rfcomm_socket.c revision 1.11.2.1 1 1.11.2.1 tls /* $NetBSD: rfcomm_socket.c,v 1.11.2.1 2014/08/10 06:56:23 tls Exp $ */
2 1.1 gdamore
3 1.1 gdamore /*-
4 1.1 gdamore * Copyright (c) 2006 Itronix Inc.
5 1.1 gdamore * All rights reserved.
6 1.1 gdamore *
7 1.1 gdamore * Written by Iain Hibbert for Itronix Inc.
8 1.1 gdamore *
9 1.1 gdamore * Redistribution and use in source and binary forms, with or without
10 1.1 gdamore * modification, are permitted provided that the following conditions
11 1.1 gdamore * are met:
12 1.1 gdamore * 1. Redistributions of source code must retain the above copyright
13 1.1 gdamore * notice, this list of conditions and the following disclaimer.
14 1.1 gdamore * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 gdamore * notice, this list of conditions and the following disclaimer in the
16 1.1 gdamore * documentation and/or other materials provided with the distribution.
17 1.1 gdamore * 3. The name of Itronix Inc. may not be used to endorse
18 1.1 gdamore * or promote products derived from this software without specific
19 1.1 gdamore * prior written permission.
20 1.1 gdamore *
21 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND
22 1.1 gdamore * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 gdamore * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 gdamore * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25 1.1 gdamore * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 1.1 gdamore * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 1.1 gdamore * ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 gdamore * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 gdamore * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 gdamore * POSSIBILITY OF SUCH DAMAGE.
32 1.1 gdamore */
33 1.1 gdamore
34 1.1 gdamore #include <sys/cdefs.h>
35 1.11.2.1 tls __KERNEL_RCSID(0, "$NetBSD: rfcomm_socket.c,v 1.11.2.1 2014/08/10 06:56:23 tls Exp $");
36 1.6 plunky
37 1.6 plunky /* load symbolic names */
38 1.6 plunky #ifdef BLUETOOTH_DEBUG
39 1.6 plunky #define PRUREQUESTS
40 1.6 plunky #define PRCOREQUESTS
41 1.6 plunky #endif
42 1.1 gdamore
43 1.1 gdamore #include <sys/param.h>
44 1.1 gdamore #include <sys/domain.h>
45 1.1 gdamore #include <sys/kernel.h>
46 1.1 gdamore #include <sys/mbuf.h>
47 1.1 gdamore #include <sys/proc.h>
48 1.1 gdamore #include <sys/protosw.h>
49 1.1 gdamore #include <sys/socket.h>
50 1.1 gdamore #include <sys/socketvar.h>
51 1.1 gdamore #include <sys/systm.h>
52 1.1 gdamore
53 1.1 gdamore #include <netbt/bluetooth.h>
54 1.1 gdamore #include <netbt/rfcomm.h>
55 1.1 gdamore
56 1.1 gdamore /****************************************************************************
57 1.1 gdamore *
58 1.1 gdamore * RFCOMM SOCK_STREAM Sockets - serial line emulation
59 1.1 gdamore *
60 1.1 gdamore */
61 1.1 gdamore
62 1.1 gdamore static void rfcomm_connecting(void *);
63 1.1 gdamore static void rfcomm_connected(void *);
64 1.1 gdamore static void rfcomm_disconnected(void *, int);
65 1.1 gdamore static void *rfcomm_newconn(void *, struct sockaddr_bt *, struct sockaddr_bt *);
66 1.1 gdamore static void rfcomm_complete(void *, int);
67 1.7 plunky static void rfcomm_linkmode(void *, int);
68 1.1 gdamore static void rfcomm_input(void *, struct mbuf *);
69 1.1 gdamore
70 1.1 gdamore static const struct btproto rfcomm_proto = {
71 1.1 gdamore rfcomm_connecting,
72 1.1 gdamore rfcomm_connected,
73 1.1 gdamore rfcomm_disconnected,
74 1.1 gdamore rfcomm_newconn,
75 1.1 gdamore rfcomm_complete,
76 1.7 plunky rfcomm_linkmode,
77 1.1 gdamore rfcomm_input,
78 1.1 gdamore };
79 1.1 gdamore
80 1.1 gdamore /* sysctl variables */
81 1.1 gdamore int rfcomm_sendspace = 4096;
82 1.1 gdamore int rfcomm_recvspace = 4096;
83 1.1 gdamore
84 1.11.2.1 tls static int
85 1.11.2.1 tls rfcomm_attach(struct socket *so, int proto)
86 1.11.2.1 tls {
87 1.11.2.1 tls int error;
88 1.11.2.1 tls
89 1.11.2.1 tls KASSERT(so->so_pcb == NULL);
90 1.11.2.1 tls
91 1.11.2.1 tls if (so->so_lock == NULL) {
92 1.11.2.1 tls mutex_obj_hold(bt_lock);
93 1.11.2.1 tls so->so_lock = bt_lock;
94 1.11.2.1 tls solock(so);
95 1.11.2.1 tls }
96 1.11.2.1 tls KASSERT(solocked(so));
97 1.11.2.1 tls
98 1.11.2.1 tls /*
99 1.11.2.1 tls * Since we have nothing to add, we attach the DLC
100 1.11.2.1 tls * structure directly to our PCB pointer.
101 1.11.2.1 tls */
102 1.11.2.1 tls error = soreserve(so, rfcomm_sendspace, rfcomm_recvspace);
103 1.11.2.1 tls if (error)
104 1.11.2.1 tls return error;
105 1.11.2.1 tls
106 1.11.2.1 tls error = rfcomm_attach_pcb((struct rfcomm_dlc **)&so->so_pcb,
107 1.11.2.1 tls &rfcomm_proto, so);
108 1.11.2.1 tls if (error)
109 1.11.2.1 tls return error;
110 1.11.2.1 tls
111 1.11.2.1 tls error = rfcomm_rcvd_pcb(so->so_pcb, sbspace(&so->so_rcv));
112 1.11.2.1 tls if (error) {
113 1.11.2.1 tls rfcomm_detach_pcb((struct rfcomm_dlc **)&so->so_pcb);
114 1.11.2.1 tls return error;
115 1.11.2.1 tls }
116 1.11.2.1 tls return 0;
117 1.11.2.1 tls }
118 1.11.2.1 tls
119 1.11.2.1 tls static void
120 1.11.2.1 tls rfcomm_detach(struct socket *so)
121 1.11.2.1 tls {
122 1.11.2.1 tls KASSERT(so->so_pcb != NULL);
123 1.11.2.1 tls rfcomm_detach_pcb((struct rfcomm_dlc **)&so->so_pcb);
124 1.11.2.1 tls KASSERT(so->so_pcb == NULL);
125 1.11.2.1 tls }
126 1.11.2.1 tls
127 1.11.2.1 tls static int
128 1.11.2.1 tls rfcomm_accept(struct socket *so, struct mbuf *nam)
129 1.11.2.1 tls {
130 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
131 1.11.2.1 tls struct sockaddr_bt *sa;
132 1.11.2.1 tls
133 1.11.2.1 tls KASSERT(solocked(so));
134 1.11.2.1 tls KASSERT(nam != NULL);
135 1.11.2.1 tls
136 1.11.2.1 tls if (pcb == NULL)
137 1.11.2.1 tls return EINVAL;
138 1.11.2.1 tls
139 1.11.2.1 tls sa = mtod(nam, struct sockaddr_bt *);
140 1.11.2.1 tls nam->m_len = sizeof(struct sockaddr_bt);
141 1.11.2.1 tls return rfcomm_peeraddr_pcb(pcb, sa);
142 1.11.2.1 tls }
143 1.11.2.1 tls
144 1.11.2.1 tls static int
145 1.11.2.1 tls rfcomm_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
146 1.11.2.1 tls {
147 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
148 1.11.2.1 tls struct sockaddr_bt *sa;
149 1.11.2.1 tls
150 1.11.2.1 tls KASSERT(solocked(so));
151 1.11.2.1 tls KASSERT(nam != NULL);
152 1.11.2.1 tls
153 1.11.2.1 tls if (pcb == NULL)
154 1.11.2.1 tls return EINVAL;
155 1.11.2.1 tls
156 1.11.2.1 tls sa = mtod(nam, struct sockaddr_bt *);
157 1.11.2.1 tls if (sa->bt_len != sizeof(struct sockaddr_bt))
158 1.11.2.1 tls return EINVAL;
159 1.11.2.1 tls
160 1.11.2.1 tls if (sa->bt_family != AF_BLUETOOTH)
161 1.11.2.1 tls return EAFNOSUPPORT;
162 1.11.2.1 tls
163 1.11.2.1 tls return rfcomm_bind_pcb(pcb, sa);
164 1.11.2.1 tls }
165 1.11.2.1 tls
166 1.11.2.1 tls static int
167 1.11.2.1 tls rfcomm_listen(struct socket *so, struct lwp *l)
168 1.11.2.1 tls {
169 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
170 1.11.2.1 tls
171 1.11.2.1 tls KASSERT(solocked(so));
172 1.11.2.1 tls
173 1.11.2.1 tls if (pcb == NULL)
174 1.11.2.1 tls return EINVAL;
175 1.11.2.1 tls
176 1.11.2.1 tls return rfcomm_listen_pcb(pcb);
177 1.11.2.1 tls }
178 1.11.2.1 tls
179 1.11.2.1 tls static int
180 1.11.2.1 tls rfcomm_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
181 1.11.2.1 tls {
182 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
183 1.11.2.1 tls struct sockaddr_bt *sa;
184 1.11.2.1 tls
185 1.11.2.1 tls KASSERT(solocked(so));
186 1.11.2.1 tls KASSERT(nam != NULL);
187 1.11.2.1 tls
188 1.11.2.1 tls if (pcb == NULL)
189 1.11.2.1 tls return EINVAL;
190 1.11.2.1 tls
191 1.11.2.1 tls sa = mtod(nam, struct sockaddr_bt *);
192 1.11.2.1 tls if (sa->bt_len != sizeof(struct sockaddr_bt))
193 1.11.2.1 tls return EINVAL;
194 1.11.2.1 tls
195 1.11.2.1 tls if (sa->bt_family != AF_BLUETOOTH)
196 1.11.2.1 tls return EAFNOSUPPORT;
197 1.11.2.1 tls
198 1.11.2.1 tls soisconnecting(so);
199 1.11.2.1 tls return rfcomm_connect_pcb(pcb, sa);
200 1.11.2.1 tls }
201 1.11.2.1 tls
202 1.11.2.1 tls static int
203 1.11.2.1 tls rfcomm_connect2(struct socket *so, struct socket *so2)
204 1.11.2.1 tls {
205 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
206 1.11.2.1 tls
207 1.11.2.1 tls KASSERT(solocked(so));
208 1.11.2.1 tls
209 1.11.2.1 tls if (pcb == NULL)
210 1.11.2.1 tls return EINVAL;
211 1.11.2.1 tls
212 1.11.2.1 tls return EOPNOTSUPP;
213 1.11.2.1 tls }
214 1.11.2.1 tls
215 1.11.2.1 tls static int
216 1.11.2.1 tls rfcomm_disconnect(struct socket *so)
217 1.11.2.1 tls {
218 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
219 1.11.2.1 tls
220 1.11.2.1 tls KASSERT(solocked(so));
221 1.11.2.1 tls
222 1.11.2.1 tls if (pcb == NULL)
223 1.11.2.1 tls return EINVAL;
224 1.11.2.1 tls
225 1.11.2.1 tls soisdisconnecting(so);
226 1.11.2.1 tls return rfcomm_disconnect_pcb(pcb, so->so_linger);
227 1.11.2.1 tls }
228 1.11.2.1 tls
229 1.11.2.1 tls static int
230 1.11.2.1 tls rfcomm_shutdown(struct socket *so)
231 1.11.2.1 tls {
232 1.11.2.1 tls KASSERT(solocked(so));
233 1.11.2.1 tls
234 1.11.2.1 tls socantsendmore(so);
235 1.11.2.1 tls return 0;
236 1.11.2.1 tls }
237 1.11.2.1 tls
238 1.11.2.1 tls static int
239 1.11.2.1 tls rfcomm_abort(struct socket *so)
240 1.11.2.1 tls {
241 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
242 1.11.2.1 tls
243 1.11.2.1 tls KASSERT(solocked(so));
244 1.11.2.1 tls
245 1.11.2.1 tls if (pcb == NULL)
246 1.11.2.1 tls return EINVAL;
247 1.11.2.1 tls
248 1.11.2.1 tls rfcomm_disconnect_pcb(pcb, 0);
249 1.11.2.1 tls soisdisconnected(so);
250 1.11.2.1 tls rfcomm_detach(so);
251 1.11.2.1 tls return 0;
252 1.11.2.1 tls }
253 1.11.2.1 tls
254 1.11.2.1 tls static int
255 1.11.2.1 tls rfcomm_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
256 1.11.2.1 tls {
257 1.11.2.1 tls return EPASSTHROUGH;
258 1.11.2.1 tls }
259 1.11.2.1 tls
260 1.11.2.1 tls static int
261 1.11.2.1 tls rfcomm_stat(struct socket *so, struct stat *ub)
262 1.11.2.1 tls {
263 1.11.2.1 tls KASSERT(solocked(so));
264 1.11.2.1 tls
265 1.11.2.1 tls return 0;
266 1.11.2.1 tls }
267 1.11.2.1 tls
268 1.11.2.1 tls static int
269 1.11.2.1 tls rfcomm_peeraddr(struct socket *so, struct mbuf *nam)
270 1.11.2.1 tls {
271 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
272 1.11.2.1 tls struct sockaddr_bt *sa;
273 1.11.2.1 tls
274 1.11.2.1 tls KASSERT(solocked(so));
275 1.11.2.1 tls KASSERT(pcb != NULL);
276 1.11.2.1 tls KASSERT(nam != NULL);
277 1.11.2.1 tls
278 1.11.2.1 tls sa = mtod(nam, struct sockaddr_bt *);
279 1.11.2.1 tls nam->m_len = sizeof(struct sockaddr_bt);
280 1.11.2.1 tls return rfcomm_peeraddr_pcb(pcb, sa);
281 1.11.2.1 tls }
282 1.11.2.1 tls
283 1.11.2.1 tls static int
284 1.11.2.1 tls rfcomm_sockaddr(struct socket *so, struct mbuf *nam)
285 1.11.2.1 tls {
286 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
287 1.11.2.1 tls struct sockaddr_bt *sa;
288 1.11.2.1 tls
289 1.11.2.1 tls KASSERT(solocked(so));
290 1.11.2.1 tls KASSERT(pcb != NULL);
291 1.11.2.1 tls KASSERT(nam != NULL);
292 1.11.2.1 tls
293 1.11.2.1 tls sa = mtod(nam, struct sockaddr_bt *);
294 1.11.2.1 tls nam->m_len = sizeof(struct sockaddr_bt);
295 1.11.2.1 tls return rfcomm_sockaddr_pcb(pcb, sa);
296 1.11.2.1 tls }
297 1.11.2.1 tls
298 1.11.2.1 tls static int
299 1.11.2.1 tls rfcomm_rcvd(struct socket *so, int flags, struct lwp *l)
300 1.11.2.1 tls {
301 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
302 1.11.2.1 tls
303 1.11.2.1 tls KASSERT(solocked(so));
304 1.11.2.1 tls
305 1.11.2.1 tls if (pcb == NULL)
306 1.11.2.1 tls return EINVAL;
307 1.11.2.1 tls
308 1.11.2.1 tls return rfcomm_rcvd_pcb(pcb, sbspace(&so->so_rcv));
309 1.11.2.1 tls }
310 1.11.2.1 tls
311 1.11.2.1 tls static int
312 1.11.2.1 tls rfcomm_recvoob(struct socket *so, struct mbuf *m, int flags)
313 1.11.2.1 tls {
314 1.11.2.1 tls KASSERT(solocked(so));
315 1.11.2.1 tls
316 1.11.2.1 tls return EOPNOTSUPP;
317 1.11.2.1 tls }
318 1.11.2.1 tls
319 1.11.2.1 tls static int
320 1.11.2.1 tls rfcomm_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
321 1.11.2.1 tls struct mbuf *control, struct lwp *l)
322 1.11.2.1 tls {
323 1.11.2.1 tls struct rfcomm_dlc *pcb = so->so_pcb;
324 1.11.2.1 tls int err = 0;
325 1.11.2.1 tls struct mbuf *m0;
326 1.11.2.1 tls
327 1.11.2.1 tls KASSERT(solocked(so));
328 1.11.2.1 tls KASSERT(m != NULL);
329 1.11.2.1 tls
330 1.11.2.1 tls if (control) /* no use for that */
331 1.11.2.1 tls m_freem(control);
332 1.11.2.1 tls
333 1.11.2.1 tls if (pcb == NULL) {
334 1.11.2.1 tls err = EINVAL;
335 1.11.2.1 tls goto release;
336 1.11.2.1 tls }
337 1.11.2.1 tls
338 1.11.2.1 tls m0 = m_copypacket(m, M_DONTWAIT);
339 1.11.2.1 tls if (m0 == NULL) {
340 1.11.2.1 tls err = ENOMEM;
341 1.11.2.1 tls goto release;
342 1.11.2.1 tls }
343 1.11.2.1 tls
344 1.11.2.1 tls sbappendstream(&so->so_snd, m);
345 1.11.2.1 tls return rfcomm_send_pcb(pcb, m0);
346 1.11.2.1 tls
347 1.11.2.1 tls release:
348 1.11.2.1 tls m_freem(m);
349 1.11.2.1 tls return err;
350 1.11.2.1 tls }
351 1.11.2.1 tls
352 1.11.2.1 tls static int
353 1.11.2.1 tls rfcomm_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
354 1.11.2.1 tls {
355 1.11.2.1 tls KASSERT(solocked(so));
356 1.11.2.1 tls
357 1.11.2.1 tls if (m)
358 1.11.2.1 tls m_freem(m);
359 1.11.2.1 tls if (control)
360 1.11.2.1 tls m_freem(control);
361 1.11.2.1 tls
362 1.11.2.1 tls return EOPNOTSUPP;
363 1.11.2.1 tls }
364 1.11.2.1 tls
365 1.11.2.1 tls static int
366 1.11.2.1 tls rfcomm_purgeif(struct socket *so, struct ifnet *ifp)
367 1.11.2.1 tls {
368 1.11.2.1 tls
369 1.11.2.1 tls return EOPNOTSUPP;
370 1.11.2.1 tls }
371 1.11.2.1 tls
372 1.1 gdamore /*
373 1.1 gdamore * User Request.
374 1.1 gdamore * up is socket
375 1.11.2.1 tls * m is optional mbuf chain containing message
376 1.1 gdamore * ctl is either
377 1.1 gdamore * optional mbuf chain containing socket options
378 1.1 gdamore * l is pointer to process requesting action (if any)
379 1.1 gdamore *
380 1.1 gdamore * we are responsible for disposing of m and ctl if
381 1.1 gdamore * they are mbuf chains
382 1.1 gdamore */
383 1.11.2.1 tls static int
384 1.1 gdamore rfcomm_usrreq(struct socket *up, int req, struct mbuf *m,
385 1.3 christos struct mbuf *nam, struct mbuf *ctl, struct lwp *l)
386 1.1 gdamore {
387 1.1 gdamore struct rfcomm_dlc *pcb = up->so_pcb;
388 1.1 gdamore int err = 0;
389 1.1 gdamore
390 1.1 gdamore DPRINTFN(2, "%s\n", prurequests[req]);
391 1.11.2.1 tls KASSERT(req != PRU_ATTACH);
392 1.11.2.1 tls KASSERT(req != PRU_DETACH);
393 1.11.2.1 tls KASSERT(req != PRU_ACCEPT);
394 1.11.2.1 tls KASSERT(req != PRU_BIND);
395 1.11.2.1 tls KASSERT(req != PRU_LISTEN);
396 1.11.2.1 tls KASSERT(req != PRU_CONNECT);
397 1.11.2.1 tls KASSERT(req != PRU_CONNECT2);
398 1.11.2.1 tls KASSERT(req != PRU_DISCONNECT);
399 1.11.2.1 tls KASSERT(req != PRU_SHUTDOWN);
400 1.11.2.1 tls KASSERT(req != PRU_ABORT);
401 1.11.2.1 tls KASSERT(req != PRU_CONTROL);
402 1.11.2.1 tls KASSERT(req != PRU_SENSE);
403 1.11.2.1 tls KASSERT(req != PRU_PEERADDR);
404 1.11.2.1 tls KASSERT(req != PRU_SOCKADDR);
405 1.11.2.1 tls KASSERT(req != PRU_RCVD);
406 1.11.2.1 tls KASSERT(req != PRU_RCVOOB);
407 1.11.2.1 tls KASSERT(req != PRU_SEND);
408 1.11.2.1 tls KASSERT(req != PRU_SENDOOB);
409 1.11.2.1 tls KASSERT(req != PRU_PURGEIF);
410 1.1 gdamore
411 1.1 gdamore if (pcb == NULL) {
412 1.1 gdamore err = EINVAL;
413 1.1 gdamore goto release;
414 1.1 gdamore }
415 1.1 gdamore
416 1.1 gdamore switch(req) {
417 1.1 gdamore case PRU_FASTTIMO:
418 1.1 gdamore case PRU_SLOWTIMO:
419 1.1 gdamore case PRU_PROTORCV:
420 1.1 gdamore case PRU_PROTOSEND:
421 1.1 gdamore err = EOPNOTSUPP;
422 1.1 gdamore break;
423 1.1 gdamore
424 1.1 gdamore default:
425 1.1 gdamore UNKNOWN(req);
426 1.1 gdamore err = EOPNOTSUPP;
427 1.1 gdamore break;
428 1.1 gdamore }
429 1.1 gdamore
430 1.1 gdamore release:
431 1.1 gdamore if (m) m_freem(m);
432 1.1 gdamore if (ctl) m_freem(ctl);
433 1.1 gdamore return err;
434 1.1 gdamore }
435 1.1 gdamore
436 1.1 gdamore /*
437 1.10 plunky * rfcomm_ctloutput(req, socket, sockopt)
438 1.1 gdamore *
439 1.1 gdamore */
440 1.1 gdamore int
441 1.10 plunky rfcomm_ctloutput(int req, struct socket *so, struct sockopt *sopt)
442 1.1 gdamore {
443 1.1 gdamore struct rfcomm_dlc *pcb = so->so_pcb;
444 1.1 gdamore int err = 0;
445 1.1 gdamore
446 1.1 gdamore DPRINTFN(2, "%s\n", prcorequests[req]);
447 1.1 gdamore
448 1.4 plunky if (pcb == NULL)
449 1.4 plunky return EINVAL;
450 1.4 plunky
451 1.10 plunky if (sopt->sopt_level != BTPROTO_RFCOMM)
452 1.4 plunky return ENOPROTOOPT;
453 1.1 gdamore
454 1.1 gdamore switch(req) {
455 1.1 gdamore case PRCO_GETOPT:
456 1.10 plunky err = rfcomm_getopt(pcb, sopt);
457 1.1 gdamore break;
458 1.1 gdamore
459 1.1 gdamore case PRCO_SETOPT:
460 1.10 plunky err = rfcomm_setopt(pcb, sopt);
461 1.1 gdamore break;
462 1.1 gdamore
463 1.1 gdamore default:
464 1.4 plunky err = ENOPROTOOPT;
465 1.1 gdamore break;
466 1.1 gdamore }
467 1.1 gdamore
468 1.1 gdamore return err;
469 1.1 gdamore }
470 1.1 gdamore
471 1.1 gdamore /**********************************************************************
472 1.1 gdamore *
473 1.1 gdamore * RFCOMM callbacks
474 1.1 gdamore */
475 1.1 gdamore
476 1.1 gdamore static void
477 1.3 christos rfcomm_connecting(void *arg)
478 1.1 gdamore {
479 1.1 gdamore /* struct socket *so = arg; */
480 1.1 gdamore
481 1.5 plunky KASSERT(arg != NULL);
482 1.1 gdamore DPRINTF("Connecting\n");
483 1.1 gdamore }
484 1.1 gdamore
485 1.1 gdamore static void
486 1.1 gdamore rfcomm_connected(void *arg)
487 1.1 gdamore {
488 1.1 gdamore struct socket *so = arg;
489 1.1 gdamore
490 1.5 plunky KASSERT(so != NULL);
491 1.1 gdamore DPRINTF("Connected\n");
492 1.1 gdamore soisconnected(so);
493 1.1 gdamore }
494 1.1 gdamore
495 1.1 gdamore static void
496 1.1 gdamore rfcomm_disconnected(void *arg, int err)
497 1.1 gdamore {
498 1.1 gdamore struct socket *so = arg;
499 1.1 gdamore
500 1.5 plunky KASSERT(so != NULL);
501 1.1 gdamore DPRINTF("Disconnected\n");
502 1.1 gdamore
503 1.1 gdamore so->so_error = err;
504 1.1 gdamore soisdisconnected(so);
505 1.1 gdamore }
506 1.1 gdamore
507 1.1 gdamore static void *
508 1.3 christos rfcomm_newconn(void *arg, struct sockaddr_bt *laddr,
509 1.3 christos struct sockaddr_bt *raddr)
510 1.1 gdamore {
511 1.1 gdamore struct socket *so = arg;
512 1.1 gdamore
513 1.1 gdamore DPRINTF("New Connection\n");
514 1.11 rmind so = sonewconn(so, false);
515 1.1 gdamore if (so == NULL)
516 1.1 gdamore return NULL;
517 1.1 gdamore
518 1.1 gdamore soisconnecting(so);
519 1.1 gdamore
520 1.1 gdamore return so->so_pcb;
521 1.1 gdamore }
522 1.1 gdamore
523 1.1 gdamore /*
524 1.1 gdamore * rfcomm_complete(rfcomm_dlc, length)
525 1.1 gdamore *
526 1.1 gdamore * length bytes are sent and may be removed from socket buffer
527 1.1 gdamore */
528 1.1 gdamore static void
529 1.1 gdamore rfcomm_complete(void *arg, int length)
530 1.1 gdamore {
531 1.1 gdamore struct socket *so = arg;
532 1.1 gdamore
533 1.1 gdamore sbdrop(&so->so_snd, length);
534 1.1 gdamore sowwakeup(so);
535 1.1 gdamore }
536 1.1 gdamore
537 1.1 gdamore /*
538 1.7 plunky * rfcomm_linkmode(rfcomm_dlc, new)
539 1.7 plunky *
540 1.7 plunky * link mode change notification.
541 1.7 plunky */
542 1.7 plunky static void
543 1.7 plunky rfcomm_linkmode(void *arg, int new)
544 1.7 plunky {
545 1.7 plunky struct socket *so = arg;
546 1.10 plunky struct sockopt sopt;
547 1.7 plunky int mode;
548 1.7 plunky
549 1.7 plunky DPRINTF("auth %s, encrypt %s, secure %s\n",
550 1.7 plunky (new & RFCOMM_LM_AUTH ? "on" : "off"),
551 1.7 plunky (new & RFCOMM_LM_ENCRYPT ? "on" : "off"),
552 1.7 plunky (new & RFCOMM_LM_SECURE ? "on" : "off"));
553 1.7 plunky
554 1.10 plunky sockopt_init(&sopt, BTPROTO_RFCOMM, SO_RFCOMM_LM, 0);
555 1.10 plunky (void)rfcomm_getopt(so->so_pcb, &sopt);
556 1.10 plunky (void)sockopt_getint(&sopt, &mode);
557 1.10 plunky sockopt_destroy(&sopt);
558 1.10 plunky
559 1.7 plunky if (((mode & RFCOMM_LM_AUTH) && !(new & RFCOMM_LM_AUTH))
560 1.7 plunky || ((mode & RFCOMM_LM_ENCRYPT) && !(new & RFCOMM_LM_ENCRYPT))
561 1.7 plunky || ((mode & RFCOMM_LM_SECURE) && !(new & RFCOMM_LM_SECURE)))
562 1.11.2.1 tls rfcomm_disconnect_pcb(so->so_pcb, 0);
563 1.7 plunky }
564 1.7 plunky
565 1.7 plunky /*
566 1.1 gdamore * rfcomm_input(rfcomm_dlc, mbuf)
567 1.1 gdamore */
568 1.1 gdamore static void
569 1.1 gdamore rfcomm_input(void *arg, struct mbuf *m)
570 1.1 gdamore {
571 1.1 gdamore struct socket *so = arg;
572 1.1 gdamore
573 1.5 plunky KASSERT(so != NULL);
574 1.1 gdamore
575 1.1 gdamore if (m->m_pkthdr.len > sbspace(&so->so_rcv)) {
576 1.1 gdamore printf("%s: %d bytes dropped (socket buffer full)\n",
577 1.1 gdamore __func__, m->m_pkthdr.len);
578 1.1 gdamore m_freem(m);
579 1.1 gdamore return;
580 1.1 gdamore }
581 1.1 gdamore
582 1.1 gdamore DPRINTFN(10, "received %d bytes\n", m->m_pkthdr.len);
583 1.1 gdamore
584 1.1 gdamore sbappendstream(&so->so_rcv, m);
585 1.1 gdamore sorwakeup(so);
586 1.1 gdamore }
587 1.11.2.1 tls
588 1.11.2.1 tls PR_WRAP_USRREQS(rfcomm)
589 1.11.2.1 tls
590 1.11.2.1 tls #define rfcomm_attach rfcomm_attach_wrapper
591 1.11.2.1 tls #define rfcomm_detach rfcomm_detach_wrapper
592 1.11.2.1 tls #define rfcomm_accept rfcomm_accept_wrapper
593 1.11.2.1 tls #define rfcomm_bind rfcomm_bind_wrapper
594 1.11.2.1 tls #define rfcomm_listen rfcomm_listen_wrapper
595 1.11.2.1 tls #define rfcomm_connect rfcomm_connect_wrapper
596 1.11.2.1 tls #define rfcomm_connect2 rfcomm_connect2_wrapper
597 1.11.2.1 tls #define rfcomm_disconnect rfcomm_disconnect_wrapper
598 1.11.2.1 tls #define rfcomm_shutdown rfcomm_shutdown_wrapper
599 1.11.2.1 tls #define rfcomm_abort rfcomm_abort_wrapper
600 1.11.2.1 tls #define rfcomm_ioctl rfcomm_ioctl_wrapper
601 1.11.2.1 tls #define rfcomm_stat rfcomm_stat_wrapper
602 1.11.2.1 tls #define rfcomm_peeraddr rfcomm_peeraddr_wrapper
603 1.11.2.1 tls #define rfcomm_sockaddr rfcomm_sockaddr_wrapper
604 1.11.2.1 tls #define rfcomm_rcvd rfcomm_rcvd_wrapper
605 1.11.2.1 tls #define rfcomm_recvoob rfcomm_recvoob_wrapper
606 1.11.2.1 tls #define rfcomm_send rfcomm_send_wrapper
607 1.11.2.1 tls #define rfcomm_sendoob rfcomm_sendoob_wrapper
608 1.11.2.1 tls #define rfcomm_purgeif rfcomm_purgeif_wrapper
609 1.11.2.1 tls #define rfcomm_usrreq rfcomm_usrreq_wrapper
610 1.11.2.1 tls
611 1.11.2.1 tls const struct pr_usrreqs rfcomm_usrreqs = {
612 1.11.2.1 tls .pr_attach = rfcomm_attach,
613 1.11.2.1 tls .pr_detach = rfcomm_detach,
614 1.11.2.1 tls .pr_accept = rfcomm_accept,
615 1.11.2.1 tls .pr_bind = rfcomm_bind,
616 1.11.2.1 tls .pr_listen = rfcomm_listen,
617 1.11.2.1 tls .pr_connect = rfcomm_connect,
618 1.11.2.1 tls .pr_connect2 = rfcomm_connect2,
619 1.11.2.1 tls .pr_disconnect = rfcomm_disconnect,
620 1.11.2.1 tls .pr_shutdown = rfcomm_shutdown,
621 1.11.2.1 tls .pr_abort = rfcomm_abort,
622 1.11.2.1 tls .pr_ioctl = rfcomm_ioctl,
623 1.11.2.1 tls .pr_stat = rfcomm_stat,
624 1.11.2.1 tls .pr_peeraddr = rfcomm_peeraddr,
625 1.11.2.1 tls .pr_sockaddr = rfcomm_sockaddr,
626 1.11.2.1 tls .pr_rcvd = rfcomm_rcvd,
627 1.11.2.1 tls .pr_recvoob = rfcomm_recvoob,
628 1.11.2.1 tls .pr_send = rfcomm_send,
629 1.11.2.1 tls .pr_sendoob = rfcomm_sendoob,
630 1.11.2.1 tls .pr_purgeif = rfcomm_purgeif,
631 1.11.2.1 tls .pr_generic = rfcomm_usrreq,
632 1.11.2.1 tls };
633