Home | History | Annotate | Line # | Download | only in netatalk
at_control.c revision 1.5
      1 /*	$NetBSD: at_control.c,v 1.5 2001/04/13 23:30:18 thorpej Exp $	 */
      2 
      3 /*
      4  * Copyright (c) 1990,1994 Regents of The University of Michigan.
      5  * All Rights Reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this software and
      8  * its documentation for any purpose and without fee is hereby granted,
      9  * provided that the above copyright notice appears in all copies and
     10  * that both that copyright notice and this permission notice appear
     11  * in supporting documentation, and that the name of The University
     12  * of Michigan not be used in advertising or publicity pertaining to
     13  * distribution of the software without specific, written prior
     14  * permission. This software is supplied as is without expressed or
     15  * implied warranties of any kind.
     16  *
     17  * This product includes software developed by the University of
     18  * California, Berkeley and its contributors.
     19  *
     20  *	Research Systems Unix Group
     21  *	The University of Michigan
     22  *	c/o Wesley Craig
     23  *	535 W. William Street
     24  *	Ann Arbor, Michigan
     25  *	+1-313-764-2278
     26  *	netatalk (at) umich.edu
     27  */
     28 
     29 #include <sys/param.h>
     30 #include <sys/systm.h>
     31 #include <sys/proc.h>
     32 #include <sys/types.h>
     33 #include <sys/errno.h>
     34 #include <sys/ioctl.h>
     35 #include <sys/mbuf.h>
     36 #include <sys/kernel.h>
     37 #include <sys/socket.h>
     38 #include <sys/socketvar.h>
     39 #include <net/if.h>
     40 #include <net/route.h>
     41 #include <net/if_ether.h>
     42 #include <netinet/in.h>
     43 #undef s_net
     44 
     45 #include <netatalk/at.h>
     46 #include <netatalk/at_var.h>
     47 #include <netatalk/aarp.h>
     48 #include <netatalk/phase2.h>
     49 #include <netatalk/at_extern.h>
     50 
     51 static int aa_dorangeroute __P((struct ifaddr * ifa,
     52     u_int first, u_int last, int cmd));
     53 static int aa_addsingleroute __P((struct ifaddr * ifa,
     54     struct at_addr * addr, struct at_addr * mask));
     55 static int aa_delsingleroute __P((struct ifaddr * ifa,
     56     struct at_addr * addr, struct at_addr * mask));
     57 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
     58     struct at_addr * mask, int cmd, int flags));
     59 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
     60 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
     61     struct sockaddr_at * sat));
     62 #if 0
     63 static void aa_clean __P((void));
     64 #endif
     65 
     66 #define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
     67 			 (a)->sat_family == (b)->sat_family && \
     68 			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
     69 			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
     70 
     71 int
     72 at_control(cmd, data, ifp, p)
     73 	u_long          cmd;
     74 	caddr_t         data;
     75 	struct ifnet   *ifp;
     76 	struct proc    *p;
     77 {
     78 	struct ifreq   *ifr = (struct ifreq *) data;
     79 	struct sockaddr_at *sat;
     80 	struct netrange *nr;
     81 	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
     82 	struct at_ifaddr *aa0;
     83 	struct at_ifaddr *aa = 0;
     84 
     85 	/*
     86          * If we have an ifp, then find the matching at_ifaddr if it exists
     87          */
     88 	if (ifp)
     89 		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
     90 			if (aa->aa_ifp == ifp)
     91 				break;
     92 
     93 	/*
     94          * In this first switch table we are basically getting ready for
     95          * the second one, by getting the atalk-specific things set up
     96          * so that they start to look more similar to other protocols etc.
     97          */
     98 
     99 	switch (cmd) {
    100 	case SIOCAIFADDR:
    101 	case SIOCDIFADDR:
    102 		/*
    103 		 * If we have an appletalk sockaddr, scan forward of where
    104 		 * we are now on the at_ifaddr list to find one with a matching
    105 		 * address on this interface.
    106 		 * This may leave aa pointing to the first address on the
    107 		 * NEXT interface!
    108 		 */
    109 		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
    110 			for (; aa; aa = aa->aa_list.tqe_next)
    111 				if (aa->aa_ifp == ifp &&
    112 				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
    113 					break;
    114 		}
    115 		/*
    116 		 * If we a retrying to delete an addres but didn't find such,
    117 		 * then return with an error
    118 		 */
    119 		if (cmd == SIOCDIFADDR && aa == 0)
    120 			return (EADDRNOTAVAIL);
    121 		/* FALLTHROUGH */
    122 
    123 	case SIOCSIFADDR:
    124 		/*
    125 		 * If we are not superuser, then we don't get to do these
    126 		 * ops.
    127 		 */
    128 		if (suser(p->p_ucred, &p->p_acflag))
    129 			return (EPERM);
    130 
    131 		sat = satosat(&ifr->ifr_addr);
    132 		nr = (struct netrange *) sat->sat_zero;
    133 		if (nr->nr_phase == 1) {
    134 			/*
    135 		         * Look for a phase 1 address on this interface.
    136 		         * This may leave aa pointing to the first address on
    137 			 * the NEXT interface!
    138 		         */
    139 			for (; aa; aa = aa->aa_list.tqe_next) {
    140 				if (aa->aa_ifp == ifp &&
    141 				    (aa->aa_flags & AFA_PHASE2) == 0)
    142 					break;
    143 			}
    144 		} else {	/* default to phase 2 */
    145 			/*
    146 		         * Look for a phase 2 address on this interface.
    147 		         * This may leave aa pointing to the first address on
    148 			 * the NEXT interface!
    149 		         */
    150 			for (; aa; aa = aa->aa_list.tqe_next) {
    151 				if (aa->aa_ifp == ifp &&
    152 				    (aa->aa_flags & AFA_PHASE2))
    153 					break;
    154 			}
    155 		}
    156 
    157 		if (ifp == 0)
    158 			panic("at_control");
    159 
    160 		/*
    161 		 * If we failed to find an existing at_ifaddr entry, then we
    162 		 * allocate a fresh one.
    163 		 * XXX change this to use malloc
    164 		 */
    165 		if (aa == (struct at_ifaddr *) 0) {
    166 			aa = (struct at_ifaddr *)
    167 			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
    168 			    M_WAITOK);
    169 
    170 			if (aa == NULL)
    171 				return (ENOBUFS);
    172 
    173 			bzero(aa, sizeof *aa);
    174 			callout_init(&aa->aa_probe_ch);
    175 
    176 			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
    177 				/*
    178 				 * Don't let the loopback be first, since the
    179 				 * first address is the machine's default
    180 				 * address for binding.
    181 				 * If it is, stick ourself in front, otherwise
    182 				 * go to the back of the list.
    183 				 */
    184 				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
    185 					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
    186 					    aa_list);
    187 				} else {
    188 					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
    189 					    aa_list);
    190 				}
    191 			} else {
    192 				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
    193 			}
    194 			IFAREF(&aa->aa_ifa);
    195 
    196 			/*
    197 		         * Find the end of the interface's addresses
    198 		         * and link our new one on the end
    199 		         */
    200 			TAILQ_INSERT_TAIL(&ifp->if_addrlist,
    201 			    (struct ifaddr *) aa, ifa_list);
    202 			IFAREF(&aa->aa_ifa);
    203 
    204 			/*
    205 		         * As the at_ifaddr contains the actual sockaddrs,
    206 		         * and the ifaddr itself, link them al together
    207 			 * correctly.
    208 		         */
    209 			aa->aa_ifa.ifa_addr =
    210 			    (struct sockaddr *) &aa->aa_addr;
    211 			aa->aa_ifa.ifa_dstaddr =
    212 			    (struct sockaddr *) &aa->aa_addr;
    213 			aa->aa_ifa.ifa_netmask =
    214 			    (struct sockaddr *) &aa->aa_netmask;
    215 
    216 			/*
    217 		         * Set/clear the phase 2 bit.
    218 		         */
    219 			if (nr->nr_phase == 1)
    220 				aa->aa_flags &= ~AFA_PHASE2;
    221 			else
    222 				aa->aa_flags |= AFA_PHASE2;
    223 
    224 			/*
    225 		         * and link it all together
    226 		         */
    227 			aa->aa_ifp = ifp;
    228 		} else {
    229 			/*
    230 		         * If we DID find one then we clobber any routes
    231 			 * dependent on it..
    232 		         */
    233 			at_scrub(ifp, aa);
    234 		}
    235 		break;
    236 
    237 	case SIOCGIFADDR:
    238 		sat = satosat(&ifr->ifr_addr);
    239 		nr = (struct netrange *) sat->sat_zero;
    240 		if (nr->nr_phase == 1) {
    241 			/*
    242 		         * If the request is specifying phase 1, then
    243 		         * only look at a phase one address
    244 		         */
    245 			for (; aa; aa = aa->aa_list.tqe_next) {
    246 				if (aa->aa_ifp == ifp &&
    247 				    (aa->aa_flags & AFA_PHASE2) == 0)
    248 					break;
    249 			}
    250 		} else {
    251 			/*
    252 		         * default to phase 2
    253 		         */
    254 			for (; aa; aa = aa->aa_list.tqe_next) {
    255 				if (aa->aa_ifp == ifp &&
    256 				    (aa->aa_flags & AFA_PHASE2))
    257 					break;
    258 			}
    259 		}
    260 
    261 		if (aa == (struct at_ifaddr *) 0)
    262 			return (EADDRNOTAVAIL);
    263 		break;
    264 	}
    265 
    266 	/*
    267          * By the time this switch is run we should be able to assume that
    268          * the "aa" pointer is valid when needed.
    269          */
    270 	switch (cmd) {
    271 	case SIOCGIFADDR:
    272 
    273 		/*
    274 		 * copy the contents of the sockaddr blindly.
    275 		 */
    276 		sat = (struct sockaddr_at *) & ifr->ifr_addr;
    277 		*sat = aa->aa_addr;
    278 
    279 		/*
    280 		 * and do some cleanups
    281 		 */
    282 		((struct netrange *) &sat->sat_zero)->nr_phase =
    283 		    (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
    284 		((struct netrange *) &sat->sat_zero)->nr_firstnet =
    285 		    aa->aa_firstnet;
    286 		((struct netrange *) &sat->sat_zero)->nr_lastnet =
    287 		    aa->aa_lastnet;
    288 		break;
    289 
    290 	case SIOCSIFADDR:
    291 		return (at_ifinit(ifp, aa,
    292 		    (struct sockaddr_at *) &ifr->ifr_addr));
    293 
    294 	case SIOCAIFADDR:
    295 		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
    296 			return 0;
    297 		return (at_ifinit(ifp, aa,
    298 		    (struct sockaddr_at *) &ifr->ifr_addr));
    299 
    300 	case SIOCDIFADDR:
    301 		at_purgeaddr((struct ifaddr *) aa, ifp);
    302 		break;
    303 
    304 	default:
    305 		if (ifp == 0 || ifp->if_ioctl == 0)
    306 			return (EOPNOTSUPP);
    307 		return ((*ifp->if_ioctl) (ifp, cmd, data));
    308 	}
    309 	return (0);
    310 }
    311 
    312 void
    313 at_purgeaddr(ifa, ifp)
    314 	struct ifaddr *ifa;
    315 	struct ifnet *ifp;
    316 {
    317 	struct at_ifaddr *aa = (void *) ifa;
    318 
    319 	/*
    320 	 * scrub all routes.. didn't we just DO this? XXX yes, del it
    321 	 * XXX above XXX not necessarily true anymore
    322 	 */
    323 	at_scrub(ifp, aa);
    324 
    325 	/*
    326 	 * remove the ifaddr from the interface
    327 	 */
    328 	TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
    329 	IFAFREE(&aa->aa_ifa);
    330 	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
    331 	IFAFREE(&aa->aa_ifa);
    332 }
    333 
    334 void
    335 at_purgeif(ifp)
    336 	struct ifnet *ifp;
    337 {
    338 	struct ifaddr *ifa, *nifa;
    339 
    340 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
    341 		nifa = TAILQ_NEXT(ifa, ifa_list);
    342 		if (ifa->ifa_addr->sa_family != AF_APPLETALK)
    343 			continue;
    344 		at_purgeaddr(ifa, ifp);
    345 	}
    346 }
    347 
    348 /*
    349  * Given an interface and an at_ifaddr (supposedly on that interface) remove
    350  * any routes that depend on this. Why ifp is needed I'm not sure, as
    351  * aa->at_ifaddr.ifa_ifp should be the same.
    352  */
    353 static int
    354 at_scrub(ifp, aa)
    355 	struct ifnet   *ifp;
    356 	struct at_ifaddr *aa;
    357 {
    358 	int error = 0;
    359 
    360 	if (aa->aa_flags & AFA_ROUTE) {
    361 		if (ifp->if_flags & IFF_LOOPBACK)
    362 			error = aa_delsingleroute(&aa->aa_ifa,
    363 			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
    364 		else if (ifp->if_flags & IFF_POINTOPOINT)
    365 			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
    366 		else if (ifp->if_flags & IFF_BROADCAST)
    367 			error = aa_dorangeroute(&aa->aa_ifa,
    368 			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    369 			    RTM_DELETE);
    370 
    371 		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
    372 		aa->aa_flags &= ~AFA_ROUTE;
    373 	}
    374 	return error;
    375 }
    376 
    377 /*
    378  * given an at_ifaddr,a sockaddr_at and an ifp,
    379  * bang them all together at high speed and see what happens
    380  */
    381 static int
    382 at_ifinit(ifp, aa, sat)
    383 	struct ifnet   *ifp;
    384 	struct at_ifaddr *aa;
    385 	struct sockaddr_at *sat;
    386 {
    387 	struct netrange nr, onr;
    388 	struct sockaddr_at oldaddr;
    389 	int             s = splnet(), error = 0, i, j;
    390 	int             netinc, nodeinc, nnets;
    391 	u_short         net;
    392 
    393 	/*
    394 	 * save the old addresses in the at_ifaddr just in case we need them.
    395 	 */
    396 	oldaddr = aa->aa_addr;
    397 	onr.nr_firstnet = aa->aa_firstnet;
    398 	onr.nr_lastnet = aa->aa_lastnet;
    399 
    400 	/*
    401          * take the address supplied as an argument, and add it to the
    402          * at_ifnet (also given). Remember ing to update
    403          * those parts of the at_ifaddr that need special processing
    404          */
    405 	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
    406 	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
    407 	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
    408 	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
    409 	aa->aa_firstnet = nr.nr_firstnet;
    410 	aa->aa_lastnet = nr.nr_lastnet;
    411 
    412 #ifdef NETATALKDEBUG
    413 	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
    414 	    ifp->if_xname,
    415 	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
    416 	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    417 	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
    418 #endif
    419 
    420 	/*
    421          * We could eliminate the need for a second phase 1 probe (post
    422          * autoconf) if we check whether we're resetting the node. Note
    423          * that phase 1 probes use only nodes, not net.node pairs.  Under
    424          * phase 2, both the net and node must be the same.
    425          */
    426 	AA_SAT(aa)->sat_len = sat->sat_len;
    427 	AA_SAT(aa)->sat_family = AF_APPLETALK;
    428 	if (ifp->if_flags & IFF_LOOPBACK) {
    429 		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
    430 		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    431 #if 0
    432 	} else if (fp->if_flags & IFF_POINTOPOINT) {
    433 		/* unimplemented */
    434 		/*
    435 		 * we'd have to copy the dstaddr field over from the sat
    436 		 * but it's not clear that it would contain the right info..
    437 		 */
    438 #endif
    439 	} else {
    440 		/*
    441 		 * We are a normal (probably ethernet) interface.
    442 		 * apply the new address to the interface structures etc.
    443 		 * We will probe this address on the net first, before
    444 		 * applying it to ensure that it is free.. If it is not, then
    445 		 * we will try a number of other randomly generated addresses
    446 		 * in this net and then increment the net.  etc.etc. until
    447 		 * we find an unused address.
    448 		 */
    449 		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
    450 						 * probe? */
    451 		if (aa->aa_flags & AFA_PHASE2) {
    452 			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
    453 				/*
    454 				 * If we are phase 2, and the net was not
    455 				 * specified * then we select a random net
    456 				 * within the supplied netrange.
    457 				 * XXX use /dev/random?
    458 				 */
    459 				if (nnets != 1) {
    460 					net = ntohs(nr.nr_firstnet) +
    461 					    time.tv_sec % (nnets - 1);
    462 				} else {
    463 					net = ntohs(nr.nr_firstnet);
    464 				}
    465 			} else {
    466 				/*
    467 				 * if a net was supplied, then check that it
    468 				 * is within the netrange. If it is not then
    469 				 * replace the old values and return an error
    470 				 */
    471 				if (ntohs(sat->sat_addr.s_net) <
    472 				    ntohs(nr.nr_firstnet) ||
    473 				    ntohs(sat->sat_addr.s_net) >
    474 				    ntohs(nr.nr_lastnet)) {
    475 					aa->aa_addr = oldaddr;
    476 					aa->aa_firstnet = onr.nr_firstnet;
    477 					aa->aa_lastnet = onr.nr_lastnet;
    478 					splx(s);
    479 					return (EINVAL);
    480 				}
    481 				/*
    482 				 * otherwise just use the new net number..
    483 				 */
    484 				net = ntohs(sat->sat_addr.s_net);
    485 			}
    486 		} else {
    487 			/*
    488 		         * we must be phase one, so just use whatever we were
    489 			 * given. I guess it really isn't going to be used...
    490 			 * RIGHT?
    491 		         */
    492 			net = ntohs(sat->sat_addr.s_net);
    493 		}
    494 
    495 		/*
    496 		 * set the node part of the address into the ifaddr. If it's
    497 		 * not specified, be random about it... XXX use /dev/random?
    498 		 */
    499 		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
    500 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    501 		} else {
    502 			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    503 		}
    504 
    505 		/*
    506 		 * step through the nets in the range starting at the
    507 		 * (possibly random) start point.
    508 		 */
    509 		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
    510 		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
    511 			AA_SAT(aa)->sat_addr.s_net = htons(net);
    512 
    513 			/*
    514 		         * using a rather strange stepping method,
    515 		         * stagger through the possible node addresses
    516 		         * Once again, starting at the (possibly random)
    517 		         * initial node address.
    518 		         */
    519 			for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
    520 			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
    521 				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
    522 				    AA_SAT(aa)->sat_addr.s_node < 1) {
    523 					continue;
    524 				}
    525 				aa->aa_probcnt = 10;
    526 
    527 				/*
    528 				 * start off the probes as an asynchronous
    529 				 * activity. though why wait 200mSec?
    530 				 */
    531 				callout_reset(&aa->aa_probe_ch, hz / 5,
    532 				    aarpprobe, ifp);
    533 				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
    534 				    0)) {
    535 					/*
    536 				         * theoretically we shouldn't time out
    537 					 * here so if we returned with an error.
    538 				         */
    539 					printf("at_ifinit: timeout?!\n");
    540 					aa->aa_addr = oldaddr;
    541 					aa->aa_firstnet = onr.nr_firstnet;
    542 					aa->aa_lastnet = onr.nr_lastnet;
    543 					splx(s);
    544 					return (EINTR);
    545 				}
    546 				/*
    547 				 * The async activity should have woken us
    548 				 * up. We need to see if it was successful in
    549 				 * finding a free spot, or if we need to
    550 				 * iterate to the next address to try.
    551 				 */
    552 				if ((aa->aa_flags & AFA_PROBING) == 0)
    553 					break;
    554 			}
    555 
    556 			/*
    557 		         * of course we need to break out through two loops...
    558 		         */
    559 			if ((aa->aa_flags & AFA_PROBING) == 0)
    560 				break;
    561 
    562 			/* reset node for next network */
    563 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    564 		}
    565 
    566 		/*
    567 		 * if we are still trying to probe, then we have finished all
    568 		 * the possible addresses, so we need to give up
    569 		 */
    570 		if (aa->aa_flags & AFA_PROBING) {
    571 			aa->aa_addr = oldaddr;
    572 			aa->aa_firstnet = onr.nr_firstnet;
    573 			aa->aa_lastnet = onr.nr_lastnet;
    574 			splx(s);
    575 			return (EADDRINUSE);
    576 		}
    577 	}
    578 
    579 	/*
    580 	 * Now that we have selected an address, we need to tell the
    581 	 * interface about it, just in case it needs to adjust something.
    582 	 */
    583 	if (ifp->if_ioctl &&
    584 	    (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
    585 		/*
    586 		 * of course this could mean that it objects violently
    587 		 * so if it does, we back out again..
    588 		 */
    589 		aa->aa_addr = oldaddr;
    590 		aa->aa_firstnet = onr.nr_firstnet;
    591 		aa->aa_lastnet = onr.nr_lastnet;
    592 		splx(s);
    593 		return (error);
    594 	}
    595 	/*
    596 	 * set up the netmask part of the at_ifaddr and point the appropriate
    597 	 * pointer in the ifaddr to it. probably pointless, but what the
    598 	 * heck.. XXX
    599 	 */
    600 	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
    601 	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
    602 	aa->aa_netmask.sat_family = AF_APPLETALK;
    603 	aa->aa_netmask.sat_addr.s_net = 0xffff;
    604 	aa->aa_netmask.sat_addr.s_node = 0;
    605 #if 0
    606 	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
    607 #endif
    608 
    609 	/*
    610          * Initialize broadcast (or remote p2p) address
    611          */
    612 	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
    613 	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
    614 	aa->aa_broadaddr.sat_family = AF_APPLETALK;
    615 
    616 	aa->aa_ifa.ifa_metric = ifp->if_metric;
    617 	if (ifp->if_flags & IFF_BROADCAST) {
    618 		aa->aa_broadaddr.sat_addr.s_net = htons(0);
    619 		aa->aa_broadaddr.sat_addr.s_node = 0xff;
    620 		aa->aa_ifa.ifa_broadaddr =
    621 		    (struct sockaddr *) &aa->aa_broadaddr;
    622 		/* add the range of routes needed */
    623 		error = aa_dorangeroute(&aa->aa_ifa,
    624 		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
    625 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
    626 		struct at_addr  rtaddr, rtmask;
    627 
    628 		bzero(&rtaddr, sizeof(rtaddr));
    629 		bzero(&rtmask, sizeof(rtmask));
    630 		/* fill in the far end if we know it here XXX */
    631 		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
    632 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    633 	} else if (ifp->if_flags & IFF_LOOPBACK) {
    634 		struct at_addr  rtaddr, rtmask;
    635 
    636 		bzero(&rtaddr, sizeof(rtaddr));
    637 		bzero(&rtmask, sizeof(rtmask));
    638 		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
    639 		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
    640 		rtmask.s_net = 0xffff;
    641 		rtmask.s_node = 0x0;
    642 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    643 	}
    644 	/*
    645          * of course if we can't add these routes we back out, but it's getting
    646          * risky by now XXX
    647          */
    648 	if (error) {
    649 		at_scrub(ifp, aa);
    650 		aa->aa_addr = oldaddr;
    651 		aa->aa_firstnet = onr.nr_firstnet;
    652 		aa->aa_lastnet = onr.nr_lastnet;
    653 		splx(s);
    654 		return (error);
    655 	}
    656 	/*
    657          * note that the address has a route associated with it....
    658          */
    659 	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
    660 	aa->aa_flags |= AFA_ROUTE;
    661 	splx(s);
    662 	return (0);
    663 }
    664 
    665 /*
    666  * check whether a given address is a broadcast address for us..
    667  */
    668 int
    669 at_broadcast(sat)
    670 	struct sockaddr_at *sat;
    671 {
    672 	struct at_ifaddr *aa;
    673 
    674 	/*
    675          * If the node is not right, it can't be a broadcast
    676          */
    677 	if (sat->sat_addr.s_node != ATADDR_BCAST)
    678 		return 0;
    679 
    680 	/*
    681          * If the node was right then if the net is right, it's a broadcast
    682          */
    683 	if (sat->sat_addr.s_net == ATADDR_ANYNET)
    684 		return 1;
    685 
    686 	/*
    687          * failing that, if the net is one we have, it's a broadcast as well.
    688          */
    689 	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
    690 		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
    691 		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
    692 		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
    693 			return 1;
    694 	}
    695 	return 0;
    696 }
    697 
    698 
    699 /*
    700  * aa_dorangeroute()
    701  *
    702  * Add a route for a range of networks from bot to top - 1.
    703  * Algorithm:
    704  *
    705  * Split the range into two subranges such that the middle
    706  * of the two ranges is the point where the highest bit of difference
    707  * between the two addresses, makes it's transition
    708  * Each of the upper and lower ranges might not exist, or might be
    709  * representable by 1 or more netmasks. In addition, if both
    710  * ranges can be represented by the same netmask, then teh can be merged
    711  * by using the next higher netmask..
    712  */
    713 
    714 static int
    715 aa_dorangeroute(ifa, bot, top, cmd)
    716 	struct ifaddr *ifa;
    717 	u_int bot;
    718 	u_int top;
    719 	int cmd;
    720 {
    721 	u_int           mask1;
    722 	struct at_addr  addr;
    723 	struct at_addr  mask;
    724 	int             error;
    725 
    726 	/*
    727 	 * slight sanity check
    728 	 */
    729 	if (bot > top)
    730 		return (EINVAL);
    731 
    732 	addr.s_node = 0;
    733 	mask.s_node = 0;
    734 	/*
    735 	 * just start out with the lowest boundary
    736 	 * and keep extending the mask till it's too big.
    737 	 */
    738 
    739 	while (bot <= top) {
    740 		mask1 = 1;
    741 		while (((bot & ~mask1) >= bot)
    742 		       && ((bot | mask1) <= top)) {
    743 			mask1 <<= 1;
    744 			mask1 |= 1;
    745 		}
    746 		mask1 >>= 1;
    747 		mask.s_net = htons(~mask1);
    748 		addr.s_net = htons(bot);
    749 		if (cmd == RTM_ADD) {
    750 			error = aa_addsingleroute(ifa, &addr, &mask);
    751 			if (error) {
    752 				/* XXX clean up? */
    753 				return (error);
    754 			}
    755 		} else {
    756 			error = aa_delsingleroute(ifa, &addr, &mask);
    757 		}
    758 		bot = (bot | mask1) + 1;
    759 	}
    760 	return 0;
    761 }
    762 
    763 static int
    764 aa_addsingleroute(ifa, addr, mask)
    765 	struct ifaddr *ifa;
    766 	struct at_addr *addr;
    767 	struct at_addr *mask;
    768 {
    769 	int error;
    770 
    771 #ifdef NETATALKDEBUG
    772 	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
    773 	       ntohs(addr->s_net), addr->s_node,
    774 	       ntohs(mask->s_net), mask->s_node);
    775 #endif
    776 
    777 	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
    778 #ifdef NETATALKDEBUG
    779 	if (error)
    780 		printf("aa_addsingleroute: error %d\n", error);
    781 #endif
    782 	return (error);
    783 }
    784 
    785 static int
    786 aa_delsingleroute(ifa, addr, mask)
    787 	struct ifaddr *ifa;
    788 	struct at_addr *addr;
    789 	struct at_addr *mask;
    790 {
    791 	int error;
    792 
    793 #ifdef NETATALKDEBUG
    794 	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
    795 	       ntohs(addr->s_net), addr->s_node,
    796 	       ntohs(mask->s_net), mask->s_node);
    797 #endif
    798 
    799 	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
    800 #ifdef NETATALKDEBUG
    801 	if (error)
    802 		printf("aa_delsingleroute: error %d\n", error);
    803 #endif
    804 	return (error);
    805 }
    806 
    807 static int
    808 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
    809 	struct ifaddr *ifa;
    810 	struct at_addr *at_addr;
    811 	struct at_addr *at_mask;
    812 	int cmd;
    813 	int flags;
    814 {
    815 	struct sockaddr_at addr, mask, *gate;
    816 
    817 	bzero(&addr, sizeof(addr));
    818 	bzero(&mask, sizeof(mask));
    819 	addr.sat_family = AF_APPLETALK;
    820 	addr.sat_len = sizeof(struct sockaddr_at);
    821 	addr.sat_addr.s_net = at_addr->s_net;
    822 	addr.sat_addr.s_node = at_addr->s_node;
    823 	mask.sat_family = AF_APPLETALK;
    824 	mask.sat_len = sizeof(struct sockaddr_at);
    825 	mask.sat_addr.s_net = at_mask->s_net;
    826 	mask.sat_addr.s_node = at_mask->s_node;
    827 
    828 	if (at_mask->s_node) {
    829 		gate = satosat(ifa->ifa_dstaddr);
    830 		flags |= RTF_HOST;
    831 	} else {
    832 		gate = satosat(ifa->ifa_addr);
    833 	}
    834 
    835 #ifdef NETATALKDEBUG
    836 	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
    837 	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
    838 #endif
    839 	return (rtrequest(cmd, (struct sockaddr *) &addr,
    840 	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
    841 }
    842 
    843 #if 0
    844 static void
    845 aa_clean()
    846 {
    847 	struct at_ifaddr *aa;
    848 	struct ifaddr  *ifa;
    849 	struct ifnet   *ifp;
    850 
    851 	while (aa = at_ifaddr) {
    852 		ifp = aa->aa_ifp;
    853 		at_scrub(ifp, aa);
    854 		at_ifaddr = aa->aa_next;
    855 		if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
    856 			ifp->if_addrlist = ifa->ifa_next;
    857 		} else {
    858 			while (ifa->ifa_next &&
    859 			       (ifa->ifa_next != (struct ifaddr *) aa)) {
    860 				ifa = ifa->ifa_next;
    861 			}
    862 			if (ifa->ifa_next) {
    863 				ifa->ifa_next =
    864 				    ((struct ifaddr *) aa)->ifa_next;
    865 			} else {
    866 				panic("at_entry");
    867 			}
    868 		}
    869 	}
    870 }
    871 #endif
    872