Home | History | Annotate | Line # | Download | only in net80211
ieee80211_proto.c revision 1.34.14.5
      1 /*	$NetBSD: ieee80211_proto.c,v 1.34.14.5 2018/07/28 00:49:43 phil Exp $ */
      2 
      3 /*-
      4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
      5  *
      6  * Copyright (c) 2001 Atsushi Onoe
      7  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      8  * Copyright (c) 2012 IEEE
      9  * All rights reserved.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #if __FreeBSD__
     34 __FBSDID("$FreeBSD$");
     35 #endif
     36 
     37 /*
     38  * IEEE 802.11 protocol support.
     39  */
     40 
     41 #include "opt_inet.h"
     42 #include "opt_wlan.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/malloc.h>
     48 #ifdef __NetBSD__
     49 #include <sys/mbuf.h>
     50 #include <sys/once.h>
     51 #endif
     52 
     53 #include <sys/socket.h>
     54 #include <sys/sockio.h>
     55 
     56 #include <net/if.h>
     57 #if __FreeBSD__
     58 #include <net/if_var.h>
     59 #endif
     60 #include <net/if_media.h>
     61 #if __FreeBSD__
     62 #include <net/ethernet.h>		/* XXX for ether_sprintf */
     63 #endif
     64 #ifdef __NetBSD__
     65 #include <net/if_ether.h>
     66 #include <net/route.h>
     67 #endif
     68 
     69 #include <net80211/ieee80211_var.h>
     70 #include <net80211/ieee80211_adhoc.h>
     71 #include <net80211/ieee80211_sta.h>
     72 #include <net80211/ieee80211_hostap.h>
     73 #include <net80211/ieee80211_wds.h>
     74 #ifdef IEEE80211_SUPPORT_MESH
     75 #include <net80211/ieee80211_mesh.h>
     76 #endif
     77 #include <net80211/ieee80211_monitor.h>
     78 #include <net80211/ieee80211_input.h>
     79 
     80 #ifdef __NetBSD__
     81 #undef  KASSERT
     82 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
     83 #endif
     84 
     85 #if __NetBSD__
     86 extern const struct ieee80211_authenticator auth_xauth;
     87 #endif
     88 
     89 /* XXX tunables */
     90 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
     91 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
     92 
     93 const char *mgt_subtype_name[] = {
     94 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
     95 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
     96 	"beacon",	"atim",		"disassoc",	"auth",
     97 	"deauth",	"action",	"action_noack",	"reserved#15"
     98 };
     99 const char *ctl_subtype_name[] = {
    100 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
    101 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
    102 	"bar",		"ba",		"ps_poll",	"rts",
    103 	"cts",		"ack",		"cf_end",	"cf_end_ack"
    104 };
    105 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
    106 	"IBSS",		/* IEEE80211_M_IBSS */
    107 	"STA",		/* IEEE80211_M_STA */
    108 	"WDS",		/* IEEE80211_M_WDS */
    109 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
    110 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
    111 	"MONITOR",	/* IEEE80211_M_MONITOR */
    112 	"MBSS"		/* IEEE80211_M_MBSS */
    113 };
    114 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
    115 	"INIT",		/* IEEE80211_S_INIT */
    116 	"SCAN",		/* IEEE80211_S_SCAN */
    117 	"AUTH",		/* IEEE80211_S_AUTH */
    118 	"ASSOC",	/* IEEE80211_S_ASSOC */
    119 	"CAC",		/* IEEE80211_S_CAC */
    120 	"RUN",		/* IEEE80211_S_RUN */
    121 	"CSA",		/* IEEE80211_S_CSA */
    122 	"SLEEP",	/* IEEE80211_S_SLEEP */
    123 };
    124 const char *ieee80211_wme_acnames[] = {
    125 	"WME_AC_BE",
    126 	"WME_AC_BK",
    127 	"WME_AC_VI",
    128 	"WME_AC_VO",
    129 	"WME_UPSD",
    130 };
    131 
    132 
    133 /*
    134  * Reason code descriptions were (mostly) obtained from
    135  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
    136  */
    137 const char *
    138 ieee80211_reason_to_string(uint16_t reason)
    139 {
    140 	switch (reason) {
    141 	case IEEE80211_REASON_UNSPECIFIED:
    142 		return ("unspecified");
    143 	case IEEE80211_REASON_AUTH_EXPIRE:
    144 		return ("previous authentication is expired");
    145 	case IEEE80211_REASON_AUTH_LEAVE:
    146 		return ("sending STA is leaving/has left IBSS or ESS");
    147 	case IEEE80211_REASON_ASSOC_EXPIRE:
    148 		return ("disassociated due to inactivity");
    149 	case IEEE80211_REASON_ASSOC_TOOMANY:
    150 		return ("too many associated STAs");
    151 	case IEEE80211_REASON_NOT_AUTHED:
    152 		return ("class 2 frame received from nonauthenticated STA");
    153 	case IEEE80211_REASON_NOT_ASSOCED:
    154 		return ("class 3 frame received from nonassociated STA");
    155 	case IEEE80211_REASON_ASSOC_LEAVE:
    156 		return ("sending STA is leaving/has left BSS");
    157 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
    158 		return ("STA requesting (re)association is not authenticated");
    159 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
    160 		return ("information in the Power Capability element is "
    161 			"unacceptable");
    162 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
    163 		return ("information in the Supported Channels element is "
    164 			"unacceptable");
    165 	case IEEE80211_REASON_IE_INVALID:
    166 		return ("invalid element");
    167 	case IEEE80211_REASON_MIC_FAILURE:
    168 		return ("MIC failure");
    169 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
    170 		return ("4-Way handshake timeout");
    171 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
    172 		return ("group key update timeout");
    173 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
    174 		return ("element in 4-Way handshake different from "
    175 			"(re)association request/probe response/beacon frame");
    176 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
    177 		return ("invalid group cipher");
    178 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
    179 		return ("invalid pairwise cipher");
    180 	case IEEE80211_REASON_AKMP_INVALID:
    181 		return ("invalid AKMP");
    182 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
    183 		return ("unsupported version in RSN IE");
    184 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
    185 		return ("invalid capabilities in RSN IE");
    186 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
    187 		return ("IEEE 802.1X authentication failed");
    188 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
    189 		return ("cipher suite rejected because of the security "
    190 			"policy");
    191 	case IEEE80211_REASON_UNSPECIFIED_QOS:
    192 		return ("unspecified (QoS-related)");
    193 	case IEEE80211_REASON_INSUFFICIENT_BW:
    194 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
    195 	case IEEE80211_REASON_TOOMANY_FRAMES:
    196 		return ("too many frames need to be acknowledged");
    197 	case IEEE80211_REASON_OUTSIDE_TXOP:
    198 		return ("STA is transmitting outside the limits of its TXOPs");
    199 	case IEEE80211_REASON_LEAVING_QBSS:
    200 		return ("requested from peer STA (the STA is "
    201 			"resetting/leaving the BSS)");
    202 	case IEEE80211_REASON_BAD_MECHANISM:
    203 		return ("requested from peer STA (it does not want to use "
    204 			"the mechanism)");
    205 	case IEEE80211_REASON_SETUP_NEEDED:
    206 		return ("requested from peer STA (setup is required for the "
    207 			"used mechanism)");
    208 	case IEEE80211_REASON_TIMEOUT:
    209 		return ("requested from peer STA (timeout)");
    210 	case IEEE80211_REASON_PEER_LINK_CANCELED:
    211 		return ("SME cancels the mesh peering instance (not related "
    212 			"to the maximum number of peer mesh STAs)");
    213 	case IEEE80211_REASON_MESH_MAX_PEERS:
    214 		return ("maximum number of peer mesh STAs was reached");
    215 	case IEEE80211_REASON_MESH_CPVIOLATION:
    216 		return ("the received information violates the Mesh "
    217 			"Configuration policy configured in the mesh STA "
    218 			"profile");
    219 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
    220 		return ("the mesh STA has received a Mesh Peering Close "
    221 			"message requesting to close the mesh peering");
    222 	case IEEE80211_REASON_MESH_MAX_RETRIES:
    223 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
    224 			"Peering Open messages, without receiving a Mesh "
    225 			"Peering Confirm message");
    226 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
    227 		return ("the confirmTimer for the mesh peering instance times "
    228 			"out");
    229 	case IEEE80211_REASON_MESH_INVALID_GTK:
    230 		return ("the mesh STA fails to unwrap the GTK or the values "
    231 			"in the wrapped contents do not match");
    232 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
    233 		return ("the mesh STA receives inconsistent information about "
    234 			"the mesh parameters between Mesh Peering Management "
    235 			"frames");
    236 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
    237 		return ("the mesh STA fails the authenticated mesh peering "
    238 			"exchange because due to failure in selecting "
    239 			"pairwise/group ciphersuite");
    240 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
    241 		return ("the mesh STA does not have proxy information for "
    242 			"this external destination");
    243 	case IEEE80211_REASON_MESH_PERR_NO_FI:
    244 		return ("the mesh STA does not have forwarding information "
    245 			"for this destination");
    246 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
    247 		return ("the mesh STA determines that the link to the next "
    248 			"hop of an active path in its forwarding information "
    249 			"is no longer usable");
    250 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
    251 		return ("the MAC address of the STA already exists in the "
    252 			"mesh BSS");
    253 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
    254 		return ("the mesh STA performs channel switch to meet "
    255 			"regulatory requirements");
    256 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
    257 		return ("the mesh STA performs channel switch with "
    258 			"unspecified reason");
    259 	default:
    260 		return ("reserved/unknown");
    261 	}
    262 }
    263 
    264 static void beacon_miss(void *, int);
    265 static void beacon_swmiss(void *, int);
    266 static void parent_updown(void *, int);
    267 static void update_mcast(void *, int);
    268 static void update_promisc(void *, int);
    269 static void update_channel(void *, int);
    270 static void update_chw(void *, int);
    271 static void vap_update_wme(void *, int);
    272 static void restart_vaps(void *, int);
    273 static void ieee80211_newstate_cb(void *, int);
    274 
    275 static int
    276 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
    277 	const struct ieee80211_bpf_params *params)
    278 {
    279 
    280 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
    281 	m_freem(m);
    282 	return ENETDOWN;
    283 }
    284 
    285 void
    286 ieee80211_proto_attach(struct ieee80211com *ic)
    287 {
    288 	uint8_t hdrlen;
    289 
    290 	printf ("i33380211_proto_attach called\n");  /* NNN debug */
    291 
    292 	/* override the 802.3 setting */
    293 	hdrlen = ic->ic_headroom
    294 		+ sizeof(struct ieee80211_qosframe_addr4)
    295 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    296 		+ IEEE80211_WEP_EXTIVLEN;
    297 	/* XXX no way to recalculate on ifdetach */
    298 	if (ALIGN(hdrlen) > max_linkhdr) {
    299 		/* XXX sanity check... */
    300 		max_linkhdr = ALIGN(hdrlen);
    301 		max_hdr = max_linkhdr + max_protohdr;
    302 		max_datalen = MHLEN - max_hdr;
    303 	}
    304 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
    305 
    306 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
    307 	printf ("parent task: t_work.wk_dummy 0x%lx, t_func 0x%lx t_arg 0x%lx\n",
    308 		(long)(ic->ic_parent_task.t_work.wk_dummy),
    309 		(long)(ic->ic_parent_task.t_func),
    310 		(long)(ic->ic_parent_task.t_arg));
    311 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
    312 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
    313 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
    314 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
    315 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
    316 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
    317 
    318 	ic->ic_wme.wme_hipri_switch_hysteresis =
    319 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
    320 
    321 	/* initialize management frame handlers */
    322 	ic->ic_send_mgmt = ieee80211_send_mgmt;
    323 	ic->ic_raw_xmit = null_raw_xmit;
    324 
    325 	ieee80211_adhoc_attach(ic);
    326 	ieee80211_sta_attach(ic);
    327 	ieee80211_wds_attach(ic);
    328 	ieee80211_hostap_attach(ic);
    329 #ifdef IEEE80211_SUPPORT_MESH
    330 	ieee80211_mesh_attach(ic);
    331 #endif
    332 	ieee80211_monitor_attach(ic);
    333 }
    334 
    335 void
    336 ieee80211_proto_detach(struct ieee80211com *ic)
    337 {
    338 	ieee80211_monitor_detach(ic);
    339 #ifdef IEEE80211_SUPPORT_MESH
    340 	ieee80211_mesh_detach(ic);
    341 #endif
    342 	ieee80211_hostap_detach(ic);
    343 	ieee80211_wds_detach(ic);
    344 	ieee80211_adhoc_detach(ic);
    345 	ieee80211_sta_detach(ic);
    346 }
    347 
    348 static void
    349 null_update_beacon(struct ieee80211vap *vap, int item)
    350 {
    351 }
    352 
    353 void
    354 ieee80211_proto_vattach(struct ieee80211vap *vap)
    355 {
    356 	struct ieee80211com *ic = vap->iv_ic;
    357 	struct ifnet *ifp = vap->iv_ifp;
    358 	int i;
    359 
    360 	/* override the 802.3 setting */
    361 	ifp->if_hdrlen = ic->ic_headroom
    362                 + sizeof(struct ieee80211_qosframe_addr4)
    363                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
    364                 + IEEE80211_WEP_EXTIVLEN;
    365 
    366 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
    367 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
    368 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
    369 #if __FreeBSD__
    370 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
    371 	callout_init(&vap->iv_mgtsend, 1);
    372 #elif __NetBSD__
    373 	/* NNN need to do something with iv_swbmiss ... */
    374 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
    375 #endif
    376 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
    377 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
    378 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
    379 
    380 	/*
    381 	 * Install default tx rate handling: no fixed rate, lowest
    382 	 * supported rate for mgmt and multicast frames.  Default
    383 	 * max retry count.  These settings can be changed by the
    384 	 * driver and/or user applications.
    385 	 */
    386 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
    387 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
    388 
    389 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
    390 
    391 		/*
    392 		 * Setting the management rate to MCS 0 assumes that the
    393 		 * BSS Basic rate set is empty and the BSS Basic MCS set
    394 		 * is not.
    395 		 *
    396 		 * Since we're not checking this, default to the lowest
    397 		 * defined rate for this mode.
    398 		 *
    399 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
    400 		 * some MCS management traffic (eg BA response frames.)
    401 		 *
    402 		 * See also: 9.6.0 of the 802.11n-2009 specification.
    403 		 */
    404 #ifdef	NOTYET
    405 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
    406 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
    407 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
    408 		} else {
    409 			vap->iv_txparms[i].mgmtrate =
    410 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    411 			vap->iv_txparms[i].mcastrate =
    412 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
    413 		}
    414 #endif
    415 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    416 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
    417 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
    418 	}
    419 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
    420 
    421 	vap->iv_update_beacon = null_update_beacon;
    422 	vap->iv_deliver_data = ieee80211_deliver_data;
    423 
    424 	/* attach support for operating mode */
    425 	ic->ic_vattach[vap->iv_opmode](vap);
    426 }
    427 
    428 void
    429 ieee80211_proto_vdetach(struct ieee80211vap *vap)
    430 {
    431 #define	FREEAPPIE(ie) do { \
    432 	if (ie != NULL) \
    433 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
    434 } while (0)
    435 	/*
    436 	 * Detach operating mode module.
    437 	 */
    438 	if (vap->iv_opdetach != NULL)
    439 		vap->iv_opdetach(vap);
    440 	/*
    441 	 * This should not be needed as we detach when reseting
    442 	 * the state but be conservative here since the
    443 	 * authenticator may do things like spawn kernel threads.
    444 	 */
    445 	if (vap->iv_auth->ia_detach != NULL)
    446 		vap->iv_auth->ia_detach(vap);
    447 	/*
    448 	 * Detach any ACL'ator.
    449 	 */
    450 	if (vap->iv_acl != NULL)
    451 		vap->iv_acl->iac_detach(vap);
    452 
    453 	FREEAPPIE(vap->iv_appie_beacon);
    454 	FREEAPPIE(vap->iv_appie_probereq);
    455 	FREEAPPIE(vap->iv_appie_proberesp);
    456 	FREEAPPIE(vap->iv_appie_assocreq);
    457 	FREEAPPIE(vap->iv_appie_assocresp);
    458 	FREEAPPIE(vap->iv_appie_wpa);
    459 #undef FREEAPPIE
    460 }
    461 
    462 /*
    463  * Simple-minded authenticator module support.
    464  */
    465 
    466 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
    467 /* XXX well-known names */
    468 #if __FreeBSD__
    469 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
    470 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
    471 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
    472 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
    473 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
    474 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
    475 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
    476 };
    477 #endif
    478 
    479 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
    480 
    481 static const struct ieee80211_authenticator auth_internal = {
    482 	.ia_name		= "wlan_internal",
    483 	.ia_attach		= NULL,
    484 	.ia_detach		= NULL,
    485 	.ia_node_join		= NULL,
    486 	.ia_node_leave		= NULL,
    487 };
    488 
    489 
    490 /*
    491  * Setup internal authenticators once; they are never unregistered.
    492  */
    493 #if __FreeBSD__
    494 static void
    495 #elif __NetBSD__
    496 void
    497 #endif
    498 ieee80211_auth_setup(void)
    499 {
    500 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
    501 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
    502 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
    503 #if __NetBSD__
    504 	ieee80211_authenticator_register(IEEE80211_AUTH_8021X, &auth_xauth);
    505 	ieee80211_authenticator_register(IEEE80211_AUTH_WPA, &auth_xauth);
    506 #endif
    507 }
    508 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
    509 
    510 const struct ieee80211_authenticator *
    511 ieee80211_authenticator_get(int auth)
    512 {
    513 	if (auth >= IEEE80211_AUTH_MAX)
    514 		return NULL;
    515 #if __FreeBSD__
    516 	if (authenticators[auth] == NULL)
    517 		ieee80211_load_module(auth_modnames[auth]);
    518 #endif
    519 	return authenticators[auth];
    520 }
    521 
    522 void
    523 ieee80211_authenticator_register(int type,
    524 	const struct ieee80211_authenticator *auth)
    525 {
    526 	if (type >= IEEE80211_AUTH_MAX)
    527 		return;
    528 	authenticators[type] = auth;
    529 }
    530 
    531 void
    532 ieee80211_authenticator_unregister(int type)
    533 {
    534 
    535 	if (type >= IEEE80211_AUTH_MAX)
    536 		return;
    537 	authenticators[type] = NULL;
    538 }
    539 
    540 /*
    541  * Very simple-minded ACL module support.
    542  */
    543 /* XXX just one for now */
    544 static	const struct ieee80211_aclator *acl = NULL;
    545 
    546 void
    547 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
    548 {
    549 	printf("wlan: %s acl policy registered\n", iac->iac_name);
    550 	acl = iac;
    551 }
    552 
    553 void
    554 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
    555 {
    556 	if (acl == iac)
    557 		acl = NULL;
    558 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
    559 }
    560 
    561 const struct ieee80211_aclator *
    562 ieee80211_aclator_get(const char *name)
    563 {
    564 #if __FreeBSD__
    565 	if (acl == NULL)
    566 		ieee80211_load_module("wlan_acl");
    567 #endif
    568 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
    569 }
    570 
    571 void
    572 ieee80211_print_essid(const uint8_t *essid, int len)
    573 {
    574 	const uint8_t *p;
    575 	int i;
    576 
    577 	if (len > IEEE80211_NWID_LEN)
    578 		len = IEEE80211_NWID_LEN;
    579 	/* determine printable or not */
    580 	for (i = 0, p = essid; i < len; i++, p++) {
    581 		if (*p < ' ' || *p > 0x7e)
    582 			break;
    583 	}
    584 	if (i == len) {
    585 		printf("\"");
    586 		for (i = 0, p = essid; i < len; i++, p++)
    587 			printf("%c", *p);
    588 		printf("\"");
    589 	} else {
    590 		printf("0x");
    591 		for (i = 0, p = essid; i < len; i++, p++)
    592 			printf("%02x", *p);
    593 	}
    594 }
    595 
    596 void
    597 ieee80211_dump_pkt(struct ieee80211com *ic,
    598 	const uint8_t *buf, int len, int rate, int rssi)
    599 {
    600 	const struct ieee80211_frame *wh;
    601 	int i;
    602 
    603 	wh = (const struct ieee80211_frame *)buf;
    604 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
    605 	case IEEE80211_FC1_DIR_NODS:
    606 		printf("NODS %s", ether_sprintf(wh->i_addr2));
    607 		printf("->%s", ether_sprintf(wh->i_addr1));
    608 		printf("(%s)", ether_sprintf(wh->i_addr3));
    609 		break;
    610 	case IEEE80211_FC1_DIR_TODS:
    611 		printf("TODS %s", ether_sprintf(wh->i_addr2));
    612 		printf("->%s", ether_sprintf(wh->i_addr3));
    613 		printf("(%s)", ether_sprintf(wh->i_addr1));
    614 		break;
    615 	case IEEE80211_FC1_DIR_FROMDS:
    616 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
    617 		printf("->%s", ether_sprintf(wh->i_addr1));
    618 		printf("(%s)", ether_sprintf(wh->i_addr2));
    619 		break;
    620 	case IEEE80211_FC1_DIR_DSTODS:
    621 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
    622 		printf("->%s", ether_sprintf(wh->i_addr3));
    623 		printf("(%s", ether_sprintf(wh->i_addr2));
    624 		printf("->%s)", ether_sprintf(wh->i_addr1));
    625 		break;
    626 	}
    627 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
    628 	case IEEE80211_FC0_TYPE_DATA:
    629 		printf(" data");
    630 		break;
    631 	case IEEE80211_FC0_TYPE_MGT:
    632 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
    633 		break;
    634 	default:
    635 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
    636 		break;
    637 	}
    638 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
    639 		const struct ieee80211_qosframe *qwh =
    640 			(const struct ieee80211_qosframe *)buf;
    641 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
    642 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
    643 	}
    644 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
    645 		int off;
    646 
    647 		off = ieee80211_anyhdrspace(ic, wh);
    648 		printf(" WEP [IV %.02x %.02x %.02x",
    649 			buf[off+0], buf[off+1], buf[off+2]);
    650 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
    651 			printf(" %.02x %.02x %.02x",
    652 				buf[off+4], buf[off+5], buf[off+6]);
    653 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
    654 	}
    655 	if (rate >= 0)
    656 		printf(" %dM", rate / 2);
    657 	if (rssi >= 0)
    658 		printf(" +%d", rssi);
    659 	printf("\n");
    660 	if (len > 0) {
    661 		for (i = 0; i < len; i++) {
    662 			if ((i & 1) == 0)
    663 				printf(" ");
    664 			printf("%02x", buf[i]);
    665 		}
    666 		printf("\n");
    667 	}
    668 }
    669 
    670 static __inline int
    671 findrix(const struct ieee80211_rateset *rs, int r)
    672 {
    673 	int i;
    674 
    675 	for (i = 0; i < rs->rs_nrates; i++)
    676 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
    677 			return i;
    678 	return -1;
    679 }
    680 
    681 int
    682 ieee80211_fix_rate(struct ieee80211_node *ni,
    683 	struct ieee80211_rateset *nrs, int flags)
    684 {
    685 	struct ieee80211vap *vap = ni->ni_vap;
    686 	struct ieee80211com *ic = ni->ni_ic;
    687 	int i, j, rix, error;
    688 	int okrate, badrate, fixedrate, ucastrate;
    689 	const struct ieee80211_rateset *srs;
    690 	uint8_t r;
    691 
    692 	error = 0;
    693 	okrate = badrate = 0;
    694 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
    695 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
    696 		/*
    697 		 * Workaround awkwardness with fixed rate.  We are called
    698 		 * to check both the legacy rate set and the HT rate set
    699 		 * but we must apply any legacy fixed rate check only to the
    700 		 * legacy rate set and vice versa.  We cannot tell what type
    701 		 * of rate set we've been given (legacy or HT) but we can
    702 		 * distinguish the fixed rate type (MCS have 0x80 set).
    703 		 * So to deal with this the caller communicates whether to
    704 		 * check MCS or legacy rate using the flags and we use the
    705 		 * type of any fixed rate to avoid applying an MCS to a
    706 		 * legacy rate and vice versa.
    707 		 */
    708 		if (ucastrate & 0x80) {
    709 			if (flags & IEEE80211_F_DOFRATE)
    710 				flags &= ~IEEE80211_F_DOFRATE;
    711 		} else if ((ucastrate & 0x80) == 0) {
    712 			if (flags & IEEE80211_F_DOFMCS)
    713 				flags &= ~IEEE80211_F_DOFMCS;
    714 		}
    715 		/* NB: required to make MCS match below work */
    716 		ucastrate &= IEEE80211_RATE_VAL;
    717 	}
    718 	fixedrate = IEEE80211_FIXED_RATE_NONE;
    719 	/*
    720 	 * XXX we are called to process both MCS and legacy rates;
    721 	 * we must use the appropriate basic rate set or chaos will
    722 	 * ensue; for now callers that want MCS must supply
    723 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
    724 	 * function so there are two variants, one for MCS and one
    725 	 * for legacy rates.
    726 	 */
    727 	if (flags & IEEE80211_F_DOBRS)
    728 		srs = (const struct ieee80211_rateset *)
    729 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
    730 	else
    731 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
    732 	for (i = 0; i < nrs->rs_nrates; ) {
    733 		if (flags & IEEE80211_F_DOSORT) {
    734 			/*
    735 			 * Sort rates.
    736 			 */
    737 			for (j = i + 1; j < nrs->rs_nrates; j++) {
    738 				if (IEEE80211_RV(nrs->rs_rates[i]) >
    739 				    IEEE80211_RV(nrs->rs_rates[j])) {
    740 					r = nrs->rs_rates[i];
    741 					nrs->rs_rates[i] = nrs->rs_rates[j];
    742 					nrs->rs_rates[j] = r;
    743 				}
    744 			}
    745 		}
    746 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
    747 		badrate = r;
    748 		/*
    749 		 * Check for fixed rate.
    750 		 */
    751 		if (r == ucastrate)
    752 			fixedrate = r;
    753 		/*
    754 		 * Check against supported rates.
    755 		 */
    756 		rix = findrix(srs, r);
    757 		if (flags & IEEE80211_F_DONEGO) {
    758 			if (rix < 0) {
    759 				/*
    760 				 * A rate in the node's rate set is not
    761 				 * supported.  If this is a basic rate and we
    762 				 * are operating as a STA then this is an error.
    763 				 * Otherwise we just discard/ignore the rate.
    764 				 */
    765 				if ((flags & IEEE80211_F_JOIN) &&
    766 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
    767 					error++;
    768 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
    769 				/*
    770 				 * Overwrite with the supported rate
    771 				 * value so any basic rate bit is set.
    772 				 */
    773 				nrs->rs_rates[i] = srs->rs_rates[rix];
    774 			}
    775 		}
    776 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
    777 			/*
    778 			 * Delete unacceptable rates.
    779 			 */
    780 			nrs->rs_nrates--;
    781 			for (j = i; j < nrs->rs_nrates; j++)
    782 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
    783 			nrs->rs_rates[j] = 0;
    784 			continue;
    785 		}
    786 		if (rix >= 0)
    787 			okrate = nrs->rs_rates[i];
    788 		i++;
    789 	}
    790 	if (okrate == 0 || error != 0 ||
    791 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
    792 	     fixedrate != ucastrate)) {
    793 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
    794 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
    795 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
    796 		return badrate | IEEE80211_RATE_BASIC;
    797 	} else
    798 		return IEEE80211_RV(okrate);
    799 }
    800 
    801 /*
    802  * Reset 11g-related state.
    803  */
    804 void
    805 ieee80211_reset_erp(struct ieee80211com *ic)
    806 {
    807 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
    808 	ic->ic_nonerpsta = 0;
    809 	ic->ic_longslotsta = 0;
    810 	/*
    811 	 * Short slot time is enabled only when operating in 11g
    812 	 * and not in an IBSS.  We must also honor whether or not
    813 	 * the driver is capable of doing it.
    814 	 */
    815 	ieee80211_set_shortslottime(ic,
    816 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    817 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
    818 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
    819 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
    820 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
    821 	/*
    822 	 * Set short preamble and ERP barker-preamble flags.
    823 	 */
    824 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
    825 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
    826 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
    827 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
    828 	} else {
    829 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
    830 		ic->ic_flags |= IEEE80211_F_USEBARKER;
    831 	}
    832 }
    833 
    834 /*
    835  * Set the short slot time state and notify the driver.
    836  */
    837 void
    838 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
    839 {
    840 	if (onoff)
    841 		ic->ic_flags |= IEEE80211_F_SHSLOT;
    842 	else
    843 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
    844 	/* notify driver */
    845 	if (ic->ic_updateslot != NULL)
    846 		ic->ic_updateslot(ic);
    847 }
    848 
    849 /*
    850  * Check if the specified rate set supports ERP.
    851  * NB: the rate set is assumed to be sorted.
    852  */
    853 int
    854 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
    855 {
    856 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
    857 	int i, j;
    858 
    859 	if (rs->rs_nrates < nitems(rates))
    860 		return 0;
    861 	for (i = 0; i < nitems(rates); i++) {
    862 		for (j = 0; j < rs->rs_nrates; j++) {
    863 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
    864 			if (rates[i] == r)
    865 				goto next;
    866 			if (r > rates[i])
    867 				return 0;
    868 		}
    869 		return 0;
    870 	next:
    871 		;
    872 	}
    873 	return 1;
    874 }
    875 
    876 /*
    877  * Mark the basic rates for the rate table based on the
    878  * operating mode.  For real 11g we mark all the 11b rates
    879  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
    880  * 11b rates.  There's also a pseudo 11a-mode used to mark only
    881  * the basic OFDM rates.
    882  */
    883 static void
    884 setbasicrates(struct ieee80211_rateset *rs,
    885     enum ieee80211_phymode mode, int add)
    886 {
    887 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
    888 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
    889 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
    890 					    /* NB: mixed b/g */
    891 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
    892 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
    893 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
    894 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
    895 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
    896 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
    897 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
    898 					    /* NB: mixed b/g */
    899 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
    900 					    /* NB: mixed b/g */
    901 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
    902 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
    903 	};
    904 	int i, j;
    905 
    906 	for (i = 0; i < rs->rs_nrates; i++) {
    907 		if (!add)
    908 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
    909 		for (j = 0; j < basic[mode].rs_nrates; j++)
    910 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
    911 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
    912 				break;
    913 			}
    914 	}
    915 }
    916 
    917 /*
    918  * Set the basic rates in a rate set.
    919  */
    920 void
    921 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
    922     enum ieee80211_phymode mode)
    923 {
    924 	setbasicrates(rs, mode, 0);
    925 }
    926 
    927 /*
    928  * Add basic rates to a rate set.
    929  */
    930 void
    931 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
    932     enum ieee80211_phymode mode)
    933 {
    934 	setbasicrates(rs, mode, 1);
    935 }
    936 
    937 /*
    938  * WME protocol support.
    939  *
    940  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
    941  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
    942  * Draft 2.0 Test Plan (Appendix D).
    943  *
    944  * Static/Dynamic Turbo mode settings come from Atheros.
    945  */
    946 typedef struct phyParamType {
    947 	uint8_t		aifsn;
    948 	uint8_t		logcwmin;
    949 	uint8_t		logcwmax;
    950 	uint16_t	txopLimit;
    951 	uint8_t 	acm;
    952 } paramType;
    953 
    954 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
    955 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
    956 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
    957 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
    958 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
    959 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
    960 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
    961 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
    962 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
    963 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
    964 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
    965 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
    966 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
    967 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
    968 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
    969 };
    970 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
    971 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
    972 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
    973 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
    974 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
    975 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
    976 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
    977 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
    978 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
    979 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
    980 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
    981 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
    982 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
    983 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
    984 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
    985 };
    986 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
    987 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
    988 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
    989 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
    990 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
    991 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
    992 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
    993 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
    994 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
    995 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
    996 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
    997 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
    998 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
    999 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
   1000 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
   1001 };
   1002 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
   1003 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
   1004 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
   1005 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
   1006 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
   1007 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
   1008 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
   1009 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
   1010 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
   1011 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
   1012 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
   1013 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
   1014 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
   1015 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
   1016 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
   1017 };
   1018 
   1019 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
   1020 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
   1021 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
   1022 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
   1023 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
   1024 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
   1025 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
   1026 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
   1027 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
   1028 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
   1029 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
   1030 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
   1031 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
   1032 };
   1033 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
   1034 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
   1035 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
   1036 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
   1037 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
   1038 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
   1039 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
   1040 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
   1041 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
   1042 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
   1043 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
   1044 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
   1045 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
   1046 };
   1047 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
   1048 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
   1049 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
   1050 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
   1051 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
   1052 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
   1053 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
   1054 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
   1055 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
   1056 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
   1057 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
   1058 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
   1059 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
   1060 };
   1061 
   1062 static void
   1063 _setifsparams(struct wmeParams *wmep, const paramType *phy)
   1064 {
   1065 	wmep->wmep_aifsn = phy->aifsn;
   1066 	wmep->wmep_logcwmin = phy->logcwmin;
   1067 	wmep->wmep_logcwmax = phy->logcwmax;
   1068 	wmep->wmep_txopLimit = phy->txopLimit;
   1069 }
   1070 
   1071 static void
   1072 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
   1073 	struct wmeParams *wmep, const paramType *phy)
   1074 {
   1075 	wmep->wmep_acm = phy->acm;
   1076 	_setifsparams(wmep, phy);
   1077 
   1078 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1079 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
   1080 	    ieee80211_wme_acnames[ac], type,
   1081 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
   1082 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
   1083 }
   1084 
   1085 static void
   1086 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
   1087 {
   1088 	struct ieee80211com *ic = vap->iv_ic;
   1089 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1090 	const paramType *pPhyParam, *pBssPhyParam;
   1091 	struct wmeParams *wmep;
   1092 	enum ieee80211_phymode mode;
   1093 	int i;
   1094 
   1095 	IEEE80211_LOCK_ASSERT(ic);
   1096 
   1097 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
   1098 		return;
   1099 
   1100 	/*
   1101 	 * Clear the wme cap_info field so a qoscount from a previous
   1102 	 * vap doesn't confuse later code which only parses the beacon
   1103 	 * field and updates hardware when said field changes.
   1104 	 * Otherwise the hardware is programmed with defaults, not what
   1105 	 * the beacon actually announces.
   1106 	 */
   1107 	wme->wme_wmeChanParams.cap_info = 0;
   1108 
   1109 	/*
   1110 	 * Select mode; we can be called early in which case we
   1111 	 * always use auto mode.  We know we'll be called when
   1112 	 * entering the RUN state with bsschan setup properly
   1113 	 * so state will eventually get set correctly
   1114 	 */
   1115 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1116 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1117 	else
   1118 		mode = IEEE80211_MODE_AUTO;
   1119 	for (i = 0; i < WME_NUM_AC; i++) {
   1120 		switch (i) {
   1121 		case WME_AC_BK:
   1122 			pPhyParam = &phyParamForAC_BK[mode];
   1123 			pBssPhyParam = &phyParamForAC_BK[mode];
   1124 			break;
   1125 		case WME_AC_VI:
   1126 			pPhyParam = &phyParamForAC_VI[mode];
   1127 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
   1128 			break;
   1129 		case WME_AC_VO:
   1130 			pPhyParam = &phyParamForAC_VO[mode];
   1131 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
   1132 			break;
   1133 		case WME_AC_BE:
   1134 		default:
   1135 			pPhyParam = &phyParamForAC_BE[mode];
   1136 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
   1137 			break;
   1138 		}
   1139 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1140 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1141 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
   1142 		} else {
   1143 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
   1144 		}
   1145 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1146 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
   1147 	}
   1148 	/* NB: check ic_bss to avoid NULL deref on initial attach */
   1149 	if (vap->iv_bss != NULL) {
   1150 		/*
   1151 		 * Calculate aggressive mode switching threshold based
   1152 		 * on beacon interval.  This doesn't need locking since
   1153 		 * we're only called before entering the RUN state at
   1154 		 * which point we start sending beacon frames.
   1155 		 */
   1156 		wme->wme_hipri_switch_thresh =
   1157 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
   1158 		wme->wme_flags &= ~WME_F_AGGRMODE;
   1159 		ieee80211_wme_updateparams(vap);
   1160 	}
   1161 }
   1162 
   1163 void
   1164 ieee80211_wme_initparams(struct ieee80211vap *vap)
   1165 {
   1166 	struct ieee80211com *ic = vap->iv_ic;
   1167 
   1168 	IEEE80211_LOCK(ic);
   1169 	ieee80211_wme_initparams_locked(vap);
   1170 	IEEE80211_UNLOCK(ic);
   1171 }
   1172 
   1173 /*
   1174  * Update WME parameters for ourself and the BSS.
   1175  */
   1176 void
   1177 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
   1178 {
   1179 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
   1180 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
   1181 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
   1182 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
   1183 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
   1184 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
   1185 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
   1186 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
   1187 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
   1188 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
   1189 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
   1190 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1191 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1192 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1193 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
   1194 	};
   1195 	struct ieee80211com *ic = vap->iv_ic;
   1196 	struct ieee80211_wme_state *wme = &ic->ic_wme;
   1197 	const struct wmeParams *wmep;
   1198 	struct wmeParams *chanp, *bssp;
   1199 	enum ieee80211_phymode mode;
   1200 	int i;
   1201 	int do_aggrmode = 0;
   1202 
   1203        	/*
   1204 	 * Set up the channel access parameters for the physical
   1205 	 * device.  First populate the configured settings.
   1206 	 */
   1207 	for (i = 0; i < WME_NUM_AC; i++) {
   1208 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
   1209 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
   1210 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1211 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1212 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1213 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1214 
   1215 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
   1216 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
   1217 		chanp->wmep_aifsn = wmep->wmep_aifsn;
   1218 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
   1219 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
   1220 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
   1221 	}
   1222 
   1223 	/*
   1224 	 * Select mode; we can be called early in which case we
   1225 	 * always use auto mode.  We know we'll be called when
   1226 	 * entering the RUN state with bsschan setup properly
   1227 	 * so state will eventually get set correctly
   1228 	 */
   1229 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
   1230 		mode = ieee80211_chan2mode(ic->ic_bsschan);
   1231 	else
   1232 		mode = IEEE80211_MODE_AUTO;
   1233 
   1234 	/*
   1235 	 * This implements aggressive mode as found in certain
   1236 	 * vendors' AP's.  When there is significant high
   1237 	 * priority (VI/VO) traffic in the BSS throttle back BE
   1238 	 * traffic by using conservative parameters.  Otherwise
   1239 	 * BE uses aggressive params to optimize performance of
   1240 	 * legacy/non-QoS traffic.
   1241 	 */
   1242 
   1243 	/* Hostap? Only if aggressive mode is enabled */
   1244         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1245 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
   1246 		do_aggrmode = 1;
   1247 
   1248 	/*
   1249 	 * Station? Only if we're in a non-QoS BSS.
   1250 	 */
   1251 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
   1252 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
   1253 		do_aggrmode = 1;
   1254 
   1255 	/*
   1256 	 * IBSS? Only if we we have WME enabled.
   1257 	 */
   1258 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
   1259 	    (vap->iv_flags & IEEE80211_F_WME))
   1260 		do_aggrmode = 1;
   1261 
   1262 	/*
   1263 	 * If WME is disabled on this VAP, default to aggressive mode
   1264 	 * regardless of the configuration.
   1265 	 */
   1266 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
   1267 		do_aggrmode = 1;
   1268 
   1269 	/* XXX WDS? */
   1270 
   1271 	/* XXX MBSS? */
   1272 
   1273 	if (do_aggrmode) {
   1274 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1275 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1276 
   1277 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
   1278 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
   1279 		    aggrParam[mode].logcwmin;
   1280 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
   1281 		    aggrParam[mode].logcwmax;
   1282 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
   1283 		    (vap->iv_flags & IEEE80211_F_BURST) ?
   1284 			aggrParam[mode].txopLimit : 0;
   1285 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1286 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
   1287 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
   1288 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
   1289 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
   1290 	}
   1291 
   1292 
   1293 	/*
   1294 	 * Change the contention window based on the number of associated
   1295 	 * stations.  If the number of associated stations is 1 and
   1296 	 * aggressive mode is enabled, lower the contention window even
   1297 	 * further.
   1298 	 */
   1299 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1300 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
   1301 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
   1302 		    [IEEE80211_MODE_AUTO]	= 3,
   1303 		    [IEEE80211_MODE_11A]	= 3,
   1304 		    [IEEE80211_MODE_11B]	= 4,
   1305 		    [IEEE80211_MODE_11G]	= 3,
   1306 		    [IEEE80211_MODE_FH]		= 4,
   1307 		    [IEEE80211_MODE_TURBO_A]	= 3,
   1308 		    [IEEE80211_MODE_TURBO_G]	= 3,
   1309 		    [IEEE80211_MODE_STURBO_A]	= 3,
   1310 		    [IEEE80211_MODE_HALF]	= 3,
   1311 		    [IEEE80211_MODE_QUARTER]	= 3,
   1312 		    [IEEE80211_MODE_11NA]	= 3,
   1313 		    [IEEE80211_MODE_11NG]	= 3,
   1314 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
   1315 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
   1316 		};
   1317 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
   1318 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
   1319 
   1320 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
   1321 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1322 		    "update %s (chan+bss) logcwmin %u\n",
   1323 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
   1324 	}
   1325 
   1326 	/*
   1327 	 * Arrange for the beacon update.
   1328 	 *
   1329 	 * XXX what about MBSS, WDS?
   1330 	 */
   1331 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
   1332 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
   1333 		/*
   1334 		 * Arrange for a beacon update and bump the parameter
   1335 		 * set number so associated stations load the new values.
   1336 		 */
   1337 		wme->wme_bssChanParams.cap_info =
   1338 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
   1339 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
   1340 	}
   1341 
   1342 	/* schedule the deferred WME update */
   1343 	ieee80211_runtask(ic, &vap->iv_wme_task);
   1344 
   1345 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
   1346 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
   1347 	    vap->iv_opmode == IEEE80211_M_STA ?
   1348 		wme->wme_wmeChanParams.cap_info :
   1349 		wme->wme_bssChanParams.cap_info);
   1350 }
   1351 
   1352 void
   1353 ieee80211_wme_updateparams(struct ieee80211vap *vap)
   1354 {
   1355 	struct ieee80211com *ic = vap->iv_ic;
   1356 
   1357 	if (ic->ic_caps & IEEE80211_C_WME) {
   1358 		IEEE80211_LOCK(ic);
   1359 		ieee80211_wme_updateparams_locked(vap);
   1360 		IEEE80211_UNLOCK(ic);
   1361 	}
   1362 }
   1363 
   1364 /*
   1365  * Fetch the WME parameters for the given VAP.
   1366  *
   1367  * When net80211 grows p2p, etc support, this may return different
   1368  * parameters for each VAP.
   1369  */
   1370 void
   1371 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
   1372 {
   1373 
   1374 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
   1375 }
   1376 
   1377 /*
   1378  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
   1379  * there may be different VAP WME parameters but only one is "active".
   1380  * This returns the "NIC" WME parameters for the currently active
   1381  * context.
   1382  */
   1383 void
   1384 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
   1385 {
   1386 
   1387 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
   1388 }
   1389 
   1390 /*
   1391  * Return whether to use QoS on a given WME queue.
   1392  *
   1393  * This is intended to be called from the transmit path of softmac drivers
   1394  * which are setting NoAck bits in transmit descriptors.
   1395  *
   1396  * Ideally this would be set in some transmit field before the packet is
   1397  * queued to the driver but net80211 isn't quite there yet.
   1398  */
   1399 int
   1400 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
   1401 {
   1402 	/* Bounds/sanity check */
   1403 	if (ac < 0 || ac >= WME_NUM_AC)
   1404 		return (0);
   1405 
   1406 	/* Again, there's only one global context for now */
   1407 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
   1408 }
   1409 
   1410 static void
   1411 parent_updown(void *arg, int npending)
   1412 {
   1413 	struct ieee80211com *ic = arg;
   1414 
   1415 	printf ("parent_updown called on %s!\n", ic->ic_name);
   1416 	// ic->ic_parent(ic);
   1417 }
   1418 
   1419 static void
   1420 update_mcast(void *arg, int npending)
   1421 {
   1422 	struct ieee80211com *ic = arg;
   1423 
   1424 	ic->ic_update_mcast(ic);
   1425 }
   1426 
   1427 static void
   1428 update_promisc(void *arg, int npending)
   1429 {
   1430 	struct ieee80211com *ic = arg;
   1431 
   1432 	ic->ic_update_promisc(ic);
   1433 }
   1434 
   1435 static void
   1436 update_channel(void *arg, int npending)
   1437 {
   1438 	struct ieee80211com *ic = arg;
   1439 
   1440 	ic->ic_set_channel(ic);
   1441 	ieee80211_radiotap_chan_change(ic);
   1442 }
   1443 
   1444 static void
   1445 update_chw(void *arg, int npending)
   1446 {
   1447 	struct ieee80211com *ic = arg;
   1448 
   1449 	/*
   1450 	 * XXX should we defer the channel width _config_ update until now?
   1451 	 */
   1452 	ic->ic_update_chw(ic);
   1453 }
   1454 
   1455 /*
   1456  * Deferred WME update.
   1457  *
   1458  * In preparation for per-VAP WME configuration, call the VAP
   1459  * method if the VAP requires it.  Otherwise, just call the
   1460  * older global method.  There isn't a per-VAP WME configuration
   1461  * just yet so for now just use the global configuration.
   1462  */
   1463 static void
   1464 vap_update_wme(void *arg, int npending)
   1465 {
   1466 	struct ieee80211vap *vap = arg;
   1467 	struct ieee80211com *ic = vap->iv_ic;
   1468 
   1469 	if (vap->iv_wme_update != NULL)
   1470 		vap->iv_wme_update(vap,
   1471 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
   1472 	else
   1473 		ic->ic_wme.wme_update(ic);
   1474 }
   1475 
   1476 static void
   1477 restart_vaps(void *arg, int npending)
   1478 {
   1479 	struct ieee80211com *ic = arg;
   1480 
   1481 	ieee80211_suspend_all(ic);
   1482 	ieee80211_resume_all(ic);
   1483 }
   1484 
   1485 /*
   1486  * Block until the parent is in a known state.  This is
   1487  * used after any operations that dispatch a task (e.g.
   1488  * to auto-configure the parent device up/down).
   1489  */
   1490 void
   1491 ieee80211_waitfor_parent(struct ieee80211com *ic)
   1492 {
   1493 	taskqueue_block(ic->ic_tq);
   1494 	ieee80211_draintask(ic, &ic->ic_parent_task);
   1495 	ieee80211_draintask(ic, &ic->ic_mcast_task);
   1496 	ieee80211_draintask(ic, &ic->ic_promisc_task);
   1497 	ieee80211_draintask(ic, &ic->ic_chan_task);
   1498 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
   1499 	ieee80211_draintask(ic, &ic->ic_chw_task);
   1500 	taskqueue_unblock(ic->ic_tq);
   1501 }
   1502 
   1503 /*
   1504  * Check to see whether the current channel needs reset.
   1505  *
   1506  * Some devices don't handle being given an invalid channel
   1507  * in their operating mode very well (eg wpi(4) will throw a
   1508  * firmware exception.)
   1509  *
   1510  * Return 0 if we're ok, 1 if the channel needs to be reset.
   1511  *
   1512  * See PR kern/202502.
   1513  */
   1514 static int
   1515 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
   1516 {
   1517 	struct ieee80211com *ic = vap->iv_ic;
   1518 
   1519 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
   1520 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
   1521 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   1522 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
   1523 		return (1);
   1524 	return (0);
   1525 }
   1526 
   1527 /*
   1528  * Reset the curchan to a known good state.
   1529  */
   1530 static void
   1531 ieee80211_start_reset_chan(struct ieee80211vap *vap)
   1532 {
   1533 	struct ieee80211com *ic = vap->iv_ic;
   1534 
   1535 	ic->ic_curchan = &ic->ic_channels[0];
   1536 }
   1537 
   1538 /*
   1539  * Start a vap running.  If this is the first vap to be
   1540  * set running on the underlying device then we
   1541  * automatically bring the device up.
   1542  */
   1543 void
   1544 ieee80211_start_locked(struct ieee80211vap *vap)
   1545 {
   1546 	struct ifnet *ifp = vap->iv_ifp;
   1547 	struct ieee80211com *ic = vap->iv_ic;
   1548 
   1549 	IEEE80211_LOCK_ASSERT(ic);
   1550 
   1551 	IEEE80211_DPRINTF(vap,
   1552 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1553 		"start running, %d vaps running\n", ic->ic_nrunning);
   1554 
   1555         printf ("returning from start_locked too soon.\n");
   1556         return;
   1557 
   1558 #if __FreeBSD__
   1559 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
   1560 #elif __NetBSD__
   1561 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1562 #endif
   1563 		/*
   1564 		 * Mark us running.  Note that it's ok to do this first;
   1565 		 * if we need to bring the parent device up we defer that
   1566 		 * to avoid dropping the com lock.  We expect the device
   1567 		 * to respond to being marked up by calling back into us
   1568 		 * through ieee80211_start_all at which point we'll come
   1569 		 * back in here and complete the work.
   1570 		 */
   1571 #if __FreeBSD__
   1572 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
   1573 #elif __NetBSD__
   1574 		ifp->if_flags |= IFF_RUNNING;
   1575 #endif
   1576 		/*
   1577 		 * We are not running; if this we are the first vap
   1578 		 * to be brought up auto-up the parent if necessary.
   1579 		 */
   1580 		if (ic->ic_nrunning++ == 0) {
   1581 			printf ("   calling start_check_reset_chan\n");
   1582 			/* reset the channel to a known good channel */
   1583 			if (ieee80211_start_check_reset_chan(vap))
   1584 				ieee80211_start_reset_chan(vap);
   1585 
   1586 			IEEE80211_DPRINTF(vap,
   1587 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1588 			    "%s: up parent %s\n", __func__, ic->ic_name);
   1589 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1590 			return;
   1591 		}
   1592 	}
   1593 	/*
   1594 	 * If the parent is up and running, then kick the
   1595 	 * 802.11 state machine as appropriate.
   1596 	 */
   1597 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
   1598 		if (vap->iv_opmode == IEEE80211_M_STA) {
   1599 #if 0
   1600 			/* XXX bypasses scan too easily; disable for now */
   1601 			/*
   1602 			 * Try to be intelligent about clocking the state
   1603 			 * machine.  If we're currently in RUN state then
   1604 			 * we should be able to apply any new state/parameters
   1605 			 * simply by re-associating.  Otherwise we need to
   1606 			 * re-scan to select an appropriate ap.
   1607 			 */
   1608 			if (vap->iv_state >= IEEE80211_S_RUN)
   1609 				ieee80211_new_state_locked(vap,
   1610 				    IEEE80211_S_ASSOC, 1);
   1611 			else
   1612 #endif
   1613 				ieee80211_new_state_locked(vap,
   1614 				    IEEE80211_S_SCAN, 0);
   1615 		} else {
   1616 			printf ("   first vap??? \n");
   1617 			/*
   1618 			 * For monitor+wds mode there's nothing to do but
   1619 			 * start running.  Otherwise if this is the first
   1620 			 * vap to be brought up, start a scan which may be
   1621 			 * preempted if the station is locked to a particular
   1622 			 * channel.
   1623 			 */
   1624 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
   1625 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
   1626 			    vap->iv_opmode == IEEE80211_M_WDS)
   1627 				ieee80211_new_state_locked(vap,
   1628 				    IEEE80211_S_RUN, -1);
   1629 			else
   1630 				ieee80211_new_state_locked(vap,
   1631 				    IEEE80211_S_SCAN, 0);
   1632 		}
   1633 	}
   1634 }
   1635 
   1636 /*
   1637  * Start a single vap.
   1638  */
   1639 #if __FreeBSD__
   1640 void
   1641 ieee80211_init(void *arg)
   1642 {
   1643 	struct ieee80211vap *vap = arg;
   1644 
   1645 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1646 	    "%s\n", __func__);
   1647 
   1648 	IEEE80211_LOCK(vap->iv_ic);
   1649 	ieee80211_start_locked(vap);
   1650 	IEEE80211_UNLOCK(vap->iv_ic);
   1651 }
   1652 #elif __NetBSD__
   1653 int
   1654 ieee80211_init(struct ifnet *ifp)
   1655 {
   1656 	struct ieee80211vap *vap = ifp->if_softc;
   1657 	static ONCE_DECL(ieee80211_init_once);
   1658 
   1659 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1660 	    "%s\n", __func__);
   1661 
   1662 	RUN_ONCE(&ieee80211_init_once, ieee80211_init0);
   1663 
   1664 	IEEE80211_LOCK(vap->iv_ic);
   1665 	ieee80211_start_locked(vap);
   1666 	IEEE80211_UNLOCK(vap->iv_ic);
   1667 	return 0;
   1668 }
   1669 #endif
   1670 
   1671 /*
   1672  * Start all runnable vap's on a device.
   1673  */
   1674 void
   1675 ieee80211_start_all(struct ieee80211com *ic)
   1676 {
   1677 	struct ieee80211vap *vap;
   1678 
   1679 	IEEE80211_LOCK(ic);
   1680 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1681 		struct ifnet *ifp = vap->iv_ifp;
   1682 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1683 			ieee80211_start_locked(vap);
   1684 	}
   1685 	IEEE80211_UNLOCK(ic);
   1686 }
   1687 
   1688 /*
   1689  * Stop a vap.  We force it down using the state machine
   1690  * then mark it's ifnet not running.  If this is the last
   1691  * vap running on the underlying device then we close it
   1692  * too to insure it will be properly initialized when the
   1693  * next vap is brought up.
   1694  */
   1695 void
   1696 ieee80211_stop_locked(struct ieee80211vap *vap)
   1697 {
   1698 	struct ieee80211com *ic = vap->iv_ic;
   1699 	struct ifnet *ifp = vap->iv_ifp;
   1700 
   1701 	IEEE80211_LOCK_ASSERT(ic);
   1702 
   1703 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1704 	    "stop running, %d vaps running\n", ic->ic_nrunning);
   1705 
   1706 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
   1707 #if __FreeBSD__
   1708 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
   1709 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
   1710 #elif __NetBSD__
   1711 	if (ifp->if_flags & IFF_RUNNING) {
   1712 		ifp->if_flags &= ~IFF_RUNNING;	/* mark us stopped */
   1713 #endif
   1714 		if (--ic->ic_nrunning == 0) {
   1715 			IEEE80211_DPRINTF(vap,
   1716 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
   1717 			    "down parent %s\n", ic->ic_name);
   1718 			ieee80211_runtask(ic, &ic->ic_parent_task);
   1719 		}
   1720 	}
   1721 }
   1722 
   1723 void
   1724 ieee80211_stop(struct ieee80211vap *vap)
   1725 {
   1726 	struct ieee80211com *ic = vap->iv_ic;
   1727 
   1728 	IEEE80211_LOCK(ic);
   1729 	ieee80211_stop_locked(vap);
   1730 	IEEE80211_UNLOCK(ic);
   1731 }
   1732 
   1733 /*
   1734  * Stop all vap's running on a device.
   1735  */
   1736 void
   1737 ieee80211_stop_all(struct ieee80211com *ic)
   1738 {
   1739 	struct ieee80211vap *vap;
   1740 
   1741 	IEEE80211_LOCK(ic);
   1742 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1743 		struct ifnet *ifp = vap->iv_ifp;
   1744 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
   1745 			ieee80211_stop_locked(vap);
   1746 	}
   1747 	IEEE80211_UNLOCK(ic);
   1748 
   1749 	ieee80211_waitfor_parent(ic);
   1750 }
   1751 
   1752 /*
   1753  * Stop all vap's running on a device and arrange
   1754  * for those that were running to be resumed.
   1755  */
   1756 void
   1757 ieee80211_suspend_all(struct ieee80211com *ic)
   1758 {
   1759 	struct ieee80211vap *vap;
   1760 
   1761 	IEEE80211_LOCK(ic);
   1762 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1763 		struct ifnet *ifp = vap->iv_ifp;
   1764 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
   1765 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
   1766 			ieee80211_stop_locked(vap);
   1767 		}
   1768 	}
   1769 	IEEE80211_UNLOCK(ic);
   1770 
   1771 	ieee80211_waitfor_parent(ic);
   1772 }
   1773 
   1774 /*
   1775  * Start all vap's marked for resume.
   1776  */
   1777 void
   1778 ieee80211_resume_all(struct ieee80211com *ic)
   1779 {
   1780 	struct ieee80211vap *vap;
   1781 
   1782 	IEEE80211_LOCK(ic);
   1783 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1784 		struct ifnet *ifp = vap->iv_ifp;
   1785 		if (!IFNET_IS_UP_RUNNING(ifp) &&
   1786 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
   1787 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
   1788 			ieee80211_start_locked(vap);
   1789 		}
   1790 	}
   1791 	IEEE80211_UNLOCK(ic);
   1792 }
   1793 
   1794 /*
   1795  * Restart all vap's running on a device.
   1796  */
   1797 void
   1798 ieee80211_restart_all(struct ieee80211com *ic)
   1799 {
   1800 	/*
   1801 	 * NB: do not use ieee80211_runtask here, we will
   1802 	 * block & drain net80211 taskqueue.
   1803 	 */
   1804 #if __FreeBSD__
   1805 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
   1806 #elif __NetBSD__
   1807 	printf ("ieee80211_restart_all called .... should add code.\n");
   1808 #endif
   1809 }
   1810 
   1811 void
   1812 ieee80211_beacon_miss(struct ieee80211com *ic)
   1813 {
   1814 	IEEE80211_LOCK(ic);
   1815 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
   1816 		/* Process in a taskq, the handler may reenter the driver */
   1817 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
   1818 	}
   1819 	IEEE80211_UNLOCK(ic);
   1820 }
   1821 
   1822 static void
   1823 beacon_miss(void *arg, int npending)
   1824 {
   1825 	struct ieee80211com *ic = arg;
   1826 	struct ieee80211vap *vap;
   1827 
   1828 	IEEE80211_LOCK(ic);
   1829 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1830 		/*
   1831 		 * We only pass events through for sta vap's in RUN+ state;
   1832 		 * may be too restrictive but for now this saves all the
   1833 		 * handlers duplicating these checks.
   1834 		 */
   1835 		if (vap->iv_opmode == IEEE80211_M_STA &&
   1836 		    vap->iv_state >= IEEE80211_S_RUN &&
   1837 		    vap->iv_bmiss != NULL)
   1838 			vap->iv_bmiss(vap);
   1839 	}
   1840 	IEEE80211_UNLOCK(ic);
   1841 }
   1842 
   1843 static void
   1844 beacon_swmiss(void *arg, int npending)
   1845 {
   1846 	struct ieee80211vap *vap = arg;
   1847 	struct ieee80211com *ic = vap->iv_ic;
   1848 
   1849 	IEEE80211_LOCK(ic);
   1850 	if (vap->iv_state >= IEEE80211_S_RUN) {
   1851 		/* XXX Call multiple times if npending > zero? */
   1852 		vap->iv_bmiss(vap);
   1853 	}
   1854 	IEEE80211_UNLOCK(ic);
   1855 }
   1856 
   1857 /*
   1858  * Software beacon miss handling.  Check if any beacons
   1859  * were received in the last period.  If not post a
   1860  * beacon miss; otherwise reset the counter.
   1861  */
   1862 void
   1863 ieee80211_swbmiss(void *arg)
   1864 {
   1865 	struct ieee80211vap *vap = arg;
   1866 	struct ieee80211com *ic = vap->iv_ic;
   1867 
   1868 	IEEE80211_LOCK_ASSERT(ic);
   1869 
   1870 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
   1871 	    ("wrong state %d", vap->iv_state));
   1872 
   1873 	if (ic->ic_flags & IEEE80211_F_SCAN) {
   1874 		/*
   1875 		 * If scanning just ignore and reset state.  If we get a
   1876 		 * bmiss after coming out of scan because we haven't had
   1877 		 * time to receive a beacon then we should probe the AP
   1878 		 * before posting a real bmiss (unless iv_bmiss_max has
   1879 		 * been artifiically lowered).  A cleaner solution might
   1880 		 * be to disable the timer on scan start/end but to handle
   1881 		 * case of multiple sta vap's we'd need to disable the
   1882 		 * timers of all affected vap's.
   1883 		 */
   1884 		vap->iv_swbmiss_count = 0;
   1885 	} else if (vap->iv_swbmiss_count == 0) {
   1886 		if (vap->iv_bmiss != NULL)
   1887 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
   1888 	} else
   1889 		vap->iv_swbmiss_count = 0;
   1890 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
   1891 		ieee80211_swbmiss, vap);
   1892 }
   1893 
   1894 /*
   1895  * Start an 802.11h channel switch.  We record the parameters,
   1896  * mark the operation pending, notify each vap through the
   1897  * beacon update mechanism so it can update the beacon frame
   1898  * contents, and then switch vap's to CSA state to block outbound
   1899  * traffic.  Devices that handle CSA directly can use the state
   1900  * switch to do the right thing so long as they call
   1901  * ieee80211_csa_completeswitch when it's time to complete the
   1902  * channel change.  Devices that depend on the net80211 layer can
   1903  * use ieee80211_beacon_update to handle the countdown and the
   1904  * channel switch.
   1905  */
   1906 void
   1907 ieee80211_csa_startswitch(struct ieee80211com *ic,
   1908 	struct ieee80211_channel *c, int mode, int count)
   1909 {
   1910 	struct ieee80211vap *vap;
   1911 
   1912 	IEEE80211_LOCK_ASSERT(ic);
   1913 
   1914 	ic->ic_csa_newchan = c;
   1915 	ic->ic_csa_mode = mode;
   1916 	ic->ic_csa_count = count;
   1917 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
   1918 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   1919 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
   1920 		    vap->iv_opmode == IEEE80211_M_IBSS ||
   1921 		    vap->iv_opmode == IEEE80211_M_MBSS)
   1922 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
   1923 		/* switch to CSA state to block outbound traffic */
   1924 		if (vap->iv_state == IEEE80211_S_RUN)
   1925 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
   1926 	}
   1927 	ieee80211_notify_csa(ic, c, mode, count);
   1928 }
   1929 
   1930 /*
   1931  * Complete the channel switch by transitioning all CSA VAPs to RUN.
   1932  * This is called by both the completion and cancellation functions
   1933  * so each VAP is placed back in the RUN state and can thus transmit.
   1934  */
   1935 static void
   1936 csa_completeswitch(struct ieee80211com *ic)
   1937 {
   1938 	struct ieee80211vap *vap;
   1939 
   1940 	ic->ic_csa_newchan = NULL;
   1941 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
   1942 
   1943 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1944 		if (vap->iv_state == IEEE80211_S_CSA)
   1945 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   1946 }
   1947 
   1948 /*
   1949  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
   1950  * We clear state and move all vap's in CSA state to RUN state
   1951  * so they can again transmit.
   1952  *
   1953  * Although this may not be completely correct, update the BSS channel
   1954  * for each VAP to the newly configured channel. The setcurchan sets
   1955  * the current operating channel for the interface (so the radio does
   1956  * switch over) but the VAP BSS isn't updated, leading to incorrectly
   1957  * reported information via ioctl.
   1958  */
   1959 void
   1960 ieee80211_csa_completeswitch(struct ieee80211com *ic)
   1961 {
   1962 	struct ieee80211vap *vap;
   1963 
   1964 	IEEE80211_LOCK_ASSERT(ic);
   1965 
   1966 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
   1967 
   1968 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
   1969 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   1970 		if (vap->iv_state == IEEE80211_S_CSA)
   1971 			vap->iv_bss->ni_chan = ic->ic_curchan;
   1972 
   1973 	csa_completeswitch(ic);
   1974 }
   1975 
   1976 /*
   1977  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
   1978  * We clear state and move all vap's in CSA state to RUN state
   1979  * so they can again transmit.
   1980  */
   1981 void
   1982 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
   1983 {
   1984 	IEEE80211_LOCK_ASSERT(ic);
   1985 
   1986 	csa_completeswitch(ic);
   1987 }
   1988 
   1989 /*
   1990  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
   1991  * We clear state and move all vap's in CAC state to RUN state.
   1992  */
   1993 void
   1994 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
   1995 {
   1996 	struct ieee80211com *ic = vap0->iv_ic;
   1997 	struct ieee80211vap *vap;
   1998 
   1999 	IEEE80211_LOCK(ic);
   2000 	/*
   2001 	 * Complete CAC state change for lead vap first; then
   2002 	 * clock all the other vap's waiting.
   2003 	 */
   2004 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
   2005 	    ("wrong state %d", vap0->iv_state));
   2006 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
   2007 
   2008 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
   2009 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
   2010 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
   2011 	IEEE80211_UNLOCK(ic);
   2012 }
   2013 
   2014 /*
   2015  * Force all vap's other than the specified vap to the INIT state
   2016  * and mark them as waiting for a scan to complete.  These vaps
   2017  * will be brought up when the scan completes and the scanning vap
   2018  * reaches RUN state by wakeupwaiting.
   2019  */
   2020 static void
   2021 markwaiting(struct ieee80211vap *vap0)
   2022 {
   2023 	struct ieee80211com *ic = vap0->iv_ic;
   2024 	struct ieee80211vap *vap;
   2025 
   2026 	IEEE80211_LOCK_ASSERT(ic);
   2027 
   2028 	/*
   2029 	 * A vap list entry can not disappear since we are running on the
   2030 	 * taskqueue and a vap destroy will queue and drain another state
   2031 	 * change task.
   2032 	 */
   2033 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   2034 		if (vap == vap0)
   2035 			continue;
   2036 		if (vap->iv_state != IEEE80211_S_INIT) {
   2037 			/* NB: iv_newstate may drop the lock */
   2038 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
   2039 			IEEE80211_LOCK_ASSERT(ic);
   2040 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2041 		}
   2042 	}
   2043 }
   2044 
   2045 /*
   2046  * Wakeup all vap's waiting for a scan to complete.  This is the
   2047  * companion to markwaiting (above) and is used to coordinate
   2048  * multiple vaps scanning.
   2049  * This is called from the state taskqueue.
   2050  */
   2051 static void
   2052 wakeupwaiting(struct ieee80211vap *vap0)
   2053 {
   2054 	struct ieee80211com *ic = vap0->iv_ic;
   2055 	struct ieee80211vap *vap;
   2056 
   2057 	IEEE80211_LOCK_ASSERT(ic);
   2058 
   2059 	/*
   2060 	 * A vap list entry can not disappear since we are running on the
   2061 	 * taskqueue and a vap destroy will queue and drain another state
   2062 	 * change task.
   2063 	 */
   2064 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
   2065 		if (vap == vap0)
   2066 			continue;
   2067 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
   2068 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   2069 			/* NB: sta's cannot go INIT->RUN */
   2070 			/* NB: iv_newstate may drop the lock */
   2071 			vap->iv_newstate(vap,
   2072 			    vap->iv_opmode == IEEE80211_M_STA ?
   2073 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
   2074 			IEEE80211_LOCK_ASSERT(ic);
   2075 		}
   2076 	}
   2077 }
   2078 
   2079 /*
   2080  * Handle post state change work common to all operating modes.
   2081  */
   2082 static void
   2083 ieee80211_newstate_cb(void *xvap, int npending)
   2084 {
   2085 	struct ieee80211vap *vap = xvap;
   2086 	struct ieee80211com *ic = vap->iv_ic;
   2087 	enum ieee80211_state nstate, ostate;
   2088 	int arg, rc;
   2089 
   2090 	IEEE80211_LOCK(ic);
   2091 	nstate = vap->iv_nstate;
   2092 	arg = vap->iv_nstate_arg;
   2093 
   2094 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
   2095 		/*
   2096 		 * We have been requested to drop back to the INIT before
   2097 		 * proceeding to the new state.
   2098 		 */
   2099 		/* Deny any state changes while we are here. */
   2100 		vap->iv_nstate = IEEE80211_S_INIT;
   2101 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2102 		    "%s: %s -> %s arg %d\n", __func__,
   2103 		    ieee80211_state_name[vap->iv_state],
   2104 		    ieee80211_state_name[vap->iv_nstate], arg);
   2105 		vap->iv_newstate(vap, vap->iv_nstate, 0);
   2106 		IEEE80211_LOCK_ASSERT(ic);
   2107 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
   2108 		    IEEE80211_FEXT_STATEWAIT);
   2109 		/* enqueue new state transition after cancel_scan() task */
   2110 		ieee80211_new_state_locked(vap, nstate, arg);
   2111 		goto done;
   2112 	}
   2113 
   2114 	ostate = vap->iv_state;
   2115 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
   2116 		/*
   2117 		 * SCAN was forced; e.g. on beacon miss.  Force other running
   2118 		 * vap's to INIT state and mark them as waiting for the scan to
   2119 		 * complete.  This insures they don't interfere with our
   2120 		 * scanning.  Since we are single threaded the vaps can not
   2121 		 * transition again while we are executing.
   2122 		 *
   2123 		 * XXX not always right, assumes ap follows sta
   2124 		 */
   2125 		markwaiting(vap);
   2126 	}
   2127 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2128 	    "%s: %s -> %s arg %d\n", __func__,
   2129 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
   2130 
   2131 	rc = vap->iv_newstate(vap, nstate, arg);
   2132 	IEEE80211_LOCK_ASSERT(ic);
   2133 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
   2134 	if (rc != 0) {
   2135 		/* State transition failed */
   2136 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
   2137 		KASSERT(nstate != IEEE80211_S_INIT,
   2138 		    ("INIT state change failed"));
   2139 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2140 		    "%s: %s returned error %d\n", __func__,
   2141 		    ieee80211_state_name[nstate], rc);
   2142 		goto done;
   2143 	}
   2144 
   2145 	/* No actual transition, skip post processing */
   2146 	if (ostate == nstate)
   2147 		goto done;
   2148 
   2149 	if (nstate == IEEE80211_S_RUN) {
   2150 		/*
   2151 		 * OACTIVE may be set on the vap if the upper layer
   2152 		 * tried to transmit (e.g. IPv6 NDP) before we reach
   2153 		 * RUN state.  Clear it and restart xmit.
   2154 		 *
   2155 		 * Note this can also happen as a result of SLEEP->RUN
   2156 		 * (i.e. coming out of power save mode).
   2157 		 */
   2158 #if __FreeBSD__
   2159 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   2160 #elif __NetBSD__
   2161 		vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
   2162 #endif
   2163 
   2164 		/*
   2165 		 * XXX TODO Kick-start a VAP queue - this should be a method!
   2166 		 */
   2167 
   2168 		/* bring up any vaps waiting on us */
   2169 		wakeupwaiting(vap);
   2170 	} else if (nstate == IEEE80211_S_INIT) {
   2171 		/*
   2172 		 * Flush the scan cache if we did the last scan (XXX?)
   2173 		 * and flush any frames on send queues from this vap.
   2174 		 * Note the mgt q is used only for legacy drivers and
   2175 		 * will go away shortly.
   2176 		 */
   2177 		ieee80211_scan_flush(vap);
   2178 
   2179 		/*
   2180 		 * XXX TODO: ic/vap queue flush
   2181 		 */
   2182 	}
   2183 done:
   2184 	IEEE80211_UNLOCK(ic);
   2185 }
   2186 
   2187 /*
   2188  * Public interface for initiating a state machine change.
   2189  * This routine single-threads the request and coordinates
   2190  * the scheduling of multiple vaps for the purpose of selecting
   2191  * an operating channel.  Specifically the following scenarios
   2192  * are handled:
   2193  * o only one vap can be selecting a channel so on transition to
   2194  *   SCAN state if another vap is already scanning then
   2195  *   mark the caller for later processing and return without
   2196  *   doing anything (XXX? expectations by caller of synchronous operation)
   2197  * o only one vap can be doing CAC of a channel so on transition to
   2198  *   CAC state if another vap is already scanning for radar then
   2199  *   mark the caller for later processing and return without
   2200  *   doing anything (XXX? expectations by caller of synchronous operation)
   2201  * o if another vap is already running when a request is made
   2202  *   to SCAN then an operating channel has been chosen; bypass
   2203  *   the scan and just join the channel
   2204  *
   2205  * Note that the state change call is done through the iv_newstate
   2206  * method pointer so any driver routine gets invoked.  The driver
   2207  * will normally call back into operating mode-specific
   2208  * ieee80211_newstate routines (below) unless it needs to completely
   2209  * bypass the state machine (e.g. because the firmware has it's
   2210  * own idea how things should work).  Bypassing the net80211 layer
   2211  * is usually a mistake and indicates lack of proper integration
   2212  * with the net80211 layer.
   2213  */
   2214 int
   2215 ieee80211_new_state_locked(struct ieee80211vap *vap,
   2216 	enum ieee80211_state nstate, int arg)
   2217 {
   2218 	struct ieee80211com *ic = vap->iv_ic;
   2219 	struct ieee80211vap *vp;
   2220 	enum ieee80211_state ostate;
   2221 	int nrunning, nscanning;
   2222 
   2223 	IEEE80211_LOCK_ASSERT(ic);
   2224 
   2225 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
   2226 		if (vap->iv_nstate == IEEE80211_S_INIT ||
   2227 		    ((vap->iv_state == IEEE80211_S_INIT ||
   2228 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
   2229 		    vap->iv_nstate == IEEE80211_S_SCAN &&
   2230 		    nstate > IEEE80211_S_SCAN)) {
   2231 			/*
   2232 			 * XXX The vap is being stopped/started,
   2233 			 * do not allow any other state changes
   2234 			 * until this is completed.
   2235 			 */
   2236 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2237 			    "%s: %s -> %s (%s) transition discarded\n",
   2238 			    __func__,
   2239 			    ieee80211_state_name[vap->iv_state],
   2240 			    ieee80211_state_name[nstate],
   2241 			    ieee80211_state_name[vap->iv_nstate]);
   2242 			return -1;
   2243 		} else if (vap->iv_state != vap->iv_nstate) {
   2244 #if 0
   2245 			/* Warn if the previous state hasn't completed. */
   2246 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2247 			    "%s: pending %s -> %s transition lost\n", __func__,
   2248 			    ieee80211_state_name[vap->iv_state],
   2249 			    ieee80211_state_name[vap->iv_nstate]);
   2250 #else
   2251 			/* XXX temporarily enable to identify issues */
   2252 			if_printf(vap->iv_ifp,
   2253 			    "%s: pending %s -> %s transition lost\n",
   2254 			    __func__, ieee80211_state_name[vap->iv_state],
   2255 			    ieee80211_state_name[vap->iv_nstate]);
   2256 #endif
   2257 		}
   2258 	}
   2259 
   2260 	nrunning = nscanning = 0;
   2261 	/* XXX can track this state instead of calculating */
   2262 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
   2263 		if (vp != vap) {
   2264 			if (vp->iv_state >= IEEE80211_S_RUN)
   2265 				nrunning++;
   2266 			/* XXX doesn't handle bg scan */
   2267 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
   2268 			else if (vp->iv_state > IEEE80211_S_INIT)
   2269 				nscanning++;
   2270 		}
   2271 	}
   2272 	ostate = vap->iv_state;
   2273 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2274 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
   2275 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
   2276 	    nrunning, nscanning);
   2277 	switch (nstate) {
   2278 	case IEEE80211_S_SCAN:
   2279 		if (ostate == IEEE80211_S_INIT) {
   2280 			/*
   2281 			 * INIT -> SCAN happens on initial bringup.
   2282 			 */
   2283 			KASSERT(!(nscanning && nrunning),
   2284 			    ("%d scanning and %d running", nscanning, nrunning));
   2285 			if (nscanning) {
   2286 				/*
   2287 				 * Someone is scanning, defer our state
   2288 				 * change until the work has completed.
   2289 				 */
   2290 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2291 				    "%s: defer %s -> %s\n",
   2292 				    __func__, ieee80211_state_name[ostate],
   2293 				    ieee80211_state_name[nstate]);
   2294 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2295 				return 0;
   2296 			}
   2297 			if (nrunning) {
   2298 				/*
   2299 				 * Someone is operating; just join the channel
   2300 				 * they have chosen.
   2301 				 */
   2302 				/* XXX kill arg? */
   2303 				/* XXX check each opmode, adhoc? */
   2304 				if (vap->iv_opmode == IEEE80211_M_STA)
   2305 					nstate = IEEE80211_S_SCAN;
   2306 				else
   2307 					nstate = IEEE80211_S_RUN;
   2308 #ifdef IEEE80211_DEBUG
   2309 				if (nstate != IEEE80211_S_SCAN) {
   2310 					IEEE80211_DPRINTF(vap,
   2311 					    IEEE80211_MSG_STATE,
   2312 					    "%s: override, now %s -> %s\n",
   2313 					    __func__,
   2314 					    ieee80211_state_name[ostate],
   2315 					    ieee80211_state_name[nstate]);
   2316 				}
   2317 #endif
   2318 			}
   2319 		}
   2320 		break;
   2321 	case IEEE80211_S_RUN:
   2322 		if (vap->iv_opmode == IEEE80211_M_WDS &&
   2323 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
   2324 		    nscanning) {
   2325 			/*
   2326 			 * Legacy WDS with someone else scanning; don't
   2327 			 * go online until that completes as we should
   2328 			 * follow the other vap to the channel they choose.
   2329 			 */
   2330 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2331 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
   2332 			     ieee80211_state_name[ostate],
   2333 			     ieee80211_state_name[nstate]);
   2334 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
   2335 			return 0;
   2336 		}
   2337 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
   2338 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
   2339 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
   2340 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
   2341 			/*
   2342 			 * This is a DFS channel, transition to CAC state
   2343 			 * instead of RUN.  This allows us to initiate
   2344 			 * Channel Availability Check (CAC) as specified
   2345 			 * by 11h/DFS.
   2346 			 */
   2347 			nstate = IEEE80211_S_CAC;
   2348 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
   2349 			     "%s: override %s -> %s (DFS)\n", __func__,
   2350 			     ieee80211_state_name[ostate],
   2351 			     ieee80211_state_name[nstate]);
   2352 		}
   2353 		break;
   2354 	case IEEE80211_S_INIT:
   2355 		/* cancel any scan in progress */
   2356 		ieee80211_cancel_scan(vap);
   2357 		if (ostate == IEEE80211_S_INIT ) {
   2358 			/* XXX don't believe this */
   2359 			/* INIT -> INIT. nothing to do */
   2360 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
   2361 		}
   2362 		/* fall thru... */
   2363 	default:
   2364 		break;
   2365 	}
   2366 	/* defer the state change to a thread */
   2367 	vap->iv_nstate = nstate;
   2368 	vap->iv_nstate_arg = arg;
   2369 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
   2370 	ieee80211_runtask(ic, &vap->iv_nstate_task);
   2371 	return EINPROGRESS;
   2372 }
   2373 
   2374 int
   2375 ieee80211_new_state(struct ieee80211vap *vap,
   2376 	enum ieee80211_state nstate, int arg)
   2377 {
   2378 	struct ieee80211com *ic = vap->iv_ic;
   2379 	int rc;
   2380 
   2381 	IEEE80211_LOCK(ic);
   2382 	rc = ieee80211_new_state_locked(vap, nstate, arg);
   2383 	IEEE80211_UNLOCK(ic);
   2384 	return rc;
   2385 }
   2386