ieee80211_proto.c revision 1.34.14.8 1 /* $NetBSD: ieee80211_proto.c,v 1.34.14.8 2019/06/10 22:09:46 christos Exp $ */
2
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2001 Atsushi Onoe
7 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
8 * Copyright (c) 2012 IEEE
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef __NetBSD__
34 __KERNEL_RCSID(0, "$NetBSD: ieee80211_proto.c,v 1.34.14.8 2019/06/10 22:09:46 christos Exp $");
35 #endif
36
37 /*
38 * IEEE 802.11 protocol support.
39 */
40
41 #ifdef _KERNEL_OPT
42 #include "opt_inet.h"
43 #include "opt_wlan.h"
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #ifdef __NetBSD__
51 #include <sys/mbuf.h>
52 #include <sys/once.h>
53 #endif
54
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57
58 #include <net/if.h>
59 #if __FreeBSD__
60 #include <net/if_var.h>
61 #endif
62 #include <net/if_media.h>
63 #if __FreeBSD__
64 #include <net/ethernet.h> /* XXX for ether_sprintf */
65 #endif
66 #ifdef __NetBSD__
67 #include <net/if_ether.h>
68 #include <net/route.h>
69 #endif
70
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_adhoc.h>
73 #include <net80211/ieee80211_sta.h>
74 #include <net80211/ieee80211_hostap.h>
75 #include <net80211/ieee80211_wds.h>
76 #ifdef IEEE80211_SUPPORT_MESH
77 #include <net80211/ieee80211_mesh.h>
78 #endif
79 #include <net80211/ieee80211_monitor.h>
80 #include <net80211/ieee80211_input.h>
81
82 #ifdef __NetBSD__
83 #undef KASSERT
84 #define KASSERT(__cond, __complaint) FBSDKASSERT(__cond, __complaint)
85 #endif
86
87 #if __NetBSD__
88 extern const struct ieee80211_authenticator auth_xauth;
89 #endif
90
91 /* XXX tunables */
92 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
93 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
94
95 const char *mgt_subtype_name[] = {
96 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
97 "probe_req", "probe_resp", "timing_adv", "reserved#7",
98 "beacon", "atim", "disassoc", "auth",
99 "deauth", "action", "action_noack", "reserved#15"
100 };
101 const char *ctl_subtype_name[] = {
102 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
103 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
104 "bar", "ba", "ps_poll", "rts",
105 "cts", "ack", "cf_end", "cf_end_ack"
106 };
107 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
108 "IBSS", /* IEEE80211_M_IBSS */
109 "STA", /* IEEE80211_M_STA */
110 "WDS", /* IEEE80211_M_WDS */
111 "AHDEMO", /* IEEE80211_M_AHDEMO */
112 "HOSTAP", /* IEEE80211_M_HOSTAP */
113 "MONITOR", /* IEEE80211_M_MONITOR */
114 "MBSS" /* IEEE80211_M_MBSS */
115 };
116 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
117 "INIT", /* IEEE80211_S_INIT */
118 "SCAN", /* IEEE80211_S_SCAN */
119 "AUTH", /* IEEE80211_S_AUTH */
120 "ASSOC", /* IEEE80211_S_ASSOC */
121 "CAC", /* IEEE80211_S_CAC */
122 "RUN", /* IEEE80211_S_RUN */
123 "CSA", /* IEEE80211_S_CSA */
124 "SLEEP", /* IEEE80211_S_SLEEP */
125 };
126 const char *ieee80211_wme_acnames[] = {
127 "WME_AC_BE",
128 "WME_AC_BK",
129 "WME_AC_VI",
130 "WME_AC_VO",
131 "WME_UPSD",
132 };
133
134
135 /*
136 * Reason code descriptions were (mostly) obtained from
137 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
138 */
139 const char *
140 ieee80211_reason_to_string(uint16_t reason)
141 {
142 switch (reason) {
143 case IEEE80211_REASON_UNSPECIFIED:
144 return ("unspecified");
145 case IEEE80211_REASON_AUTH_EXPIRE:
146 return ("previous authentication is expired");
147 case IEEE80211_REASON_AUTH_LEAVE:
148 return ("sending STA is leaving/has left IBSS or ESS");
149 case IEEE80211_REASON_ASSOC_EXPIRE:
150 return ("disassociated due to inactivity");
151 case IEEE80211_REASON_ASSOC_TOOMANY:
152 return ("too many associated STAs");
153 case IEEE80211_REASON_NOT_AUTHED:
154 return ("class 2 frame received from nonauthenticated STA");
155 case IEEE80211_REASON_NOT_ASSOCED:
156 return ("class 3 frame received from nonassociated STA");
157 case IEEE80211_REASON_ASSOC_LEAVE:
158 return ("sending STA is leaving/has left BSS");
159 case IEEE80211_REASON_ASSOC_NOT_AUTHED:
160 return ("STA requesting (re)association is not authenticated");
161 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
162 return ("information in the Power Capability element is "
163 "unacceptable");
164 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
165 return ("information in the Supported Channels element is "
166 "unacceptable");
167 case IEEE80211_REASON_IE_INVALID:
168 return ("invalid element");
169 case IEEE80211_REASON_MIC_FAILURE:
170 return ("MIC failure");
171 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
172 return ("4-Way handshake timeout");
173 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
174 return ("group key update timeout");
175 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
176 return ("element in 4-Way handshake different from "
177 "(re)association request/probe response/beacon frame");
178 case IEEE80211_REASON_GROUP_CIPHER_INVALID:
179 return ("invalid group cipher");
180 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
181 return ("invalid pairwise cipher");
182 case IEEE80211_REASON_AKMP_INVALID:
183 return ("invalid AKMP");
184 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
185 return ("unsupported version in RSN IE");
186 case IEEE80211_REASON_INVALID_RSN_IE_CAP:
187 return ("invalid capabilities in RSN IE");
188 case IEEE80211_REASON_802_1X_AUTH_FAILED:
189 return ("IEEE 802.1X authentication failed");
190 case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
191 return ("cipher suite rejected because of the security "
192 "policy");
193 case IEEE80211_REASON_UNSPECIFIED_QOS:
194 return ("unspecified (QoS-related)");
195 case IEEE80211_REASON_INSUFFICIENT_BW:
196 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
197 case IEEE80211_REASON_TOOMANY_FRAMES:
198 return ("too many frames need to be acknowledged");
199 case IEEE80211_REASON_OUTSIDE_TXOP:
200 return ("STA is transmitting outside the limits of its TXOPs");
201 case IEEE80211_REASON_LEAVING_QBSS:
202 return ("requested from peer STA (the STA is "
203 "resetting/leaving the BSS)");
204 case IEEE80211_REASON_BAD_MECHANISM:
205 return ("requested from peer STA (it does not want to use "
206 "the mechanism)");
207 case IEEE80211_REASON_SETUP_NEEDED:
208 return ("requested from peer STA (setup is required for the "
209 "used mechanism)");
210 case IEEE80211_REASON_TIMEOUT:
211 return ("requested from peer STA (timeout)");
212 case IEEE80211_REASON_PEER_LINK_CANCELED:
213 return ("SME cancels the mesh peering instance (not related "
214 "to the maximum number of peer mesh STAs)");
215 case IEEE80211_REASON_MESH_MAX_PEERS:
216 return ("maximum number of peer mesh STAs was reached");
217 case IEEE80211_REASON_MESH_CPVIOLATION:
218 return ("the received information violates the Mesh "
219 "Configuration policy configured in the mesh STA "
220 "profile");
221 case IEEE80211_REASON_MESH_CLOSE_RCVD:
222 return ("the mesh STA has received a Mesh Peering Close "
223 "message requesting to close the mesh peering");
224 case IEEE80211_REASON_MESH_MAX_RETRIES:
225 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
226 "Peering Open messages, without receiving a Mesh "
227 "Peering Confirm message");
228 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
229 return ("the confirmTimer for the mesh peering instance times "
230 "out");
231 case IEEE80211_REASON_MESH_INVALID_GTK:
232 return ("the mesh STA fails to unwrap the GTK or the values "
233 "in the wrapped contents do not match");
234 case IEEE80211_REASON_MESH_INCONS_PARAMS:
235 return ("the mesh STA receives inconsistent information about "
236 "the mesh parameters between Mesh Peering Management "
237 "frames");
238 case IEEE80211_REASON_MESH_INVALID_SECURITY:
239 return ("the mesh STA fails the authenticated mesh peering "
240 "exchange because due to failure in selecting "
241 "pairwise/group ciphersuite");
242 case IEEE80211_REASON_MESH_PERR_NO_PROXY:
243 return ("the mesh STA does not have proxy information for "
244 "this external destination");
245 case IEEE80211_REASON_MESH_PERR_NO_FI:
246 return ("the mesh STA does not have forwarding information "
247 "for this destination");
248 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
249 return ("the mesh STA determines that the link to the next "
250 "hop of an active path in its forwarding information "
251 "is no longer usable");
252 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
253 return ("the MAC address of the STA already exists in the "
254 "mesh BSS");
255 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
256 return ("the mesh STA performs channel switch to meet "
257 "regulatory requirements");
258 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
259 return ("the mesh STA performs channel switch with "
260 "unspecified reason");
261 default:
262 return ("reserved/unknown");
263 }
264 }
265
266 static void beacon_miss(void *, int);
267 static void beacon_swmiss(void *, int);
268 static void parent_updown(void *, int);
269 static void update_mcast(void *, int);
270 static void update_promisc(void *, int);
271 static void update_channel(void *, int);
272 static void update_chw(void *, int);
273 static void vap_update_wme(void *, int);
274 static void restart_vaps(void *, int);
275 static void ieee80211_newstate_cb(void *, int);
276
277 static int
278 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
279 const struct ieee80211_bpf_params *params)
280 {
281
282 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
283 m_freem(m);
284 return ENETDOWN;
285 }
286
287 void
288 ieee80211_proto_attach(struct ieee80211com *ic)
289 {
290 uint8_t hdrlen;
291
292 printf ("i33380211_proto_attach called\n"); /* NNN debug */
293
294 /* override the 802.3 setting */
295 hdrlen = ic->ic_headroom
296 + sizeof(struct ieee80211_qosframe_addr4)
297 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
298 + IEEE80211_WEP_EXTIVLEN;
299 /* XXX no way to recalculate on ifdetach */
300 if (ALIGN(hdrlen) > max_linkhdr) {
301 /* XXX sanity check... */
302 max_linkhdr = ALIGN(hdrlen);
303 max_hdr = max_linkhdr + max_protohdr;
304 max_datalen = MHLEN - max_hdr;
305 }
306 ic->ic_protmode = IEEE80211_PROT_CTSONLY;
307
308 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
309 printf ("parent task: t_work.wk_dummy 0x%lx, t_func 0x%lx t_arg 0x%lx\n",
310 (long)(ic->ic_parent_task.t_work.wk_dummy),
311 (long)(ic->ic_parent_task.t_func),
312 (long)(ic->ic_parent_task.t_arg));
313 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
314 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
315 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
316 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
317 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
318 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
319
320 ic->ic_wme.wme_hipri_switch_hysteresis =
321 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
322
323 /* initialize management frame handlers */
324 ic->ic_send_mgmt = ieee80211_send_mgmt;
325 ic->ic_raw_xmit = null_raw_xmit;
326
327 ieee80211_adhoc_attach(ic);
328 ieee80211_sta_attach(ic);
329 ieee80211_wds_attach(ic);
330 ieee80211_hostap_attach(ic);
331 #ifdef IEEE80211_SUPPORT_MESH
332 ieee80211_mesh_attach(ic);
333 #endif
334 ieee80211_monitor_attach(ic);
335 }
336
337 void
338 ieee80211_proto_detach(struct ieee80211com *ic)
339 {
340 ieee80211_monitor_detach(ic);
341 #ifdef IEEE80211_SUPPORT_MESH
342 ieee80211_mesh_detach(ic);
343 #endif
344 ieee80211_hostap_detach(ic);
345 ieee80211_wds_detach(ic);
346 ieee80211_adhoc_detach(ic);
347 ieee80211_sta_detach(ic);
348 }
349
350 static void
351 null_update_beacon(struct ieee80211vap *vap, int item)
352 {
353 }
354
355 void
356 ieee80211_proto_vattach(struct ieee80211vap *vap)
357 {
358 struct ieee80211com *ic = vap->iv_ic;
359 struct ifnet *ifp = vap->iv_ifp;
360 int i;
361
362 /* override the 802.3 setting */
363 ifp->if_hdrlen = ic->ic_headroom
364 + sizeof(struct ieee80211_qosframe_addr4)
365 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
366 + IEEE80211_WEP_EXTIVLEN;
367
368 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
369 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
370 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
371 #if __FreeBSD__
372 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
373 callout_init(&vap->iv_mgtsend, 1);
374 #elif __NetBSD__
375 /* NNN need to do something with iv_swbmiss ... */
376 callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
377 callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
378 #endif
379 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
380 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
381 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
382
383 /*
384 * Install default tx rate handling: no fixed rate, lowest
385 * supported rate for mgmt and multicast frames. Default
386 * max retry count. These settings can be changed by the
387 * driver and/or user applications.
388 */
389 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
390 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
391
392 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
393
394 /*
395 * Setting the management rate to MCS 0 assumes that the
396 * BSS Basic rate set is empty and the BSS Basic MCS set
397 * is not.
398 *
399 * Since we're not checking this, default to the lowest
400 * defined rate for this mode.
401 *
402 * At least one 11n AP (DLINK DIR-825) is reported to drop
403 * some MCS management traffic (eg BA response frames.)
404 *
405 * See also: 9.6.0 of the 802.11n-2009 specification.
406 */
407 #ifdef NOTYET
408 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
409 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
410 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
411 } else {
412 vap->iv_txparms[i].mgmtrate =
413 rs->rs_rates[0] & IEEE80211_RATE_VAL;
414 vap->iv_txparms[i].mcastrate =
415 rs->rs_rates[0] & IEEE80211_RATE_VAL;
416 }
417 #endif
418 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
419 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
420 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
421 }
422 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
423
424 vap->iv_update_beacon = null_update_beacon;
425 vap->iv_deliver_data = ieee80211_deliver_data;
426
427 /* attach support for operating mode */
428 ic->ic_vattach[vap->iv_opmode](vap);
429 }
430
431 void
432 ieee80211_proto_vdetach(struct ieee80211vap *vap)
433 {
434 #define FREEAPPIE(ie) do { \
435 if (ie != NULL) \
436 IEEE80211_FREE(ie, M_80211_NODE_IE); \
437 } while (0)
438 /*
439 * Detach operating mode module.
440 */
441 if (vap->iv_opdetach != NULL)
442 vap->iv_opdetach(vap);
443 /*
444 * This should not be needed as we detach when reseting
445 * the state but be conservative here since the
446 * authenticator may do things like spawn kernel threads.
447 */
448 if (vap->iv_auth->ia_detach != NULL)
449 vap->iv_auth->ia_detach(vap);
450 /*
451 * Detach any ACL'ator.
452 */
453 if (vap->iv_acl != NULL)
454 vap->iv_acl->iac_detach(vap);
455
456 FREEAPPIE(vap->iv_appie_beacon);
457 FREEAPPIE(vap->iv_appie_probereq);
458 FREEAPPIE(vap->iv_appie_proberesp);
459 FREEAPPIE(vap->iv_appie_assocreq);
460 FREEAPPIE(vap->iv_appie_assocresp);
461 FREEAPPIE(vap->iv_appie_wpa);
462 #undef FREEAPPIE
463 }
464
465 /*
466 * Simple-minded authenticator module support.
467 */
468
469 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
470 /* XXX well-known names */
471 #if __FreeBSD__
472 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
473 "wlan_internal", /* IEEE80211_AUTH_NONE */
474 "wlan_internal", /* IEEE80211_AUTH_OPEN */
475 "wlan_internal", /* IEEE80211_AUTH_SHARED */
476 "wlan_xauth", /* IEEE80211_AUTH_8021X */
477 "wlan_internal", /* IEEE80211_AUTH_AUTO */
478 "wlan_xauth", /* IEEE80211_AUTH_WPA */
479 };
480 #endif
481
482 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
483
484 static const struct ieee80211_authenticator auth_internal = {
485 .ia_name = "wlan_internal",
486 .ia_attach = NULL,
487 .ia_detach = NULL,
488 .ia_node_join = NULL,
489 .ia_node_leave = NULL,
490 };
491
492
493 /*
494 * Setup internal authenticators once; they are never unregistered.
495 */
496 #if __FreeBSD__
497 static void
498 #elif __NetBSD__
499 void
500 #endif
501 ieee80211_auth_setup(void)
502 {
503 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
504 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
505 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
506 #if __NetBSD__
507 ieee80211_authenticator_register(IEEE80211_AUTH_8021X, &auth_xauth);
508 ieee80211_authenticator_register(IEEE80211_AUTH_WPA, &auth_xauth);
509 #endif
510 }
511 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
512
513 const struct ieee80211_authenticator *
514 ieee80211_authenticator_get(int auth)
515 {
516 if (auth >= IEEE80211_AUTH_MAX)
517 return NULL;
518 #if __FreeBSD__
519 if (authenticators[auth] == NULL)
520 ieee80211_load_module(auth_modnames[auth]);
521 #endif
522 return authenticators[auth];
523 }
524
525 void
526 ieee80211_authenticator_register(int type,
527 const struct ieee80211_authenticator *auth)
528 {
529 if (type >= IEEE80211_AUTH_MAX)
530 return;
531 authenticators[type] = auth;
532 }
533
534 void
535 ieee80211_authenticator_unregister(int type)
536 {
537
538 if (type >= IEEE80211_AUTH_MAX)
539 return;
540 authenticators[type] = NULL;
541 }
542
543 /*
544 * Very simple-minded ACL module support.
545 */
546 /* XXX just one for now */
547 static const struct ieee80211_aclator *acl = NULL;
548
549 void
550 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
551 {
552 printf("wlan: %s acl policy registered\n", iac->iac_name);
553 acl = iac;
554 }
555
556 void
557 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
558 {
559 if (acl == iac)
560 acl = NULL;
561 printf("wlan: %s acl policy unregistered\n", iac->iac_name);
562 }
563
564 const struct ieee80211_aclator *
565 ieee80211_aclator_get(const char *name)
566 {
567 #if __FreeBSD__
568 if (acl == NULL)
569 ieee80211_load_module("wlan_acl");
570 #endif
571 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
572 }
573
574 void
575 ieee80211_print_essid(const uint8_t *essid, int len)
576 {
577 const uint8_t *p;
578 int i;
579
580 if (len > IEEE80211_NWID_LEN)
581 len = IEEE80211_NWID_LEN;
582 /* determine printable or not */
583 for (i = 0, p = essid; i < len; i++, p++) {
584 if (*p < ' ' || *p > 0x7e)
585 break;
586 }
587 if (i == len) {
588 printf("\"");
589 for (i = 0, p = essid; i < len; i++, p++)
590 printf("%c", *p);
591 printf("\"");
592 } else {
593 printf("0x");
594 for (i = 0, p = essid; i < len; i++, p++)
595 printf("%02x", *p);
596 }
597 }
598
599 void
600 ieee80211_dump_pkt(struct ieee80211com *ic,
601 const uint8_t *buf, int len, int rate, int rssi)
602 {
603 const struct ieee80211_frame *wh;
604 int i;
605
606 wh = (const struct ieee80211_frame *)buf;
607 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
608 case IEEE80211_FC1_DIR_NODS:
609 printf("NODS %s", ether_sprintf(wh->i_addr2));
610 printf("->%s", ether_sprintf(wh->i_addr1));
611 printf("(%s)", ether_sprintf(wh->i_addr3));
612 break;
613 case IEEE80211_FC1_DIR_TODS:
614 printf("TODS %s", ether_sprintf(wh->i_addr2));
615 printf("->%s", ether_sprintf(wh->i_addr3));
616 printf("(%s)", ether_sprintf(wh->i_addr1));
617 break;
618 case IEEE80211_FC1_DIR_FROMDS:
619 printf("FRDS %s", ether_sprintf(wh->i_addr3));
620 printf("->%s", ether_sprintf(wh->i_addr1));
621 printf("(%s)", ether_sprintf(wh->i_addr2));
622 break;
623 case IEEE80211_FC1_DIR_DSTODS:
624 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
625 printf("->%s", ether_sprintf(wh->i_addr3));
626 printf("(%s", ether_sprintf(wh->i_addr2));
627 printf("->%s)", ether_sprintf(wh->i_addr1));
628 break;
629 }
630 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
631 case IEEE80211_FC0_TYPE_DATA:
632 printf(" data");
633 break;
634 case IEEE80211_FC0_TYPE_MGT:
635 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
636 break;
637 default:
638 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
639 break;
640 }
641 if (IEEE80211_QOS_HAS_SEQ(wh)) {
642 const struct ieee80211_qosframe *qwh =
643 (const struct ieee80211_qosframe *)buf;
644 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
645 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
646 }
647 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
648 int off;
649
650 off = ieee80211_anyhdrspace(ic, wh);
651 printf(" WEP [IV %.02x %.02x %.02x",
652 buf[off+0], buf[off+1], buf[off+2]);
653 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
654 printf(" %.02x %.02x %.02x",
655 buf[off+4], buf[off+5], buf[off+6]);
656 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
657 }
658 if (rate >= 0)
659 printf(" %dM", rate / 2);
660 if (rssi >= 0)
661 printf(" +%d", rssi);
662 printf("\n");
663 if (len > 0) {
664 for (i = 0; i < len; i++) {
665 if ((i & 1) == 0)
666 printf(" ");
667 printf("%02x", buf[i]);
668 }
669 printf("\n");
670 }
671 }
672
673 static __inline int
674 findrix(const struct ieee80211_rateset *rs, int r)
675 {
676 int i;
677
678 for (i = 0; i < rs->rs_nrates; i++)
679 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
680 return i;
681 return -1;
682 }
683
684 int
685 ieee80211_fix_rate(struct ieee80211_node *ni,
686 struct ieee80211_rateset *nrs, int flags)
687 {
688 struct ieee80211vap *vap = ni->ni_vap;
689 struct ieee80211com *ic = ni->ni_ic;
690 int i, j, rix, error;
691 int okrate, badrate, fixedrate, ucastrate;
692 const struct ieee80211_rateset *srs;
693 uint8_t r;
694
695 error = 0;
696 okrate = badrate = 0;
697 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
698 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
699 /*
700 * Workaround awkwardness with fixed rate. We are called
701 * to check both the legacy rate set and the HT rate set
702 * but we must apply any legacy fixed rate check only to the
703 * legacy rate set and vice versa. We cannot tell what type
704 * of rate set we've been given (legacy or HT) but we can
705 * distinguish the fixed rate type (MCS have 0x80 set).
706 * So to deal with this the caller communicates whether to
707 * check MCS or legacy rate using the flags and we use the
708 * type of any fixed rate to avoid applying an MCS to a
709 * legacy rate and vice versa.
710 */
711 if (ucastrate & 0x80) {
712 if (flags & IEEE80211_F_DOFRATE)
713 flags &= ~IEEE80211_F_DOFRATE;
714 } else if ((ucastrate & 0x80) == 0) {
715 if (flags & IEEE80211_F_DOFMCS)
716 flags &= ~IEEE80211_F_DOFMCS;
717 }
718 /* NB: required to make MCS match below work */
719 ucastrate &= IEEE80211_RATE_VAL;
720 }
721 fixedrate = IEEE80211_FIXED_RATE_NONE;
722 /*
723 * XXX we are called to process both MCS and legacy rates;
724 * we must use the appropriate basic rate set or chaos will
725 * ensue; for now callers that want MCS must supply
726 * IEEE80211_F_DOBRS; at some point we'll need to split this
727 * function so there are two variants, one for MCS and one
728 * for legacy rates.
729 */
730 if (flags & IEEE80211_F_DOBRS)
731 srs = (const struct ieee80211_rateset *)
732 ieee80211_get_suphtrates(ic, ni->ni_chan);
733 else
734 srs = ieee80211_get_suprates(ic, ni->ni_chan);
735 for (i = 0; i < nrs->rs_nrates; ) {
736 if (flags & IEEE80211_F_DOSORT) {
737 /*
738 * Sort rates.
739 */
740 for (j = i + 1; j < nrs->rs_nrates; j++) {
741 if (IEEE80211_RV(nrs->rs_rates[i]) >
742 IEEE80211_RV(nrs->rs_rates[j])) {
743 r = nrs->rs_rates[i];
744 nrs->rs_rates[i] = nrs->rs_rates[j];
745 nrs->rs_rates[j] = r;
746 }
747 }
748 }
749 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
750 badrate = r;
751 /*
752 * Check for fixed rate.
753 */
754 if (r == ucastrate)
755 fixedrate = r;
756 /*
757 * Check against supported rates.
758 */
759 rix = findrix(srs, r);
760 if (flags & IEEE80211_F_DONEGO) {
761 if (rix < 0) {
762 /*
763 * A rate in the node's rate set is not
764 * supported. If this is a basic rate and we
765 * are operating as a STA then this is an error.
766 * Otherwise we just discard/ignore the rate.
767 */
768 if ((flags & IEEE80211_F_JOIN) &&
769 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
770 error++;
771 } else if ((flags & IEEE80211_F_JOIN) == 0) {
772 /*
773 * Overwrite with the supported rate
774 * value so any basic rate bit is set.
775 */
776 nrs->rs_rates[i] = srs->rs_rates[rix];
777 }
778 }
779 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
780 /*
781 * Delete unacceptable rates.
782 */
783 nrs->rs_nrates--;
784 for (j = i; j < nrs->rs_nrates; j++)
785 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
786 nrs->rs_rates[j] = 0;
787 continue;
788 }
789 if (rix >= 0)
790 okrate = nrs->rs_rates[i];
791 i++;
792 }
793 if (okrate == 0 || error != 0 ||
794 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
795 fixedrate != ucastrate)) {
796 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
797 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
798 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
799 return badrate | IEEE80211_RATE_BASIC;
800 } else
801 return IEEE80211_RV(okrate);
802 }
803
804 /*
805 * Reset 11g-related state.
806 */
807 void
808 ieee80211_reset_erp(struct ieee80211com *ic)
809 {
810 ic->ic_flags &= ~IEEE80211_F_USEPROT;
811 ic->ic_nonerpsta = 0;
812 ic->ic_longslotsta = 0;
813 /*
814 * Short slot time is enabled only when operating in 11g
815 * and not in an IBSS. We must also honor whether or not
816 * the driver is capable of doing it.
817 */
818 ieee80211_set_shortslottime(ic,
819 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
820 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
821 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
822 ic->ic_opmode == IEEE80211_M_HOSTAP &&
823 (ic->ic_caps & IEEE80211_C_SHSLOT)));
824 /*
825 * Set short preamble and ERP barker-preamble flags.
826 */
827 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
828 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
829 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
830 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
831 } else {
832 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
833 ic->ic_flags |= IEEE80211_F_USEBARKER;
834 }
835 }
836
837 /*
838 * Set the short slot time state and notify the driver.
839 */
840 void
841 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
842 {
843 if (onoff)
844 ic->ic_flags |= IEEE80211_F_SHSLOT;
845 else
846 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
847 /* notify driver */
848 if (ic->ic_updateslot != NULL)
849 ic->ic_updateslot(ic);
850 }
851
852 /*
853 * Check if the specified rate set supports ERP.
854 * NB: the rate set is assumed to be sorted.
855 */
856 int
857 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
858 {
859 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
860 int i, j;
861
862 if (rs->rs_nrates < nitems(rates))
863 return 0;
864 for (i = 0; i < nitems(rates); i++) {
865 for (j = 0; j < rs->rs_nrates; j++) {
866 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
867 if (rates[i] == r)
868 goto next;
869 if (r > rates[i])
870 return 0;
871 }
872 return 0;
873 next:
874 ;
875 }
876 return 1;
877 }
878
879 /*
880 * Mark the basic rates for the rate table based on the
881 * operating mode. For real 11g we mark all the 11b rates
882 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
883 * 11b rates. There's also a pseudo 11a-mode used to mark only
884 * the basic OFDM rates.
885 */
886 static void
887 setbasicrates(struct ieee80211_rateset *rs,
888 enum ieee80211_phymode mode, int add)
889 {
890 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
891 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
892 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
893 /* NB: mixed b/g */
894 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
895 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
896 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
897 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
898 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
899 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
900 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
901 /* NB: mixed b/g */
902 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
903 /* NB: mixed b/g */
904 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
905 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
906 };
907 int i, j;
908
909 for (i = 0; i < rs->rs_nrates; i++) {
910 if (!add)
911 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
912 for (j = 0; j < basic[mode].rs_nrates; j++)
913 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
914 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
915 break;
916 }
917 }
918 }
919
920 /*
921 * Set the basic rates in a rate set.
922 */
923 void
924 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
925 enum ieee80211_phymode mode)
926 {
927 setbasicrates(rs, mode, 0);
928 }
929
930 /*
931 * Add basic rates to a rate set.
932 */
933 void
934 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
935 enum ieee80211_phymode mode)
936 {
937 setbasicrates(rs, mode, 1);
938 }
939
940 /*
941 * WME protocol support.
942 *
943 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
944 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
945 * Draft 2.0 Test Plan (Appendix D).
946 *
947 * Static/Dynamic Turbo mode settings come from Atheros.
948 */
949 typedef struct phyParamType {
950 uint8_t aifsn;
951 uint8_t logcwmin;
952 uint8_t logcwmax;
953 uint16_t txopLimit;
954 uint8_t acm;
955 } paramType;
956
957 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
958 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
959 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
960 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
961 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
962 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
963 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
964 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
965 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
966 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
967 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
968 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
969 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
970 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
971 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
972 };
973 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
974 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
975 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
976 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
977 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
978 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
979 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
980 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
981 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
982 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
983 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
984 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
985 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
986 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
987 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
988 };
989 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
990 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
991 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
992 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
993 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
994 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
995 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
996 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
997 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
998 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
999 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
1000 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
1001 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
1002 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
1003 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
1004 };
1005 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1006 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
1007 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
1008 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
1009 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
1010 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
1011 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1012 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1013 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1014 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
1015 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
1016 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
1017 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
1018 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
1019 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
1020 };
1021
1022 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1023 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
1024 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
1025 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
1026 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
1027 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
1028 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
1029 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
1030 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
1031 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
1032 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
1033 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
1034 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
1035 };
1036 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1037 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
1038 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
1039 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
1040 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
1041 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
1042 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
1043 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
1044 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
1045 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
1046 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
1047 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
1048 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
1049 };
1050 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1051 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
1052 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
1053 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
1054 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
1055 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
1056 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1057 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1058 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1059 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
1060 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
1061 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
1062 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
1063 };
1064
1065 static void
1066 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1067 {
1068 wmep->wmep_aifsn = phy->aifsn;
1069 wmep->wmep_logcwmin = phy->logcwmin;
1070 wmep->wmep_logcwmax = phy->logcwmax;
1071 wmep->wmep_txopLimit = phy->txopLimit;
1072 }
1073
1074 static void
1075 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1076 struct wmeParams *wmep, const paramType *phy)
1077 {
1078 wmep->wmep_acm = phy->acm;
1079 _setifsparams(wmep, phy);
1080
1081 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1082 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1083 ieee80211_wme_acnames[ac], type,
1084 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1085 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1086 }
1087
1088 static void
1089 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1090 {
1091 struct ieee80211com *ic = vap->iv_ic;
1092 struct ieee80211_wme_state *wme = &ic->ic_wme;
1093 const paramType *pPhyParam, *pBssPhyParam;
1094 struct wmeParams *wmep;
1095 enum ieee80211_phymode mode;
1096 int i;
1097
1098 IEEE80211_LOCK_ASSERT(ic);
1099
1100 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1101 return;
1102
1103 /*
1104 * Clear the wme cap_info field so a qoscount from a previous
1105 * vap doesn't confuse later code which only parses the beacon
1106 * field and updates hardware when said field changes.
1107 * Otherwise the hardware is programmed with defaults, not what
1108 * the beacon actually announces.
1109 */
1110 wme->wme_wmeChanParams.cap_info = 0;
1111
1112 /*
1113 * Select mode; we can be called early in which case we
1114 * always use auto mode. We know we'll be called when
1115 * entering the RUN state with bsschan setup properly
1116 * so state will eventually get set correctly
1117 */
1118 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1119 mode = ieee80211_chan2mode(ic->ic_bsschan);
1120 else
1121 mode = IEEE80211_MODE_AUTO;
1122 for (i = 0; i < WME_NUM_AC; i++) {
1123 switch (i) {
1124 case WME_AC_BK:
1125 pPhyParam = &phyParamForAC_BK[mode];
1126 pBssPhyParam = &phyParamForAC_BK[mode];
1127 break;
1128 case WME_AC_VI:
1129 pPhyParam = &phyParamForAC_VI[mode];
1130 pBssPhyParam = &bssPhyParamForAC_VI[mode];
1131 break;
1132 case WME_AC_VO:
1133 pPhyParam = &phyParamForAC_VO[mode];
1134 pBssPhyParam = &bssPhyParamForAC_VO[mode];
1135 break;
1136 case WME_AC_BE:
1137 default:
1138 pPhyParam = &phyParamForAC_BE[mode];
1139 pBssPhyParam = &bssPhyParamForAC_BE[mode];
1140 break;
1141 }
1142 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1143 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1144 setwmeparams(vap, "chan", i, wmep, pPhyParam);
1145 } else {
1146 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1147 }
1148 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1149 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1150 }
1151 /* NB: check ic_bss to avoid NULL deref on initial attach */
1152 if (vap->iv_bss != NULL) {
1153 /*
1154 * Calculate aggressive mode switching threshold based
1155 * on beacon interval. This doesn't need locking since
1156 * we're only called before entering the RUN state at
1157 * which point we start sending beacon frames.
1158 */
1159 wme->wme_hipri_switch_thresh =
1160 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1161 wme->wme_flags &= ~WME_F_AGGRMODE;
1162 ieee80211_wme_updateparams_locked(vap); // BUG ???
1163 }
1164 }
1165
1166 void
1167 ieee80211_wme_initparams(struct ieee80211vap *vap)
1168 {
1169 struct ieee80211com *ic = vap->iv_ic;
1170
1171 IEEE80211_LOCK(ic);
1172 ieee80211_wme_initparams_locked(vap);
1173 IEEE80211_UNLOCK(ic);
1174 }
1175
1176 /*
1177 * Update WME parameters for ourself and the BSS.
1178 */
1179 void
1180 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1181 {
1182 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1183 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
1184 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
1185 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
1186 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
1187 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
1188 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
1189 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
1190 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
1191 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
1192 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
1193 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1194 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1195 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1196 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1197 };
1198 struct ieee80211com *ic = vap->iv_ic;
1199 struct ieee80211_wme_state *wme = &ic->ic_wme;
1200 const struct wmeParams *wmep;
1201 struct wmeParams *chanp, *bssp;
1202 enum ieee80211_phymode mode;
1203 int i;
1204 int do_aggrmode = 0;
1205
1206 /*
1207 * Set up the channel access parameters for the physical
1208 * device. First populate the configured settings.
1209 */
1210 for (i = 0; i < WME_NUM_AC; i++) {
1211 chanp = &wme->wme_chanParams.cap_wmeParams[i];
1212 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1213 chanp->wmep_aifsn = wmep->wmep_aifsn;
1214 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1215 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1216 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1217
1218 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1219 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1220 chanp->wmep_aifsn = wmep->wmep_aifsn;
1221 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1222 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1223 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1224 }
1225
1226 /*
1227 * Select mode; we can be called early in which case we
1228 * always use auto mode. We know we'll be called when
1229 * entering the RUN state with bsschan setup properly
1230 * so state will eventually get set correctly
1231 */
1232 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1233 mode = ieee80211_chan2mode(ic->ic_bsschan);
1234 else
1235 mode = IEEE80211_MODE_AUTO;
1236
1237 /*
1238 * This implements aggressive mode as found in certain
1239 * vendors' AP's. When there is significant high
1240 * priority (VI/VO) traffic in the BSS throttle back BE
1241 * traffic by using conservative parameters. Otherwise
1242 * BE uses aggressive params to optimize performance of
1243 * legacy/non-QoS traffic.
1244 */
1245
1246 /* Hostap? Only if aggressive mode is enabled */
1247 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1248 (wme->wme_flags & WME_F_AGGRMODE) != 0)
1249 do_aggrmode = 1;
1250
1251 /*
1252 * Station? Only if we're in a non-QoS BSS.
1253 */
1254 else if ((vap->iv_opmode == IEEE80211_M_STA &&
1255 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1256 do_aggrmode = 1;
1257
1258 /*
1259 * IBSS? Only if we we have WME enabled.
1260 */
1261 else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1262 (vap->iv_flags & IEEE80211_F_WME))
1263 do_aggrmode = 1;
1264
1265 /*
1266 * If WME is disabled on this VAP, default to aggressive mode
1267 * regardless of the configuration.
1268 */
1269 if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1270 do_aggrmode = 1;
1271
1272 /* XXX WDS? */
1273
1274 /* XXX MBSS? */
1275
1276 if (do_aggrmode) {
1277 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1278 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1279
1280 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1281 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1282 aggrParam[mode].logcwmin;
1283 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1284 aggrParam[mode].logcwmax;
1285 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1286 (vap->iv_flags & IEEE80211_F_BURST) ?
1287 aggrParam[mode].txopLimit : 0;
1288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1289 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1290 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1291 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1292 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1293 }
1294
1295
1296 /*
1297 * Change the contention window based on the number of associated
1298 * stations. If the number of associated stations is 1 and
1299 * aggressive mode is enabled, lower the contention window even
1300 * further.
1301 */
1302 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1303 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1304 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1305 [IEEE80211_MODE_AUTO] = 3,
1306 [IEEE80211_MODE_11A] = 3,
1307 [IEEE80211_MODE_11B] = 4,
1308 [IEEE80211_MODE_11G] = 3,
1309 [IEEE80211_MODE_FH] = 4,
1310 [IEEE80211_MODE_TURBO_A] = 3,
1311 [IEEE80211_MODE_TURBO_G] = 3,
1312 [IEEE80211_MODE_STURBO_A] = 3,
1313 [IEEE80211_MODE_HALF] = 3,
1314 [IEEE80211_MODE_QUARTER] = 3,
1315 [IEEE80211_MODE_11NA] = 3,
1316 [IEEE80211_MODE_11NG] = 3,
1317 [IEEE80211_MODE_VHT_2GHZ] = 3,
1318 [IEEE80211_MODE_VHT_5GHZ] = 3,
1319 };
1320 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1321 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1322
1323 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1324 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1325 "update %s (chan+bss) logcwmin %u\n",
1326 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1327 }
1328
1329 /*
1330 * Arrange for the beacon update.
1331 *
1332 * XXX what about MBSS, WDS?
1333 */
1334 if (vap->iv_opmode == IEEE80211_M_HOSTAP
1335 || vap->iv_opmode == IEEE80211_M_IBSS) {
1336 /*
1337 * Arrange for a beacon update and bump the parameter
1338 * set number so associated stations load the new values.
1339 */
1340 wme->wme_bssChanParams.cap_info =
1341 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1342 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1343 }
1344
1345 /* schedule the deferred WME update */
1346 ieee80211_runtask(ic, &vap->iv_wme_task);
1347
1348 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1349 "%s: WME params updated, cap_info 0x%x\n", __func__,
1350 vap->iv_opmode == IEEE80211_M_STA ?
1351 wme->wme_wmeChanParams.cap_info :
1352 wme->wme_bssChanParams.cap_info);
1353 }
1354
1355 void
1356 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1357 {
1358 struct ieee80211com *ic = vap->iv_ic;
1359
1360 if (ic->ic_caps & IEEE80211_C_WME) {
1361 IEEE80211_LOCK(ic);
1362 ieee80211_wme_updateparams_locked(vap);
1363 IEEE80211_UNLOCK(ic);
1364 }
1365 }
1366
1367 /*
1368 * Fetch the WME parameters for the given VAP.
1369 *
1370 * When net80211 grows p2p, etc support, this may return different
1371 * parameters for each VAP.
1372 */
1373 void
1374 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1375 {
1376
1377 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1378 }
1379
1380 /*
1381 * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1382 * there may be different VAP WME parameters but only one is "active".
1383 * This returns the "NIC" WME parameters for the currently active
1384 * context.
1385 */
1386 void
1387 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1388 {
1389
1390 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1391 }
1392
1393 /*
1394 * Return whether to use QoS on a given WME queue.
1395 *
1396 * This is intended to be called from the transmit path of softmac drivers
1397 * which are setting NoAck bits in transmit descriptors.
1398 *
1399 * Ideally this would be set in some transmit field before the packet is
1400 * queued to the driver but net80211 isn't quite there yet.
1401 */
1402 int
1403 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1404 {
1405 /* Bounds/sanity check */
1406 if (ac < 0 || ac >= WME_NUM_AC)
1407 return (0);
1408
1409 /* Again, there's only one global context for now */
1410 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1411 }
1412
1413 static void
1414 parent_updown(void *arg, int npending)
1415 {
1416 struct ieee80211com *ic = arg;
1417
1418 printf ("parent_updown called on %s!\n", ic->ic_name);
1419 // ic->ic_parent(ic);
1420 }
1421
1422 static void
1423 update_mcast(void *arg, int npending)
1424 {
1425 struct ieee80211com *ic = arg;
1426
1427 ic->ic_update_mcast(ic);
1428 }
1429
1430 static void
1431 update_promisc(void *arg, int npending)
1432 {
1433 struct ieee80211com *ic = arg;
1434
1435 ic->ic_update_promisc(ic);
1436 }
1437
1438 static void
1439 update_channel(void *arg, int npending)
1440 {
1441 struct ieee80211com *ic = arg;
1442
1443 ic->ic_set_channel(ic);
1444 ieee80211_radiotap_chan_change(ic);
1445 }
1446
1447 static void
1448 update_chw(void *arg, int npending)
1449 {
1450 struct ieee80211com *ic = arg;
1451
1452 /*
1453 * XXX should we defer the channel width _config_ update until now?
1454 */
1455 ic->ic_update_chw(ic);
1456 }
1457
1458 /*
1459 * Deferred WME update.
1460 *
1461 * In preparation for per-VAP WME configuration, call the VAP
1462 * method if the VAP requires it. Otherwise, just call the
1463 * older global method. There isn't a per-VAP WME configuration
1464 * just yet so for now just use the global configuration.
1465 */
1466 static void
1467 vap_update_wme(void *arg, int npending)
1468 {
1469 struct ieee80211vap *vap = arg;
1470 struct ieee80211com *ic = vap->iv_ic;
1471
1472 if (vap->iv_wme_update != NULL)
1473 vap->iv_wme_update(vap,
1474 ic->ic_wme.wme_chanParams.cap_wmeParams);
1475 else
1476 ic->ic_wme.wme_update(ic);
1477 }
1478
1479 static void
1480 restart_vaps(void *arg, int npending)
1481 {
1482 struct ieee80211com *ic = arg;
1483
1484 ieee80211_suspend_all(ic);
1485 ieee80211_resume_all(ic);
1486 }
1487
1488 /*
1489 * Block until the parent is in a known state. This is
1490 * used after any operations that dispatch a task (e.g.
1491 * to auto-configure the parent device up/down).
1492 */
1493 void
1494 ieee80211_waitfor_parent(struct ieee80211com *ic)
1495 {
1496 taskqueue_block(ic->ic_tq);
1497 ieee80211_draintask(ic, &ic->ic_parent_task);
1498 ieee80211_draintask(ic, &ic->ic_mcast_task);
1499 ieee80211_draintask(ic, &ic->ic_promisc_task);
1500 ieee80211_draintask(ic, &ic->ic_chan_task);
1501 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1502 ieee80211_draintask(ic, &ic->ic_chw_task);
1503 taskqueue_unblock(ic->ic_tq);
1504 }
1505
1506 /*
1507 * Check to see whether the current channel needs reset.
1508 *
1509 * Some devices don't handle being given an invalid channel
1510 * in their operating mode very well (eg wpi(4) will throw a
1511 * firmware exception.)
1512 *
1513 * Return 0 if we're ok, 1 if the channel needs to be reset.
1514 *
1515 * See PR kern/202502.
1516 */
1517 static int
1518 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1519 {
1520 struct ieee80211com *ic = vap->iv_ic;
1521
1522 if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1523 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1524 (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1525 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1526 return (1);
1527 return (0);
1528 }
1529
1530 /*
1531 * Reset the curchan to a known good state.
1532 */
1533 static void
1534 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1535 {
1536 struct ieee80211com *ic = vap->iv_ic;
1537
1538 ic->ic_curchan = &ic->ic_channels[0];
1539 }
1540
1541 /*
1542 * Start a vap running. If this is the first vap to be
1543 * set running on the underlying device then we
1544 * automatically bring the device up.
1545 */
1546 void
1547 ieee80211_start_locked(struct ieee80211vap *vap)
1548 {
1549 #if __FreeBSD__
1550 struct ifnet *ifp = vap->iv_ifp;
1551 #endif
1552 struct ieee80211com *ic = vap->iv_ic;
1553
1554 IEEE80211_LOCK_ASSERT(ic);
1555
1556 IEEE80211_DPRINTF(vap,
1557 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1558 "start running, %d vaps running\n", ic->ic_nrunning);
1559 #if __NetBSD__
1560 /* NNN may need to change/upgrade this once more than one vap/device. */
1561 if (ic->ic_nrunning++ == 0) {
1562 /* reset the channel to a known good channel */
1563 if (ieee80211_start_check_reset_chan(vap))
1564 ieee80211_start_reset_chan(vap);
1565 }
1566 #endif
1567
1568 #if __FreeBSD__
1569 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1570 /*
1571 * Mark us running. Note that it's ok to do this first;
1572 * if we need to bring the parent device up we defer that
1573 * to avoid dropping the com lock. We expect the device
1574 * to respond to being marked up by calling back into us
1575 * through ieee80211_start_all at which point we'll come
1576 * back in here and complete the work.
1577 */
1578
1579 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1580
1581 /*
1582 * We are not running; if this we are the first vap
1583 * to be brought up auto-up the parent if necessary.
1584 */
1585 if (ic->ic_nrunning++ == 0) {
1586 /* reset the channel to a known good channel */
1587 if (ieee80211_start_check_reset_chan(vap))
1588 ieee80211_start_reset_chan(vap);
1589
1590 IEEE80211_DPRINTF(vap,
1591 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1592 "%s: up parent %s\n", __func__, ic->ic_name);
1593 ieee80211_runtask(ic, &ic->ic_parent_task);
1594 return;
1595 }
1596 }
1597 /*
1598 * If the parent is up and running, then kick the
1599 * 802.11 state machine as appropriate.
1600 */
1601 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1602 if (vap->iv_opmode == IEEE80211_M_STA) {
1603 #if 0
1604 /* XXX bypasses scan too easily; disable for now */
1605 /*
1606 * Try to be intelligent about clocking the state
1607 * machine. If we're currently in RUN state then
1608 * we should be able to apply any new state/parameters
1609 * simply by re-associating. Otherwise we need to
1610 * re-scan to select an appropriate ap.
1611 */
1612 if (vap->iv_state >= IEEE80211_S_RUN)
1613 ieee80211_new_state_locked(vap,
1614 IEEE80211_S_ASSOC, 1);
1615 else
1616 #endif
1617 ieee80211_new_state_locked(vap,
1618 IEEE80211_S_SCAN, 0);
1619 } else {
1620 printf (" first vap??? \n");
1621 /*
1622 * For monitor+wds mode there's nothing to do but
1623 * start running. Otherwise if this is the first
1624 * vap to be brought up, start a scan which may be
1625 * preempted if the station is locked to a particular
1626 * channel.
1627 */
1628 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1629 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1630 vap->iv_opmode == IEEE80211_M_WDS)
1631 ieee80211_new_state_locked(vap,
1632 IEEE80211_S_RUN, -1);
1633 else
1634 ieee80211_new_state_locked(vap,
1635 IEEE80211_S_SCAN, 0);
1636 }
1637 }
1638 #endif
1639 }
1640
1641 /*
1642 * Start a single vap.
1643 */
1644 #if __FreeBSD__
1645 void
1646 ieee80211_init(void *arg)
1647 {
1648 struct ieee80211vap *vap = arg;
1649
1650 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1651 "%s\n", __func__);
1652
1653 IEEE80211_LOCK(vap->iv_ic);
1654 ieee80211_start_locked(vap);
1655 IEEE80211_UNLOCK(vap->iv_ic);
1656 }
1657 #elif __NetBSD__
1658 int
1659 ieee80211_init(struct ifnet *ifp)
1660 {
1661 struct ieee80211vap *vap = ifp->if_softc;
1662 static ONCE_DECL(ieee80211_init_once);
1663
1664 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1665 "%s\n", __func__);
1666 printf ("ieee80211_init called.\n"); // NNN
1667
1668 RUN_ONCE(&ieee80211_init_once, ieee80211_init0);
1669
1670 IEEE80211_LOCK(vap->iv_ic);
1671 ieee80211_start_locked(vap);
1672 IEEE80211_UNLOCK(vap->iv_ic);
1673 return 0;
1674 }
1675 #endif
1676
1677 /*
1678 * Start all runnable vap's on a device.
1679 */
1680 void
1681 ieee80211_start_all(struct ieee80211com *ic)
1682 {
1683 struct ieee80211vap *vap;
1684
1685 IEEE80211_LOCK(ic);
1686 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1687 struct ifnet *ifp = vap->iv_ifp;
1688 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1689 ieee80211_start_locked(vap);
1690 }
1691 IEEE80211_UNLOCK(ic);
1692 }
1693
1694 /*
1695 * Stop a vap. We force it down using the state machine
1696 * then mark it's ifnet not running. If this is the last
1697 * vap running on the underlying device then we close it
1698 * too to insure it will be properly initialized when the
1699 * next vap is brought up.
1700 */
1701 void
1702 ieee80211_stop_locked(struct ieee80211vap *vap)
1703 {
1704 struct ieee80211com *ic = vap->iv_ic;
1705 struct ifnet *ifp = vap->iv_ifp;
1706
1707 IEEE80211_LOCK_ASSERT(ic);
1708
1709 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1710 "stop running, %d vaps running\n", ic->ic_nrunning);
1711
1712 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1713 #if __FreeBSD__
1714 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1715 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
1716 #elif __NetBSD__
1717 if (ifp->if_flags & IFF_RUNNING) {
1718 ifp->if_flags &= ~IFF_RUNNING; /* mark us stopped */
1719 #endif
1720 if (--ic->ic_nrunning == 0) {
1721 IEEE80211_DPRINTF(vap,
1722 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1723 "down parent %s\n", ic->ic_name);
1724 ieee80211_runtask(ic, &ic->ic_parent_task);
1725 }
1726 }
1727 }
1728
1729 void
1730 ieee80211_stop(struct ieee80211vap *vap)
1731 {
1732 struct ieee80211com *ic = vap->iv_ic;
1733
1734 IEEE80211_LOCK(ic);
1735 ieee80211_stop_locked(vap);
1736 IEEE80211_UNLOCK(ic);
1737 }
1738
1739 /*
1740 * Stop all vap's running on a device.
1741 */
1742 void
1743 ieee80211_stop_all(struct ieee80211com *ic)
1744 {
1745 struct ieee80211vap *vap;
1746
1747 IEEE80211_LOCK(ic);
1748 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1749 struct ifnet *ifp = vap->iv_ifp;
1750 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1751 ieee80211_stop_locked(vap);
1752 }
1753 IEEE80211_UNLOCK(ic);
1754
1755 ieee80211_waitfor_parent(ic);
1756 }
1757
1758 /*
1759 * Stop all vap's running on a device and arrange
1760 * for those that were running to be resumed.
1761 */
1762 void
1763 ieee80211_suspend_all(struct ieee80211com *ic)
1764 {
1765 struct ieee80211vap *vap;
1766
1767 IEEE80211_LOCK(ic);
1768 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1769 struct ifnet *ifp = vap->iv_ifp;
1770 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
1771 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1772 ieee80211_stop_locked(vap);
1773 }
1774 }
1775 IEEE80211_UNLOCK(ic);
1776
1777 ieee80211_waitfor_parent(ic);
1778 }
1779
1780 /*
1781 * Start all vap's marked for resume.
1782 */
1783 void
1784 ieee80211_resume_all(struct ieee80211com *ic)
1785 {
1786 struct ieee80211vap *vap;
1787
1788 IEEE80211_LOCK(ic);
1789 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1790 struct ifnet *ifp = vap->iv_ifp;
1791 if (!IFNET_IS_UP_RUNNING(ifp) &&
1792 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1793 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1794 ieee80211_start_locked(vap);
1795 }
1796 }
1797 IEEE80211_UNLOCK(ic);
1798 }
1799
1800 /*
1801 * Restart all vap's running on a device.
1802 */
1803 void
1804 ieee80211_restart_all(struct ieee80211com *ic)
1805 {
1806 /*
1807 * NB: do not use ieee80211_runtask here, we will
1808 * block & drain net80211 taskqueue.
1809 */
1810 #if __FreeBSD__
1811 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1812 #elif __NetBSD__
1813 printf ("ieee80211_restart_all called .... should add code.\n");
1814 #endif
1815 }
1816
1817 void
1818 ieee80211_beacon_miss(struct ieee80211com *ic)
1819 {
1820 IEEE80211_LOCK(ic);
1821 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1822 /* Process in a taskq, the handler may reenter the driver */
1823 ieee80211_runtask(ic, &ic->ic_bmiss_task);
1824 }
1825 IEEE80211_UNLOCK(ic);
1826 }
1827
1828 static void
1829 beacon_miss(void *arg, int npending)
1830 {
1831 struct ieee80211com *ic = arg;
1832 struct ieee80211vap *vap;
1833
1834 IEEE80211_LOCK(ic);
1835 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1836 /*
1837 * We only pass events through for sta vap's in RUN+ state;
1838 * may be too restrictive but for now this saves all the
1839 * handlers duplicating these checks.
1840 */
1841 if (vap->iv_opmode == IEEE80211_M_STA &&
1842 vap->iv_state >= IEEE80211_S_RUN &&
1843 vap->iv_bmiss != NULL)
1844 vap->iv_bmiss(vap);
1845 }
1846 IEEE80211_UNLOCK(ic);
1847 }
1848
1849 static void
1850 beacon_swmiss(void *arg, int npending)
1851 {
1852 struct ieee80211vap *vap = arg;
1853 struct ieee80211com *ic = vap->iv_ic;
1854
1855 IEEE80211_LOCK(ic);
1856 if (vap->iv_state >= IEEE80211_S_RUN) {
1857 /* XXX Call multiple times if npending > zero? */
1858 vap->iv_bmiss(vap);
1859 }
1860 IEEE80211_UNLOCK(ic);
1861 }
1862
1863 /*
1864 * Software beacon miss handling. Check if any beacons
1865 * were received in the last period. If not post a
1866 * beacon miss; otherwise reset the counter.
1867 */
1868 void
1869 ieee80211_swbmiss(void *arg)
1870 {
1871 struct ieee80211vap *vap = arg;
1872 struct ieee80211com *ic = vap->iv_ic;
1873
1874 #if __FreeBSD__
1875 IEEE80211_LOCK_ASSERT(ic);
1876 #elif __NetBSD__
1877 IEEE80211_LOCK(ic);
1878 if (vap->iv_state < IEEE80211_S_RUN) { /* NNN should stop it */
1879 IEEE80211_UNLOCK(ic);
1880 return;
1881 }
1882 #endif
1883
1884 KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1885 ("wrong state %d", vap->iv_state));
1886
1887 if (ic->ic_flags & IEEE80211_F_SCAN) {
1888 /*
1889 * If scanning just ignore and reset state. If we get a
1890 * bmiss after coming out of scan because we haven't had
1891 * time to receive a beacon then we should probe the AP
1892 * before posting a real bmiss (unless iv_bmiss_max has
1893 * been artifiically lowered). A cleaner solution might
1894 * be to disable the timer on scan start/end but to handle
1895 * case of multiple sta vap's we'd need to disable the
1896 * timers of all affected vap's.
1897 */
1898 vap->iv_swbmiss_count = 0;
1899 } else if (vap->iv_swbmiss_count == 0) {
1900 if (vap->iv_bmiss != NULL)
1901 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1902 } else
1903 vap->iv_swbmiss_count = 0;
1904 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1905 ieee80211_swbmiss, vap);
1906
1907 #if __NetBSD__
1908 IEEE80211_UNLOCK(ic);
1909 #endif
1910 }
1911
1912 /*
1913 * Start an 802.11h channel switch. We record the parameters,
1914 * mark the operation pending, notify each vap through the
1915 * beacon update mechanism so it can update the beacon frame
1916 * contents, and then switch vap's to CSA state to block outbound
1917 * traffic. Devices that handle CSA directly can use the state
1918 * switch to do the right thing so long as they call
1919 * ieee80211_csa_completeswitch when it's time to complete the
1920 * channel change. Devices that depend on the net80211 layer can
1921 * use ieee80211_beacon_update to handle the countdown and the
1922 * channel switch.
1923 */
1924 void
1925 ieee80211_csa_startswitch(struct ieee80211com *ic,
1926 struct ieee80211_channel *c, int mode, int count)
1927 {
1928 struct ieee80211vap *vap;
1929
1930 IEEE80211_LOCK_ASSERT(ic);
1931
1932 ic->ic_csa_newchan = c;
1933 ic->ic_csa_mode = mode;
1934 ic->ic_csa_count = count;
1935 ic->ic_flags |= IEEE80211_F_CSAPENDING;
1936 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1937 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1938 vap->iv_opmode == IEEE80211_M_IBSS ||
1939 vap->iv_opmode == IEEE80211_M_MBSS)
1940 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1941 /* switch to CSA state to block outbound traffic */
1942 if (vap->iv_state == IEEE80211_S_RUN)
1943 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1944 }
1945 ieee80211_notify_csa(ic, c, mode, count);
1946 }
1947
1948 /*
1949 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1950 * This is called by both the completion and cancellation functions
1951 * so each VAP is placed back in the RUN state and can thus transmit.
1952 */
1953 static void
1954 csa_completeswitch(struct ieee80211com *ic)
1955 {
1956 struct ieee80211vap *vap;
1957
1958 ic->ic_csa_newchan = NULL;
1959 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1960
1961 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1962 if (vap->iv_state == IEEE80211_S_CSA)
1963 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1964 }
1965
1966 /*
1967 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1968 * We clear state and move all vap's in CSA state to RUN state
1969 * so they can again transmit.
1970 *
1971 * Although this may not be completely correct, update the BSS channel
1972 * for each VAP to the newly configured channel. The setcurchan sets
1973 * the current operating channel for the interface (so the radio does
1974 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1975 * reported information via ioctl.
1976 */
1977 void
1978 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1979 {
1980 struct ieee80211vap *vap;
1981
1982 IEEE80211_LOCK_ASSERT(ic);
1983
1984 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1985
1986 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1987 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1988 if (vap->iv_state == IEEE80211_S_CSA)
1989 vap->iv_bss->ni_chan = ic->ic_curchan;
1990
1991 csa_completeswitch(ic);
1992 }
1993
1994 /*
1995 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1996 * We clear state and move all vap's in CSA state to RUN state
1997 * so they can again transmit.
1998 */
1999 void
2000 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2001 {
2002 IEEE80211_LOCK_ASSERT(ic);
2003
2004 csa_completeswitch(ic);
2005 }
2006
2007 /*
2008 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2009 * We clear state and move all vap's in CAC state to RUN state.
2010 */
2011 void
2012 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2013 {
2014 struct ieee80211com *ic = vap0->iv_ic;
2015 struct ieee80211vap *vap;
2016
2017 IEEE80211_LOCK(ic);
2018 /*
2019 * Complete CAC state change for lead vap first; then
2020 * clock all the other vap's waiting.
2021 */
2022 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2023 ("wrong state %d", vap0->iv_state));
2024 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2025
2026 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2027 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2028 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2029 IEEE80211_UNLOCK(ic);
2030 }
2031
2032 /*
2033 * Force all vap's other than the specified vap to the INIT state
2034 * and mark them as waiting for a scan to complete. These vaps
2035 * will be brought up when the scan completes and the scanning vap
2036 * reaches RUN state by wakeupwaiting.
2037 */
2038 static void
2039 markwaiting(struct ieee80211vap *vap0)
2040 {
2041 struct ieee80211com *ic = vap0->iv_ic;
2042 struct ieee80211vap *vap;
2043
2044 IEEE80211_LOCK_ASSERT(ic);
2045
2046 /*
2047 * A vap list entry can not disappear since we are running on the
2048 * taskqueue and a vap destroy will queue and drain another state
2049 * change task.
2050 */
2051 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2052 if (vap == vap0)
2053 continue;
2054 if (vap->iv_state != IEEE80211_S_INIT) {
2055 /* NB: iv_newstate may drop the lock */
2056 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2057 IEEE80211_LOCK_ASSERT(ic);
2058 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Wakeup all vap's waiting for a scan to complete. This is the
2065 * companion to markwaiting (above) and is used to coordinate
2066 * multiple vaps scanning.
2067 * This is called from the state taskqueue.
2068 */
2069 static void
2070 wakeupwaiting(struct ieee80211vap *vap0)
2071 {
2072 struct ieee80211com *ic = vap0->iv_ic;
2073 struct ieee80211vap *vap;
2074
2075 IEEE80211_LOCK_ASSERT(ic);
2076
2077 /*
2078 * A vap list entry can not disappear since we are running on the
2079 * taskqueue and a vap destroy will queue and drain another state
2080 * change task.
2081 */
2082 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2083 if (vap == vap0)
2084 continue;
2085 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2086 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2087 /* NB: sta's cannot go INIT->RUN */
2088 /* NB: iv_newstate may drop the lock */
2089 vap->iv_newstate(vap,
2090 vap->iv_opmode == IEEE80211_M_STA ?
2091 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2092 IEEE80211_LOCK_ASSERT(ic);
2093 }
2094 }
2095 }
2096
2097 /*
2098 * Handle post state change work common to all operating modes.
2099 */
2100 static void
2101 ieee80211_newstate_cb(void *xvap, int npending)
2102 {
2103 struct ieee80211vap *vap = xvap;
2104 struct ieee80211com *ic = vap->iv_ic;
2105 enum ieee80211_state nstate, ostate;
2106 int arg, rc;
2107
2108 IEEE80211_LOCK(ic);
2109 nstate = vap->iv_nstate;
2110 arg = vap->iv_nstate_arg;
2111
2112 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2113 /*
2114 * We have been requested to drop back to the INIT before
2115 * proceeding to the new state.
2116 */
2117 /* Deny any state changes while we are here. */
2118 vap->iv_nstate = IEEE80211_S_INIT;
2119 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2120 "%s: %s -> %s arg %d\n", __func__,
2121 ieee80211_state_name[vap->iv_state],
2122 ieee80211_state_name[vap->iv_nstate], arg);
2123 vap->iv_newstate(vap, vap->iv_nstate, 0);
2124 IEEE80211_LOCK_ASSERT(ic);
2125 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2126 IEEE80211_FEXT_STATEWAIT);
2127 /* enqueue new state transition after cancel_scan() task */
2128 ieee80211_new_state_locked(vap, nstate, arg);
2129 goto done;
2130 }
2131
2132 ostate = vap->iv_state;
2133 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2134 /*
2135 * SCAN was forced; e.g. on beacon miss. Force other running
2136 * vap's to INIT state and mark them as waiting for the scan to
2137 * complete. This insures they don't interfere with our
2138 * scanning. Since we are single threaded the vaps can not
2139 * transition again while we are executing.
2140 *
2141 * XXX not always right, assumes ap follows sta
2142 */
2143 markwaiting(vap);
2144 }
2145 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2146 "%s: %s -> %s arg %d\n", __func__,
2147 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2148
2149 rc = vap->iv_newstate(vap, nstate, arg);
2150 IEEE80211_LOCK_ASSERT(ic);
2151 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2152 if (rc != 0) {
2153 /* State transition failed */
2154 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2155 KASSERT(nstate != IEEE80211_S_INIT,
2156 ("INIT state change failed"));
2157 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2158 "%s: %s returned error %d\n", __func__,
2159 ieee80211_state_name[nstate], rc);
2160 goto done;
2161 }
2162
2163 /* No actual transition, skip post processing */
2164 if (ostate == nstate)
2165 goto done;
2166
2167 if (nstate == IEEE80211_S_RUN) {
2168 /*
2169 * OACTIVE may be set on the vap if the upper layer
2170 * tried to transmit (e.g. IPv6 NDP) before we reach
2171 * RUN state. Clear it and restart xmit.
2172 *
2173 * Note this can also happen as a result of SLEEP->RUN
2174 * (i.e. coming out of power save mode).
2175 */
2176 #if __FreeBSD__
2177 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2178 #elif __NetBSD__
2179 vap->iv_ifp->if_flags &= ~IFF_OACTIVE;
2180 #endif
2181
2182 /*
2183 * XXX TODO Kick-start a VAP queue - this should be a method!
2184 */
2185
2186 /* bring up any vaps waiting on us */
2187 wakeupwaiting(vap);
2188 } else if (nstate == IEEE80211_S_INIT) {
2189 /*
2190 * Flush the scan cache if we did the last scan (XXX?)
2191 * and flush any frames on send queues from this vap.
2192 * Note the mgt q is used only for legacy drivers and
2193 * will go away shortly.
2194 */
2195 ieee80211_scan_flush(vap);
2196
2197 /*
2198 * XXX TODO: ic/vap queue flush
2199 */
2200 }
2201 done:
2202 IEEE80211_UNLOCK(ic);
2203 }
2204
2205 /*
2206 * Public interface for initiating a state machine change.
2207 * This routine single-threads the request and coordinates
2208 * the scheduling of multiple vaps for the purpose of selecting
2209 * an operating channel. Specifically the following scenarios
2210 * are handled:
2211 * o only one vap can be selecting a channel so on transition to
2212 * SCAN state if another vap is already scanning then
2213 * mark the caller for later processing and return without
2214 * doing anything (XXX? expectations by caller of synchronous operation)
2215 * o only one vap can be doing CAC of a channel so on transition to
2216 * CAC state if another vap is already scanning for radar then
2217 * mark the caller for later processing and return without
2218 * doing anything (XXX? expectations by caller of synchronous operation)
2219 * o if another vap is already running when a request is made
2220 * to SCAN then an operating channel has been chosen; bypass
2221 * the scan and just join the channel
2222 *
2223 * Note that the state change call is done through the iv_newstate
2224 * method pointer so any driver routine gets invoked. The driver
2225 * will normally call back into operating mode-specific
2226 * ieee80211_newstate routines (below) unless it needs to completely
2227 * bypass the state machine (e.g. because the firmware has it's
2228 * own idea how things should work). Bypassing the net80211 layer
2229 * is usually a mistake and indicates lack of proper integration
2230 * with the net80211 layer.
2231 */
2232 int
2233 ieee80211_new_state_locked(struct ieee80211vap *vap,
2234 enum ieee80211_state nstate, int arg)
2235 {
2236 struct ieee80211com *ic = vap->iv_ic;
2237 struct ieee80211vap *vp;
2238 enum ieee80211_state ostate;
2239 int nrunning, nscanning;
2240
2241 IEEE80211_LOCK_ASSERT(ic);
2242
2243 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2244 if (vap->iv_nstate == IEEE80211_S_INIT ||
2245 ((vap->iv_state == IEEE80211_S_INIT ||
2246 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2247 vap->iv_nstate == IEEE80211_S_SCAN &&
2248 nstate > IEEE80211_S_SCAN)) {
2249 /*
2250 * XXX The vap is being stopped/started,
2251 * do not allow any other state changes
2252 * until this is completed.
2253 */
2254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2255 "%s: %s -> %s (%s) transition discarded\n",
2256 __func__,
2257 ieee80211_state_name[vap->iv_state],
2258 ieee80211_state_name[nstate],
2259 ieee80211_state_name[vap->iv_nstate]);
2260 return -1;
2261 } else if (vap->iv_state != vap->iv_nstate) {
2262 #if 0
2263 /* Warn if the previous state hasn't completed. */
2264 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2265 "%s: pending %s -> %s transition lost\n", __func__,
2266 ieee80211_state_name[vap->iv_state],
2267 ieee80211_state_name[vap->iv_nstate]);
2268 #else
2269 /* XXX temporarily enable to identify issues */
2270 if_printf(vap->iv_ifp,
2271 "%s: pending %s -> %s transition lost\n",
2272 __func__, ieee80211_state_name[vap->iv_state],
2273 ieee80211_state_name[vap->iv_nstate]);
2274 #endif
2275 }
2276 }
2277
2278 nrunning = nscanning = 0;
2279 /* XXX can track this state instead of calculating */
2280 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2281 if (vp != vap) {
2282 if (vp->iv_state >= IEEE80211_S_RUN)
2283 nrunning++;
2284 /* XXX doesn't handle bg scan */
2285 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2286 else if (vp->iv_state > IEEE80211_S_INIT)
2287 nscanning++;
2288 }
2289 }
2290 ostate = vap->iv_state;
2291 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2292 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2293 ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2294 nrunning, nscanning);
2295 switch (nstate) {
2296 case IEEE80211_S_SCAN:
2297 if (ostate == IEEE80211_S_INIT) {
2298 /*
2299 * INIT -> SCAN happens on initial bringup.
2300 */
2301 KASSERT(!(nscanning && nrunning),
2302 ("%d scanning and %d running", nscanning, nrunning));
2303 if (nscanning) {
2304 /*
2305 * Someone is scanning, defer our state
2306 * change until the work has completed.
2307 */
2308 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2309 "%s: defer %s -> %s\n",
2310 __func__, ieee80211_state_name[ostate],
2311 ieee80211_state_name[nstate]);
2312 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2313 return 0;
2314 }
2315 if (nrunning) {
2316 /*
2317 * Someone is operating; just join the channel
2318 * they have chosen.
2319 */
2320 /* XXX kill arg? */
2321 /* XXX check each opmode, adhoc? */
2322 if (vap->iv_opmode == IEEE80211_M_STA)
2323 nstate = IEEE80211_S_SCAN;
2324 else
2325 nstate = IEEE80211_S_RUN;
2326 #ifdef IEEE80211_DEBUG
2327 if (nstate != IEEE80211_S_SCAN) {
2328 IEEE80211_DPRINTF(vap,
2329 IEEE80211_MSG_STATE,
2330 "%s: override, now %s -> %s\n",
2331 __func__,
2332 ieee80211_state_name[ostate],
2333 ieee80211_state_name[nstate]);
2334 }
2335 #endif
2336 }
2337 }
2338 break;
2339 case IEEE80211_S_RUN:
2340 if (vap->iv_opmode == IEEE80211_M_WDS &&
2341 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2342 nscanning) {
2343 /*
2344 * Legacy WDS with someone else scanning; don't
2345 * go online until that completes as we should
2346 * follow the other vap to the channel they choose.
2347 */
2348 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2349 "%s: defer %s -> %s (legacy WDS)\n", __func__,
2350 ieee80211_state_name[ostate],
2351 ieee80211_state_name[nstate]);
2352 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2353 return 0;
2354 }
2355 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2356 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2357 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2358 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2359 /*
2360 * This is a DFS channel, transition to CAC state
2361 * instead of RUN. This allows us to initiate
2362 * Channel Availability Check (CAC) as specified
2363 * by 11h/DFS.
2364 */
2365 nstate = IEEE80211_S_CAC;
2366 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2367 "%s: override %s -> %s (DFS)\n", __func__,
2368 ieee80211_state_name[ostate],
2369 ieee80211_state_name[nstate]);
2370 }
2371 break;
2372 case IEEE80211_S_INIT:
2373 /* cancel any scan in progress */
2374 ieee80211_cancel_scan(vap);
2375 if (ostate == IEEE80211_S_INIT ) {
2376 /* XXX don't believe this */
2377 /* INIT -> INIT. nothing to do */
2378 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2379 }
2380 /* fall thru... */
2381 default:
2382 break;
2383 }
2384 /* defer the state change to a thread */
2385 vap->iv_nstate = nstate;
2386 vap->iv_nstate_arg = arg;
2387 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2388 ieee80211_runtask(ic, &vap->iv_nstate_task);
2389 return EINPROGRESS;
2390 }
2391
2392 int
2393 ieee80211_new_state(struct ieee80211vap *vap,
2394 enum ieee80211_state nstate, int arg)
2395 {
2396 struct ieee80211com *ic = vap->iv_ic;
2397 int rc;
2398
2399 IEEE80211_LOCK(ic);
2400 rc = ieee80211_new_state_locked(vap, nstate, arg);
2401 IEEE80211_UNLOCK(ic);
2402 return rc;
2403 }
2404