Home | History | Annotate | Line # | Download | only in netcan
can.c revision 1.1.2.10
      1 /*	$NetBSD: can.c,v 1.1.2.10 2017/04/19 22:19:12 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2017 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Robert Swindells and Manuel Bouyer
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: can.c,v 1.1.2.10 2017/04/19 22:19:12 bouyer Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/ioctl.h>
     39 #include <sys/domain.h>
     40 #include <sys/protosw.h>
     41 #include <sys/errno.h>
     42 #include <sys/socket.h>
     43 #include <sys/socketvar.h>
     44 #include <sys/proc.h>
     45 #include <sys/kauth.h>
     46 
     47 #include <net/if.h>
     48 #include <net/if_types.h>
     49 #include <net/netisr.h>
     50 #include <net/route.h>
     51 
     52 #include <netcan/can.h>
     53 #include <netcan/can_pcb.h>
     54 #include <netcan/can_var.h>
     55 
     56 struct canpcb canpcb;
     57 #if 0
     58 struct canpcb canrawpcb;
     59 #endif
     60 
     61 struct	canpcbtable cbtable;
     62 
     63 struct ifqueue	canintrq;
     64 int	canqmaxlen = IFQ_MAXLEN;
     65 
     66 int can_copy_output = 0;
     67 int can_output_cnt = 0;
     68 struct mbuf *can_lastout;
     69 
     70 int	can_sendspace = 4096;		/* really max datagram size */
     71 int	can_recvspace = 40 * (1024 + sizeof(struct sockaddr_can));
     72 					/* 40 1K datagrams */
     73 #ifndef CANHASHSIZE
     74 #define	CANHASHSIZE	128
     75 #endif
     76 int	canhashsize = CANHASHSIZE;
     77 
     78 static int can_output(struct mbuf *, struct canpcb *);
     79 
     80 static int can_control(struct socket *, u_long, void *, struct ifnet *);
     81 
     82 void
     83 can_init(void)
     84 {
     85 	canintrq.ifq_maxlen = canqmaxlen;
     86 	IFQ_LOCK_INIT(&canintrq);
     87 	can_pcbinit(&cbtable, canhashsize, canhashsize);
     88 }
     89 
     90 /*
     91  * Generic control operations (ioctl's).
     92  */
     93 static int
     94 can_get_netlink(struct ifnet *ifp, struct ifdrv *ifd)
     95 {
     96 	struct canif_softc *csc = ifp->if_softc;
     97 
     98 	if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
     99 		return EOPNOTSUPP;
    100 
    101 	switch(ifd->ifd_cmd) {
    102 	case CANGLINKTIMECAP:
    103 		if (ifd->ifd_len != sizeof(struct can_link_timecaps))
    104 			return EINVAL;
    105 		return copyout(&csc->csc_timecaps, ifd->ifd_data, ifd->ifd_len);
    106 	case CANGLINKTIMINGS:
    107 		if (ifd->ifd_len != sizeof(struct can_link_timings))
    108 			return EINVAL;
    109 		return copyout(&csc->csc_timings, ifd->ifd_data, ifd->ifd_len);
    110 	case CANGLINKMODE:
    111 		if (ifd->ifd_len != sizeof(uint32_t))
    112 			return EINVAL;
    113 		return copyout(&csc->csc_linkmodes, ifd->ifd_data, ifd->ifd_len);
    114 	}
    115 	return EOPNOTSUPP;
    116 }
    117 
    118 static int
    119 can_set_netlink(struct ifnet *ifp, struct ifdrv *ifd)
    120 {
    121 	struct canif_softc *csc = ifp->if_softc;
    122 	uint32_t mode;
    123 	int error;
    124 
    125 	if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
    126 		return EOPNOTSUPP;
    127 
    128 	error = kauth_authorize_network(curlwp->l_cred,
    129 		    KAUTH_NETWORK_INTERFACE,
    130 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
    131 	            (void *)SIOCSDRVSPEC, NULL);
    132 	if (error != 0)
    133 		return error;
    134 
    135 	if ((ifp->if_flags & IFF_UP) != 0) {
    136 		return EBUSY;
    137 	}
    138 
    139 	switch(ifd->ifd_cmd) {
    140 	case CANSLINKTIMINGS:
    141 		if (ifd->ifd_len != sizeof(struct can_link_timings))
    142 			return EINVAL;
    143 		return copyin(ifd->ifd_data, &csc->csc_timings, ifd->ifd_len);
    144 
    145 	case CANSLINKMODE:
    146 	case CANCLINKMODE:
    147 		if (ifd->ifd_len != sizeof(uint32_t))
    148 			return EINVAL;
    149 		error = copyout(ifd->ifd_data, &mode, ifd->ifd_len);
    150 		if (error)
    151 			return error;
    152 		if ((mode & csc->csc_timecaps.cltc_linkmode_caps) != mode)
    153 			return EINVAL;
    154 		/* XXX locking */
    155 		if (ifd->ifd_cmd == CANSLINKMODE)
    156 			csc->csc_linkmodes |= mode;
    157 		else
    158 			csc->csc_linkmodes &= ~mode;
    159 		return 0;
    160 	}
    161 	return EOPNOTSUPP;
    162 }
    163 
    164 /* ARGSUSED */
    165 static int
    166 can_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
    167 {
    168 #if 0
    169 	struct can_ifreq *cfr = (struct can_ifreq *)data;
    170 	int error = 0;
    171 #endif
    172 	if (ifp == NULL)
    173 		return (EOPNOTSUPP);
    174 
    175 	switch (cmd) {
    176 	case SIOCGDRVSPEC:
    177 		return can_get_netlink(ifp, (struct ifdrv *) data);
    178 	case SIOCSDRVSPEC:
    179 		return can_set_netlink(ifp, (struct ifdrv *) data);
    180 	default:
    181 		if (ifp->if_ioctl == 0)
    182 			return (EOPNOTSUPP);
    183 		return ((*ifp->if_ioctl)(ifp, cmd, data));
    184 	}
    185 	return (0);
    186 }
    187 
    188 static int
    189 can_purgeif(struct socket *so, struct ifnet *ifp)
    190 {
    191 	return 0;
    192 }
    193 
    194 void
    195 can_ifattach(struct ifnet *ifp) {
    196 	ifp->if_mtu = sizeof(struct can_frame);
    197 	ifp->if_type = IFT_OTHER;
    198 	ifp->if_hdrlen = 0;
    199 	ifp->if_addrlen = 0;
    200 	ifp->if_dlt = DLT_CAN_SOCKETCAN;
    201 	ifp->if_output = NULL; /* unused */
    202 	IFQ_SET_READY(&ifp->if_snd);
    203 	if_alloc_sadl(ifp);
    204 }
    205 
    206 void
    207 can_ifinit_timings(struct canif_softc *csc)
    208 {
    209 	/* uninitialized parameters is all-one */
    210 	memset(&csc->csc_timings, 0xff, sizeof(struct can_link_timings));
    211 }
    212 
    213 static int
    214 can_output(struct mbuf *m, struct canpcb *canp)
    215 {
    216 	struct ifnet *ifp;
    217 	struct m_tag *sotag;
    218 
    219 	if (canp == NULL) {
    220 		printf("can_output: no pcb\n");
    221 		return EINVAL;
    222 	}
    223 	ifp = canp->canp_ifp;
    224 	if (ifp == 0) {
    225 		return EDESTADDRREQ;
    226 	}
    227 	sotag = m_tag_get(PACKET_TAG_SO, sizeof(struct socket *), PR_NOWAIT);
    228 	if (sotag == NULL) {
    229 		ifp->if_oerrors++;
    230 		return ENOMEM;
    231 	}
    232 	*(struct socket **)(sotag + 1) = canp->canp_socket;
    233 	m_tag_prepend(m, sotag);
    234 
    235 	if (m->m_len <= ifp->if_mtu) {
    236 		can_output_cnt++;
    237 		return ifq_enqueue(ifp, m);
    238 	} else
    239 		return EMSGSIZE;
    240 }
    241 
    242 /*
    243  * cleanup mbuf tag, keeping the PACKET_TAG_SO tag
    244  */
    245 void
    246 can_mbuf_tag_clean(struct mbuf *m)
    247 {
    248 	struct m_tag *sotag;
    249 
    250 	sotag = m_tag_find(m, PACKET_TAG_SO, NULL);
    251 	if (sotag)
    252 		m_tag_unlink(m, sotag);
    253 
    254 	m_tag_delete_nonpersistent(m);
    255 	if (sotag)
    256 		m_tag_prepend(m, sotag);
    257 }
    258 
    259 /*
    260  * Process a received CAN frame
    261  * the packet is in the mbuf chain m with
    262  * the CAN header.
    263  */
    264 void
    265 can_input(struct ifnet *ifp, struct mbuf *m)
    266 {
    267 	struct ifqueue *inq;
    268 
    269 	if ((ifp->if_flags & IFF_UP) == 0) {
    270 		m_freem(m);
    271 		return;
    272 	}
    273 
    274 	inq = &canintrq;
    275 
    276 	IFQ_LOCK(inq);
    277 	if (IF_QFULL(inq)) {
    278 		IF_DROP(inq);
    279 		IFQ_UNLOCK(inq);
    280 		m_freem(m);
    281 	} else {
    282 		IF_ENQUEUE(inq, m);
    283 		IFQ_UNLOCK(inq);
    284 		ifp->if_ipackets++;
    285 		ifp->if_ibytes += m->m_pkthdr.len;
    286 		schednetisr(NETISR_CAN);
    287 	}
    288 }
    289 
    290 void
    291 canintr(void)
    292 {
    293 	int		rcv_ifindex;
    294 	struct mbuf    *m;
    295 
    296 	struct sockaddr_can from;
    297 	struct canpcb   *canp;
    298 	struct m_tag	*sotag;
    299 	struct socket	*so;
    300 	struct canpcb	*sender_canp;
    301 
    302 	mutex_enter(softnet_lock);
    303 	for (;;) {
    304 		IFQ_LOCK(&canintrq);
    305 		IF_DEQUEUE(&canintrq, m);
    306 		IFQ_UNLOCK(&canintrq);
    307 
    308 		if (m == NULL)	/* no more queued packets */
    309 			break;
    310 
    311 #if 0
    312 		m_claim(m, &can_rx_mowner);
    313 #endif
    314 		sotag = m_tag_find(m, PACKET_TAG_SO, NULL);
    315 		if (sotag) {
    316 			so = *(struct socket **)(sotag + 1);
    317 			sender_canp = sotocanpcb(so);
    318 			m_tag_delete(m, sotag);
    319 			/* if the sender doesn't want loopback, don't do it */
    320 			if (sender_canp->canp_flags & CANP_NO_LOOPBACK) {
    321 				m_freem(m);
    322 				continue;
    323 			}
    324 		} else {
    325 			sender_canp = NULL;
    326 		}
    327 		memset(&from, 0, sizeof(struct sockaddr_can));
    328 		rcv_ifindex = m->m_pkthdr.rcvif_index;
    329 		from.can_ifindex = rcv_ifindex;
    330 		from.can_len = sizeof(struct sockaddr_can);
    331 		from.can_family = AF_CAN;
    332 
    333 		TAILQ_FOREACH(canp, &cbtable.canpt_queue, canp_queue) {
    334 			struct mbuf *mc;
    335 
    336 			/* don't loop back to sockets on other interfaces */
    337 			if (canp->canp_ifp != NULL &&
    338 			    canp->canp_ifp->if_index != rcv_ifindex) {
    339 				continue;
    340 			}
    341 			/* don't loop back to myself if I don't want it */
    342 			if (canp == sender_canp &&
    343 			    (canp->canp_flags & CANP_RECEIVE_OWN) == 0)
    344 				continue;
    345 
    346 			/* skip if the accept filter doen't match this pkt */
    347 			if (!can_pcbfilter(canp, m))
    348 				continue;
    349 
    350 			if (TAILQ_NEXT(canp, canp_queue) != NULL) {
    351 				/*
    352 				 * we can't be sure we won't need
    353 				 * the original mbuf later so copy
    354 				 */
    355 				mc = m_copypacket(m, M_NOWAIT);
    356 				if (mc == NULL) {
    357 					/* deliver this mbuf and abort */
    358 					mc = m;
    359 					m = NULL;
    360 				}
    361 			} else {
    362 				mc = m;
    363 				m = NULL;
    364 			}
    365 			if (sbappendaddr(&canp->canp_socket->so_rcv,
    366 					 (struct sockaddr *) &from, mc,
    367 					 (struct mbuf *) 0) == 0) {
    368 				m_freem(mc);
    369 			} else
    370 				sorwakeup(canp->canp_socket);
    371 			if (m == NULL)
    372 				break;
    373 		}
    374 		/* If it didn't go anywhere just delete it */
    375 		if (m) {
    376 			m_freem(m);
    377 		}
    378 	}
    379 	mutex_exit(softnet_lock);
    380 }
    381 
    382 static int
    383 can_attach(struct socket *so, int proto)
    384 {
    385 	int error;
    386 
    387 	KASSERT(sotocanpcb(so) == NULL);
    388 
    389 	/* Assign the lock (must happen even if we will error out). */
    390 	sosetlock(so);
    391 
    392 #ifdef MBUFTRACE
    393 	so->so_mowner = &can_mowner;
    394 	so->so_rcv.sb_mowner = &can_rx_mowner;
    395 	so->so_snd.sb_mowner = &can_tx_mowner;
    396 #endif
    397 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    398 		error = soreserve(so, can_sendspace, can_recvspace);
    399 		if (error) {
    400 			return error;
    401 		}
    402 	}
    403 
    404 	error = can_pcballoc(so, &cbtable);
    405 	if (error) {
    406 		return error;
    407 	}
    408 	KASSERT(solocked(so));
    409 
    410 	return error;
    411 }
    412 
    413 static void
    414 can_detach(struct socket *so)
    415 {
    416 	struct canpcb *canp;
    417 
    418 	KASSERT(solocked(so));
    419 	canp = sotocanpcb(so);
    420 	can_pcbdetach(canp);
    421 }
    422 
    423 static int
    424 can_accept(struct socket *so, struct sockaddr *nam)
    425 {
    426 	KASSERT(solocked(so));
    427 
    428 	panic("can_accept");
    429 
    430 	return EOPNOTSUPP;
    431 }
    432 
    433 static int
    434 can_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    435 {
    436 	struct canpcb *canp = sotocanpcb(so);
    437 	struct sockaddr_can *scan = (struct sockaddr_can *)nam;
    438 
    439 	KASSERT(solocked(so));
    440 	KASSERT(nam != NULL);
    441 
    442 	return can_pcbbind(canp, scan, l);
    443 }
    444 
    445 static int
    446 can_listen(struct socket *so, struct lwp *l)
    447 {
    448 	KASSERT(solocked(so));
    449 
    450 	return EOPNOTSUPP;
    451 }
    452 
    453 static int
    454 can_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    455 {
    456 	struct canpcb *canp = sotocanpcb(so);
    457 	int error = 0;
    458 
    459 	KASSERT(solocked(so));
    460 	KASSERT(canp != NULL);
    461 	KASSERT(nam != NULL);
    462 
    463 	error = can_pcbconnect(canp, (struct sockaddr_can *)nam);
    464 	if (! error)
    465 		soisconnected(so);
    466 	return error;
    467 }
    468 
    469 static int
    470 can_connect2(struct socket *so, struct socket *so2)
    471 {
    472 	KASSERT(solocked(so));
    473 
    474 	return EOPNOTSUPP;
    475 }
    476 
    477 static int
    478 can_disconnect(struct socket *so)
    479 {
    480 	struct canpcb *canp = sotocanpcb(so);
    481 
    482 	KASSERT(solocked(so));
    483 	KASSERT(canp != NULL);
    484 
    485 	/*soisdisconnected(so);*/
    486 	so->so_state &= ~SS_ISCONNECTED;	/* XXX */
    487 	can_pcbdisconnect(canp);
    488 	can_pcbstate(canp, CANP_BOUND);		/* XXX */
    489 	return 0;
    490 }
    491 
    492 static int
    493 can_shutdown(struct socket *so)
    494 {
    495 	KASSERT(solocked(so));
    496 
    497 	socantsendmore(so);
    498 	return 0;
    499 }
    500 
    501 static int
    502 can_abort(struct socket *so)
    503 {
    504 	KASSERT(solocked(so));
    505 
    506 	panic("can_abort");
    507 
    508 	return EOPNOTSUPP;
    509 }
    510 
    511 static int
    512 can_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    513 {
    514 	return can_control(so, cmd, nam, ifp);
    515 }
    516 
    517 static int
    518 can_stat(struct socket *so, struct stat *ub)
    519 {
    520 	KASSERT(solocked(so));
    521 
    522 	/* stat: don't bother with a blocksize. */
    523 	return 0;
    524 }
    525 
    526 static int
    527 can_peeraddr(struct socket *so, struct sockaddr *nam)
    528 {
    529 	KASSERT(solocked(so));
    530 	KASSERT(sotocanpcb(so) != NULL);
    531 	KASSERT(nam != NULL);
    532 
    533 	return EOPNOTSUPP;
    534 }
    535 
    536 static int
    537 can_sockaddr(struct socket *so, struct sockaddr *nam)
    538 {
    539 	KASSERT(solocked(so));
    540 	KASSERT(sotocanpcb(so) != NULL);
    541 	KASSERT(nam != NULL);
    542 
    543 	can_setsockaddr(sotocanpcb(so), (struct sockaddr_can *)nam);
    544 
    545 	return 0;
    546 }
    547 
    548 static int
    549 can_rcvd(struct socket *so, int flags, struct lwp *l)
    550 {
    551 	KASSERT(solocked(so));
    552 
    553 	return EOPNOTSUPP;
    554 }
    555 
    556 static int
    557 can_recvoob(struct socket *so, struct mbuf *m, int flags)
    558 {
    559 	KASSERT(solocked(so));
    560 
    561 	return EOPNOTSUPP;
    562 }
    563 
    564 static int
    565 can_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
    566     struct mbuf *control, struct lwp *l)
    567 {
    568 	struct canpcb *canp = sotocanpcb(so);
    569 	int error = 0;
    570 	int s;
    571 
    572 	if (control && control->m_len) {
    573 		m_freem(control);
    574 		error = EINVAL;
    575 		goto err;
    576 	}
    577 	if (m->m_len > sizeof(struct can_frame) ||
    578 	   m->m_len < offsetof(struct can_frame, can_dlc)) {
    579 		error = EINVAL;
    580 		goto err;
    581 	}
    582 
    583 	/* we expect all data in the first mbuf */
    584 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    585 	KASSERT(m->m_len == m->m_pkthdr.len);
    586 
    587 	if (nam) {
    588 		if ((so->so_state & SS_ISCONNECTED) != 0) {
    589 			error = EISCONN;
    590 			goto err;
    591 		}
    592 		s = splnet();
    593 		error = can_pcbbind(canp, (struct sockaddr_can *)nam, l);
    594 		if (error) {
    595 			splx(s);
    596 			goto err;
    597 		}
    598 	} else {
    599 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    600 			error =  EDESTADDRREQ;
    601 			goto err;
    602 		}
    603 	}
    604 	error = can_output(m, canp);
    605 	if (error)
    606 		goto err;
    607 	if (nam) {
    608 		struct sockaddr_can lscan;
    609 		memset(&lscan, 0, sizeof(lscan));
    610 		lscan.can_family = AF_CAN;
    611 		lscan.can_len = sizeof(lscan);
    612 		can_pcbbind(canp, &lscan, l);
    613 	}
    614 	return 0;
    615 
    616 err:
    617 	m_freem(m);
    618 	return error;
    619 }
    620 
    621 static int
    622 can_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
    623 {
    624 	KASSERT(solocked(so));
    625 
    626 	m_freem(m);
    627 	m_freem(control);
    628 
    629 	return EOPNOTSUPP;
    630 }
    631 
    632 #if 0
    633 int
    634 can_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    635 	   struct mbuf *control, struct lwp *l)
    636 {
    637 	struct canpcb *canp;
    638 	int s;
    639 	int error = 0;
    640 
    641 	if (req == PRU_CONTROL)
    642 		 return (can_control(so, (long)m, nam,
    643 		     (struct ifnet *)control));
    644 
    645 	if (req == PRU_PURGEIF) {
    646 #if 0
    647 		can_pcbpurgeif0(&udbtable, (struct ifnet *)control);
    648 		can_purgeif((struct ifnet *)control);
    649 		can_pcbpurgeif(&udbtable, (struct ifnet *)control);
    650 #endif
    651 		return (0);
    652 	}
    653 
    654 	s = splsoftnet();
    655 	canp = sotocanpcb(so);
    656 #ifdef DIAGNOSTIC
    657 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    658 		panic("can_usrreq: unexpected control mbuf");
    659 #endif
    660 	if (canp == 0 && req != PRU_ATTACH) {
    661 		printf("can_usrreq: no pcb %p %d\n", canp, req);
    662 		error = EINVAL;
    663 		goto release;
    664 	}
    665 
    666 	/*
    667 	 * Note: need to block can_input while changing
    668 	 * the can pcb queue and/or pcb addresses.
    669 	 */
    670 	switch (req) {
    671 
    672 	  case PRU_ATTACH:
    673 	      if (canp != 0) {
    674 			 error = EISCONN;
    675 			 break;
    676 		 }
    677 #ifdef MBUFTRACE
    678 		so->so_mowner = &can_mowner;
    679 		so->so_rcv.sb_mowner = &can_rx_mowner;
    680 		so->so_snd.sb_mowner = &can_tx_mowner;
    681 #endif
    682 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    683 			error = soreserve(so, can_sendspace, can_recvspace);
    684 			if (error)
    685 				break;
    686 		}
    687 		error = can_pcballoc(so, &cbtable);
    688 		if (error)
    689 			break;
    690 		canp = sotocanpcb(so);
    691 #if 0
    692 		inp->inp_ip.ip_ttl = ip_defttl;
    693 #endif
    694 		break;
    695 
    696 	case PRU_DETACH:
    697 		can_pcbdetach(canp);
    698 		break;
    699 
    700 	case PRU_BIND:
    701 		error = can_pcbbind(canp, nam, l);
    702 		break;
    703 
    704 	case PRU_LISTEN:
    705 		error = EOPNOTSUPP;
    706 		break;
    707 
    708 	case PRU_CONNECT:
    709 		error = can_pcbconnect(canp, nam);
    710 		if (error)
    711 			break;
    712 		soisconnected(so);
    713 		break;
    714 
    715 	case PRU_CONNECT2:
    716 		error = EOPNOTSUPP;
    717 		break;
    718 
    719 	case PRU_DISCONNECT:
    720 		/*soisdisconnected(so);*/
    721 		so->so_state &= ~SS_ISCONNECTED;	/* XXX */
    722 		can_pcbdisconnect(canp);
    723 		can_pcbstate(canp, CANP_BOUND);		/* XXX */
    724 		break;
    725 
    726 	case PRU_SHUTDOWN:
    727 		socantsendmore(so);
    728 		break;
    729 
    730 	case PRU_RCVD:
    731 		error = EOPNOTSUPP;
    732 		break;
    733 
    734 	case PRU_SEND:
    735 		break;
    736 
    737 	case PRU_SENSE:
    738 		/*
    739 		 * stat: don't bother with a blocksize.
    740 		 */
    741 		splx(s);
    742 		return (0);
    743 
    744 	case PRU_RCVOOB:
    745 		error =  EOPNOTSUPP;
    746 		break;
    747 
    748 	case PRU_SENDOOB:
    749 		m_freem(control);
    750 		m_freem(m);
    751 		error =  EOPNOTSUPP;
    752 		break;
    753 
    754 	case PRU_SOCKADDR:
    755 
    756 		break;
    757 
    758 	case PRU_PEERADDR:
    759 		error =  EOPNOTSUPP;
    760 		break;
    761 
    762 	default:
    763 		panic("can_usrreq");
    764 	}
    765 
    766 release:
    767 	splx(s);
    768 	return (error);
    769 }
    770 #endif
    771 
    772 #if 0
    773 static void
    774 can_notify(struct canpcb *canp, int errno)
    775 {
    776 
    777 	canp->canp_socket->so_error = errno;
    778 	sorwakeup(canp->canp_socket);
    779 	sowwakeup(canp->canp_socket);
    780 }
    781 
    782 void *
    783 can_ctlinput(int cmd, struct sockaddr *sa, void *v)
    784 {
    785 	struct ip *ip = v;
    786 	struct canhdr *uh;
    787 	void (*notify) __P((struct inpcb *, int)) = can_notify;
    788 	int errno;
    789 
    790 	if (sa->sa_family != AF_CAN
    791 	 || sa->sa_len != sizeof(struct sockaddr_can))
    792 		return NULL;
    793 	if ((unsigned)cmd >= PRC_NCMDS)
    794 		return NULL;
    795 	errno = inetctlerrmap[cmd];
    796 	if (PRC_IS_REDIRECT(cmd))
    797 		notify = in_rtchange, ip = 0;
    798 	else if (cmd == PRC_HOSTDEAD)
    799 		ip = 0;
    800 	else if (errno == 0)
    801 		return NULL;
    802 	if (ip) {
    803 		uh = (struct canhdr *)((caddr_t)ip + (ip->ip_hl << 2));
    804 		in_pcbnotify(&udbtable, satosin(sa)->sin_addr, uh->uh_dport,
    805 		    ip->ip_src, uh->uh_sport, errno, notify);
    806 
    807 		/* XXX mapped address case */
    808 	} else
    809 		can_pcbnotifyall(&cbtable, satoscan(sa)->scan_addr, errno,
    810 		    notify);
    811 	return NULL;
    812 }
    813 #endif
    814 
    815 static int
    816 can_raw_getop(struct canpcb *canp, struct sockopt *sopt)
    817 {
    818 	int optval = 0;
    819 	int error;
    820 
    821 	switch (sopt->sopt_name) {
    822 	case CAN_RAW_LOOPBACK:
    823 		optval = (canp->canp_flags & CANP_NO_LOOPBACK) ? 0 : 1;
    824 		error = sockopt_set(sopt, &optval, sizeof(optval));
    825 		break;
    826 	case CAN_RAW_RECV_OWN_MSGS:
    827 		optval = (canp->canp_flags & CANP_RECEIVE_OWN) ? 1 : 0;
    828 		error = sockopt_set(sopt, &optval, sizeof(optval));
    829 		break;
    830 	case CAN_RAW_FILTER:
    831 		error = sockopt_set(sopt, canp->canp_filters,
    832 		    sizeof(struct can_filter) * canp->canp_nfilters);
    833 		break;
    834 	default:
    835 		error = ENOPROTOOPT;
    836 		break;
    837 	}
    838 	return error;
    839 }
    840 
    841 static int
    842 can_raw_setop(struct canpcb *canp, struct sockopt *sopt)
    843 {
    844 	int optval = 0;
    845 	int error;
    846 
    847 	switch (sopt->sopt_name) {
    848 	case CAN_RAW_LOOPBACK:
    849 		error = sockopt_getint(sopt, &optval);
    850 		if (error == 0) {
    851 			if (optval) {
    852 				canp->canp_flags &= ~CANP_NO_LOOPBACK;
    853 			} else {
    854 				canp->canp_flags |= CANP_NO_LOOPBACK;
    855 			}
    856 		}
    857 		break;
    858 	case CAN_RAW_RECV_OWN_MSGS:
    859 		error = sockopt_getint(sopt, &optval);
    860 		if (error == 0) {
    861 			if (optval) {
    862 				canp->canp_flags |= CANP_RECEIVE_OWN;
    863 			} else {
    864 				canp->canp_flags &= ~CANP_RECEIVE_OWN;
    865 			}
    866 		}
    867 		break;
    868 	case CAN_RAW_FILTER:
    869 		{
    870 		int nfilters = sopt->sopt_size / sizeof(struct can_filter);
    871 		if (sopt->sopt_size % sizeof(struct can_filter) != 0)
    872 			return EINVAL;
    873 		error = can_pcbsetfilter(canp, sopt->sopt_data, nfilters);
    874 		break;
    875 		}
    876 	default:
    877 		error = ENOPROTOOPT;
    878 		break;
    879 	}
    880 	return error;
    881 }
    882 
    883 /*
    884  * Called by getsockopt and setsockopt.
    885  *
    886  */
    887 int
    888 can_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    889 {
    890 	struct canpcb *canp;
    891 	int error;
    892 	int s;
    893 
    894 	if (so->so_proto->pr_domain->dom_family != PF_CAN)
    895 		return EAFNOSUPPORT;
    896 
    897 	if (sopt->sopt_level != SOL_CAN_RAW)
    898 		return EINVAL;
    899 
    900 	s = splsoftnet();
    901 	canp = sotocanpcb(so);
    902 	if (canp == NULL) {
    903 		splx(s);
    904 		return ECONNRESET;
    905 	}
    906 
    907 	if (op == PRCO_SETOPT) {
    908 		error = can_raw_setop(canp, sopt);
    909 	} else if (op ==  PRCO_GETOPT) {
    910 		error = can_raw_getop(canp, sopt);
    911 	} else {
    912 		error = EINVAL;
    913 	}
    914 	splx(s);
    915 	return error;
    916 }
    917 
    918 PR_WRAP_USRREQS(can)
    919 #define	can_attach	can_attach_wrapper
    920 #define	can_detach	can_detach_wrapper
    921 #define	can_accept	can_accept_wrapper
    922 #define	can_bind	can_bind_wrapper
    923 #define	can_listen	can_listen_wrapper
    924 #define	can_connect	can_connect_wrapper
    925 #define	can_connect2	can_connect2_wrapper
    926 #define	can_disconnect	can_disconnect_wrapper
    927 #define	can_shutdown	can_shutdown_wrapper
    928 #define	can_abort	can_abort_wrapper
    929 #define	can_ioctl	can_ioctl_wrapper
    930 #define	can_stat	can_stat_wrapper
    931 #define	can_peeraddr	can_peeraddr_wrapper
    932 #define	can_sockaddr	can_sockaddr_wrapper
    933 #define	can_rcvd	can_rcvd_wrapper
    934 #define	can_recvoob	can_recvoob_wrapper
    935 #define	can_send	can_send_wrapper
    936 #define	can_sendoob	can_sendoob_wrapper
    937 #define	can_purgeif	can_purgeif_wrapper
    938 
    939 const struct pr_usrreqs can_usrreqs = {
    940 	.pr_attach	= can_attach,
    941 	.pr_detach	= can_detach,
    942 	.pr_accept	= can_accept,
    943 	.pr_bind	= can_bind,
    944 	.pr_listen	= can_listen,
    945 	.pr_connect	= can_connect,
    946 	.pr_connect2	= can_connect2,
    947 	.pr_disconnect	= can_disconnect,
    948 	.pr_shutdown	= can_shutdown,
    949 	.pr_abort	= can_abort,
    950 	.pr_ioctl	= can_ioctl,
    951 	.pr_stat	= can_stat,
    952 	.pr_peeraddr	= can_peeraddr,
    953 	.pr_sockaddr	= can_sockaddr,
    954 	.pr_rcvd	= can_rcvd,
    955 	.pr_recvoob	= can_recvoob,
    956 	.pr_send	= can_send,
    957 	.pr_sendoob	= can_sendoob,
    958 	.pr_purgeif	= can_purgeif,
    959 };
    960