Home | History | Annotate | Line # | Download | only in netatalk
at_control.c revision 1.6
      1 /*	$NetBSD: at_control.c,v 1.6 2001/11/13 00:00:58 lukem Exp $	 */
      2 
      3 /*
      4  * Copyright (c) 1990,1994 Regents of The University of Michigan.
      5  * All Rights Reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this software and
      8  * its documentation for any purpose and without fee is hereby granted,
      9  * provided that the above copyright notice appears in all copies and
     10  * that both that copyright notice and this permission notice appear
     11  * in supporting documentation, and that the name of The University
     12  * of Michigan not be used in advertising or publicity pertaining to
     13  * distribution of the software without specific, written prior
     14  * permission. This software is supplied as is without expressed or
     15  * implied warranties of any kind.
     16  *
     17  * This product includes software developed by the University of
     18  * California, Berkeley and its contributors.
     19  *
     20  *	Research Systems Unix Group
     21  *	The University of Michigan
     22  *	c/o Wesley Craig
     23  *	535 W. William Street
     24  *	Ann Arbor, Michigan
     25  *	+1-313-764-2278
     26  *	netatalk (at) umich.edu
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: at_control.c,v 1.6 2001/11/13 00:00:58 lukem Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/proc.h>
     35 #include <sys/types.h>
     36 #include <sys/errno.h>
     37 #include <sys/ioctl.h>
     38 #include <sys/mbuf.h>
     39 #include <sys/kernel.h>
     40 #include <sys/socket.h>
     41 #include <sys/socketvar.h>
     42 #include <net/if.h>
     43 #include <net/route.h>
     44 #include <net/if_ether.h>
     45 #include <netinet/in.h>
     46 #undef s_net
     47 
     48 #include <netatalk/at.h>
     49 #include <netatalk/at_var.h>
     50 #include <netatalk/aarp.h>
     51 #include <netatalk/phase2.h>
     52 #include <netatalk/at_extern.h>
     53 
     54 static int aa_dorangeroute __P((struct ifaddr * ifa,
     55     u_int first, u_int last, int cmd));
     56 static int aa_addsingleroute __P((struct ifaddr * ifa,
     57     struct at_addr * addr, struct at_addr * mask));
     58 static int aa_delsingleroute __P((struct ifaddr * ifa,
     59     struct at_addr * addr, struct at_addr * mask));
     60 static int aa_dosingleroute __P((struct ifaddr * ifa, struct at_addr * addr,
     61     struct at_addr * mask, int cmd, int flags));
     62 static int at_scrub __P((struct ifnet * ifp, struct at_ifaddr * aa));
     63 static int at_ifinit __P((struct ifnet * ifp, struct at_ifaddr * aa,
     64     struct sockaddr_at * sat));
     65 #if 0
     66 static void aa_clean __P((void));
     67 #endif
     68 
     69 #define sateqaddr(a,b)	((a)->sat_len == (b)->sat_len && \
     70 			 (a)->sat_family == (b)->sat_family && \
     71 			 (a)->sat_addr.s_net == (b)->sat_addr.s_net && \
     72 			 (a)->sat_addr.s_node == (b)->sat_addr.s_node )
     73 
     74 int
     75 at_control(cmd, data, ifp, p)
     76 	u_long          cmd;
     77 	caddr_t         data;
     78 	struct ifnet   *ifp;
     79 	struct proc    *p;
     80 {
     81 	struct ifreq   *ifr = (struct ifreq *) data;
     82 	struct sockaddr_at *sat;
     83 	struct netrange *nr;
     84 	struct at_aliasreq *ifra = (struct at_aliasreq *) data;
     85 	struct at_ifaddr *aa0;
     86 	struct at_ifaddr *aa = 0;
     87 
     88 	/*
     89          * If we have an ifp, then find the matching at_ifaddr if it exists
     90          */
     91 	if (ifp)
     92 		for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next)
     93 			if (aa->aa_ifp == ifp)
     94 				break;
     95 
     96 	/*
     97          * In this first switch table we are basically getting ready for
     98          * the second one, by getting the atalk-specific things set up
     99          * so that they start to look more similar to other protocols etc.
    100          */
    101 
    102 	switch (cmd) {
    103 	case SIOCAIFADDR:
    104 	case SIOCDIFADDR:
    105 		/*
    106 		 * If we have an appletalk sockaddr, scan forward of where
    107 		 * we are now on the at_ifaddr list to find one with a matching
    108 		 * address on this interface.
    109 		 * This may leave aa pointing to the first address on the
    110 		 * NEXT interface!
    111 		 */
    112 		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
    113 			for (; aa; aa = aa->aa_list.tqe_next)
    114 				if (aa->aa_ifp == ifp &&
    115 				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
    116 					break;
    117 		}
    118 		/*
    119 		 * If we a retrying to delete an addres but didn't find such,
    120 		 * then return with an error
    121 		 */
    122 		if (cmd == SIOCDIFADDR && aa == 0)
    123 			return (EADDRNOTAVAIL);
    124 		/* FALLTHROUGH */
    125 
    126 	case SIOCSIFADDR:
    127 		/*
    128 		 * If we are not superuser, then we don't get to do these
    129 		 * ops.
    130 		 */
    131 		if (suser(p->p_ucred, &p->p_acflag))
    132 			return (EPERM);
    133 
    134 		sat = satosat(&ifr->ifr_addr);
    135 		nr = (struct netrange *) sat->sat_zero;
    136 		if (nr->nr_phase == 1) {
    137 			/*
    138 		         * Look for a phase 1 address on this interface.
    139 		         * This may leave aa pointing to the first address on
    140 			 * the NEXT interface!
    141 		         */
    142 			for (; aa; aa = aa->aa_list.tqe_next) {
    143 				if (aa->aa_ifp == ifp &&
    144 				    (aa->aa_flags & AFA_PHASE2) == 0)
    145 					break;
    146 			}
    147 		} else {	/* default to phase 2 */
    148 			/*
    149 		         * Look for a phase 2 address on this interface.
    150 		         * This may leave aa pointing to the first address on
    151 			 * the NEXT interface!
    152 		         */
    153 			for (; aa; aa = aa->aa_list.tqe_next) {
    154 				if (aa->aa_ifp == ifp &&
    155 				    (aa->aa_flags & AFA_PHASE2))
    156 					break;
    157 			}
    158 		}
    159 
    160 		if (ifp == 0)
    161 			panic("at_control");
    162 
    163 		/*
    164 		 * If we failed to find an existing at_ifaddr entry, then we
    165 		 * allocate a fresh one.
    166 		 * XXX change this to use malloc
    167 		 */
    168 		if (aa == (struct at_ifaddr *) 0) {
    169 			aa = (struct at_ifaddr *)
    170 			    malloc(sizeof(struct at_ifaddr), M_IFADDR,
    171 			    M_WAITOK);
    172 
    173 			if (aa == NULL)
    174 				return (ENOBUFS);
    175 
    176 			bzero(aa, sizeof *aa);
    177 			callout_init(&aa->aa_probe_ch);
    178 
    179 			if ((aa0 = at_ifaddr.tqh_first) != NULL) {
    180 				/*
    181 				 * Don't let the loopback be first, since the
    182 				 * first address is the machine's default
    183 				 * address for binding.
    184 				 * If it is, stick ourself in front, otherwise
    185 				 * go to the back of the list.
    186 				 */
    187 				if (aa0->aa_ifp->if_flags & IFF_LOOPBACK) {
    188 					TAILQ_INSERT_HEAD(&at_ifaddr, aa,
    189 					    aa_list);
    190 				} else {
    191 					TAILQ_INSERT_TAIL(&at_ifaddr, aa,
    192 					    aa_list);
    193 				}
    194 			} else {
    195 				TAILQ_INSERT_TAIL(&at_ifaddr, aa, aa_list);
    196 			}
    197 			IFAREF(&aa->aa_ifa);
    198 
    199 			/*
    200 		         * Find the end of the interface's addresses
    201 		         * and link our new one on the end
    202 		         */
    203 			TAILQ_INSERT_TAIL(&ifp->if_addrlist,
    204 			    (struct ifaddr *) aa, ifa_list);
    205 			IFAREF(&aa->aa_ifa);
    206 
    207 			/*
    208 		         * As the at_ifaddr contains the actual sockaddrs,
    209 		         * and the ifaddr itself, link them al together
    210 			 * correctly.
    211 		         */
    212 			aa->aa_ifa.ifa_addr =
    213 			    (struct sockaddr *) &aa->aa_addr;
    214 			aa->aa_ifa.ifa_dstaddr =
    215 			    (struct sockaddr *) &aa->aa_addr;
    216 			aa->aa_ifa.ifa_netmask =
    217 			    (struct sockaddr *) &aa->aa_netmask;
    218 
    219 			/*
    220 		         * Set/clear the phase 2 bit.
    221 		         */
    222 			if (nr->nr_phase == 1)
    223 				aa->aa_flags &= ~AFA_PHASE2;
    224 			else
    225 				aa->aa_flags |= AFA_PHASE2;
    226 
    227 			/*
    228 		         * and link it all together
    229 		         */
    230 			aa->aa_ifp = ifp;
    231 		} else {
    232 			/*
    233 		         * If we DID find one then we clobber any routes
    234 			 * dependent on it..
    235 		         */
    236 			at_scrub(ifp, aa);
    237 		}
    238 		break;
    239 
    240 	case SIOCGIFADDR:
    241 		sat = satosat(&ifr->ifr_addr);
    242 		nr = (struct netrange *) sat->sat_zero;
    243 		if (nr->nr_phase == 1) {
    244 			/*
    245 		         * If the request is specifying phase 1, then
    246 		         * only look at a phase one address
    247 		         */
    248 			for (; aa; aa = aa->aa_list.tqe_next) {
    249 				if (aa->aa_ifp == ifp &&
    250 				    (aa->aa_flags & AFA_PHASE2) == 0)
    251 					break;
    252 			}
    253 		} else {
    254 			/*
    255 		         * default to phase 2
    256 		         */
    257 			for (; aa; aa = aa->aa_list.tqe_next) {
    258 				if (aa->aa_ifp == ifp &&
    259 				    (aa->aa_flags & AFA_PHASE2))
    260 					break;
    261 			}
    262 		}
    263 
    264 		if (aa == (struct at_ifaddr *) 0)
    265 			return (EADDRNOTAVAIL);
    266 		break;
    267 	}
    268 
    269 	/*
    270          * By the time this switch is run we should be able to assume that
    271          * the "aa" pointer is valid when needed.
    272          */
    273 	switch (cmd) {
    274 	case SIOCGIFADDR:
    275 
    276 		/*
    277 		 * copy the contents of the sockaddr blindly.
    278 		 */
    279 		sat = (struct sockaddr_at *) & ifr->ifr_addr;
    280 		*sat = aa->aa_addr;
    281 
    282 		/*
    283 		 * and do some cleanups
    284 		 */
    285 		((struct netrange *) &sat->sat_zero)->nr_phase =
    286 		    (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
    287 		((struct netrange *) &sat->sat_zero)->nr_firstnet =
    288 		    aa->aa_firstnet;
    289 		((struct netrange *) &sat->sat_zero)->nr_lastnet =
    290 		    aa->aa_lastnet;
    291 		break;
    292 
    293 	case SIOCSIFADDR:
    294 		return (at_ifinit(ifp, aa,
    295 		    (struct sockaddr_at *) &ifr->ifr_addr));
    296 
    297 	case SIOCAIFADDR:
    298 		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr))
    299 			return 0;
    300 		return (at_ifinit(ifp, aa,
    301 		    (struct sockaddr_at *) &ifr->ifr_addr));
    302 
    303 	case SIOCDIFADDR:
    304 		at_purgeaddr((struct ifaddr *) aa, ifp);
    305 		break;
    306 
    307 	default:
    308 		if (ifp == 0 || ifp->if_ioctl == 0)
    309 			return (EOPNOTSUPP);
    310 		return ((*ifp->if_ioctl) (ifp, cmd, data));
    311 	}
    312 	return (0);
    313 }
    314 
    315 void
    316 at_purgeaddr(ifa, ifp)
    317 	struct ifaddr *ifa;
    318 	struct ifnet *ifp;
    319 {
    320 	struct at_ifaddr *aa = (void *) ifa;
    321 
    322 	/*
    323 	 * scrub all routes.. didn't we just DO this? XXX yes, del it
    324 	 * XXX above XXX not necessarily true anymore
    325 	 */
    326 	at_scrub(ifp, aa);
    327 
    328 	/*
    329 	 * remove the ifaddr from the interface
    330 	 */
    331 	TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *) aa, ifa_list);
    332 	IFAFREE(&aa->aa_ifa);
    333 	TAILQ_REMOVE(&at_ifaddr, aa, aa_list);
    334 	IFAFREE(&aa->aa_ifa);
    335 }
    336 
    337 void
    338 at_purgeif(ifp)
    339 	struct ifnet *ifp;
    340 {
    341 	struct ifaddr *ifa, *nifa;
    342 
    343 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
    344 		nifa = TAILQ_NEXT(ifa, ifa_list);
    345 		if (ifa->ifa_addr->sa_family != AF_APPLETALK)
    346 			continue;
    347 		at_purgeaddr(ifa, ifp);
    348 	}
    349 }
    350 
    351 /*
    352  * Given an interface and an at_ifaddr (supposedly on that interface) remove
    353  * any routes that depend on this. Why ifp is needed I'm not sure, as
    354  * aa->at_ifaddr.ifa_ifp should be the same.
    355  */
    356 static int
    357 at_scrub(ifp, aa)
    358 	struct ifnet   *ifp;
    359 	struct at_ifaddr *aa;
    360 {
    361 	int error = 0;
    362 
    363 	if (aa->aa_flags & AFA_ROUTE) {
    364 		if (ifp->if_flags & IFF_LOOPBACK)
    365 			error = aa_delsingleroute(&aa->aa_ifa,
    366 			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr);
    367 		else if (ifp->if_flags & IFF_POINTOPOINT)
    368 			error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST);
    369 		else if (ifp->if_flags & IFF_BROADCAST)
    370 			error = aa_dorangeroute(&aa->aa_ifa,
    371 			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    372 			    RTM_DELETE);
    373 
    374 		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
    375 		aa->aa_flags &= ~AFA_ROUTE;
    376 	}
    377 	return error;
    378 }
    379 
    380 /*
    381  * given an at_ifaddr,a sockaddr_at and an ifp,
    382  * bang them all together at high speed and see what happens
    383  */
    384 static int
    385 at_ifinit(ifp, aa, sat)
    386 	struct ifnet   *ifp;
    387 	struct at_ifaddr *aa;
    388 	struct sockaddr_at *sat;
    389 {
    390 	struct netrange nr, onr;
    391 	struct sockaddr_at oldaddr;
    392 	int             s = splnet(), error = 0, i, j;
    393 	int             netinc, nodeinc, nnets;
    394 	u_short         net;
    395 
    396 	/*
    397 	 * save the old addresses in the at_ifaddr just in case we need them.
    398 	 */
    399 	oldaddr = aa->aa_addr;
    400 	onr.nr_firstnet = aa->aa_firstnet;
    401 	onr.nr_lastnet = aa->aa_lastnet;
    402 
    403 	/*
    404          * take the address supplied as an argument, and add it to the
    405          * at_ifnet (also given). Remember ing to update
    406          * those parts of the at_ifaddr that need special processing
    407          */
    408 	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
    409 	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
    410 	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
    411 	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
    412 	aa->aa_firstnet = nr.nr_firstnet;
    413 	aa->aa_lastnet = nr.nr_lastnet;
    414 
    415 #ifdef NETATALKDEBUG
    416 	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
    417 	    ifp->if_xname,
    418 	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
    419 	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
    420 	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
    421 #endif
    422 
    423 	/*
    424          * We could eliminate the need for a second phase 1 probe (post
    425          * autoconf) if we check whether we're resetting the node. Note
    426          * that phase 1 probes use only nodes, not net.node pairs.  Under
    427          * phase 2, both the net and node must be the same.
    428          */
    429 	AA_SAT(aa)->sat_len = sat->sat_len;
    430 	AA_SAT(aa)->sat_family = AF_APPLETALK;
    431 	if (ifp->if_flags & IFF_LOOPBACK) {
    432 		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
    433 		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    434 #if 0
    435 	} else if (fp->if_flags & IFF_POINTOPOINT) {
    436 		/* unimplemented */
    437 		/*
    438 		 * we'd have to copy the dstaddr field over from the sat
    439 		 * but it's not clear that it would contain the right info..
    440 		 */
    441 #endif
    442 	} else {
    443 		/*
    444 		 * We are a normal (probably ethernet) interface.
    445 		 * apply the new address to the interface structures etc.
    446 		 * We will probe this address on the net first, before
    447 		 * applying it to ensure that it is free.. If it is not, then
    448 		 * we will try a number of other randomly generated addresses
    449 		 * in this net and then increment the net.  etc.etc. until
    450 		 * we find an unused address.
    451 		 */
    452 		aa->aa_flags |= AFA_PROBING;	/* if not loopback we Must
    453 						 * probe? */
    454 		if (aa->aa_flags & AFA_PHASE2) {
    455 			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
    456 				/*
    457 				 * If we are phase 2, and the net was not
    458 				 * specified * then we select a random net
    459 				 * within the supplied netrange.
    460 				 * XXX use /dev/random?
    461 				 */
    462 				if (nnets != 1) {
    463 					net = ntohs(nr.nr_firstnet) +
    464 					    time.tv_sec % (nnets - 1);
    465 				} else {
    466 					net = ntohs(nr.nr_firstnet);
    467 				}
    468 			} else {
    469 				/*
    470 				 * if a net was supplied, then check that it
    471 				 * is within the netrange. If it is not then
    472 				 * replace the old values and return an error
    473 				 */
    474 				if (ntohs(sat->sat_addr.s_net) <
    475 				    ntohs(nr.nr_firstnet) ||
    476 				    ntohs(sat->sat_addr.s_net) >
    477 				    ntohs(nr.nr_lastnet)) {
    478 					aa->aa_addr = oldaddr;
    479 					aa->aa_firstnet = onr.nr_firstnet;
    480 					aa->aa_lastnet = onr.nr_lastnet;
    481 					splx(s);
    482 					return (EINVAL);
    483 				}
    484 				/*
    485 				 * otherwise just use the new net number..
    486 				 */
    487 				net = ntohs(sat->sat_addr.s_net);
    488 			}
    489 		} else {
    490 			/*
    491 		         * we must be phase one, so just use whatever we were
    492 			 * given. I guess it really isn't going to be used...
    493 			 * RIGHT?
    494 		         */
    495 			net = ntohs(sat->sat_addr.s_net);
    496 		}
    497 
    498 		/*
    499 		 * set the node part of the address into the ifaddr. If it's
    500 		 * not specified, be random about it... XXX use /dev/random?
    501 		 */
    502 		if (sat->sat_addr.s_node == ATADDR_ANYNODE) {
    503 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    504 		} else {
    505 			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
    506 		}
    507 
    508 		/*
    509 		 * step through the nets in the range starting at the
    510 		 * (possibly random) start point.
    511 		 */
    512 		for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) +
    513 		     ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) {
    514 			AA_SAT(aa)->sat_addr.s_net = htons(net);
    515 
    516 			/*
    517 		         * using a rather strange stepping method,
    518 		         * stagger through the possible node addresses
    519 		         * Once again, starting at the (possibly random)
    520 		         * initial node address.
    521 		         */
    522 			for (j = 0, nodeinc = time.tv_sec | 1; j < 256;
    523 			     j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
    524 				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
    525 				    AA_SAT(aa)->sat_addr.s_node < 1) {
    526 					continue;
    527 				}
    528 				aa->aa_probcnt = 10;
    529 
    530 				/*
    531 				 * start off the probes as an asynchronous
    532 				 * activity. though why wait 200mSec?
    533 				 */
    534 				callout_reset(&aa->aa_probe_ch, hz / 5,
    535 				    aarpprobe, ifp);
    536 				if (tsleep(aa, PPAUSE | PCATCH, "at_ifinit",
    537 				    0)) {
    538 					/*
    539 				         * theoretically we shouldn't time out
    540 					 * here so if we returned with an error.
    541 				         */
    542 					printf("at_ifinit: timeout?!\n");
    543 					aa->aa_addr = oldaddr;
    544 					aa->aa_firstnet = onr.nr_firstnet;
    545 					aa->aa_lastnet = onr.nr_lastnet;
    546 					splx(s);
    547 					return (EINTR);
    548 				}
    549 				/*
    550 				 * The async activity should have woken us
    551 				 * up. We need to see if it was successful in
    552 				 * finding a free spot, or if we need to
    553 				 * iterate to the next address to try.
    554 				 */
    555 				if ((aa->aa_flags & AFA_PROBING) == 0)
    556 					break;
    557 			}
    558 
    559 			/*
    560 		         * of course we need to break out through two loops...
    561 		         */
    562 			if ((aa->aa_flags & AFA_PROBING) == 0)
    563 				break;
    564 
    565 			/* reset node for next network */
    566 			AA_SAT(aa)->sat_addr.s_node = time.tv_sec;
    567 		}
    568 
    569 		/*
    570 		 * if we are still trying to probe, then we have finished all
    571 		 * the possible addresses, so we need to give up
    572 		 */
    573 		if (aa->aa_flags & AFA_PROBING) {
    574 			aa->aa_addr = oldaddr;
    575 			aa->aa_firstnet = onr.nr_firstnet;
    576 			aa->aa_lastnet = onr.nr_lastnet;
    577 			splx(s);
    578 			return (EADDRINUSE);
    579 		}
    580 	}
    581 
    582 	/*
    583 	 * Now that we have selected an address, we need to tell the
    584 	 * interface about it, just in case it needs to adjust something.
    585 	 */
    586 	if (ifp->if_ioctl &&
    587 	    (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) aa))) {
    588 		/*
    589 		 * of course this could mean that it objects violently
    590 		 * so if it does, we back out again..
    591 		 */
    592 		aa->aa_addr = oldaddr;
    593 		aa->aa_firstnet = onr.nr_firstnet;
    594 		aa->aa_lastnet = onr.nr_lastnet;
    595 		splx(s);
    596 		return (error);
    597 	}
    598 	/*
    599 	 * set up the netmask part of the at_ifaddr and point the appropriate
    600 	 * pointer in the ifaddr to it. probably pointless, but what the
    601 	 * heck.. XXX
    602 	 */
    603 	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
    604 	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
    605 	aa->aa_netmask.sat_family = AF_APPLETALK;
    606 	aa->aa_netmask.sat_addr.s_net = 0xffff;
    607 	aa->aa_netmask.sat_addr.s_node = 0;
    608 #if 0
    609 	aa->aa_ifa.ifa_netmask = (struct sockaddr *) &(aa->aa_netmask);/* XXX */
    610 #endif
    611 
    612 	/*
    613          * Initialize broadcast (or remote p2p) address
    614          */
    615 	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
    616 	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
    617 	aa->aa_broadaddr.sat_family = AF_APPLETALK;
    618 
    619 	aa->aa_ifa.ifa_metric = ifp->if_metric;
    620 	if (ifp->if_flags & IFF_BROADCAST) {
    621 		aa->aa_broadaddr.sat_addr.s_net = htons(0);
    622 		aa->aa_broadaddr.sat_addr.s_node = 0xff;
    623 		aa->aa_ifa.ifa_broadaddr =
    624 		    (struct sockaddr *) &aa->aa_broadaddr;
    625 		/* add the range of routes needed */
    626 		error = aa_dorangeroute(&aa->aa_ifa,
    627 		    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD);
    628 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
    629 		struct at_addr  rtaddr, rtmask;
    630 
    631 		bzero(&rtaddr, sizeof(rtaddr));
    632 		bzero(&rtmask, sizeof(rtmask));
    633 		/* fill in the far end if we know it here XXX */
    634 		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) & aa->aa_dstaddr;
    635 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    636 	} else if (ifp->if_flags & IFF_LOOPBACK) {
    637 		struct at_addr  rtaddr, rtmask;
    638 
    639 		bzero(&rtaddr, sizeof(rtaddr));
    640 		bzero(&rtmask, sizeof(rtmask));
    641 		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
    642 		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
    643 		rtmask.s_net = 0xffff;
    644 		rtmask.s_node = 0x0;
    645 		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
    646 	}
    647 	/*
    648          * of course if we can't add these routes we back out, but it's getting
    649          * risky by now XXX
    650          */
    651 	if (error) {
    652 		at_scrub(ifp, aa);
    653 		aa->aa_addr = oldaddr;
    654 		aa->aa_firstnet = onr.nr_firstnet;
    655 		aa->aa_lastnet = onr.nr_lastnet;
    656 		splx(s);
    657 		return (error);
    658 	}
    659 	/*
    660          * note that the address has a route associated with it....
    661          */
    662 	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
    663 	aa->aa_flags |= AFA_ROUTE;
    664 	splx(s);
    665 	return (0);
    666 }
    667 
    668 /*
    669  * check whether a given address is a broadcast address for us..
    670  */
    671 int
    672 at_broadcast(sat)
    673 	struct sockaddr_at *sat;
    674 {
    675 	struct at_ifaddr *aa;
    676 
    677 	/*
    678          * If the node is not right, it can't be a broadcast
    679          */
    680 	if (sat->sat_addr.s_node != ATADDR_BCAST)
    681 		return 0;
    682 
    683 	/*
    684          * If the node was right then if the net is right, it's a broadcast
    685          */
    686 	if (sat->sat_addr.s_net == ATADDR_ANYNET)
    687 		return 1;
    688 
    689 	/*
    690          * failing that, if the net is one we have, it's a broadcast as well.
    691          */
    692 	for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
    693 		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
    694 		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
    695 		  && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
    696 			return 1;
    697 	}
    698 	return 0;
    699 }
    700 
    701 
    702 /*
    703  * aa_dorangeroute()
    704  *
    705  * Add a route for a range of networks from bot to top - 1.
    706  * Algorithm:
    707  *
    708  * Split the range into two subranges such that the middle
    709  * of the two ranges is the point where the highest bit of difference
    710  * between the two addresses, makes it's transition
    711  * Each of the upper and lower ranges might not exist, or might be
    712  * representable by 1 or more netmasks. In addition, if both
    713  * ranges can be represented by the same netmask, then teh can be merged
    714  * by using the next higher netmask..
    715  */
    716 
    717 static int
    718 aa_dorangeroute(ifa, bot, top, cmd)
    719 	struct ifaddr *ifa;
    720 	u_int bot;
    721 	u_int top;
    722 	int cmd;
    723 {
    724 	u_int           mask1;
    725 	struct at_addr  addr;
    726 	struct at_addr  mask;
    727 	int             error;
    728 
    729 	/*
    730 	 * slight sanity check
    731 	 */
    732 	if (bot > top)
    733 		return (EINVAL);
    734 
    735 	addr.s_node = 0;
    736 	mask.s_node = 0;
    737 	/*
    738 	 * just start out with the lowest boundary
    739 	 * and keep extending the mask till it's too big.
    740 	 */
    741 
    742 	while (bot <= top) {
    743 		mask1 = 1;
    744 		while (((bot & ~mask1) >= bot)
    745 		       && ((bot | mask1) <= top)) {
    746 			mask1 <<= 1;
    747 			mask1 |= 1;
    748 		}
    749 		mask1 >>= 1;
    750 		mask.s_net = htons(~mask1);
    751 		addr.s_net = htons(bot);
    752 		if (cmd == RTM_ADD) {
    753 			error = aa_addsingleroute(ifa, &addr, &mask);
    754 			if (error) {
    755 				/* XXX clean up? */
    756 				return (error);
    757 			}
    758 		} else {
    759 			error = aa_delsingleroute(ifa, &addr, &mask);
    760 		}
    761 		bot = (bot | mask1) + 1;
    762 	}
    763 	return 0;
    764 }
    765 
    766 static int
    767 aa_addsingleroute(ifa, addr, mask)
    768 	struct ifaddr *ifa;
    769 	struct at_addr *addr;
    770 	struct at_addr *mask;
    771 {
    772 	int error;
    773 
    774 #ifdef NETATALKDEBUG
    775 	printf("aa_addsingleroute: %x.%x mask %x.%x ...",
    776 	       ntohs(addr->s_net), addr->s_node,
    777 	       ntohs(mask->s_net), mask->s_node);
    778 #endif
    779 
    780 	error = aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP);
    781 #ifdef NETATALKDEBUG
    782 	if (error)
    783 		printf("aa_addsingleroute: error %d\n", error);
    784 #endif
    785 	return (error);
    786 }
    787 
    788 static int
    789 aa_delsingleroute(ifa, addr, mask)
    790 	struct ifaddr *ifa;
    791 	struct at_addr *addr;
    792 	struct at_addr *mask;
    793 {
    794 	int error;
    795 
    796 #ifdef NETATALKDEBUG
    797 	printf("aa_delsingleroute: %x.%x mask %x.%x ...",
    798 	       ntohs(addr->s_net), addr->s_node,
    799 	       ntohs(mask->s_net), mask->s_node);
    800 #endif
    801 
    802 	error = aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0);
    803 #ifdef NETATALKDEBUG
    804 	if (error)
    805 		printf("aa_delsingleroute: error %d\n", error);
    806 #endif
    807 	return (error);
    808 }
    809 
    810 static int
    811 aa_dosingleroute(ifa, at_addr, at_mask, cmd, flags)
    812 	struct ifaddr *ifa;
    813 	struct at_addr *at_addr;
    814 	struct at_addr *at_mask;
    815 	int cmd;
    816 	int flags;
    817 {
    818 	struct sockaddr_at addr, mask, *gate;
    819 
    820 	bzero(&addr, sizeof(addr));
    821 	bzero(&mask, sizeof(mask));
    822 	addr.sat_family = AF_APPLETALK;
    823 	addr.sat_len = sizeof(struct sockaddr_at);
    824 	addr.sat_addr.s_net = at_addr->s_net;
    825 	addr.sat_addr.s_node = at_addr->s_node;
    826 	mask.sat_family = AF_APPLETALK;
    827 	mask.sat_len = sizeof(struct sockaddr_at);
    828 	mask.sat_addr.s_net = at_mask->s_net;
    829 	mask.sat_addr.s_node = at_mask->s_node;
    830 
    831 	if (at_mask->s_node) {
    832 		gate = satosat(ifa->ifa_dstaddr);
    833 		flags |= RTF_HOST;
    834 	} else {
    835 		gate = satosat(ifa->ifa_addr);
    836 	}
    837 
    838 #ifdef NETATALKDEBUG
    839 	printf("on %s %x.%x\n", (flags & RTF_HOST) ? "host" : "net",
    840 	       ntohs(gate->sat_addr.s_net), gate->sat_addr.s_node);
    841 #endif
    842 	return (rtrequest(cmd, (struct sockaddr *) &addr,
    843 	    (struct sockaddr *) gate, (struct sockaddr *) &mask, flags, NULL));
    844 }
    845 
    846 #if 0
    847 static void
    848 aa_clean()
    849 {
    850 	struct at_ifaddr *aa;
    851 	struct ifaddr  *ifa;
    852 	struct ifnet   *ifp;
    853 
    854 	while (aa = at_ifaddr) {
    855 		ifp = aa->aa_ifp;
    856 		at_scrub(ifp, aa);
    857 		at_ifaddr = aa->aa_next;
    858 		if ((ifa = ifp->if_addrlist) == (struct ifaddr *) aa) {
    859 			ifp->if_addrlist = ifa->ifa_next;
    860 		} else {
    861 			while (ifa->ifa_next &&
    862 			       (ifa->ifa_next != (struct ifaddr *) aa)) {
    863 				ifa = ifa->ifa_next;
    864 			}
    865 			if (ifa->ifa_next) {
    866 				ifa->ifa_next =
    867 				    ((struct ifaddr *) aa)->ifa_next;
    868 			} else {
    869 				panic("at_entry");
    870 			}
    871 		}
    872 	}
    873 }
    874 #endif
    875