ddp_usrreq.c revision 1.4.6.1 1 /* $NetBSD: ddp_usrreq.c,v 1.4.6.1 2001/11/14 19:17:34 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1990,1991 Regents of The University of Michigan.
5 * All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation for any purpose and without fee is hereby granted,
9 * provided that the above copyright notice appears in all copies and
10 * that both that copyright notice and this permission notice appear
11 * in supporting documentation, and that the name of The University
12 * of Michigan not be used in advertising or publicity pertaining to
13 * distribution of the software without specific, written prior
14 * permission. This software is supplied as is without expressed or
15 * implied warranties of any kind.
16 *
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 *
20 * Research Systems Unix Group
21 * The University of Michigan
22 * c/o Wesley Craig
23 * 535 W. William Street
24 * Ann Arbor, Michigan
25 * +1-313-764-2278
26 * netatalk (at) umich.edu
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: ddp_usrreq.c,v 1.4.6.1 2001/11/14 19:17:34 nathanw Exp $");
31
32 #include <sys/errno.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/proc.h>
37 #include <sys/mbuf.h>
38 #include <sys/ioctl.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/protosw.h>
42 #include <net/if.h>
43 #include <net/route.h>
44 #include <net/if_ether.h>
45 #include <netinet/in.h>
46
47 #include <netatalk/at.h>
48 #include <netatalk/at_var.h>
49 #include <netatalk/ddp_var.h>
50 #include <netatalk/aarp.h>
51 #include <netatalk/at_extern.h>
52
53 static void at_pcbdisconnect __P((struct ddpcb *));
54 static void at_sockaddr __P((struct ddpcb *, struct mbuf *));
55 static int at_pcbsetaddr __P((struct ddpcb *, struct mbuf *, struct proc *));
56 static int at_pcbconnect __P((struct ddpcb *, struct mbuf *, struct proc *));
57 static void at_pcbdetach __P((struct socket *, struct ddpcb *));
58 static int at_pcballoc __P((struct socket *));
59
60 struct ddpcb *ddp_ports[ATPORT_LAST];
61 struct ddpcb *ddpcb = NULL;
62 struct at_ifaddrhead at_ifaddr; /* Here as inited in this file */
63 u_long ddp_sendspace = DDP_MAXSZ; /* Max ddp size + 1 (ddp_type) */
64 u_long ddp_recvspace = 25 * (587 + sizeof(struct sockaddr_at));
65
66 /* ARGSUSED */
67 int
68 ddp_usrreq(so, req, m, addr, rights, p)
69 struct socket *so;
70 int req;
71 struct mbuf *m;
72 struct mbuf *addr;
73 struct mbuf *rights;
74 struct proc *p;
75 {
76 struct ddpcb *ddp;
77 int error = 0;
78
79 ddp = sotoddpcb(so);
80
81 if (req == PRU_CONTROL) {
82 return (at_control((long) m, (caddr_t) addr,
83 (struct ifnet *) rights, (struct proc *) p));
84 }
85 if (req == PRU_PURGEIF) {
86 at_purgeif((struct ifnet *) rights);
87 return (0);
88 }
89 if (rights && rights->m_len) {
90 error = EINVAL;
91 goto release;
92 }
93 if (ddp == NULL && req != PRU_ATTACH) {
94 error = EINVAL;
95 goto release;
96 }
97 switch (req) {
98 case PRU_ATTACH:
99 if (ddp != NULL) {
100 error = EINVAL;
101 break;
102 }
103 if ((error = at_pcballoc(so)) != 0) {
104 break;
105 }
106 error = soreserve(so, ddp_sendspace, ddp_recvspace);
107 break;
108
109 case PRU_DETACH:
110 at_pcbdetach(so, ddp);
111 break;
112
113 case PRU_BIND:
114 error = at_pcbsetaddr(ddp, addr, p);
115 break;
116
117 case PRU_SOCKADDR:
118 at_sockaddr(ddp, addr);
119 break;
120
121 case PRU_CONNECT:
122 if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT) {
123 error = EISCONN;
124 break;
125 }
126 error = at_pcbconnect(ddp, addr, p);
127 if (error == 0)
128 soisconnected(so);
129 break;
130
131 case PRU_DISCONNECT:
132 if (ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE) {
133 error = ENOTCONN;
134 break;
135 }
136 at_pcbdisconnect(ddp);
137 soisdisconnected(so);
138 break;
139
140 case PRU_SHUTDOWN:
141 socantsendmore(so);
142 break;
143
144 case PRU_SEND:{
145 int s = 0;
146
147 if (addr) {
148 if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT) {
149 error = EISCONN;
150 break;
151 }
152 s = splnet();
153 error = at_pcbconnect(ddp, addr, p);
154 if (error) {
155 splx(s);
156 break;
157 }
158 } else {
159 if (ddp->ddp_fsat.sat_port == ATADDR_ANYPORT) {
160 error = ENOTCONN;
161 break;
162 }
163 }
164
165 error = ddp_output(m, ddp);
166 m = NULL;
167 if (addr) {
168 at_pcbdisconnect(ddp);
169 splx(s);
170 }
171 }
172 break;
173
174 case PRU_ABORT:
175 soisdisconnected(so);
176 at_pcbdetach(so, ddp);
177 break;
178
179 case PRU_LISTEN:
180 case PRU_CONNECT2:
181 case PRU_ACCEPT:
182 case PRU_SENDOOB:
183 case PRU_FASTTIMO:
184 case PRU_SLOWTIMO:
185 case PRU_PROTORCV:
186 case PRU_PROTOSEND:
187 error = EOPNOTSUPP;
188 break;
189
190 case PRU_RCVD:
191 case PRU_RCVOOB:
192 /*
193 * Don't mfree. Good architecture...
194 */
195 return (EOPNOTSUPP);
196
197 case PRU_SENSE:
198 /*
199 * 1. Don't return block size.
200 * 2. Don't mfree.
201 */
202 return (0);
203
204 default:
205 error = EOPNOTSUPP;
206 }
207
208 release:
209 if (m != NULL) {
210 m_freem(m);
211 }
212 return (error);
213 }
214
215 static void
216 at_sockaddr(ddp, addr)
217 struct ddpcb *ddp;
218 struct mbuf *addr;
219 {
220 struct sockaddr_at *sat;
221
222 addr->m_len = sizeof(struct sockaddr_at);
223 sat = mtod(addr, struct sockaddr_at *);
224 *sat = ddp->ddp_lsat;
225 }
226
227 static int
228 at_pcbsetaddr(ddp, addr, p)
229 struct ddpcb *ddp;
230 struct mbuf *addr;
231 struct proc *p;
232 {
233 struct sockaddr_at lsat, *sat;
234 struct at_ifaddr *aa;
235 struct ddpcb *ddpp;
236
237 if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT) { /* shouldn't be bound */
238 return (EINVAL);
239 }
240 if (addr != 0) { /* validate passed address */
241 sat = mtod(addr, struct sockaddr_at *);
242 if (addr->m_len != sizeof(*sat))
243 return (EINVAL);
244
245 if (sat->sat_family != AF_APPLETALK)
246 return (EAFNOSUPPORT);
247
248 if (sat->sat_addr.s_node != ATADDR_ANYNODE ||
249 sat->sat_addr.s_net != ATADDR_ANYNET) {
250 for (aa = at_ifaddr.tqh_first; aa;
251 aa = aa->aa_list.tqe_next) {
252 if ((sat->sat_addr.s_net ==
253 AA_SAT(aa)->sat_addr.s_net) &&
254 (sat->sat_addr.s_node ==
255 AA_SAT(aa)->sat_addr.s_node))
256 break;
257 }
258 if (!aa)
259 return (EADDRNOTAVAIL);
260 }
261 if (sat->sat_port != ATADDR_ANYPORT) {
262 if (sat->sat_port < ATPORT_FIRST ||
263 sat->sat_port >= ATPORT_LAST)
264 return (EINVAL);
265
266 if (sat->sat_port < ATPORT_RESERVED &&
267 suser(p->p_ucred, &p->p_acflag))
268 return (EACCES);
269 }
270 } else {
271 bzero((caddr_t) & lsat, sizeof(struct sockaddr_at));
272 lsat.sat_len = sizeof(struct sockaddr_at);
273 lsat.sat_addr.s_node = ATADDR_ANYNODE;
274 lsat.sat_addr.s_net = ATADDR_ANYNET;
275 lsat.sat_family = AF_APPLETALK;
276 sat = &lsat;
277 }
278
279 if (sat->sat_addr.s_node == ATADDR_ANYNODE &&
280 sat->sat_addr.s_net == ATADDR_ANYNET) {
281 if (at_ifaddr.tqh_first == NULL)
282 return (EADDRNOTAVAIL);
283 sat->sat_addr = AA_SAT(at_ifaddr.tqh_first)->sat_addr;
284 }
285 ddp->ddp_lsat = *sat;
286
287 /*
288 * Choose port.
289 */
290 if (sat->sat_port == ATADDR_ANYPORT) {
291 for (sat->sat_port = ATPORT_RESERVED;
292 sat->sat_port < ATPORT_LAST; sat->sat_port++) {
293 if (ddp_ports[sat->sat_port - 1] == 0)
294 break;
295 }
296 if (sat->sat_port == ATPORT_LAST) {
297 return (EADDRNOTAVAIL);
298 }
299 ddp->ddp_lsat.sat_port = sat->sat_port;
300 ddp_ports[sat->sat_port - 1] = ddp;
301 } else {
302 for (ddpp = ddp_ports[sat->sat_port - 1]; ddpp;
303 ddpp = ddpp->ddp_pnext) {
304 if (ddpp->ddp_lsat.sat_addr.s_net ==
305 sat->sat_addr.s_net &&
306 ddpp->ddp_lsat.sat_addr.s_node ==
307 sat->sat_addr.s_node)
308 break;
309 }
310 if (ddpp != NULL)
311 return (EADDRINUSE);
312
313 ddp->ddp_pnext = ddp_ports[sat->sat_port - 1];
314 ddp_ports[sat->sat_port - 1] = ddp;
315 if (ddp->ddp_pnext)
316 ddp->ddp_pnext->ddp_pprev = ddp;
317 }
318
319 return 0;
320 }
321
322 static int
323 at_pcbconnect(ddp, addr, p)
324 struct ddpcb *ddp;
325 struct mbuf *addr;
326 struct proc *p;
327 {
328 struct sockaddr_at *sat = mtod(addr, struct sockaddr_at *);
329 struct route *ro;
330 struct at_ifaddr *aa = 0;
331 struct ifnet *ifp;
332 u_short hintnet = 0, net;
333
334 if (addr->m_len != sizeof(*sat))
335 return (EINVAL);
336 if (sat->sat_family != AF_APPLETALK) {
337 return (EAFNOSUPPORT);
338 }
339 /*
340 * Under phase 2, network 0 means "the network". We take "the
341 * network" to mean the network the control block is bound to.
342 * If the control block is not bound, there is an error.
343 */
344 if (sat->sat_addr.s_net == ATADDR_ANYNET
345 && sat->sat_addr.s_node != ATADDR_ANYNODE) {
346 if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
347 return (EADDRNOTAVAIL);
348 }
349 hintnet = ddp->ddp_lsat.sat_addr.s_net;
350 }
351 ro = &ddp->ddp_route;
352 /*
353 * If we've got an old route for this pcb, check that it is valid.
354 * If we've changed our address, we may have an old "good looking"
355 * route here. Attempt to detect it.
356 */
357 if (ro->ro_rt) {
358 if (hintnet) {
359 net = hintnet;
360 } else {
361 net = sat->sat_addr.s_net;
362 }
363 aa = 0;
364 if ((ifp = ro->ro_rt->rt_ifp) != NULL) {
365 for (aa = at_ifaddr.tqh_first; aa;
366 aa = aa->aa_list.tqe_next) {
367 if (aa->aa_ifp == ifp &&
368 ntohs(net) >= ntohs(aa->aa_firstnet) &&
369 ntohs(net) <= ntohs(aa->aa_lastnet)) {
370 break;
371 }
372 }
373 }
374 if (aa == NULL || (satosat(&ro->ro_dst)->sat_addr.s_net !=
375 (hintnet ? hintnet : sat->sat_addr.s_net) ||
376 satosat(&ro->ro_dst)->sat_addr.s_node !=
377 sat->sat_addr.s_node)) {
378 RTFREE(ro->ro_rt);
379 ro->ro_rt = (struct rtentry *) 0;
380 }
381 }
382 /*
383 * If we've got no route for this interface, try to find one.
384 */
385 if (ro->ro_rt == (struct rtentry *) 0 ||
386 ro->ro_rt->rt_ifp == (struct ifnet *) 0) {
387 bzero(&ro->ro_dst, sizeof(struct sockaddr_at));
388 ro->ro_dst.sa_len = sizeof(struct sockaddr_at);
389 ro->ro_dst.sa_family = AF_APPLETALK;
390 if (hintnet) {
391 satosat(&ro->ro_dst)->sat_addr.s_net = hintnet;
392 } else {
393 satosat(&ro->ro_dst)->sat_addr.s_net =
394 sat->sat_addr.s_net;
395 }
396 satosat(&ro->ro_dst)->sat_addr.s_node = sat->sat_addr.s_node;
397 rtalloc(ro);
398 }
399 /*
400 * Make sure any route that we have has a valid interface.
401 */
402 aa = 0;
403 if (ro->ro_rt && (ifp = ro->ro_rt->rt_ifp)) {
404 for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) {
405 if (aa->aa_ifp == ifp) {
406 break;
407 }
408 }
409 }
410 if (aa == 0) {
411 return (ENETUNREACH);
412 }
413 ddp->ddp_fsat = *sat;
414 if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
415 return (at_pcbsetaddr(ddp, (struct mbuf *) 0, p));
416 }
417 return (0);
418 }
419
420 static void
421 at_pcbdisconnect(ddp)
422 struct ddpcb *ddp;
423 {
424 ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET;
425 ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
426 ddp->ddp_fsat.sat_port = ATADDR_ANYPORT;
427 }
428
429 static int
430 at_pcballoc(so)
431 struct socket *so;
432 {
433 struct ddpcb *ddp;
434
435 MALLOC(ddp, struct ddpcb *, sizeof(*ddp), M_PCB, M_WAIT);
436 if (!ddp)
437 panic("at_pcballoc");
438 bzero((caddr_t) ddp, sizeof *ddp);
439 ddp->ddp_lsat.sat_port = ATADDR_ANYPORT;
440
441 ddp->ddp_next = ddpcb;
442 ddp->ddp_prev = NULL;
443 ddp->ddp_pprev = NULL;
444 ddp->ddp_pnext = NULL;
445 if (ddpcb) {
446 ddpcb->ddp_prev = ddp;
447 }
448 ddpcb = ddp;
449
450 ddp->ddp_socket = so;
451 so->so_pcb = (caddr_t) ddp;
452 return (0);
453 }
454
455 static void
456 at_pcbdetach(so, ddp)
457 struct socket *so;
458 struct ddpcb *ddp;
459 {
460 soisdisconnected(so);
461 so->so_pcb = 0;
462 sofree(so);
463
464 /* remove ddp from ddp_ports list */
465 if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
466 ddp_ports[ddp->ddp_lsat.sat_port - 1] != NULL) {
467 if (ddp->ddp_pprev != NULL) {
468 ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
469 } else {
470 ddp_ports[ddp->ddp_lsat.sat_port - 1] = ddp->ddp_pnext;
471 }
472 if (ddp->ddp_pnext != NULL) {
473 ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
474 }
475 }
476 if (ddp->ddp_route.ro_rt) {
477 rtfree(ddp->ddp_route.ro_rt);
478 }
479 if (ddp->ddp_prev) {
480 ddp->ddp_prev->ddp_next = ddp->ddp_next;
481 } else {
482 ddpcb = ddp->ddp_next;
483 }
484 if (ddp->ddp_next) {
485 ddp->ddp_next->ddp_prev = ddp->ddp_prev;
486 }
487 free(ddp, M_PCB);
488 }
489
490 /*
491 * For the moment, this just find the pcb with the correct local address.
492 * In the future, this will actually do some real searching, so we can use
493 * the sender's address to do de-multiplexing on a single port to many
494 * sockets (pcbs).
495 */
496 struct ddpcb *
497 ddp_search(from, to, aa)
498 struct sockaddr_at *from;
499 struct sockaddr_at *to;
500 struct at_ifaddr *aa;
501 {
502 struct ddpcb *ddp;
503
504 /*
505 * Check for bad ports.
506 */
507 if (to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST) {
508 return (NULL);
509 }
510 /*
511 * Make sure the local address matches the sent address. What about
512 * the interface?
513 */
514 for (ddp = ddp_ports[to->sat_port - 1]; ddp; ddp = ddp->ddp_pnext) {
515 /* XXX should we handle 0.YY? */
516
517 /* XXXX.YY to socket on destination interface */
518 if (to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net &&
519 to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node) {
520 break;
521 }
522 /* 0.255 to socket on receiving interface */
523 if (to->sat_addr.s_node == ATADDR_BCAST &&
524 (to->sat_addr.s_net == 0 ||
525 to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net) &&
526 ddp->ddp_lsat.sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) {
527 break;
528 }
529 /* XXXX.0 to socket on destination interface */
530 if (to->sat_addr.s_net == aa->aa_firstnet &&
531 to->sat_addr.s_node == 0 &&
532 ntohs(ddp->ddp_lsat.sat_addr.s_net) >=
533 ntohs(aa->aa_firstnet) &&
534 ntohs(ddp->ddp_lsat.sat_addr.s_net) <=
535 ntohs(aa->aa_lastnet)) {
536 break;
537 }
538 }
539 return (ddp);
540 }
541
542 /*
543 * Initialize all the ddp & appletalk stuff
544 */
545 void
546 ddp_init()
547 {
548 TAILQ_INIT(&at_ifaddr);
549 atintrq1.ifq_maxlen = IFQ_MAXLEN;
550 atintrq2.ifq_maxlen = IFQ_MAXLEN;
551 }
552
553 #if 0
554 static void
555 ddp_clean()
556 {
557 struct ddpcb *ddp;
558
559 for (ddp = ddpcb; ddp; ddp = ddp->ddp_next)
560 at_pcbdetach(ddp->ddp_socket, ddp);
561 }
562 #endif
563