 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
966 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
967 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
968 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
969 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
970 };
971 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
972 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
973 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
974 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
975 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
976 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
977 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
978 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
979 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
980 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
981 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
982 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
983 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
984 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
985 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
986 };
987
988 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
989 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
990 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
991 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
992 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
993 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
994 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
995 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
996 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
997 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
998 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
999 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
1000 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
1001 };
1002 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1003 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
1004 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
1005 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
1006 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
1007 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
1008 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
1009 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
1010 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
1011 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
1012 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
1013 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
1014 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
1015 };
1016 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1017 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
1018 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
1019 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
1020 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
1021 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
1022 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1023 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1024 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1025 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
1026 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
1027 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
1028 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
1029 };
1030
1031 static void
1032 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1033 {
1034 wmep->wmep_aifsn = phy->aifsn;
1035 wmep->wmep_logcwmin = phy->logcwmin;
1036 wmep->wmep_logcwmax = phy->logcwmax;
1037 wmep->wmep_txopLimit = phy->txopLimit;
1038 }
1039
1040 static void
1041 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1042 struct wmeParams *wmep, const paramType *phy)
1043 {
1044 wmep->wmep_acm = phy->acm;
1045 _setifsparams(wmep, phy);
1046
1047 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1048 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1049 ieee80211_wme_acnames[ac], type,
1050 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1051 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1052 }
1053
1054 static void
1055 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1056 {
1057 struct ieee80211com *ic = vap->iv_ic;
1058 struct ieee80211_wme_state *wme = &ic->ic_wme;
1059 const paramType *pPhyParam, *pBssPhyParam;
1060 struct wmeParams *wmep;
1061 enum ieee80211_phymode mode;
1062 int i;
1063
1064 IEEE80211_LOCK_ASSERT(ic);
1065
1066 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1067 return;
1068
1069 /*
1070 * Clear the wme cap_info field so a qoscount from a previous
1071 * vap doesn't confuse later code which only parses the beacon
1072 * field and updates hardware when said field changes.
1073 * Otherwise the hardware is programmed with defaults, not what
1074 * the beacon actually announces.
1075 */
1076 wme->wme_wmeChanParams.cap_info = 0;
1077
1078 /*
1079 * Select mode; we can be called early in which case we
1080 * always use auto mode. We know we'll be called when
1081 * entering the RUN state with bsschan setup properly
1082 * so state will eventually get set correctly
1083 */
1084 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1085 mode = ieee80211_chan2mode(ic->ic_bsschan);
1086 else
1087 mode = IEEE80211_MODE_AUTO;
1088 for (i = 0; i < WME_NUM_AC; i++) {
1089 switch (i) {
1090 case WME_AC_BK:
1091 pPhyParam = &phyParamForAC_BK[mode];
1092 pBssPhyParam = &phyParamForAC_BK[mode];
1093 break;
1094 case WME_AC_VI:
1095 pPhyParam = &phyParamForAC_VI[mode];
1096 pBssPhyParam = &bssPhyParamForAC_VI[mode];
1097 break;
1098 case WME_AC_VO:
1099 pPhyParam = &phyParamForAC_VO[mode];
1100 pBssPhyParam = &bssPhyParamForAC_VO[mode];
1101 break;
1102 case WME_AC_BE:
1103 default:
1104 pPhyParam = &phyParamForAC_BE[mode];
1105 pBssPhyParam = &bssPhyParamForAC_BE[mode];
1106 break;
1107 }
1108 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1109 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1110 setwmeparams(vap, "chan", i, wmep, pPhyParam);
1111 } else {
1112 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1113 }
1114 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1115 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1116 }
1117 /* NB: check ic_bss to avoid NULL deref on initial attach */
1118 if (vap->iv_bss != NULL) {
1119 /*
1120 * Calculate aggressive mode switching threshold based
1121 * on beacon interval. This doesn't need locking since
1122 * we're only called before entering the RUN state at
1123 * which point we start sending beacon frames.
1124 */
1125 wme->wme_hipri_switch_thresh =
1126 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1127 wme->wme_flags &= ~WME_F_AGGRMODE;
1128 ieee80211_wme_updateparams(vap);
1129 }
1130 }
1131
1132 void
1133 ieee80211_wme_initparams(struct ieee80211vap *vap)
1134 {
1135 struct ieee80211com *ic = vap->iv_ic;
1136
1137 IEEE80211_LOCK(ic);
1138 ieee80211_wme_initparams_locked(vap);
1139 IEEE80211_UNLOCK(ic);
1140 }
1141
1142 /*
1143 * Update WME parameters for ourself and the BSS.
1144 */
1145 void
1146 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1147 {
1148 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1149 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
1150 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
1151 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
1152 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
1153 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
1154 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
1155 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
1156 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
1157 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
1158 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
1159 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1160 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1161 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1162 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1163 };
1164 struct ieee80211com *ic = vap->iv_ic;
1165 struct ieee80211_wme_state *wme = &ic->ic_wme;
1166 const struct wmeParams *wmep;
1167 struct wmeParams *chanp, *bssp;
1168 enum ieee80211_phymode mode;
1169 int i;
1170 int do_aggrmode = 0;
1171
1172 /*
1173 * Set up the channel access parameters for the physical
1174 * device. First populate the configured settings.
1175 */
1176 for (i = 0; i < WME_NUM_AC; i++) {
1177 chanp = &wme->wme_chanParams.cap_wmeParams[i];
1178 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1179 chanp->wmep_aifsn = wmep->wmep_aifsn;
1180 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1181 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1182 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1183
1184 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1185 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1186 chanp->wmep_aifsn = wmep->wmep_aifsn;
1187 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1188 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1189 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1190 }
1191
1192 /*
1193 * Select mode; we can be called early in which case we
1194 * always use auto mode. We know we'll be called when
1195 * entering the RUN state with bsschan setup properly
1196 * so state will eventually get set correctly
1197 */
1198 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1199 mode = ieee80211_chan2mode(ic->ic_bsschan);
1200 else
1201 mode = IEEE80211_MODE_AUTO;
1202
1203 /*
1204 * This implements aggressive mode as found in certain
1205 * vendors' AP's. When there is significant high
1206 * priority (VI/VO) traffic in the BSS throttle back BE
1207 * traffic by using conservative parameters. Otherwise
1208 * BE uses aggressive params to optimize performance of
1209 * legacy/non-QoS traffic.
1210 */
1211
1212 /* Hostap? Only if aggressive mode is enabled */
1213 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1214 (wme->wme_flags & WME_F_AGGRMODE) != 0)
1215 do_aggrmode = 1;
1216
1217 /*
1218 * Station? Only if we're in a non-QoS BSS.
1219 */
1220 else if ((vap->iv_opmode == IEEE80211_M_STA &&
1221 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1222 do_aggrmode = 1;
1223
1224 /*
1225 * IBSS? Only if we we have WME enabled.
1226 */
1227 else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1228 (vap->iv_flags & IEEE80211_F_WME))
1229 do_aggrmode = 1;
1230
1231 /*
1232 * If WME is disabled on this VAP, default to aggressive mode
1233 * regardless of the configuration.
1234 */
1235 if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1236 do_aggrmode = 1;
1237
1238 /* XXX WDS? */
1239
1240 /* XXX MBSS? */
1241
1242 if (do_aggrmode) {
1243 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1244 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1245
1246 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1247 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1248 aggrParam[mode].logcwmin;
1249 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1250 aggrParam[mode].logcwmax;
1251 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1252 (vap->iv_flags & IEEE80211_F_BURST) ?
1253 aggrParam[mode].txopLimit : 0;
1254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1255 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1256 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1257 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1258 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1259 }
1260
1261
1262 /*
1263 * Change the contention window based on the number of associated
1264 * stations. If the number of associated stations is 1 and
1265 * aggressive mode is enabled, lower the contention window even
1266 * further.
1267 */
1268 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1269 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1270 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1271 [IEEE80211_MODE_AUTO] = 3,
1272 [IEEE80211_MODE_11A] = 3,
1273 [IEEE80211_MODE_11B] = 4,
1274 [IEEE80211_MODE_11G] = 3,
1275 [IEEE80211_MODE_FH] = 4,
1276 [IEEE80211_MODE_TURBO_A] = 3,
1277 [IEEE80211_MODE_TURBO_G] = 3,
1278 [IEEE80211_MODE_STURBO_A] = 3,
1279 [IEEE80211_MODE_HALF] = 3,
1280 [IEEE80211_MODE_QUARTER] = 3,
1281 [IEEE80211_MODE_11NA] = 3,
1282 [IEEE80211_MODE_11NG] = 3,
1283 [IEEE80211_MODE_VHT_2GHZ] = 3,
1284 [IEEE80211_MODE_VHT_5GHZ] = 3,
1285 };
1286 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1287 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1288
1289 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1290 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1291 "update %s (chan+bss) logcwmin %u\n",
1292 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1293 }
1294
1295 /*
1296 * Arrange for the beacon update.
1297 *
1298 * XXX what about MBSS, WDS?
1299 */
1300 if (vap->iv_opmode == IEEE80211_M_HOSTAP
1301 || vap->iv_opmode == IEEE80211_M_IBSS) {
1302 /*
1303 * Arrange for a beacon update and bump the parameter
1304 * set number so associated stations load the new values.
1305 */
1306 wme->wme_bssChanParams.cap_info =
1307 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1308 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1309 }
1310
1311 /* schedule the deferred WME update */
1312 ieee80211_runtask(ic, &vap->iv_wme_task);
1313
1314 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1315 "%s: WME params updated, cap_info 0x%x\n", __func__,
1316 vap->iv_opmode == IEEE80211_M_STA ?
1317 wme->wme_wmeChanParams.cap_info :
1318 wme->wme_bssChanParams.cap_info);
1319 }
1320
1321 void
1322 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1323 {
1324 struct ieee80211com *ic = vap->iv_ic;
1325
1326 if (ic->ic_caps & IEEE80211_C_WME) {
1327 IEEE80211_LOCK(ic);
1328 ieee80211_wme_updateparams_locked(vap);
1329 IEEE80211_UNLOCK(ic);
1330 }
1331 }
1332
1333 /*
1334 * Fetch the WME parameters for the given VAP.
1335 *
1336 * When net80211 grows p2p, etc support, this may return different
1337 * parameters for each VAP.
1338 */
1339 void
1340 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1341 {
1342
1343 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1344 }
1345
1346 /*
1347 * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1348 * there may be different VAP WME parameters but only one is "active".
1349 * This returns the "NIC" WME parameters for the currently active
1350 * context.
1351 */
1352 void
1353 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1354 {
1355
1356 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1357 }
1358
1359 /*
1360 * Return whether to use QoS on a given WME queue.
1361 *
1362 * This is intended to be called from the transmit path of softmac drivers
1363 * which are setting NoAck bits in transmit descriptors.
1364 *
1365 * Ideally this would be set in some transmit field before the packet is
1366 * queued to the driver but net80211 isn't quite there yet.
1367 */
1368 int
1369 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1370 {
1371 /* Bounds/sanity check */
1372 if (ac < 0 || ac >= WME_NUM_AC)
1373 return (0);
1374
1375 /* Again, there's only one global context for now */
1376 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1377 }
1378
1379 static void
1380 parent_updown(void *arg, int npending)
1381 {
1382 struct ieee80211com *ic = arg;
1383
1384 ic->ic_parent(ic);
1385 }
1386
1387 static void
1388 update_mcast(void *arg, int npending)
1389 {
1390 struct ieee80211com *ic = arg;
1391
1392 ic->ic_update_mcast(ic);
1393 }
1394
1395 static void
1396 update_promisc(void *arg, int npending)
1397 {
1398 struct ieee80211com *ic = arg;
1399
1400 ic->ic_update_promisc(ic);
1401 }
1402
1403 static void
1404 update_channel(void *arg, int npending)
1405 {
1406 struct ieee80211com *ic = arg;
1407
1408 ic->ic_set_channel(ic);
1409 ieee80211_radiotap_chan_change(ic);
1410 }
1411
1412 static void
1413 update_chw(void *arg, int npending)
1414 {
1415 struct ieee80211com *ic = arg;
1416
1417 /*
1418 * XXX should we defer the channel width _config_ update until now?
1419 */
1420 ic->ic_update_chw(ic);
1421 }
1422
1423 /*
1424 * Deferred WME update.
1425 *
1426 * In preparation for per-VAP WME configuration, call the VAP
1427 * method if the VAP requires it. Otherwise, just call the
1428 * older global method. There isn't a per-VAP WME configuration
1429 * just yet so for now just use the global configuration.
1430 */
1431 static void
1432 vap_update_wme(void *arg, int npending)
1433 {
1434 struct ieee80211vap *vap = arg;
1435 struct ieee80211com *ic = vap->iv_ic;
1436
1437 if (vap->iv_wme_update != NULL)
1438 vap->iv_wme_update(vap,
1439 ic->ic_wme.wme_chanParams.cap_wmeParams);
1440 else
1441 ic->ic_wme.wme_update(ic);
1442 }
1443
1444 static void
1445 restart_vaps(void *arg, int npending)
1446 {
1447 struct ieee80211com *ic = arg;
1448
1449 ieee80211_suspend_all(ic);
1450 ieee80211_resume_all(ic);
1451 }
1452
1453 /*
1454 * Block until the parent is in a known state. This is
1455 * used after any operations that dispatch a task (e.g.
1456 * to auto-configure the parent device up/down).
1457 */
1458 void
1459 ieee80211_waitfor_parent(struct ieee80211com *ic)
1460 {
1461 taskqueue_block(ic->ic_tq);
1462 ieee80211_draintask(ic, &ic->ic_parent_task);
1463 ieee80211_draintask(ic, &ic->ic_mcast_task);
1464 ieee80211_draintask(ic, &ic->ic_promisc_task);
1465 ieee80211_draintask(ic, &ic->ic_chan_task);
1466 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1467 ieee80211_draintask(ic, &ic->ic_chw_task);
1468 taskqueue_unblock(ic->ic_tq);
1469 }
1470
1471 /*
1472 * Check to see whether the current channel needs reset.
1473 *
1474 * Some devices don't handle being given an invalid channel
1475 * in their operating mode very well (eg wpi(4) will throw a
1476 * firmware exception.)
1477 *
1478 * Return 0 if we're ok, 1 if the channel needs to be reset.
1479 *
1480 * See PR kern/202502.
1481 */
1482 static int
1483 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1484 {
1485 struct ieee80211com *ic = vap->iv_ic;
1486
1487 if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1488 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1489 (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1490 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1491 return (1);
1492 return (0);
1493 }
1494
1495 /*
1496 * Reset the curchan to a known good state.
1497 */
1498 static void
1499 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1500 {
1501 struct ieee80211com *ic = vap->iv_ic;
1502
1503 ic->ic_curchan = &ic->ic_channels[0];
1504 }
1505
1506 /*
1507 * Start a vap running. If this is the first vap to be
1508 * set running on the underlying device then we
1509 * automatically bring the device up.
1510 */
1511 void
1512 ieee80211_start_locked(struct ieee80211vap *vap)
1513 {
1514 struct ifnet *ifp = vap->iv_ifp;
1515 struct ieee80211com *ic = vap->iv_ic;
1516
1517 IEEE80211_LOCK_ASSERT(ic);
1518
1519 IEEE80211_DPRINTF(vap,
1520 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1521 "start running, %d vaps running\n", ic->ic_nrunning);
1522
1523 #if __FreeBSD__
1524 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1525 #elif __NetBSD__
1526 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1527 #endif
1528 /*
1529 * Mark us running. Note that it's ok to do this first;
1530 * if we need to bring the parent device up we defer that
1531 * to avoid dropping the com lock. We expect the device
1532 * to respond to being marked up by calling back into us
1533 * through ieee80211_start_all at which point we'll come
1534 * back in here and complete the work.
1535 */
1536 #if __FreeBSD__
1537 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1538 #elif __NetBSD__
1539 ifp->if_flags |= IFF_RUNNING;
1540 #endif
1541 /*
1542 * We are not running; if this we are the first vap
1543 * to be brought up auto-up the parent if necessary.
1544 */
1545 if (ic->ic_nrunning++ == 0) {
1546
1547 /* reset the channel to a known good channel */
1548 if (ieee80211_start_check_reset_chan(vap))
1549 ieee80211_start_reset_chan(vap);
1550
1551 IEEE80211_DPRINTF(vap,
1552 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1553 "%s: up parent %s\n", __func__, ic->ic_name);
1554 ieee80211_runtask(ic, &ic->ic_parent_task);
1555 return;
1556 }
1557 }
1558 /*
1559 * If the parent is up and running, then kick the
1560 * 802.11 state machine as appropriate.
1561 */
1562 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1563 if (vap->iv_opmode == IEEE80211_M_STA) {
1564 #if 0
1565 /* XXX bypasses scan too easily; disable for now */
1566 /*
1567 * Try to be intelligent about clocking the state
1568 * machine. If we're currently in RUN state then
1569 * we should be able to apply any new state/parameters
1570 * simply by re-associating. Otherwise we need to
1571 * re-scan to select an appropriate ap.
1572 */
1573 if (vap->iv_state >= IEEE80211_S_RUN)
1574 ieee80211_new_state_locked(vap,
1575 IEEE80211_S_ASSOC, 1);
1576 else
1577 #endif
1578 ieee80211_new_state_locked(vap,
1579 IEEE80211_S_SCAN, 0);
1580 } else {
1581 /*
1582 * For monitor+wds mode there's nothing to do but
1583 * start running. Otherwise if this is the first
1584 * vap to be brought up, start a scan which may be
1585 * preempted if the station is locked to a particular
1586 * channel.
1587 */
1588 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1589 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1590 vap->iv_opmode == IEEE80211_M_WDS)
1591 ieee80211_new_state_locked(vap,
1592 IEEE80211_S_RUN, -1);
1593 else
1594 ieee80211_new_state_locked(vap,
1595 IEEE80211_S_SCAN, 0);
1596 }
1597 }
1598 }
1599
1600 /*
1601 * Start a single vap.
1602 */
1603 void
1604 ieee80211_init(void *arg)
1605 {
1606 struct ieee80211vap *vap = arg;
1607
1608 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1609 "%s\n", __func__);
1610
1611 IEEE80211_LOCK(vap->iv_ic);
1612 ieee80211_start_locked(vap);
1613 IEEE80211_UNLOCK(vap->iv_ic);
1614 }
1615
1616 /*
1617 * Start all runnable vap's on a device.
1618 */
1619 void
1620 ieee80211_start_all(struct ieee80211com *ic)
1621 {
1622 struct ieee80211vap *vap;
1623
1624 IEEE80211_LOCK(ic);
1625 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1626 struct ifnet *ifp = vap->iv_ifp;
1627 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1628 ieee80211_start_locked(vap);
1629 }
1630 IEEE80211_UNLOCK(ic);
1631 }
1632
1633 /*
1634 * Stop a vap. We force it down using the state machine
1635 * then mark it's ifnet not running. If this is the last
1636 * vap running on the underlying device then we close it
1637 * too to insure it will be properly initialized when the
1638 * next vap is brought up.
1639 */
1640 void
1641 ieee80211_stop_locked(struct ieee80211vap *vap)
1642 {
1643 struct ieee80211com *ic = vap->iv_ic;
1644 struct ifnet *ifp = vap->iv_ifp;
1645
1646 IEEE80211_LOCK_ASSERT(ic);
1647
1648 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1649 "stop running, %d vaps running\n", ic->ic_nrunning);
1650
1651 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1652 #if __FreeBSD__
1653 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1654 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
1655 #elif __NetBSD__
1656 if (ifp->if_flags & IFF_RUNNING) {
1657 ifp->if_flags &= ~IFF_RUNNING; /* mark us stopped */
1658 #endif
1659 if (--ic->ic_nrunning == 0) {
1660 IEEE80211_DPRINTF(vap,
1661 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1662 "down parent %s\n", ic->ic_name);
1663 ieee80211_runtask(ic, &ic->ic_parent_task);
1664 }
1665 }
1666 }
1667
1668 void
1669 ieee80211_stop(struct ieee80211vap *vap)
1670 {
1671 struct ieee80211com *ic = vap->iv_ic;
1672
1673 IEEE80211_LOCK(ic);
1674 ieee80211_stop_locked(vap);
1675 IEEE80211_UNLOCK(ic);
1676 }
1677
1678 /*
1679 * Stop all vap's running on a device.
1680 */
1681 void
1682 ieee80211_stop_all(struct ieee80211com *ic)
1683 {
1684 struct ieee80211vap *vap;
1685
1686 IEEE80211_LOCK(ic);
1687 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1688 struct ifnet *ifp = vap->iv_ifp;
1689 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1690 ieee80211_stop_locked(vap);
1691 }
1692 IEEE80211_UNLOCK(ic);
1693
1694 ieee80211_waitfor_parent(ic);
1695 }
1696
1697 /*
1698 * Stop all vap's running on a device and arrange
1699 * for those that were running to be resumed.
1700 */
1701 void
1702 ieee80211_suspend_all(struct ieee80211com *ic)
1703 {
1704 struct ieee80211vap *vap;
1705
1706 IEEE80211_LOCK(ic);
1707 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1708 struct ifnet *ifp = vap->iv_ifp;
1709 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
1710 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1711 ieee80211_stop_locked(vap);
1712 }
1713 }
1714 IEEE80211_UNLOCK(ic);
1715
1716 ieee80211_waitfor_parent(ic);
1717 }
1718
1719 /*
1720 * Start all vap's marked for resume.
1721 */
1722 void
1723 ieee80211_resume_all(struct ieee80211com *ic)
1724 {
1725 struct ieee80211vap *vap;
1726
1727 IEEE80211_LOCK(ic);
1728 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1729 struct ifnet *ifp = vap->iv_ifp;
1730 if (!IFNET_IS_UP_RUNNING(ifp) &&
1731 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1732 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1733 ieee80211_start_locked(vap);
1734 }
1735 }
1736 IEEE80211_UNLOCK(ic);
1737 }
1738
1739 /*
1740 * Restart all vap's running on a device.
1741 */
1742 void
1743 ieee80211_restart_all(struct ieee80211com *ic)
1744 {
1745 /*
1746 * NB: do not use ieee80211_runtask here, we will
1747 * block & drain net80211 taskqueue.
1748 */
1749 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1750 }
1751
1752 void
1753 ieee80211_beacon_miss(struct ieee80211com *ic)
1754 {
1755 IEEE80211_LOCK(ic);
1756 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1757 /* Process in a taskq, the handler may reenter the driver */
1758 ieee80211_runtask(ic, &ic->ic_bmiss_task);
1759 }
1760 IEEE80211_UNLOCK(ic);
1761 }
1762
1763 static void
1764 beacon_miss(void *arg, int npending)
1765 {
1766 struct ieee80211com *ic = arg;
1767 struct ieee80211vap *vap;
1768
1769 IEEE80211_LOCK(ic);
1770 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1771 /*
1772 * We only pass events through for sta vap's in RUN+ state;
1773 * may be too restrictive but for now this saves all the
1774 * handlers duplicating these checks.
1775 */
1776 if (vap->iv_opmode == IEEE80211_M_STA &&
1777 vap->iv_state >= IEEE80211_S_RUN &&
1778 vap->iv_bmiss != NULL)
1779 vap->iv_bmiss(vap);
1780 }
1781 IEEE80211_UNLOCK(ic);
1782 }
1783
1784 static void
1785 beacon_swmiss(void *arg, int npending)
1786 {
1787 struct ieee80211vap *vap = arg;
1788 struct ieee80211com *ic = vap->iv_ic;
1789
1790 IEEE80211_LOCK(ic);
1791 if (vap->iv_state >= IEEE80211_S_RUN) {
1792 /* XXX Call multiple times if npending > zero? */
1793 vap->iv_bmiss(vap);
1794 }
1795 IEEE80211_UNLOCK(ic);
1796 }
1797
1798 /*
1799 * Software beacon miss handling. Check if any beacons
1800 * were received in the last period. If not post a
1801 * beacon miss; otherwise reset the counter.
1802 */
1803 void
1804 ieee80211_swbmiss(void *arg)
1805 {
1806 struct ieee80211vap *vap = arg;
1807 struct ieee80211com *ic = vap->iv_ic;
1808
1809 IEEE80211_LOCK_ASSERT(ic);
1810
1811 KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1812 ("wrong state %d", vap->iv_state));
1813
1814 if (ic->ic_flags & IEEE80211_F_SCAN) {
1815 /*
1816 * If scanning just ignore and reset state. If we get a
1817 * bmiss after coming out of scan because we haven't had
1818 * time to receive a beacon then we should probe the AP
1819 * before posting a real bmiss (unless iv_bmiss_max has
1820 * been artifiically lowered). A cleaner solution might
1821 * be to disable the timer on scan start/end but to handle
1822 * case of multiple sta vap's we'd need to disable the
1823 * timers of all affected vap's.
1824 */
1825 vap->iv_swbmiss_count = 0;
1826 } else if (vap->iv_swbmiss_count == 0) {
1827 if (vap->iv_bmiss != NULL)
1828 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1829 } else
1830 vap->iv_swbmiss_count = 0;
1831 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1832 ieee80211_swbmiss, vap);
1833 }
1834
1835 /*
1836 * Start an 802.11h channel switch. We record the parameters,
1837 * mark the operation pending, notify each vap through the
1838 * beacon update mechanism so it can update the beacon frame
1839 * contents, and then switch vap's to CSA state to block outbound
1840 * traffic. Devices that handle CSA directly can use the state
1841 * switch to do the right thing so long as they call
1842 * ieee80211_csa_completeswitch when it's time to complete the
1843 * channel change. Devices that depend on the net80211 layer can
1844 * use ieee80211_beacon_update to handle the countdown and the
1845 * channel switch.
1846 */
1847 void
1848 ieee80211_csa_startswitch(struct ieee80211com *ic,
1849 struct ieee80211_channel *c, int mode, int count)
1850 {
1851 struct ieee80211vap *vap;
1852
1853 IEEE80211_LOCK_ASSERT(ic);
1854
1855 ic->ic_csa_newchan = c;
1856 ic->ic_csa_mode = mode;
1857 ic->ic_csa_count = count;
1858 ic->ic_flags |= IEEE80211_F_CSAPENDING;
1859 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1860 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1861 vap->iv_opmode == IEEE80211_M_IBSS ||
1862 vap->iv_opmode == IEEE80211_M_MBSS)
1863 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1864 /* switch to CSA state to block outbound traffic */
1865 if (vap->iv_state == IEEE80211_S_RUN)
1866 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1867 }
1868 ieee80211_notify_csa(ic, c, mode, count);
1869 }
1870
1871 /*
1872 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1873 * This is called by both the completion and cancellation functions
1874 * so each VAP is placed back in the RUN state and can thus transmit.
1875 */
1876 static void
1877 csa_completeswitch(struct ieee80211com *ic)
1878 {
1879 struct ieee80211vap *vap;
1880
1881 ic->ic_csa_newchan = NULL;
1882 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1883
1884 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1885 if (vap->iv_state == IEEE80211_S_CSA)
1886 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1887 }
1888
1889 /*
1890 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1891 * We clear state and move all vap's in CSA state to RUN state
1892 * so they can again transmit.
1893 *
1894 * Although this may not be completely correct, update the BSS channel
1895 * for each VAP to the newly configured channel. The setcurchan sets
1896 * the current operating channel for the interface (so the radio does
1897 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1898 * reported information via ioctl.
1899 */
1900 void
1901 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1902 {
1903 struct ieee80211vap *vap;
1904
1905 IEEE80211_LOCK_ASSERT(ic);
1906
1907 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1908
1909 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1910 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1911 if (vap->iv_state == IEEE80211_S_CSA)
1912 vap->iv_bss->ni_chan = ic->ic_curchan;
1913
1914 csa_completeswitch(ic);
1915 }
1916
1917 /*
1918 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1919 * We clear state and move all vap's in CSA state to RUN state
1920 * so they can again transmit.
1921 */
1922 void
1923 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1924 {
1925 IEEE80211_LOCK_ASSERT(ic);
1926
1927 csa_completeswitch(ic);
1928 }
1929
1930 /*
1931 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1932 * We clear state and move all vap's in CAC state to RUN state.
1933 */
1934 void
1935 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1936 {
1937 struct ieee80211com *ic = vap0->iv_ic;
1938 struct ieee80211vap *vap;
1939
1940 IEEE80211_LOCK(ic);
1941 /*
1942 * Complete CAC state change for lead vap first; then
1943 * clock all the other vap's waiting.
1944 */
1945 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1946 ("wrong state %d", vap0->iv_state));
1947 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1948
1949 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1950 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1951 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1952 IEEE80211_UNLOCK(ic);
1953 }
1954
1955 /*
1956 * Force all vap's other than the specified vap to the INIT state
1957 * and mark them as waiting for a scan to complete. These vaps
1958 * will be brought up when the scan completes and the scanning vap
1959 * reaches RUN state by wakeupwaiting.
1960 */
1961 static void
1962 markwaiting(struct ieee80211vap *vap0)
1963 {
1964 struct ieee80211com *ic = vap0->iv_ic;
1965 struct ieee80211vap *vap;
1966
1967 IEEE80211_LOCK_ASSERT(ic);
1968
1969 /*
1970 * A vap list entry can not disappear since we are running on the
1971 * taskqueue and a vap destroy will queue and drain another state
1972 * change task.
1973 */
1974 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1975 if (vap == vap0)
1976 continue;
1977 if (vap->iv_state != IEEE80211_S_INIT) {
1978 /* NB: iv_newstate may drop the lock */
1979 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1980 IEEE80211_LOCK_ASSERT(ic);
1981 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1982 }
1983 }
1984 }
1985
1986 /*
1987 * Wakeup all vap's waiting for a scan to complete. This is the
1988 * companion to markwaiting (above) and is used to coordinate
1989 * multiple vaps scanning.
1990 * This is called from the state taskqueue.
1991 */
1992 static void
1993 wakeupwaiting(struct ieee80211vap *vap0)
1994 {
1995 struct ieee80211com *ic = vap0->iv_ic;
1996 struct ieee80211vap *vap;
1997
1998 IEEE80211_LOCK_ASSERT(ic);
1999
2000 /*
2001 * A vap list entry can not disappear since we are running on the
2002 * taskqueue and a vap destroy will queue and drain another state
2003 * change task.
2004 */
2005 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2006 if (vap == vap0)
2007 continue;
2008 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2009 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2010 /* NB: sta's cannot go INIT->RUN */
2011 /* NB: iv_newstate may drop the lock */
2012 vap->iv_newstate(vap,
2013 vap->iv_opmode == IEEE80211_M_STA ?
2014 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2015 IEEE80211_LOCK_ASSERT(ic);
2016 }
2017 }
2018 }
2019
2020 /*
2021 * Handle post state change work common to all operating modes.
2022 */
2023 static void
2024 ieee80211_newstate_cb(void *xvap, int npending)
2025 {
2026 struct ieee80211vap *vap = xvap;
2027 struct ieee80211com *ic = vap->iv_ic;
2028 enum ieee80211_state nstate, ostate;
2029 int arg, rc;
2030
2031 IEEE80211_LOCK(ic);
2032 nstate = vap->iv_nstate;
2033 arg = vap->iv_nstate_arg;
2034
2035 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2036 /*
2037 * We have been requested to drop back to the INIT before
2038 * proceeding to the new state.
2039 */
2040 /* Deny any state changes while we are here. */
2041 vap->iv_nstate = IEEE80211_S_INIT;
2042 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2043 "%s: %s -> %s arg %d\n", __func__,
2044 ieee80211_state_name[vap->iv_state],
2045 ieee80211_state_name[vap->iv_nstate], arg);
2046 vap->iv_newstate(vap, vap->iv_nstate, 0);
2047 IEEE80211_LOCK_ASSERT(ic);
2048 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2049 IEEE80211_FEXT_STATEWAIT);
2050 /* enqueue new state transition after cancel_scan() task */
2051 ieee80211_new_state_locked(vap, nstate, arg);
2052 goto done;
2053 }
2054
2055 ostate = vap->iv_state;
2056 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2057 /*
2058 * SCAN was forced; e.g. on beacon miss. Force other running
2059 * vap's to INIT state and mark them as waiting for the scan to
2060 * complete. This insures they don't interfere with our
2061 * scanning. Since we are single threaded the vaps can not
2062 * transition again while we are executing.
2063 *
2064 * XXX not always right, assumes ap follows sta
2065 */
2066 markwaiting(vap);
2067 }
2068 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2069 "%s: %s -> %s arg %d\n", __func__,
2070 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2071
2072 rc = vap->iv_newstate(vap, nstate, arg);
2073 IEEE80211_LOCK_ASSERT(ic);
2074 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2075 if (rc != 0) {
2076 /* State transition failed */
2077 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2078 KASSERT(nstate != IEEE80211_S_INIT,
2079 ("INIT state change failed"));
2080 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2081 "%s: %s returned error %d\n", __func__,
2082 ieee80211_state_name[nstate], rc);
2083 goto done;
2084 }
2085
2086 /* No actual transition, skip post processing */
2087 if (ostate == nstate)
2088 goto done;
2089
2090 if (nstate == IEEE80211_S_RUN) {
2091 /*
2092 * OACTIVE may be set on the vap if the upper layer
2093 * tried to transmit (e.g. IPv6 NDP) before we reach
2094 * RUN state. Clear it and restart xmit.
2095 *
2096 * Note this can also happen as a result of SLEEP->RUN
2097 * (i.e. coming out of power save mode).
2098 */
2099 #if __FreeBSD__
2100 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2101 #elif __NetBSD__
2102 vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
2103 #endif
2104
2105 /*
2106 * XXX TODO Kick-start a VAP queue - this should be a method!
2107 */
2108
2109 /* bring up any vaps waiting on us */
2110 wakeupwaiting(vap);
2111 } else if (nstate == IEEE80211_S_INIT) {
2112 /*
2113 * Flush the scan cache if we did the last scan (XXX?)
2114 * and flush any frames on send queues from this vap.
2115 * Note the mgt q is used only for legacy drivers and
2116 * will go away shortly.
2117 */
2118 ieee80211_scan_flush(vap);
2119
2120 /*
2121 * XXX TODO: ic/vap queue flush
2122 */
2123 }
2124 done:
2125 IEEE80211_UNLOCK(ic);
2126 }
2127
2128 /*
2129 * Public interface for initiating a state machine change.
2130 * This routine single-threads the request and coordinates
2131 * the scheduling of multiple vaps for the purpose of selecting
2132 * an operating channel. Specifically the following scenarios
2133 * are handled:
2134 * o only one vap can be selecting a channel so on transition to
2135 * SCAN state if another vap is already scanning then
2136 * mark the caller for later processing and return without
2137 * doing anything (XXX? expectations by caller of synchronous operation)
2138 * o only one vap can be doing CAC of a channel so on transition to
2139 * CAC state if another vap is already scanning for radar then
2140 * mark the caller for later processing and return without
2141 * doing anything (XXX? expectations by caller of synchronous operation)
2142 * o if another vap is already running when a request is made
2143 * to SCAN then an operating channel has been chosen; bypass
2144 * the scan and just join the channel
2145 *
2146 * Note that the state change call is done through the iv_newstate
2147 * method pointer so any driver routine gets invoked. The driver
2148 * will normally call back into operating mode-specific
2149 * ieee80211_newstate routines (below) unless it needs to completely
2150 * bypass the state machine (e.g. because the firmware has it's
2151 * own idea how things should work). Bypassing the net80211 layer
2152 * is usually a mistake and indicates lack of proper integration
2153 * with the net80211 layer.
2154 */
2155 int
2156 ieee80211_new_state_locked(struct ieee80211vap *vap,
2157 enum ieee80211_state nstate, int arg)
2158 {
2159 struct ieee80211com *ic = vap->iv_ic;
2160 struct ieee80211vap *vp;
2161 enum ieee80211_state ostate;
2162 int nrunning, nscanning;
2163
2164 IEEE80211_LOCK_ASSERT(ic);
2165
2166 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2167 if (vap->iv_nstate == IEEE80211_S_INIT ||
2168 ((vap->iv_state == IEEE80211_S_INIT ||
2169 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2170 vap->iv_nstate == IEEE80211_S_SCAN &&
2171 nstate > IEEE80211_S_SCAN)) {
2172 /*
2173 * XXX The vap is being stopped/started,
2174 * do not allow any other state changes
2175 * until this is completed.
2176 */
2177 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2178 "%s: %s -> %s (%s) transition discarded\n",
2179 __func__,
2180 ieee80211_state_name[vap->iv_state],
2181 ieee80211_state_name[nstate],
2182 ieee80211_state_name[vap->iv_nstate]);
2183 return -1;
2184 } else if (vap->iv_state != vap->iv_nstate) {
2185 #if 0
2186 /* Warn if the previous state hasn't completed. */
2187 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2188 "%s: pending %s -> %s transition lost\n", __func__,
2189 ieee80211_state_name[vap->iv_state],
2190 ieee80211_state_name[vap->iv_nstate]);
2191 #else
2192 /* XXX temporarily enable to identify issues */
2193 if_printf(vap->iv_ifp,
2194 "%s: pending %s -> %s transition lost\n",
2195 __func__, ieee80211_state_name[vap->iv_state],
2196 ieee80211_state_name[vap->iv_nstate]);
2197 #endif
2198 }
2199 }
2200
2201 nrunning = nscanning = 0;
2202 /* XXX can track this state instead of calculating */
2203 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2204 if (vp != vap) {
2205 if (vp->iv_state >= IEEE80211_S_RUN)
2206 nrunning++;
2207 /* XXX doesn't handle bg scan */
2208 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2209 else if (vp->iv_state > IEEE80211_S_INIT)
2210 nscanning++;
2211 }
2212 }
2213 ostate = vap->iv_state;
2214 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2215 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2216 ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2217 nrunning, nscanning);
2218 switch (nstate) {
2219 case IEEE80211_S_SCAN:
2220 if (ostate == IEEE80211_S_INIT) {
2221 /*
2222 * INIT -> SCAN happens on initial bringup.
2223 */
2224 KASSERT(!(nscanning && nrunning),
2225 ("%d scanning and %d running", nscanning, nrunning));
2226 if (nscanning) {
2227 /*
2228 * Someone is scanning, defer our state
2229 * change until the work has completed.
2230 */
2231 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2232 "%s: defer %s -> %s\n",
2233 __func__, ieee80211_state_name[ostate],
2234 ieee80211_state_name[nstate]);
2235 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2236 return 0;
2237 }
2238 if (nrunning) {
2239 /*
2240 * Someone is operating; just join the channel
2241 * they have chosen.
2242 */
2243 /* XXX kill arg? */
2244 /* XXX check each opmode, adhoc? */
2245 if (vap->iv_opmode == IEEE80211_M_STA)
2246 nstate = IEEE80211_S_SCAN;
2247 else
2248 nstate = IEEE80211_S_RUN;
2249 #ifdef IEEE80211_DEBUG
2250 if (nstate != IEEE80211_S_SCAN) {
2251 IEEE80211_DPRINTF(vap,
2252 IEEE80211_MSG_STATE,
2253 "%s: override, now %s -> %s\n",
2254 __func__,
2255 ieee80211_state_name[ostate],
2256 ieee80211_state_name[nstate]);
2257 }
2258 #endif
2259 }
2260 }
2261 break;
2262 case IEEE80211_S_RUN:
2263 if (vap->iv_opmode == IEEE80211_M_WDS &&
2264 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2265 nscanning) {
2266 /*
2267 * Legacy WDS with someone else scanning; don't
2268 * go online until that completes as we should
2269 * follow the other vap to the channel they choose.
2270 */
2271 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2272 "%s: defer %s -> %s (legacy WDS)\n", __func__,
2273 ieee80211_state_name[ostate],
2274 ieee80211_state_name[nstate]);
2275 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2276 return 0;
2277 }
2278 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2279 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2280 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2281 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2282 /*
2283 * This is a DFS channel, transition to CAC state
2284 * instead of RUN. This allows us to initiate
2285 * Channel Availability Check (CAC) as specified
2286 * by 11h/DFS.
2287 */
2288 nstate = IEEE80211_S_CAC;
2289 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2290 "%s: override %s -> %s (DFS)\n", __func__,
2291 ieee80211_state_name[ostate],
2292 ieee80211_state_name[nstate]);
2293 }
2294 break;
2295 case IEEE80211_S_INIT:
2296 /* cancel any scan in progress */
2297 ieee80211_cancel_scan(vap);
2298 if (ostate == IEEE80211_S_INIT ) {
2299 /* XXX don't believe this */
2300 /* INIT -> INIT. nothing to do */
2301 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2302 }
2303 /* fall thru... */
2304 default:
2305 break;
2306 }
2307 /* defer the state change to a thread */
2308 vap->iv_nstate = nstate;
2309 vap->iv_nstate_arg = arg;
2310 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2311 ieee80211_runtask(ic, &vap->iv_nstate_task);
2312 return EINPROGRESS;
2313 }
2314
2315 int
2316 ieee80211_new_state(struct ieee80211vap *vap,
2317 enum ieee80211_state nstate, int arg)
2318 {
2319 struct ieee80211com *ic = vap->iv_ic;
2320 int rc;
2321
2322 IEEE80211_LOCK(ic);
2323 rc = ieee80211_new_state_locked(vap, nstate, arg);
2324 IEEE80211_UNLOCK(ic);
2325 return rc;
2326 }
2327