rfcomm_upper.c revision 1.1 1 /* $NetBSD: rfcomm_upper.c,v 1.1 2006/06/19 15:44:45 gdamore Exp $ */
2
3 /*-
4 * Copyright (c) 2006 Itronix Inc.
5 * All rights reserved.
6 *
7 * Written by Iain Hibbert for Itronix Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Itronix Inc. may not be used to endorse
18 * or promote products derived from this software without specific
19 * prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.1 2006/06/19 15:44:45 gdamore Exp $");
36
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/mbuf.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42
43 #include <netbt/bluetooth.h>
44 #include <netbt/hci.h>
45 #include <netbt/l2cap.h>
46 #include <netbt/rfcomm.h>
47
48 /****************************************************************************
49 *
50 * RFCOMM DLC - Upper Protocol API
51 *
52 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code
53 * but it is should be possible to provide a pseudo-device for a direct
54 * tty interface.
55 */
56
57 /*
58 * rfcomm_attach(handle, proto, upper)
59 *
60 * attach a new RFCOMM DLC to handle, populate with reasonable defaults
61 */
62 int
63 rfcomm_attach(struct rfcomm_dlc **handle,
64 const struct btproto *proto, void *upper)
65 {
66 struct rfcomm_dlc *dlc;
67
68 KASSERT(handle);
69 KASSERT(proto);
70 KASSERT(upper);
71
72 dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO);
73 if (dlc == NULL)
74 return ENOMEM;
75
76 dlc->rd_state = RFCOMM_DLC_CLOSED;
77 dlc->rd_mtu = rfcomm_mtu_default;
78
79 dlc->rd_proto = proto;
80 dlc->rd_upper = upper;
81
82 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt);
83 dlc->rd_laddr.bt_family = AF_BLUETOOTH;
84 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM;
85
86 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt);
87 dlc->rd_raddr.bt_family = AF_BLUETOOTH;
88 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM;
89
90 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV;
91
92 callout_init(&dlc->rd_timeout);
93 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc);
94
95 *handle = dlc;
96 return 0;
97 }
98
99 /*
100 * rfcomm_bind(dlc, sockaddr)
101 *
102 * bind DLC to local address
103 */
104 int
105 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
106 {
107
108 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt));
109 return 0;
110 }
111
112 /*
113 * rfcomm_sockaddr(dlc, sockaddr)
114 *
115 * return local address
116 */
117 int
118 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
119 {
120
121 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt));
122 return 0;
123 }
124
125 /*
126 * rfcomm_connect(dlc, sockaddr)
127 *
128 * Initiate connection of RFCOMM DLC to remote address.
129 */
130 int
131 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest)
132 {
133 struct rfcomm_session *rs;
134 int err = 0;
135
136 if (dlc->rd_state != RFCOMM_DLC_CLOSED)
137 return EISCONN;
138
139 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt));
140
141 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN
142 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX
143 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr))
144 return EDESTADDRREQ;
145
146 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY)
147 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM;
148 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM
149 && (dlc->rd_raddr.bt_psm < 0x1001
150 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm)))
151 return EINVAL;
152
153 /*
154 * We are allowed only one RFCOMM session between any 2 Bluetooth
155 * devices, so see if there is a session already otherwise create
156 * one and set it connecting.
157 */
158 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr);
159 if (rs == NULL) {
160 rs = rfcomm_session_alloc(&rfcomm_session_active,
161 &dlc->rd_laddr);
162 if (rs == NULL)
163 return ENOMEM;
164
165 rs->rs_flags |= RFCOMM_SESSION_INITIATOR;
166 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT;
167
168 err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr);
169 if (err) {
170 rfcomm_session_free(rs);
171 return err;
172 }
173
174 /*
175 * This session will start up automatically when its
176 * L2CAP channel is connected.
177 */
178 }
179
180 /* construct DLC */
181 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel);
182 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci))
183 return EBUSY;
184
185 l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr);
186
187 /*
188 * attach the DLC to the session and start it off
189 */
190 dlc->rd_session = rs;
191 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION;
192 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next);
193
194 if (rs->rs_state == RFCOMM_SESSION_OPEN)
195 err = rfcomm_dlc_connect(dlc);
196
197 return err;
198 }
199
200 /*
201 * rfcomm_peeraddr(dlc, sockaddr)
202 *
203 * return remote address
204 */
205 int
206 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
207 {
208
209 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt));
210 return 0;
211 }
212
213 /*
214 * rfcomm_disconnect(dlc, linger)
215 *
216 * disconnect RFCOMM DLC
217 */
218 int
219 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger)
220 {
221 struct rfcomm_session *rs = dlc->rd_session;
222 int err = 0;
223
224 KASSERT(dlc != NULL);
225
226 switch (dlc->rd_state) {
227 case RFCOMM_DLC_CLOSED:
228 case RFCOMM_DLC_LISTEN:
229 return EINVAL;
230
231 case RFCOMM_DLC_WAIT_SESSION:
232 rfcomm_dlc_close(dlc, 0);
233 break;
234
235 case RFCOMM_DLC_OPEN:
236 if (dlc->rd_txbuf != NULL && linger != 0) {
237 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN;
238 break;
239 }
240
241 /* else fall through */
242 case RFCOMM_DLC_WAIT_CONNECT:
243 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT;
244 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC,
245 dlc->rd_dlci);
246 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz);
247 break;
248
249 case RFCOMM_DLC_WAIT_DISCONNECT:
250 err = EALREADY;
251 break;
252
253 default:
254 UNKNOWN(dlc->rd_state);
255 break;
256 }
257
258 return err;
259 }
260
261 /*
262 * rfcomm_detach(handle)
263 *
264 * detach RFCOMM DLC from handle
265 */
266 int
267 rfcomm_detach(struct rfcomm_dlc **handle)
268 {
269 struct rfcomm_dlc *dlc = *handle;
270
271 if (dlc->rd_state != RFCOMM_DLC_CLOSED)
272 rfcomm_dlc_close(dlc, 0);
273
274 if (dlc->rd_txbuf != NULL) {
275 m_freem(dlc->rd_txbuf);
276 dlc->rd_txbuf = NULL;
277 }
278
279 dlc->rd_upper = NULL;
280 *handle = NULL;
281
282 /*
283 * If callout is invoking we can't free the DLC so
284 * mark it and let the callout release it.
285 */
286 if (callout_invoking(&dlc->rd_timeout))
287 dlc->rd_flags |= RFCOMM_DLC_DETACH;
288 else
289 free(dlc, M_BLUETOOTH);
290
291 return 0;
292 }
293
294 /*
295 * rfcomm_listen(dlc)
296 *
297 * This DLC is a listener. We look for an existing listening session
298 * with a matching address to attach to or else create a new one on
299 * the listeners list.
300 */
301 int
302 rfcomm_listen(struct rfcomm_dlc *dlc)
303 {
304 struct rfcomm_session *rs, *any, *best;
305 struct sockaddr_bt addr;
306 int err;
307
308 if (dlc->rd_state != RFCOMM_DLC_CLOSED)
309 return EISCONN;
310
311 if (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN
312 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)
313 return EADDRNOTAVAIL;
314
315 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY)
316 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM;
317 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM
318 && (dlc->rd_laddr.bt_psm < 0x1001
319 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm)))
320 return EADDRNOTAVAIL;
321
322 any = best = NULL;
323 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) {
324 l2cap_sockaddr(rs->rs_l2cap, &addr);
325
326 if (addr.bt_psm != dlc->rd_laddr.bt_psm)
327 continue;
328
329 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr))
330 best = rs;
331
332 if (bdaddr_any(&addr.bt_bdaddr))
333 any = rs;
334 }
335
336 rs = best ? best : any;
337 if (rs == NULL) {
338 rs = rfcomm_session_alloc(&rfcomm_session_listen,
339 &dlc->rd_laddr);
340 if (rs == NULL)
341 return ENOMEM;
342
343 rs->rs_state = RFCOMM_SESSION_LISTEN;
344
345 err = l2cap_listen(rs->rs_l2cap);
346 if (err) {
347 rfcomm_session_free(rs);
348 return err;
349 }
350 }
351
352 dlc->rd_session = rs;
353 dlc->rd_state = RFCOMM_DLC_LISTEN;
354 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next);
355
356 return 0;
357 }
358
359 /*
360 * rfcomm_send(dlc, mbuf)
361 *
362 * Output data on DLC. This is streamed data, so we add it
363 * to our buffer and start the the DLC, which will assemble
364 * packets and send them if it can.
365 */
366 int
367 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m)
368 {
369
370 if (dlc->rd_txbuf != NULL) {
371 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len;
372 m_cat(dlc->rd_txbuf, m);
373 } else {
374 dlc->rd_txbuf = m;
375 }
376
377 if (dlc->rd_state == RFCOMM_DLC_OPEN)
378 rfcomm_dlc_start(dlc);
379
380 return 0;
381 }
382
383 /*
384 * rfcomm_rcvd(dlc, space)
385 *
386 * Indicate space now available in receive buffer
387 *
388 * This should be used to give an initial value of the receive buffer
389 * size when the DLC is attached and anytime data is cleared from the
390 * buffer after that.
391 */
392 int
393 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space)
394 {
395
396 KASSERT(dlc != NULL);
397
398 dlc->rd_rxsize = space;
399
400 /*
401 * if we are using credit based flow control, we may
402 * want to send some credits..
403 */
404 if (dlc->rd_state == RFCOMM_DLC_OPEN
405 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC))
406 rfcomm_dlc_start(dlc);
407
408 return 0;
409 }
410
411 /*
412 * rfcomm_setopt(dlc, option, addr)
413 *
414 * set DLC options
415 */
416 int
417 rfcomm_setopt(struct rfcomm_dlc *dlc, int opt, void *addr)
418 {
419 int err = 0;
420
421 if (dlc->rd_state != RFCOMM_DLC_CLOSED)
422 return EBUSY;
423
424 switch (opt) {
425 case SO_RFCOMM_MTU:
426 dlc->rd_mtu = *(uint16_t *)addr;
427 if (dlc->rd_mtu < RFCOMM_MTU_MIN
428 || dlc->rd_mtu > RFCOMM_MTU_MAX) {
429 dlc->rd_mtu = rfcomm_mtu_default;
430 err = EINVAL;
431 }
432 break;
433
434 default:
435 err = EINVAL;
436 break;
437 }
438 return err;
439 }
440
441 /*
442 * rfcomm_getopt(dlc, option, addr)
443 *
444 * get DLC options
445 */
446 int
447 rfcomm_getopt(struct rfcomm_dlc *dlc, int opt, void *addr)
448 {
449 struct rfcomm_fc_info *fc;
450
451 switch (opt) {
452 case SO_RFCOMM_MTU:
453 *(uint16_t *)addr = dlc->rd_mtu;
454 return sizeof(uint16_t);
455
456 case SO_RFCOMM_FC_INFO:
457 fc = addr;
458 memset(fc, 0, sizeof(*fc));
459 fc->lmodem = dlc->rd_lmodem;
460 fc->rmodem = dlc->rd_rmodem;
461 fc->tx_cred = max(dlc->rd_txcred, 0xff);
462 fc->rx_cred = max(dlc->rd_rxcred, 0xff);
463 if (dlc->rd_session
464 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC))
465 fc->cfc = 1;
466
467 return sizeof(*fc);
468
469 default:
470 break;
471 }
472
473 return 0;
474 }
475