Home | History | Annotate | Line # | Download | only in netatalk
at_control.c revision 1.3
      1 /*	$NetBSD: at_control.c,v 1.3 2000/02/02 23:28:09 thorpej Exp $	 */
      2 
      3 /*
      4  * Copyright (c) 1990,1994 Regents of The University of Michigan.
      5  * All Rights Reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this software and
      8  * its documentation for any purpose and without fee is hereby granted,
      9  * provided that the above copyright notice appears in all copies and
     10  * that both that copyright notice and this permission notice appear
     11  * in supporting documentation, and that the name of The University
     12  * of Michigan not be used in advertising or publicity pertaining to
     13  * distribution of the software without specific, written prior
     14  * permission. This software is supplied as is without expressed or
     15  * implied warranties of any kind.
     16  *
     17  * This product includes software developed by the University of
     18  * California, Berkeley and its contributors.
     19  *
     20  *	Research Systems Unix Group
     21  *	The University of Michigan
     22  *	c/o Wesley Craig
     23  *	535 W. William Street
     24  *	Ann Arbor, Michigan
     25  *	+1-313-764-2278
     26  *	netatalk (at) umich.edu
     27  */
     28 
     29 #include <sys/param.h>
     30 #include <sys/systm.h>
     31 #include <sys/proc.h>
     32 #include <sys/types.h>
     33 #include <sys/errno.h>
     34 #include <sys/ioctl.h>
     35 #include <sys/mbuf.h>
     36 #include <sys/kernel.h>
     37 #include <sys/socket.h>
     38 #include <sys/socketvar.h>
     39 #include <net/if.h>
     40 #include <net/route.h>
     41 #include <net/if_ether.h>
     42 #include <netinet/in.h>
     43 #undef s_net
     44 
     45 #include <netatalk/at.h>
     46 #include <netatalk/at_var.h>
     47 #include <netatalk/aarp.h>
     48 #include <netatalk/phase2.h>
     49 #include <netatalk/at_extern.h>
     50 
     51 static int aa_dorangeroute __P((struct ifaddr * ifa,
     52     u_int first, u_int last, int cmd));
     53 static int aa_addsingleroute __P((struct ifaddr * ifa,
     54     struct at_addr * addr, struct at_addr * mask));
     55 static int aa_delsingleroute __P((struct ifaddr * ifa,
     56     struct at_addr * addr, struct at_addr * mask));
     57 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
     58     struct at_addr * mask, int cmd, int flags));
     59 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
     60 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
     61     struct sockaddr_at * sat));
     62 #if 0
     63 static void aa_clean __P((void));
     64 #endif
     65 
     66 #define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
     67 			 (a)->sat_family == (b)->sat_family && \
     68 			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
     69 			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
     70 
     71 int
     72 at_control(cmd, data, ifp, p)
     73 	u_long          cmd;
     74 	caddr_t         data;
     75 	struct ifnet   *ifp;
     76 	struct proc    *p;
     77 {
     78 	struct ifreq   *ifr = (struct ifreq *) data;
     79 	struct sockaddr_at *sat;
     80 	struct netrange *nr;
     81 	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
     82 	struct at_ifaddr *aa0;
     83 	struct at_ifaddr *aa = 0;
     84 
     85 	/*
     86          * If we have an ifp, then find the matching at_ifaddr if it exists
     87          */
     88 	if (ifp)
     89 		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
     90 			if (aa->aa_ifp == ifp)
     91 				break;
     92 
     93 	/*
     94          * In this first switch table we are basically getting ready for
     95          * the second one, by getting the atalk-specific things set up
     96          * so that they start to look more similar to other protocols etc.
     97          */
     98 
     99 	switch (cmd) {
    100 	case SIOCAIFADDR:
    101 	case SIOCDIFADDR:
    102 		/*
    103 		 * If we have an appletalk sockaddr, scan forward of where
    104 		 * we are now on the at_ifaddr list to find one with a matching
    105 		 * address on this interface.
    106 		 * This may leave aa pointing to the first address on the
    107 		 * NEXT interface!
    108 		 */
    109 		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
    110 			for (; aa; aa = aa->aa_list.tqe_next)
    111 				if (aa->aa_ifp == ifp &&
    112 				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
    113 					break;
    114 		}
    115 		/*
    116 		 * If we a retrying to delete an addres but didn't find such,
    117 		 * then return with an error
    118 		 */
    119 		if (cmd == SIOCDIFADDR && aa == 0)
    120 			return (EADDRNOTAVAIL);
    121 		/* FALLTHROUGH */
    122 
    123 	case SIOCSIFADDR:
    124 		/*
    125 		 * If we are not superuser, then we don't get to do these
    126 		 * ops.
    127 		 */
    128 		if (suser(p->p_ucred, &p->p_acflag))
    129 			return (EPERM);
    130 
    131 		sat = satosat(&ifr->ifr_addr);
    132 		nr = (struct netrange *) sat->sat_zero;
    133 		if (nr->nr_phase == 1) {
    134 			/*
    135 		         * Look for a phase 1 address on this interface.
    136 		         * This may leave aa pointing to the first address on
    137 			 * the NEXT interface!
    138 		         */
    139 			for (; aa; aa = aa->aa_list.tqe_next) {
    140 				if (aa->aa_ifp == ifp &&
    141 				    (aa->aa_flags & AFA_PHASE2) == 0)
    142 					break;
    143 			}
    144 		} else {	/* default to phase 2 */
    145 			/*
    146 		         * Look for a phase 2 address on this interface.
    147 		         * This may leave aa pointing to the first address on
    148 			 * the NEXT interface!
    149 		         */
    150 			for (; aa; aa = aa->aa_list.tqe_next) {
    151 				if (aa->aa_ifp == ifp &&
    152 				    (aa->aa_flags & AFA_PHASE2))
    153 					break;
    154 			}
    155 		}
    156 
    157 		if (ifp == 0)
    158 			panic("at_control");
    159 
    160 		/*
    161 		 * If we failed to find an existing at_ifaddr entry, then we
    162 		 * allocate a fresh one.
    163 		 * XXX change this to use malloc
    164 		 */
    165 		if (aa == (struct at_ifaddr *) 0) {
    166 			aa = (struct at_ifaddr *)
    167 			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
    168 			    M_WAITOK);
    169 
    170 			if (aa == NULL)
    171 				return (ENOBUFS);
    172 
    173 			bzero(aa, sizeof *aa);
    174 
    175 			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
    176 				/*
    177 				 * Don't let the loopback be first, since the
    178 				 * first address is the machine's default
    179 				 * address for binding.
    180 				 * If it is, stick ourself in front, otherwise
    181 				 * go to the back of the list.
    182 				 */
    183 				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
    184 					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
    185 					    aa_list);
    186 				} else {
    187 					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
    188 					    aa_list);
    189 				}
    190 			} else {
    191 				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
    192 			}
    193 			IFAREF(&aa->aa_ifa);
    194 
    195 			/*
    196 		         * Find the end of the interface's addresses
    197 		         * and link our new one on the end
    198 		         */
    199 			TAILQ_INSERT_TAIL(&ifp->if_addrlist,
    200 			    (struct ifaddr *) aa, ifa_list);
    201 			IFAREF(&aa->aa_ifa);
    202 
    203 			/*
    204 		         * As the at_ifaddr contains the actual sockaddrs,
    205 		         * and the ifaddr itself, link them al together
    206 			 * correctly.
    207 		         */
    208 			aa->aa_ifa.ifa_addr =
    209 			    (struct sockaddr *) &aa->aa_addr;
    210 			aa->aa_ifa.ifa_dstaddr =
    211 			    (struct sockaddr *) &aa->aa_addr;
    212 			aa->aa_ifa.ifa_netmask =
    213 			    (struct sockaddr *) &aa->aa_netmask;
    214 
    215 			/*
    216 		         * Set/clear the phase 2 bit.
    217 		         */
    218 			if (nr->nr_phase == 1)
    219 				aa->aa_flags &= ~AFA_PHASE2;
    220 			else
    221 				aa->aa_flags |= AFA_PHASE2;
    222 
    223 			/*
    224 		         * and link it all together
    225 		         */
    226 			aa->aa_ifp = ifp;
    227 		} else {
    228 			/*
    229 		         * If we DID find one then we clobber any routes
    230 			 * dependent on it..
    231 		         */
    232 			at_scrub(ifp, aa);
    233 		}
    234 		break;
    235 
    236 	case SIOCGIFADDR:
    237 		sat = satosat(&ifr->ifr_addr);
    238 		nr = (struct netrange *) sat->sat_zero;
    239 		if (nr->nr_phase == 1) {
    240 			/*
    241 		         * If the request is specifying phase 1, then
    242 		         * only look at a phase one address
    243 		         */
    244 			for (; aa; aa = aa->aa_list.tqe_next) {
    245 				if (aa->aa_ifp == ifp &&
    246 				    (aa->aa_flags & AFA_PHASE2) == 0)
    247 					break;
    248 			}
    249 		} else {
    250 			/*
    251 		         * default to phase 2
    252 		         */
    253 			for (; aa; aa = aa->aa_list.tqe_next) {
    254 				if (aa->aa_ifp == ifp &&
    255 				    (aa->aa_flags & AFA_PHASE2))
    256 					break;
    257 			}
    258 		}
    259 
    260 		if (aa == (struct at_ifaddr *) 0)
    261 			return (EADDRNOTAVAIL);
    262 		break;
    263 	}
    264 
    265 	/*
    266          * By the time this switch is run we should be able to assume that
    267          * the "aa" pointer is valid when needed.
    268          */
    269 	switch (cmd) {
    270 	case SIOCGIFADDR:
    271 
    272 		/*
    273 		 * copy the contents of the sockaddr blindly.
    274 		 */
    275 		sat = (struct sockaddr_at *) & ifr->ifr_addr;
    276 		*sat = aa->aa_addr;
    277 
    278 		/*
    279 		 * and do some cleanups
    280 		 */
    281 		((struct netrange *) &sat->sat_zero)->nr_phase =
    282 		    (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
    283 		((struct netrange *) &sat->sat_zero)->nr_firstnet =
    284 		    aa->aa_firstnet;
    285 		((struct netrange *) &sat->sat_zero)->nr_lastnet =
    286 		    aa->aa_lastnet;
    287 		break;
    288 
    289 	case SIOCSIFADDR:
    290 		return (at_ifinit(ifp, aa,
    291 		    (struct sockaddr_at *) &ifr->ifr_addr));
    292 
    293 	case SIOCAIFADDR:
    294 		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
    295 			return 0;
    296 		return (at_ifinit(ifp, aa,
    297 		    (struct sockaddr_at *) &ifr->ifr_addr));
    298 
    299 	case SIOCDIFADDR:
    300 		at_purgeaddr((struct ifaddr *) aa, ifp);
    301 		break;
    302 
    303 	default:
    304 		if (ifp == 0 || ifp->if_ioctl == 0)
    305 			return (EOPNOTSUPP);
    306 		return ((*ifp->if_ioctl) (ifp, cmd, data));
    307 	}
    308 	return (0);
    309 }
    310 
    311 void
    312 at_purgeaddr(ifa, ifp)
    313 	struct ifaddr *ifa;
    314 	struct ifnet *ifp;
    315 {
    316 	struct at_ifaddr *aa = (void *) ifa;
    317 
    318 	/*
    319 	 * scrub all routes.. didn't we just DO this? XXX yes, del it
    320 	 * XXX above XXX not necessarily true anymore
    321 	 */
    322 	at_scrub(ifp, aa);
    323 
    324 	/*
    325 	 * remove the ifaddr from the interface
    326 	 */
    327 	TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
    328 	IFAFREE(&aa->aa_ifa);
    329 	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
    330 	IFAFREE(&aa->aa_ifa);
    331 }
    332 
    333 void
    334 at_purgeif(ifp)
    335 	struct ifnet *ifp;
    336 {
    337 	struct ifaddr *ifa, *nifa;
    338 
    339 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
    340 		nifa = TAILQ_NEXT(ifa, ifa_list);
    341 		if (ifa->ifa_addr->sa_family != AF_APPLETALK)
    342 			continue;
    343 		at_purgeaddr(ifa, ifp);
    344 	}
    345 }
    346 
    347 /*
    348  * Given an interface and an at_ifaddr (supposedly on that interface) remove
    349  * any routes that depend on this. Why ifp is needed I'm not sure, as
    350  * aa->at_ifaddr.ifa_ifp should be the same.
    351  */
    352 static int
    353 at_scrub(ifp, aa)
    354 	struct ifnet   *ifp;
    355 	struct at_ifaddr *aa;
    356 {
    357 	int error = 0;
    358 
    359 	if (aa->aa_flags & AFA_ROUTE) {
    360 		if (ifp->if_flags & IFF_LOOPBACK)
    361 			error = aa_delsingleroute(&aa->aa_ifa,
    362 			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
    363 		else if (ifp->if_flags & IFF_POINTOPOINT)
    364 			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
    365 		else if (ifp->if_flags & IFF_BROADCAST)
    366 			error = aa_dorangeroute(&aa->aa_ifa,
    367 			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    368 			    RTM_DELETE);
    369 
    370 		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
    371 		aa->aa_flags &= ~AFA_ROUTE;
    372 	}
    373 	return error;
    374 }
    375 
    376 /*
    377  * given an at_ifaddr,a sockaddr_at and an ifp,
    378  * bang them all together at high speed and see what happens
    379  */
    380 static int
    381 at_ifinit(ifp, aa, sat)
    382 	struct ifnet   *ifp;
    383 	struct at_ifaddr *aa;
    384 	struct sockaddr_at *sat;
    385 {
    386 	struct netrange nr, onr;
    387 	struct sockaddr_at oldaddr;
    388 	int             s = splimp(), error = 0, i, j;
    389 	int             netinc, nodeinc, nnets;
    390 	u_short         net;
    391 
    392 	/*
    393 	 * save the old addresses in the at_ifaddr just in case we need them.
    394 	 */
    395 	oldaddr = aa->aa_addr;
    396 	onr.nr_firstnet = aa->aa_firstnet;
    397 	onr.nr_lastnet = aa->aa_lastnet;
    398 
    399 	/*
    400          * take the address supplied as an argument, and add it to the
    401          * at_ifnet (also given). Remember ing to update
    402          * those parts of the at_ifaddr that need special processing
    403          */
    404 	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
    405 	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
    406 	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
    407 	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
    408 	aa->aa_firstnet = nr.nr_firstnet;
    409 	aa->aa_lastnet = nr.nr_lastnet;
    410 
    411 #ifdef NETATALKDEBUG
    412 	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
    413 	    ifp->if_xname,
    414 	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
    415 	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    416 	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
    417 #endif
    418 
    419 	/*
    420          * We could eliminate the need for a second phase 1 probe (post
    421          * autoconf) if we check whether we're resetting the node. Note
    422          * that phase 1 probes use only nodes, not net.node pairs.  Under
    423          * phase 2, both the net and node must be the same.
    424          */
    425 	AA_SAT(aa)->sat_len = sat->sat_len;
    426 	AA_SAT(aa)->sat_family = AF_APPLETALK;
    427 	if (ifp->if_flags & IFF_LOOPBACK) {
    428 		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
    429 		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    430 #if 0
    431 	} else if (fp->if_flags & IFF_POINTOPOINT) {
    432 		/* unimplemented */
    433 		/*
    434 		 * we'd have to copy the dstaddr field over from the sat
    435 		 * but it's not clear that it would contain the right info..
    436 		 */
    437 #endif
    438 	} else {
    439 		/*
    440 		 * We are a normal (probably ethernet) interface.
    441 		 * apply the new address to the interface structures etc.
    442 		 * We will probe this address on the net first, before
    443 		 * applying it to ensure that it is free.. If it is not, then
    444 		 * we will try a number of other randomly generated addresses
    445 		 * in this net and then increment the net.  etc.etc. until
    446 		 * we find an unused address.
    447 		 */
    448 		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
    449 						 * probe? */
    450 		if (aa->aa_flags & AFA_PHASE2) {
    451 			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
    452 				/*
    453 				 * If we are phase 2, and the net was not
    454 				 * specified * then we select a random net
    455 				 * within the supplied netrange.
    456 				 * XXX use /dev/random?
    457 				 */
    458 				if (nnets != 1) {
    459 					net = ntohs(nr.nr_firstnet) +
    460 					    time.tv_sec % (nnets - 1);
    461 				} else {
    462 					net = ntohs(nr.nr_firstnet);
    463 				}
    464 			} else {
    465 				/*
    466 				 * if a net was supplied, then check that it
    467 				 * is within the netrange. If it is not then
    468 				 * replace the old values and return an error
    469 				 */
    470 				if (ntohs(sat->sat_addr.s_net) <
    471 				    ntohs(nr.nr_firstnet) ||
    472 				    ntohs(sat->sat_addr.s_net) >
    473 				    ntohs(nr.nr_lastnet)) {
    474 					aa->aa_addr = oldaddr;
    475 					aa->aa_firstnet = onr.nr_firstnet;
    476 					aa->aa_lastnet = onr.nr_lastnet;
    477 					splx(s);
    478 					return (EINVAL);
    479 				}
    480 				/*
    481 				 * otherwise just use the new net number..
    482 				 */
    483 				net = ntohs(sat->sat_addr.s_net);
    484 			}
    485 		} else {
    486 			/*
    487 		         * we must be phase one, so just use whatever we were
    488 			 * given. I guess it really isn't going to be used...
    489 			 * RIGHT?
    490 		         */
    491 			net = ntohs(sat->sat_addr.s_net);
    492 		}
    493 
    494 		/*
    495 		 * set the node part of the address into the ifaddr. If it's
    496 		 * not specified, be random about it... XXX use /dev/random?
    497 		 */
    498 		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
    499 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    500 		} else {
    501 			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    502 		}
    503 
    504 		/*
    505 		 * step through the nets in the range starting at the
    506 		 * (possibly random) start point.
    507 		 */
    508 		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
    509 		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
    510 			AA_SAT(aa)->sat_addr.s_net = htons(net);
    511 
    512 			/*
    513 		         * using a rather strange stepping method,
    514 		         * stagger through the possible node addresses
    515 		         * Once again, starting at the (possibly random)
    516 		         * initial node address.
    517 		         */
    518 			for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
    519 			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
    520 				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
    521 				    AA_SAT(aa)->sat_addr.s_node < 1) {
    522 					continue;
    523 				}
    524 				aa->aa_probcnt = 10;
    525 
    526 				/*
    527 				 * start off the probes as an asynchronous
    528 				 * activity. though why wait 200mSec?
    529 				 */
    530 				timeout(aarpprobe, ifp, hz / 5);
    531 				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
    532 				    0)) {
    533 					/*
    534 				         * theoretically we shouldn't time out
    535 					 * here so if we returned with an error.
    536 				         */
    537 					printf("at_ifinit: timeout?!\n");
    538 					aa->aa_addr = oldaddr;
    539 					aa->aa_firstnet = onr.nr_firstnet;
    540 					aa->aa_lastnet = onr.nr_lastnet;
    541 					splx(s);
    542 					return (EINTR);
    543 				}
    544 				/*
    545 				 * The async activity should have woken us
    546 				 * up. We need to see if it was successful in
    547 				 * finding a free spot, or if we need to
    548 				 * iterate to the next address to try.
    549 				 */
    550 				if ((aa->aa_flags & AFA_PROBING) == 0)
    551 					break;
    552 			}
    553 
    554 			/*
    555 		         * of course we need to break out through two loops...
    556 		         */
    557 			if ((aa->aa_flags & AFA_PROBING) == 0)
    558 				break;
    559 
    560 			/* reset node for next network */
    561 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    562 		}
    563 
    564 		/*
    565 		 * if we are still trying to probe, then we have finished all
    566 		 * the possible addresses, so we need to give up
    567 		 */
    568 		if (aa->aa_flags & AFA_PROBING) {
    569 			aa->aa_addr = oldaddr;
    570 			aa->aa_firstnet = onr.nr_firstnet;
    571 			aa->aa_lastnet = onr.nr_lastnet;
    572 			splx(s);
    573 			return (EADDRINUSE);
    574 		}
    575 	}
    576 
    577 	/*
    578 	 * Now that we have selected an address, we need to tell the
    579 	 * interface about it, just in case it needs to adjust something.
    580 	 */
    581 	if (ifp->if_ioctl &&
    582 	    (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
    583 		/*
    584 		 * of course this could mean that it objects violently
    585 		 * so if it does, we back out again..
    586 		 */
    587 		aa->aa_addr = oldaddr;
    588 		aa->aa_firstnet = onr.nr_firstnet;
    589 		aa->aa_lastnet = onr.nr_lastnet;
    590 		splx(s);
    591 		return (error);
    592 	}
    593 	/*
    594 	 * set up the netmask part of the at_ifaddr and point the appropriate
    595 	 * pointer in the ifaddr to it. probably pointless, but what the
    596 	 * heck.. XXX
    597 	 */
    598 	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
    599 	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
    600 	aa->aa_netmask.sat_family = AF_APPLETALK;
    601 	aa->aa_netmask.sat_addr.s_net = 0xffff;
    602 	aa->aa_netmask.sat_addr.s_node = 0;
    603 #if 0
    604 	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
    605 #endif
    606 
    607 	/*
    608          * Initialize broadcast (or remote p2p) address
    609          */
    610 	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
    611 	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
    612 	aa->aa_broadaddr.sat_family = AF_APPLETALK;
    613 
    614 	aa->aa_ifa.ifa_metric = ifp->if_metric;
    615 	if (ifp->if_flags & IFF_BROADCAST) {
    616 		aa->aa_broadaddr.sat_addr.s_net = htons(0);
    617 		aa->aa_broadaddr.sat_addr.s_node = 0xff;
    618 		aa->aa_ifa.ifa_broadaddr =
    619 		    (struct sockaddr *) &aa->aa_broadaddr;
    620 		/* add the range of routes needed */
    621 		error = aa_dorangeroute(&aa->aa_ifa,
    622 		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
    623 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
    624 		struct at_addr  rtaddr, rtmask;
    625 
    626 		bzero(&rtaddr, sizeof(rtaddr));
    627 		bzero(&rtmask, sizeof(rtmask));
    628 		/* fill in the far end if we know it here XXX */
    629 		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
    630 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    631 	} else if (ifp->if_flags & IFF_LOOPBACK) {
    632 		struct at_addr  rtaddr, rtmask;
    633 
    634 		bzero(&rtaddr, sizeof(rtaddr));
    635 		bzero(&rtmask, sizeof(rtmask));
    636 		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
    637 		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
    638 		rtmask.s_net = 0xffff;
    639 		rtmask.s_node = 0x0;
    640 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    641 	}
    642 	/*
    643          * of course if we can't add these routes we back out, but it's getting
    644          * risky by now XXX
    645          */
    646 	if (error) {
    647 		at_scrub(ifp, aa);
    648 		aa->aa_addr = oldaddr;
    649 		aa->aa_firstnet = onr.nr_firstnet;
    650 		aa->aa_lastnet = onr.nr_lastnet;
    651 		splx(s);
    652 		return (error);
    653 	}
    654 	/*
    655          * note that the address has a route associated with it....
    656          */
    657 	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
    658 	aa->aa_flags |= AFA_ROUTE;
    659 	splx(s);
    660 	return (0);
    661 }
    662 
    663 /*
    664  * check whether a given address is a broadcast address for us..
    665  */
    666 int
    667 at_broadcast(sat)
    668 	struct sockaddr_at *sat;
    669 {
    670 	struct at_ifaddr *aa;
    671 
    672 	/*
    673          * If the node is not right, it can't be a broadcast
    674          */
    675 	if (sat->sat_addr.s_node != ATADDR_BCAST)
    676 		return 0;
    677 
    678 	/*
    679          * If the node was right then if the net is right, it's a broadcast
    680          */
    681 	if (sat->sat_addr.s_net == ATADDR_ANYNET)
    682 		return 1;
    683 
    684 	/*
    685          * failing that, if the net is one we have, it's a broadcast as well.
    686          */
    687 	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
    688 		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
    689 		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
    690 		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
    691 			return 1;
    692 	}
    693 	return 0;
    694 }
    695 
    696 
    697 /*
    698  * aa_dorangeroute()
    699  *
    700  * Add a route for a range of networks from bot to top - 1.
    701  * Algorithm:
    702  *
    703  * Split the range into two subranges such that the middle
    704  * of the two ranges is the point where the highest bit of difference
    705  * between the two addresses, makes it's transition
    706  * Each of the upper and lower ranges might not exist, or might be
    707  * representable by 1 or more netmasks. In addition, if both
    708  * ranges can be represented by the same netmask, then teh can be merged
    709  * by using the next higher netmask..
    710  */
    711 
    712 static int
    713 aa_dorangeroute(ifa, bot, top, cmd)
    714 	struct ifaddr *ifa;
    715 	u_int bot;
    716 	u_int top;
    717 	int cmd;
    718 {
    719 	u_int           mask1;
    720 	struct at_addr  addr;
    721 	struct at_addr  mask;
    722 	int             error;
    723 
    724 	/*
    725 	 * slight sanity check
    726 	 */
    727 	if (bot > top)
    728 		return (EINVAL);
    729 
    730 	addr.s_node = 0;
    731 	mask.s_node = 0;
    732 	/*
    733 	 * just start out with the lowest boundary
    734 	 * and keep extending the mask till it's too big.
    735 	 */
    736 
    737 	while (bot <= top) {
    738 		mask1 = 1;
    739 		while (((bot & ~mask1) >= bot)
    740 		       && ((bot | mask1) <= top)) {
    741 			mask1 <<= 1;
    742 			mask1 |= 1;
    743 		}
    744 		mask1 >>= 1;
    745 		mask.s_net = htons(~mask1);
    746 		addr.s_net = htons(bot);
    747 		if (cmd == RTM_ADD) {
    748 			error = aa_addsingleroute(ifa, &addr, &mask);
    749 			if (error) {
    750 				/* XXX clean up? */
    751 				return (error);
    752 			}
    753 		} else {
    754 			error = aa_delsingleroute(ifa, &addr, &mask);
    755 		}
    756 		bot = (bot | mask1) + 1;
    757 	}
    758 	return 0;
    759 }
    760 
    761 static int
    762 aa_addsingleroute(ifa, addr, mask)
    763 	struct ifaddr *ifa;
    764 	struct at_addr *addr;
    765 	struct at_addr *mask;
    766 {
    767 	int error;
    768 
    769 #ifdef NETATALKDEBUG
    770 	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
    771 	       ntohs(addr->s_net), addr->s_node,
    772 	       ntohs(mask->s_net), mask->s_node);
    773 #endif
    774 
    775 	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
    776 #ifdef NETATALKDEBUG
    777 	if (error)
    778 		printf("aa_addsingleroute: error %d\n", error);
    779 #endif
    780 	return (error);
    781 }
    782 
    783 static int
    784 aa_delsingleroute(ifa, addr, mask)
    785 	struct ifaddr *ifa;
    786 	struct at_addr *addr;
    787 	struct at_addr *mask;
    788 {
    789 	int error;
    790 
    791 #ifdef NETATALKDEBUG
    792 	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
    793 	       ntohs(addr->s_net), addr->s_node,
    794 	       ntohs(mask->s_net), mask->s_node);
    795 #endif
    796 
    797 	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
    798 #ifdef NETATALKDEBUG
    799 	if (error)
    800 		printf("aa_delsingleroute: error %d\n", error);
    801 #endif
    802 	return (error);
    803 }
    804 
    805 static int
    806 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
    807 	struct ifaddr *ifa;
    808 	struct at_addr *at_addr;
    809 	struct at_addr *at_mask;
    810 	int cmd;
    811 	int flags;
    812 {
    813 	struct sockaddr_at addr, mask, *gate;
    814 
    815 	bzero(&addr, sizeof(addr));
    816 	bzero(&mask, sizeof(mask));
    817 	addr.sat_family = AF_APPLETALK;
    818 	addr.sat_len = sizeof(struct sockaddr_at);
    819 	addr.sat_addr.s_net = at_addr->s_net;
    820 	addr.sat_addr.s_node = at_addr->s_node;
    821 	mask.sat_family = AF_APPLETALK;
    822 	mask.sat_len = sizeof(struct sockaddr_at);
    823 	mask.sat_addr.s_net = at_mask->s_net;
    824 	mask.sat_addr.s_node = at_mask->s_node;
    825 
    826 	if (at_mask->s_node) {
    827 		gate = satosat(ifa->ifa_dstaddr);
    828 		flags |= RTF_HOST;
    829 	} else {
    830 		gate = satosat(ifa->ifa_addr);
    831 	}
    832 
    833 #ifdef NETATALKDEBUG
    834 	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
    835 	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
    836 #endif
    837 	return (rtrequest(cmd, (struct sockaddr *) &addr,
    838 	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
    839 }
    840 
    841 #if 0
    842 static void
    843 aa_clean()
    844 {
    845 	struct at_ifaddr *aa;
    846 	struct ifaddr  *ifa;
    847 	struct ifnet   *ifp;
    848 
    849 	while (aa = at_ifaddr) {
    850 		ifp = aa->aa_ifp;
    851 		at_scrub(ifp, aa);
    852 		at_ifaddr = aa->aa_next;
    853 		if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
    854 			ifp->if_addrlist = ifa->ifa_next;
    855 		} else {
    856 			while (ifa->ifa_next &&
    857 			       (ifa->ifa_next != (struct ifaddr *) aa)) {
    858 				ifa = ifa->ifa_next;
    859 			}
    860 			if (ifa->ifa_next) {
    861 				ifa->ifa_next =
    862 				    ((struct ifaddr *) aa)->ifa_next;
    863 			} else {
    864 				panic("at_entry");
    865 			}
    866 		}
    867 	}
    868 }
    869 #endif
    870