Home | History | Annotate | Line # | Download | only in netcan
can.c revision 1.5
      1 /*	$NetBSD: can.c,v 1.5 2018/11/15 10:06:07 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2017 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Robert Swindells and Manuel Bouyer
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: can.c,v 1.5 2018/11/15 10:06:07 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/ioctl.h>
     39 #include <sys/domain.h>
     40 #include <sys/protosw.h>
     41 #include <sys/errno.h>
     42 #include <sys/socket.h>
     43 #include <sys/socketvar.h>
     44 #include <sys/proc.h>
     45 #include <sys/kauth.h>
     46 
     47 #include <net/if.h>
     48 #include <net/if_types.h>
     49 #include <net/netisr.h>
     50 #include <net/route.h>
     51 #include <net/bpf.h>
     52 
     53 #include <netcan/can.h>
     54 #include <netcan/can_pcb.h>
     55 #include <netcan/can_var.h>
     56 
     57 struct canpcb canpcb;
     58 #if 0
     59 struct canpcb canrawpcb;
     60 #endif
     61 
     62 struct	canpcbtable cbtable;
     63 
     64 struct ifqueue	canintrq;
     65 int	canqmaxlen = IFQ_MAXLEN;
     66 
     67 int can_copy_output = 0;
     68 int can_output_cnt = 0;
     69 struct mbuf *can_lastout;
     70 
     71 int	can_sendspace = 4096;		/* really max datagram size */
     72 int	can_recvspace = 40 * (1024 + sizeof(struct sockaddr_can));
     73 					/* 40 1K datagrams */
     74 #ifndef CANHASHSIZE
     75 #define	CANHASHSIZE	128
     76 #endif
     77 int	canhashsize = CANHASHSIZE;
     78 
     79 static int can_output(struct mbuf *, struct canpcb *);
     80 
     81 static int can_control(struct socket *, u_long, void *, struct ifnet *);
     82 
     83 void
     84 can_init(void)
     85 {
     86 	canintrq.ifq_maxlen = canqmaxlen;
     87 	IFQ_LOCK_INIT(&canintrq);
     88 	can_pcbinit(&cbtable, canhashsize, canhashsize);
     89 }
     90 
     91 /*
     92  * Generic control operations (ioctl's).
     93  */
     94 static int
     95 can_get_netlink(struct ifnet *ifp, struct ifdrv *ifd)
     96 {
     97 	struct canif_softc *csc = ifp->if_softc;
     98 
     99 	if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
    100 		return EOPNOTSUPP;
    101 
    102 	switch(ifd->ifd_cmd) {
    103 	case CANGLINKTIMECAP:
    104 		if (ifd->ifd_len != sizeof(struct can_link_timecaps))
    105 			return EINVAL;
    106 		return copyout(&csc->csc_timecaps, ifd->ifd_data, ifd->ifd_len);
    107 	case CANGLINKTIMINGS:
    108 		if (ifd->ifd_len != sizeof(struct can_link_timings))
    109 			return EINVAL;
    110 		return copyout(&csc->csc_timings, ifd->ifd_data, ifd->ifd_len);
    111 	case CANGLINKMODE:
    112 		if (ifd->ifd_len != sizeof(uint32_t))
    113 			return EINVAL;
    114 		return copyout(&csc->csc_linkmodes, ifd->ifd_data, ifd->ifd_len);
    115 	}
    116 	return EOPNOTSUPP;
    117 }
    118 
    119 static int
    120 can_set_netlink(struct ifnet *ifp, struct ifdrv *ifd)
    121 {
    122 	struct canif_softc *csc = ifp->if_softc;
    123 	uint32_t mode;
    124 	int error;
    125 
    126 	if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
    127 		return EOPNOTSUPP;
    128 
    129 	error = kauth_authorize_network(curlwp->l_cred,
    130 		    KAUTH_NETWORK_INTERFACE,
    131 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
    132 	            (void *)SIOCSDRVSPEC, NULL);
    133 	if (error != 0)
    134 		return error;
    135 
    136 	if ((ifp->if_flags & IFF_UP) != 0) {
    137 		return EBUSY;
    138 	}
    139 
    140 	switch(ifd->ifd_cmd) {
    141 	case CANSLINKTIMINGS:
    142 		if (ifd->ifd_len != sizeof(struct can_link_timings))
    143 			return EINVAL;
    144 		return copyin(ifd->ifd_data, &csc->csc_timings, ifd->ifd_len);
    145 
    146 	case CANSLINKMODE:
    147 	case CANCLINKMODE:
    148 		if (ifd->ifd_len != sizeof(uint32_t))
    149 			return EINVAL;
    150 		error = copyin(ifd->ifd_data, &mode, ifd->ifd_len);
    151 		if (error)
    152 			return error;
    153 		if ((mode & csc->csc_timecaps.cltc_linkmode_caps) != mode)
    154 			return EINVAL;
    155 		/* XXX locking */
    156 		if (ifd->ifd_cmd == CANSLINKMODE)
    157 			csc->csc_linkmodes |= mode;
    158 		else
    159 			csc->csc_linkmodes &= ~mode;
    160 		return 0;
    161 	}
    162 	return EOPNOTSUPP;
    163 }
    164 
    165 /* ARGSUSED */
    166 static int
    167 can_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
    168 {
    169 #if 0
    170 	struct can_ifreq *cfr = (struct can_ifreq *)data;
    171 	int error = 0;
    172 #endif
    173 	if (ifp == NULL)
    174 		return (EOPNOTSUPP);
    175 
    176 	switch (cmd) {
    177 	case SIOCGDRVSPEC:
    178 		return can_get_netlink(ifp, (struct ifdrv *) data);
    179 	case SIOCSDRVSPEC:
    180 		return can_set_netlink(ifp, (struct ifdrv *) data);
    181 	default:
    182 		if (ifp->if_ioctl == 0)
    183 			return (EOPNOTSUPP);
    184 		return ((*ifp->if_ioctl)(ifp, cmd, data));
    185 	}
    186 	return (0);
    187 }
    188 
    189 static int
    190 can_purgeif(struct socket *so, struct ifnet *ifp)
    191 {
    192 	return 0;
    193 }
    194 
    195 void
    196 can_ifattach(struct ifnet *ifp)
    197 {
    198 	if_attach(ifp);
    199 	ifp->if_mtu = sizeof(struct can_frame);
    200 	ifp->if_type = IFT_OTHER;
    201 	ifp->if_hdrlen = 0;
    202 	ifp->if_addrlen = 0;
    203 	ifp->if_dlt = DLT_CAN_SOCKETCAN;
    204 	ifp->if_output = NULL; /* unused */
    205 	IFQ_SET_READY(&ifp->if_snd);
    206 	if_alloc_sadl(ifp);
    207 	bpf_attach(ifp, DLT_CAN_SOCKETCAN, 0);
    208 }
    209 
    210 void
    211 can_ifdetach(struct ifnet *ifp)
    212 {
    213 	bpf_detach(ifp);
    214 	if_detach(ifp);
    215 }
    216 
    217 void
    218 can_ifinit_timings(struct canif_softc *csc)
    219 {
    220 	/* uninitialized parameters is all-one */
    221 	memset(&csc->csc_timings, 0xff, sizeof(struct can_link_timings));
    222 }
    223 
    224 static int
    225 can_output(struct mbuf *m, struct canpcb *canp)
    226 {
    227 	struct ifnet *ifp;
    228 	struct m_tag *sotag;
    229 	struct canif_softc *csc;
    230 
    231 	if (canp == NULL) {
    232 		printf("can_output: no pcb\n");
    233 		return EINVAL;
    234 	}
    235 	ifp = canp->canp_ifp;
    236 	if (ifp == 0) {
    237 		return EDESTADDRREQ;
    238 	}
    239 	csc = ifp->if_softc;
    240 	if (csc && (csc->csc_linkmodes & CAN_LINKMODE_LISTENONLY)) {
    241 		return ENETUNREACH;
    242 	}
    243 
    244 	sotag = m_tag_get(PACKET_TAG_SO, sizeof(struct socket *), PR_NOWAIT);
    245 	if (sotag == NULL) {
    246 		ifp->if_oerrors++;
    247 		return ENOMEM;
    248 	}
    249 	mutex_enter(&canp->canp_mtx);
    250 	canp_ref(canp);
    251 	mutex_exit(&canp->canp_mtx);
    252 	*(struct canpcb **)(sotag + 1) = canp;
    253 	m_tag_prepend(m, sotag);
    254 
    255 	if (m->m_len <= ifp->if_mtu) {
    256 		can_output_cnt++;
    257 		return ifq_enqueue(ifp, m);
    258 	} else
    259 		return EMSGSIZE;
    260 }
    261 
    262 /*
    263  * cleanup mbuf tag, keeping the PACKET_TAG_SO tag
    264  */
    265 void
    266 can_mbuf_tag_clean(struct mbuf *m)
    267 {
    268 	struct m_tag *sotag;
    269 
    270 	sotag = m_tag_find(m, PACKET_TAG_SO, NULL);
    271 	if (sotag)
    272 		m_tag_unlink(m, sotag);
    273 
    274 	m_tag_delete_chain(m);
    275 	if (sotag)
    276 		m_tag_prepend(m, sotag);
    277 }
    278 
    279 /*
    280  * Process a received CAN frame
    281  * the packet is in the mbuf chain m with
    282  * the CAN header.
    283  */
    284 void
    285 can_input(struct ifnet *ifp, struct mbuf *m)
    286 {
    287 	struct ifqueue *inq;
    288 
    289 	if ((ifp->if_flags & IFF_UP) == 0) {
    290 		m_freem(m);
    291 		return;
    292 	}
    293 
    294 	inq = &canintrq;
    295 
    296 	IFQ_LOCK(inq);
    297 	if (IF_QFULL(inq)) {
    298 		IF_DROP(inq);
    299 		IFQ_UNLOCK(inq);
    300 		m_freem(m);
    301 	} else {
    302 		IF_ENQUEUE(inq, m);
    303 		IFQ_UNLOCK(inq);
    304 		ifp->if_ipackets++;
    305 		ifp->if_ibytes += m->m_pkthdr.len;
    306 		schednetisr(NETISR_CAN);
    307 	}
    308 }
    309 
    310 void
    311 canintr(void)
    312 {
    313 	int		rcv_ifindex;
    314 	struct mbuf    *m;
    315 
    316 	struct sockaddr_can from;
    317 	struct canpcb   *canp;
    318 	struct m_tag	*sotag;
    319 	struct canpcb	*sender_canp;
    320 
    321 	mutex_enter(softnet_lock);
    322 	for (;;) {
    323 		IFQ_LOCK(&canintrq);
    324 		IF_DEQUEUE(&canintrq, m);
    325 		IFQ_UNLOCK(&canintrq);
    326 
    327 		if (m == NULL)	/* no more queued packets */
    328 			break;
    329 
    330 #if 0
    331 		m_claim(m, &can_rx_mowner);
    332 #endif
    333 		sotag = m_tag_find(m, PACKET_TAG_SO, NULL);
    334 		if (sotag) {
    335 			sender_canp = *(struct canpcb **)(sotag + 1);
    336 			m_tag_delete(m, sotag);
    337 			KASSERT(sender_canp != NULL);
    338 			/* if the sender doesn't want loopback, don't do it */
    339 			if ((sender_canp->canp_flags & CANP_NO_LOOPBACK) != 0) {
    340 				m_freem(m);
    341 				canp_unref(sender_canp);
    342 				continue;
    343 			}
    344 		} else {
    345 			sender_canp = NULL;
    346 		}
    347 		memset(&from, 0, sizeof(struct sockaddr_can));
    348 		rcv_ifindex = m->m_pkthdr.rcvif_index;
    349 		from.can_ifindex = rcv_ifindex;
    350 		from.can_len = sizeof(struct sockaddr_can);
    351 		from.can_family = AF_CAN;
    352 
    353 		TAILQ_FOREACH(canp, &cbtable.canpt_queue, canp_queue) {
    354 			struct mbuf *mc;
    355 
    356 			mutex_enter(&canp->canp_mtx);
    357 			/* skip if we're detached */
    358 			if (canp->canp_state == CANP_DETACHED) {
    359 				mutex_exit(&canp->canp_mtx);
    360 				continue;
    361 			}
    362 
    363 			/* don't loop back to sockets on other interfaces */
    364 			if (canp->canp_ifp != NULL &&
    365 			    canp->canp_ifp->if_index != rcv_ifindex) {
    366 				mutex_exit(&canp->canp_mtx);
    367 				continue;
    368 			}
    369 			/* don't loop back to myself if I don't want it */
    370 			if (canp == sender_canp &&
    371 			    (canp->canp_flags & CANP_RECEIVE_OWN) == 0) {
    372 				mutex_exit(&canp->canp_mtx);
    373 				continue;
    374 			}
    375 
    376 			/* skip if the accept filter doen't match this pkt */
    377 			if (!can_pcbfilter(canp, m)) {
    378 				mutex_exit(&canp->canp_mtx);
    379 				continue;
    380 			}
    381 
    382 			if (TAILQ_NEXT(canp, canp_queue) != NULL) {
    383 				/*
    384 				 * we can't be sure we won't need
    385 				 * the original mbuf later so copy
    386 				 */
    387 				mc = m_copypacket(m, M_NOWAIT);
    388 				if (mc == NULL) {
    389 					/* deliver this mbuf and abort */
    390 					mc = m;
    391 					m = NULL;
    392 				}
    393 			} else {
    394 				mc = m;
    395 				m = NULL;
    396 			}
    397 			if (sbappendaddr(&canp->canp_socket->so_rcv,
    398 					 (struct sockaddr *) &from, mc,
    399 					 (struct mbuf *) 0) == 0) {
    400 				soroverflow(canp->canp_socket);
    401 				m_freem(mc);
    402 			} else
    403 				sorwakeup(canp->canp_socket);
    404 			mutex_exit(&canp->canp_mtx);
    405 			if (m == NULL)
    406 				break;
    407 		}
    408 		if (sender_canp) {
    409 			canp_unref(sender_canp);
    410 		}
    411 		/* If it didn't go anywhere just delete it */
    412 		if (m) {
    413 			m_freem(m);
    414 		}
    415 	}
    416 	mutex_exit(softnet_lock);
    417 }
    418 
    419 void
    420 can_bpf_mtap(struct ifnet *ifp, struct mbuf *m, bool do_softint)
    421 {
    422 	/* bpf wants the CAN id in network byte order */
    423 	struct can_frame *cf;
    424 	canid_t oid;
    425 
    426 	cf = mtod(m, struct can_frame *);
    427 	oid = cf->can_id;
    428 	cf->can_id = htonl(oid);
    429 	/* Assume the direction is input when do_softint is set. */
    430 	if (do_softint)
    431 		bpf_mtap_softint(ifp, m);
    432 	else
    433 		bpf_mtap(ifp, m, BPF_D_OUT);
    434 	cf->can_id = oid;
    435 }
    436 
    437 static int
    438 can_attach(struct socket *so, int proto)
    439 {
    440 	int error;
    441 
    442 	KASSERT(sotocanpcb(so) == NULL);
    443 
    444 	/* Assign the lock (must happen even if we will error out). */
    445 	sosetlock(so);
    446 
    447 #ifdef MBUFTRACE
    448 	so->so_mowner = &can_mowner;
    449 	so->so_rcv.sb_mowner = &can_rx_mowner;
    450 	so->so_snd.sb_mowner = &can_tx_mowner;
    451 #endif
    452 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    453 		error = soreserve(so, can_sendspace, can_recvspace);
    454 		if (error) {
    455 			return error;
    456 		}
    457 	}
    458 
    459 	error = can_pcballoc(so, &cbtable);
    460 	if (error) {
    461 		return error;
    462 	}
    463 	KASSERT(solocked(so));
    464 
    465 	return error;
    466 }
    467 
    468 static void
    469 can_detach(struct socket *so)
    470 {
    471 	struct canpcb *canp;
    472 
    473 	KASSERT(solocked(so));
    474 	canp = sotocanpcb(so);
    475 	can_pcbdetach(canp);
    476 }
    477 
    478 static int
    479 can_accept(struct socket *so, struct sockaddr *nam)
    480 {
    481 	KASSERT(solocked(so));
    482 
    483 	panic("can_accept");
    484 
    485 	return EOPNOTSUPP;
    486 }
    487 
    488 static int
    489 can_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    490 {
    491 	struct canpcb *canp = sotocanpcb(so);
    492 	struct sockaddr_can *scan = (struct sockaddr_can *)nam;
    493 
    494 	KASSERT(solocked(so));
    495 	KASSERT(nam != NULL);
    496 
    497 	return can_pcbbind(canp, scan, l);
    498 }
    499 
    500 static int
    501 can_listen(struct socket *so, struct lwp *l)
    502 {
    503 	KASSERT(solocked(so));
    504 
    505 	return EOPNOTSUPP;
    506 }
    507 
    508 static int
    509 can_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    510 {
    511 	struct canpcb *canp = sotocanpcb(so);
    512 	int error = 0;
    513 
    514 	KASSERT(solocked(so));
    515 	KASSERT(canp != NULL);
    516 	KASSERT(nam != NULL);
    517 
    518 	error = can_pcbconnect(canp, (struct sockaddr_can *)nam);
    519 	if (! error)
    520 		soisconnected(so);
    521 	return error;
    522 }
    523 
    524 static int
    525 can_connect2(struct socket *so, struct socket *so2)
    526 {
    527 	KASSERT(solocked(so));
    528 
    529 	return EOPNOTSUPP;
    530 }
    531 
    532 static int
    533 can_disconnect(struct socket *so)
    534 {
    535 	struct canpcb *canp = sotocanpcb(so);
    536 
    537 	KASSERT(solocked(so));
    538 	KASSERT(canp != NULL);
    539 
    540 	/*soisdisconnected(so);*/
    541 	so->so_state &= ~SS_ISCONNECTED;	/* XXX */
    542 	can_pcbdisconnect(canp);
    543 	return 0;
    544 }
    545 
    546 static int
    547 can_shutdown(struct socket *so)
    548 {
    549 	KASSERT(solocked(so));
    550 
    551 	socantsendmore(so);
    552 	return 0;
    553 }
    554 
    555 static int
    556 can_abort(struct socket *so)
    557 {
    558 	KASSERT(solocked(so));
    559 
    560 	panic("can_abort");
    561 
    562 	return EOPNOTSUPP;
    563 }
    564 
    565 static int
    566 can_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    567 {
    568 	return can_control(so, cmd, nam, ifp);
    569 }
    570 
    571 static int
    572 can_stat(struct socket *so, struct stat *ub)
    573 {
    574 	KASSERT(solocked(so));
    575 
    576 	/* stat: don't bother with a blocksize. */
    577 	return 0;
    578 }
    579 
    580 static int
    581 can_peeraddr(struct socket *so, struct sockaddr *nam)
    582 {
    583 	KASSERT(solocked(so));
    584 	KASSERT(sotocanpcb(so) != NULL);
    585 	KASSERT(nam != NULL);
    586 
    587 	return EOPNOTSUPP;
    588 }
    589 
    590 static int
    591 can_sockaddr(struct socket *so, struct sockaddr *nam)
    592 {
    593 	KASSERT(solocked(so));
    594 	KASSERT(sotocanpcb(so) != NULL);
    595 	KASSERT(nam != NULL);
    596 
    597 	can_setsockaddr(sotocanpcb(so), (struct sockaddr_can *)nam);
    598 
    599 	return 0;
    600 }
    601 
    602 static int
    603 can_rcvd(struct socket *so, int flags, struct lwp *l)
    604 {
    605 	KASSERT(solocked(so));
    606 
    607 	return EOPNOTSUPP;
    608 }
    609 
    610 static int
    611 can_recvoob(struct socket *so, struct mbuf *m, int flags)
    612 {
    613 	KASSERT(solocked(so));
    614 
    615 	return EOPNOTSUPP;
    616 }
    617 
    618 static int
    619 can_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
    620     struct mbuf *control, struct lwp *l)
    621 {
    622 	struct canpcb *canp = sotocanpcb(so);
    623 	int error = 0;
    624 	int s;
    625 
    626 	if (control && control->m_len) {
    627 		m_freem(control);
    628 		error = EINVAL;
    629 		goto err;
    630 	}
    631 	if (m->m_len > sizeof(struct can_frame) ||
    632 	   m->m_len < offsetof(struct can_frame, can_dlc)) {
    633 		error = EINVAL;
    634 		goto err;
    635 	}
    636 
    637 	/* we expect all data in the first mbuf */
    638 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    639 	KASSERT(m->m_len == m->m_pkthdr.len);
    640 
    641 	if (nam) {
    642 		if ((so->so_state & SS_ISCONNECTED) != 0) {
    643 			error = EISCONN;
    644 			goto err;
    645 		}
    646 		s = splnet();
    647 		error = can_pcbbind(canp, (struct sockaddr_can *)nam, l);
    648 		if (error) {
    649 			splx(s);
    650 			goto err;
    651 		}
    652 	} else {
    653 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    654 			error =  EDESTADDRREQ;
    655 			goto err;
    656 		}
    657 	}
    658 	error = can_output(m, canp);
    659 	if (nam) {
    660 		struct sockaddr_can lscan;
    661 		memset(&lscan, 0, sizeof(lscan));
    662 		lscan.can_family = AF_CAN;
    663 		lscan.can_len = sizeof(lscan);
    664 		can_pcbbind(canp, &lscan, l);
    665 	}
    666 	if (error)
    667 		goto err;
    668 	return 0;
    669 
    670 err:
    671 	m_freem(m);
    672 	return error;
    673 }
    674 
    675 static int
    676 can_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
    677 {
    678 	KASSERT(solocked(so));
    679 
    680 	m_freem(m);
    681 	m_freem(control);
    682 
    683 	return EOPNOTSUPP;
    684 }
    685 
    686 #if 0
    687 int
    688 can_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    689 	   struct mbuf *control, struct lwp *l)
    690 {
    691 	struct canpcb *canp;
    692 	int s;
    693 	int error = 0;
    694 
    695 	if (req == PRU_CONTROL)
    696 		 return (can_control(so, (long)m, nam,
    697 		     (struct ifnet *)control));
    698 
    699 	if (req == PRU_PURGEIF) {
    700 #if 0
    701 		can_pcbpurgeif0(&udbtable, (struct ifnet *)control);
    702 		can_purgeif((struct ifnet *)control);
    703 		can_pcbpurgeif(&udbtable, (struct ifnet *)control);
    704 #endif
    705 		return (0);
    706 	}
    707 
    708 	s = splsoftnet();
    709 	canp = sotocanpcb(so);
    710 #ifdef DIAGNOSTIC
    711 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    712 		panic("can_usrreq: unexpected control mbuf");
    713 #endif
    714 	if (canp == 0 && req != PRU_ATTACH) {
    715 		printf("can_usrreq: no pcb %p %d\n", canp, req);
    716 		error = EINVAL;
    717 		goto release;
    718 	}
    719 
    720 	/*
    721 	 * Note: need to block can_input while changing
    722 	 * the can pcb queue and/or pcb addresses.
    723 	 */
    724 	switch (req) {
    725 
    726 	  case PRU_ATTACH:
    727 	      if (canp != 0) {
    728 			 error = EISCONN;
    729 			 break;
    730 		 }
    731 #ifdef MBUFTRACE
    732 		so->so_mowner = &can_mowner;
    733 		so->so_rcv.sb_mowner = &can_rx_mowner;
    734 		so->so_snd.sb_mowner = &can_tx_mowner;
    735 #endif
    736 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    737 			error = soreserve(so, can_sendspace, can_recvspace);
    738 			if (error)
    739 				break;
    740 		}
    741 		error = can_pcballoc(so, &cbtable);
    742 		if (error)
    743 			break;
    744 		canp = sotocanpcb(so);
    745 #if 0
    746 		inp->inp_ip.ip_ttl = ip_defttl;
    747 #endif
    748 		break;
    749 
    750 	case PRU_DETACH:
    751 		can_pcbdetach(canp);
    752 		break;
    753 
    754 	case PRU_BIND:
    755 		error = can_pcbbind(canp, nam, l);
    756 		break;
    757 
    758 	case PRU_LISTEN:
    759 		error = EOPNOTSUPP;
    760 		break;
    761 
    762 	case PRU_CONNECT:
    763 		error = can_pcbconnect(canp, nam);
    764 		if (error)
    765 			break;
    766 		soisconnected(so);
    767 		break;
    768 
    769 	case PRU_CONNECT2:
    770 		error = EOPNOTSUPP;
    771 		break;
    772 
    773 	case PRU_DISCONNECT:
    774 		/*soisdisconnected(so);*/
    775 		so->so_state &= ~SS_ISCONNECTED;	/* XXX */
    776 		can_pcbdisconnect(canp);
    777 		can_pcbstate(canp, CANP_BOUND);		/* XXX */
    778 		break;
    779 
    780 	case PRU_SHUTDOWN:
    781 		socantsendmore(so);
    782 		break;
    783 
    784 	case PRU_RCVD:
    785 		error = EOPNOTSUPP;
    786 		break;
    787 
    788 	case PRU_SEND:
    789 		break;
    790 
    791 	case PRU_SENSE:
    792 		/*
    793 		 * stat: don't bother with a blocksize.
    794 		 */
    795 		splx(s);
    796 		return (0);
    797 
    798 	case PRU_RCVOOB:
    799 		error =  EOPNOTSUPP;
    800 		break;
    801 
    802 	case PRU_SENDOOB:
    803 		m_freem(control);
    804 		m_freem(m);
    805 		error =  EOPNOTSUPP;
    806 		break;
    807 
    808 	case PRU_SOCKADDR:
    809 
    810 		break;
    811 
    812 	case PRU_PEERADDR:
    813 		error =  EOPNOTSUPP;
    814 		break;
    815 
    816 	default:
    817 		panic("can_usrreq");
    818 	}
    819 
    820 release:
    821 	splx(s);
    822 	return (error);
    823 }
    824 #endif
    825 
    826 #if 0
    827 static void
    828 can_notify(struct canpcb *canp, int errno)
    829 {
    830 
    831 	canp->canp_socket->so_error = errno;
    832 	sorwakeup(canp->canp_socket);
    833 	sowwakeup(canp->canp_socket);
    834 }
    835 
    836 void *
    837 can_ctlinput(int cmd, struct sockaddr *sa, void *v)
    838 {
    839 	struct ip *ip = v;
    840 	struct canhdr *uh;
    841 	void (*notify) __P((struct inpcb *, int)) = can_notify;
    842 	int errno;
    843 
    844 	if (sa->sa_family != AF_CAN
    845 	 || sa->sa_len != sizeof(struct sockaddr_can))
    846 		return NULL;
    847 	if ((unsigned)cmd >= PRC_NCMDS)
    848 		return NULL;
    849 	errno = inetctlerrmap[cmd];
    850 	if (PRC_IS_REDIRECT(cmd))
    851 		notify = in_rtchange, ip = 0;
    852 	else if (cmd == PRC_HOSTDEAD)
    853 		ip = 0;
    854 	else if (errno == 0)
    855 		return NULL;
    856 	if (ip) {
    857 		uh = (struct canhdr *)((caddr_t)ip + (ip->ip_hl << 2));
    858 		in_pcbnotify(&udbtable, satosin(sa)->sin_addr, uh->uh_dport,
    859 		    ip->ip_src, uh->uh_sport, errno, notify);
    860 
    861 		/* XXX mapped address case */
    862 	} else
    863 		can_pcbnotifyall(&cbtable, satoscan(sa)->scan_addr, errno,
    864 		    notify);
    865 	return NULL;
    866 }
    867 #endif
    868 
    869 static int
    870 can_raw_getop(struct canpcb *canp, struct sockopt *sopt)
    871 {
    872 	int optval = 0;
    873 	int error;
    874 
    875 	switch (sopt->sopt_name) {
    876 	case CAN_RAW_LOOPBACK:
    877 		optval = (canp->canp_flags & CANP_NO_LOOPBACK) ? 0 : 1;
    878 		error = sockopt_set(sopt, &optval, sizeof(optval));
    879 		break;
    880 	case CAN_RAW_RECV_OWN_MSGS:
    881 		optval = (canp->canp_flags & CANP_RECEIVE_OWN) ? 1 : 0;
    882 		error = sockopt_set(sopt, &optval, sizeof(optval));
    883 		break;
    884 	case CAN_RAW_FILTER:
    885 		error = sockopt_set(sopt, canp->canp_filters,
    886 		    sizeof(struct can_filter) * canp->canp_nfilters);
    887 		break;
    888 	default:
    889 		error = ENOPROTOOPT;
    890 		break;
    891 	}
    892 	return error;
    893 }
    894 
    895 static int
    896 can_raw_setop(struct canpcb *canp, struct sockopt *sopt)
    897 {
    898 	int optval = 0;
    899 	int error;
    900 
    901 	switch (sopt->sopt_name) {
    902 	case CAN_RAW_LOOPBACK:
    903 		error = sockopt_getint(sopt, &optval);
    904 		if (error == 0) {
    905 			if (optval) {
    906 				canp->canp_flags &= ~CANP_NO_LOOPBACK;
    907 			} else {
    908 				canp->canp_flags |= CANP_NO_LOOPBACK;
    909 			}
    910 		}
    911 		break;
    912 	case CAN_RAW_RECV_OWN_MSGS:
    913 		error = sockopt_getint(sopt, &optval);
    914 		if (error == 0) {
    915 			if (optval) {
    916 				canp->canp_flags |= CANP_RECEIVE_OWN;
    917 			} else {
    918 				canp->canp_flags &= ~CANP_RECEIVE_OWN;
    919 			}
    920 		}
    921 		break;
    922 	case CAN_RAW_FILTER:
    923 		{
    924 		int nfilters = sopt->sopt_size / sizeof(struct can_filter);
    925 		if (sopt->sopt_size % sizeof(struct can_filter) != 0)
    926 			return EINVAL;
    927 		mutex_enter(&canp->canp_mtx);
    928 		error = can_pcbsetfilter(canp, sopt->sopt_data, nfilters);
    929 		mutex_exit(&canp->canp_mtx);
    930 		break;
    931 		}
    932 	default:
    933 		error = ENOPROTOOPT;
    934 		break;
    935 	}
    936 	return error;
    937 }
    938 
    939 /*
    940  * Called by getsockopt and setsockopt.
    941  *
    942  */
    943 int
    944 can_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    945 {
    946 	struct canpcb *canp;
    947 	int error;
    948 	int s;
    949 
    950 	if (so->so_proto->pr_domain->dom_family != PF_CAN)
    951 		return EAFNOSUPPORT;
    952 
    953 	if (sopt->sopt_level != SOL_CAN_RAW)
    954 		return EINVAL;
    955 
    956 	s = splsoftnet();
    957 	canp = sotocanpcb(so);
    958 	if (canp == NULL) {
    959 		splx(s);
    960 		return ECONNRESET;
    961 	}
    962 
    963 	if (op == PRCO_SETOPT) {
    964 		error = can_raw_setop(canp, sopt);
    965 	} else if (op ==  PRCO_GETOPT) {
    966 		error = can_raw_getop(canp, sopt);
    967 	} else {
    968 		error = EINVAL;
    969 	}
    970 	splx(s);
    971 	return error;
    972 }
    973 
    974 PR_WRAP_USRREQS(can)
    975 #define	can_attach	can_attach_wrapper
    976 #define	can_detach	can_detach_wrapper
    977 #define	can_accept	can_accept_wrapper
    978 #define	can_bind	can_bind_wrapper
    979 #define	can_listen	can_listen_wrapper
    980 #define	can_connect	can_connect_wrapper
    981 #define	can_connect2	can_connect2_wrapper
    982 #define	can_disconnect	can_disconnect_wrapper
    983 #define	can_shutdown	can_shutdown_wrapper
    984 #define	can_abort	can_abort_wrapper
    985 #define	can_ioctl	can_ioctl_wrapper
    986 #define	can_stat	can_stat_wrapper
    987 #define	can_peeraddr	can_peeraddr_wrapper
    988 #define	can_sockaddr	can_sockaddr_wrapper
    989 #define	can_rcvd	can_rcvd_wrapper
    990 #define	can_recvoob	can_recvoob_wrapper
    991 #define	can_send	can_send_wrapper
    992 #define	can_sendoob	can_sendoob_wrapper
    993 #define	can_purgeif	can_purgeif_wrapper
    994 
    995 const struct pr_usrreqs can_usrreqs = {
    996 	.pr_attach	= can_attach,
    997 	.pr_detach	= can_detach,
    998 	.pr_accept	= can_accept,
    999 	.pr_bind	= can_bind,
   1000 	.pr_listen	= can_listen,
   1001 	.pr_connect	= can_connect,
   1002 	.pr_connect2	= can_connect2,
   1003 	.pr_disconnect	= can_disconnect,
   1004 	.pr_shutdown	= can_shutdown,
   1005 	.pr_abort	= can_abort,
   1006 	.pr_ioctl	= can_ioctl,
   1007 	.pr_stat	= can_stat,
   1008 	.pr_peeraddr	= can_peeraddr,
   1009 	.pr_sockaddr	= can_sockaddr,
   1010 	.pr_rcvd	= can_rcvd,
   1011 	.pr_recvoob	= can_recvoob,
   1012 	.pr_send	= can_send,
   1013 	.pr_sendoob	= can_sendoob,
   1014 	.pr_purgeif	= can_purgeif,
   1015 };
   1016