at_control.c revision 1.5.2.1 1 /* $NetBSD: at_control.c,v 1.5.2.1 2002/01/10 20:02:24 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1990,1994 Regents of The University of Michigan.
5 * All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation for any purpose and without fee is hereby granted,
9 * provided that the above copyright notice appears in all copies and
10 * that both that copyright notice and this permission notice appear
11 * in supporting documentation, and that the name of The University
12 * of Michigan not be used in advertising or publicity pertaining to
13 * distribution of the software without specific, written prior
14 * permission. This software is supplied as is without expressed or
15 * implied warranties of any kind.
16 *
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 *
20 * Research Systems Unix Group
21 * The University of Michigan
22 * c/o Wesley Craig
23 * 535 W. William Street
24 * Ann Arbor, Michigan
25 * +1-313-764-2278
26 * netatalk (at) umich.edu
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.5.2.1 2002/01/10 20:02:24 thorpej Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/proc.h>
35 #include <sys/errno.h>
36 #include <sys/ioctl.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <net/if.h>
42 #include <net/route.h>
43 #include <net/if_ether.h>
44 #include <netinet/in.h>
45 #undef s_net
46
47 #include <netatalk/at.h>
48 #include <netatalk/at_var.h>
49 #include <netatalk/aarp.h>
50 #include <netatalk/phase2.h>
51 #include <netatalk/at_extern.h>
52
53 static int aa_dorangeroute __P((struct ifaddr * ifa,
54 u_int first, u_int last, int cmd));
55 static int aa_addsingleroute __P((struct ifaddr * ifa,
56 struct at_addr * addr, struct at_addr * mask));
57 static int aa_delsingleroute __P((struct ifaddr * ifa,
58 struct at_addr * addr, struct at_addr * mask));
59 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
60 struct at_addr * mask, int cmd, int flags));
61 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
62 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
63 struct sockaddr_at * sat));
64 #if 0
65 static void aa_clean __P((void));
66 #endif
67
68 #define sateqaddr(a,b) ((a)->sat_len == (b)->sat_len && \
69 (a)->sat_family == (b)->sat_family && \
70 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
71 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
72
73 int
74 at_control(cmd, data, ifp, p)
75 u_long cmd;
76 caddr_t data;
77 struct ifnet *ifp;
78 struct proc *p;
79 {
80 struct ifreq *ifr = (struct ifreq *) data;
81 struct sockaddr_at *sat;
82 struct netrange *nr;
83 struct at_aliasreq *ifra = (struct at_aliasreq *) data;
84 struct at_ifaddr *aa0;
85 struct at_ifaddr *aa = 0;
86
87 /*
88 * If we have an ifp, then find the matching at_ifaddr if it exists
89 */
90 if (ifp)
91 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
92 if (aa->aa_ifp == ifp)
93 break;
94
95 /*
96 * In this first switch table we are basically getting ready for
97 * the second one, by getting the atalk-specific things set up
98 * so that they start to look more similar to other protocols etc.
99 */
100
101 switch (cmd) {
102 case SIOCAIFADDR:
103 case SIOCDIFADDR:
104 /*
105 * If we have an appletalk sockaddr, scan forward of where
106 * we are now on the at_ifaddr list to find one with a matching
107 * address on this interface.
108 * This may leave aa pointing to the first address on the
109 * NEXT interface!
110 */
111 if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
112 for (; aa; aa = aa->aa_list.tqe_next)
113 if (aa->aa_ifp == ifp &&
114 sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
115 break;
116 }
117 /*
118 * If we a retrying to delete an addres but didn't find such,
119 * then return with an error
120 */
121 if (cmd == SIOCDIFADDR && aa == 0)
122 return (EADDRNOTAVAIL);
123 /* FALLTHROUGH */
124
125 case SIOCSIFADDR:
126 /*
127 * If we are not superuser, then we don't get to do these
128 * ops.
129 */
130 if (suser(p->p_ucred, &p->p_acflag))
131 return (EPERM);
132
133 sat = satosat(&ifr->ifr_addr);
134 nr = (struct netrange *) sat->sat_zero;
135 if (nr->nr_phase == 1) {
136 /*
137 * Look for a phase 1 address on this interface.
138 * This may leave aa pointing to the first address on
139 * the NEXT interface!
140 */
141 for (; aa; aa = aa->aa_list.tqe_next) {
142 if (aa->aa_ifp == ifp &&
143 (aa->aa_flags & AFA_PHASE2) == 0)
144 break;
145 }
146 } else { /* default to phase 2 */
147 /*
148 * Look for a phase 2 address on this interface.
149 * This may leave aa pointing to the first address on
150 * the NEXT interface!
151 */
152 for (; aa; aa = aa->aa_list.tqe_next) {
153 if (aa->aa_ifp == ifp &&
154 (aa->aa_flags & AFA_PHASE2))
155 break;
156 }
157 }
158
159 if (ifp == 0)
160 panic("at_control");
161
162 /*
163 * If we failed to find an existing at_ifaddr entry, then we
164 * allocate a fresh one.
165 * XXX change this to use malloc
166 */
167 if (aa == (struct at_ifaddr *) 0) {
168 aa = (struct at_ifaddr *)
169 malloc(sizeof(struct at_ifaddr), M_IFADDR,
170 M_WAITOK);
171
172 if (aa == NULL)
173 return (ENOBUFS);
174
175 bzero(aa, sizeof *aa);
176 callout_init(&aa->aa_probe_ch);
177
178 if ((aa0 = at_ifaddr.tqh_first) != NULL) {
179 /*
180 * Don't let the loopback be first, since the
181 * first address is the machine's default
182 * address for binding.
183 * If it is, stick ourself in front, otherwise
184 * go to the back of the list.
185 */
186 if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
187 TAILQ_INSERT_HEAD(&at_ifaddr, aa,
188 aa_list);
189 } else {
190 TAILQ_INSERT_TAIL(&at_ifaddr, aa,
191 aa_list);
192 }
193 } else {
194 TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
195 }
196 IFAREF(&aa->aa_ifa);
197
198 /*
199 * Find the end of the interface's addresses
200 * and link our new one on the end
201 */
202 TAILQ_INSERT_TAIL(&ifp->if_addrlist,
203 (struct ifaddr *) aa, ifa_list);
204 IFAREF(&aa->aa_ifa);
205
206 /*
207 * As the at_ifaddr contains the actual sockaddrs,
208 * and the ifaddr itself, link them al together
209 * correctly.
210 */
211 aa->aa_ifa.ifa_addr =
212 (struct sockaddr *) &aa->aa_addr;
213 aa->aa_ifa.ifa_dstaddr =
214 (struct sockaddr *) &aa->aa_addr;
215 aa->aa_ifa.ifa_netmask =
216 (struct sockaddr *) &aa->aa_netmask;
217
218 /*
219 * Set/clear the phase 2 bit.
220 */
221 if (nr->nr_phase == 1)
222 aa->aa_flags &= ~AFA_PHASE2;
223 else
224 aa->aa_flags |= AFA_PHASE2;
225
226 /*
227 * and link it all together
228 */
229 aa->aa_ifp = ifp;
230 } else {
231 /*
232 * If we DID find one then we clobber any routes
233 * dependent on it..
234 */
235 at_scrub(ifp, aa);
236 }
237 break;
238
239 case SIOCGIFADDR:
240 sat = satosat(&ifr->ifr_addr);
241 nr = (struct netrange *) sat->sat_zero;
242 if (nr->nr_phase == 1) {
243 /*
244 * If the request is specifying phase 1, then
245 * only look at a phase one address
246 */
247 for (; aa; aa = aa->aa_list.tqe_next) {
248 if (aa->aa_ifp == ifp &&
249 (aa->aa_flags & AFA_PHASE2) == 0)
250 break;
251 }
252 } else {
253 /*
254 * default to phase 2
255 */
256 for (; aa; aa = aa->aa_list.tqe_next) {
257 if (aa->aa_ifp == ifp &&
258 (aa->aa_flags & AFA_PHASE2))
259 break;
260 }
261 }
262
263 if (aa == (struct at_ifaddr *) 0)
264 return (EADDRNOTAVAIL);
265 break;
266 }
267
268 /*
269 * By the time this switch is run we should be able to assume that
270 * the "aa" pointer is valid when needed.
271 */
272 switch (cmd) {
273 case SIOCGIFADDR:
274
275 /*
276 * copy the contents of the sockaddr blindly.
277 */
278 sat = (struct sockaddr_at *) & ifr->ifr_addr;
279 *sat = aa->aa_addr;
280
281 /*
282 * and do some cleanups
283 */
284 ((struct netrange *) &sat->sat_zero)->nr_phase =
285 (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
286 ((struct netrange *) &sat->sat_zero)->nr_firstnet =
287 aa->aa_firstnet;
288 ((struct netrange *) &sat->sat_zero)->nr_lastnet =
289 aa->aa_lastnet;
290 break;
291
292 case SIOCSIFADDR:
293 return (at_ifinit(ifp, aa,
294 (struct sockaddr_at *) &ifr->ifr_addr));
295
296 case SIOCAIFADDR:
297 if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
298 return 0;
299 return (at_ifinit(ifp, aa,
300 (struct sockaddr_at *) &ifr->ifr_addr));
301
302 case SIOCDIFADDR:
303 at_purgeaddr((struct ifaddr *) aa, ifp);
304 break;
305
306 default:
307 if (ifp == 0 || ifp->if_ioctl == 0)
308 return (EOPNOTSUPP);
309 return ((*ifp->if_ioctl) (ifp, cmd, data));
310 }
311 return (0);
312 }
313
314 void
315 at_purgeaddr(ifa, ifp)
316 struct ifaddr *ifa;
317 struct ifnet *ifp;
318 {
319 struct at_ifaddr *aa = (void *) ifa;
320
321 /*
322 * scrub all routes.. didn't we just DO this? XXX yes, del it
323 * XXX above XXX not necessarily true anymore
324 */
325 at_scrub(ifp, aa);
326
327 /*
328 * remove the ifaddr from the interface
329 */
330 TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
331 IFAFREE(&aa->aa_ifa);
332 TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
333 IFAFREE(&aa->aa_ifa);
334 }
335
336 void
337 at_purgeif(ifp)
338 struct ifnet *ifp;
339 {
340 struct ifaddr *ifa, *nifa;
341
342 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
343 nifa = TAILQ_NEXT(ifa, ifa_list);
344 if (ifa->ifa_addr->sa_family != AF_APPLETALK)
345 continue;
346 at_purgeaddr(ifa, ifp);
347 }
348 }
349
350 /*
351 * Given an interface and an at_ifaddr (supposedly on that interface) remove
352 * any routes that depend on this. Why ifp is needed I'm not sure, as
353 * aa->at_ifaddr.ifa_ifp should be the same.
354 */
355 static int
356 at_scrub(ifp, aa)
357 struct ifnet *ifp;
358 struct at_ifaddr *aa;
359 {
360 int error = 0;
361
362 if (aa->aa_flags & AFA_ROUTE) {
363 if (ifp->if_flags & IFF_LOOPBACK)
364 error = aa_delsingleroute(&aa->aa_ifa,
365 &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
366 else if (ifp->if_flags & IFF_POINTOPOINT)
367 error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
368 else if (ifp->if_flags & IFF_BROADCAST)
369 error = aa_dorangeroute(&aa->aa_ifa,
370 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
371 RTM_DELETE);
372
373 aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
374 aa->aa_flags &= ~AFA_ROUTE;
375 }
376 return error;
377 }
378
379 /*
380 * given an at_ifaddr,a sockaddr_at and an ifp,
381 * bang them all together at high speed and see what happens
382 */
383 static int
384 at_ifinit(ifp, aa, sat)
385 struct ifnet *ifp;
386 struct at_ifaddr *aa;
387 struct sockaddr_at *sat;
388 {
389 struct netrange nr, onr;
390 struct sockaddr_at oldaddr;
391 int s = splnet(), error = 0, i, j;
392 int netinc, nodeinc, nnets;
393 u_short net;
394
395 /*
396 * save the old addresses in the at_ifaddr just in case we need them.
397 */
398 oldaddr = aa->aa_addr;
399 onr.nr_firstnet = aa->aa_firstnet;
400 onr.nr_lastnet = aa->aa_lastnet;
401
402 /*
403 * take the address supplied as an argument, and add it to the
404 * at_ifnet (also given). Remember ing to update
405 * those parts of the at_ifaddr that need special processing
406 */
407 bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
408 bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
409 bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
410 nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
411 aa->aa_firstnet = nr.nr_firstnet;
412 aa->aa_lastnet = nr.nr_lastnet;
413
414 #ifdef NETATALKDEBUG
415 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
416 ifp->if_xname,
417 ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
418 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
419 (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
420 #endif
421
422 /*
423 * We could eliminate the need for a second phase 1 probe (post
424 * autoconf) if we check whether we're resetting the node. Note
425 * that phase 1 probes use only nodes, not net.node pairs. Under
426 * phase 2, both the net and node must be the same.
427 */
428 AA_SAT(aa)->sat_len = sat->sat_len;
429 AA_SAT(aa)->sat_family = AF_APPLETALK;
430 if (ifp->if_flags & IFF_LOOPBACK) {
431 AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
432 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
433 #if 0
434 } else if (fp->if_flags & IFF_POINTOPOINT) {
435 /* unimplemented */
436 /*
437 * we'd have to copy the dstaddr field over from the sat
438 * but it's not clear that it would contain the right info..
439 */
440 #endif
441 } else {
442 /*
443 * We are a normal (probably ethernet) interface.
444 * apply the new address to the interface structures etc.
445 * We will probe this address on the net first, before
446 * applying it to ensure that it is free.. If it is not, then
447 * we will try a number of other randomly generated addresses
448 * in this net and then increment the net. etc.etc. until
449 * we find an unused address.
450 */
451 aa->aa_flags |= AFA_PROBING; /* if not loopback we Must
452 * probe? */
453 if (aa->aa_flags & AFA_PHASE2) {
454 if (sat->sat_addr.s_net == ATADDR_ANYNET) {
455 /*
456 * If we are phase 2, and the net was not
457 * specified * then we select a random net
458 * within the supplied netrange.
459 * XXX use /dev/random?
460 */
461 if (nnets != 1) {
462 net = ntohs(nr.nr_firstnet) +
463 time.tv_sec % (nnets - 1);
464 } else {
465 net = ntohs(nr.nr_firstnet);
466 }
467 } else {
468 /*
469 * if a net was supplied, then check that it
470 * is within the netrange. If it is not then
471 * replace the old values and return an error
472 */
473 if (ntohs(sat->sat_addr.s_net) <
474 ntohs(nr.nr_firstnet) ||
475 ntohs(sat->sat_addr.s_net) >
476 ntohs(nr.nr_lastnet)) {
477 aa->aa_addr = oldaddr;
478 aa->aa_firstnet = onr.nr_firstnet;
479 aa->aa_lastnet = onr.nr_lastnet;
480 splx(s);
481 return (EINVAL);
482 }
483 /*
484 * otherwise just use the new net number..
485 */
486 net = ntohs(sat->sat_addr.s_net);
487 }
488 } else {
489 /*
490 * we must be phase one, so just use whatever we were
491 * given. I guess it really isn't going to be used...
492 * RIGHT?
493 */
494 net = ntohs(sat->sat_addr.s_net);
495 }
496
497 /*
498 * set the node part of the address into the ifaddr. If it's
499 * not specified, be random about it... XXX use /dev/random?
500 */
501 if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
502 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
503 } else {
504 AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
505 }
506
507 /*
508 * step through the nets in the range starting at the
509 * (possibly random) start point.
510 */
511 for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
512 ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
513 AA_SAT(aa)->sat_addr.s_net = htons(net);
514
515 /*
516 * using a rather strange stepping method,
517 * stagger through the possible node addresses
518 * Once again, starting at the (possibly random)
519 * initial node address.
520 */
521 for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
522 j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
523 if (AA_SAT(aa)->sat_addr.s_node > 253 ||
524 AA_SAT(aa)->sat_addr.s_node < 1) {
525 continue;
526 }
527 aa->aa_probcnt = 10;
528
529 /*
530 * start off the probes as an asynchronous
531 * activity. though why wait 200mSec?
532 */
533 callout_reset(&aa->aa_probe_ch, hz / 5,
534 aarpprobe, ifp);
535 if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
536 0)) {
537 /*
538 * theoretically we shouldn't time out
539 * here so if we returned with an error.
540 */
541 printf("at_ifinit: timeout?!\n");
542 aa->aa_addr = oldaddr;
543 aa->aa_firstnet = onr.nr_firstnet;
544 aa->aa_lastnet = onr.nr_lastnet;
545 splx(s);
546 return (EINTR);
547 }
548 /*
549 * The async activity should have woken us
550 * up. We need to see if it was successful in
551 * finding a free spot, or if we need to
552 * iterate to the next address to try.
553 */
554 if ((aa->aa_flags & AFA_PROBING) == 0)
555 break;
556 }
557
558 /*
559 * of course we need to break out through two loops...
560 */
561 if ((aa->aa_flags & AFA_PROBING) == 0)
562 break;
563
564 /* reset node for next network */
565 AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
566 }
567
568 /*
569 * if we are still trying to probe, then we have finished all
570 * the possible addresses, so we need to give up
571 */
572 if (aa->aa_flags & AFA_PROBING) {
573 aa->aa_addr = oldaddr;
574 aa->aa_firstnet = onr.nr_firstnet;
575 aa->aa_lastnet = onr.nr_lastnet;
576 splx(s);
577 return (EADDRINUSE);
578 }
579 }
580
581 /*
582 * Now that we have selected an address, we need to tell the
583 * interface about it, just in case it needs to adjust something.
584 */
585 if (ifp->if_ioctl &&
586 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
587 /*
588 * of course this could mean that it objects violently
589 * so if it does, we back out again..
590 */
591 aa->aa_addr = oldaddr;
592 aa->aa_firstnet = onr.nr_firstnet;
593 aa->aa_lastnet = onr.nr_lastnet;
594 splx(s);
595 return (error);
596 }
597 /*
598 * set up the netmask part of the at_ifaddr and point the appropriate
599 * pointer in the ifaddr to it. probably pointless, but what the
600 * heck.. XXX
601 */
602 bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
603 aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
604 aa->aa_netmask.sat_family = AF_APPLETALK;
605 aa->aa_netmask.sat_addr.s_net = 0xffff;
606 aa->aa_netmask.sat_addr.s_node = 0;
607 #if 0
608 aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
609 #endif
610
611 /*
612 * Initialize broadcast (or remote p2p) address
613 */
614 bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
615 aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
616 aa->aa_broadaddr.sat_family = AF_APPLETALK;
617
618 aa->aa_ifa.ifa_metric = ifp->if_metric;
619 if (ifp->if_flags & IFF_BROADCAST) {
620 aa->aa_broadaddr.sat_addr.s_net = htons(0);
621 aa->aa_broadaddr.sat_addr.s_node = 0xff;
622 aa->aa_ifa.ifa_broadaddr =
623 (struct sockaddr *) &aa->aa_broadaddr;
624 /* add the range of routes needed */
625 error = aa_dorangeroute(&aa->aa_ifa,
626 ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
627 } else if (ifp->if_flags & IFF_POINTOPOINT) {
628 struct at_addr rtaddr, rtmask;
629
630 bzero(&rtaddr, sizeof(rtaddr));
631 bzero(&rtmask, sizeof(rtmask));
632 /* fill in the far end if we know it here XXX */
633 aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
634 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
635 } else if (ifp->if_flags & IFF_LOOPBACK) {
636 struct at_addr rtaddr, rtmask;
637
638 bzero(&rtaddr, sizeof(rtaddr));
639 bzero(&rtmask, sizeof(rtmask));
640 rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
641 rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
642 rtmask.s_net = 0xffff;
643 rtmask.s_node = 0x0;
644 error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
645 }
646 /*
647 * of course if we can't add these routes we back out, but it's getting
648 * risky by now XXX
649 */
650 if (error) {
651 at_scrub(ifp, aa);
652 aa->aa_addr = oldaddr;
653 aa->aa_firstnet = onr.nr_firstnet;
654 aa->aa_lastnet = onr.nr_lastnet;
655 splx(s);
656 return (error);
657 }
658 /*
659 * note that the address has a route associated with it....
660 */
661 aa->aa_ifa.ifa_flags |= IFA_ROUTE;
662 aa->aa_flags |= AFA_ROUTE;
663 splx(s);
664 return (0);
665 }
666
667 /*
668 * check whether a given address is a broadcast address for us..
669 */
670 int
671 at_broadcast(sat)
672 struct sockaddr_at *sat;
673 {
674 struct at_ifaddr *aa;
675
676 /*
677 * If the node is not right, it can't be a broadcast
678 */
679 if (sat->sat_addr.s_node != ATADDR_BCAST)
680 return 0;
681
682 /*
683 * If the node was right then if the net is right, it's a broadcast
684 */
685 if (sat->sat_addr.s_net == ATADDR_ANYNET)
686 return 1;
687
688 /*
689 * failing that, if the net is one we have, it's a broadcast as well.
690 */
691 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
692 if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
693 && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
694 && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
695 return 1;
696 }
697 return 0;
698 }
699
700
701 /*
702 * aa_dorangeroute()
703 *
704 * Add a route for a range of networks from bot to top - 1.
705 * Algorithm:
706 *
707 * Split the range into two subranges such that the middle
708 * of the two ranges is the point where the highest bit of difference
709 * between the two addresses, makes it's transition
710 * Each of the upper and lower ranges might not exist, or might be
711 * representable by 1 or more netmasks. In addition, if both
712 * ranges can be represented by the same netmask, then teh can be merged
713 * by using the next higher netmask..
714 */
715
716 static int
717 aa_dorangeroute(ifa, bot, top, cmd)
718 struct ifaddr *ifa;
719 u_int bot;
720 u_int top;
721 int cmd;
722 {
723 u_int mask1;
724 struct at_addr addr;
725 struct at_addr mask;
726 int error;
727
728 /*
729 * slight sanity check
730 */
731 if (bot > top)
732 return (EINVAL);
733
734 addr.s_node = 0;
735 mask.s_node = 0;
736 /*
737 * just start out with the lowest boundary
738 * and keep extending the mask till it's too big.
739 */
740
741 while (bot <= top) {
742 mask1 = 1;
743 while (((bot & ~mask1) >= bot)
744 && ((bot | mask1) <= top)) {
745 mask1 <<= 1;
746 mask1 |= 1;
747 }
748 mask1 >>= 1;
749 mask.s_net = htons(~mask1);
750 addr.s_net = htons(bot);
751 if (cmd == RTM_ADD) {
752 error = aa_addsingleroute(ifa, &addr, &mask);
753 if (error) {
754 /* XXX clean up? */
755 return (error);
756 }
757 } else {
758 error = aa_delsingleroute(ifa, &addr, &mask);
759 }
760 bot = (bot | mask1) + 1;
761 }
762 return 0;
763 }
764
765 static int
766 aa_addsingleroute(ifa, addr, mask)
767 struct ifaddr *ifa;
768 struct at_addr *addr;
769 struct at_addr *mask;
770 {
771 int error;
772
773 #ifdef NETATALKDEBUG
774 printf("aa_addsingleroute: %x.%x mask %x.%x ...",
775 ntohs(addr->s_net), addr->s_node,
776 ntohs(mask->s_net), mask->s_node);
777 #endif
778
779 error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
780 #ifdef NETATALKDEBUG
781 if (error)
782 printf("aa_addsingleroute: error %d\n", error);
783 #endif
784 return (error);
785 }
786
787 static int
788 aa_delsingleroute(ifa, addr, mask)
789 struct ifaddr *ifa;
790 struct at_addr *addr;
791 struct at_addr *mask;
792 {
793 int error;
794
795 #ifdef NETATALKDEBUG
796 printf("aa_delsingleroute: %x.%x mask %x.%x ...",
797 ntohs(addr->s_net), addr->s_node,
798 ntohs(mask->s_net), mask->s_node);
799 #endif
800
801 error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
802 #ifdef NETATALKDEBUG
803 if (error)
804 printf("aa_delsingleroute: error %d\n", error);
805 #endif
806 return (error);
807 }
808
809 static int
810 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
811 struct ifaddr *ifa;
812 struct at_addr *at_addr;
813 struct at_addr *at_mask;
814 int cmd;
815 int flags;
816 {
817 struct sockaddr_at addr, mask, *gate;
818
819 bzero(&addr, sizeof(addr));
820 bzero(&mask, sizeof(mask));
821 addr.sat_family = AF_APPLETALK;
822 addr.sat_len = sizeof(struct sockaddr_at);
823 addr.sat_addr.s_net = at_addr->s_net;
824 addr.sat_addr.s_node = at_addr->s_node;
825 mask.sat_family = AF_APPLETALK;
826 mask.sat_len = sizeof(struct sockaddr_at);
827 mask.sat_addr.s_net = at_mask->s_net;
828 mask.sat_addr.s_node = at_mask->s_node;
829
830 if (at_mask->s_node) {
831 gate = satosat(ifa->ifa_dstaddr);
832 flags |= RTF_HOST;
833 } else {
834 gate = satosat(ifa->ifa_addr);
835 }
836
837 #ifdef NETATALKDEBUG
838 printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
839 ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
840 #endif
841 return (rtrequest(cmd, (struct sockaddr *) &addr,
842 (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
843 }
844
845 #if 0
846 static void
847 aa_clean()
848 {
849 struct at_ifaddr *aa;
850 struct ifaddr *ifa;
851 struct ifnet *ifp;
852
853 while (aa = at_ifaddr) {
854 ifp = aa->aa_ifp;
855 at_scrub(ifp, aa);
856 at_ifaddr = aa->aa_next;
857 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
858 ifp->if_addrlist = ifa->ifa_next;
859 } else {
860 while (ifa->ifa_next &&
861 (ifa->ifa_next != (struct ifaddr *) aa)) {
862 ifa = ifa->ifa_next;
863 }
864 if (ifa->ifa_next) {
865 ifa->ifa_next =
866 ((struct ifaddr *) aa)->ifa_next;
867 } else {
868 panic("at_entry");
869 }
870 }
871 }
872 }
873 #endif
874