Home | History | Annotate | Line # | Download | only in net80211
ieee80211_proto.c revision 1.34.14.3
      1 /*	$NetBSD: ieee80211_proto.c,v 1.34.14.3 2018/07/16 20:11:11 phil Exp $ */
      2 
      3 /*-
      4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      5  *
      6  * Copyright (c) 2001 Atsushi Onoe
      7  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      8  * Copyright (c) 2012 IEEE
      9  * All rights reserved.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #if __FreeBSD__
     34 __FBSDID("$FreeBSD$");
     35 #endif
     36 
     37 /*
     38  * IEEE 802.11 protocol support.
     39  */
     40 
     41 #include "opt_inet.h"
     42 #include "opt_wlan.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #ifdef __NetBSD__
     49 #include <sys/mbuf.h>
     50 #endif
     51 
     52 #include <sys/socket.h>
     53 #include <sys/sockio.h>
     54 
     55 #include <net/if.h>
     56 #if __FreeBSD__
     57 #include <net/if_var.h>
     58 #endif
     59 #include <net/if_media.h>
     60 #if __FreeBSD__
     61 #include <net/ethernet.h>		/* XXX for ether_sprintf */
     62 #endif
     63 #ifdef __NetBSD__
     64 #include <net/if_ether.h>
     65 #include <net/route.h>
     66 #endif
     67 
     68 #include <net80211/ieee80211_var.h>
     69 #include <net80211/ieee80211_adhoc.h>
     70 #include <net80211/ieee80211_sta.h>
     71 #include <net80211/ieee80211_hostap.h>
     72 #include <net80211/ieee80211_wds.h>
     73 #ifdef IEEE80211_SUPPORT_MESH
     74 #include <net80211/ieee80211_mesh.h>
     75 #endif
     76 #include <net80211/ieee80211_monitor.h>
     77 #include <net80211/ieee80211_input.h>
     78 
     79 #ifdef __NetBSD__
     80 #undef  KASSERT
     81 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
     82 #endif
     83 
     84 #if __NetBSD__
     85 extern const struct ieee80211_authenticator auth_xauth;
     86 #endif
     87 
     88 /* XXX tunables */
     89 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
     90 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
     91 
     92 const char *mgt_subtype_name[] = {
     93 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
     94 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
     95 	"beacon",	"atim",		"disassoc",	"auth",
     96 	"deauth",	"action",	"action_noack",	"reserved#15"
     97 };
     98 const char *ctl_subtype_name[] = {
     99 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
    100 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
    101 	"bar",		"ba",		"ps_poll",	"rts",
    102 	"cts",		"ack",		"cf_end",	"cf_end_ack"
    103 };
    104 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
    105 	"IBSS",		/* IEEE80211_M_IBSS */
    106 	"STA",		/* IEEE80211_M_STA */
    107 	"WDS",		/* IEEE80211_M_WDS */
    108 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
    109 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
    110 	"MONITOR",	/* IEEE80211_M_MONITOR */
    111 	"MBSS"		/* IEEE80211_M_MBSS */
    112 };
    113 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
    114 	"INIT",		/* IEEE80211_S_INIT */
    115 	"SCAN",		/* IEEE80211_S_SCAN */
    116 	"AUTH",		/* IEEE80211_S_AUTH */
    117 	"ASSOC",	/* IEEE80211_S_ASSOC */
    118 	"CAC",		/* IEEE80211_S_CAC */
    119 	"RUN",		/* IEEE80211_S_RUN */
    120 	"CSA",		/* IEEE80211_S_CSA */
    121 	"SLEEP",	/* IEEE80211_S_SLEEP */
    122 };
    123 const char *ieee80211_wme_acnames[] = {
    124 	"WME_AC_BE",
    125 	"WME_AC_BK",
    126 	"WME_AC_VI",
    127 	"WME_AC_VO",
    128 	"WME_UPSD",
    129 };
    130 
    131 
    132 /*
    133  * Reason code descriptions were (mostly) obtained from
    134  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
    135  */
    136 const char *
    137 ieee80211_reason_to_string(uint16_t reason)
    138 {
    139 	switch (reason) {
    140 	case IEEE80211_REASON_UNSPECIFIED:
    141 		return ("unspecified");
    142 	case IEEE80211_REASON_AUTH_EXPIRE:
    143 		return ("previous authentication is expired");
    144 	case IEEE80211_REASON_AUTH_LEAVE:
    145 		return ("sending STA is leaving/has left IBSS or ESS");
    146 	case IEEE80211_REASON_ASSOC_EXPIRE:
    147 		return ("disassociated due to inactivity");
    148 	case IEEE80211_REASON_ASSOC_TOOMANY:
    149 		return ("too many associated STAs");
    150 	case IEEE80211_REASON_NOT_AUTHED:
    151 		return ("class 2 frame received from nonauthenticated STA");
    152 	case IEEE80211_REASON_NOT_ASSOCED:
    153 		return ("class 3 frame received from nonassociated STA");
    154 	case IEEE80211_REASON_ASSOC_LEAVE:
    155 		return ("sending STA is leaving/has left BSS");
    156 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
    157 		return ("STA requesting (re)association is not authenticated");
    158 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
    159 		return ("information in the Power Capability element is "
    160 			"unacceptable");
    161 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
    162 		return ("information in the Supported Channels element is "
    163 			"unacceptable");
    164 	case IEEE80211_REASON_IE_INVALID:
    165 		return ("invalid element");
    166 	case IEEE80211_REASON_MIC_FAILURE:
    167 		return ("MIC failure");
    168 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
    169 		return ("4-Way handshake timeout");
    170 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
    171 		return ("group key update timeout");
    172 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
    173 		return ("element in 4-Way handshake different from "
    174 			"(re)association request/probe response/beacon frame");
    175 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
    176 		return ("invalid group cipher");
    177 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
    178 		return ("invalid pairwise cipher");
    179 	case IEEE80211_REASON_AKMP_INVALID:
    180 		return ("invalid AKMP");
    181 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
    182 		return ("unsupported version in RSN IE");
    183 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
    184 		return ("invalid capabilities in RSN IE");
    185 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
    186 		return ("IEEE 802.1X authentication failed");
    187 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
    188 		return ("cipher suite rejected because of the security "
    189 			"policy");
    190 	case IEEE80211_REASON_UNSPECIFIED_QOS:
    191 		return ("unspecified (QoS-related)");
    192 	case IEEE80211_REASON_INSUFFICIENT_BW:
    193 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
    194 	case IEEE80211_REASON_TOOMANY_FRAMES:
    195 		return ("too many frames need to be acknowledged");
    196 	case IEEE80211_REASON_OUTSIDE_TXOP:
    197 		return ("STA is transmitting outside the limits of its TXOPs");
    198 	case IEEE80211_REASON_LEAVING_QBSS:
    199 		return ("requested from peer STA (the STA is "
    200 			"resetting/leaving the BSS)");
    201 	case IEEE80211_REASON_BAD_MECHANISM:
    202 		return ("requested from peer STA (it does not want to use "
    203 			"the mechanism)");
    204 	case IEEE80211_REASON_SETUP_NEEDED:
    205 		return ("requested from peer STA (setup is required for the "
    206 			"used mechanism)");
    207 	case IEEE80211_REASON_TIMEOUT:
    208 		return ("requested from peer STA (timeout)");
    209 	case IEEE80211_REASON_PEER_LINK_CANCELED:
    210 		return ("SME cancels the mesh peering instance (not related "
    211 			"to the maximum number of peer mesh STAs)");
    212 	case IEEE80211_REASON_MESH_MAX_PEERS:
    213 		return ("maximum number of peer mesh STAs was reached");
    214 	case IEEE80211_REASON_MESH_CPVIOLATION:
    215 		return ("the received information violates the Mesh "
    216 			"Configuration policy configured in the mesh STA "
    217 			"profile");
    218 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
    219 		return ("the mesh STA has received a Mesh Peering Close "
    220 			"message requesting to close the mesh peering");
    221 	case IEEE80211_REASON_MESH_MAX_RETRIES:
    222 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
    223 			"Peering Open messages, without receiving a Mesh "
    224 			"Peering Confirm message");
    225 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
    226 		return ("the confirmTimer for the mesh peering instance times "
    227 			"out");
    228 	case IEEE80211_REASON_MESH_INVALID_GTK:
    229 		return ("the mesh STA fails to unwrap the GTK or the values "
    230 			"in the wrapped contents do not match");
    231 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
    232 		return ("the mesh STA receives inconsistent information about "
    233 			"the mesh parameters between Mesh Peering Management "
    234 			"frames");
    235 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
    236 		return ("the mesh STA fails the authenticated mesh peering "
    237 			"exchange because due to failure in selecting "
    238 			"pairwise/group ciphersuite");
    239 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
    240 		return ("the mesh STA does not have proxy information for "
    241 			"this external destination");
    242 	case IEEE80211_REASON_MESH_PERR_NO_FI:
    243 		return ("the mesh STA does not have forwarding information "
    244 			"for this destination");
    245 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
    246 		return ("the mesh STA determines that the link to the next "
    247 			"hop of an active path in its forwarding information "
    248 			"is no longer usable");
    249 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
    250 		return ("the MAC address of the STA already exists in the "
    251 			"mesh BSS");
    252 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
    253 		return ("the mesh STA performs channel switch to meet "
    254 			"regulatory requirements");
    255 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
    256 		return ("the mesh STA performs channel switch with "
    257 			"unspecified reason");
    258 	default:
    259 		return ("reserved/unknown");
    260 	}
    261 }
    262 
    263 static void beacon_miss(void *, int);
    264 static void beacon_swmiss(void *, int);
    265 static void parent_updown(void *, int);
    266 static void update_mcast(void *, int);
    267 static void update_promisc(void *, int);
    268 static void update_channel(void *, int);
    269 static void update_chw(void *, int);
    270 static void vap_update_wme(void *, int);
    271 static void restart_vaps(void *, int);
    272 static void ieee80211_newstate_cb(void *, int);
    273 
    274 static int
    275 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
    276 	const struct ieee80211_bpf_params *params)
    277 {
    278 
    279 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
    280 	m_freem(m);
    281 	return ENETDOWN;
    282 }
    283 
    284 void
    285 ieee80211_proto_attach(struct ieee80211com *ic)
    286 {
    287 	uint8_t hdrlen;
    288 
    289 	/* override the 802.3 setting */
    290 	hdrlen = ic->ic_headroom
    291 		+ sizeof(struct ieee80211_qosframe_addr4)
    292 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    293 		+ IEEE80211_WEP_EXTIVLEN;
    294 	/* XXX no way to recalculate on ifdetach */
    295 	if (ALIGN(hdrlen) > max_linkhdr) {
    296 		/* XXX sanity check... */
    297 		max_linkhdr = ALIGN(hdrlen);
    298 		max_hdr = max_linkhdr + max_protohdr;
    299 		max_datalen = MHLEN - max_hdr;
    300 	}
    301 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
    302 
    303 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
    304 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
    305 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
    306 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
    307 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
    308 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
    309 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
    310 
    311 	ic->ic_wme.wme_hipri_switch_hysteresis =
    312 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
    313 
    314 	/* initialize management frame handlers */
    315 	ic->ic_send_mgmt = ieee80211_send_mgmt;
    316 	ic->ic_raw_xmit = null_raw_xmit;
    317 
    318 	ieee80211_adhoc_attach(ic);
    319 	ieee80211_sta_attach(ic);
    320 	ieee80211_wds_attach(ic);
    321 	ieee80211_hostap_attach(ic);
    322 #ifdef IEEE80211_SUPPORT_MESH
    323 	ieee80211_mesh_attach(ic);
    324 #endif
    325 	ieee80211_monitor_attach(ic);
    326 }
    327 
    328 void
    329 ieee80211_proto_detach(struct ieee80211com *ic)
    330 {
    331 	ieee80211_monitor_detach(ic);
    332 #ifdef IEEE80211_SUPPORT_MESH
    333 	ieee80211_mesh_detach(ic);
    334 #endif
    335 	ieee80211_hostap_detach(ic);
    336 	ieee80211_wds_detach(ic);
    337 	ieee80211_adhoc_detach(ic);
    338 	ieee80211_sta_detach(ic);
    339 }
    340 
    341 static void
    342 null_update_beacon(struct ieee80211vap *vap, int item)
    343 {
    344 }
    345 
    346 void
    347 ieee80211_proto_vattach(struct ieee80211vap *vap)
    348 {
    349 	struct ieee80211com *ic = vap->iv_ic;
    350 	struct ifnet *ifp = vap->iv_ifp;
    351 	int i;
    352 
    353 	/* override the 802.3 setting */
    354 	ifp->if_hdrlen = ic->ic_headroom
    355                 + sizeof(struct ieee80211_qosframe_addr4)
    356                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    357                 + IEEE80211_WEP_EXTIVLEN;
    358 
    359 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
    360 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
    361 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
    362 #if __FreeBSD__
    363 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
    364 	callout_init(&vap->iv_mgtsend, 1);
    365 #elif __NetBSD__
    366 	/* NNN need to do something with iv_swbmiss ... */
    367 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
    368 #endif
    369 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
    370 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
    371 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
    372 	/*
    373 	 * Install default tx rate handling: no fixed rate, lowest
    374 	 * supported rate for mgmt and multicast frames.  Default
    375 	 * max retry count.  These settings can be changed by the
    376 	 * driver and/or user applications.
    377 	 */
    378 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
    379 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
    380 
    381 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
    382 
    383 		/*
    384 		 * Setting the management rate to MCS 0 assumes that the
    385 		 * BSS Basic rate set is empty and the BSS Basic MCS set
    386 		 * is not.
    387 		 *
    388 		 * Since we're not checking this, default to the lowest
    389 		 * defined rate for this mode.
    390 		 *
    391 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
    392 		 * some MCS management traffic (eg BA response frames.)
    393 		 *
    394 		 * See also: 9.6.0 of the 802.11n-2009 specification.
    395 		 */
    396 #ifdef	NOTYET
    397 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
    398 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
    399 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
    400 		} else {
    401 			vap->iv_txparms[i].mgmtrate =
    402 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    403 			vap->iv_txparms[i].mcastrate =
    404 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    405 		}
    406 #endif
    407 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    408 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    409 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
    410 	}
    411 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
    412 
    413 	vap->iv_update_beacon = null_update_beacon;
    414 	vap->iv_deliver_data = ieee80211_deliver_data;
    415 
    416 	/* attach support for operating mode */
    417 	ic->ic_vattach[vap->iv_opmode](vap);
    418 }
    419 
    420 void
    421 ieee80211_proto_vdetach(struct ieee80211vap *vap)
    422 {
    423 #define	FREEAPPIE(ie) do { \
    424 	if (ie != NULL) \
    425 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
    426 } while (0)
    427 	/*
    428 	 * Detach operating mode module.
    429 	 */
    430 	if (vap->iv_opdetach != NULL)
    431 		vap->iv_opdetach(vap);
    432 	/*
    433 	 * This should not be needed as we detach when reseting
    434 	 * the state but be conservative here since the
    435 	 * authenticator may do things like spawn kernel threads.
    436 	 */
    437 	if (vap->iv_auth->ia_detach != NULL)
    438 		vap->iv_auth->ia_detach(vap);
    439 	/*
    440 	 * Detach any ACL'ator.
    441 	 */
    442 	if (vap->iv_acl != NULL)
    443 		vap->iv_acl->iac_detach(vap);
    444 
    445 	FREEAPPIE(vap->iv_appie_beacon);
    446 	FREEAPPIE(vap->iv_appie_probereq);
    447 	FREEAPPIE(vap->iv_appie_proberesp);
    448 	FREEAPPIE(vap->iv_appie_assocreq);
    449 	FREEAPPIE(vap->iv_appie_assocresp);
    450 	FREEAPPIE(vap->iv_appie_wpa);
    451 #undef FREEAPPIE
    452 }
    453 
    454 /*
    455  * Simple-minded authenticator module support.
    456  */
    457 
    458 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
    459 /* XXX well-known names */
    460 #if __FreeBSD__
    461 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
    462 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
    463 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
    464 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
    465 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
    466 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
    467 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
    468 };
    469 #endif
    470 
    471 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
    472 
    473 static const struct ieee80211_authenticator auth_internal = {
    474 	.ia_name		= "wlan_internal",
    475 	.ia_attach		= NULL,
    476 	.ia_detach		= NULL,
    477 	.ia_node_join		= NULL,
    478 	.ia_node_leave		= NULL,
    479 };
    480 
    481 
    482 /*
    483  * Setup internal authenticators once; they are never unregistered.
    484  */
    485 #if __FreeBSD__
    486 static void
    487 #elif __NetBSD__
    488 void
    489 #endif
    490 ieee80211_auth_setup(void)
    491 {
    492 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
    493 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
    494 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
    495 #if __NetBSD__
    496 	ieee80211_authenticator_register(IEEE80211_AUTH_8021X, &auth_xauth);
    497 	ieee80211_authenticator_register(IEEE80211_AUTH_WPA, &auth_xauth);
    498 #endif
    499 }
    500 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
    501 
    502 const struct ieee80211_authenticator *
    503 ieee80211_authenticator_get(int auth)
    504 {
    505 	if (auth >= IEEE80211_AUTH_MAX)
    506 		return NULL;
    507 #if __FreeBSD__
    508 	if (authenticators[auth] == NULL)
    509 		ieee80211_load_module(auth_modnames[auth]);
    510 #endif
    511 	return authenticators[auth];
    512 }
    513 
    514 void
    515 ieee80211_authenticator_register(int type,
    516 	const struct ieee80211_authenticator *auth)
    517 {
    518 	if (type >= IEEE80211_AUTH_MAX)
    519 		return;
    520 	authenticators[type] = auth;
    521 }
    522 
    523 void
    524 ieee80211_authenticator_unregister(int type)
    525 {
    526 
    527 	if (type >= IEEE80211_AUTH_MAX)
    528 		return;
    529 	authenticators[type] = NULL;
    530 }
    531 
    532 /*
    533  * Very simple-minded ACL module support.
    534  */
    535 /* XXX just one for now */
    536 static	const struct ieee80211_aclator *acl = NULL;
    537 
    538 void
    539 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
    540 {
    541 	printf("wlan: %s acl policy registered\n", iac->iac_name);
    542 	acl = iac;
    543 }
    544 
    545 void
    546 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
    547 {
    548 	if (acl == iac)
    549 		acl = NULL;
    550 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
    551 }
    552 
    553 const struct ieee80211_aclator *
    554 ieee80211_aclator_get(const char *name)
    555 {
    556 #if __FreeBSD__
    557 	if (acl == NULL)
    558 		ieee80211_load_module("wlan_acl");
    559 #endif
    560 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
    561 }
    562 
    563 void
    564 ieee80211_print_essid(const uint8_t *essid, int len)
    565 {
    566 	const uint8_t *p;
    567 	int i;
    568 
    569 	if (len > IEEE80211_NWID_LEN)
    570 		len = IEEE80211_NWID_LEN;
    571 	/* determine printable or not */
    572 	for (i = 0, p = essid; i < len; i++, p++) {
    573 		if (*p < ' ' || *p > 0x7e)
    574 			break;
    575 	}
    576 	if (i == len) {
    577 		printf("\"");
    578 		for (i = 0, p = essid; i < len; i++, p++)
    579 			printf("%c", *p);
    580 		printf("\"");
    581 	} else {
    582 		printf("0x");
    583 		for (i = 0, p = essid; i < len; i++, p++)
    584 			printf("%02x", *p);
    585 	}
    586 }
    587 
    588 void
    589 ieee80211_dump_pkt(struct ieee80211com *ic,
    590 	const uint8_t *buf, int len, int rate, int rssi)
    591 {
    592 	const struct ieee80211_frame *wh;
    593 	int i;
    594 
    595 	wh = (const struct ieee80211_frame *)buf;
    596 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
    597 	case IEEE80211_FC1_DIR_NODS:
    598 		printf("NODS %s", ether_sprintf(wh->i_addr2));
    599 		printf("->%s", ether_sprintf(wh->i_addr1));
    600 		printf("(%s)", ether_sprintf(wh->i_addr3));
    601 		break;
    602 	case IEEE80211_FC1_DIR_TODS:
    603 		printf("TODS %s", ether_sprintf(wh->i_addr2));
    604 		printf("->%s", ether_sprintf(wh->i_addr3));
    605 		printf("(%s)", ether_sprintf(wh->i_addr1));
    606 		break;
    607 	case IEEE80211_FC1_DIR_FROMDS:
    608 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
    609 		printf("->%s", ether_sprintf(wh->i_addr1));
    610 		printf("(%s)", ether_sprintf(wh->i_addr2));
    611 		break;
    612 	case IEEE80211_FC1_DIR_DSTODS:
    613 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
    614 		printf("->%s", ether_sprintf(wh->i_addr3));
    615 		printf("(%s", ether_sprintf(wh->i_addr2));
    616 		printf("->%s)", ether_sprintf(wh->i_addr1));
    617 		break;
    618 	}
    619 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
    620 	case IEEE80211_FC0_TYPE_DATA:
    621 		printf(" data");
    622 		break;
    623 	case IEEE80211_FC0_TYPE_MGT:
    624 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
    625 		break;
    626 	default:
    627 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
    628 		break;
    629 	}
    630 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
    631 		const struct ieee80211_qosframe *qwh =
    632 			(const struct ieee80211_qosframe *)buf;
    633 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
    634 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
    635 	}
    636 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
    637 		int off;
    638 
    639 		off = ieee80211_anyhdrspace(ic, wh);
    640 		printf(" WEP [IV %.02x %.02x %.02x",
    641 			buf[off+0], buf[off+1], buf[off+2]);
    642 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
    643 			printf(" %.02x %.02x %.02x",
    644 				buf[off+4], buf[off+5], buf[off+6]);
    645 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
    646 	}
    647 	if (rate >= 0)
    648 		printf(" %dM", rate / 2);
    649 	if (rssi >= 0)
    650 		printf(" +%d", rssi);
    651 	printf("\n");
    652 	if (len > 0) {
    653 		for (i = 0; i < len; i++) {
    654 			if ((i & 1) == 0)
    655 				printf(" ");
    656 			printf("%02x", buf[i]);
    657 		}
    658 		printf("\n");
    659 	}
    660 }
    661 
    662 static __inline int
    663 findrix(const struct ieee80211_rateset *rs, int r)
    664 {
    665 	int i;
    666 
    667 	for (i = 0; i < rs->rs_nrates; i++)
    668 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
    669 			return i;
    670 	return -1;
    671 }
    672 
    673 int
    674 ieee80211_fix_rate(struct ieee80211_node *ni,
    675 	struct ieee80211_rateset *nrs, int flags)
    676 {
    677 	struct ieee80211vap *vap = ni->ni_vap;
    678 	struct ieee80211com *ic = ni->ni_ic;
    679 	int i, j, rix, error;
    680 	int okrate, badrate, fixedrate, ucastrate;
    681 	const struct ieee80211_rateset *srs;
    682 	uint8_t r;
    683 
    684 	error = 0;
    685 	okrate = badrate = 0;
    686 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
    687 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
    688 		/*
    689 		 * Workaround awkwardness with fixed rate.  We are called
    690 		 * to check both the legacy rate set and the HT rate set
    691 		 * but we must apply any legacy fixed rate check only to the
    692 		 * legacy rate set and vice versa.  We cannot tell what type
    693 		 * of rate set we've been given (legacy or HT) but we can
    694 		 * distinguish the fixed rate type (MCS have 0x80 set).
    695 		 * So to deal with this the caller communicates whether to
    696 		 * check MCS or legacy rate using the flags and we use the
    697 		 * type of any fixed rate to avoid applying an MCS to a
    698 		 * legacy rate and vice versa.
    699 		 */
    700 		if (ucastrate & 0x80) {
    701 			if (flags & IEEE80211_F_DOFRATE)
    702 				flags &= ~IEEE80211_F_DOFRATE;
    703 		} else if ((ucastrate & 0x80) == 0) {
    704 			if (flags & IEEE80211_F_DOFMCS)
    705 				flags &= ~IEEE80211_F_DOFMCS;
    706 		}
    707 		/* NB: required to make MCS match below work */
    708 		ucastrate &= IEEE80211_RATE_VAL;
    709 	}
    710 	fixedrate = IEEE80211_FIXED_RATE_NONE;
    711 	/*
    712 	 * XXX we are called to process both MCS and legacy rates;
    713 	 * we must use the appropriate basic rate set or chaos will
    714 	 * ensue; for now callers that want MCS must supply
    715 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
    716 	 * function so there are two variants, one for MCS and one
    717 	 * for legacy rates.
    718 	 */
    719 	if (flags & IEEE80211_F_DOBRS)
    720 		srs = (const struct ieee80211_rateset *)
    721 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
    722 	else
    723 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
    724 	for (i = 0; i < nrs->rs_nrates; ) {
    725 		if (flags & IEEE80211_F_DOSORT) {
    726 			/*
    727 			 * Sort rates.
    728 			 */
    729 			for (j = i + 1; j < nrs->rs_nrates; j++) {
    730 				if (IEEE80211_RV(nrs->rs_rates[i]) >
    731 				    IEEE80211_RV(nrs->rs_rates[j])) {
    732 					r = nrs->rs_rates[i];
    733 					nrs->rs_rates[i] = nrs->rs_rates[j];
    734 					nrs->rs_rates[j] = r;
    735 				}
    736 			}
    737 		}
    738 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
    739 		badrate = r;
    740 		/*
    741 		 * Check for fixed rate.
    742 		 */
    743 		if (r == ucastrate)
    744 			fixedrate = r;
    745 		/*
    746 		 * Check against supported rates.
    747 		 */
    748 		rix = findrix(srs, r);
    749 		if (flags & IEEE80211_F_DONEGO) {
    750 			if (rix < 0) {
    751 				/*
    752 				 * A rate in the node's rate set is not
    753 				 * supported.  If this is a basic rate and we
    754 				 * are operating as a STA then this is an error.
    755 				 * Otherwise we just discard/ignore the rate.
    756 				 */
    757 				if ((flags & IEEE80211_F_JOIN) &&
    758 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
    759 					error++;
    760 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
    761 				/*
    762 				 * Overwrite with the supported rate
    763 				 * value so any basic rate bit is set.
    764 				 */
    765 				nrs->rs_rates[i] = srs->rs_rates[rix];
    766 			}
    767 		}
    768 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
    769 			/*
    770 			 * Delete unacceptable rates.
    771 			 */
    772 			nrs->rs_nrates--;
    773 			for (j = i; j < nrs->rs_nrates; j++)
    774 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
    775 			nrs->rs_rates[j] = 0;
    776 			continue;
    777 		}
    778 		if (rix >= 0)
    779 			okrate = nrs->rs_rates[i];
    780 		i++;
    781 	}
    782 	if (okrate == 0 || error != 0 ||
    783 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
    784 	     fixedrate != ucastrate)) {
    785 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
    786 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
    787 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
    788 		return badrate | IEEE80211_RATE_BASIC;
    789 	} else
    790 		return IEEE80211_RV(okrate);
    791 }
    792 
    793 /*
    794  * Reset 11g-related state.
    795  */
    796 void
    797 ieee80211_reset_erp(struct ieee80211com *ic)
    798 {
    799 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
    800 	ic->ic_nonerpsta = 0;
    801 	ic->ic_longslotsta = 0;
    802 	/*
    803 	 * Short slot time is enabled only when operating in 11g
    804 	 * and not in an IBSS.  We must also honor whether or not
    805 	 * the driver is capable of doing it.
    806 	 */
    807 	ieee80211_set_shortslottime(ic,
    808 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    809 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
    810 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
    811 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
    812 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
    813 	/*
    814 	 * Set short preamble and ERP barker-preamble flags.
    815 	 */
    816 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    817 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
    818 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
    819 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
    820 	} else {
    821 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
    822 		ic->ic_flags |= IEEE80211_F_USEBARKER;
    823 	}
    824 }
    825 
    826 /*
    827  * Set the short slot time state and notify the driver.
    828  */
    829 void
    830 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
    831 {
    832 	if (onoff)
    833 		ic->ic_flags |= IEEE80211_F_SHSLOT;
    834 	else
    835 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
    836 	/* notify driver */
    837 	if (ic->ic_updateslot != NULL)
    838 		ic->ic_updateslot(ic);
    839 }
    840 
    841 /*
    842  * Check if the specified rate set supports ERP.
    843  * NB: the rate set is assumed to be sorted.
    844  */
    845 int
    846 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
    847 {
    848 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
    849 	int i, j;
    850 
    851 	if (rs->rs_nrates < nitems(rates))
    852 		return 0;
    853 	for (i = 0; i < nitems(rates); i++) {
    854 		for (j = 0; j < rs->rs_nrates; j++) {
    855 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
    856 			if (rates[i] == r)
    857 				goto next;
    858 			if (r > rates[i])
    859 				return 0;
    860 		}
    861 		return 0;
    862 	next:
    863 		;
    864 	}
    865 	return 1;
    866 }
    867 
    868 /*
    869  * Mark the basic rates for the rate table based on the
    870  * operating mode.  For real 11g we mark all the 11b rates
    871  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
    872  * 11b rates.  There's also a pseudo 11a-mode used to mark only
    873  * the basic OFDM rates.
    874  */
    875 static void
    876 setbasicrates(struct ieee80211_rateset *rs,
    877     enum ieee80211_phymode mode, int add)
    878 {
    879 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
    880 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
    881 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
    882 					    /* NB: mixed b/g */
    883 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
    884 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
    885 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
    886 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
    887 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
    888 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
    889 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
    890 					    /* NB: mixed b/g */
    891 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
    892 					    /* NB: mixed b/g */
    893 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
    894 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
    895 	};
    896 	int i, j;
    897 
    898 	for (i = 0; i < rs->rs_nrates; i++) {
    899 		if (!add)
    900 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
    901 		for (j = 0; j < basic[mode].rs_nrates; j++)
    902 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
    903 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
    904 				break;
    905 			}
    906 	}
    907 }
    908 
    909 /*
    910  * Set the basic rates in a rate set.
    911  */
    912 void
    913 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
    914     enum ieee80211_phymode mode)
    915 {
    916 	setbasicrates(rs, mode, 0);
    917 }
    918 
    919 /*
    920  * Add basic rates to a rate set.
    921  */
    922 void
    923 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
    924     enum ieee80211_phymode mode)
    925 {
    926 	setbasicrates(rs, mode, 1);
    927 }
    928 
    929 /*
    930  * WME protocol support.
    931  *
    932  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
    933  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
    934  * Draft 2.0 Test Plan (Appendix D).
    935  *
    936  * Static/Dynamic Turbo mode settings come from Atheros.
    937  */
    938 typedef struct phyParamType {
    939 	uint8_t		aifsn;
    940 	uint8_t		logcwmin;
    941 	uint8_t		logcwmax;
    942 	uint16_t	txopLimit;
    943 	uint8_t 	acm;
    944 } paramType;
    945 
    946 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
    947 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
    948 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
    949 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
    950 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
    951 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
    952 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
    953 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
    954 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
    955 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
    956 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
    957 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
    958 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
    959 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
    960 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
    961 };
    962 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
    963 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
    964 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
    965 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
    966 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
    967 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
    968 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
    969 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
    970 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
    971 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
    972 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
    973 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
    974 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
    975 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
    976 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
    977 };
    978 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
    979 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
    980 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
    981 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
    982 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
    983 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
    984 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
    985 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
    986 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
    987 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
    988 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
    989 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
    990 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
    991 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
    992 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
    993 };
    994 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
    995 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
    996 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
    997 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
    998 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
    999 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
   1000 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
   1001 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
   1002 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
   1003 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
   1004 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
   1005 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
   1006 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
   1007 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
   1008 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
   1009 };
   1010 
   1011 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
   1012 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
   1013 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
   1014 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
   1015 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
   1016 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
   1017 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
   1018 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
   1019 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
   1020 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
   1021 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
   1022 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
   1023 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
   1024 };
   1025 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
   1026 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
   1027 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
   1028 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
   1029 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
   1030 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
   1031 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
   1032 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
   1033 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
   1034 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
   1035 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
   1036 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
   1037 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
   1038 };
   1039 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
   1040 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
   1041 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
   1042 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
   1043 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
   1044 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
   1045 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
   1046 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
   1047 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
   1048 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
   1049 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
   1050 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
   1051 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
   1052 };
   1053 
   1054 static void
   1055 _setifsparams(struct wmeParams *wmep, const paramType *phy)
   1056 {
   1057 	wmep->wmep_aifsn = phy->aifsn;
   1058 	wmep->wmep_logcwmin = phy->logcwmin;
   1059 	wmep->wmep_logcwmax = phy->logcwmax;
   1060 	wmep->wmep_txopLimit = phy->txopLimit;
   1061 }
   1062 
   1063 static void
   1064 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
   1065 	struct wmeParams *wmep, const paramType *phy)
   1066 {
   1067 	wmep->wmep_acm = phy->acm;
   1068 	_setifsparams(wmep, phy);
   1069 
   1070 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1071 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
   1072 	    ieee80211_wme_acnames[ac], type,
   1073 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
   1074 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
   1075 }
   1076 
   1077 static void
   1078 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
   1079 {
   1080 	struct ieee80211com *ic = vap->iv_ic;
   1081 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1082 	const paramType *pPhyParam, *pBssPhyParam;
   1083 	struct wmeParams *wmep;
   1084 	enum ieee80211_phymode mode;
   1085 	int i;
   1086 
   1087 	IEEE80211_LOCK_ASSERT(ic);
   1088 
   1089 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
   1090 		return;
   1091 
   1092 	/*
   1093 	 * Clear the wme cap_info field so a qoscount from a previous
   1094 	 * vap doesn't confuse later code which only parses the beacon
   1095 	 * field and updates hardware when said field changes.
   1096 	 * Otherwise the hardware is programmed with defaults, not what
   1097 	 * the beacon actually announces.
   1098 	 */
   1099 	wme->wme_wmeChanParams.cap_info = 0;
   1100 
   1101 	/*
   1102 	 * Select mode; we can be called early in which case we
   1103 	 * always use auto mode.  We know we'll be called when
   1104 	 * entering the RUN state with bsschan setup properly
   1105 	 * so state will eventually get set correctly
   1106 	 */
   1107 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1108 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1109 	else
   1110 		mode = IEEE80211_MODE_AUTO;
   1111 	for (i = 0; i < WME_NUM_AC; i++) {
   1112 		switch (i) {
   1113 		case WME_AC_BK:
   1114 			pPhyParam = &phyParamForAC_BK[mode];
   1115 			pBssPhyParam = &phyParamForAC_BK[mode];
   1116 			break;
   1117 		case WME_AC_VI:
   1118 			pPhyParam = &phyParamForAC_VI[mode];
   1119 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
   1120 			break;
   1121 		case WME_AC_VO:
   1122 			pPhyParam = &phyParamForAC_VO[mode];
   1123 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
   1124 			break;
   1125 		case WME_AC_BE:
   1126 		default:
   1127 			pPhyParam = &phyParamForAC_BE[mode];
   1128 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
   1129 			break;
   1130 		}
   1131 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1132 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1133 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
   1134 		} else {
   1135 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
   1136 		}
   1137 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1138 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
   1139 	}
   1140 	/* NB: check ic_bss to avoid NULL deref on initial attach */
   1141 	if (vap->iv_bss != NULL) {
   1142 		/*
   1143 		 * Calculate aggressive mode switching threshold based
   1144 		 * on beacon interval.  This doesn't need locking since
   1145 		 * we're only called before entering the RUN state at
   1146 		 * which point we start sending beacon frames.
   1147 		 */
   1148 		wme->wme_hipri_switch_thresh =
   1149 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
   1150 		wme->wme_flags &= ~WME_F_AGGRMODE;
   1151 		ieee80211_wme_updateparams(vap);
   1152 	}
   1153 }
   1154 
   1155 void
   1156 ieee80211_wme_initparams(struct ieee80211vap *vap)
   1157 {
   1158 	struct ieee80211com *ic = vap->iv_ic;
   1159 
   1160 	IEEE80211_LOCK(ic);
   1161 	ieee80211_wme_initparams_locked(vap);
   1162 	IEEE80211_UNLOCK(ic);
   1163 }
   1164 
   1165 /*
   1166  * Update WME parameters for ourself and the BSS.
   1167  */
   1168 void
   1169 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
   1170 {
   1171 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
   1172 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
   1173 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
   1174 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
   1175 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
   1176 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
   1177 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
   1178 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
   1179 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
   1180 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
   1181 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
   1182 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1183 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1184 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1185 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1186 	};
   1187 	struct ieee80211com *ic = vap->iv_ic;
   1188 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1189 	const struct wmeParams *wmep;
   1190 	struct wmeParams *chanp, *bssp;
   1191 	enum ieee80211_phymode mode;
   1192 	int i;
   1193 	int do_aggrmode = 0;
   1194 
   1195        	/*
   1196 	 * Set up the channel access parameters for the physical
   1197 	 * device.  First populate the configured settings.
   1198 	 */
   1199 	for (i = 0; i < WME_NUM_AC; i++) {
   1200 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
   1201 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1202 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1203 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1204 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1205 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1206 
   1207 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
   1208 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1209 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1210 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1211 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1212 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1213 	}
   1214 
   1215 	/*
   1216 	 * Select mode; we can be called early in which case we
   1217 	 * always use auto mode.  We know we'll be called when
   1218 	 * entering the RUN state with bsschan setup properly
   1219 	 * so state will eventually get set correctly
   1220 	 */
   1221 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1222 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1223 	else
   1224 		mode = IEEE80211_MODE_AUTO;
   1225 
   1226 	/*
   1227 	 * This implements aggressive mode as found in certain
   1228 	 * vendors' AP's.  When there is significant high
   1229 	 * priority (VI/VO) traffic in the BSS throttle back BE
   1230 	 * traffic by using conservative parameters.  Otherwise
   1231 	 * BE uses aggressive params to optimize performance of
   1232 	 * legacy/non-QoS traffic.
   1233 	 */
   1234 
   1235 	/* Hostap? Only if aggressive mode is enabled */
   1236         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1237 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
   1238 		do_aggrmode = 1;
   1239 
   1240 	/*
   1241 	 * Station? Only if we're in a non-QoS BSS.
   1242 	 */
   1243 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
   1244 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
   1245 		do_aggrmode = 1;
   1246 
   1247 	/*
   1248 	 * IBSS? Only if we we have WME enabled.
   1249 	 */
   1250 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
   1251 	    (vap->iv_flags & IEEE80211_F_WME))
   1252 		do_aggrmode = 1;
   1253 
   1254 	/*
   1255 	 * If WME is disabled on this VAP, default to aggressive mode
   1256 	 * regardless of the configuration.
   1257 	 */
   1258 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
   1259 		do_aggrmode = 1;
   1260 
   1261 	/* XXX WDS? */
   1262 
   1263 	/* XXX MBSS? */
   1264 
   1265 	if (do_aggrmode) {
   1266 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1267 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1268 
   1269 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
   1270 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
   1271 		    aggrParam[mode].logcwmin;
   1272 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
   1273 		    aggrParam[mode].logcwmax;
   1274 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
   1275 		    (vap->iv_flags & IEEE80211_F_BURST) ?
   1276 			aggrParam[mode].txopLimit : 0;
   1277 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1278 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
   1279 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
   1280 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
   1281 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
   1282 	}
   1283 
   1284 
   1285 	/*
   1286 	 * Change the contention window based on the number of associated
   1287 	 * stations.  If the number of associated stations is 1 and
   1288 	 * aggressive mode is enabled, lower the contention window even
   1289 	 * further.
   1290 	 */
   1291 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1292 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
   1293 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
   1294 		    [IEEE80211_MODE_AUTO]	= 3,
   1295 		    [IEEE80211_MODE_11A]	= 3,
   1296 		    [IEEE80211_MODE_11B]	= 4,
   1297 		    [IEEE80211_MODE_11G]	= 3,
   1298 		    [IEEE80211_MODE_FH]		= 4,
   1299 		    [IEEE80211_MODE_TURBO_A]	= 3,
   1300 		    [IEEE80211_MODE_TURBO_G]	= 3,
   1301 		    [IEEE80211_MODE_STURBO_A]	= 3,
   1302 		    [IEEE80211_MODE_HALF]	= 3,
   1303 		    [IEEE80211_MODE_QUARTER]	= 3,
   1304 		    [IEEE80211_MODE_11NA]	= 3,
   1305 		    [IEEE80211_MODE_11NG]	= 3,
   1306 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
   1307 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
   1308 		};
   1309 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1310 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1311 
   1312 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
   1313 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1314 		    "update %s (chan+bss) logcwmin %u\n",
   1315 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
   1316 	}
   1317 
   1318 	/*
   1319 	 * Arrange for the beacon update.
   1320 	 *
   1321 	 * XXX what about MBSS, WDS?
   1322 	 */
   1323 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
   1324 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
   1325 		/*
   1326 		 * Arrange for a beacon update and bump the parameter
   1327 		 * set number so associated stations load the new values.
   1328 		 */
   1329 		wme->wme_bssChanParams.cap_info =
   1330 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
   1331 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
   1332 	}
   1333 
   1334 	/* schedule the deferred WME update */
   1335 	ieee80211_runtask(ic, &vap->iv_wme_task);
   1336 
   1337 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1338 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
   1339 	    vap->iv_opmode == IEEE80211_M_STA ?
   1340 		wme->wme_wmeChanParams.cap_info :
   1341 		wme->wme_bssChanParams.cap_info);
   1342 }
   1343 
   1344 void
   1345 ieee80211_wme_updateparams(struct ieee80211vap *vap)
   1346 {
   1347 	struct ieee80211com *ic = vap->iv_ic;
   1348 
   1349 	if (ic->ic_caps & IEEE80211_C_WME) {
   1350 		IEEE80211_LOCK(ic);
   1351 		ieee80211_wme_updateparams_locked(vap);
   1352 		IEEE80211_UNLOCK(ic);
   1353 	}
   1354 }
   1355 
   1356 /*
   1357  * Fetch the WME parameters for the given VAP.
   1358  *
   1359  * When net80211 grows p2p, etc support, this may return different
   1360  * parameters for each VAP.
   1361  */
   1362 void
   1363 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
   1364 {
   1365 
   1366 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
   1367 }
   1368 
   1369 /*
   1370  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
   1371  * there may be different VAP WME parameters but only one is "active".
   1372  * This returns the "NIC" WME parameters for the currently active
   1373  * context.
   1374  */
   1375 void
   1376 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
   1377 {
   1378 
   1379 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
   1380 }
   1381 
   1382 /*
   1383  * Return whether to use QoS on a given WME queue.
   1384  *
   1385  * This is intended to be called from the transmit path of softmac drivers
   1386  * which are setting NoAck bits in transmit descriptors.
   1387  *
   1388  * Ideally this would be set in some transmit field before the packet is
   1389  * queued to the driver but net80211 isn't quite there yet.
   1390  */
   1391 int
   1392 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
   1393 {
   1394 	/* Bounds/sanity check */
   1395 	if (ac < 0 || ac >= WME_NUM_AC)
   1396 		return (0);
   1397 
   1398 	/* Again, there's only one global context for now */
   1399 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
   1400 }
   1401 
   1402 static void
   1403 parent_updown(void *arg, int npending)
   1404 {
   1405 	struct ieee80211com *ic = arg;
   1406 
   1407 	ic->ic_parent(ic);
   1408 }
   1409 
   1410 static void
   1411 update_mcast(void *arg, int npending)
   1412 {
   1413 	struct ieee80211com *ic = arg;
   1414 
   1415 	ic->ic_update_mcast(ic);
   1416 }
   1417 
   1418 static void
   1419 update_promisc(void *arg, int npending)
   1420 {
   1421 	struct ieee80211com *ic = arg;
   1422 
   1423 	ic->ic_update_promisc(ic);
   1424 }
   1425 
   1426 static void
   1427 update_channel(void *arg, int npending)
   1428 {
   1429 	struct ieee80211com *ic = arg;
   1430 
   1431 	ic->ic_set_channel(ic);
   1432 	ieee80211_radiotap_chan_change(ic);
   1433 }
   1434 
   1435 static void
   1436 update_chw(void *arg, int npending)
   1437 {
   1438 	struct ieee80211com *ic = arg;
   1439 
   1440 	/*
   1441 	 * XXX should we defer the channel width _config_ update until now?
   1442 	 */
   1443 	ic->ic_update_chw(ic);
   1444 }
   1445 
   1446 /*
   1447  * Deferred WME update.
   1448  *
   1449  * In preparation for per-VAP WME configuration, call the VAP
   1450  * method if the VAP requires it.  Otherwise, just call the
   1451  * older global method.  There isn't a per-VAP WME configuration
   1452  * just yet so for now just use the global configuration.
   1453  */
   1454 static void
   1455 vap_update_wme(void *arg, int npending)
   1456 {
   1457 	struct ieee80211vap *vap = arg;
   1458 	struct ieee80211com *ic = vap->iv_ic;
   1459 
   1460 	if (vap->iv_wme_update != NULL)
   1461 		vap->iv_wme_update(vap,
   1462 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
   1463 	else
   1464 		ic->ic_wme.wme_update(ic);
   1465 }
   1466 
   1467 static void
   1468 restart_vaps(void *arg, int npending)
   1469 {
   1470 	struct ieee80211com *ic = arg;
   1471 
   1472 	ieee80211_suspend_all(ic);
   1473 	ieee80211_resume_all(ic);
   1474 }
   1475 
   1476 /*
   1477  * Block until the parent is in a known state.  This is
   1478  * used after any operations that dispatch a task (e.g.
   1479  * to auto-configure the parent device up/down).
   1480  */
   1481 void
   1482 ieee80211_waitfor_parent(struct ieee80211com *ic)
   1483 {
   1484 	taskqueue_block(ic->ic_tq);
   1485 	ieee80211_draintask(ic, &ic->ic_parent_task);
   1486 	ieee80211_draintask(ic, &ic->ic_mcast_task);
   1487 	ieee80211_draintask(ic, &ic->ic_promisc_task);
   1488 	ieee80211_draintask(ic, &ic->ic_chan_task);
   1489 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
   1490 	ieee80211_draintask(ic, &ic->ic_chw_task);
   1491 	taskqueue_unblock(ic->ic_tq);
   1492 }
   1493 
   1494 /*
   1495  * Check to see whether the current channel needs reset.
   1496  *
   1497  * Some devices don't handle being given an invalid channel
   1498  * in their operating mode very well (eg wpi(4) will throw a
   1499  * firmware exception.)
   1500  *
   1501  * Return 0 if we're ok, 1 if the channel needs to be reset.
   1502  *
   1503  * See PR kern/202502.
   1504  */
   1505 static int
   1506 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
   1507 {
   1508 	struct ieee80211com *ic = vap->iv_ic;
   1509 
   1510 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
   1511 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
   1512 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1513 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
   1514 		return (1);
   1515 	return (0);
   1516 }
   1517 
   1518 /*
   1519  * Reset the curchan to a known good state.
   1520  */
   1521 static void
   1522 ieee80211_start_reset_chan(struct ieee80211vap *vap)
   1523 {
   1524 	struct ieee80211com *ic = vap->iv_ic;
   1525 
   1526 	ic->ic_curchan = &ic->ic_channels[0];
   1527 }
   1528 
   1529 /*
   1530  * Start a vap running.  If this is the first vap to be
   1531  * set running on the underlying device then we
   1532  * automatically bring the device up.
   1533  */
   1534 void
   1535 ieee80211_start_locked(struct ieee80211vap *vap)
   1536 {
   1537 	struct ifnet *ifp = vap->iv_ifp;
   1538 	struct ieee80211com *ic = vap->iv_ic;
   1539 
   1540 	IEEE80211_LOCK_ASSERT(ic);
   1541 
   1542 	IEEE80211_DPRINTF(vap,
   1543 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1544 		"start running, %d vaps running\n", ic->ic_nrunning);
   1545 
   1546 #if __FreeBSD__
   1547 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
   1548 #elif __NetBSD__
   1549 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1550 #endif
   1551 		/*
   1552 		 * Mark us running.  Note that it's ok to do this first;
   1553 		 * if we need to bring the parent device up we defer that
   1554 		 * to avoid dropping the com lock.  We expect the device
   1555 		 * to respond to being marked up by calling back into us
   1556 		 * through ieee80211_start_all at which point we'll come
   1557 		 * back in here and complete the work.
   1558 		 */
   1559 #if __FreeBSD__
   1560 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
   1561 #elif __NetBSD__
   1562 		ifp->if_flags |= IFF_RUNNING;
   1563 #endif
   1564 		/*
   1565 		 * We are not running; if this we are the first vap
   1566 		 * to be brought up auto-up the parent if necessary.
   1567 		 */
   1568 		if (ic->ic_nrunning++ == 0) {
   1569 
   1570 			/* reset the channel to a known good channel */
   1571 			if (ieee80211_start_check_reset_chan(vap))
   1572 				ieee80211_start_reset_chan(vap);
   1573 
   1574 			IEEE80211_DPRINTF(vap,
   1575 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1576 			    "%s: up parent %s\n", __func__, ic->ic_name);
   1577 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1578 			return;
   1579 		}
   1580 	}
   1581 	/*
   1582 	 * If the parent is up and running, then kick the
   1583 	 * 802.11 state machine as appropriate.
   1584 	 */
   1585 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
   1586 		if (vap->iv_opmode == IEEE80211_M_STA) {
   1587 #if 0
   1588 			/* XXX bypasses scan too easily; disable for now */
   1589 			/*
   1590 			 * Try to be intelligent about clocking the state
   1591 			 * machine.  If we're currently in RUN state then
   1592 			 * we should be able to apply any new state/parameters
   1593 			 * simply by re-associating.  Otherwise we need to
   1594 			 * re-scan to select an appropriate ap.
   1595 			 */
   1596 			if (vap->iv_state >= IEEE80211_S_RUN)
   1597 				ieee80211_new_state_locked(vap,
   1598 				    IEEE80211_S_ASSOC, 1);
   1599 			else
   1600 #endif
   1601 				ieee80211_new_state_locked(vap,
   1602 				    IEEE80211_S_SCAN, 0);
   1603 		} else {
   1604 			/*
   1605 			 * For monitor+wds mode there's nothing to do but
   1606 			 * start running.  Otherwise if this is the first
   1607 			 * vap to be brought up, start a scan which may be
   1608 			 * preempted if the station is locked to a particular
   1609 			 * channel.
   1610 			 */
   1611 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
   1612 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
   1613 			    vap->iv_opmode == IEEE80211_M_WDS)
   1614 				ieee80211_new_state_locked(vap,
   1615 				    IEEE80211_S_RUN, -1);
   1616 			else
   1617 				ieee80211_new_state_locked(vap,
   1618 				    IEEE80211_S_SCAN, 0);
   1619 		}
   1620 	}
   1621 }
   1622 
   1623 /*
   1624  * Start a single vap.
   1625  */
   1626 #if __FreeBSD__
   1627 void
   1628 ieee80211_init(void *arg)
   1629 {
   1630 	struct ieee80211vap *vap = arg;
   1631 
   1632 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1633 	    "%s\n", __func__);
   1634 
   1635 	IEEE80211_LOCK(vap->iv_ic);
   1636 	ieee80211_start_locked(vap);
   1637 	IEEE80211_UNLOCK(vap->iv_ic);
   1638 }
   1639 #elif __NetBSD__
   1640 int
   1641 ieee80211_init(struct ifnet *ifp)
   1642 {
   1643 	struct ieee80211vap *vap = ifp->if_softc;
   1644 
   1645 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1646 	    "%s\n", __func__);
   1647 
   1648 	IEEE80211_LOCK(vap->iv_ic);
   1649 	ieee80211_start_locked(vap);
   1650 	IEEE80211_UNLOCK(vap->iv_ic);
   1651 	return 0;
   1652 }
   1653 #endif
   1654 
   1655 /*
   1656  * Start all runnable vap's on a device.
   1657  */
   1658 void
   1659 ieee80211_start_all(struct ieee80211com *ic)
   1660 {
   1661 	struct ieee80211vap *vap;
   1662 
   1663 	IEEE80211_LOCK(ic);
   1664 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1665 		struct ifnet *ifp = vap->iv_ifp;
   1666 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1667 			ieee80211_start_locked(vap);
   1668 	}
   1669 	IEEE80211_UNLOCK(ic);
   1670 }
   1671 
   1672 /*
   1673  * Stop a vap.  We force it down using the state machine
   1674  * then mark it's ifnet not running.  If this is the last
   1675  * vap running on the underlying device then we close it
   1676  * too to insure it will be properly initialized when the
   1677  * next vap is brought up.
   1678  */
   1679 void
   1680 ieee80211_stop_locked(struct ieee80211vap *vap)
   1681 {
   1682 	struct ieee80211com *ic = vap->iv_ic;
   1683 	struct ifnet *ifp = vap->iv_ifp;
   1684 
   1685 	IEEE80211_LOCK_ASSERT(ic);
   1686 
   1687 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1688 	    "stop running, %d vaps running\n", ic->ic_nrunning);
   1689 
   1690 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
   1691 #if __FreeBSD__
   1692 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
   1693 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
   1694 #elif __NetBSD__
   1695 	if (ifp->if_flags & IFF_RUNNING) {
   1696 		ifp->if_flags &= ~IFF_RUNNING;	/* mark us stopped */
   1697 #endif
   1698 		if (--ic->ic_nrunning == 0) {
   1699 			IEEE80211_DPRINTF(vap,
   1700 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1701 			    "down parent %s\n", ic->ic_name);
   1702 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1703 		}
   1704 	}
   1705 }
   1706 
   1707 void
   1708 ieee80211_stop(struct ieee80211vap *vap)
   1709 {
   1710 	struct ieee80211com *ic = vap->iv_ic;
   1711 
   1712 	IEEE80211_LOCK(ic);
   1713 	ieee80211_stop_locked(vap);
   1714 	IEEE80211_UNLOCK(ic);
   1715 }
   1716 
   1717 /*
   1718  * Stop all vap's running on a device.
   1719  */
   1720 void
   1721 ieee80211_stop_all(struct ieee80211com *ic)
   1722 {
   1723 	struct ieee80211vap *vap;
   1724 
   1725 	IEEE80211_LOCK(ic);
   1726 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1727 		struct ifnet *ifp = vap->iv_ifp;
   1728 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1729 			ieee80211_stop_locked(vap);
   1730 	}
   1731 	IEEE80211_UNLOCK(ic);
   1732 
   1733 	ieee80211_waitfor_parent(ic);
   1734 }
   1735 
   1736 /*
   1737  * Stop all vap's running on a device and arrange
   1738  * for those that were running to be resumed.
   1739  */
   1740 void
   1741 ieee80211_suspend_all(struct ieee80211com *ic)
   1742 {
   1743 	struct ieee80211vap *vap;
   1744 
   1745 	IEEE80211_LOCK(ic);
   1746 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1747 		struct ifnet *ifp = vap->iv_ifp;
   1748 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
   1749 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
   1750 			ieee80211_stop_locked(vap);
   1751 		}
   1752 	}
   1753 	IEEE80211_UNLOCK(ic);
   1754 
   1755 	ieee80211_waitfor_parent(ic);
   1756 }
   1757 
   1758 /*
   1759  * Start all vap's marked for resume.
   1760  */
   1761 void
   1762 ieee80211_resume_all(struct ieee80211com *ic)
   1763 {
   1764 	struct ieee80211vap *vap;
   1765 
   1766 	IEEE80211_LOCK(ic);
   1767 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1768 		struct ifnet *ifp = vap->iv_ifp;
   1769 		if (!IFNET_IS_UP_RUNNING(ifp) &&
   1770 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
   1771 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
   1772 			ieee80211_start_locked(vap);
   1773 		}
   1774 	}
   1775 	IEEE80211_UNLOCK(ic);
   1776 }
   1777 
   1778 /*
   1779  * Restart all vap's running on a device.
   1780  */
   1781 void
   1782 ieee80211_restart_all(struct ieee80211com *ic)
   1783 {
   1784 	/*
   1785 	 * NB: do not use ieee80211_runtask here, we will
   1786 	 * block & drain net80211 taskqueue.
   1787 	 */
   1788 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
   1789 }
   1790 
   1791 void
   1792 ieee80211_beacon_miss(struct ieee80211com *ic)
   1793 {
   1794 	IEEE80211_LOCK(ic);
   1795 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
   1796 		/* Process in a taskq, the handler may reenter the driver */
   1797 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
   1798 	}
   1799 	IEEE80211_UNLOCK(ic);
   1800 }
   1801 
   1802 static void
   1803 beacon_miss(void *arg, int npending)
   1804 {
   1805 	struct ieee80211com *ic = arg;
   1806 	struct ieee80211vap *vap;
   1807 
   1808 	IEEE80211_LOCK(ic);
   1809 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1810 		/*
   1811 		 * We only pass events through for sta vap's in RUN+ state;
   1812 		 * may be too restrictive but for now this saves all the
   1813 		 * handlers duplicating these checks.
   1814 		 */
   1815 		if (vap->iv_opmode == IEEE80211_M_STA &&
   1816 		    vap->iv_state >= IEEE80211_S_RUN &&
   1817 		    vap->iv_bmiss != NULL)
   1818 			vap->iv_bmiss(vap);
   1819 	}
   1820 	IEEE80211_UNLOCK(ic);
   1821 }
   1822 
   1823 static void
   1824 beacon_swmiss(void *arg, int npending)
   1825 {
   1826 	struct ieee80211vap *vap = arg;
   1827 	struct ieee80211com *ic = vap->iv_ic;
   1828 
   1829 	IEEE80211_LOCK(ic);
   1830 	if (vap->iv_state >= IEEE80211_S_RUN) {
   1831 		/* XXX Call multiple times if npending > zero? */
   1832 		vap->iv_bmiss(vap);
   1833 	}
   1834 	IEEE80211_UNLOCK(ic);
   1835 }
   1836 
   1837 /*
   1838  * Software beacon miss handling.  Check if any beacons
   1839  * were received in the last period.  If not post a
   1840  * beacon miss; otherwise reset the counter.
   1841  */
   1842 void
   1843 ieee80211_swbmiss(void *arg)
   1844 {
   1845 	struct ieee80211vap *vap = arg;
   1846 	struct ieee80211com *ic = vap->iv_ic;
   1847 
   1848 	IEEE80211_LOCK_ASSERT(ic);
   1849 
   1850 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
   1851 	    ("wrong state %d", vap->iv_state));
   1852 
   1853 	if (ic->ic_flags & IEEE80211_F_SCAN) {
   1854 		/*
   1855 		 * If scanning just ignore and reset state.  If we get a
   1856 		 * bmiss after coming out of scan because we haven't had
   1857 		 * time to receive a beacon then we should probe the AP
   1858 		 * before posting a real bmiss (unless iv_bmiss_max has
   1859 		 * been artifiically lowered).  A cleaner solution might
   1860 		 * be to disable the timer on scan start/end but to handle
   1861 		 * case of multiple sta vap's we'd need to disable the
   1862 		 * timers of all affected vap's.
   1863 		 */
   1864 		vap->iv_swbmiss_count = 0;
   1865 	} else if (vap->iv_swbmiss_count == 0) {
   1866 		if (vap->iv_bmiss != NULL)
   1867 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
   1868 	} else
   1869 		vap->iv_swbmiss_count = 0;
   1870 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
   1871 		ieee80211_swbmiss, vap);
   1872 }
   1873 
   1874 /*
   1875  * Start an 802.11h channel switch.  We record the parameters,
   1876  * mark the operation pending, notify each vap through the
   1877  * beacon update mechanism so it can update the beacon frame
   1878  * contents, and then switch vap's to CSA state to block outbound
   1879  * traffic.  Devices that handle CSA directly can use the state
   1880  * switch to do the right thing so long as they call
   1881  * ieee80211_csa_completeswitch when it's time to complete the
   1882  * channel change.  Devices that depend on the net80211 layer can
   1883  * use ieee80211_beacon_update to handle the countdown and the
   1884  * channel switch.
   1885  */
   1886 void
   1887 ieee80211_csa_startswitch(struct ieee80211com *ic,
   1888 	struct ieee80211_channel *c, int mode, int count)
   1889 {
   1890 	struct ieee80211vap *vap;
   1891 
   1892 	IEEE80211_LOCK_ASSERT(ic);
   1893 
   1894 	ic->ic_csa_newchan = c;
   1895 	ic->ic_csa_mode = mode;
   1896 	ic->ic_csa_count = count;
   1897 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
   1898 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1899 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
   1900 		    vap->iv_opmode == IEEE80211_M_IBSS ||
   1901 		    vap->iv_opmode == IEEE80211_M_MBSS)
   1902 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
   1903 		/* switch to CSA state to block outbound traffic */
   1904 		if (vap->iv_state == IEEE80211_S_RUN)
   1905 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
   1906 	}
   1907 	ieee80211_notify_csa(ic, c, mode, count);
   1908 }
   1909 
   1910 /*
   1911  * Complete the channel switch by transitioning all CSA VAPs to RUN.
   1912  * This is called by both the completion and cancellation functions
   1913  * so each VAP is placed back in the RUN state and can thus transmit.
   1914  */
   1915 static void
   1916 csa_completeswitch(struct ieee80211com *ic)
   1917 {
   1918 	struct ieee80211vap *vap;
   1919 
   1920 	ic->ic_csa_newchan = NULL;
   1921 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
   1922 
   1923 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1924 		if (vap->iv_state == IEEE80211_S_CSA)
   1925 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   1926 }
   1927 
   1928 /*
   1929  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
   1930  * We clear state and move all vap's in CSA state to RUN state
   1931  * so they can again transmit.
   1932  *
   1933  * Although this may not be completely correct, update the BSS channel
   1934  * for each VAP to the newly configured channel. The setcurchan sets
   1935  * the current operating channel for the interface (so the radio does
   1936  * switch over) but the VAP BSS isn't updated, leading to incorrectly
   1937  * reported information via ioctl.
   1938  */
   1939 void
   1940 ieee80211_csa_completeswitch(struct ieee80211com *ic)
   1941 {
   1942 	struct ieee80211vap *vap;
   1943 
   1944 	IEEE80211_LOCK_ASSERT(ic);
   1945 
   1946 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
   1947 
   1948 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
   1949 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1950 		if (vap->iv_state == IEEE80211_S_CSA)
   1951 			vap->iv_bss->ni_chan = ic->ic_curchan;
   1952 
   1953 	csa_completeswitch(ic);
   1954 }
   1955 
   1956 /*
   1957  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
   1958  * We clear state and move all vap's in CSA state to RUN state
   1959  * so they can again transmit.
   1960  */
   1961 void
   1962 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
   1963 {
   1964 	IEEE80211_LOCK_ASSERT(ic);
   1965 
   1966 	csa_completeswitch(ic);
   1967 }
   1968 
   1969 /*
   1970  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
   1971  * We clear state and move all vap's in CAC state to RUN state.
   1972  */
   1973 void
   1974 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
   1975 {
   1976 	struct ieee80211com *ic = vap0->iv_ic;
   1977 	struct ieee80211vap *vap;
   1978 
   1979 	IEEE80211_LOCK(ic);
   1980 	/*
   1981 	 * Complete CAC state change for lead vap first; then
   1982 	 * clock all the other vap's waiting.
   1983 	 */
   1984 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
   1985 	    ("wrong state %d", vap0->iv_state));
   1986 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
   1987 
   1988 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1989 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
   1990 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   1991 	IEEE80211_UNLOCK(ic);
   1992 }
   1993 
   1994 /*
   1995  * Force all vap's other than the specified vap to the INIT state
   1996  * and mark them as waiting for a scan to complete.  These vaps
   1997  * will be brought up when the scan completes and the scanning vap
   1998  * reaches RUN state by wakeupwaiting.
   1999  */
   2000 static void
   2001 markwaiting(struct ieee80211vap *vap0)
   2002 {
   2003 	struct ieee80211com *ic = vap0->iv_ic;
   2004 	struct ieee80211vap *vap;
   2005 
   2006 	IEEE80211_LOCK_ASSERT(ic);
   2007 
   2008 	/*
   2009 	 * A vap list entry can not disappear since we are running on the
   2010 	 * taskqueue and a vap destroy will queue and drain another state
   2011 	 * change task.
   2012 	 */
   2013 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   2014 		if (vap == vap0)
   2015 			continue;
   2016 		if (vap->iv_state != IEEE80211_S_INIT) {
   2017 			/* NB: iv_newstate may drop the lock */
   2018 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
   2019 			IEEE80211_LOCK_ASSERT(ic);
   2020 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2021 		}
   2022 	}
   2023 }
   2024 
   2025 /*
   2026  * Wakeup all vap's waiting for a scan to complete.  This is the
   2027  * companion to markwaiting (above) and is used to coordinate
   2028  * multiple vaps scanning.
   2029  * This is called from the state taskqueue.
   2030  */
   2031 static void
   2032 wakeupwaiting(struct ieee80211vap *vap0)
   2033 {
   2034 	struct ieee80211com *ic = vap0->iv_ic;
   2035 	struct ieee80211vap *vap;
   2036 
   2037 	IEEE80211_LOCK_ASSERT(ic);
   2038 
   2039 	/*
   2040 	 * A vap list entry can not disappear since we are running on the
   2041 	 * taskqueue and a vap destroy will queue and drain another state
   2042 	 * change task.
   2043 	 */
   2044 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   2045 		if (vap == vap0)
   2046 			continue;
   2047 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
   2048 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   2049 			/* NB: sta's cannot go INIT->RUN */
   2050 			/* NB: iv_newstate may drop the lock */
   2051 			vap->iv_newstate(vap,
   2052 			    vap->iv_opmode == IEEE80211_M_STA ?
   2053 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
   2054 			IEEE80211_LOCK_ASSERT(ic);
   2055 		}
   2056 	}
   2057 }
   2058 
   2059 /*
   2060  * Handle post state change work common to all operating modes.
   2061  */
   2062 static void
   2063 ieee80211_newstate_cb(void *xvap, int npending)
   2064 {
   2065 	struct ieee80211vap *vap = xvap;
   2066 	struct ieee80211com *ic = vap->iv_ic;
   2067 	enum ieee80211_state nstate, ostate;
   2068 	int arg, rc;
   2069 
   2070 	IEEE80211_LOCK(ic);
   2071 	nstate = vap->iv_nstate;
   2072 	arg = vap->iv_nstate_arg;
   2073 
   2074 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
   2075 		/*
   2076 		 * We have been requested to drop back to the INIT before
   2077 		 * proceeding to the new state.
   2078 		 */
   2079 		/* Deny any state changes while we are here. */
   2080 		vap->iv_nstate = IEEE80211_S_INIT;
   2081 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2082 		    "%s: %s -> %s arg %d\n", __func__,
   2083 		    ieee80211_state_name[vap->iv_state],
   2084 		    ieee80211_state_name[vap->iv_nstate], arg);
   2085 		vap->iv_newstate(vap, vap->iv_nstate, 0);
   2086 		IEEE80211_LOCK_ASSERT(ic);
   2087 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
   2088 		    IEEE80211_FEXT_STATEWAIT);
   2089 		/* enqueue new state transition after cancel_scan() task */
   2090 		ieee80211_new_state_locked(vap, nstate, arg);
   2091 		goto done;
   2092 	}
   2093 
   2094 	ostate = vap->iv_state;
   2095 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
   2096 		/*
   2097 		 * SCAN was forced; e.g. on beacon miss.  Force other running
   2098 		 * vap's to INIT state and mark them as waiting for the scan to
   2099 		 * complete.  This insures they don't interfere with our
   2100 		 * scanning.  Since we are single threaded the vaps can not
   2101 		 * transition again while we are executing.
   2102 		 *
   2103 		 * XXX not always right, assumes ap follows sta
   2104 		 */
   2105 		markwaiting(vap);
   2106 	}
   2107 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2108 	    "%s: %s -> %s arg %d\n", __func__,
   2109 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
   2110 
   2111 	rc = vap->iv_newstate(vap, nstate, arg);
   2112 	IEEE80211_LOCK_ASSERT(ic);
   2113 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
   2114 	if (rc != 0) {
   2115 		/* State transition failed */
   2116 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
   2117 		KASSERT(nstate != IEEE80211_S_INIT,
   2118 		    ("INIT state change failed"));
   2119 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2120 		    "%s: %s returned error %d\n", __func__,
   2121 		    ieee80211_state_name[nstate], rc);
   2122 		goto done;
   2123 	}
   2124 
   2125 	/* No actual transition, skip post processing */
   2126 	if (ostate == nstate)
   2127 		goto done;
   2128 
   2129 	if (nstate == IEEE80211_S_RUN) {
   2130 		/*
   2131 		 * OACTIVE may be set on the vap if the upper layer
   2132 		 * tried to transmit (e.g. IPv6 NDP) before we reach
   2133 		 * RUN state.  Clear it and restart xmit.
   2134 		 *
   2135 		 * Note this can also happen as a result of SLEEP->RUN
   2136 		 * (i.e. coming out of power save mode).
   2137 		 */
   2138 #if __FreeBSD__
   2139 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   2140 #elif __NetBSD__
   2141 		vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
   2142 #endif
   2143 
   2144 		/*
   2145 		 * XXX TODO Kick-start a VAP queue - this should be a method!
   2146 		 */
   2147 
   2148 		/* bring up any vaps waiting on us */
   2149 		wakeupwaiting(vap);
   2150 	} else if (nstate == IEEE80211_S_INIT) {
   2151 		/*
   2152 		 * Flush the scan cache if we did the last scan (XXX?)
   2153 		 * and flush any frames on send queues from this vap.
   2154 		 * Note the mgt q is used only for legacy drivers and
   2155 		 * will go away shortly.
   2156 		 */
   2157 		ieee80211_scan_flush(vap);
   2158 
   2159 		/*
   2160 		 * XXX TODO: ic/vap queue flush
   2161 		 */
   2162 	}
   2163 done:
   2164 	IEEE80211_UNLOCK(ic);
   2165 }
   2166 
   2167 /*
   2168  * Public interface for initiating a state machine change.
   2169  * This routine single-threads the request and coordinates
   2170  * the scheduling of multiple vaps for the purpose of selecting
   2171  * an operating channel.  Specifically the following scenarios
   2172  * are handled:
   2173  * o only one vap can be selecting a channel so on transition to
   2174  *   SCAN state if another vap is already scanning then
   2175  *   mark the caller for later processing and return without
   2176  *   doing anything (XXX? expectations by caller of synchronous operation)
   2177  * o only one vap can be doing CAC of a channel so on transition to
   2178  *   CAC state if another vap is already scanning for radar then
   2179  *   mark the caller for later processing and return without
   2180  *   doing anything (XXX? expectations by caller of synchronous operation)
   2181  * o if another vap is already running when a request is made
   2182  *   to SCAN then an operating channel has been chosen; bypass
   2183  *   the scan and just join the channel
   2184  *
   2185  * Note that the state change call is done through the iv_newstate
   2186  * method pointer so any driver routine gets invoked.  The driver
   2187  * will normally call back into operating mode-specific
   2188  * ieee80211_newstate routines (below) unless it needs to completely
   2189  * bypass the state machine (e.g. because the firmware has it's
   2190  * own idea how things should work).  Bypassing the net80211 layer
   2191  * is usually a mistake and indicates lack of proper integration
   2192  * with the net80211 layer.
   2193  */
   2194 int
   2195 ieee80211_new_state_locked(struct ieee80211vap *vap,
   2196 	enum ieee80211_state nstate, int arg)
   2197 {
   2198 	struct ieee80211com *ic = vap->iv_ic;
   2199 	struct ieee80211vap *vp;
   2200 	enum ieee80211_state ostate;
   2201 	int nrunning, nscanning;
   2202 
   2203 	IEEE80211_LOCK_ASSERT(ic);
   2204 
   2205 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
   2206 		if (vap->iv_nstate == IEEE80211_S_INIT ||
   2207 		    ((vap->iv_state == IEEE80211_S_INIT ||
   2208 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
   2209 		    vap->iv_nstate == IEEE80211_S_SCAN &&
   2210 		    nstate > IEEE80211_S_SCAN)) {
   2211 			/*
   2212 			 * XXX The vap is being stopped/started,
   2213 			 * do not allow any other state changes
   2214 			 * until this is completed.
   2215 			 */
   2216 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2217 			    "%s: %s -> %s (%s) transition discarded\n",
   2218 			    __func__,
   2219 			    ieee80211_state_name[vap->iv_state],
   2220 			    ieee80211_state_name[nstate],
   2221 			    ieee80211_state_name[vap->iv_nstate]);
   2222 			return -1;
   2223 		} else if (vap->iv_state != vap->iv_nstate) {
   2224 #if 0
   2225 			/* Warn if the previous state hasn't completed. */
   2226 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2227 			    "%s: pending %s -> %s transition lost\n", __func__,
   2228 			    ieee80211_state_name[vap->iv_state],
   2229 			    ieee80211_state_name[vap->iv_nstate]);
   2230 #else
   2231 			/* XXX temporarily enable to identify issues */
   2232 			if_printf(vap->iv_ifp,
   2233 			    "%s: pending %s -> %s transition lost\n",
   2234 			    __func__, ieee80211_state_name[vap->iv_state],
   2235 			    ieee80211_state_name[vap->iv_nstate]);
   2236 #endif
   2237 		}
   2238 	}
   2239 
   2240 	nrunning = nscanning = 0;
   2241 	/* XXX can track this state instead of calculating */
   2242 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
   2243 		if (vp != vap) {
   2244 			if (vp->iv_state >= IEEE80211_S_RUN)
   2245 				nrunning++;
   2246 			/* XXX doesn't handle bg scan */
   2247 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
   2248 			else if (vp->iv_state > IEEE80211_S_INIT)
   2249 				nscanning++;
   2250 		}
   2251 	}
   2252 	ostate = vap->iv_state;
   2253 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2254 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
   2255 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
   2256 	    nrunning, nscanning);
   2257 	switch (nstate) {
   2258 	case IEEE80211_S_SCAN:
   2259 		if (ostate == IEEE80211_S_INIT) {
   2260 			/*
   2261 			 * INIT -> SCAN happens on initial bringup.
   2262 			 */
   2263 			KASSERT(!(nscanning && nrunning),
   2264 			    ("%d scanning and %d running", nscanning, nrunning));
   2265 			if (nscanning) {
   2266 				/*
   2267 				 * Someone is scanning, defer our state
   2268 				 * change until the work has completed.
   2269 				 */
   2270 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2271 				    "%s: defer %s -> %s\n",
   2272 				    __func__, ieee80211_state_name[ostate],
   2273 				    ieee80211_state_name[nstate]);
   2274 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2275 				return 0;
   2276 			}
   2277 			if (nrunning) {
   2278 				/*
   2279 				 * Someone is operating; just join the channel
   2280 				 * they have chosen.
   2281 				 */
   2282 				/* XXX kill arg? */
   2283 				/* XXX check each opmode, adhoc? */
   2284 				if (vap->iv_opmode == IEEE80211_M_STA)
   2285 					nstate = IEEE80211_S_SCAN;
   2286 				else
   2287 					nstate = IEEE80211_S_RUN;
   2288 #ifdef IEEE80211_DEBUG
   2289 				if (nstate != IEEE80211_S_SCAN) {
   2290 					IEEE80211_DPRINTF(vap,
   2291 					    IEEE80211_MSG_STATE,
   2292 					    "%s: override, now %s -> %s\n",
   2293 					    __func__,
   2294 					    ieee80211_state_name[ostate],
   2295 					    ieee80211_state_name[nstate]);
   2296 				}
   2297 #endif
   2298 			}
   2299 		}
   2300 		break;
   2301 	case IEEE80211_S_RUN:
   2302 		if (vap->iv_opmode == IEEE80211_M_WDS &&
   2303 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
   2304 		    nscanning) {
   2305 			/*
   2306 			 * Legacy WDS with someone else scanning; don't
   2307 			 * go online until that completes as we should
   2308 			 * follow the other vap to the channel they choose.
   2309 			 */
   2310 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2311 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
   2312 			     ieee80211_state_name[ostate],
   2313 			     ieee80211_state_name[nstate]);
   2314 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2315 			return 0;
   2316 		}
   2317 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   2318 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   2319 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
   2320 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
   2321 			/*
   2322 			 * This is a DFS channel, transition to CAC state
   2323 			 * instead of RUN.  This allows us to initiate
   2324 			 * Channel Availability Check (CAC) as specified
   2325 			 * by 11h/DFS.
   2326 			 */
   2327 			nstate = IEEE80211_S_CAC;
   2328 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2329 			     "%s: override %s -> %s (DFS)\n", __func__,
   2330 			     ieee80211_state_name[ostate],
   2331 			     ieee80211_state_name[nstate]);
   2332 		}
   2333 		break;
   2334 	case IEEE80211_S_INIT:
   2335 		/* cancel any scan in progress */
   2336 		ieee80211_cancel_scan(vap);
   2337 		if (ostate == IEEE80211_S_INIT ) {
   2338 			/* XXX don't believe this */
   2339 			/* INIT -> INIT. nothing to do */
   2340 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   2341 		}
   2342 		/* fall thru... */
   2343 	default:
   2344 		break;
   2345 	}
   2346 	/* defer the state change to a thread */
   2347 	vap->iv_nstate = nstate;
   2348 	vap->iv_nstate_arg = arg;
   2349 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
   2350 	ieee80211_runtask(ic, &vap->iv_nstate_task);
   2351 	return EINPROGRESS;
   2352 }
   2353 
   2354 int
   2355 ieee80211_new_state(struct ieee80211vap *vap,
   2356 	enum ieee80211_state nstate, int arg)
   2357 {
   2358 	struct ieee80211com *ic = vap->iv_ic;
   2359 	int rc;
   2360 
   2361 	IEEE80211_LOCK(ic);
   2362 	rc = ieee80211_new_state_locked(vap, nstate, arg);
   2363 	IEEE80211_UNLOCK(ic);
   2364 	return rc;
   2365 }
   2366