in.c revision 1.164 1 /* $NetBSD: in.c,v 1.164 2016/02/25 06:00:01 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)in.c 8.4 (Berkeley) 1/9/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.164 2016/02/25 06:00:01 ozaki-r Exp $");
95
96 #include "arp.h"
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_inet_conf.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/ioctl.h>
106 #include <sys/errno.h>
107 #include <sys/kernel.h>
108 #include <sys/malloc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114 #include <sys/syslog.h>
115 #include <sys/kauth.h>
116 #include <sys/kmem.h>
117
118 #include <sys/cprng.h>
119
120 #include <net/if.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <net/if_arp.h>
125 #include <net/if_ether.h>
126 #include <net/if_types.h>
127 #include <net/if_llatbl.h>
128 #include <net/if_dl.h>
129
130 #include <netinet/in_systm.h>
131 #include <netinet/in.h>
132 #include <netinet/in_var.h>
133 #include <netinet/ip.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/in_ifattach.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/in_selsrc.h>
138 #include <netinet/if_inarp.h>
139 #include <netinet/ip_mroute.h>
140 #include <netinet/igmp_var.h>
141
142 #ifdef IPSELSRC
143 #include <netinet/in_selsrc.h>
144 #endif
145
146 static u_int in_mask2len(struct in_addr *);
147 static void in_len2mask(struct in_addr *, u_int);
148 static int in_lifaddr_ioctl(struct socket *, u_long, void *,
149 struct ifnet *);
150
151 static int in_addprefix(struct in_ifaddr *, int);
152 static int in_scrubprefix(struct in_ifaddr *);
153 static void in_sysctl_init(struct sysctllog **);
154
155 #ifndef SUBNETSARELOCAL
156 #define SUBNETSARELOCAL 1
157 #endif
158
159 #ifndef HOSTZEROBROADCAST
160 #define HOSTZEROBROADCAST 1
161 #endif
162
163 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */
164 #ifndef IN_MULTI_HASH_SIZE
165 #define IN_MULTI_HASH_SIZE 509
166 #endif
167
168 static int subnetsarelocal = SUBNETSARELOCAL;
169 static int hostzeroisbroadcast = HOSTZEROBROADCAST;
170
171 /*
172 * This list is used to keep track of in_multi chains which belong to
173 * deleted interface addresses. We use in_ifaddr so that a chain head
174 * won't be deallocated until all multicast address record are deleted.
175 */
176
177 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */
178
179 static struct pool inmulti_pool;
180 static u_int in_multientries;
181 static struct in_multihashhead *in_multihashtbl;
182 static u_long in_multihash;
183 static krwlock_t in_multilock;
184
185 #define IN_MULTI_HASH(x, ifp) \
186 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE])
187
188 struct in_ifaddrhashhead * in_ifaddrhashtbl;
189 u_long in_ifaddrhash;
190 struct in_ifaddrhead in_ifaddrhead;
191
192 void
193 in_init(void)
194 {
195 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
196 NULL, IPL_SOFTNET);
197 TAILQ_INIT(&in_ifaddrhead);
198
199 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
200 &in_ifaddrhash);
201 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
202 &in_multihash);
203 rw_init(&in_multilock);
204
205 in_sysctl_init(NULL);
206 }
207
208 /*
209 * Return 1 if an internet address is for a ``local'' host
210 * (one to which we have a connection). If subnetsarelocal
211 * is true, this includes other subnets of the local net.
212 * Otherwise, it includes only the directly-connected (sub)nets.
213 */
214 int
215 in_localaddr(struct in_addr in)
216 {
217 struct in_ifaddr *ia;
218
219 if (subnetsarelocal) {
220 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
221 if ((in.s_addr & ia->ia_netmask) == ia->ia_net)
222 return (1);
223 } else {
224 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list)
225 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet)
226 return (1);
227 }
228 return (0);
229 }
230
231 /*
232 * Determine whether an IP address is in a reserved set of addresses
233 * that may not be forwarded, or whether datagrams to that destination
234 * may be forwarded.
235 */
236 int
237 in_canforward(struct in_addr in)
238 {
239 u_int32_t net;
240
241 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
242 return (0);
243 if (IN_CLASSA(in.s_addr)) {
244 net = in.s_addr & IN_CLASSA_NET;
245 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
246 return (0);
247 }
248 return (1);
249 }
250
251 /*
252 * Trim a mask in a sockaddr
253 */
254 void
255 in_socktrim(struct sockaddr_in *ap)
256 {
257 char *cplim = (char *) &ap->sin_addr;
258 char *cp = (char *) (&ap->sin_addr + 1);
259
260 ap->sin_len = 0;
261 while (--cp >= cplim)
262 if (*cp) {
263 (ap)->sin_len = cp - (char *) (ap) + 1;
264 break;
265 }
266 }
267
268 /*
269 * Routine to take an Internet address and convert into a
270 * "dotted quad" representation for printing.
271 */
272 const char *
273 in_fmtaddr(struct in_addr addr)
274 {
275 static char buf[sizeof("123.456.789.123")];
276
277 addr.s_addr = ntohl(addr.s_addr);
278
279 snprintf(buf, sizeof(buf), "%d.%d.%d.%d",
280 (addr.s_addr >> 24) & 0xFF,
281 (addr.s_addr >> 16) & 0xFF,
282 (addr.s_addr >> 8) & 0xFF,
283 (addr.s_addr >> 0) & 0xFF);
284 return buf;
285 }
286
287 /*
288 * Maintain the "in_maxmtu" variable, which is the largest
289 * mtu for non-local interfaces with AF_INET addresses assigned
290 * to them that are up.
291 */
292 unsigned long in_maxmtu;
293
294 void
295 in_setmaxmtu(void)
296 {
297 struct in_ifaddr *ia;
298 struct ifnet *ifp;
299 unsigned long maxmtu = 0;
300
301 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
302 if ((ifp = ia->ia_ifp) == 0)
303 continue;
304 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
305 continue;
306 if (ifp->if_mtu > maxmtu)
307 maxmtu = ifp->if_mtu;
308 }
309 if (maxmtu)
310 in_maxmtu = maxmtu;
311 }
312
313 static u_int
314 in_mask2len(struct in_addr *mask)
315 {
316 u_int x, y;
317 u_char *p;
318
319 p = (u_char *)mask;
320 for (x = 0; x < sizeof(*mask); x++) {
321 if (p[x] != 0xff)
322 break;
323 }
324 y = 0;
325 if (x < sizeof(*mask)) {
326 for (y = 0; y < NBBY; y++) {
327 if ((p[x] & (0x80 >> y)) == 0)
328 break;
329 }
330 }
331 return x * NBBY + y;
332 }
333
334 static void
335 in_len2mask(struct in_addr *mask, u_int len)
336 {
337 u_int i;
338 u_char *p;
339
340 p = (u_char *)mask;
341 memset(mask, 0, sizeof(*mask));
342 for (i = 0; i < len / NBBY; i++)
343 p[i] = 0xff;
344 if (len % NBBY)
345 p[i] = (0xff00 >> (len % NBBY)) & 0xff;
346 }
347
348 /*
349 * Generic internet control operations (ioctl's).
350 * Ifp is 0 if not an interface-specific ioctl.
351 */
352 /* ARGSUSED */
353 int
354 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
355 {
356 struct ifreq *ifr = (struct ifreq *)data;
357 struct in_ifaddr *ia = NULL;
358 struct in_aliasreq *ifra = (struct in_aliasreq *)data;
359 struct sockaddr_in oldaddr;
360 int error, hostIsNew, maskIsNew;
361 int newifaddr = 0;
362
363 switch (cmd) {
364 case SIOCALIFADDR:
365 case SIOCDLIFADDR:
366 case SIOCGLIFADDR:
367 if (ifp == NULL)
368 return EINVAL;
369 return in_lifaddr_ioctl(so, cmd, data, ifp);
370 case SIOCGIFADDRPREF:
371 case SIOCSIFADDRPREF:
372 if (ifp == NULL)
373 return EINVAL;
374 return ifaddrpref_ioctl(so, cmd, data, ifp);
375 }
376
377 /*
378 * Find address for this interface, if it exists.
379 */
380 if (ifp != NULL)
381 IFP_TO_IA(ifp, ia);
382
383 hostIsNew = 1; /* moved here to appease gcc */
384 switch (cmd) {
385 case SIOCAIFADDR:
386 case SIOCDIFADDR:
387 case SIOCGIFALIAS:
388 case SIOCGIFAFLAG_IN:
389 if (ifra->ifra_addr.sin_family == AF_INET)
390 LIST_FOREACH(ia,
391 &IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr),
392 ia_hash) {
393 if (ia->ia_ifp == ifp &&
394 in_hosteq(ia->ia_addr.sin_addr,
395 ifra->ifra_addr.sin_addr))
396 break;
397 }
398 if ((cmd == SIOCDIFADDR ||
399 cmd == SIOCGIFALIAS ||
400 cmd == SIOCGIFAFLAG_IN) &&
401 ia == NULL)
402 return (EADDRNOTAVAIL);
403
404 if (cmd == SIOCDIFADDR &&
405 ifra->ifra_addr.sin_family == AF_UNSPEC) {
406 ifra->ifra_addr.sin_family = AF_INET;
407 }
408 /* FALLTHROUGH */
409 case SIOCSIFADDR:
410 if (ia == NULL || ia->ia_addr.sin_family != AF_INET)
411 ;
412 else if (ifra->ifra_addr.sin_len == 0) {
413 ifra->ifra_addr = ia->ia_addr;
414 hostIsNew = 0;
415 } else if (in_hosteq(ia->ia_addr.sin_addr,
416 ifra->ifra_addr.sin_addr))
417 hostIsNew = 0;
418 /* FALLTHROUGH */
419 case SIOCSIFDSTADDR:
420 if (ifra->ifra_addr.sin_family != AF_INET)
421 return (EAFNOSUPPORT);
422 /* FALLTHROUGH */
423 case SIOCSIFNETMASK:
424 if (ifp == NULL)
425 panic("in_control");
426
427 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN)
428 break;
429
430 if (ia == NULL &&
431 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR))
432 return (EADDRNOTAVAIL);
433
434 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
435 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
436 NULL) != 0)
437 return (EPERM);
438
439 if (ia == NULL) {
440 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO);
441 if (ia == NULL)
442 return (ENOBUFS);
443 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list);
444 ifaref(&ia->ia_ifa);
445 ifa_insert(ifp, &ia->ia_ifa);
446 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
447 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
448 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
449 #ifdef IPSELSRC
450 ia->ia_ifa.ifa_getifa = in_getifa;
451 #else /* IPSELSRC */
452 ia->ia_ifa.ifa_getifa = NULL;
453 #endif /* IPSELSRC */
454 ia->ia_sockmask.sin_len = 8;
455 ia->ia_sockmask.sin_family = AF_INET;
456 if (ifp->if_flags & IFF_BROADCAST) {
457 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
458 ia->ia_broadaddr.sin_family = AF_INET;
459 }
460 ia->ia_ifp = ifp;
461 ia->ia_idsalt = cprng_fast32() % 65535;
462 LIST_INIT(&ia->ia_multiaddrs);
463 newifaddr = 1;
464 }
465 break;
466
467 case SIOCSIFBRDADDR:
468 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
469 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
470 NULL) != 0)
471 return (EPERM);
472 /* FALLTHROUGH */
473
474 case SIOCGIFADDR:
475 case SIOCGIFNETMASK:
476 case SIOCGIFDSTADDR:
477 case SIOCGIFBRDADDR:
478 if (ia == NULL)
479 return (EADDRNOTAVAIL);
480 break;
481 }
482 error = 0;
483 switch (cmd) {
484
485 case SIOCGIFADDR:
486 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr));
487 break;
488
489 case SIOCGIFBRDADDR:
490 if ((ifp->if_flags & IFF_BROADCAST) == 0)
491 return (EINVAL);
492 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr));
493 break;
494
495 case SIOCGIFDSTADDR:
496 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
497 return (EINVAL);
498 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr));
499 break;
500
501 case SIOCGIFNETMASK:
502 /*
503 * We keep the number of trailing zero bytes the sin_len field
504 * of ia_sockmask, so we fix this before we pass it back to
505 * userland.
506 */
507 oldaddr = ia->ia_sockmask;
508 oldaddr.sin_len = sizeof(struct sockaddr_in);
509 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr);
510 break;
511
512 case SIOCSIFDSTADDR:
513 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
514 return (EINVAL);
515 oldaddr = ia->ia_dstaddr;
516 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr));
517 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) {
518 ia->ia_dstaddr = oldaddr;
519 return error;
520 }
521 if (ia->ia_flags & IFA_ROUTE) {
522 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
523 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST);
524 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
525 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP);
526 }
527 break;
528
529 case SIOCSIFBRDADDR:
530 if ((ifp->if_flags & IFF_BROADCAST) == 0)
531 return EINVAL;
532 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr));
533 break;
534
535 case SIOCSIFADDR:
536 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)),
537 1, hostIsNew);
538 if (error == 0) {
539 (void)pfil_run_hooks(if_pfil,
540 (struct mbuf **)SIOCSIFADDR, ifp, PFIL_IFADDR);
541 }
542 break;
543
544 case SIOCSIFNETMASK:
545 in_ifscrub(ifp, ia);
546 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr));
547 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
548 error = in_ifinit(ifp, ia, NULL, 0, 0);
549 break;
550
551 case SIOCAIFADDR:
552 maskIsNew = 0;
553 if (ifra->ifra_mask.sin_len) {
554 /* Only scrub if we control the prefix route,
555 * otherwise userland gets a bogus message */
556 if ((ia->ia_flags & IFA_ROUTE))
557 in_ifscrub(ifp, ia);
558 ia->ia_sockmask = ifra->ifra_mask;
559 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
560 maskIsNew = 1;
561 }
562 if ((ifp->if_flags & IFF_POINTOPOINT) &&
563 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
564 /* Only scrub if we control the prefix route,
565 * otherwise userland gets a bogus message */
566 if ((ia->ia_flags & IFA_ROUTE))
567 in_ifscrub(ifp, ia);
568 ia->ia_dstaddr = ifra->ifra_dstaddr;
569 maskIsNew = 1; /* We lie; but the effect's the same */
570 }
571 if (ifra->ifra_addr.sin_family == AF_INET &&
572 (hostIsNew || maskIsNew)) {
573 error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0,
574 hostIsNew);
575 }
576 if ((ifp->if_flags & IFF_BROADCAST) &&
577 (ifra->ifra_broadaddr.sin_family == AF_INET))
578 ia->ia_broadaddr = ifra->ifra_broadaddr;
579 if (error == 0)
580 (void)pfil_run_hooks(if_pfil,
581 (struct mbuf **)SIOCAIFADDR, ifp, PFIL_IFADDR);
582 break;
583
584 case SIOCGIFALIAS:
585 ifra->ifra_mask = ia->ia_sockmask;
586 if ((ifp->if_flags & IFF_POINTOPOINT) &&
587 (ia->ia_dstaddr.sin_family == AF_INET))
588 ifra->ifra_dstaddr = ia->ia_dstaddr;
589 else if ((ifp->if_flags & IFF_BROADCAST) &&
590 (ia->ia_broadaddr.sin_family == AF_INET))
591 ifra->ifra_broadaddr = ia->ia_broadaddr;
592 else
593 memset(&ifra->ifra_broadaddr, 0,
594 sizeof(ifra->ifra_broadaddr));
595 break;
596
597 case SIOCGIFAFLAG_IN:
598 ifr->ifr_addrflags = ia->ia4_flags;
599 break;
600
601 case SIOCDIFADDR:
602 in_purgeaddr(&ia->ia_ifa);
603 (void)pfil_run_hooks(if_pfil, (struct mbuf **)SIOCDIFADDR,
604 ifp, PFIL_IFADDR);
605 break;
606
607 #ifdef MROUTING
608 case SIOCGETVIFCNT:
609 case SIOCGETSGCNT:
610 error = mrt_ioctl(so, cmd, data);
611 break;
612 #endif /* MROUTING */
613
614 default:
615 return ENOTTY;
616 }
617
618 if (error != 0 && newifaddr) {
619 KASSERT(ia != NULL);
620 in_purgeaddr(&ia->ia_ifa);
621 }
622
623 return error;
624 }
625
626 /* Add ownaddr as loopback rtentry. */
627 static void
628 in_ifaddlocal(struct ifaddr *ifa)
629 {
630 struct in_ifaddr *ia;
631
632 ia = (struct in_ifaddr *)ifa;
633 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY ||
634 (ia->ia_ifp->if_flags & IFF_POINTOPOINT &&
635 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr)))
636 {
637 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
638 return;
639 }
640
641 rt_ifa_addlocal(ifa);
642 }
643
644 /* Rempve loopback entry of ownaddr */
645 static void
646 in_ifremlocal(struct ifaddr *ifa)
647 {
648 struct in_ifaddr *ia, *p;
649 struct ifaddr *alt_ifa = NULL;
650 int ia_count = 0;
651
652 ia = (struct in_ifaddr *)ifa;
653 /* Delete the entry if exactly one ifaddr matches the
654 * address, ifa->ifa_addr. */
655 TAILQ_FOREACH(p, &in_ifaddrhead, ia_list) {
656 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr))
657 continue;
658 if (p->ia_ifp != ia->ia_ifp)
659 alt_ifa = &p->ia_ifa;
660 if (++ia_count > 1 && alt_ifa != NULL)
661 break;
662 }
663
664 if (ia_count == 0)
665 return;
666
667 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa);
668 }
669
670 void
671 in_purgeaddr(struct ifaddr *ifa)
672 {
673 struct ifnet *ifp = ifa->ifa_ifp;
674 struct in_ifaddr *ia = (void *) ifa;
675
676 /* stop DAD processing */
677 if (ia->ia_dad_stop != NULL)
678 ia->ia_dad_stop(ifa);
679
680 in_ifscrub(ifp, ia);
681 in_ifremlocal(ifa);
682 LIST_REMOVE(ia, ia_hash);
683 ifa_remove(ifp, &ia->ia_ifa);
684 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list);
685 if (ia->ia_allhosts != NULL)
686 in_delmulti(ia->ia_allhosts);
687 ifafree(&ia->ia_ifa);
688 in_setmaxmtu();
689 }
690
691 void
692 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */
693 {
694 if_purgeaddrs(ifp, AF_INET, in_purgeaddr);
695 igmp_purgeif(ifp); /* manipulates pools */
696 #ifdef MROUTING
697 ip_mrouter_detach(ifp);
698 #endif
699 }
700
701 /*
702 * SIOC[GAD]LIFADDR.
703 * SIOCGLIFADDR: get first address. (???)
704 * SIOCGLIFADDR with IFLR_PREFIX:
705 * get first address that matches the specified prefix.
706 * SIOCALIFADDR: add the specified address.
707 * SIOCALIFADDR with IFLR_PREFIX:
708 * EINVAL since we can't deduce hostid part of the address.
709 * SIOCDLIFADDR: delete the specified address.
710 * SIOCDLIFADDR with IFLR_PREFIX:
711 * delete the first address that matches the specified prefix.
712 * return values:
713 * EINVAL on invalid parameters
714 * EADDRNOTAVAIL on prefix match failed/specified address not found
715 * other values may be returned from in_ioctl()
716 */
717 static int
718 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
719 struct ifnet *ifp)
720 {
721 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
722 struct ifaddr *ifa;
723 struct sockaddr *sa;
724
725 /* sanity checks */
726 if (data == NULL || ifp == NULL) {
727 panic("invalid argument to in_lifaddr_ioctl");
728 /*NOTRECHED*/
729 }
730
731 switch (cmd) {
732 case SIOCGLIFADDR:
733 /* address must be specified on GET with IFLR_PREFIX */
734 if ((iflr->flags & IFLR_PREFIX) == 0)
735 break;
736 /*FALLTHROUGH*/
737 case SIOCALIFADDR:
738 case SIOCDLIFADDR:
739 /* address must be specified on ADD and DELETE */
740 sa = (struct sockaddr *)&iflr->addr;
741 if (sa->sa_family != AF_INET)
742 return EINVAL;
743 if (sa->sa_len != sizeof(struct sockaddr_in))
744 return EINVAL;
745 /* XXX need improvement */
746 sa = (struct sockaddr *)&iflr->dstaddr;
747 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET)
748 return EINVAL;
749 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in))
750 return EINVAL;
751 break;
752 default: /*shouldn't happen*/
753 #if 0
754 panic("invalid cmd to in_lifaddr_ioctl");
755 /*NOTREACHED*/
756 #else
757 return EOPNOTSUPP;
758 #endif
759 }
760 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen)
761 return EINVAL;
762
763 switch (cmd) {
764 case SIOCALIFADDR:
765 {
766 struct in_aliasreq ifra;
767
768 if (iflr->flags & IFLR_PREFIX)
769 return EINVAL;
770
771 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */
772 memset(&ifra, 0, sizeof(ifra));
773 memcpy(ifra.ifra_name, iflr->iflr_name,
774 sizeof(ifra.ifra_name));
775
776 memcpy(&ifra.ifra_addr, &iflr->addr,
777 ((struct sockaddr *)&iflr->addr)->sa_len);
778
779 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
780 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
781 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
782 }
783
784 ifra.ifra_mask.sin_family = AF_INET;
785 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
786 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
787
788 return in_control(so, SIOCAIFADDR, &ifra, ifp);
789 }
790 case SIOCGLIFADDR:
791 case SIOCDLIFADDR:
792 {
793 struct in_ifaddr *ia;
794 struct in_addr mask, candidate, match;
795 struct sockaddr_in *sin;
796 int cmp;
797
798 memset(&mask, 0, sizeof(mask));
799 memset(&match, 0, sizeof(match)); /* XXX gcc */
800 if (iflr->flags & IFLR_PREFIX) {
801 /* lookup a prefix rather than address. */
802 in_len2mask(&mask, iflr->prefixlen);
803
804 sin = (struct sockaddr_in *)&iflr->addr;
805 match.s_addr = sin->sin_addr.s_addr;
806 match.s_addr &= mask.s_addr;
807
808 /* if you set extra bits, that's wrong */
809 if (match.s_addr != sin->sin_addr.s_addr)
810 return EINVAL;
811
812 cmp = 1;
813 } else {
814 if (cmd == SIOCGLIFADDR) {
815 /* on getting an address, take the 1st match */
816 cmp = 0; /*XXX*/
817 } else {
818 /* on deleting an address, do exact match */
819 in_len2mask(&mask, 32);
820 sin = (struct sockaddr_in *)&iflr->addr;
821 match.s_addr = sin->sin_addr.s_addr;
822
823 cmp = 1;
824 }
825 }
826
827 IFADDR_FOREACH(ifa, ifp) {
828 if (ifa->ifa_addr->sa_family != AF_INET)
829 continue;
830 if (cmp == 0)
831 break;
832 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr;
833 candidate.s_addr &= mask.s_addr;
834 if (candidate.s_addr == match.s_addr)
835 break;
836 }
837 if (ifa == NULL)
838 return EADDRNOTAVAIL;
839 ia = (struct in_ifaddr *)ifa;
840
841 if (cmd == SIOCGLIFADDR) {
842 /* fill in the if_laddrreq structure */
843 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len);
844
845 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
846 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
847 ia->ia_dstaddr.sin_len);
848 } else
849 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
850
851 iflr->prefixlen =
852 in_mask2len(&ia->ia_sockmask.sin_addr);
853
854 iflr->flags = 0; /*XXX*/
855
856 return 0;
857 } else {
858 struct in_aliasreq ifra;
859
860 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */
861 memset(&ifra, 0, sizeof(ifra));
862 memcpy(ifra.ifra_name, iflr->iflr_name,
863 sizeof(ifra.ifra_name));
864
865 memcpy(&ifra.ifra_addr, &ia->ia_addr,
866 ia->ia_addr.sin_len);
867 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
868 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
869 ia->ia_dstaddr.sin_len);
870 }
871 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask,
872 ia->ia_sockmask.sin_len);
873
874 return in_control(so, SIOCDIFADDR, &ifra, ifp);
875 }
876 }
877 }
878
879 return EOPNOTSUPP; /*just for safety*/
880 }
881
882 /*
883 * Delete any existing route for an interface.
884 */
885 void
886 in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia)
887 {
888
889 in_scrubprefix(ia);
890 }
891
892 /*
893 * Initialize an interface's internet address
894 * and routing table entry.
895 */
896 int
897 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia,
898 const struct sockaddr_in *sin, int scrub, int hostIsNew)
899 {
900 u_int32_t i;
901 struct sockaddr_in oldaddr;
902 int s = splnet(), flags = RTF_UP, error;
903
904 if (sin == NULL)
905 sin = &ia->ia_addr;
906
907 /*
908 * Set up new addresses.
909 */
910 oldaddr = ia->ia_addr;
911 if (ia->ia_addr.sin_family == AF_INET)
912 LIST_REMOVE(ia, ia_hash);
913 ia->ia_addr = *sin;
914 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
915
916 /* Set IN_IFF flags early for if_addr_init() */
917 if (hostIsNew && if_do_dad(ifp) && !in_nullhost(ia->ia_addr.sin_addr)) {
918 if (ifp->if_link_state == LINK_STATE_DOWN)
919 ia->ia4_flags |= IN_IFF_DETACHED;
920 else
921 /* State the intent to try DAD if possible */
922 ia->ia4_flags |= IN_IFF_TRYTENTATIVE;
923 }
924
925 /*
926 * Give the interface a chance to initialize
927 * if this is its first address,
928 * and to validate the address if necessary.
929 */
930 if ((error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0)
931 goto bad;
932 /* Now clear the try tentative flag, it's job is done. */
933 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE;
934 splx(s);
935
936 if (scrub) {
937 ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
938 in_ifscrub(ifp, ia);
939 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
940 }
941
942 /* Add the local route to the address */
943 in_ifaddlocal(&ia->ia_ifa);
944
945 i = ia->ia_addr.sin_addr.s_addr;
946 if (IN_CLASSA(i))
947 ia->ia_netmask = IN_CLASSA_NET;
948 else if (IN_CLASSB(i))
949 ia->ia_netmask = IN_CLASSB_NET;
950 else
951 ia->ia_netmask = IN_CLASSC_NET;
952 /*
953 * The subnet mask usually includes at least the standard network part,
954 * but may may be smaller in the case of supernetting.
955 * If it is set, we believe it.
956 */
957 if (ia->ia_subnetmask == 0) {
958 ia->ia_subnetmask = ia->ia_netmask;
959 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
960 } else
961 ia->ia_netmask &= ia->ia_subnetmask;
962
963 ia->ia_net = i & ia->ia_netmask;
964 ia->ia_subnet = i & ia->ia_subnetmask;
965 in_socktrim(&ia->ia_sockmask);
966 /* re-calculate the "in_maxmtu" value */
967 in_setmaxmtu();
968 /*
969 * Add route for the network.
970 */
971 ia->ia_ifa.ifa_metric = ifp->if_metric;
972 if (ifp->if_flags & IFF_BROADCAST) {
973 ia->ia_broadaddr.sin_addr.s_addr =
974 ia->ia_subnet | ~ia->ia_subnetmask;
975 ia->ia_netbroadcast.s_addr =
976 ia->ia_net | ~ia->ia_netmask;
977 } else if (ifp->if_flags & IFF_LOOPBACK) {
978 ia->ia_dstaddr = ia->ia_addr;
979 flags |= RTF_HOST;
980 } else if (ifp->if_flags & IFF_POINTOPOINT) {
981 if (ia->ia_dstaddr.sin_family != AF_INET)
982 return (0);
983 flags |= RTF_HOST;
984 }
985 error = in_addprefix(ia, flags);
986 /*
987 * If the interface supports multicast, join the "all hosts"
988 * multicast group on that interface.
989 */
990 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) {
991 struct in_addr addr;
992
993 addr.s_addr = INADDR_ALLHOSTS_GROUP;
994 ia->ia_allhosts = in_addmulti(&addr, ifp);
995 }
996
997 if (hostIsNew && if_do_dad(ifp) &&
998 !in_nullhost(ia->ia_addr.sin_addr) &&
999 ia->ia4_flags & IN_IFF_TENTATIVE)
1000 ia->ia_dad_start((struct ifaddr *)ia);
1001
1002 return (error);
1003 bad:
1004 splx(s);
1005 LIST_REMOVE(ia, ia_hash);
1006 ia->ia_addr = oldaddr;
1007 if (ia->ia_addr.sin_family == AF_INET)
1008 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
1009 ia, ia_hash);
1010 return (error);
1011 }
1012
1013 #define rtinitflags(x) \
1014 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \
1015 ? RTF_HOST : 0)
1016
1017 /*
1018 * add a route to prefix ("connected route" in cisco terminology).
1019 * does nothing if there's some interface address with the same prefix already.
1020 */
1021 static int
1022 in_addprefix(struct in_ifaddr *target, int flags)
1023 {
1024 struct in_ifaddr *ia;
1025 struct in_addr prefix, mask, p;
1026 int error;
1027
1028 if ((flags & RTF_HOST) != 0)
1029 prefix = target->ia_dstaddr.sin_addr;
1030 else {
1031 prefix = target->ia_addr.sin_addr;
1032 mask = target->ia_sockmask.sin_addr;
1033 prefix.s_addr &= mask.s_addr;
1034 }
1035
1036 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
1037 if (rtinitflags(ia))
1038 p = ia->ia_dstaddr.sin_addr;
1039 else {
1040 p = ia->ia_addr.sin_addr;
1041 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1042 }
1043
1044 if (prefix.s_addr != p.s_addr)
1045 continue;
1046
1047 /*
1048 * if we got a matching prefix route inserted by other
1049 * interface address, we don't need to bother
1050 *
1051 * XXX RADIX_MPATH implications here? -dyoung
1052 */
1053 if (ia->ia_flags & IFA_ROUTE)
1054 return 0;
1055 }
1056
1057 /*
1058 * noone seem to have prefix route. insert it.
1059 */
1060 error = rtinit(&target->ia_ifa, RTM_ADD, flags);
1061 if (error == 0)
1062 target->ia_flags |= IFA_ROUTE;
1063 else if (error == EEXIST) {
1064 /*
1065 * the fact the route already exists is not an error.
1066 */
1067 error = 0;
1068 }
1069 return error;
1070 }
1071
1072 /*
1073 * remove a route to prefix ("connected route" in cisco terminology).
1074 * re-installs the route by using another interface address, if there's one
1075 * with the same prefix (otherwise we lose the route mistakenly).
1076 */
1077 static int
1078 in_scrubprefix(struct in_ifaddr *target)
1079 {
1080 struct in_ifaddr *ia;
1081 struct in_addr prefix, mask, p;
1082 int error;
1083
1084 /* If we don't have IFA_ROUTE we should still inform userland */
1085 if ((target->ia_flags & IFA_ROUTE) == 0)
1086 return 0;
1087
1088 if (rtinitflags(target))
1089 prefix = target->ia_dstaddr.sin_addr;
1090 else {
1091 prefix = target->ia_addr.sin_addr;
1092 mask = target->ia_sockmask.sin_addr;
1093 prefix.s_addr &= mask.s_addr;
1094 }
1095
1096 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
1097 if (rtinitflags(ia))
1098 p = ia->ia_dstaddr.sin_addr;
1099 else {
1100 p = ia->ia_addr.sin_addr;
1101 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr;
1102 }
1103
1104 if (prefix.s_addr != p.s_addr)
1105 continue;
1106
1107 /*
1108 * if we got a matching prefix route, move IFA_ROUTE to him
1109 */
1110 if ((ia->ia_flags & IFA_ROUTE) == 0) {
1111 rtinit(&target->ia_ifa, RTM_DELETE,
1112 rtinitflags(target));
1113 target->ia_flags &= ~IFA_ROUTE;
1114
1115 error = rtinit(&ia->ia_ifa, RTM_ADD,
1116 rtinitflags(ia) | RTF_UP);
1117 if (error == 0)
1118 ia->ia_flags |= IFA_ROUTE;
1119 return error;
1120 }
1121 }
1122
1123 /*
1124 * noone seem to have prefix route. remove it.
1125 */
1126 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target));
1127 target->ia_flags &= ~IFA_ROUTE;
1128 return 0;
1129 }
1130
1131 #undef rtinitflags
1132
1133 /*
1134 * Return 1 if the address might be a local broadcast address.
1135 */
1136 int
1137 in_broadcast(struct in_addr in, struct ifnet *ifp)
1138 {
1139 struct ifaddr *ifa;
1140
1141 if (in.s_addr == INADDR_BROADCAST ||
1142 in_nullhost(in))
1143 return 1;
1144 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1145 return 0;
1146 /*
1147 * Look through the list of addresses for a match
1148 * with a broadcast address.
1149 */
1150 #define ia (ifatoia(ifa))
1151 IFADDR_FOREACH(ifa, ifp)
1152 if (ifa->ifa_addr->sa_family == AF_INET &&
1153 !in_hosteq(in, ia->ia_addr.sin_addr) &&
1154 (in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
1155 in_hosteq(in, ia->ia_netbroadcast) ||
1156 (hostzeroisbroadcast &&
1157 /*
1158 * Check for old-style (host 0) broadcast.
1159 */
1160 (in.s_addr == ia->ia_subnet ||
1161 in.s_addr == ia->ia_net))))
1162 return 1;
1163 return (0);
1164 #undef ia
1165 }
1166
1167 /*
1168 * perform DAD when interface becomes IFF_UP.
1169 */
1170 void
1171 in_if_link_up(struct ifnet *ifp)
1172 {
1173 struct ifaddr *ifa;
1174 struct in_ifaddr *ia;
1175
1176 /* Ensure it's sane to run DAD */
1177 if (ifp->if_link_state == LINK_STATE_DOWN)
1178 return;
1179 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
1180 return;
1181
1182 IFADDR_FOREACH(ifa, ifp) {
1183 if (ifa->ifa_addr->sa_family != AF_INET)
1184 continue;
1185 ia = (struct in_ifaddr *)ifa;
1186
1187 /* If detached then mark as tentative */
1188 if (ia->ia4_flags & IN_IFF_DETACHED) {
1189 ia->ia4_flags &= ~IN_IFF_DETACHED;
1190 if (if_do_dad(ifp) && ia->ia_dad_start != NULL)
1191 ia->ia4_flags |= IN_IFF_TENTATIVE;
1192 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0)
1193 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1194 }
1195
1196 if (ia->ia4_flags & IN_IFF_TENTATIVE) {
1197 /* Clear the duplicated flag as we're starting DAD. */
1198 ia->ia4_flags &= ~IN_IFF_DUPLICATED;
1199 ia->ia_dad_start(ifa);
1200 }
1201 }
1202 }
1203
1204 void
1205 in_if_up(struct ifnet *ifp)
1206 {
1207
1208 /* interface may not support link state, so bring it up also */
1209 in_if_link_up(ifp);
1210 }
1211
1212 /*
1213 * Mark all addresses as detached.
1214 */
1215 void
1216 in_if_link_down(struct ifnet *ifp)
1217 {
1218 struct ifaddr *ifa;
1219 struct in_ifaddr *ia;
1220
1221 IFADDR_FOREACH(ifa, ifp) {
1222 if (ifa->ifa_addr->sa_family != AF_INET)
1223 continue;
1224 ia = (struct in_ifaddr *)ifa;
1225
1226 /* Stop DAD processing */
1227 if (ia->ia_dad_stop != NULL)
1228 ia->ia_dad_stop(ifa);
1229
1230 /*
1231 * Mark the address as detached.
1232 */
1233 if (!(ia->ia4_flags & IN_IFF_DETACHED)) {
1234 ia->ia4_flags |= IN_IFF_DETACHED;
1235 ia->ia4_flags &=
1236 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED);
1237 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1238 }
1239 }
1240 }
1241
1242 void
1243 in_if_down(struct ifnet *ifp)
1244 {
1245
1246 in_if_link_down(ifp);
1247 }
1248
1249 void
1250 in_if_link_state_change(struct ifnet *ifp, int link_state)
1251 {
1252
1253 switch (link_state) {
1254 case LINK_STATE_DOWN:
1255 in_if_link_down(ifp);
1256 break;
1257 case LINK_STATE_UP:
1258 in_if_link_up(ifp);
1259 break;
1260 }
1261 }
1262
1263 /*
1264 * in_lookup_multi: look up the in_multi record for a given IP
1265 * multicast address on a given interface. If no matching record is
1266 * found, return NULL.
1267 */
1268 struct in_multi *
1269 in_lookup_multi(struct in_addr addr, ifnet_t *ifp)
1270 {
1271 struct in_multi *inm;
1272
1273 KASSERT(rw_lock_held(&in_multilock));
1274
1275 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) {
1276 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp)
1277 break;
1278 }
1279 return inm;
1280 }
1281
1282 /*
1283 * in_multi_group: check whether the address belongs to an IP multicast
1284 * group we are joined on this interface. Returns true or false.
1285 */
1286 bool
1287 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags)
1288 {
1289 bool ingroup;
1290
1291 if (__predict_true(flags & IP_IGMP_MCAST) == 0) {
1292 rw_enter(&in_multilock, RW_READER);
1293 ingroup = in_lookup_multi(addr, ifp) != NULL;
1294 rw_exit(&in_multilock);
1295 } else {
1296 /* XXX Recursive call from ip_output(). */
1297 KASSERT(rw_lock_held(&in_multilock));
1298 ingroup = in_lookup_multi(addr, ifp) != NULL;
1299 }
1300 return ingroup;
1301 }
1302
1303 /*
1304 * Add an address to the list of IP multicast addresses for a given interface.
1305 */
1306 struct in_multi *
1307 in_addmulti(struct in_addr *ap, ifnet_t *ifp)
1308 {
1309 struct sockaddr_in sin;
1310 struct in_multi *inm;
1311
1312 /*
1313 * See if address already in list.
1314 */
1315 rw_enter(&in_multilock, RW_WRITER);
1316 inm = in_lookup_multi(*ap, ifp);
1317 if (inm != NULL) {
1318 /*
1319 * Found it; just increment the reference count.
1320 */
1321 inm->inm_refcount++;
1322 rw_exit(&in_multilock);
1323 return inm;
1324 }
1325
1326 /*
1327 * New address; allocate a new multicast record.
1328 */
1329 inm = pool_get(&inmulti_pool, PR_NOWAIT);
1330 if (inm == NULL) {
1331 rw_exit(&in_multilock);
1332 return NULL;
1333 }
1334 inm->inm_addr = *ap;
1335 inm->inm_ifp = ifp;
1336 inm->inm_refcount = 1;
1337
1338 /*
1339 * Ask the network driver to update its multicast reception
1340 * filter appropriately for the new address.
1341 */
1342 sockaddr_in_init(&sin, ap, 0);
1343 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) {
1344 rw_exit(&in_multilock);
1345 pool_put(&inmulti_pool, inm);
1346 return NULL;
1347 }
1348
1349 /*
1350 * Let IGMP know that we have joined a new IP multicast group.
1351 */
1352 if (igmp_joingroup(inm) != 0) {
1353 rw_exit(&in_multilock);
1354 pool_put(&inmulti_pool, inm);
1355 return NULL;
1356 }
1357 LIST_INSERT_HEAD(
1358 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp),
1359 inm, inm_list);
1360 in_multientries++;
1361 rw_exit(&in_multilock);
1362
1363 return inm;
1364 }
1365
1366 /*
1367 * Delete a multicast address record.
1368 */
1369 void
1370 in_delmulti(struct in_multi *inm)
1371 {
1372 struct sockaddr_in sin;
1373
1374 rw_enter(&in_multilock, RW_WRITER);
1375 if (--inm->inm_refcount > 0) {
1376 rw_exit(&in_multilock);
1377 return;
1378 }
1379
1380 /*
1381 * No remaining claims to this record; let IGMP know that
1382 * we are leaving the multicast group.
1383 */
1384 igmp_leavegroup(inm);
1385
1386 /*
1387 * Notify the network driver to update its multicast reception
1388 * filter.
1389 */
1390 sockaddr_in_init(&sin, &inm->inm_addr, 0);
1391 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin));
1392
1393 /*
1394 * Unlink from list.
1395 */
1396 LIST_REMOVE(inm, inm_list);
1397 in_multientries--;
1398 rw_exit(&in_multilock);
1399
1400 pool_put(&inmulti_pool, inm);
1401 }
1402
1403 /*
1404 * in_next_multi: step through all of the in_multi records, one at a time.
1405 * The current position is remembered in "step", which the caller must
1406 * provide. in_first_multi(), below, must be called to initialize "step"
1407 * and get the first record. Both macros return a NULL "inm" when there
1408 * are no remaining records.
1409 */
1410 struct in_multi *
1411 in_next_multi(struct in_multistep *step)
1412 {
1413 struct in_multi *inm;
1414
1415 KASSERT(rw_lock_held(&in_multilock));
1416
1417 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) {
1418 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]);
1419 }
1420 if ((inm = step->i_inm) != NULL) {
1421 step->i_inm = LIST_NEXT(inm, inm_list);
1422 }
1423 return inm;
1424 }
1425
1426 struct in_multi *
1427 in_first_multi(struct in_multistep *step)
1428 {
1429 KASSERT(rw_lock_held(&in_multilock));
1430
1431 step->i_n = 0;
1432 step->i_inm = LIST_FIRST(&in_multihashtbl[0]);
1433 return in_next_multi(step);
1434 }
1435
1436 void
1437 in_multi_lock(int op)
1438 {
1439 rw_enter(&in_multilock, op);
1440 }
1441
1442 void
1443 in_multi_unlock(void)
1444 {
1445 rw_exit(&in_multilock);
1446 }
1447
1448 int
1449 in_multi_lock_held(void)
1450 {
1451 return rw_lock_held(&in_multilock);
1452 }
1453
1454 struct sockaddr_in *
1455 in_selectsrc(struct sockaddr_in *sin, struct route *ro,
1456 int soopts, struct ip_moptions *mopts, int *errorp)
1457 {
1458 struct rtentry *rt = NULL;
1459 struct in_ifaddr *ia = NULL;
1460
1461 /*
1462 * If route is known or can be allocated now, take the
1463 * source address from the interface. Otherwise, punt.
1464 */
1465 if ((soopts & SO_DONTROUTE) != 0)
1466 rtcache_free(ro);
1467 else {
1468 union {
1469 struct sockaddr dst;
1470 struct sockaddr_in dst4;
1471 } u;
1472
1473 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0);
1474 rt = rtcache_lookup(ro, &u.dst);
1475 }
1476 /*
1477 * If we found a route, use the address
1478 * corresponding to the outgoing interface
1479 * unless it is the loopback (in case a route
1480 * to our address on another net goes to loopback).
1481 *
1482 * XXX Is this still true? Do we care?
1483 */
1484 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
1485 ia = ifatoia(rt->rt_ifa);
1486 if (ia == NULL) {
1487 u_int16_t fport = sin->sin_port;
1488
1489 sin->sin_port = 0;
1490 ia = ifatoia(ifa_ifwithladdr(sintosa(sin)));
1491 sin->sin_port = fport;
1492 if (ia == NULL) {
1493 /* Find 1st non-loopback AF_INET address */
1494 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
1495 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK))
1496 break;
1497 }
1498 }
1499 if (ia == NULL) {
1500 *errorp = EADDRNOTAVAIL;
1501 return NULL;
1502 }
1503 }
1504 /*
1505 * If the destination address is multicast and an outgoing
1506 * interface has been set as a multicast option, use the
1507 * address of that interface as our source address.
1508 */
1509 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) {
1510 struct ip_moptions *imo;
1511 struct ifnet *ifp;
1512
1513 imo = mopts;
1514 if (imo->imo_multicast_ifp != NULL) {
1515 ifp = imo->imo_multicast_ifp;
1516 IFP_TO_IA(ifp, ia); /* XXX */
1517 if (ia == 0 || ia->ia4_flags & IN_IFF_NOTREADY) {
1518 *errorp = EADDRNOTAVAIL;
1519 return NULL;
1520 }
1521 }
1522 }
1523 if (ia->ia_ifa.ifa_getifa != NULL) {
1524 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa,
1525 sintosa(sin)));
1526 if (ia == NULL) {
1527 *errorp = EADDRNOTAVAIL;
1528 return NULL;
1529 }
1530 }
1531 #ifdef GETIFA_DEBUG
1532 else
1533 printf("%s: missing ifa_getifa\n", __func__);
1534 #endif
1535 return satosin(&ia->ia_addr);
1536 }
1537
1538 #if NARP > 0
1539
1540 struct in_llentry {
1541 struct llentry base;
1542 };
1543
1544 #define IN_LLTBL_DEFAULT_HSIZE 32
1545 #define IN_LLTBL_HASH(k, h) \
1546 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1))
1547
1548 /*
1549 * Do actual deallocation of @lle.
1550 * Called by LLE_FREE_LOCKED when number of references
1551 * drops to zero.
1552 */
1553 static void
1554 in_lltable_destroy_lle(struct llentry *lle)
1555 {
1556
1557 LLE_WUNLOCK(lle);
1558 LLE_LOCK_DESTROY(lle);
1559 kmem_intr_free(lle, sizeof(*lle));
1560 }
1561
1562 static struct llentry *
1563 in_lltable_new(struct in_addr addr4, u_int flags)
1564 {
1565 struct in_llentry *lle;
1566
1567 lle = kmem_intr_zalloc(sizeof(*lle), KM_NOSLEEP);
1568 if (lle == NULL) /* NB: caller generates msg */
1569 return NULL;
1570
1571 /*
1572 * For IPv4 this will trigger "arpresolve" to generate
1573 * an ARP request.
1574 */
1575 lle->base.la_expire = time_uptime; /* mark expired */
1576 lle->base.r_l3addr.addr4 = addr4;
1577 lle->base.lle_refcnt = 1;
1578 lle->base.lle_free = in_lltable_destroy_lle;
1579 LLE_LOCK_INIT(&lle->base);
1580 callout_init(&lle->base.la_timer, CALLOUT_MPSAFE);
1581
1582 return (&lle->base);
1583 }
1584
1585 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \
1586 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 )
1587
1588 static int
1589 in_lltable_match_prefix(const struct sockaddr *prefix,
1590 const struct sockaddr *mask, u_int flags, struct llentry *lle)
1591 {
1592 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix;
1593 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask;
1594
1595 /*
1596 * (flags & LLE_STATIC) means deleting all entries
1597 * including static ARP entries.
1598 */
1599 if (IN_ARE_MASKED_ADDR_EQUAL(lle->r_l3addr.addr4, pfx, msk) &&
1600 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)))
1601 return (1);
1602
1603 return (0);
1604 }
1605
1606 static void
1607 in_lltable_free_entry(struct lltable *llt, struct llentry *lle)
1608 {
1609 struct ifnet *ifp __diagused;
1610 size_t pkts_dropped;
1611
1612 LLE_WLOCK_ASSERT(lle);
1613 KASSERT(llt != NULL);
1614
1615 /* Unlink entry from table if not already */
1616 if ((lle->la_flags & LLE_LINKED) != 0) {
1617 ifp = llt->llt_ifp;
1618 IF_AFDATA_WLOCK_ASSERT(ifp);
1619 lltable_unlink_entry(llt, lle);
1620 }
1621
1622 /* cancel timer */
1623 if (callout_halt(&lle->lle_timer, &lle->lle_lock))
1624 LLE_REMREF(lle);
1625
1626 /* Drop hold queue */
1627 pkts_dropped = llentry_free(lle);
1628 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped);
1629 }
1630
1631 static int
1632 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr)
1633 {
1634 struct rtentry *rt;
1635 int error = EINVAL;
1636
1637 KASSERTMSG(l3addr->sa_family == AF_INET,
1638 "sin_family %d", l3addr->sa_family);
1639
1640 rt = rtalloc1(l3addr, 0);
1641 if (rt == NULL)
1642 return error;
1643
1644 /*
1645 * If the gateway for an existing host route matches the target L3
1646 * address, which is a special route inserted by some implementation
1647 * such as MANET, and the interface is of the correct type, then
1648 * allow for ARP to proceed.
1649 */
1650 if (rt->rt_flags & RTF_GATEWAY) {
1651 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp ||
1652 rt->rt_ifp->if_type != IFT_ETHER ||
1653 #ifdef __FreeBSD__
1654 (rt->rt_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 ||
1655 #else
1656 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 ||
1657 #endif
1658 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data,
1659 sizeof(in_addr_t)) != 0) {
1660 goto error;
1661 }
1662 }
1663
1664 /*
1665 * Make sure that at least the destination address is covered
1666 * by the route. This is for handling the case where 2 or more
1667 * interfaces have the same prefix. An incoming packet arrives
1668 * on one interface and the corresponding outgoing packet leaves
1669 * another interface.
1670 */
1671 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) {
1672 const char *sa, *mask, *addr, *lim;
1673 int len;
1674
1675 mask = (const char *)rt_mask(rt);
1676 /*
1677 * Just being extra cautious to avoid some custom
1678 * code getting into trouble.
1679 */
1680 if (mask == NULL)
1681 goto error;
1682
1683 sa = (const char *)rt_getkey(rt);
1684 addr = (const char *)l3addr;
1685 len = ((const struct sockaddr_in *)l3addr)->sin_len;
1686 lim = addr + len;
1687
1688 for ( ; addr < lim; sa++, mask++, addr++) {
1689 if ((*sa ^ *addr) & *mask) {
1690 #ifdef DIAGNOSTIC
1691 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n",
1692 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr));
1693 #endif
1694 goto error;
1695 }
1696 }
1697 }
1698
1699 error = 0;
1700 error:
1701 rtfree(rt);
1702 return error;
1703 }
1704
1705 static inline uint32_t
1706 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize)
1707 {
1708
1709 return (IN_LLTBL_HASH(dst.s_addr, hsize));
1710 }
1711
1712 static uint32_t
1713 in_lltable_hash(const struct llentry *lle, uint32_t hsize)
1714 {
1715
1716 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize));
1717 }
1718
1719 static void
1720 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa)
1721 {
1722 struct sockaddr_in *sin;
1723
1724 sin = (struct sockaddr_in *)sa;
1725 memset(sin, 0, sizeof(*sin));
1726 sin->sin_family = AF_INET;
1727 sin->sin_len = sizeof(*sin);
1728 sin->sin_addr = lle->r_l3addr.addr4;
1729 }
1730
1731 static inline struct llentry *
1732 in_lltable_find_dst(struct lltable *llt, struct in_addr dst)
1733 {
1734 struct llentry *lle;
1735 struct llentries *lleh;
1736 u_int hashidx;
1737
1738 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize);
1739 lleh = &llt->lle_head[hashidx];
1740 LIST_FOREACH(lle, lleh, lle_next) {
1741 if (lle->la_flags & LLE_DELETED)
1742 continue;
1743 if (lle->r_l3addr.addr4.s_addr == dst.s_addr)
1744 break;
1745 }
1746
1747 return (lle);
1748 }
1749
1750 static int
1751 in_lltable_delete(struct lltable *llt, u_int flags,
1752 const struct sockaddr *l3addr)
1753 {
1754 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
1755 struct ifnet *ifp __diagused = llt->llt_ifp;
1756 struct llentry *lle;
1757
1758 IF_AFDATA_WLOCK_ASSERT(ifp);
1759 KASSERTMSG(l3addr->sa_family == AF_INET,
1760 "sin_family %d", l3addr->sa_family);
1761
1762 lle = in_lltable_find_dst(llt, sin->sin_addr);
1763 if (lle == NULL) {
1764 #ifdef DIAGNOSTIC
1765 log(LOG_INFO, "interface address is missing from cache = %p in delete\n", lle);
1766 #endif
1767 return (ENOENT);
1768 }
1769
1770 if (!(lle->la_flags & LLE_IFADDR) || (flags & LLE_IFADDR)) {
1771 LLE_WLOCK(lle);
1772 lle->la_flags |= LLE_DELETED;
1773 #ifdef DIAGNOSTIC
1774 log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle);
1775 #endif
1776 if ((lle->la_flags & (LLE_STATIC | LLE_IFADDR)) == LLE_STATIC)
1777 llentry_free(lle);
1778 else
1779 LLE_WUNLOCK(lle);
1780 }
1781
1782 return (0);
1783 }
1784
1785 static struct llentry *
1786 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
1787 {
1788 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
1789 struct ifnet *ifp = llt->llt_ifp;
1790 struct llentry *lle;
1791
1792 IF_AFDATA_WLOCK_ASSERT(ifp);
1793 KASSERTMSG(l3addr->sa_family == AF_INET,
1794 "sin_family %d", l3addr->sa_family);
1795
1796 lle = in_lltable_find_dst(llt, sin->sin_addr);
1797
1798 if (lle != NULL) {
1799 LLE_WLOCK(lle);
1800 return (lle);
1801 }
1802
1803 /* no existing record, we need to create new one */
1804
1805 /*
1806 * A route that covers the given address must have
1807 * been installed 1st because we are doing a resolution,
1808 * verify this.
1809 */
1810 if (!(flags & LLE_IFADDR) &&
1811 in_lltable_rtcheck(ifp, flags, l3addr) != 0)
1812 return (NULL);
1813
1814 lle = in_lltable_new(sin->sin_addr, flags);
1815 if (lle == NULL) {
1816 log(LOG_INFO, "lla_lookup: new lle malloc failed\n");
1817 return (NULL);
1818 }
1819 lle->la_flags = flags;
1820 if ((flags & LLE_IFADDR) == LLE_IFADDR) {
1821 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen);
1822 lle->la_flags |= (LLE_VALID | LLE_STATIC);
1823 }
1824
1825 lltable_link_entry(llt, lle);
1826 LLE_WLOCK(lle);
1827
1828 return (lle);
1829 }
1830
1831 /*
1832 * Return NULL if not found or marked for deletion.
1833 * If found return lle read locked.
1834 */
1835 static struct llentry *
1836 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr)
1837 {
1838 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr;
1839 struct llentry *lle;
1840
1841 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp);
1842 KASSERTMSG(l3addr->sa_family == AF_INET,
1843 "sin_family %d", l3addr->sa_family);
1844
1845 lle = in_lltable_find_dst(llt, sin->sin_addr);
1846
1847 if (lle == NULL)
1848 return NULL;
1849
1850 if (flags & LLE_EXCLUSIVE)
1851 LLE_WLOCK(lle);
1852 else
1853 LLE_RLOCK(lle);
1854
1855 return lle;
1856 }
1857
1858 #endif /* NARP > 0 */
1859
1860 static void
1861 in_sysctl_init(struct sysctllog **clog)
1862 {
1863 sysctl_createv(clog, 0, NULL, NULL,
1864 CTLFLAG_PERMANENT,
1865 CTLTYPE_NODE, "inet",
1866 SYSCTL_DESCR("PF_INET related settings"),
1867 NULL, 0, NULL, 0,
1868 CTL_NET, PF_INET, CTL_EOL);
1869 sysctl_createv(clog, 0, NULL, NULL,
1870 CTLFLAG_PERMANENT,
1871 CTLTYPE_NODE, "ip",
1872 SYSCTL_DESCR("IPv4 related settings"),
1873 NULL, 0, NULL, 0,
1874 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
1875
1876 sysctl_createv(clog, 0, NULL, NULL,
1877 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1878 CTLTYPE_INT, "subnetsarelocal",
1879 SYSCTL_DESCR("Whether logical subnets are considered "
1880 "local"),
1881 NULL, 0, &subnetsarelocal, 0,
1882 CTL_NET, PF_INET, IPPROTO_IP,
1883 IPCTL_SUBNETSARELOCAL, CTL_EOL);
1884 sysctl_createv(clog, 0, NULL, NULL,
1885 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1886 CTLTYPE_INT, "hostzerobroadcast",
1887 SYSCTL_DESCR("All zeroes address is broadcast address"),
1888 NULL, 0, &hostzeroisbroadcast, 0,
1889 CTL_NET, PF_INET, IPPROTO_IP,
1890 IPCTL_HOSTZEROBROADCAST, CTL_EOL);
1891 }
1892
1893 #if NARP > 0
1894
1895 static struct lltable *
1896 in_lltattach(struct ifnet *ifp)
1897 {
1898 struct lltable *llt;
1899
1900 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE);
1901 llt->llt_af = AF_INET;
1902 llt->llt_ifp = ifp;
1903
1904 llt->llt_lookup = in_lltable_lookup;
1905 llt->llt_create = in_lltable_create;
1906 llt->llt_delete = in_lltable_delete;
1907 #if 0
1908 llt->llt_dump_entry = in_lltable_dump_entry;
1909 #endif
1910 llt->llt_hash = in_lltable_hash;
1911 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry;
1912 llt->llt_free_entry = in_lltable_free_entry;
1913 llt->llt_match_prefix = in_lltable_match_prefix;
1914 lltable_link(llt);
1915
1916 return (llt);
1917 }
1918
1919 #endif /* NARP > 0 */
1920
1921 void *
1922 in_domifattach(struct ifnet *ifp)
1923 {
1924 struct in_ifinfo *ii;
1925
1926 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP);
1927 KASSERT(ii != NULL);
1928
1929 #if NARP > 0
1930 ii->ii_llt = in_lltattach(ifp);
1931 #endif
1932
1933 #ifdef IPSELSRC
1934 ii->ii_selsrc = in_selsrc_domifattach(ifp);
1935 KASSERT(ii->ii_selsrc != NULL);
1936 #endif
1937
1938 return ii;
1939 }
1940
1941 void
1942 in_domifdetach(struct ifnet *ifp, void *aux)
1943 {
1944 struct in_ifinfo *ii = aux;
1945
1946 #ifdef IPSELSRC
1947 in_selsrc_domifdetach(ifp, ii->ii_selsrc);
1948 #endif
1949 #if NARP > 0
1950 lltable_free(ii->ii_llt);
1951 #endif
1952 kmem_free(ii, sizeof(struct in_ifinfo));
1953 }
1954