at_control.c revision 1.5 1 /* $NetBSD: at_control.c,v 1.5 2001/04/13 23:30:18 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1990,1994 Regents of The University of Michigan.
5 * All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation for any purpose and without fee is hereby granted,
9 * provided that the above copyright notice appears in all copies and
10 * that both that copyright notice and this permission notice appear
11 * in supporting documentation, and that the name of The University
12 * of Michigan not be used in advertising or publicity pertaining to
13 * distribution of the software without specific, written prior
14 * permission. This software is supplied as is without expressed or
15 * implied warranties of any kind.
16 *
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 *
20 * Research Systems Unix Group
21 * The University of Michigan
22 * c/o Wesley Craig
23 * 535 W. William Street
24 * Ann Arbor, Michigan
25 * +1-313-764-2278
26 * netatalk (at) umich.edu
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/proc.h>
32 #include <sys/types.h>
33 #include <sys/errno.h>
34 #include <sys/ioctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/socketvar.h>
39 #include <net/if.h>
40 #include <net/route.h>
41 #include <net/if_ether.h>
42 #include <netinet/in.h>
43 #undef s_net
44
45 #include <netatalk/at.h>
46 #include <netatalk/at_var.h>
47 #include <netatalk/aarp.h>
48 #include <netatalk/phase2.h>
49 #include <netatalk/at_extern.h>
50
51 static int aa_dorangeroute __P((struct ifaddr * ifa,
52 u_int first, u_int last, int cmd));
53 static int aa_addsingleroute __P((struct ifaddr * ifa,
54 struct at_addr * addr, struct at_addr * mask));
55 static int aa_delsingleroute __P((struct ifaddr * ifa,
56 struct at_addr * addr, struct at_addr * mask));
57 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
58 struct at_addr * mask, int cmd, int flags));
59 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
60 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
61 struct sockaddr_at * sat));
62 #if 0
63 static void aa_clean __P((void));
64 #endif
65
66 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
67 (a)->sat_family == (b)->sat_family && \
68 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
69 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
70
71 int
72 at_control(cmd, data, ifp, p)
73 u_long cmd;
74 caddr_t data;
75 struct ifnet *ifp;
76 struct proc *p;
77 {
78 struct ifreq *ifr = (struct ifreq *) data;
79 struct sockaddr_at *sat;
80 struct netrange *nr;
81 struct at_aliasreq *ifra = (struct at_aliasreq *) data;
82 struct at_ifaddr *aa0;
83 struct at_ifaddr *aa = 0;
84
85 /*
86 * If we have an ifp, then find the matching at_ifaddr if it exists
87 */
88 if (ifp)
89 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
90 if (aa->aa_ifp == ifp)
91 break;
92
93 /*
94 * In this first switch table we are basically getting ready for
95 * the second one, by getting the atalk-specific things set up
96 * so that they start to look more similar to other protocols etc.
97 */
98
99 switch (cmd) {
100 case SIOCAIFADDR:
101 case SIOCDIFADDR:
102 /*
103 * If we have an appletalk sockaddr, scan forward of where
104 * we are now on the at_ifaddr list to find one with a matching
105 * address on this interface.
106 * This may leave aa pointing to the first address on the
107 * NEXT interface!
108 */
109 if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
110 for (; aa; aa = aa->aa_list.tqe_next)
111 if (aa->aa_ifp == ifp &&
112 sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
113 break;
114 }
115 /*
116 * If we a retrying to delete an addres but didn't find such,
117 * then return with an error
118 */
119 if (cmd == SIOCDIFADDR && aa == 0)
120 return (EADDRNOTAVAIL);
121 /* FALLTHROUGH */
122
123 case SIOCSIFADDR:
124 /*
125 * If we are not superuser, then we don't get to do these
126 * ops.
127 */
128 if (suser(p->p_ucred, &p->p_acflag))
129 return (EPERM);
130
131 sat = satosat(&ifr->ifr_addr);
132 nr = (struct netrange *) sat->sat_zero;
133 if (nr->nr_phase == 1) {
134 /*
135 * Look for a phase 1 address on this interface.
136 * This may leave aa pointing to the first address on
137 * the NEXT interface!
138 */
139 for (; aa; aa = aa->aa_list.tqe_next) {
140 if (aa->aa_ifp == ifp &&
141 (aa->aa_flags & AFA_PHASE2) == 0)
142 break;
143 }
144 } else { /* default to phase 2 */
145 /*
146 * Look for a phase 2 address on this interface.
147 * This may leave aa pointing to the first address on
148 * the NEXT interface!
149 */
150 for (; aa; aa = aa->aa_list.tqe_next) {
151 if (aa->aa_ifp == ifp &&
152 (aa->aa_flags & AFA_PHASE2))
153 break;
154 }
155 }
156
157 if (ifp == 0)
158 panic("at_control");
159
160 /*
161 * If we failed to find an existing at_ifaddr entry, then we
162 * allocate a fresh one.
163 * XXX change this to use malloc
164 */
165 if (aa == (struct at_ifaddr *) 0) {
166 aa = (struct at_ifaddr *)
167 malloc(sizeof(struct at_ifaddr), M_IFADDR,
168 M_WAITOK);
169
170 if (aa == NULL)
171 return (ENOBUFS);
172
173 bzero(aa, sizeof *aa);
174 callout_init(&aa->aa_probe_ch);
175
176 if ((aa0 = at_ifaddr.tqh_first) != NULL) {
177 /*
178 * Don't let the loopback be first, since the
179 * first address is the machine's default
180 * address for binding.
181 * If it is, stick ourself in front, otherwise
182 * go to the back of the list.
183 */
184 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
185 TAILQ_INSERT_HEAD(&at_ifaddr, aa,
186 aa_list);
187 } else {
188 TAILQ_INSERT_TAIL(&at_ifaddr, aa,
189 aa_list);
190 }
191 } else {
192 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
193 }
194 IFAREF(&aa->aa_ifa);
195
196 /*
197 * Find the end of the interface's addresses
198 * and link our new one on the end
199 */
200 TAILQ_INSERT_TAIL(&ifp->if_addrlist,
201 (struct ifaddr *) aa, ifa_list);
202 IFAREF(&aa->aa_ifa);
203
204 /*
205 * As the at_ifaddr contains the actual sockaddrs,
206 * and the ifaddr itself, link them al together
207 * correctly.
208 */
209 aa->aa_ifa.ifa_addr =
210 (struct sockaddr *) &aa->aa_addr;
211 aa->aa_ifa.ifa_dstaddr =
212 (struct sockaddr *) &aa->aa_addr;
213 aa->aa_ifa.ifa_netmask =
214 (struct sockaddr *) &aa->aa_netmask;
215
216 /*
217 * Set/clear the phase 2 bit.
218 */
219 if (nr->nr_phase == 1)
220 aa->aa_flags &= ~AFA_PHASE2;
221 else
222 aa->aa_flags |= AFA_PHASE2;
223
224 /*
225 * and link it all together
226 */
227 aa->aa_ifp = ifp;
228 } else {
229 /*
230 * If we DID find one then we clobber any routes
231 * dependent on it..
232 */
233 at_scrub(ifp, aa);
234 }
235 break;
236
237 case SIOCGIFADDR:
238 sat = satosat(&ifr->ifr_addr);
239 nr = (struct netrange *) sat->sat_zero;
240 if (nr->nr_phase == 1) {
241 /*
242 * If the request is specifying phase 1, then
243 * only look at a phase one address
244 */
245 for (; aa; aa = aa->aa_list.tqe_next) {
246 if (aa->aa_ifp == ifp &&
247 (aa->aa_flags & AFA_PHASE2) == 0)
248 break;
249 }
250 } else {
251 /*
252 * default to phase 2
253 */
254 for (; aa; aa = aa->aa_list.tqe_next) {
255 if (aa->aa_ifp == ifp &&
256 (aa->aa_flags & AFA_PHASE2))
257 break;
258 }
259 }
260
261 if (aa == (struct at_ifaddr *) 0)
262 return (EADDRNOTAVAIL);
263 break;
264 }
265
266 /*
267 * By the time this switch is run we should be able to assume that
268 * the "aa" pointer is valid when needed.
269 */
270 switch (cmd) {
271 case SIOCGIFADDR:
272
273 /*
274 * copy the contents of the sockaddr blindly.
275 */
276 sat = (struct sockaddr_at *) & ifr->ifr_addr;
277 *sat = aa->aa_addr;
278
279 /*
280 * and do some cleanups
281 */
282 ((struct netrange *) &sat->sat_zero)->nr_phase =
283 (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
284 ((struct netrange *) &sat->sat_zero)->nr_firstnet =
285 aa->aa_firstnet;
286 ((struct netrange *) &sat->sat_zero)->nr_lastnet =
287 aa->aa_lastnet;
288 break;
289
290 case SIOCSIFADDR:
291 return (at_ifinit(ifp, aa,
292 (struct sockaddr_at *) &ifr->ifr_addr));
293
294 case SIOCAIFADDR:
295 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
296 return 0;
297 return (at_ifinit(ifp, aa,
298 (struct sockaddr_at *) &ifr->ifr_addr));
299
300 case SIOCDIFADDR:
301 at_purgeaddr((struct ifaddr *) aa, ifp);
302 break;
303
304 default:
305 if (ifp == 0 || ifp->if_ioctl == 0)
306 return (EOPNOTSUPP);
307 return ((*ifp->if_ioctl) (ifp, cmd, data));
308 }
309 return (0);
310 }
311
312 void
313 at_purgeaddr(ifa, ifp)
314 struct ifaddr *ifa;
315 struct ifnet *ifp;
316 {
317 struct at_ifaddr *aa = (void *) ifa;
318
319 /*
320 * scrub all routes.. didn't we just DO this? XXX yes, del it
321 * XXX above XXX not necessarily true anymore
322 */
323 at_scrub(ifp, aa);
324
325 /*
326 * remove the ifaddr from the interface
327 */
328 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
329 IFAFREE(&aa->aa_ifa);
330 TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
331 IFAFREE(&aa->aa_ifa);
332 }
333
334 void
335 at_purgeif(ifp)
336 struct ifnet *ifp;
337 {
338 struct ifaddr *ifa, *nifa;
339
340 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
341 nifa = TAILQ_NEXT(ifa, ifa_list);
342 if (ifa->ifa_addr->sa_family != AF_APPLETALK)
343 continue;
344 at_purgeaddr(ifa, ifp);
345 }
346 }
347
348 /*
349 * Given an interface and an at_ifaddr (supposedly on that interface) remove
350 * any routes that depend on this. Why ifp is needed I'm not sure, as
351 * aa->at_ifaddr.ifa_ifp should be the same.
352 */
353 static int
354 at_scrub(ifp, aa)
355 struct ifnet *ifp;
356 struct at_ifaddr *aa;
357 {
358 int error = 0;
359
360 if (aa->aa_flags & AFA_ROUTE) {
361 if (ifp->if_flags & IFF_LOOPBACK)
362 error = aa_delsingleroute(&aa->aa_ifa,
363 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
364 else if (ifp->if_flags & IFF_POINTOPOINT)
365 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
366 else if (ifp->if_flags & IFF_BROADCAST)
367 error = aa_dorangeroute(&aa->aa_ifa,
368 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
369 RTM_DELETE);
370
371 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
372 aa->aa_flags &= ~AFA_ROUTE;
373 }
374 return error;
375 }
376
377 /*
378 * given an at_ifaddr,a sockaddr_at and an ifp,
379 * bang them all together at high speed and see what happens
380 */
381 static int
382 at_ifinit(ifp, aa, sat)
383 struct ifnet *ifp;
384 struct at_ifaddr *aa;
385 struct sockaddr_at *sat;
386 {
387 struct netrange nr, onr;
388 struct sockaddr_at oldaddr;
389 int s = splnet(), error = 0, i, j;
390 int netinc, nodeinc, nnets;
391 u_short net;
392
393 /*
394 * save the old addresses in the at_ifaddr just in case we need them.
395 */
396 oldaddr = aa->aa_addr;
397 onr.nr_firstnet = aa->aa_firstnet;
398 onr.nr_lastnet = aa->aa_lastnet;
399
400 /*
401 * take the address supplied as an argument, and add it to the
402 * at_ifnet (also given). Remember ing to update
403 * those parts of the at_ifaddr that need special processing
404 */
405 bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
406 bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
407 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
408 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
409 aa->aa_firstnet = nr.nr_firstnet;
410 aa->aa_lastnet = nr.nr_lastnet;
411
412 #ifdef NETATALKDEBUG
413 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
414 ifp->if_xname,
415 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
416 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
417 (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
418 #endif
419
420 /*
421 * We could eliminate the need for a second phase 1 probe (post
422 * autoconf) if we check whether we're resetting the node. Note
423 * that phase 1 probes use only nodes, not net.node pairs. Under
424 * phase 2, both the net and node must be the same.
425 */
426 AA_SAT(aa)->sat_len = sat->sat_len;
427 AA_SAT(aa)->sat_family = AF_APPLETALK;
428 if (ifp->if_flags & IFF_LOOPBACK) {
429 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
430 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
431 #if 0
432 } else if (fp->if_flags & IFF_POINTOPOINT) {
433 /* unimplemented */
434 /*
435 * we'd have to copy the dstaddr field over from the sat
436 * but it's not clear that it would contain the right info..
437 */
438 #endif
439 } else {
440 /*
441 * We are a normal (probably ethernet) interface.
442 * apply the new address to the interface structures etc.
443 * We will probe this address on the net first, before
444 * applying it to ensure that it is free.. If it is not, then
445 * we will try a number of other randomly generated addresses
446 * in this net and then increment the net. etc.etc. until
447 * we find an unused address.
448 */
449 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must
450 * probe? */
451 if (aa->aa_flags & AFA_PHASE2) {
452 if (sat->sat_addr.s_net == ATADDR_ANYNET) {
453 /*
454 * If we are phase 2, and the net was not
455 * specified * then we select a random net
456 * within the supplied netrange.
457 * XXX use /dev/random?
458 */
459 if (nnets != 1) {
460 net = ntohs(nr.nr_firstnet) +
461 time.tv_sec % (nnets - 1);
462 } else {
463 net = ntohs(nr.nr_firstnet);
464 }
465 } else {
466 /*
467 * if a net was supplied, then check that it
468 * is within the netrange. If it is not then
469 * replace the old values and return an error
470 */
471 if (ntohs(sat->sat_addr.s_net) <
472 ntohs(nr.nr_firstnet) ||
473 ntohs(sat->sat_addr.s_net) >
474 ntohs(nr.nr_lastnet)) {
475 aa->aa_addr = oldaddr;
476 aa->aa_firstnet = onr.nr_firstnet;
477 aa->aa_lastnet = onr.nr_lastnet;
478 splx(s);
479 return (EINVAL);
480 }
481 /*
482 * otherwise just use the new net number..
483 */
484 net = ntohs(sat->sat_addr.s_net);
485 }
486 } else {
487 /*
488 * we must be phase one, so just use whatever we were
489 * given. I guess it really isn't going to be used...
490 * RIGHT?
491 */
492 net = ntohs(sat->sat_addr.s_net);
493 }
494
495 /*
496 * set the node part of the address into the ifaddr. If it's
497 * not specified, be random about it... XXX use /dev/random?
498 */
499 if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
500 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
501 } else {
502 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
503 }
504
505 /*
506 * step through the nets in the range starting at the
507 * (possibly random) start point.
508 */
509 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
510 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
511 AA_SAT(aa)->sat_addr.s_net = htons(net);
512
513 /*
514 * using a rather strange stepping method,
515 * stagger through the possible node addresses
516 * Once again, starting at the (possibly random)
517 * initial node address.
518 */
519 for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
520 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
521 if (AA_SAT(aa)->sat_addr.s_node > 253 ||
522 AA_SAT(aa)->sat_addr.s_node < 1) {
523 continue;
524 }
525 aa->aa_probcnt = 10;
526
527 /*
528 * start off the probes as an asynchronous
529 * activity. though why wait 200mSec?
530 */
531 callout_reset(&aa->aa_probe_ch, hz / 5,
532 aarpprobe, ifp);
533 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
534 0)) {
535 /*
536 * theoretically we shouldn't time out
537 * here so if we returned with an error.
538 */
539 printf("at_ifinit: timeout?!\n");
540 aa->aa_addr = oldaddr;
541 aa->aa_firstnet = onr.nr_firstnet;
542 aa->aa_lastnet = onr.nr_lastnet;
543 splx(s);
544 return (EINTR);
545 }
546 /*
547 * The async activity should have woken us
548 * up. We need to see if it was successful in
549 * finding a free spot, or if we need to
550 * iterate to the next address to try.
551 */
552 if ((aa->aa_flags & AFA_PROBING) == 0)
553 break;
554 }
555
556 /*
557 * of course we need to break out through two loops...
558 */
559 if ((aa->aa_flags & AFA_PROBING) == 0)
560 break;
561
562 /* reset node for next network */
563 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
564 }
565
566 /*
567 * if we are still trying to probe, then we have finished all
568 * the possible addresses, so we need to give up
569 */
570 if (aa->aa_flags & AFA_PROBING) {
571 aa->aa_addr = oldaddr;
572 aa->aa_firstnet = onr.nr_firstnet;
573 aa->aa_lastnet = onr.nr_lastnet;
574 splx(s);
575 return (EADDRINUSE);
576 }
577 }
578
579 /*
580 * Now that we have selected an address, we need to tell the
581 * interface about it, just in case it needs to adjust something.
582 */
583 if (ifp->if_ioctl &&
584 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
585 /*
586 * of course this could mean that it objects violently
587 * so if it does, we back out again..
588 */
589 aa->aa_addr = oldaddr;
590 aa->aa_firstnet = onr.nr_firstnet;
591 aa->aa_lastnet = onr.nr_lastnet;
592 splx(s);
593 return (error);
594 }
595 /*
596 * set up the netmask part of the at_ifaddr and point the appropriate
597 * pointer in the ifaddr to it. probably pointless, but what the
598 * heck.. XXX
599 */
600 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
601 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
602 aa->aa_netmask.sat_family = AF_APPLETALK;
603 aa->aa_netmask.sat_addr.s_net = 0xffff;
604 aa->aa_netmask.sat_addr.s_node = 0;
605 #if 0
606 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
607 #endif
608
609 /*
610 * Initialize broadcast (or remote p2p) address
611 */
612 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
613 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
614 aa->aa_broadaddr.sat_family = AF_APPLETALK;
615
616 aa->aa_ifa.ifa_metric = ifp->if_metric;
617 if (ifp->if_flags & IFF_BROADCAST) {
618 aa->aa_broadaddr.sat_addr.s_net = htons(0);
619 aa->aa_broadaddr.sat_addr.s_node = 0xff;
620 aa->aa_ifa.ifa_broadaddr =
621 (struct sockaddr *) &aa->aa_broadaddr;
622 /* add the range of routes needed */
623 error = aa_dorangeroute(&aa->aa_ifa,
624 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
625 } else if (ifp->if_flags & IFF_POINTOPOINT) {
626 struct at_addr rtaddr, rtmask;
627
628 bzero(&rtaddr, sizeof(rtaddr));
629 bzero(&rtmask, sizeof(rtmask));
630 /* fill in the far end if we know it here XXX */
631 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
632 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
633 } else if (ifp->if_flags & IFF_LOOPBACK) {
634 struct at_addr rtaddr, rtmask;
635
636 bzero(&rtaddr, sizeof(rtaddr));
637 bzero(&rtmask, sizeof(rtmask));
638 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
639 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
640 rtmask.s_net = 0xffff;
641 rtmask.s_node = 0x0;
642 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
643 }
644 /*
645 * of course if we can't add these routes we back out, but it's getting
646 * risky by now XXX
647 */
648 if (error) {
649 at_scrub(ifp, aa);
650 aa->aa_addr = oldaddr;
651 aa->aa_firstnet = onr.nr_firstnet;
652 aa->aa_lastnet = onr.nr_lastnet;
653 splx(s);
654 return (error);
655 }
656 /*
657 * note that the address has a route associated with it....
658 */
659 aa->aa_ifa.ifa_flags |= IFA_ROUTE;
660 aa->aa_flags |= AFA_ROUTE;
661 splx(s);
662 return (0);
663 }
664
665 /*
666 * check whether a given address is a broadcast address for us..
667 */
668 int
669 at_broadcast(sat)
670 struct sockaddr_at *sat;
671 {
672 struct at_ifaddr *aa;
673
674 /*
675 * If the node is not right, it can't be a broadcast
676 */
677 if (sat->sat_addr.s_node != ATADDR_BCAST)
678 return 0;
679
680 /*
681 * If the node was right then if the net is right, it's a broadcast
682 */
683 if (sat->sat_addr.s_net == ATADDR_ANYNET)
684 return 1;
685
686 /*
687 * failing that, if the net is one we have, it's a broadcast as well.
688 */
689 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
690 if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
691 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
692 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
693 return 1;
694 }
695 return 0;
696 }
697
698
699 /*
700 * aa_dorangeroute()
701 *
702 * Add a route for a range of networks from bot to top - 1.
703 * Algorithm:
704 *
705 * Split the range into two subranges such that the middle
706 * of the two ranges is the point where the highest bit of difference
707 * between the two addresses, makes it's transition
708 * Each of the upper and lower ranges might not exist, or might be
709 * representable by 1 or more netmasks. In addition, if both
710 * ranges can be represented by the same netmask, then teh can be merged
711 * by using the next higher netmask..
712 */
713
714 static int
715 aa_dorangeroute(ifa, bot, top, cmd)
716 struct ifaddr *ifa;
717 u_int bot;
718 u_int top;
719 int cmd;
720 {
721 u_int mask1;
722 struct at_addr addr;
723 struct at_addr mask;
724 int error;
725
726 /*
727 * slight sanity check
728 */
729 if (bot > top)
730 return (EINVAL);
731
732 addr.s_node = 0;
733 mask.s_node = 0;
734 /*
735 * just start out with the lowest boundary
736 * and keep extending the mask till it's too big.
737 */
738
739 while (bot <= top) {
740 mask1 = 1;
741 while (((bot & ~mask1) >= bot)
742 && ((bot | mask1) <= top)) {
743 mask1 <<= 1;
744 mask1 |= 1;
745 }
746 mask1 >>= 1;
747 mask.s_net = htons(~mask1);
748 addr.s_net = htons(bot);
749 if (cmd == RTM_ADD) {
750 error = aa_addsingleroute(ifa, &addr, &mask);
751 if (error) {
752 /* XXX clean up? */
753 return (error);
754 }
755 } else {
756 error = aa_delsingleroute(ifa, &addr, &mask);
757 }
758 bot = (bot | mask1) + 1;
759 }
760 return 0;
761 }
762
763 static int
764 aa_addsingleroute(ifa, addr, mask)
765 struct ifaddr *ifa;
766 struct at_addr *addr;
767 struct at_addr *mask;
768 {
769 int error;
770
771 #ifdef NETATALKDEBUG
772 printf("aa_addsingleroute: %x.%x mask %x.%x ...",
773 ntohs(addr->s_net), addr->s_node,
774 ntohs(mask->s_net), mask->s_node);
775 #endif
776
777 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
778 #ifdef NETATALKDEBUG
779 if (error)
780 printf("aa_addsingleroute: error %d\n", error);
781 #endif
782 return (error);
783 }
784
785 static int
786 aa_delsingleroute(ifa, addr, mask)
787 struct ifaddr *ifa;
788 struct at_addr *addr;
789 struct at_addr *mask;
790 {
791 int error;
792
793 #ifdef NETATALKDEBUG
794 printf("aa_delsingleroute: %x.%x mask %x.%x ...",
795 ntohs(addr->s_net), addr->s_node,
796 ntohs(mask->s_net), mask->s_node);
797 #endif
798
799 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
800 #ifdef NETATALKDEBUG
801 if (error)
802 printf("aa_delsingleroute: error %d\n", error);
803 #endif
804 return (error);
805 }
806
807 static int
808 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
809 struct ifaddr *ifa;
810 struct at_addr *at_addr;
811 struct at_addr *at_mask;
812 int cmd;
813 int flags;
814 {
815 struct sockaddr_at addr, mask, *gate;
816
817 bzero(&addr, sizeof(addr));
818 bzero(&mask, sizeof(mask));
819 addr.sat_family = AF_APPLETALK;
820 addr.sat_len = sizeof(struct sockaddr_at);
821 addr.sat_addr.s_net = at_addr->s_net;
822 addr.sat_addr.s_node = at_addr->s_node;
823 mask.sat_family = AF_APPLETALK;
824 mask.sat_len = sizeof(struct sockaddr_at);
825 mask.sat_addr.s_net = at_mask->s_net;
826 mask.sat_addr.s_node = at_mask->s_node;
827
828 if (at_mask->s_node) {
829 gate = satosat(ifa->ifa_dstaddr);
830 flags |= RTF_HOST;
831 } else {
832 gate = satosat(ifa->ifa_addr);
833 }
834
835 #ifdef NETATALKDEBUG
836 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
837 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
838 #endif
839 return (rtrequest(cmd, (struct sockaddr *) &addr,
840 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
841 }
842
843 #if 0
844 static void
845 aa_clean()
846 {
847 struct at_ifaddr *aa;
848 struct ifaddr *ifa;
849 struct ifnet *ifp;
850
851 while (aa = at_ifaddr) {
852 ifp = aa->aa_ifp;
853 at_scrub(ifp, aa);
854 at_ifaddr = aa->aa_next;
855 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
856 ifp->if_addrlist = ifa->ifa_next;
857 } else {
858 while (ifa->ifa_next &&
859 (ifa->ifa_next != (struct ifaddr *) aa)) {
860 ifa = ifa->ifa_next;
861 }
862 if (ifa->ifa_next) {
863 ifa->ifa_next =
864 ((struct ifaddr *) aa)->ifa_next;
865 } else {
866 panic("at_entry");
867 }
868 }
869 }
870 }
871 #endif
872