at_control.c revision 1.2 1 /* $NetBSD: at_control.c,v 1.2 2000/02/01 22:52:06 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1990,1994 Regents of The University of Michigan.
5 * All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation for any purpose and without fee is hereby granted,
9 * provided that the above copyright notice appears in all copies and
10 * that both that copyright notice and this permission notice appear
11 * in supporting documentation, and that the name of The University
12 * of Michigan not be used in advertising or publicity pertaining to
13 * distribution of the software without specific, written prior
14 * permission. This software is supplied as is without expressed or
15 * implied warranties of any kind.
16 *
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 *
20 * Research Systems Unix Group
21 * The University of Michigan
22 * c/o Wesley Craig
23 * 535 W. William Street
24 * Ann Arbor, Michigan
25 * +1-313-764-2278
26 * netatalk (at) umich.edu
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/proc.h>
32 #include <sys/types.h>
33 #include <sys/errno.h>
34 #include <sys/ioctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/socketvar.h>
39 #include <net/if.h>
40 #include <net/route.h>
41 #include <net/if_ether.h>
42 #include <netinet/in.h>
43 #undef s_net
44
45 #include <netatalk/at.h>
46 #include <netatalk/at_var.h>
47 #include <netatalk/aarp.h>
48 #include <netatalk/phase2.h>
49 #include <netatalk/at_extern.h>
50
51 static int aa_dorangeroute __P((struct ifaddr * ifa,
52 u_int first, u_int last, int cmd));
53 static int aa_addsingleroute __P((struct ifaddr * ifa,
54 struct at_addr * addr, struct at_addr * mask));
55 static int aa_delsingleroute __P((struct ifaddr * ifa,
56 struct at_addr * addr, struct at_addr * mask));
57 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
58 struct at_addr * mask, int cmd, int flags));
59 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
60 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
61 struct sockaddr_at * sat));
62 #if 0
63 static void aa_clean __P((void));
64 #endif
65
66 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
67 (a)->sat_family == (b)->sat_family && \
68 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
69 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
70
71 int
72 at_control(cmd, data, ifp, p)
73 u_long cmd;
74 caddr_t data;
75 struct ifnet *ifp;
76 struct proc *p;
77 {
78 struct ifreq *ifr = (struct ifreq *) data;
79 struct sockaddr_at *sat;
80 struct netrange *nr;
81 struct at_aliasreq *ifra = (struct at_aliasreq *) data;
82 struct at_ifaddr *aa0;
83 struct at_ifaddr *aa = 0;
84
85 /*
86 * If we have an ifp, then find the matching at_ifaddr if it exists
87 */
88 if (ifp)
89 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
90 if (aa->aa_ifp == ifp)
91 break;
92
93 /*
94 * In this first switch table we are basically getting ready for
95 * the second one, by getting the atalk-specific things set up
96 * so that they start to look more similar to other protocols etc.
97 */
98
99 switch (cmd) {
100 case SIOCAIFADDR:
101 case SIOCDIFADDR:
102 /*
103 * If we have an appletalk sockaddr, scan forward of where
104 * we are now on the at_ifaddr list to find one with a matching
105 * address on this interface.
106 * This may leave aa pointing to the first address on the
107 * NEXT interface!
108 */
109 if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
110 for (; aa; aa = aa->aa_list.tqe_next)
111 if (aa->aa_ifp == ifp &&
112 sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
113 break;
114 }
115 /*
116 * If we a retrying to delete an addres but didn't find such,
117 * then return with an error
118 */
119 if (cmd == SIOCDIFADDR && aa == 0)
120 return (EADDRNOTAVAIL);
121 /* FALLTHROUGH */
122
123 case SIOCSIFADDR:
124 /*
125 * If we are not superuser, then we don't get to do these
126 * ops.
127 */
128 if (suser(p->p_ucred, &p->p_acflag))
129 return (EPERM);
130
131 sat = satosat(&ifr->ifr_addr);
132 nr = (struct netrange *) sat->sat_zero;
133 if (nr->nr_phase == 1) {
134 /*
135 * Look for a phase 1 address on this interface.
136 * This may leave aa pointing to the first address on
137 * the NEXT interface!
138 */
139 for (; aa; aa = aa->aa_list.tqe_next) {
140 if (aa->aa_ifp == ifp &&
141 (aa->aa_flags & AFA_PHASE2) == 0)
142 break;
143 }
144 } else { /* default to phase 2 */
145 /*
146 * Look for a phase 2 address on this interface.
147 * This may leave aa pointing to the first address on
148 * the NEXT interface!
149 */
150 for (; aa; aa = aa->aa_list.tqe_next) {
151 if (aa->aa_ifp == ifp &&
152 (aa->aa_flags & AFA_PHASE2))
153 break;
154 }
155 }
156
157 if (ifp == 0)
158 panic("at_control");
159
160 /*
161 * If we failed to find an existing at_ifaddr entry, then we
162 * allocate a fresh one.
163 * XXX change this to use malloc
164 */
165 if (aa == (struct at_ifaddr *) 0) {
166 aa = (struct at_ifaddr *)
167 malloc(sizeof(struct at_ifaddr), M_IFADDR,
168 M_WAITOK);
169
170 if (aa == NULL)
171 return (ENOBUFS);
172
173 bzero(aa, sizeof *aa);
174
175 if ((aa0 = at_ifaddr.tqh_first) != NULL) {
176 /*
177 * Don't let the loopback be first, since the
178 * first address is the machine's default
179 * address for binding.
180 * If it is, stick ourself in front, otherwise
181 * go to the back of the list.
182 */
183 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
184 TAILQ_INSERT_HEAD(&at_ifaddr, aa,
185 aa_list);
186 } else {
187 TAILQ_INSERT_TAIL(&at_ifaddr, aa,
188 aa_list);
189 }
190 } else {
191 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
192 }
193 IFAREF(&aa->aa_ifa);
194
195 /*
196 * Find the end of the interface's addresses
197 * and link our new one on the end
198 */
199 TAILQ_INSERT_TAIL(&ifp->if_addrlist,
200 (struct ifaddr *) aa, ifa_list);
201 IFAREF(&aa->aa_ifa);
202
203 /*
204 * As the at_ifaddr contains the actual sockaddrs,
205 * and the ifaddr itself, link them al together
206 * correctly.
207 */
208 aa->aa_ifa.ifa_addr =
209 (struct sockaddr *) &aa->aa_addr;
210 aa->aa_ifa.ifa_dstaddr =
211 (struct sockaddr *) &aa->aa_addr;
212 aa->aa_ifa.ifa_netmask =
213 (struct sockaddr *) &aa->aa_netmask;
214
215 /*
216 * Set/clear the phase 2 bit.
217 */
218 if (nr->nr_phase == 1)
219 aa->aa_flags &= ~AFA_PHASE2;
220 else
221 aa->aa_flags |= AFA_PHASE2;
222
223 /*
224 * and link it all together
225 */
226 aa->aa_ifp = ifp;
227 } else {
228 /*
229 * If we DID find one then we clobber any routes
230 * dependent on it..
231 */
232 at_scrub(ifp, aa);
233 }
234 break;
235
236 case SIOCGIFADDR:
237 sat = satosat(&ifr->ifr_addr);
238 nr = (struct netrange *) sat->sat_zero;
239 if (nr->nr_phase == 1) {
240 /*
241 * If the request is specifying phase 1, then
242 * only look at a phase one address
243 */
244 for (; aa; aa = aa->aa_list.tqe_next) {
245 if (aa->aa_ifp == ifp &&
246 (aa->aa_flags & AFA_PHASE2) == 0)
247 break;
248 }
249 } else {
250 /*
251 * default to phase 2
252 */
253 for (; aa; aa = aa->aa_list.tqe_next) {
254 if (aa->aa_ifp == ifp &&
255 (aa->aa_flags & AFA_PHASE2))
256 break;
257 }
258 }
259
260 if (aa == (struct at_ifaddr *) 0)
261 return (EADDRNOTAVAIL);
262 break;
263 }
264
265 /*
266 * By the time this switch is run we should be able to assume that
267 * the "aa" pointer is valid when needed.
268 */
269 switch (cmd) {
270 case SIOCGIFADDR:
271
272 /*
273 * copy the contents of the sockaddr blindly.
274 */
275 sat = (struct sockaddr_at *) & ifr->ifr_addr;
276 *sat = aa->aa_addr;
277
278 /*
279 * and do some cleanups
280 */
281 ((struct netrange *) &sat->sat_zero)->nr_phase =
282 (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
283 ((struct netrange *) &sat->sat_zero)->nr_firstnet =
284 aa->aa_firstnet;
285 ((struct netrange *) &sat->sat_zero)->nr_lastnet =
286 aa->aa_lastnet;
287 break;
288
289 case SIOCSIFADDR:
290 return (at_ifinit(ifp, aa,
291 (struct sockaddr_at *) &ifr->ifr_addr));
292
293 case SIOCAIFADDR:
294 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
295 return 0;
296 return (at_ifinit(ifp, aa,
297 (struct sockaddr_at *) &ifr->ifr_addr));
298
299 case SIOCDIFADDR:
300 at_purgeaddr((struct ifaddr *) aa, ifp);
301 break;
302
303 default:
304 if (ifp == 0 || ifp->if_ioctl == 0)
305 return (EOPNOTSUPP);
306 return ((*ifp->if_ioctl) (ifp, cmd, data));
307 }
308 return (0);
309 }
310
311 void
312 at_purgeaddr(ifa, ifp)
313 struct ifaddr *ifa;
314 struct ifnet *ifp;
315 {
316 struct at_ifaddr *aa = (void *) ifa;
317
318 /*
319 * scrub all routes.. didn't we just DO this? XXX yes, del it
320 * XXX above XXX not necessarily true anymore
321 */
322 at_scrub(ifp, aa);
323
324 /*
325 * remove the ifaddr from the interface
326 */
327 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
328 IFAFREE(&aa->aa_ifa);
329 TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
330 IFAFREE(&aa->aa_ifa);
331 }
332
333 /*
334 * Given an interface and an at_ifaddr (supposedly on that interface) remove
335 * any routes that depend on this. Why ifp is needed I'm not sure, as
336 * aa->at_ifaddr.ifa_ifp should be the same.
337 */
338 static int
339 at_scrub(ifp, aa)
340 struct ifnet *ifp;
341 struct at_ifaddr *aa;
342 {
343 int error = 0;
344
345 if (aa->aa_flags & AFA_ROUTE) {
346 if (ifp->if_flags & IFF_LOOPBACK)
347 error = aa_delsingleroute(&aa->aa_ifa,
348 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
349 else if (ifp->if_flags & IFF_POINTOPOINT)
350 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
351 else if (ifp->if_flags & IFF_BROADCAST)
352 error = aa_dorangeroute(&aa->aa_ifa,
353 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
354 RTM_DELETE);
355
356 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
357 aa->aa_flags &= ~AFA_ROUTE;
358 }
359 return error;
360 }
361
362 /*
363 * given an at_ifaddr,a sockaddr_at and an ifp,
364 * bang them all together at high speed and see what happens
365 */
366 static int
367 at_ifinit(ifp, aa, sat)
368 struct ifnet *ifp;
369 struct at_ifaddr *aa;
370 struct sockaddr_at *sat;
371 {
372 struct netrange nr, onr;
373 struct sockaddr_at oldaddr;
374 int s = splimp(), error = 0, i, j;
375 int netinc, nodeinc, nnets;
376 u_short net;
377
378 /*
379 * save the old addresses in the at_ifaddr just in case we need them.
380 */
381 oldaddr = aa->aa_addr;
382 onr.nr_firstnet = aa->aa_firstnet;
383 onr.nr_lastnet = aa->aa_lastnet;
384
385 /*
386 * take the address supplied as an argument, and add it to the
387 * at_ifnet (also given). Remember ing to update
388 * those parts of the at_ifaddr that need special processing
389 */
390 bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
391 bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
392 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
393 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
394 aa->aa_firstnet = nr.nr_firstnet;
395 aa->aa_lastnet = nr.nr_lastnet;
396
397 #ifdef NETATALKDEBUG
398 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
399 ifp->if_xname,
400 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
401 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
402 (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
403 #endif
404
405 /*
406 * We could eliminate the need for a second phase 1 probe (post
407 * autoconf) if we check whether we're resetting the node. Note
408 * that phase 1 probes use only nodes, not net.node pairs. Under
409 * phase 2, both the net and node must be the same.
410 */
411 AA_SAT(aa)->sat_len = sat->sat_len;
412 AA_SAT(aa)->sat_family = AF_APPLETALK;
413 if (ifp->if_flags & IFF_LOOPBACK) {
414 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
415 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
416 #if 0
417 } else if (fp->if_flags & IFF_POINTOPOINT) {
418 /* unimplemented */
419 /*
420 * we'd have to copy the dstaddr field over from the sat
421 * but it's not clear that it would contain the right info..
422 */
423 #endif
424 } else {
425 /*
426 * We are a normal (probably ethernet) interface.
427 * apply the new address to the interface structures etc.
428 * We will probe this address on the net first, before
429 * applying it to ensure that it is free.. If it is not, then
430 * we will try a number of other randomly generated addresses
431 * in this net and then increment the net. etc.etc. until
432 * we find an unused address.
433 */
434 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must
435 * probe? */
436 if (aa->aa_flags & AFA_PHASE2) {
437 if (sat->sat_addr.s_net == ATADDR_ANYNET) {
438 /*
439 * If we are phase 2, and the net was not
440 * specified * then we select a random net
441 * within the supplied netrange.
442 * XXX use /dev/random?
443 */
444 if (nnets != 1) {
445 net = ntohs(nr.nr_firstnet) +
446 time.tv_sec % (nnets - 1);
447 } else {
448 net = ntohs(nr.nr_firstnet);
449 }
450 } else {
451 /*
452 * if a net was supplied, then check that it
453 * is within the netrange. If it is not then
454 * replace the old values and return an error
455 */
456 if (ntohs(sat->sat_addr.s_net) <
457 ntohs(nr.nr_firstnet) ||
458 ntohs(sat->sat_addr.s_net) >
459 ntohs(nr.nr_lastnet)) {
460 aa->aa_addr = oldaddr;
461 aa->aa_firstnet = onr.nr_firstnet;
462 aa->aa_lastnet = onr.nr_lastnet;
463 splx(s);
464 return (EINVAL);
465 }
466 /*
467 * otherwise just use the new net number..
468 */
469 net = ntohs(sat->sat_addr.s_net);
470 }
471 } else {
472 /*
473 * we must be phase one, so just use whatever we were
474 * given. I guess it really isn't going to be used...
475 * RIGHT?
476 */
477 net = ntohs(sat->sat_addr.s_net);
478 }
479
480 /*
481 * set the node part of the address into the ifaddr. If it's
482 * not specified, be random about it... XXX use /dev/random?
483 */
484 if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
485 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
486 } else {
487 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
488 }
489
490 /*
491 * step through the nets in the range starting at the
492 * (possibly random) start point.
493 */
494 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
495 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
496 AA_SAT(aa)->sat_addr.s_net = htons(net);
497
498 /*
499 * using a rather strange stepping method,
500 * stagger through the possible node addresses
501 * Once again, starting at the (possibly random)
502 * initial node address.
503 */
504 for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
505 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
506 if (AA_SAT(aa)->sat_addr.s_node > 253 ||
507 AA_SAT(aa)->sat_addr.s_node < 1) {
508 continue;
509 }
510 aa->aa_probcnt = 10;
511
512 /*
513 * start off the probes as an asynchronous
514 * activity. though why wait 200mSec?
515 */
516 timeout(aarpprobe, ifp, hz / 5);
517 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
518 0)) {
519 /*
520 * theoretically we shouldn't time out
521 * here so if we returned with an error.
522 */
523 printf("at_ifinit: timeout?!\n");
524 aa->aa_addr = oldaddr;
525 aa->aa_firstnet = onr.nr_firstnet;
526 aa->aa_lastnet = onr.nr_lastnet;
527 splx(s);
528 return (EINTR);
529 }
530 /*
531 * The async activity should have woken us
532 * up. We need to see if it was successful in
533 * finding a free spot, or if we need to
534 * iterate to the next address to try.
535 */
536 if ((aa->aa_flags & AFA_PROBING) == 0)
537 break;
538 }
539
540 /*
541 * of course we need to break out through two loops...
542 */
543 if ((aa->aa_flags & AFA_PROBING) == 0)
544 break;
545
546 /* reset node for next network */
547 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
548 }
549
550 /*
551 * if we are still trying to probe, then we have finished all
552 * the possible addresses, so we need to give up
553 */
554 if (aa->aa_flags & AFA_PROBING) {
555 aa->aa_addr = oldaddr;
556 aa->aa_firstnet = onr.nr_firstnet;
557 aa->aa_lastnet = onr.nr_lastnet;
558 splx(s);
559 return (EADDRINUSE);
560 }
561 }
562
563 /*
564 * Now that we have selected an address, we need to tell the
565 * interface about it, just in case it needs to adjust something.
566 */
567 if (ifp->if_ioctl &&
568 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
569 /*
570 * of course this could mean that it objects violently
571 * so if it does, we back out again..
572 */
573 aa->aa_addr = oldaddr;
574 aa->aa_firstnet = onr.nr_firstnet;
575 aa->aa_lastnet = onr.nr_lastnet;
576 splx(s);
577 return (error);
578 }
579 /*
580 * set up the netmask part of the at_ifaddr and point the appropriate
581 * pointer in the ifaddr to it. probably pointless, but what the
582 * heck.. XXX
583 */
584 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
585 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
586 aa->aa_netmask.sat_family = AF_APPLETALK;
587 aa->aa_netmask.sat_addr.s_net = 0xffff;
588 aa->aa_netmask.sat_addr.s_node = 0;
589 #if 0
590 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
591 #endif
592
593 /*
594 * Initialize broadcast (or remote p2p) address
595 */
596 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
597 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
598 aa->aa_broadaddr.sat_family = AF_APPLETALK;
599
600 aa->aa_ifa.ifa_metric = ifp->if_metric;
601 if (ifp->if_flags & IFF_BROADCAST) {
602 aa->aa_broadaddr.sat_addr.s_net = htons(0);
603 aa->aa_broadaddr.sat_addr.s_node = 0xff;
604 aa->aa_ifa.ifa_broadaddr =
605 (struct sockaddr *) &aa->aa_broadaddr;
606 /* add the range of routes needed */
607 error = aa_dorangeroute(&aa->aa_ifa,
608 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
609 } else if (ifp->if_flags & IFF_POINTOPOINT) {
610 struct at_addr rtaddr, rtmask;
611
612 bzero(&rtaddr, sizeof(rtaddr));
613 bzero(&rtmask, sizeof(rtmask));
614 /* fill in the far end if we know it here XXX */
615 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
616 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
617 } else if (ifp->if_flags & IFF_LOOPBACK) {
618 struct at_addr rtaddr, rtmask;
619
620 bzero(&rtaddr, sizeof(rtaddr));
621 bzero(&rtmask, sizeof(rtmask));
622 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
623 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
624 rtmask.s_net = 0xffff;
625 rtmask.s_node = 0x0;
626 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
627 }
628 /*
629 * of course if we can't add these routes we back out, but it's getting
630 * risky by now XXX
631 */
632 if (error) {
633 at_scrub(ifp, aa);
634 aa->aa_addr = oldaddr;
635 aa->aa_firstnet = onr.nr_firstnet;
636 aa->aa_lastnet = onr.nr_lastnet;
637 splx(s);
638 return (error);
639 }
640 /*
641 * note that the address has a route associated with it....
642 */
643 aa->aa_ifa.ifa_flags |= IFA_ROUTE;
644 aa->aa_flags |= AFA_ROUTE;
645 splx(s);
646 return (0);
647 }
648
649 /*
650 * check whether a given address is a broadcast address for us..
651 */
652 int
653 at_broadcast(sat)
654 struct sockaddr_at *sat;
655 {
656 struct at_ifaddr *aa;
657
658 /*
659 * If the node is not right, it can't be a broadcast
660 */
661 if (sat->sat_addr.s_node != ATADDR_BCAST)
662 return 0;
663
664 /*
665 * If the node was right then if the net is right, it's a broadcast
666 */
667 if (sat->sat_addr.s_net == ATADDR_ANYNET)
668 return 1;
669
670 /*
671 * failing that, if the net is one we have, it's a broadcast as well.
672 */
673 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
674 if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
675 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
676 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
677 return 1;
678 }
679 return 0;
680 }
681
682
683 /*
684 * aa_dorangeroute()
685 *
686 * Add a route for a range of networks from bot to top - 1.
687 * Algorithm:
688 *
689 * Split the range into two subranges such that the middle
690 * of the two ranges is the point where the highest bit of difference
691 * between the two addresses, makes it's transition
692 * Each of the upper and lower ranges might not exist, or might be
693 * representable by 1 or more netmasks. In addition, if both
694 * ranges can be represented by the same netmask, then teh can be merged
695 * by using the next higher netmask..
696 */
697
698 static int
699 aa_dorangeroute(ifa, bot, top, cmd)
700 struct ifaddr *ifa;
701 u_int bot;
702 u_int top;
703 int cmd;
704 {
705 u_int mask1;
706 struct at_addr addr;
707 struct at_addr mask;
708 int error;
709
710 /*
711 * slight sanity check
712 */
713 if (bot > top)
714 return (EINVAL);
715
716 addr.s_node = 0;
717 mask.s_node = 0;
718 /*
719 * just start out with the lowest boundary
720 * and keep extending the mask till it's too big.
721 */
722
723 while (bot <= top) {
724 mask1 = 1;
725 while (((bot & ~mask1) >= bot)
726 && ((bot | mask1) <= top)) {
727 mask1 <<= 1;
728 mask1 |= 1;
729 }
730 mask1 >>= 1;
731 mask.s_net = htons(~mask1);
732 addr.s_net = htons(bot);
733 if (cmd == RTM_ADD) {
734 error = aa_addsingleroute(ifa, &addr, &mask);
735 if (error) {
736 /* XXX clean up? */
737 return (error);
738 }
739 } else {
740 error = aa_delsingleroute(ifa, &addr, &mask);
741 }
742 bot = (bot | mask1) + 1;
743 }
744 return 0;
745 }
746
747 static int
748 aa_addsingleroute(ifa, addr, mask)
749 struct ifaddr *ifa;
750 struct at_addr *addr;
751 struct at_addr *mask;
752 {
753 int error;
754
755 #ifdef NETATALKDEBUG
756 printf("aa_addsingleroute: %x.%x mask %x.%x ...",
757 ntohs(addr->s_net), addr->s_node,
758 ntohs(mask->s_net), mask->s_node);
759 #endif
760
761 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
762 #ifdef NETATALKDEBUG
763 if (error)
764 printf("aa_addsingleroute: error %d\n", error);
765 #endif
766 return (error);
767 }
768
769 static int
770 aa_delsingleroute(ifa, addr, mask)
771 struct ifaddr *ifa;
772 struct at_addr *addr;
773 struct at_addr *mask;
774 {
775 int error;
776
777 #ifdef NETATALKDEBUG
778 printf("aa_delsingleroute: %x.%x mask %x.%x ...",
779 ntohs(addr->s_net), addr->s_node,
780 ntohs(mask->s_net), mask->s_node);
781 #endif
782
783 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
784 #ifdef NETATALKDEBUG
785 if (error)
786 printf("aa_delsingleroute: error %d\n", error);
787 #endif
788 return (error);
789 }
790
791 static int
792 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
793 struct ifaddr *ifa;
794 struct at_addr *at_addr;
795 struct at_addr *at_mask;
796 int cmd;
797 int flags;
798 {
799 struct sockaddr_at addr, mask, *gate;
800
801 bzero(&addr, sizeof(addr));
802 bzero(&mask, sizeof(mask));
803 addr.sat_family = AF_APPLETALK;
804 addr.sat_len = sizeof(struct sockaddr_at);
805 addr.sat_addr.s_net = at_addr->s_net;
806 addr.sat_addr.s_node = at_addr->s_node;
807 mask.sat_family = AF_APPLETALK;
808 mask.sat_len = sizeof(struct sockaddr_at);
809 mask.sat_addr.s_net = at_mask->s_net;
810 mask.sat_addr.s_node = at_mask->s_node;
811
812 if (at_mask->s_node) {
813 gate = satosat(ifa->ifa_dstaddr);
814 flags |= RTF_HOST;
815 } else {
816 gate = satosat(ifa->ifa_addr);
817 }
818
819 #ifdef NETATALKDEBUG
820 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
821 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
822 #endif
823 return (rtrequest(cmd, (struct sockaddr *) &addr,
824 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
825 }
826
827 #if 0
828 static void
829 aa_clean()
830 {
831 struct at_ifaddr *aa;
832 struct ifaddr *ifa;
833 struct ifnet *ifp;
834
835 while (aa = at_ifaddr) {
836 ifp = aa->aa_ifp;
837 at_scrub(ifp, aa);
838 at_ifaddr = aa->aa_next;
839 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
840 ifp->if_addrlist = ifa->ifa_next;
841 } else {
842 while (ifa->ifa_next &&
843 (ifa->ifa_next != (struct ifaddr *) aa)) {
844 ifa = ifa->ifa_next;
845 }
846 if (ifa->ifa_next) {
847 ifa->ifa_next =
848 ((struct ifaddr *) aa)->ifa_next;
849 } else {
850 panic("at_entry");
851 }
852 }
853 }
854 }
855 #endif
856